
BEAWebLogic
Server®

Programming
Stand-alone Clients

Version 10.0
Revised: April 2008

Programming Stand-alone Clients ii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Related Documentation . 1-3

Samples and Tutorials . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

Examples in the WebLogic Server Distribution . 1-4

New and Changed Features for This Release . 1-4

2. Overview of Stand-alone Clients
RMI-IIOP Clients. 2-1

BEA T3 (RMI) Clients. 2-2

CORBA Clients . 2-2

JMX Clients . 2-2

WebServices Clients . 2-3

Client Types and Features . 2-3

WebLogic JarBuilder Tool. 2-6

3. Developing T3 Clients
T3 Client Basics . 3-1

Developing a T3 Client . 3-2

RMI Communication in WebLogic Server . 3-4

Determining Connection Availability . 3-4

iii Programming Stand-alone Clients

Communicating with a Server in Admin Mode . 3-5

4. Developing a Java EE Application Client (Thin Client)
Overview of the Java EE Application Client . 4-1

How to Develop a Thin Client . 4-3

Using Java EE Client Application Modules . 4-6

Extracting a Client Application . 4-6

Executing a Client Application . 4-7

Protocol Compatibility . 4-9

5. WebLogic JMS Thin Client
Overview of the JMS Thin Client . 5-1

JMS Thin Client Functionality . 5-2

Limitations of Using the JMS Thin Client . 5-2

Deploying the JMS Thin Client . 5-2

6. Reliably Sending Messages Using the JMS SAF Client
Overview of Using Store-and-Forward with JMS Clients . 6-2

Configuring a JMS Client To Use Client-side SAF . 6-2

Generating a JMS SAF Client Configuration File . 6-2

How the JMS SAF Client Configuration File Works . 6-3

Steps to Generate a JMS SAF Client Configuration File from a JMS Module . 6-3

ClientSAFGenerate Utility Syntax . 6-5

Valid SAF Elements for JMS SAF Client Configurations 6-6

Default Store Options for JMS SAF Clients. 6-9

Encrypting Passwords for Remote JMS SAF Contexts . 6-9

Steps to Generate Encrypted Passwords . 6-10

ClientSAFEncrypt Utility Syntax . 6-11

Installing the JMS SAF Client JAR Files on Client Machines 6-11

Programming Stand-alone Clients iv

Modify Your JMS Client Applications To Use the JMS SAF Client’s Initial JNDI
Provider . 6-12

Required JNDI Context Factory for JMS SAF Clients 6-12

Optional JNDI Properties for JMS SAF Clients . 6-13

JMS SAF Client Management Tools. 6-14

The JMS SAF Client Initialization API . 6-14

Client-Side Store Administration Utility . 6-14

JMS Programming Considerations with JMS SAF Clients. 6-14

How the JMSReplyTo Field Is Handled In JMS SAF Client Messages 6-14

No Mixing of JMS SAF Client Contexts and Server Contexts 6-15

Using Transacted Sessions With JMS SAF Clients . 6-15

JMS SAF Client Interoperability Guidelines. 6-16

Java Runtime . 6-16

WebLogic Server Versions . 6-16

Tuning JMS SAF Clients. 6-16

Limitations of Using the JMS SAF Client. 6-16

7. Developing a J2SE Client
J2SE Client Basics. 7-1

How to Develop a J2SE Client . 7-1

8. Developing a WLS-IIOP Client
WLS-IIOP Client Features . 8-1

How to Develop a WLS-IIOP Client. 8-1

9. Developing a CORBA/IDL Client
Guidelines for Developing a CORBA/IDL Client. 9-1

Working with CORBA/IDL Clients . 9-2

Java to IDL Mapping . 9-2

v Programming Stand-alone Clients

Objects-by-Value . 9-3

Procedure for Developing a CORBA/IDL Client . 9-4

10.Developing Clients for CORBA Objects
Enhancements to and Limitations of CORBA Object Types . 10-1

Making Outbound CORBA Calls: Main Steps . 10-2

Using the WebLogic ORB Hosted in JNDI . 10-2

ORB from JNDI . 10-2

Direct ORB creation. 10-3

Using JNDI . 10-3

Supporting Inbound CORBA Calls. 10-4

11.Developing a WebLogic C++ Client for a Tuxedo ORB
WebLogic C++ Client Advantages and Limitations . 11-1

How the WebLogic C++ Client Works. 11-2

Developing WebLogic C++ Clients . 11-2

12.Developing Security-Aware Clients
Developing Clients That Use JAAS . 12-1

Developing Clients That Use SSL . 12-1

Thin-Client Restrictions for JAAS and SSL . 12-3

Security Code Examples . 12-4

13.Using EJBs with RMI-IIOP Clients
Accessing EJBs with a Java Client . 13-1

Accessing EJBs with a CORBA/IDL Client . 13-1

Example IDL Generation . 13-2

A. Client Application Deployment Descriptor Elements
Overview of Client Application Deployment Descriptor Elements A-1

Programming Stand-alone Clients vi

application-client.xml Deployment Descriptor Elements .A-2

application-client .A-2

weblogic-appclient.xml Descriptor Elements .A-5

application-client .A-6

B. Using the WebLogic JarBuilder Tool
Overview . B-1

Creating a wlfullclient.jar File for a Client Application . B-2

C. Code Examples

vii Programming Stand-alone Clients

Programming Stand-alone Clients 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Programming
Stand-alone Clients:

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Samples and Tutorials” on page 1-3

“New and Changed Features for This Release” on page 1-4

Document Scope and Audience
This document is a resource for developers who want to create stand-alone client applications that
inter-operate with WebLogic Server®.
This document is relevant to the design and development phases of a software project. The
document also includes solutions to application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java EE) concepts.
This document emphasizes the value-added features provided by WebLogic Server and key
information about how to use WebLogic Server features and facilities when developing
stand-alone clients.

I n t roduct i on and Roadmap

1-2 Programming Stand-alone Clients

Guide to This Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the scope and
organization of this guide.

Chapter 2, “Overview of Stand-alone Clients,” describes basic client- server functionality.

Chapter 3, “Developing T3 Clients,” describes how to create T3 clients.

Chapter 4, “Developing a Java EE Application Client (Thin Client),” describes how to
create a Java EE application client.

Chapter 5, “WebLogic JMS Thin Client,” describes how to a create WebLogic JAMS thin
client.

Chapter 6, “Reliably Sending Messages Using the JMS SAF Client,” describes how to
create a Store-and-Forward client.

Chapter 7, “Developing a J2SE Client,” describes how to create a J2SE client.

Chapter 8, “Developing a WLS-IIOP Client,” provides information on how to create a
WebLogic Server-IIOP client.

Chapter 9, “Developing a CORBA/IDL Client,” describes how to create a CORBA/IDL
client.

Chapter 10, “Developing Clients for CORBA Objects,” describes how to create a client
that inter-operates with CORBA objects.

Chapter 11, “Developing a WebLogic C++ Client for a Tuxedo ORB,” describes how to
create a C++ client for the Tuxedo ORB.

Chapter 12, “Developing Security-Aware Clients,” describes how to create a security-aware
client.

Chapter 13, “Using EJBs with RMI-IIOP Clients,” describes how to use EJBs with an
RMI-IIOP client.

Appendix A, “Client Application Deployment Descriptor Elements,” is a reference for the
standard Java EE client application deployment descriptor, application-client.xml,
and weblogic-appclient.xml.

Appendix B, “Using the WebLogic JarBuilder Tool,” provides information on creating the
wlfullclient.jar using the JarBuilder tool

Rela ted Documentat ion

Programming Stand-alone Clients 1-3

Appendix C, “Code Examples,” provides BEA examples that demonstrate connectivity
between numerous clients and applications. This section includes examples that
demonstrate using EJBs with RMI-IIOP, connecting to C++ clients, and setting up
interoperability with a Tuxedo Server.

Related Documentation
For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see:

Understanding WebLogic RMI is a guide to using Remote Method Invocation (RMI) and
Internet Interop-Orb-Protocol (IIOP) features.

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

Samples and Tutorials
In addition to this document, BEA Systems provides a variety of code samples and tutorials for
developers. The examples and tutorials illustrate WebLogic Server in action, and provide
practical instructions on how to perform key development tasks.

BEA recommends that you run some or all examples before developing your own applications.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient data
using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
BEA-recommended best practices. MedRec is included in the WebLogic Server distribution, and
can be accessed from the Start menu on Windows machines. For Linux and other platforms, you
can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is
the top-level installation directory for WebLogic Platform.

http://e-docs.bea.com/wls/docs100/rmi/rmi_basics.html
http://e-docs.bea.com/wls/docs100/programming/index.html
message URL http://e-docs.bea.com/wls/docs100/deployment/index.html
message URL http://e-docs.bea.com/wls/docs100/perform/index.html

I n t roduct i on and Roadmap

1-4 Programming Stand-alone Clients

MedRec includes a service tier consisting primarily of Enterprise Java Beans (EJBs) that work
together to process requests from Web applications, Web services, and workflow applications,
and future client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server Start menu.

New and Changed Features for This Release
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What's New in WebLogic Server 10” in Release Notes.

http://e-docs.bea.com/wls/docs100/notes/new.html

Programming Stand-alone Clients 2-1

C H A P T E R 2

Overview of Stand-alone Clients

In the context of this document, a stand-alone client is a client that has a runtime environment
independent of WebLogic Server. (Managed clients, such as Web Services, rely on a server-side
container to provide the runtime necessary to access a server.) Stand-alone clients that access
WebLogic Server applications range from simple command line utilities that use standard I/O to
highly interactive GUI applications built using the Java Swing/AWT classes. The following
sections provide an overview:

“RMI-IIOP Clients” on page 2-1

“BEA T3 (RMI) Clients” on page 2-2

“CORBA Clients” on page 2-2

“JMX Clients” on page 2-2

“WebServices Clients” on page 2-3

“Client Types and Features” on page 2-3

“WebLogic JarBuilder Tool” on page 2-6

RMI-IIOP Clients
IIOP can be a transport protocol for distributed applications with interfaces written in Java RMI.
For more information, see:

“Developing a Java EE Application Client (Thin Client)” on page 4-1

Overv iew o f S tand-a lone C l ients

2-2 Programming Stand-alone Clients

“WebLogic JMS Thin Client” on page 5-1

“Reliably Sending Messages Using the JMS SAF Client” on page 6-1

“Developing a J2SE Client” on page 7-1

“Developing a WLS-IIOP Client” on page 8-1

For more information, see “Using RMI over IIOP” in Programming WebLogic RMI.

BEA T3 (RMI) Clients
A T3 client is a Java RMI client that uses BEA’s proprietary T3 protocol to communicate with
WebLogic Server. See:

“Developing T3 Clients” on page 3-1

Using WebLogic RMI with T3 Protocol in Programming WebLogic RMI.

CORBA Clients
If you are not working in a Java-only environment, you can use IIOP to connect your Java
programs with Common Object Request Broker Architecture (CORBA) clients and execute
CORBA objects. IIOP can be a transport protocol for distributed applications with interfaces
written in Interface Definition Language (IDL) or Java RMI. However, the two models are
distinctly different approaches to creating an interoperable environment between heterogeneous
systems. When you program, you must decide to use either IDL or RMI interfaces; you cannot
mix them.WebLogic Server supports the following CORBA client models:

“Developing a CORBA/IDL Client” on page 9-1

“Developing Clients for CORBA Objects” on page 10-1

“Developing a WebLogic C++ Client for a Tuxedo ORB” on page 11-1

JMX Clients
You can use a JMX client to access WebLogic Server MBeans. See Accessing WebLogic Server
MBeans with JMX in Developing Custom Management Utilities with JMX.

http://e-docs.bea.com/wls/docs100/jmx/accessWLS.html
http://e-docs.bea.com/wls/docs100/jmx/accessWLS.html
http://e-docs.bea.com/wls/docs100/rmi/iiop_basic.html
http://e-docs.bea.com/wls/docs100/rmi/rmi_t3.html

WebServ ices C l ients

Programming Stand-alone Clients 2-3

WebServices Clients
A stand-alone WebServices client uses WebLogic client classes to invoke a Web Service hosted
on WebLogic Server or on other application servers. See Invoking a Web Service from a Stand-alone
Client in Programming Web Services for WebLogic Server.

Client Types and Features
The following table lists the types of clients supported in a WebLogic Server environment, and
their characteristics, features, and limitations.

Note: In this release, client applications should use the wlfullclient.jar file to provide the
WebLogic Server specific functionary previously provided in the weblogic.jar file.
You can generate the wlfullclient.jar file for client applications using the
JarBuilder tool. See “Using the WebLogic JarBuilder Tool” on page B-1.

Table 2-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

Java EE
Application
Client (Thin
Client)

(Introduced in
WebLogic
Server 8.1)

RMI Java IIOP • wlclient.ja
r

• JDK 1.4 and
higher

• Supports WLS clustering.
• Supports many Java EE

features, including security
and transactions.

• Supports SSL.
• Uses CORBA 2.4 ORB.
• See Chapter 4, “Developing a

Java EE Application Client
(Thin Client).”

JMS Thin
Client

(Introduced in
WebLogic
Server 8.1)

RMI Java IIOP • wljmsclient
.jar

• wlclient.ja
r

• JDK 1.4 and
higher

• Thin client functionality
• WebLogic JMS, except for

client-side XML selection for
multicast sessions and
JMSHelper class methods.

• See Chapter 5, “WebLogic
JMS Thin Client.”

http://e-docs.bea.com/wls/docs100/wls/docs92/webserv/client.html#standalone_invoke
http://e-docs.bea.com/wls/docs100/wls/docs92/webserv/client.html#standalone_invoke

Overv iew o f S tand-a lone C l ients

2-4 Programming Stand-alone Clients

JMS SAF
Client

RMI • Java IIOP • wlsafclient
.jar

• wljmsclient
.jar

• wlclient.ja
r

• JDK 1.4 and
higher

• Locally stores messages
on the client and forwards
them to server-side JMS
destinations when the
client is connected.

• See Chapter 6, “Reliably
Sending Messages Using the
JMS SAF Client.”

T3 RMI Java T3 wlfullclient
.jar

• Supports WLS-Specific
features.

• Fast, scalable.
• No CORBA

inter-operability.
• See Chapter 3, “Developing

T3 Clients.”

J2SE RMI Java IIOP no WebLogic
classes

• Provides connectivity to
WLS environment.

• Does not support
WLS-specific features. Does
not support many Java EE
features.

• Uses CORBA 2.3 ORB.
• Requires use of

com.sun.jndi.cosnami
ng.
CNCtxFactory.

