Developer's Guide
11g Release 2 (11.2.0.3)
E23174-02
November 2011
Oracle Data Provider for .NET Developer's Guide 11g Release 2 (11.2.0.3)
E23174-02
Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Sumit Jeloka, Janis Greenberg
Contributing Authors: Alex Keh, Kiminari Akiyama, Sinclair Hsu, Shailendra Jain, Riaz Ahmed, Ashish Shah, Lakshminarayanan Suriamoorthy, Steven Caminez, Naveen Doraiswamy, Neeraj Gupta, Chithra Ramamurthy, Martha Woo, Arun Singh, Sujith Somanathan, Nishant Singh
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document is your primary source of introductory, installation, postinstallation configuration, and usage information for Oracle Data Provider for .NET.
Oracle Data Provider for .NET is an implementation of the Microsoft ADO.NET interface.
This Preface contains these topics:
Oracle Data Provider for .NET Developer's Guide is intended for programmers who are developing applications to access an Oracle database using Oracle Data Provider for .NET. This documentation is also valuable to systems analysts, project managers, and others interested in the development of database applications.
To use this document, you must be familiar with Microsoft .NET Framework classes and ADO.NET and have a working knowledge of application programming using Microsoft C#, Visual Basic .NET, or another .NET language.
Although the examples in the documentation and the samples in the sample directory are written in C#, developers can use these examples as models for writing code in other .NET languages.
Users should also be familiar with the use of Structured Query Language (SQL) to access information in relational database systems.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see these Oracle resources:
Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
Printed documentation is available for sale in the Oracle Store at
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
For additional information, see:
and
For simplicity in demonstrating this product, code examples do not perform the password management techniques that a deployed system normally uses. In a production environment, follow the Oracle Database password management guidelines, and disable any sample accounts. See Oracle Database Security Guide for password management guidelines and other security recommendations.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes new features in Oracle Data Provider for .NET and provides references to additional information. New features information from previous releases is also retained to help those users migrating to the current release.	
The following sections describe the new features in Oracle Data Provider for .NET:	
Oracle Data Provider for .NET release 11.2.0.3 includes the following:	
ODP.NET now includes support for the ADO.NET Entity Framework and LINQ to Entities. Entity Framework is a framework for providing object-relational mapping service on data models. Entity Framework addresses the impedance mismatch between the relational database format and the client's preferred object format. Language Integrated Query (LINQ) defines a set of operators that can be used to query, project, and filter data in arrays, enumerable classes, XML, relational databases, and other data sources. One form of LINQ, LINQ to Entities, allows querying of Entity Framework data sources. ODP.NET supports Entity Framework such that the Oracle database can participate in object-relational modeling and LINQ to Entities queries.	
Entity Framework and LINQ provides productivity benefits for the .NET developer. It abstracts the database's data model from the application's data model. Working with object-relational data becomes easier with Entity Framework's tools. Oracle's integration with Entity Framework and LINQ enables Oracle .NET developers to take advantage of all these productivity benefits.	
See "ADO.NET Entity Framework and LINQ to Entities" for more information on ODP.NET support for the ADO.NET Entity Framework and LINQ to Entities.	
Windows Communication Foundation (WCF) Data Services enable developers to create services that use the Open Data Protocol (OData) to expose and consume data over the internet by using the semantics of representational state transfer (REST). OData exposes data as resources that are addressable by URIs. OData uses Entity Data Model conventions to expose resources as sets of entities that are related by associations. ODP.NET supports Entity Framework, and can expose its data through OData and WCF Data Services.	
WCF Data Services and OData facilitate creating flexible data services from any data source and naturally integrating them with the Web. All data sources, including Oracle databases, can be used by the same data sharing standard making data exchange more interoperable.	
ODP.NET can bind REF CURSOR parameters for stored procedures without binding them explicitly. To do so, the application must provide the REF CURSOR metadata as part of the .NET configuration file. This feature allows Entity Framework Function Import to call Oracle stored procedures and return REF CURSOR result sets. ODP.NET can also update the database's data with a DataSet or DataTable obtained through a REF CURSOR.	
In Entity Framework, result set parameters are generally not declared. By supporting the implicit REF CURSOR parameter, ODP.NET more closely integrates with typical Entity Framework usage scenarios.	
See "Implicit REF CURSOR Binding" for detailed information on implicit REF CURSOR parameter binding.	
Oracle Data Provider for .NET release 11.2.0.2 includes the following:	
Now available for Windows x64 systems, ODP.NET XCopy provides system administrators with a smaller client install size than the standard ODP.NET client, and is easier to configure. ODP.NET XCopy simplifies embedding ODP