• See Chapter 7, “Developing a
J2SE Client.”

Table 2-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

Cl ien t T ypes and Featu res

Programming Stand-alone Clients 2-5

WLS-IIOP

(Introduced in
WebLogic
Server 7.0)

RMI Java IIOP wlfullclient
.jar

• Supports WLS-Specific
features.

• Supports SSL.
• Fast, scalable.
• Not ORB-based.
• See Chapter 8, “Developing a

WLS-IIOP Client.”

JMX RMI Java IIOP wljmxclient.
jar

See Accessing WebLogic Server
MBeans with JMX.

WebServices SOAP Java HTTP/S wseeclient.j
ar

See Invoking a Web Service from
a Stand-alone Client.

CORBA/IDL CORBA Languages
that OMG
IDL maps
to, such as
C++, C,
Smalltalk,
COBOL

IIOP no WebLogic
classes

• Uses CORBA 2.3 ORB.
• Does not support

WLS-specific features.
• Does not support Java.
• See Chapter 9, “Developing a

CORBA/IDL Client.”

Table 2-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

http://e-docs.bea.com/wls/docs100/jmx/accessWLS.html
http://e-docs.bea.com/wls/docs100/jmx/accessWLS.html
http://e-docs.bea.com/wls/docs100/wls/docs92/webserv/client.html#standalone_invoke
http://e-docs.bea.com/wls/docs100/wls/docs92/webserv/client.html#standalone_invoke

Overv iew o f S tand-a lone C l ients

2-6 Programming Stand-alone Clients

WebLogic JarBuilder Tool
For WebLogic Server 10.0 and higher releases, client applications need to use the
wlfullclient.jar file to provide the WebLogic Server specific functionary previously
provided in the weblogic.jar file. You can generate the wlfullclient.jar file for client
applications using the JarBuilder tool. See “Using the WebLogic JarBuilder Tool” on page B-1.

C++ Client CORBA C++ IIOP Tuxedo libraries • Interoperability between
WLS applications and
Tuxedo clients/services.

• Supports SSL.
• Uses CORBA 2.3 ORB.
• See Chapter 11, “Developing

a WebLogic C++ Client for a
Tuxedo ORB.”

Tuxedo
Server and
Native
CORBA
client

CORBA
or RMI

C++ Tuxedo-
General-
Inter-Orb-
Protocol

(TGIOP)

Tuxedo libraries • Interoperability between
WLS applications and
Tuxedo clients/services.

• Supports SSL and
transactions.

• Uses CORBA 2.3 ORB.
• See Chapter 10, “Developing

Clients for CORBA Objects.”

Table 2-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

Programming Stand-alone Clients 3-1

C H A P T E R 3

Developing T3 Clients

A T3 client is an RMI client that uses BEA’s proprietary T3 protocol to communicate with
WebLogic server instance.

The following sections provide information on developing T3 clients:

“T3 Client Basics” on page 3-1

“Developing a T3 Client” on page 3-2

“RMI Communication in WebLogic Server” on page 3-4

“Determining Connection Availability” on page 3-4

“Communicating with a Server in Admin Mode” on page 3-5

T3 Client Basics
A T3 client:

Is an RMI client that uses the Java-to-Java model of distributed computing. For
information on developing RMI applications, see Understanding WebLogic RMI. You
cannot integrate clients written in languages other than Java.

Uses BEA’s proprietary T3 protocol to communicate with Java programs. The URL used
for the initial context takes the form t3://ip address:port.

Requires the wlfullclient.jar in your classpath.

Supports WebLogic Server specific features. See Table 2-1.

http://e-docs.bea.com/wls/docs100/rmi/rmi_basics.html

Deve lop ing T3 C l i ents

3-2 Programming Stand-alone Clients

Developing a T3 Client
Creating a basic T3 client consists of the following

1. Obtain a reference to the remote object.

a. Get the initial context of the server that hosts the service using a T3 URL.

b. Obtain an instance of the service object by performing a lookup using the initial context.
This instance can then be used just like a local object reference.

2. Call the remote objects methods.

Sample code to for a simple T3 client is provided in Listing 3-1.

Listing 3-1 Simple T3 hello Client

package examples.rmi.hello;

import java.io.PrintStream;

import weblogic.utils.Debug;

import javax.naming.*;

import java.util.Hashtable;

/**

* This client uses the remote HelloServer methods.

*

* @author Copyright (c) 1999-2004 by BEA Systems, Inc. All Rights Reserved.

*/

public class HelloClient {

private final static boolean debug = true;

/**

* Defines the JNDI context factory.

*/

public final static String

JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory";

int port;

Deve lop ing a T3 C l i ent

Programming Stand-alone Clients 3-3

String host;

private static void usage() {

System.err.println("Usage: java examples.rmi.hello.HelloClient " +

"<hostname> <port number>");

System.exit(-1);

}

public HelloClient() {}

public static void main(String[] argv) throws Exception {

if (argv.length < 2) {

usage();

}

String host = argv[0];

int port = 0;

try {

port = Integer.parseInt(argv[1]);

}

catch (NumberFormatException nfe) {

usage();

}

try {

InitialContext ic = getInitialContext("t3://" + host + ":" + port);

Hello obj =

(Hello) ic.lookup("HelloServer");

System.out.println("Successfully connected to HelloServer on " +

host + " at port " +

port + ": " + obj.sayHello());

}

catch (Throwable t) {

t.printStackTrace();

System.exit(-1);

}

Deve lop ing T3 C l i ents

3-4 Programming Stand-alone Clients

}

private static InitialContext getInitialContext(String url)

throws NamingException

{

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);

env.put(Context.PROVIDER_URL, url);

return new InitialContext(env);

}

}

RMI Communication in WebLogic Server
RMI communications in WebLogic Server use the T3 protocol to transport data between
WebLogic Server and other Java programs, including clients and other WebLogic Server
instances. A server instance keeps track of each Java Virtual Machine (JVM) with which it
connects, and creates a single T3 connection to carry all traffic for a JVM. See Configure T3
protocol in Administration Console Online Help.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool on
WebLogic Server, a single network connection is established between the WebLogic Server JVM
and the client JVM. The EJB and JDBC services can be written as if they had sole use of a
dedicated network connection because the T3 protocol invisibly multiplexes packets on the single
connection.

Determining Connection Availability
Any two Java programs with a valid T3 connection—such as two server instances, or a server
instance and a Java client—use periodic point-to-point “heartbeats” to announce and determine
continued availability. Each end point periodically issues a heartbeat to the peer, and similarly,
determines that the peer is still available based on continued receipt of heartbeats from the peer.

The frequency with which a server instance issues heartbeats is determined by the
heartbeat interval, which by default is 60 seconds.

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/channels/ConfigureT3Protocol.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/channels/ConfigureT3Protocol.html

Communicat ing wi th a Serve r in Admin Mode

Programming Stand-alone Clients 3-5

The number of missed heartbeats from a peer that a server instance waits before deciding
the peer is unavailable is determined by the heartbeat period, which by default, is 4.
Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—
either heartbeats or other communication—from a peer before deciding that the peer is
unreachable.

Changing timeout defaults is not recommended.

Communicating with a Server in Admin Mode
To communicate with a server instance that is in admin mode, you need to configure a
communication channel by setting the following flag on your client:

-Dweblogic.AdministrationProtocol=t3

Deve lop ing T3 C l i ents

3-6 Programming Stand-alone Clients

Programming Stand-alone Clients 4-1

C H A P T E R 4

Developing a Java EE Application Client
(Thin Client)

A Java EE application client runs on a client machine and can provide a richer user interface than
can be provided by a markup language. Application clients directly access enterprise beans
running in the business tier, and may, as appropriate, communicate via HTTP with servlets
running in the Web tier. An application client is typically downloaded from the server, but can be
installed on a client machine.

The following sections provide information on developing Java EE clients:

“Overview of the Java EE Application Client” on page 4-1

“How to Develop a Thin Client” on page 4-3

“Using Java EE Client Application Modules” on page 4-6

“Protocol Compatibility” on page 4-9

Overview of the Java EE Application Client
Although a Java EE application client (thin client) is a Java application, it differs from a
stand-alone Java application client because it is a Java EE component, hence it offers the
advantages of portability to other Java EE-compliant servers, and can access Java EE services.

BEA provides the following application client JAR files:

A standard client JAR (wlclient.jar) that provides Java EE functionality. See “How to
Develop a Thin Client” on page 4-3.

Deve lop ing a Java EE App l i cat ion C l i ent (Th in C l i ent)

4-2 Programming Stand-alone Clients

A JMS client JAR (wljmsclient.jar), which when deployed with the wlclient.jar,
provides Java EE and WebLogic JMS functionality. See “WebLogic JMS Thin Client” on
page 5-1.

A JMS SAF client JAR (wlsafclient.jar), which when deployed with the
wljmsclient.jar and wlclient.jar enables standalone JMS clients to reliably send
messages to server-side JMS destinations, even when a destination is temporarily
unreachable. Sent messages are stored locally on the client and are forwarded to the
destination when it becomes available. See “Reliably Sending Messages Using the JMS
SAF Client” on page 6-1.

These application client JAR files reside in the WL_HOME/server/lib subdirectory of the
WebLogic Server installation directory.

The thin client uses the RMI-IIOP protocol stack and leverages features of J2SE 1.4 It also
requires the support of the JDK ORB. The basics of making RMI requests are handled by the
JDK, which makes possible a significantly smaller client. Client-side development is performed
using standard Java EE APIs, rather than WebLogic Server APIs.

The development process for a thin client application is the same as it is for other Java EE
applications. The client can leverage standard Java EE artifacts such as InitialContext,
UserTransaction, and EJBs. The WebLogic Server thin client supports these values in the
protocol portion of the URL—IIOP, IIOPS, HTTP, HTTPS, T3, and T3S—each of which can be
selected by using a different URL in InitialContext. Regardless of the URL, IIOP is used. URLs
with T3 or T3S use IIOP and IIOPS respectively. HTTP is tunnelled IIOP, HTTPS is IIOP
tunnelled over HTTPS.

Server-side components are deployed in the usual fashion. Client stubs can be generated at either
deployment time or runtime.To generate stubs when deploying, run appc with the -iiop and
-basicClientJar options to produce a client jar suitable for use with the thin client. Otherwise,
WebLogic Server generates stubs on demand at runtime and serves them to the client.
Downloading of stubs by the client requires that a suitable security manager be installed. The thin
client provides a default light-weight security manager. For rigorous security requirements, a
different security manager can be installed with the command line options
-Djava.security.manager -Djava.security.policy==policyfile. Applets use a
different security manager which already allows the downloading of stubs.

The thin client JAR replaces some classes in wlfullclient.jar. If both the full JAR and the
thin client JAR are in the CLASSPATH, the thin client JAR should be first in the path. Note,
however, that wlfullclient.jar is not required to support the thin client. If desired, you can
use this syntax to run with an explicit CLASSPATH:

How to Deve l op a Th in C l i ent

Programming Stand-alone Clients 4-3

java -classpath "<WL_HOME>/lib/wlclient.jar;<CLIENT_CLASSES>"
your.app.Main

Note: wljmsclient.jar has a reference to wlclient.jar so it is only necessary to put one
or the other Jar in the client CLASSPATH. Do not put the wljmsclient.jar in the
server-side CLASSPATH.

The thin client jar contains the necessary Java EE interface classes, such as javax.ejb, no other
jar files are necessary on the client.

How to Develop a Thin Client
To develop a thin client:

1. Define your remote object’s public methods in an interface that extends java.rmi.Remote.

This remote interface may not require much code. All you need are the method signatures
for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;
public void pingCallback(Pinger toPing) throws java.rmi.RemoteException;
}

2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree
to be made available to clients.

This class should implement the remote interface that you wrote, which means that you
implement the method signatures that are contained in the interface. All the code
generation that will take place is dependent on this class file. Typically, you configure your
implementation class as a WebLogic startup class and include a main method that binds the
object into the JNDI tree. Here is an excerpt from the implementation class developed from
the previous Ping example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
remoteDomain = args[0];

Pinger obj = new PingImpl();
Context initialNamingContext = new InitialContext();
initialNamingContext.rebind(NAME,obj);
System.out.println("PingImpl created and bound to "+ NAME);

}

Deve lop ing a Java EE App l i cat ion C l i ent (Th in C l i ent)

4-4 Programming Stand-alone Clients

3. Compile the remote interface and implementation class with a java compiler. Developing
these classes in an RMI-IIOP application is no different from doing so in normal RMI. For
more information on developing RMI objects, see “Understanding WebLogic RMI”.

4. Run the WebLogic RMI or EJB compiler against the implementation class to generate the
necessary IIOP stub.

Note: If you plan on downloading stubs, it is not necessary to run rmic.

$ java weblogic.rmic -iiop nameOfImplementationClass

To generate stubs when deploying, run appc with the -iiop and -clientJar options to
produce a client JAR suitable for use with the thin client. Otherwise, WebLogic Server will
generate stubs on demand at runtime and serve them to the client.

A stub is the client-side proxy for a remote object that forwards each WebLogic RMI call
to its matching server-side skeleton, which in turn forwards the call to the actual remote
object implementation.

5. Make sure that the files you have created—the remote interface, the class that implements it,
and the stub—are in the CLASSPATH of WebLogic Server.

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a lookup
(see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use
weblogic.jndi.WLInitialContextFactory when defining your JNDI context factory.
Use this class when setting the value for the "Context.INITIAL_CONTEXT_FACTORY"
property that you supply as a parameter to new InitialContext().

7. Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

RMI over IIOP RMI clients differ from regular RMI clients in that IIOP is defined as the
protocol when obtaining an initial context. Because of this, lookups and casts must be
performed in conjunction with the javax.rmi.PortableRemoteObject.narrow()
method. For example, an RMI client creates an initial context, performs a lookup on the
EJBean home, obtains a reference to an EJBean, and calls methods on the EJBean.

You must use the javax.rmi.PortableRemoteObject.narrow() method in any
situation where you would normally cast an object to a specific class type. A CORBA
client may return an object that does not implement your remote interface; the narrow
method is provided by your ORB to convert the object so that it implements your remote
interface. For example, the client code responsible for looking up the EJBean home and

http://e-docs.bea.com/wls/docs100/rmi/rmi_basics.html

How to Deve l op a Th in C l i ent

Programming Stand-alone Clients 4-5

casting the result to the Home object must be modified to use the
javax.rmi.PortableRemoteObject.narrow() as shown below:

Performing a lookup:

.

.

.
/**
* RMI/IIOP clients should use this narrow function
*/
private Object narrow(Object ref, Class c) {

return PortableRemoteObject.narrow(ref, c);
}

/**
* Lookup the EJBs home in the JNDI tree
*/
private TraderHome lookupHome()

throws NamingException
{

// Lookup the beans home using JNDI
Context ctx = getInitialContext();

try {
Object home = ctx.lookup(JNDI_NAME);
return (TraderHome) narrow(home, TraderHome.class);
} catch (NamingException ne) {
log("The client was unable to lookup the EJBHome. Please
make sure ");
log("that you have deployed the ejb with the JNDI name
"+JNDI_NAME+" on the WebLogic server at "+url);
throw ne;

}
}

/**
* Using a Properties object will work on JDK130
* and higher clients
*/
private Context getInitialContext() throws NamingException {

try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);

} catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic

Deve lop ing a Java EE App l i cat ion C l i ent (Th in C l i ent)

4-6 Programming Stand-alone Clients

server at "+url);
log("Please make sure that the server is running.");
throw ne;

}
}
.
.
.

The url defines the protocol, hostname, and listen port for the WebLogic Server instance
and is passed in as a command-line argument.

public static void main(String[] args) throws Exception {

log("\nBeginning statelessSession.Client...\n");

String url = "iiop://localhost:7001";

8. Connect the client to the server over IIOP by running the client with a command such as:

$ java -Djava.security.manager -Djava.security.policy=java.policy
examples.iiop.ejb.stateless.rmiclient.Client iiop://localhost:7001

Using Java EE Client Application Modules
Java EE specifies a standard for including client application code (a client module) in an EAR
file. This allows the client side of an application to be packaged along with the other modules that
make up the application.

The client module is declared in the META-INF/application.xml file of the EAR using a
<java> tag. See “Enterprise Application Deployment Descriptor Elements” in Developing
Applications with WebLogic Server.

Note: The <java> tag is often confused to be a declaration of Java code that can be used by the
server-side modules. This is not its purpose, it is used to declare client-side code that runs
outside of the server-side container.

A client module is basically a JAR file containing a special deployment descriptor named
META-INF/application-client.xml. This client JAR file also contains a Main-Class
entry in its META-INF/MANIFEST.MF file to specify the entry point for the program. For more
information on the application-client.xml file, see “Client Application Deployment
Descriptor Elements” on page A-1.

Extracting a Client Application
WebLogic Server includes two utilities that facilitate the use of client modules. They are:

http://e-docs.bea.com/wls/docs100/programming/app_xml.html

Us ing Java EE C l i en t Appl i ca t i on Modules

Programming Stand-alone Clients 4-7

weblogic.ClientDeployer—Extracts the client module from the EAR and prepares it
for execution.

weblogic.j2eeclient.Main—Executes the client code.

You use the weblogic.ClientDeployer utility to extract the client-side JAR file from a Java
EE EAR file, creating a deployable JAR file. Execute the weblogic.ClientDeployer class on
the Java command line using the following syntax:

java weblogic.ClientDeployer ear-file client1 [client2 client3 ...]

The ear-file argument is a Java archive file with an .ear extension or an expanded directory
that contains one or more client application JAR files.

The client arguments specify the clients you want to extract. For each client you name, the
weblogic.ClientDeployer utility searches for a JAR file within the EAR file that has the
specified name containing the .jar extension.

For example, consider the following command:

java weblogic.ClientDeployer app.ear myclient

This command extracts myclient.jar from app.ear. As it extracts, the
weblogic.ClientDeployer utility performs two other operations.

It ensures that the JAR file includes a META-INF/application-client.xml file. If it
does not, an exception is thrown.

It reads from a file named myclient.runtime.xml and creates a
weblogic-application-client.xml file in the extracted JAR file. This is used by the
weblogic.j2eeclient.Main utility to initialize the client application's component
environment (java:comp/env). For information on the format of the runtime.xml file,
see “weblogic-appclient.xml Descriptor Elements” on page A-5.

Note: You create the <client>.runtime.xml descriptor for the client program to define
bindings for entries in the module's META-INF/application-client.xml
deployment descriptor.

Executing a Client Application
Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and point it to a
WebLogic Server instance using the following command:

java weblogic.j2eeclient.Main clientjar URL [application args]

Deve lop ing a Java EE App l i cat ion C l i ent (Th in C l i ent)

4-8 Programming Stand-alone Clients

For example:

java weblogic.j2eeclient.Main myclient.jar t3://localhost:7001

The weblogic.j2eeclient.Main utility creates a component environment that is accessible
from java:comp/env in the client code.

If a resource mentioned by the application-client.xml descriptor is one of the following
types, the weblogic.j2eeclient.Main class attempts to bind it from the global JNDI tree on
the server to java:comp/env using the information specified earlier in the
myclient.runtime.xml file.

ejb-ref

javax.jms.QueueConnectionFactory

javax.jms.TopicConnectionFactory

javax.mail.Session

javax.sql.DataSource

The user transaction is bound into java:comp/UserTransaction.

The <res-auth> tag in the application.xml deployment descriptor is currently ignored and
should be entered as application. BEA does not currently support form-based authentication.

The rest of the client environment is bound from the weblogic-application-client.xml file
created by the weblogic.ClientDeployer utility.

The weblogic.j2eeclient.Main class emits error messages for missing or incomplete
bindings.

Once the environment is initialized, the weblogic.j2eeclient.Main utility searches the JAR
manifest of the client JAR for a Main-Class entry. The main method on this class is invoked to
start the client program. Any arguments passed to the weblogic.j2eeclient.Main utility
after the URL argument is passed on to the client application.

The client JVM must be able to locate the Java classes you create for your application and any
Java classes your application depends upon, including WebLogic Server classes. You stage a
client application by copying all of the required files on the client into a directory and bundling
the directory in a JAR file. The top level of the client application directory can have a batch file
or script to start the application. Create a classes/ subdirectory to hold Java classes and JAR
files, and add them to the client Class-Path in the startup script.

You may also want to package a Java Runtime Environment (JRE) with a Java client application.

Pro toco l Compat ib i l i t y

Programming Stand-alone Clients 4-9

Note: The use of the Class-Path manifest entries in client module JARs is not portable, as it has
not yet been addressed by the Java EE standard.

Protocol Compatibility
Interoperability between WebLogic Server thin clients is supported in the following scenarios.

Table 4-1 Thin Client Inter-operability

To

From

WebLogic Server
8.1 (JDK 1.4)

WebLogic Server
9.x (JDK 1.5)

WebLogic Server
10.0 (JDK 1.5)

WebLogic Server 8.1
wlclient.jar (JDK
1.4)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

WebLogic Server 8.1
wljmsclient.jar
(JDK 1.4)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

WebLogic Server 9.x
wlclient.jar (JDK
1.5)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

WebLogic Server 9.x
wljmsclient.jar
(JDK 1.5)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

Deve lop ing a Java EE App l i cat ion C l i ent (Th in C l i ent)

4-10 Programming Stand-alone Clients

WebLogic Server 10.0
wlclient.jar (JDK
1.5)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

WebLogic Server 10.0
wljmsclient.jar
(JDK 1.5)

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

IIOP,

IIOPS,

HTTP,

HTTPS

Table 4-1 Thin Client Inter-operability

To

From

WebLogic Server
8.1 (JDK 1.4)

WebLogic Server
9.x (JDK 1.5)

WebLogic Server
10.0 (JDK 1.5)

Programming Stand-alone Clients 5-1

C H A P T E R 5

WebLogic JMS Thin Client

The following sections describe how to deploy and use the WebLogic JMS thin client:

“Overview of the JMS Thin Client” on page 5-1

“JMS Thin Client Functionality” on page 5-2

“Limitations of Using the JMS Thin Client” on page 5-2

“Deploying the JMS Thin Client” on page 5-2

Overview of the JMS Thin Client
The JMS thin client (the wljmsclient.jar deployed with the wlclient.jar), provides Java
EE and WebLogic JMS functionality using a much smaller client footprint than the full
WebLogic JAR. The smaller footprint is obtained by using:

A client-side library that contains only the set of supporting files required by client-side
programs.

The RMI-IIOP protocol stack available in the JRE. RMI requests are handled by the JRE,
enabling a significantly smaller client.

Standard Java EE APIs, rather than WebLogic Server APIs.

For more information on developing WebLogic Server thin client applications, see “Developing
a Java EE Application Client (Thin Client)” on page 4-1.

WebLogic JMS Th in C l i ent

5-2 Programming Stand-alone Clients

JMS Thin Client Functionality
Although much smaller in size than the full WebLogic JAR, the JMS thin client (the
wljmsclient.jar and wlclient.jar) provide the following functionality to client
applications and applets:

Full WebLogic JMS functionality—both standard JMS and WebLogic extensions—except
for client-side XML selection for multicast sessions and the JMSHelper class methods

EJB (Enterprise Java Bean) access

JNDI access

RMI access (indirectly used by JMS)

SSL access (using JSSE in the JRE)

Transaction capability

Clustering capability

HTTP/HTTPS tunneling

Fully internationalized

Limitations of Using the JMS Thin Client
The following limitations apply to the JMS thin client:

It does not provide the JDBC or JMX functionality of the normal wlfullclient.jar file.

It does not inter-operate with WebLogic Server 7.0 or earlier.

It is only supported by the JDK ORB.

It has lower performance than the thick client, especially with non-persistent messaging.

Deploying the JMS Thin Client
The wljmsclient.jar and wlclient.jar are located in the WL_HOME\server\lib
subdirectory of the WebLogic Server installation directory, where WL_HOME is the top-level
installation directory for the entire WebLogic Platform (for example,
c:\bea\wlserver_10.0\server\lib).

Deployment of the JMS thin client depends on the following requirements:

Dep loy ing the JMS Th in C l i ent

Programming Stand-alone Clients 5-3

The JMS thin client requires the standard thin client, which contains the base client support
for clustering, security, and transactions. Therefore, the wljmsclient.jar and the
wlclient.jar must be installed somewhere on the client’s file system. However,
wljmsclient.jar has a reference to wlclient.jar so it is only necessary to put one or
the other Jar in the client’s CLASSPATH.

RMI-IIOP is required for client-server communication.

– URLs using t3 or t3s will transparently use iiop or iiops

– URLs using http or https will transparently use iiop tunneling.

To facilitate the use of IIOP, always specify a valid IP address or DNS name for the Listen
Address attribute to listen for connections.

Note: The Listen Address default value of null allows it to “listen on all configured
network interfaces”. However, this feature only works with the T3 protocol. If you
need to configure multiple listen addresses for use with the IIOP protocol, then use
the Network Channel feature, as described in Configuring Network Resources in
Configuring WebLogic Server Environments.

Each client must have the JRE 1.4.n or higher installed.

Applications must adhere to Java EE programming guidelines, in particular the use of
PortableRemoteObject.narrow() rather than using casts.

For more information on developing thin client applications for WebLogic Server, see
“Developing a Java EE Application Client (Thin Client)” on page 4-1.

http://e-docs.bea.com/wls/docs100/config_wls/network.html

WebLogic JMS Th in C l i ent

5-4 Programming Stand-alone Clients

Using a WebLogic SAF Client 6-1

C H A P T E R 6

Reliably Sending Messages Using the
JMS SAF Client

The following sections describe how to configure and use the JMS SAF Client feature to reliably
send JMS messages from standalone JMS clients to server-side JMS destinations:

“Overview of Using Store-and-Forward with JMS Clients” on page 6-2

“Configuring a JMS Client To Use Client-side SAF” on page 6-2

“JMS SAF Client Management Tools” on page 6-14

“JMS Programming Considerations with JMS SAF Clients” on page 6-14

“JMS SAF Client Interoperability Guidelines” on page 6-16

“Tuning JMS SAF Clients” on page 6-16

“Limitations of Using the JMS SAF Client” on page 6-16

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-2 Using a WebLogic SAF Client

Overview of Using Store-and-Forward with JMS Clients
The JMS SAF Client feature extends the JMS store-and-forward service introduced in WebLogic
Server 9.0 to standalone JMS clients. Now JMS clients can reliably send messages to server-side
JMS destinations, even when the client cannot reach a destination (for example, due to a
temporary network connection failure). While disconnected from the server, messages sent by a
JMS SAF client are stored locally on the client file system and are forwarded to server-side JMS
destinations when the client reconnects.

The JMS SAF client feature consists of two main parts: the JMS SAF client implementation that
writes messages directly to a client-side persistent store on the local file system and a SAF
forwarder that takes the messages written to the store and sends them to a WebLogic Server
instance. There is also an optional SAFClient initialization API in weblogic.jms.extensions
that allows JMS SAF clients to turn the SAF forwarder mechanism on and off whenever
necessary. For more information, see “The JMS SAF Client Initialization API” on page 6-14.

Note: For information on the server-side WebLogic JMS SAF for reliably sending JMS
messages to potentially unavailable destinations, see Configuring SAF for JMS
Messages in Configuring and Managing WebLogic Store-and-Forward.

Configuring a JMS Client To Use Client-side SAF
No configuration is required on the server-side, but running client-side SAF does require some
configuration on each client. These sections describe how to configure a JMS client to use
client-side SAF.

“Generating a JMS SAF Client Configuration File” on page 6-2

“Encrypting Passwords for Remote JMS SAF Contexts” on page 6-9

“Installing the JMS SAF Client JAR Files on Client Machines” on page 6-11

“Modify Your JMS Client Applications To Use the JMS SAF Client’s Initial JNDI
Provider” on page 6-12

Generating a JMS SAF Client Configuration File
Each client machine requires a JMS SAF client configuration file that specifies information about
the server-side connection factories and destinations needed by the JMS SAF client environment
to operate. You generate the JMS SAF client configuration file from a specified JMS module’s

http://e-docs.bea.com/wls/docs100/javadocs/weblogic/jms/extensions/ClientSAF.html
http://e-docs.bea.com/wls/docs100/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs100/saf_admin/config_jms.html

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-3

configuration file by using the ClientSAFGenerate utility bundled with your WebLogic
installation.

The ClientSAFGenerate utility creates entries for all connection factories, stand-alone
destinations, and distributed destinations found in the source JMS configuration file, as described
in “Steps to Generate a JMS SAF Client Configuration File from a JMS Module” on page 6-3.
The generated file defines the connection factories and imported destinations that the JMS SAF
client will interact with directly through the initial JNDI context described in “Modify Your JMS
Client Applications To Use the JMS SAF Client’s Initial JNDI Provider” on page 6-12. However,
the generated file will not contain entries for any foreign JMS destinations or SAF destinations
in server-side JMS modules. Furthermore, only JMS destinations with their SAF Export Policy
set to All are added to the file (the default setting for destinations).

How the JMS SAF Client Configuration File Works
The JMS SAF client XML file conforms to the WebLogic Server weblogic-jmsmd.xsd schema
for JMS modules and contains the root element weblogic-client-jms. The
weblogic-jmsmd.xsd schema contains several top-level elements that correspond to server-side
WebLogic JMS SAF features, as described in “Valid SAF Elements for JMS SAF Client
Configurations” on page 6-6.

The top-level elements in the file describe the connection factory and imported destination
elements that the JMS SAF client will interact with directly. The SAF sending agent, remote SAF
context, and SAF error handling elements describe the function of the SAF forwarder. The
persistent store element is used by both the JMS SAF client API and the SAF fowarder.

Steps to Generate a JMS SAF Client Configuration File from a JMS Module
Use the ClientSAFGenerate utility to generate a JMS SAF client configuration file from a JMS
module configuration file in a WebLogic domain. You can also generate a configuration file from
an existing JMS SAF client configuration file, as described in “ClientSAFGenerate Utility
Syntax” on page 6-5.

Note: Running the ClientSAFGenerate utility on a client machine to generate a configuration
file from an existing JMS SAF client configuration file requires using the
wlfullclient.jar in the CLASSPATH instead of the thin JMS and JMS SAF clients. See
“Installing the JMS SAF Client JAR Files on Client Machines” on page 6-11.

These steps demonstrate how to use the ClientSAFGenerate utility to generate a JMS SAF
client configuration file from the examples-jms.xml module file bundled in WebLogic Server
installations.

http://www.bea.com/ns/weblogic/10.0/weblogic-jmsmd.xsd
http://www.bea.com/ns/weblogic/10.0/weblogic-jmsmd.xsd

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-4 Using a WebLogic SAF Client

1. Navigate to the directory in the WebLogic domain containing the JMS module file that you
want to use as the basis for the JMS SAF client configuration file:

c:\bea\wlserver_10.0\samples\domains\wl_server\config\jms

2. From a Java command-line, run the ClientSAFGenerate utility:

> java weblogic.jms.extensions.ClientSAFGenerate -url
http://10.61.6.138:7001 -username weblogic -moduleFile examples-jms.xml
-outputFile d:\temp\ClientSAF-jms.xml

Table 6-1 explains the valid ClientSAFGenerate arguments.

3. A configuration file named SAFClient-jms.xml is created in the current directory. Here is
a representative example of its contents:

<weblogic-client-jms xmlns="http://www.bea.com/ns/weblogic/100"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <connection-factory name="exampleTrader">
 <jndi-name>jms.connection.traderFactory</jndi-name>
 <transaction-params>
 <xa-connection-factory-enabled>false
 </xa-connection-factory-enabled>
 </transaction-params>
 </connection-factory>
 <saf-imported-destinations name="examples">
 <saf-queue name="exampleQueue">
 <remote-jndi-name>weblogic.examples.jms.exampleQueue
 </remote-jndi-name>
 <local-jndi-name>weblogic.examples.jms.exampleQueue
 </local-jndi-name>
 </saf-queue>
 <saf-topic name="quotes">
 <remote-jndi-name>quotes</remote-jndi-name>
 <local-jndi-name>quotes</local-jndi-name>
 </saf-topic>
 </saf-imported-destinations>
 <saf-remote-context name="RemoteContext0">
 <saf-login-context>
 <loginURL>t3://localhost:7001</loginURL>
 <username>weblogic</username>
 </saf-login-context>
 </saf-remote-context>
</weblogic-client-jms>

Tip: To include additional remote SAF connection factories and destinations from other
JMS modules deployed in a cluster or domain, re-run the ClientSAFGenerate

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-5

utility against these JMS module files and specify the same JMS SAF configuration
file name in the -outputFile parameter. See “ClientSAFGenerate Utility Syntax”
on page 6-5.

4. The generated configuration file does not contain any encrypted passwords for the SAF
remote contexts used to connect to remote servers. To create encrypted passwords for the
remote SAF contexts and add them to the configuration file, follow the directions in
“Encrypting Passwords for Remote JMS SAF Contexts” on page 6-9.

5. Copy the generated configuration can file to the client machine(s) where you will run your
JMS SAF client applications. See “Installing the JMS SAF Client JAR Files on Client
Machines” on page 6-11.

Note: ClientSAF.xml is the default name expected in the current working directory of the
JMS client, but you can also explicitly specify a file name by passing an argument in
the JMS client, as described in “Modify Your JMS Client Applications To Use the
JMS SAF Client’s Initial JNDI Provider” on page 6-12.

ClientSAFGenerate Utility Syntax
The weblogic.jms.extensions.ClientSAFGenerate utility generates a JMS SAF client
configuration file, using either a JMS module file or an existing JMS SAF client configuration
file.

java [weblogic.jms.extensions.ClientSAFGenerate]

[-url server-url]

[-username name-of-user]

[-existingClientFile file-path]

[-moduleFile file-path ['@' plan-path]]*

[-outputFile file-path]

Table 6-1 ClientSAFGenerate Arguments

Argument Definition

url The URL of the WebLogic Server instance where the JMS SAF
client instance should connect.

username The name of a valid user that this JMS SAF client instance should
use when forwarding messages.

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-6 Using a WebLogic SAF Client

Valid SAF Elements for JMS SAF Client Configurations
The weblogic-client-jms root element of the weblogic-jmsmd.xsd schema contains
several top-level elements that correspond to server-side WebLogic JMS SAF features. Table 6-2
makes clear what the relationship between the top-level element in the schema and the
corresponding management MBean.

existingClientFile The name of an existing JMS SAF client configuration file. If this
parameter is specified, then the existing file will be read and new
entries will be added. If any conflicts are detected between items
being added and items already in the JMS SAF client configuration
file, a warning will be given and the new item will not be added. If a
JMS SAF client configuration file is specified but the file cannot be
found, then an error is printed and the utility exits.

moduleFile The name of a JMS module configuration file and optional plan file.

outputFile The path to the generated output file. If a path is not specified, the
utility sends its output to stdout.
ClientSAF.xml is the default name expected in the current working
directory of the JMS client, but you can also explicitly specify a file
name by passing an argument in the JMS client.

Table 6-1 ClientSAFGenerate Arguments

Argument Definition

Table 6-2 weblogic-client-saf Elements

weblogic-client-jms Element WebLogic Server Management Bean

connection-factory JMSConnectionFactoryBean

saf-agent SAFAgentMBean

saf-imported-destinati
ons

SAFImportedDestinationsBean

saf-remote-context SAFRemoteContextBean

http://www.bea.com/ns/weblogic/920/weblogic-jmsmd.xsd
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFAgentMBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFImportedDestinationsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFRemoteContextBean.html

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-7

Caution: You can only specify one persistent-store and saf-agent element in a JMS
SAF client configuration file.

All of the properties in these management MBeans work the same in the JMS SAF client
implementation as they do in server-side SAF JMS configurations, except for those described in
the following tables.

Table 6-3 describes the differences between the standard SAFAgentMBean fields and the fields in
the JMS SAF client configuration file.

saf-error-handling SAFErrorHandlingBean

persistent-store For more information, see “Default Store Options for JMS SAF
Clients” on page 6-9.

Table 6-2 weblogic-client-saf Elements

weblogic-client-jms Element WebLogic Server Management Bean

Table 6-3 Modified SAFAgentMBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

PersistentStore Not available. There is only one persistent store defined.

ServiceType Not available. This can only be a sending agent.

BytesThresholdHigh Threshold properties are not available.

BytesThresholdLow Threshold properties are not available.

MessagesThresholdHigh Threshold properties are not available.

MessagesThresholdLow Threshold properties are not available.

ConversationIdleTimeMa
ximum

Not available. This field is only valid for receiving messages.

AcknowledgeInterval Not available. Only valid for receiving messages.

IncomingPausedAtStartu
p

Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFErrorHandlingBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFAgentMBean.html

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-8 Using a WebLogic SAF Client

Caution: You can only specify one saf-agent element in a JMS SAF client configuration file.

Table 6-4 describes the differences between the standard JMSConnectionFactoryBean fields
and the fields in the JMS SAF client configuration file.

Table 6-5 describes the differences between the standard SAFImportedDestinationsBean
fields and the fields in the JMS SAF client configuration file.

ForwardingPausedAtStar
tup

Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

ReceivingPausedAtStart
up

Not available. No way to unpause; same effect achieved by not
setting the JMS SAF client property.

Table 6-3 Modified SAFAgentMBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

Table 6-4 Modified JMSConnectionFactoryBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These connection factories are not targeted.

ClientParamsBean:
MulticastOverrunPolicy

 Ignored. This client cannot do multicast receives.

TransactionParamsBean:
XAConnectionFactoryEna
bled

 Ignored. JMS SAF client cannot do XA transactions.

FlowControlParamsBean All fields are ignored. JMS SAF client cannot receive messages.

LoadBalancingParamsBea
n

All fields are ignored. JMS SAF client cannot load balance since it
is not connected to a server.

Table 6-5 Modified SAFImportedDestinationsBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These are targeted to the single SAF agent defined in this
file.

UnitOfOrderRouting Ignored. Message unit-of-order is not supported.

http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/SAFImportedDestinationsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/ClientParamsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/TransactionParamsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/FlowControlParamsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/LoadBalancingParamsBean.html
http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-9

Default Store Options for JMS SAF Clients
Each JMS SAF client has a default store that requires no configuration, and which can be shared
by multiple JMS SAF clients. The default store is a file-based store that maintains its data in a
group of files directly under the JMS SAF client configuration directory.

Using the persistent-store element, you can specify another location for the default store and
also change its default write policy by specifying the following elements in the JMS SAF client
configuration file:

Caution: You can only specify one persistent-store element in a JMS SAF client
configuration file.

Here’s an example of a customized JMS SAF client default store in a JMS SAF client
configuration file:

 <persistent-store>

 <directory-path>config/jms/storesdom</directory-path>

 <synchronous-write-policy>Disabled</synchronous-write-policy>

 </persistent-store>

For more information on using the Synchronous Write Policy for a file store, see Using the
WebLogic Persistent Store in Configuring WebLogic Server Environments.

Encrypting Passwords for Remote JMS SAF Contexts
The generated SAF configuration file does not contain any encrypted passwords for its generated
SAF remote contexts, regardless of whether any were configured in the source JMS module file.
If security credentials are configured for the remote cluster or server contexts defined in the JMS
SAF client configuration file, then encrypted passwords are required to connect to the remote
servers or cluster.

Table 6-6 persistent-store Elements

Element Name What it does

directory-path Specifies the path to the directory on the file system where the file
store is kept.

synchronous-write-poli
cy

Defines how hard a file store will try to flush records to the disk.
Values are: Direct-Write (default), Cache-Flush, and Disabled.

http://e-docs.bea.com/wls/docs100/config_wls/store.html#CreatingaCustomFileStore
http://e-docs.bea.com/wls/docs100/config_wls/store.html#CreatingaCustomFileStore

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-10 Using a WebLogic SAF Client

To create encrypted passwords for your remote SAF contexts, you must use the
ClientSAFEncrypt utility bundled with your WebLogic installation, which encrypts cleartext
strings for use with the JMS SAF client feature.

Note: The existing weblogic.security.Encrypt command-line utility cannot be used
because it expects access to the domain security files, which are not available on the
client.

Steps to Generate Encrypted Passwords
The following steps demonstrate how to use the ClientSAFEncrypt to generate encrypted
passwords:

1. From a Java command-line, run the ClientSAFEncrypt utility:

> java -Dweblogic.management.allowPasswordEcho=true
weblogic.jms.extensions.ClientSAFEncrypt [key-password] [
remote-password]*

2. If the key-password or the remote-password fields are not specified, then you will be
prompted for the key-password and the remote-password interactively.

3. Here’s an example of obtaining an encrypted password:

Password Key ("quit" to end):
Password ("quit" to end):
<password-encrypted>{Algorithm}PBEWithMD5AndDES{Salt}9IsTPAuZdcQ={Data}
d6SSPp3GwPAfEXn8izyZA0IRCV/izT8H</password-encrypted>
Password ("quit" to end):

4. Continue generating as many remote passwords as necessary for the remote contexts defined
in the JMS SAF client configuration file.

5. Copy the encrypted remote password before the closing </saf-login-context> stanza in
the JMS SAF client configuration file. For example:

<saf-remote-context name="RemoteContext0">
<saf-login-context>
<loginURL>http://10.61.6.138:7001</loginURL>
<username>weblogic</username>
<password-encrypted>{Algorithm}PBEWithMD5AndDES{Salt}dWENfrgXh8U={Data}
u8xZ968dElHckso/ZYm2LQ6xVNBPpBGQ</password-encrypted>
</saf-login-context>
</saf-remote-context>

Use the ClientSAFEncrypt utility for all passwords (with the same key-password)
required by the remote contexts defined in the JMS SAF client configuration file. When a

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-11

client starts using the JMS SAF client, it must supply the same key-password that was
provided to the ClientSAFEncrypt utility.

6. Type quit to exit the ClientSAFEncrypt utility.

ClientSAFEncrypt Utility Syntax
The weblogic.jms.extensions.ClientSAFEncrypt utility encrypts cleartext strings for use
with JMS SAF clients in order to access remote SAF contexts.

java [-Dweblogic.management.allowPasswordEcho=true]

weblogic.jms.extensions.ClientSAFEncrypt [key-password]

weblogic.jms.extensions.ClientSAFEncrypt [remote-password]

Installing the JMS SAF Client JAR Files on Client Machines
How you install the JMS SAF client depends on whether your client machines require smaller
JAR files (thin clients) or whether they can accommodate using the single, higher-performing
wlfullclient.jar file, which contains all the necessary functionality and is also the
recommended best practice.

Table 6-7 ClientSAFEncrypt Arguments

Argument Definition

weblogic.management.allow
PasswordEcho

Optional. Allows echoing characters entered on the command line.
weblogic.jms.extensions.ClientSAFEncrypt expects that
no-echo is available; if no-echo is not available, set this property to
true.

key-password The key to use when encrypting all remote passwords needed for the
remote contexts defined in the JMS SAF client configuration file.

If omitted from the command line, you will be prompted to enter a
key-password.

remote-password Cleartext string to be encrypted. Multiple passwords for each remote
context can be generated in one session.

If omitted from the command line, you are prompted to enter a
remote-password.

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-12 Using a WebLogic SAF Client

The required WebLogic JAR files are located in the WL_HOME\server\lib subdirectory of the
WebLogic Server installation directory, where WL_HOME is the top-level installation directory for
the entire WebLogic product installation (for example, c:\bea\weblogic92\server\lib).

When smaller JAR sizes are required for thin clients, the JMS SAF client requires installing the
following JAR files to a directory on the client machine’s file system and added to its CLASSPATH:

wlsafclient.jar

wljmsclient.jar

wlclient.jar

The wljmsclient.jar has a reference to the wlclient.jar so it is only necessary to put one
or the other JAR in the client machine’s CLASSPATH.

Again, the recommended best practice is to use the larger, higher-performing
wlfullclient.jar, which must be installed to a directory on the client machine’s file system
and added to its CLASSPATH. Using the wlfullclient.jar file also allows you to run the
ClientSAFGenerate utility on a client machine to generate a configuration file from an existing
JMS SAF client configuration file, as described in “Steps to Generate a JMS SAF Client
Configuration File from a JMS Module” on page 6-3.

For more information on deploying thin clients, see Chapter 4, “Developing a Java EE
Application Client (Thin Client).”

Modify Your JMS Client Applications To Use the JMS SAF
Client’s Initial JNDI Provider
The JMS SAF client requires a special initial JNDI provider to look up the server-side JMS
connection factories and destinations specified in the JMS SAF client configuration file that was
generated during “Steps to Generate a JMS SAF Client Configuration File from a JMS Module”
on page 6-3.

Required JNDI Context Factory for JMS SAF Clients
Modify your JMS client applications to use the JMS SAF client JNDI context factory in place of
the standard server initial context. The name used for the JMS SAF client JNDI property
java.naming.factory.initial is
weblogic.jms.safclient.jndi.InitialContextFactoryImpl.

An example JNDI initial context factory could look like this in a JMS SAF client application:

Conf igur ing a JMS C l i ent To Use C l i ent-s ide SAF

Using a WebLogic SAF Client 6-13

 public final static String

JNDI_FACTORY="weblogic.jms.safclient.jndi.InitialContextFactoryImpl";

With the standard JNDI lookup, the JMS SAF client is started automatically and looks up the
server-side JMS connection factories and destinations specified in the configuration file. For the
configuration file, ClientSAF.xml is the default name expected in the current working directory
of the JMS client, but you can also explicitly specify a configuration file name by passing an
argument in the JMS client.

Items returned from the initial context created with the JMS SAF client do not work in JMS calls
from third-party JMS providers. Also, there can be no mixing of JMS SAF client initial contexts
with server initial contexts, as described in “No Mixing of JMS SAF Client Contexts and Server
Contexts” on page 6-15.

You can also update your JMS client applications to use the
weblogic.jms.extensions.ClientSAF extension class, which allows the JMS client to
control when the JMS SAF client system is in use. See “The JMS SAF Client Initialization API”
on page 6-14.

Optional JNDI Properties for JMS SAF Clients
There are also two optional JMS SAF client JNDI properties:

Context.PROVIDER_URL – This must be an URL that points to your JMS SAF client
configuration file. If one is not specified, it defaults to a file named ClientSAF.xml in the
current working directory of the JVM.

Context.SECURITY_CREDENTIALS – If you are using security, specify a key password
used to encrypt the remote context passwords in the configuration file.

The local JNDI provider only supports the lookup(String) and close() APIs. All other APIs
throw an exception stating that the functionality is not supported.

http://e-docs.bea.com/wls/docs100/javadocs/weblogic/jms/extensions/ClientSAF.html

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-14 Using a WebLogic SAF Client

JMS SAF Client Management Tools
The following management features are available for use with the JMS SAF client
implementation.

The JMS SAF Client Initialization API
The weblogic.jms.extensions.ClientSAF extension class allows the JMS client to control
when the JMS SAF client system is in use. JMS clients do not need to use this extension
mechanism, but can do so in order to get finer control of the JMS SAF client system. For example,
the close() method can be used to stop a JMS client from forwarding messages.

Client-Side Store Administration Utility
The JMS SAF client provides a utility to administer the default file store used by JMS SAF
clients. Similar to the server-side WebLogic Store utility, it enables you to troubleshoot a JMS
SAF client store or extract its data. Run the utility from a Java command line or from the
WebLogic Scripting Tool (WLST). The store utility operates only on a store that is not currently
opened by a running JMS SAF client.

The most common uses-cases for store administration are for compacting a file store to reduce its
size and for dumping the contents of a file store to an XML file for troubleshooting purposes. For
more information, see Administering a Persistent Store in Configuring WebLogic Server
Environments.

JMS Programming Considerations with JMS SAF Clients
The following JMS programming considerations apply when you use the JMS SAF client.

How the JMSReplyTo Field Is Handled In JMS SAF Client
Messages
Generally, JMS applications can use the JMSReplyTo header field to advertise its temporary
destination name to other applications. However, as with server-side JMS SAF imported
destinations, the use of temporary destinations with a JMSReplyTo field is not supported for JMS
SAF clients.

For more information on using JMS temporary destinations, see Using Temporary Destinations
in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs100/config_wls/store.html#Store_Admin
http://e-docs.bea.com/wls/docs100/jms/manage_apps.html#UsingTemporaryDestinations
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/jms/extensions/ClientSAF.html

JMS Prog ramming Cons iderat ions wi th JMS SAF C l ients

Using a WebLogic SAF Client 6-15

No Mixing of JMS SAF Client Contexts and Server Contexts
When items returned from the JMS SAF client naming context are used in conjunction with items
returned from a server initial context, the JMS API fails with a reasonable exception message.
Likewise, when items returned from a server initial context is used in conjunction with items
returned from the JMS SAF client naming context, the JMS API fails with a reasonable exception
message.

Using Transacted Sessions With JMS SAF Clients
Transacted sessions are supported with JMS SAF clients, but Client SAF operations do not
participate in any global (XA) transactions. If there is an XA transaction, the message send
operation is done outside the XA transaction and no exception is thrown.

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-16 Using a WebLogic SAF Client

JMS SAF Client Interoperability Guidelines
The interoperability guidelines apply when using the JMS SAF client to forward messages to
server-side WebLogic JMS destinations.

Java Runtime
Each client machine must have J2SE 1.4 runtime or higher installed.

WebLogic Server Versions
The WebLogic JMS SAF client system only works with WebLogic Server 9.2 and later.

On the client-side, the WebLogic JMS SAF client code must be running with WebLogic Server
JAR files that are release 9.2 or later. For more information on installing WebLogic Server JAR
files, see “Installing the JMS SAF Client JAR Files on Client Machines” on page 6-11.

Tuning JMS SAF Clients
JMS SAF clients can take advantage of the tuning parameters available with the server-side SAF
service. For more information, see Tuning WebLogic JMS Store-and-Forward in the WebLogic
Performance and Tuning Guide.

Limitations of Using the JMS SAF Client
In addition to the field-level limitations discussed in “Valid SAF Elements for JMS SAF Client
Configurations” on page 6-6, the following limitations apply to the JMS SAF client:

The JMS Message Unit-of-Order and Unit-of-Work JMS Message Group features are not
supported.

A destination consumer of an imported SAF destination is not supported. An exception is
thrown if you attempt to create such a consumer in JMS SAF client environment.

A destination browser of an imported SAF destination is not supported. An exception is
thrown if you attempt to create such a browser in JMS SAF client environment.

Transacted sessions are supported, but not user (XA) transactions. Client SAF operations
do not participate in any global transactions. See “Using Transacted Sessions With JMS
SAF Clients” on page 6-15.

JMS SAF clients are not supported in Java Applets.

http://e-docs.bea.com/wls/docs100/perform/saftune.html

L imi tat ions o f Us ing the JMS SAF C l i ent

Using a WebLogic SAF Client 6-17

You can only specify one persistent-store and saf-agent element in a JMS SAF
client configuration file.

Rel iab l y Send ing Messages Us ing the JMS SAF C l i ent

6-18 Using a WebLogic SAF Client

Programming Stand-alone Clients 7-1

C H A P T E R 7

Developing a J2SE Client

A J2SE client is oriented towards the Java EE programming model; it combines the capabilities
of RMI with the IIOP protocol without requiring WebLogic Server classes. The following
sections provide information on developing a J2SE Client:

“J2SE Client Basics” on page 7-1

“How to Develop a J2SE Client” on page 7-1

J2SE Client Basics
A J2SE client runs an RMI-IIOP-enabled ORB hosted by a Java EE or J2SE container, in most
cases a 1.3 or higher JDK. A J2SE client has the following characteristics:

It provides a light-weight connectivity client that uses the IIOP protocol, an industry
standard.

It is a J2SE-compliant model, rather than a Java EE-compliant model—it does not support
many of the features provided for enterprise-strength applications. It does not support
security, transactions, or JMS.

How to Develop a J2SE Client
To develop an application using RMI-IIOP with an RMI client:

1. Define your remote object’s public methods in an interface that extends java.rmi.Remote.

Deve lop ing a J2SE C l i ent

7-2 Programming Stand-alone Clients

This remote interface may not require much code. All you need are the method signatures
for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;
public void pingCallback(Pinger toPing) throws java.rmi.RemoteException;
}

2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree
to be made available to clients.

This class should implement the remote interface that you wrote, which means that you
implement the method signatures that are contained in the interface. All the code
generation that will take place is dependent on this class file. Typically, you configure your
implementation class as a WebLogic startup class and include a main method that binds the
object into the JNDI tree. For example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
remoteDomain = args[0];

Pinger obj = new PingImpl();
Context initialNamingContext = new InitialContext();
initialNamingContext.rebind(NAME,obj);
System.out.println("PingImpl created and bound to "+ NAME);

}

3. Compile the remote interface and implementation class with a Java compiler. Developing
these classes in an RMI-IIOP application is no different than doing so in normal RMI. For
more information on developing RMI objects, see “Understand ing WebLogic RMI”.

4. Run the WebLogic RMI or EJB compiler against the implementation class to generate the
necessary IIOP stub. Note that it is no longer necessary to use the -iiop option to generate
the IIOP stubs:

$ java weblogic.rmic nameOfImplementationClass

A stub is the client-side proxy for a remote object that forwards each WebLogic RMI call
to its matching server-side skeleton, which in turn forwards the call to the actual remote
object implementation. Note that the IIOP stubs created by the WebLogic RMI compiler
are intended to be used with the JDK 1.3.1_01 or higher ORB. If you are using another
ORB, consult the ORB vendor’s documentation to determine whether these stubs are
appropriate.

5. Make sure that the files you have now created -- the remote interface, the class that
implements it, and the stub -- are in the CLASSPATH of WebLogic Server.

http://e-docs.bea.com/wls/docs100/rmi/rmi_basics.html

How to Deve lop a J2SE C l i en t

Programming Stand-alone Clients 7-3

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a lookup
(see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use com.sun.jndi.cosnaming.CNCtxFactory
when defining your JNDI context factory. (WLInitialContextFactory is deprecated for this client
in WebLogic Server 8.1) Use com.sun.jndi.cosnaming.CNCtxFactory when setting the
value for the "Context.INITIAL_CONTEXT_FACTORY" property that you supply as a
parameter to new InitialContext().

Note: The Sun JNDI client supports the capability to read remote object references from the
namespace, but not generic Java serialized objects. This means that you can read
items such as EJBHome out of the namespace but not DataSource objects. There is
also no support for client-initiated transactions (the JTA API) in this configuration,
and no support for security. In the stateless session bean RMI Client example, the
client obtains an initial context as is done below:

Obtaining an InitialContext:

.

.

.
* Using a Properties object as follows will work on JDK13
* and higher clients.

 */

 private Context getInitialContext() throws NamingException {

try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);

} catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic server at
"+url);
log("Please make sure that the server is running.");
throw ne;
}

/**

* This is another option, using the Java2 version to get an
* InitialContext.
* This version relies on the existence of a jndi.properties file in

Deve lop ing a J2SE C l i ent

7-4 Programming Stand-alone Clients

* the application's classpath. See
* Programming WebLogic JNDI for more information

private static Context getInitialContext()
throws NamingException

{
return new InitialContext();

}
.
.
.

7. Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

RMI-IIOP clients differ from regular RMI clients in that IIOP is defined as the protocol
when the client is obtaining an initial context. Because of this, lookups and casts must be
performed in conjunction with the javax.rmi.PortableRemoteObject.narrow()
method.

For example, an RMI client creates an initial context, performs a lookup on the EJBean
home, obtains a reference to an EJBean, and calls methods on the EJBean.

You must use the javax.rmi.PortableRemoteObject.narrow() method in any
situation where you would normally cast an object to a specific class type. A CORBA
client may return an object that does not implement your remote interface; the narrow
method is provided by your orb to convert the object so that it implements your remote
interface. For example, the client code responsible for looking up the EJBean home and
casting the result to the Home object must be modified to use the
javax.rmi.PortableRemoteObject.narrow() as shown below:

Performing a lookup:

.

.

.
/**
* RMI/IIOP clients should use this narrow function
*/
private Object narrow(Object ref, Class c) {

return PortableRemoteObject.narrow(ref, c);
}

/**
* Lookup the EJBs home in the JNDI tree
*/
private TraderHome lookupHome()

throws NamingException

http://e-docs.bea.com/wls/docs100/jndi/index.html

How to Deve lop a J2SE C l i en t

Programming Stand-alone Clients 7-5

{
// Lookup the beans home using JNDI
Context ctx = getInitialContext();

try {
Object home = ctx.lookup(JNDI_NAME);
return (TraderHome) narrow(home, TraderHome.class);
} catch (NamingException ne) {
log("The client was unable to lookup the EJBHome. Please
make sure ");
log("that you have deployed the ejb with the JNDI name
"+JNDI_NAME+" on the WebLogic server at "+url);
throw ne;

}
}

/**
* Using a Properties object will work on JDK130
* and higher clients
*/
private Context getInitialContext() throws NamingException {

try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);

} catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic
server at "+url);
log("Please make sure that the server is running.");
throw ne;

}
}
.
.
.

The url defines the protocol, hostname, and listen port for the WebLogic Server and is
passed in as a command-line argument.

public static void main(String[] args) throws Exception {

log("\nBeginning statelessSession.Client...\n");

String url = "iiop://localhost:7001";

8. Connect the client to the server over IIOP by running the client with a command such as:

Deve lop ing a J2SE C l i ent

7-6 Programming Stand-alone Clients

$ java -Djava.security.manager -Djava.security.policy=java.policy
examples.iiop.ejb.stateless.rmiclient.Client iiop://localhost:7001

9. Set the security manager on the client:

java -Djava.security.manager -Djava.security.policy==java.policy
myclient

To narrow an RMI interface on a client, the server needs to serve the appropriate stub for
that interface. The loading of this class is predicated on the use of the JDK network
classloader and this is not enabled by default. To enable it you set a security manager in
the client with an appropriate java policy file. For more information on Java security, see
Sun’s site at http://java.sun.com/security/index.html. The following is an
example of a java.policy file:
grant {

// Allow everything for now

permission java.security.AllPermission;

}

http://java.sun.com/security/index.html

Programming Stand-alone Clients 8-1

C H A P T E R 8

Developing a WLS-IIOP Client

The WebLogic Server-IIOP client is a non-ORB based JS2E client that provides WebLogic
Server-specific features. The following sections provide information on developing WLS-IIOP
clients:

“WLS-IIOP Client Features” on page 8-1

“How to Develop a WLS-IIOP Client” on page 8-1

WLS-IIOP Client Features
The WLS-IIOP client supports WebLogic Server specific features, including

Clustering

.SSL

Scalability

For more information, see “Client Types and Features” on page 2-3.

How to Develop a WLS-IIOP Client
The procedure for developing a WLS-IIOP Client is the same as the procedure described in
“Developing a J2SE Client” on page 7-1 with the following additions:

Include the full wlfullclient.jar (located in WL_HOME/server/lib) in the client’s
CLASSPATH.

Deve lop ing a WLS- I IOP C l i ent

8-2 Programming Stand-alone Clients

Use weblogic.jndi.WLInitialContextFactory when defining your JNDI context
factory. Use this class when setting the value for the
"Context.INITIAL_CONTEXT_FACTORY" property that you supply as a parameter to new
InitialContext().

You do not need to use the
-D weblogic.system.iiop.enableClient=true command line option to enable client
access when starting the client. By default, if you use wlfullclient.jar, enableClient
is set to true.

Programming Stand-alone Clients 9-1

C H A P T E R 9

Developing a CORBA/IDL Client

RMI over IIOP with CORBA/IDL clients involves an Object Request Broker (ORB) and a
compiler that creates an interoperating language called IDL. C, C++, and COBOL are examples
of languages that ORBs may compile into IDL. A CORBA programmer can use the interfaces of
the CORBA Interface Definition Language (IDL) to enable CORBA objects to be defined,
implemented, and accessed from the Java programming language. The following sections
provide information on how to develop clients for heterogeneous distributed applications:

“Guidelines for Developing a CORBA/IDL Client” on page 9-1

“Procedure for Developing a CORBA/IDL Client” on page 9-4

Guidelines for Developing a CORBA/IDL Client
Using RMI-IIOP with a CORBA/IDL client enables interoperability between non-Java clients
and Java objects. If you have existing CORBA applications, you should program according to the
RMI-IIOP with CORBA/IDL client model. Basically, you will be generating IDL interfaces from
Java. Your client code will communicate with WebLogic Server through these IDL interfaces.
This is basic CORBA programming.

The following sections provide some guidelines for developing RMI-IIOP applications with
CORBA/IDL clients.

For further reference see the following Object Management Group (OMG) specifications:

Java Language Mapping to OMG IDL Specification at
http://www.omg.org/cgi-bin/doc?formal/01-06-07

http://www.omg.org/cgi-bin/doc?formal/01-06-07

Deve lop ing a CORBA/ IDL C l i ent

9-2 Programming Stand-alone Clients

CORBA/IIOP 2.4.2 Specification at http://www.omg.org/cgi-bin/doc?formal/01-02-33

Working with CORBA/IDL Clients
In CORBA, interfaces to remote objects are described in a platform-neutral interface definition
language (IDL). To map the IDL to a specific language, you compile the IDL with an IDL
compiler. The IDL compiler generates a number of classes such as stubs and skeletons that the
client and server use to obtain references to remote objects, forward requests, and marshall
incoming calls. Even with IDL clients it is strongly recommended that you begin programming
with the Java remote interface and implementation class, then generate the IDL to allow
interoperability with WebLogic and CORBA clients, as illustrated in the following sections.
Writing code in IDL that can be then reverse-mapped to create Java code is a difficult and
bug-filled enterprise, and BEA does not recommend it.

The following figure shows how IDL takes part in a RMI-IIOP model.

Figure 9-1 IDL Client (Corba object) relationships

Java to IDL Mapping
In WebLogic RMI, interfaces to remote objects are described in a Java remote interface that
extends java.rmi.Remote. The Java-to-IDL mapping specification defines how an IDL is
derived from a Java remote interface. In the WebLogic RMI over IIOP implementation, you run
the implementation class through the WebLogic RMI compiler or WebLogic EJB compiler with
the -idl option. This process creates an IDL equivalent of the remote interface. You then
compile the IDL with an IDL compiler to generate the classes required by the CORBA client.

IDLClient

Stub

ORB

Server

TieIDL compiler

ORBIIOP

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

Guide l ines fo r Deve l op ing a CORBA/ IDL C l i ent

Programming Stand-alone Clients 9-3

The client obtains a reference to the remote object and forwards method calls through the stub.
WebLogic Server implements a CosNaming service that parses incoming IIOP requests and
dispatches them directly into the RMI runtime environment.

The following figure shows this process.

Figure 9-2 WebLogic RMI over IIOP object relationships

Objects-by-Value
The Objects-by-Value specification allows complex data types to be passed between the two
programming languages involved. In order for an IDL client to support Objects-by-Value, you
develop the client in conjunction with an Object Request Broker (ORB) that supports
Objects-by-Value. To date, relatively few ORBs support Objects-by-Value correctly.

When developing an RMI over IIOP application that uses IDL, consider whether your IDL clients
will support Objects-by-Value, and design your RMI interface accordingly. If your client ORB
does not support Objects-by-Value, you must limit your RMI interface to pass only other
interfaces or CORBA primitive data types. The following table lists ORBs that BEA Systems has
tested with respect to Objects-by-Value support:

Table 9-1 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

BEA Tuxedo 8.x C++ Client
ORB

Supported

Borland VisiBroker 3.3, 3.4 Not supported

WebLogic
Server

IDL

Client

Stub

ORB

RMI
compiler

IDL
compiler

RMI
runtime

RMI
object

IIOP

http://www.omg.org/technology/documents/index.htm

Deve lop ing a CORBA/ IDL C l i ent

9-4 Programming Stand-alone Clients

For more information on Objects-by-Value, see “Limitations of Passing Objects by Value” in
Programming WebLogic RMI.

Procedure for Developing a CORBA/IDL Client
To develop an RMI over IIOP application with CORBA/IDL:

1. Follow steps 1 through 3 in “Developing a J2SE Client” on page 7-1.

2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB compiler
with the -idl option.

The required stub classes will be generated when you compile the IDL file. For general
information on the these compilers, refer to “Understanding WebLogic RMI” and
Programming WebLogic Enterprise JavaBeans. Also reference the Java IDL specification
at Java Language Mapping to OMG IDL Specification at
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.ht
m.

The following compiler options are specific to RMI over IIOP:

Borland VisiBroker 4.x, 5.x Supported

Iona Orbix 2000 Supported (BEA has
encountered problems with
this implementation)

Table 9-1 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

Table 9-2 RMI-IIOP Compiler Options

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idlDirectory Target directory where the IDL will be generated

-idlFactories Generate factory methods for value types. This is useful if
your client ORB does not support the factory valuetype.

http://e-docs.bea.com/wls/docs100/rmi/iiop_config.html#obj_by_value
http://e-docs.bea.com/wls/docs100/rmi/rmi_basics.html
http://e-docs.bea.com/wls/docs100/ejb/index.html
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

Procedure fo r Deve l op ing a CORBA/ IDL C l i ent

Programming Stand-alone Clients 9-5

The options are applied as shown in this example of running the RMI compiler:

 > java weblogic.rmic -idl -idlDirectory /IDL rmi_iiop.HelloImpl

The compiler generates the IDL file within sub-directories of the idlDirectoy according
to the package of the implementation class. For example, the preceding command
generates a Hello.idl file in the /IDL/rmi_iiop directory. If the idlDirectory option
is not used, the IDL file is generated relative to the location of the generated stub and
skeleton classes.

3. Compile the IDL file to create the stub classes required by your IDL client to communicate
with the remote class. Your ORB vendor will provide an IDL compiler.

The IDL file generated by the WebLogic compilers contains the directives: #include
orb.idl. This IDL file should be provided by your ORB vendor. An orb.idl file is
shipped in the /lib directory of the WebLogic distribution. This file is only intended for
use with the ORB included in the JDK that comes with WebLogic Server.

4. Develop the IDL client.

IDL clients are pure CORBA clients and do not require any WebLogic classes. Depending
on your ORB vendor, additional classes may be generated to help resolve, narrow, and
obtain a reference to the remote class. In the following example of a client developed
against a VisiBroker 4.1 ORB, the client initializes a naming context, obtains a reference to
the remote object, and calls a method on the remote object.

Code segment from C++ client of the RMI-IIOP example

-idlNoValueTypes Suppresses generation of IDL for value types.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the
same name

-idlStrict Creates an IDL that adheres strictly to the Objects-By-Value
specification. (not available with appc)

-idlVerbose Display verbose information for IDL generation

-idlVisibroker Generate IDL somewhat compatible with
Visibroker 4.1 C++

Table 9-2 RMI-IIOP Compiler Options

Option Function

Deve lop ing a CORBA/ IDL C l i ent

9-6 Programming Stand-alone Clients

// string to object
CORBA::Object_ptr o;

cout << "Getting name service reference" << endl;
if (argc >= 2 && strncmp (argv[1], "IOR", 3) == 0)

o = orb->string_to_object(argv[1]);
else

o = orb->resolve_initial_references("NameService");

// obtain a naming context
cout << "Narrowing to a naming context" << endl;
CosNaming::NamingContext_var context =
CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("Pinger_iiop");
name[0].kind = CORBA::string_dup("");

// resolve and narrow to RMI object
cout << "Resolving the naming context" << endl;
CORBA::Object_var object = context->resolve(name);

cout << "Narrowing to the Ping Server" << endl;
::examples::iiop::rmi::server::wls::Pinger_var ping =

::examples::iiop::rmi::server::wls::Pinger::_narrow(object);

// ping it
cout << "Ping (local) ..." << endl;
ping->ping();

}

Notice that before obtaining a naming context, initial references were resolved using the
standard Object URL (CORBA/IIOP 2.4.2 Specification, section 13.6.7). Lookups are
resolved on the server by a wrapper around JNDI that implements the COS Naming
Service API.

The Naming Service allows Weblogic Server applications to advertise object references
using logical names. The CORBA Name Service provides:

– An implementation of the Object Management Group (OMG) Interoperable Name
Service (INS) specification.

– Application programming interfaces (APIs) for mapping object references into an
hierarchical naming structure (JNDI in this case).

– Commands for displaying bindings and for binding and unbinding naming context
objects and application objects into the namespace.

http://www.omg.org/cgi-bin/doc?formal/01-02-33

Procedure fo r Deve l op ing a CORBA/ IDL C l i ent

Programming Stand-alone Clients 9-7

5. IDL client applications can locate an object by asking the CORBA Name Service to look up
the name in the JNDI tree of WebLogic Server. In the example above, you run the client by
entering:

Client.exe -ORBInitRef
NameService=iioploc://localhost:7001/NameService.

Deve lop ing a CORBA/ IDL C l i ent

9-8 Programming Stand-alone Clients

Programming Stand-alone Clients 10-1

C H A P T E R 10

Developing Clients for CORBA Objects

The following sections provide information on how to use the CORBA API:

“Enhancements to and Limitations of CORBA Object Types” on page 10-1

“Making Outbound CORBA Calls: Main Steps” on page 10-2

“Using the WebLogic ORB Hosted in JNDI” on page 10-2

“Supporting Inbound CORBA Calls” on page 10-4

Enhancements to and Limitations of CORBA Object Types
The RMI-IIOP runtime is extended to support all CORBA object types (as opposed to RMI
valuetypes) and CORBA stubs. Enhancements include:

Support for out and in-out parameters

Support for a call to a CORBA service from WebLogic Server using transactions and
security

Support for a WebLogic ORB hosted in JNDI rather than an instance of the JDK ORB
used in previous releases

CORBA Object Type support has the following limitations:

It should not be used to make calls from one WebLogic Server instance to another
WebLogic Server instance.

Deve lop ing C l i ents fo r CORBA Ob jec ts

10-2 Programming Stand-alone Clients

Clustering is not supported. If a clustered object reference is detected, WebLogic Server
uses internal RMI-IIOP support to make the call. Out and in-out parameters will not be
supported.

CORBA services created by ORB.connect() result in a second object hosted inside the
server. It is important that you use ORB.disconnect()to remove the object when it is no
longer needed.

Making Outbound CORBA Calls: Main Steps
Follow these steps to implement a typical development model for customers wanting to use the
CORBA API for outbound calls.

1. Generate CORBA stubs from IDL using idlj, the JDKs IDL compiler.

2. Compile the stubs using javac.

3. Build EJB(s) including the generated stubs in the jar.

4. Use the WebLogic ORB hosted in JNDI to reference the external service.

Using the WebLogic ORB Hosted in JNDI
This section provides examples of several mechanisms to access the WebLogic ORB. Each
mechanism achieves the same effect and their constituent components can be mixed to some
degree. The object returned by narrow() will be a CORBA stub representing the external ORB
service and can be invoked as a normal CORBA reference. In the following code examples it is
assumed that the CORBA interface is called MySvc and the service is hosted at “where” in a
foreign ORB's CosNaming service located at exthost:extport:

ORB from JNDI
The following code listing provides information on how to access the WebLogic ORB from
JNDI.

Listing 10-1 Accessing the WebLogic ORB from JNDI

.

.

.

Using the WebLog ic ORB Hosted in JNDI

Programming Stand-alone Clients 10-3

ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");

NamingContext nc = NamingContextHelper.narrow(orb.string_to_object("corbal

oc:iiop:exthost:extport/NameService"));

MySvc svc = MySvcHelper.narrow(nc.resolve(new NameComponent[] { new

NameComponent("where", "")}));

.

.

.

Direct ORB creation
The following code listing provides information on how to create a WebLogic ORB.

Listing 10-2 Direct ORB Creation

.

.

.

ORB orb = ORB.init();

MySvc svc = MySvcHelper.narrow(orb.string_to_object("corbaname:iiop:exthos

t:extport#where"));

.

.

.

Using JNDI
The following code listing provides information on how to access the WebLogic ORB using
JNDI.

Listing 10-3 Accessing the WebLogic ORB Using JNDI

.

.

Deve lop ing C l i ents fo r CORBA Ob jec ts

10-4 Programming Stand-alone Clients

.

MySvc svc = MySvcHelper.narrow(new InitialContext().lookup("corbaname:iiop

:exthost:extport#where"));

.

.

.

The WebLogic ORB supports most client ORB functions, including DII (Dynamic Invocation
Interface). To use this support, you must not instantiate a foreign ORB inside the server. This
will not yield any of the integration benefits of using the WebLogic ORB.

Supporting Inbound CORBA Calls
WebLogic Server also provides basic support for inbound CORBA calls as an alternative to
hosting an ORB inside the server. To do this, you use ORB.connect() to publish a CORBA
server inside WebLogic Server by writing an RMI-object that implements a CORBA interface.
Given the MySVC examples above:

Listing 10-4 Supporting Inbound CORBA Calls

.

.

.

class MySvcImpl implements MvSvcOperations, Remote

{

public void do_something_remote() {}

public static main() {

MySvc svc = new MySvcTie(this);

InitialContext ic = new InitialContext();

((ORB)ic.lookup("java:comp/ORB")).connect(svc);

ic.bind("where", svc);

}

}

.

Suppor t ing Inbound CORBA Ca l ls

Programming Stand-alone Clients 10-5

.

.

When registered as a startup class, the CORBA service will be available inside the WebLogic
Server CosNaming service at the location "where".

Deve lop ing C l i ents fo r CORBA Ob jec ts

10-6 Programming Stand-alone Clients

Programming Stand-alone Clients 11-1

C H A P T E R 11

Developing a WebLogic C++ Client for
a Tuxedo ORB

The WebLogic C++ client uses the Tuxedo 8.1 or higher C++ Client ORB to generate IIOP
requests for EJBs running on WebLogic Server. This client supports object-by-value and the
CORBA Interoperable Naming Service (INS). The following sections provides information on
developing WebLogic C++ clients for the Tuxedo ORB:

“WebLogic C++ Client Advantages and Limitations” on page 11-1

“How the WebLogic C++ Client Works” on page 11-2

“Developing WebLogic C++ Clients” on page 11-2

“Developing WebLogic C++ Clients” on page 11-2

WebLogic C++ Client Advantages and Limitations
A WebLogic C++ client offers these advantages:

Simplifies your development process by avoiding third-party products

Provides a client-side solution that allows you to develop or modify existing C++ clients

The WebLogic C++ client has the following limitations:

Provides security through the WebLogic Server Security service.

Provides only server-side transaction demarcation.

Deve lop ing a WebLogic C++ Cl ient fo r a Tuxedo ORB

11-2 Programming Stand-alone Clients

How the WebLogic C++ Client Works
The WebLogic C++ client processes requests as follows:

The WebLogic C++ client code requests a WebLogic Server service.

– The Tuxedo ORB generates an IIOP request.

– The ORB object is initally instantiated and supports Object-by-Value data types.

The client uses the CORBA Interoperable Name Service (INS) to look up the EJB object
bound to the JNDI naming service. For more information on how to use the Interoperable
Naming Service to get object references to initial objects such as NameService, see
Interoperable Naming Service Bootstrapping Mechanism.

Figure 11-1 WebLogic C++ Client to WebLogic Server Interoperability

Developing WebLogic C++ Clients
Use the following steps to develop a C++ client:

1. Use the ejbc compiler with the -idl option to compile the EJB with which your C++ client
will interoperate. This action generates an IDL script for the EJB.

2. Use the C++ IDL compiler to compile the IDL script and generate the CORBA client stubs,
server skeletons, and header files. For information on the use of the C++ IDL Compiler, see
OMG IDL Syntax and the C++ IDL Compiler.

3. Discard the server skeletons; the EJB represents the server side implementation.

C ++ Runtime

C++
Client
Code

ORB

INS
API

JVM

WebLogic
Server

COS
API

JNDI
Java EE
Container

IIOP

Object Look up

http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm

Deve lop ing WebLog ic C++ Cl ients

Programming Stand-alone Clients 11-3

4. Create a C++ client that implements an EJB as a CORBA object. For general information on
how to create CORBA client applications, see Creating CORBA Client Applications.

5. Use the Tuxedo buildobjclient command to build the client.

http://e-docs.bea.com/tuxedo/tux80/creclien/index.htm

Deve lop ing a WebLogic C++ Cl ient fo r a Tuxedo ORB

11-4 Programming Stand-alone Clients

Programming Stand-alone Clients 12-1

C H A P T E R 12

Developing Security-Aware Clients

You can develop Weblogic clients that use the Java Authentication and Authorization Service
(JAAS) and Secure Sockets Layer (SSL). The following sections provide information on
security-aware clients:

“Developing Clients That Use JAAS” on page 12-1

“Developing Clients That Use SSL” on page 12-1

“Thin-Client Restrictions for JAAS and SSL” on page 12-3

“Security Code Examples” on page 12-4

Developing Clients That Use JAAS
JAAS enforces access controls based on user identity and is the preferred method of
authentication for WebLogic Server clients. A typical use case is providing authentication to read
or write to a file. Users requiring client certificate authentication (also referred to as two-way SSL
authentication) should use JNDI authentication. For more information on how to implement
JAAS authentication, see Using JAAS Authentication in Java Clients.

Developing Clients That Use SSL
BEA WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data
transmitted between WebLogic Server clients and servers, Java clients, Web browsers, and other
servers.

http://e-docs.bea.com/wls/docs100/security/fat_client.html#jndi
http://e-docs.bea.com/wls/docs100/security/fat_client.html

Deve lop ing Secur i t y -Aware C l i ents

12-2 Programming Stand-alone Clients

All SSL clients need to specify trust. Trust is a set of CA certificates that specify which trusted
certificate authorities are trusted by the client. In order to establish an SSL connection, RMI
clients need to trust the certificate authorities that issued the server's digitial certificates. The
location of the server’s trusted CA certificate is specified when starting the RMI client.

By default, all trusted certificate authorities available from the JDK
(...\jre\lib\security\cacerts) are trusted by RMI clients. However, if the server’s trusted
CA certificate is stored in one of the following types of trust keystores, you need to specify certain
command line arguments in order to use the keystore:

Demo Trust—The trusted CA certificates in the demonstration Trust keystore
(DemoTrust.jks) are located in the WL_HOME\server\lib directory. In addition, the
trusted CAs in the JDK cacerts keystore are trusted. To use the Demo Trust, specify the
following command-line argument:

-Dweblogic.security.TrustKeyStore=DemoTrust

Optionally, use the following command-line argument to specify a password for the JDK
cacerts trust keystore:

-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password

where password is the password for the Java Standard Trust keystore. This password is
defined when the keystore is created.

Custom Trust—A trust keystore you create. To use Custom Trust, specify the following
command-line arguments.

Specify the fully qualified path to the trust keystore:

-Dweblogic.security.CustomTrustKeystoreFileName=filename

Specify the type of the keystore:

-Dweblogic.security.TrustKeystoreType=CustomTrust

Optionally, specify the password defined when creating the keystore:

-Dweblogic.security.CustomTrustKeystorePassPhrase=password

Sun Microsystem's keytool utility can also be used to generate a private key, a self-signed
digital certificate for WebLogic Server, and a Certificate Signing Request (CSR). The
keytool utility is a product of Sun Microsystems. Therefore, BEA Systems does not
provide complete documentation on the utility. For more information about Sun's keytool
utility, see the keytool-Key and Certificate Management Tool description at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html. Sun Microsystems

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Th in-C l i ent Res t r i c t i ons fo r JAAS and SSL

Programming Stand-alone Clients 12-3

provides a tutorial Installing and Configuring SSL Support which includes a section
“Creating a Client Certificate for Mutual Authentication”.

Note: When using the keytool utility, the default key pair generation algorithm is DSA.
WebLogic Server does not support the use of the Digital Signature Algorithm (DSA).
Specify another key pair generation and signature algorithm when using WebLogic
Server.

You can find more information on how to implement SSL in “Configuring SSL” and
”Configuring Identity and Trust” in Securing WebLogic Server.

Thin-Client Restrictions for JAAS and SSL
WebLogic thin-client applications only support JAAS authentication through the following
classes:

UsernamePasswordLoginModule

Security.runAs

WebLogic thin-clients only support two-way SSL by requiring the SSLContext to be provided
by the SECURITY_CREDENTIALS property. For example, see the client code below:

Listing 12-1 Client Code with sslcontext

.

.

.

// Get a KeyManagerFactory for KeyManagers

System.out.println("Retrieving KeyManagerFactory & initializing");

KeyManagerFactory kmf =

KeyManagerFactory.getInstance("SunX509","SunJSSE");

kmf.init(ks,keyStorePassword);

// Get and initialize an SSLContext

System.out.println("Initializing the SSLContext");

SSLContext sslCtx = SSLContext.getInstance("SSL");

sslCtx.init(kmf.getKeyManagers(),null,null);

// Pass the SSLContext to the initial context factory and get an

http://e-docs.bea.com/wls/docs100/secmanage/ssl.html
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/auth/login/UsernamePasswordLoginModule.html#login()
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/Security.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/net/ssl/SSLContext.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security6.html
http://e-docs.bea.com/wls/docs100/secmanage/identity_trust.html

Deve lop ing Secur i t y -Aware C l i ents

12-4 Programming Stand-alone Clients

// InitialContext

System.out.println("Getting initial context");

Hashtable props = new Hashtable();

props.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

props.put(Context.PROVIDER_URL,

"corbaloc:iiops:" +

host + ":" + port +

"/NameService");

props.put(Context.SECURITY_PRINCIPAL,"weblogic");

props.put(Context.SECURITY_CREDENTIALS, sslCtx);

Context ctx = new InitialContext(props);

.

.

.

Security Code Examples
Security samples are provided with the WebLogic Server product. The samples are located in the
SAMPLES_HOME\server\examples\src\examples\security directory. A description of
each sample and instructions on how to build, configure, and run a sample, are provided in the
package-summary.html file. You can modify these code examples and reuse them.

Programming Stand-alone Clients 13-1

C H A P T E R 13

Using EJBs with RMI-IIOP Clients

You can implement Enterprise JavaBeans that use RMI-IIOP to provide EJB interoperability in
heterogeneous server environments:

“Accessing EJBs with a Java Client” on page 13-1

“Accessing EJBs with a CORBA/IDL Client” on page 13-1

Accessing EJBs with a Java Client
A Java RMI client can use an ORB and IIOP to access Enterprise beans residing on a WebLogic
Server instance. See Understanding Enterprise JavaBeans in Programming WebLogic Enterprise
JavaBeans.

Accessing EJBs with a CORBA/IDL Client
A non-Java platform CORBA/IDL client can access any Enterprise bean object on WebLogic
Server. The sources of the mapping information are the EJB classes as defined in the Java source
files. WebLogic Server provides the weblogic.appc utility for generating required IDL files.
These files represent the CORBA view into the state and behavior of the target EJB. Use the
weblogic.appc utility to:

Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.

Generate WebLogic Server container classes for the EJBs.

Run each EJB container class through the RMI compiler to create stubs and skeletons.

http://e-docs.bea.com/wls/docs100/ejb/understanding.html

Using EJBs w i th RMI - I IOP C l i ents

13-2 Programming Stand-alone Clients

Generate a directory tree of CORBA IDL files describing the CORBA interface to these
classes.

The weblogic.appc utility supports a number of command qualifiers. See “Developing a
CORBA/IDL Client” on page 9-1.

Resulting files are processed using the compiler, reading source files from the idlSources
directory and generating CORBA C++ stub and skeleton files. These generated files are sufficient
for all CORBA data types with the exception of value types (see Limitations of WebLogic
RMI-IIOP in Programming WebLogic RMI). Generated IDL files are placed in the idlSources
directory. The Java-to-IDL process is full of pitfalls. Refer to the Java Language Mapping to
OMG IDL specification at
http://www.omg.org/technology/documents/formal/java_language_mapping_to_om
g_idl.htm.

Also, Sun has an excellent guide, Enterprise JavaBeansTM Components and CORBA Clients: A
Developer Guide at
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html.

Example IDL Generation
The following is an example of how to generate the IDL from a bean you have already created:

1. Generate the IDL files
> java weblogic.appc -compiler javac -keepgenerated

-idl -idlDirectory idlSources

build\std_ejb_iiop.jar

%APPLICATIONS%\ejb_iiop.jar

2. Compile the EJB interfaces and client application (the example here uses a
CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java

TradeResult.java Client.java

3. Run the IDL compiler against the IDL files built in Step 1:
>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\Trader.idl

. . .

>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl

4. Compile your C++ client.

http://e-docs.bea.com/wls/docs100/rmi/iiop_config.html#limitations
http://e-docs.bea.com/wls/docs100/rmi/iiop_config.html#limitations
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html

Access ing E JBs w i th a CORBA/ IDL C l i ent

Programming Stand-alone Clients 13-3

Using EJBs w i th RMI - I IOP C l i ents

13-4 Programming Stand-alone Clients

Programming Stand-alone Clients A-1

A P P E N D I X A

Client Application Deployment
Descriptor Elements

The following sections describe deployment descriptors for Java EE client applications on
WebLogic Server:

“Overview of Client Application Deployment Descriptor Elements” on page A-1

“application-client.xml Deployment Descriptor Elements” on page A-2

“weblogic-appclient.xml Descriptor Elements” on page A-5

Overview of Client Application Deployment Descriptor
Elements

When it comes to Java EE applications, often users are only concerned with the server-side
modules (Web applications, EJBs, and connectors). You configure these server-side modules
using the application.xml deployment descriptor, discussed in Enterprise Application
Deployment Descriptor Elements in Developing Applications with WebLogic Server.

However, it is also possible to include a client module (a JAR file) in an EAR file. This JAR file
is only used on the client side; you configure this client module using the
application-client.xml deployment descriptor. This scheme makes it possible to package
both client and server side modules together. The server looks only at the parts it is interested in
(based on the application.xml file) and the client looks only at the parts it is interested in
(based on the application-client.xml file).

http://e-docs.bea.com/wls/docs100/programming/app_xml.html
http://e-docs.bea.com/wls/docs100/programming/app_xml.html

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

A-2 Programming Stand-alone Clients

For client-side modules, two deployment descriptors are required: a Java EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific runtime
deployment descriptor with a name derived from the client application JAR file.

application-client.xml Deployment Descriptor Elements
The application-client.xml file is the deployment descriptor for Java EE client
applications. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,

Inc.//DTD Java EE Application Client 1.2//EN"

"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following sections describe each of the elements that can appear in the file.

application-client
application-client is the root element of the application client deployment descriptor. The
application client deployment descriptor describes the EJB modules and other resources used by
the client application.

The following table describes the elements you can define within an application-client
element.

Table A-1 application-client Elements

Element Required
Optional

Description

<icon> Optional Locations of small and large images that represent the application in a
GUI tool. This element is not currently used by WebLogic Server.

<display-name> Application display name, a short name that is intended to be displayed
by GUI tools.

<description> Optional Description of the client application.

appl i ca t ion-c l i en t . xml Dep loyment Descr ip to r E lements

Programming Stand-alone Clients A-3

<env-entry> Contains the declaration of a client application’s environment entries.

Elements that can be defined within the env-entry element are:
• description—Optional. The description element

contains a description of the particular environment entry.
• env-entry-name—The env-entry-name element

contains the name of a client application’s environment
entry.

• env-entry-type—The env-entry-type element
contains the fully-qualified Java type of the environment
entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Byte,
java.lang.Short, java.lang.Long, and
java.lang.Float.

• env-entry-value—Optional. The env-entry-value
element contains the value of a client application’s
environment entry. The value must be a String that is valid
for the constructor of the specified env-entry-type.

Table A-1 application-client Elements

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

A-4 Programming Stand-alone Clients

<ejb-ref> Used for the declaration of a reference to an EJB referenced in the
client application.

Elements that can be defined within the ejb-ref element are:
• description—Optional. The description element

provides a description of the referenced EJB.
• ejb-ref-name—Contains the name of the referenced EJB.

Typically the name is prefixed by ejb/, such as
ejb/Deposit.

• ejb-ref-type—Contains the expected type of the
referenced EJB, either Session or Entity.

• home—Contains the fully-qualified name of the referenced
EJB’s home interface.

• remote—Contains the fully-qualified name of the
referenced EJB’s remote interface.

• ejb-link—Specifies that an EJB reference is linked to an
enterprise JavaBean in the Java EE application package.
The value of the ejb-link element must be the name of the
ejb-name of an EJB in the same Java EE application.

Table A-1 application-client Elements

Element Required
Optional

Description

weblog ic-appc l i ent . xml Descr ip to r E lements

Programming Stand-alone Clients A-5

weblogic-appclient.xml Descriptor Elements
This XML-formatted deployment descriptor is not stored inside of the client application JAR file
like other deployment descriptors, but must be in the same directory as the client application JAR
file.

The file name for the deployment descriptor is the base name of the JAR file, with the extension
.runtime.xml. For example, if the client application is packaged in a file named
c:/applications/ClientMain.jar, the run-time deployment descriptor is in the file named
c:/applications/ClientMain.runtime.xml.

<resource-ref> Contains a declaration of the client application’s reference to an
external resource.

Elements that can be defined within the resource-ref element are:
• description—Optional. The description element

contains a description of the referenced external resource.
• res-ref-name—Specifies the name of the resource

factory reference name. The resource factory reference
name is the name of the client application’s environment
entry whose value contains the JNDI name of the data
source.

• res-type—Specifies the type of the data source. The type
is specified by the Java interface or class expected to be
implemented by the data source.

• res-auth—Specifies whether the EJB code signs on
programmatically to the resource manager, or whether the
container will sign on to the resource manager on behalf of
the EJB. In the latter case, the container uses information
that is supplied by the deployer. The res-auth element can
have one of two values: Application or Container.

Table A-1 application-client Elements

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

A-6 Programming Stand-alone Clients

application-client
The application-client element is the root element of a WebLogic-specific run-time client
deployment descriptor. The following table describes the elements you can define within an
application-client element.

Table A-2 application-client Elements

Element Required
Optional

Description

<env-entry> Specifies values for environment entries declared in the deployment
descriptor.

Elements that can be defined within the env-entry element are:
• env-entry-name—Name of an application client's

environment entry.
Example:
<env-entry-name>EmployeeAppDB</env-entry-name>

• env-entry-value—Value of an application client’s
environment entry. The value must be a valid string for the
constructor of the specified type, which takes a single string
parameter.

weblog ic-appc l i ent . xml Descr ip to r E lements

Programming Stand-alone Clients A-7

<ejb-ref> Specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

Elements that can be defined within the ejb-ref element are:
• ejb-ref-name—Name of an EJB reference. The EJB

reference is an entry in the application client’s environment.
It is recommended that name is prefixed with ejb/.
Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

• jndi-name—JNDI name for the EJB.

<resource-ref> Declares an application client’s reference to an external resource. It
contains the resource factory reference name, an indication of the
resource factory type expected by the application client’s code, and the
type of authentication (bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi

-name>
</resource-ref>

Elements that can be defined within the resource-ref element are:
• res-ref-name—Name of the resource factory reference

name. The resource factory reference name is the name of
the application client’s environment entry whose value
contains the JNDI name of the data source.

• jndi-name—JNDI name for the resource.

Table A-2 application-client Elements

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

A-8 Programming Stand-alone Clients

Programming Stand-alone Clients B-1

A P P E N D I X B

Using the WebLogic JarBuilder Tool

The following sections provide information on creating the wlfullclient.jar using the
JarBuilder tool:

“Overview” on page B-1

“Creating a wlfullclient.jar File for a Client Application” on page B-2

Overview
Prior to this release, the weblogic.jar file could be bundled with a client application to provide
WebLogic Server specific value added features, such as:

Enhanced JDBC and WLS specific JMX interfaces

WLS T3 Client

WLS-IIOP Client

See “Client Types and Features” on page 2-3.

For WebLogic Server 10.0 and higher releases, client applications should use the
wlfullclient.jar file to provide the WebLogic Server specific functionary previously
provided in the weblogic.jar file. You can generate the wlfullclient.jar file for client
applications using the JarBuilder tool. See “Creating a wlfullclient.jar File for a Client
Application” on page B-2.

Note: Continuing to use weblogic.jar may result in a ClassNotFoundException.

Using the WebLog ic Ja rBu i lde r Too l

B-2 Programming Stand-alone Clients

Creating a wlfullclient.jar File for a Client Application
Use the following steps to create a wlfullclient.jar file for a client application:

1. Change directories to the server/lib directory.

cd WL_HOME/server/lib

2. Use the following command to create wlfullclient.jar in the server/lib directory:

java -jar ../../../modules/com.bea.core.jarbuilder_X.X.X.X.jar

where X.X.X.X is the version number of the jarbuilder module in the
WL_HOME/server/lib directory. For example:

java -jar ../../../modules/com.bea.core.jarbuilder_1.0.1.0.jar

3. You can now copy and bundle the wlfullclient.jar with client applications.

4. Add the wlfullclient.jar to the client application’s classpath.

Programming Stand-alone Clients C-1

A P P E N D I X C

Code Examples

The BEA developer web site dev2dev.com provides examples that demonstrate how to use EJBs
with RMI-IIOP, connect to C++ clients, and set up interoperability with a Tuxedo Server.

The following table describes the examples.

Table C-1 WebLogic Server IIOP Examples

Example ORB/Protocol Requirements

iiop.ejb.entity.tuxclient

Provides a Tuxedo client that uses
complex valuetypes to call an entity
session bean in WebLogic Server.

BEA IIOP Tuxedo 8.x and higher.

Requires custom marshalling of
vector classes.

iiop.ejb.entity.server.wls

Demonstrates connectivity between a C++
client or a Tuxedo client and an entity
bean.

Not Applicable

iiop.ejb.stateless.rmiclient

Provides an RMI Java client that calls a
stateless session bean in WebLogic Server.
The example also demonstrates how to
make an outbound RMI-IIOP call to a
Tuxedo server using WebLogic Tuxedo
Connector.

JDK 1.4 JDK 1.4 requires a security policy file
to access server.

https://bea-certified.projects.dev2dev.bea.com/

Code Examples

C-2 Programming Stand-alone Clients

iiop.ejb.stateless.sectuxclie
nt

Provides a secure Tuxedo client that calls a
stateless session bean from WebLogic
Server.

BEA IIOP Tuxedo 8.x and higher.

iiop.ejb.stateless.server.tux

Illustrates how to call a stateless session
bean from a variety of client applications
through a Tuxedo Server. In conjunction
with the Tuxedo Client, it also
demonstrates server-to-server connectivity
using WebLogic Tuxedo Connector.

Tuxedo TGIOP Tuxedo 8.x and higher.

WebLogic Tuxedo Connector to
provide server-to-server
connectivity. See Using WebLogic
Tuxedo Connector for RMI/IIOP and
Corba Interoperability.

iiop.ejb.stateless.server.wls

Demonstrates how to use a variety of
clients to call a stateless EJB directly in
WebLogic Server or indirectly through a
Tuxedo Server.

Not Applicable

iiop.ejb.stateless.tuxclient

Provides a Tuxedo client that calls a
stateless session bean directly in
WebLogic Server or to call the same
stateless session bean in WebLogic
through a Tuxedo server. The example
also demonstrates how to make an
outbound RMI-IIOP call from a Tuxedo
server to WebLogic Server using
WebLogic Tuxedo Connector.

BEA IIOP Tuxedo 8.x and higher.

iiop.ejb.stateless.txtuxclien
t

Provides a Tuxedo client that uses a
transaction to call a stateless session bean.

BEA IIOP Tuxedo 8.x and higher.

Table C-1 WebLogic Server IIOP Examples

Example ORB/Protocol Requirements

http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450
http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450
http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450

Programming Stand-alone Clients C-3

iiop.rmi.corbaclient

Provides a CORBA client that
demonstrates connectivity to a WebLogic
Server.

BEA IIOP Tuxedo 8.0 RP56 and higher. JDK
1.4 requires a security policy file to
access server.

iiop.rmi.rmiclient

Provides an RMI client that demonstrates
connectivity to a WebLogic Server. The
example also demonstrates how to make
an outbound call from WebLogic Server to
a Tuxedo server using WebLogic Tuxedo
Connector.

Not Applicable Requires a security policy file to
access server.

iiop.rmi.server.tux

Illustrates connectivity from a variety of
client applications through a Tuxedo
Server. In conjunction with the Tuxedo
Client, it also domesticates
server-to-server connectivity using
WebLogic Tuxedo Connector.

Tuxedo TGIOP Tuxedo 8.x and higher.

WebLogic Tuxedo Connector to
provide server-to-server
connectivity. See Using WebLogic
Tuxedo Connector for RMI/IIOP and
Corba Interoperability.

iiop.rmi.server.wls

Example illustrates connectivity between a
variety of clients, Tuxedo, and WebLogic
Server using a simple Ping application.

Not Applicable

iiop.rmi.tuxclient

Example provides a Tuxedo client which
demonstrates connectivity to a Tuxedo
Server.

BEA IIOP Tuxedo 8.x and higher.

Table C-1 WebLogic Server IIOP Examples

Example ORB/Protocol Requirements

http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450
http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450
http://e-docs.bea.com/wls/docs100/wtc_atmi/CORBA.html#1125450

Code Examples

C-4 Programming Stand-alone Clients

	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution

	New and Changed Features for This Release

	Overview of Stand-alone Clients
	RMI-IIOP Clients
	BEA T3 (RMI) Clients
	CORBA Clients
	JMX Clients
	WebServices Clients
	Client Types and Features
	WebLogic JarBuilder Tool

	Developing T3 Clients
	T3 Client Basics
	Developing a T3 Client
	RMI Communication in WebLogic Server
	Determining Connection Availability
	Communicating with a Server in Admin Mode

	Developing a Java EE Application Client (Thin Client)
	Overview of the Java EE Application Client
	How to Develop a Thin Client
	Using Java EE Client Application Modules
	Extracting a Client Application
	Executing a Client Application

	Protocol Compatibility

	WebLogic JMS Thin Client
	Overview of the JMS Thin Client
	JMS Thin Client Functionality
	Limitations of Using the JMS Thin Client
	Deploying the JMS Thin Client

	Reliably Sending Messages Using the JMS SAF Client
	Overview of Using Store-and-Forward with JMS Clients
	Configuring a JMS Client To Use Client-side SAF
	Generating a JMS SAF Client Configuration File
	How the JMS SAF Client Configuration File Works
	Steps to Generate a JMS SAF Client Configuration File from a JMS Module
	ClientSAFGenerate Utility Syntax
	Valid SAF Elements for JMS SAF Client Configurations
	Default Store Options for JMS SAF Clients

	Encrypting Passwords for Remote JMS SAF Contexts
	Steps to Generate Encrypted Passwords
	ClientSAFEncrypt Utility Syntax

	Installing the JMS SAF Client JAR Files on Client Machines
	Modify Your JMS Client Applications To Use the JMS SAF Client’s Initial JNDI Provider
	Required JNDI Context Factory for JMS SAF Clients
	Optional JNDI Properties for JMS SAF Clients

	JMS SAF Client Management Tools
	The JMS SAF Client Initialization API
	Client-Side Store Administration Utility

	JMS Programming Considerations with JMS SAF Clients
	How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
	No Mixing of JMS SAF Client Contexts and Server Contexts
	Using Transacted Sessions With JMS SAF Clients

	JMS SAF Client Interoperability Guidelines
	Java Runtime
	WebLogic Server Versions

	Tuning JMS SAF Clients
	Limitations of Using the JMS SAF Client

	Developing a J2SE Client
	J2SE Client Basics
	How to Develop a J2SE Client

	Developing a WLS-IIOP Client
	WLS-IIOP Client Features
	How to Develop a WLS-IIOP Client

	Developing a CORBA/IDL Client
	Guidelines for Developing a CORBA/IDL Client
	Working with CORBA/IDL Clients
	Java to IDL Mapping
	Objects-by-Value

	Procedure for Developing a CORBA/IDL Client

	Developing Clients for CORBA Objects
	Enhancements to and Limitations of CORBA Object Types
	Making Outbound CORBA Calls: Main Steps
	Using the WebLogic ORB Hosted in JNDI
	ORB from JNDI
	Direct ORB creation
	Using JNDI

	Supporting Inbound CORBA Calls

	Developing a WebLogic C++ Client for a Tuxedo ORB
	WebLogic C++ Client Advantages and Limitations
	How the WebLogic C++ Client Works
	Developing WebLogic C++ Clients

	Developing Security-Aware Clients
	Developing Clients That Use JAAS
	Developing Clients That Use SSL
	Thin-Client Restrictions for JAAS and SSL
	Security Code Examples

	Using EJBs with RMI-IIOP Clients
	Accessing EJBs with a Java Client
	Accessing EJBs with a CORBA/IDL Client
	Example IDL Generation

	Client Application Deployment Descriptor Elements
	Overview of Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client

	weblogic-appclient.xml Descriptor Elements
	application-client

	Using the WebLogic JarBuilder Tool
	Overview
	Creating a wlfullclient.jar File for a Client Application

	Code Examples

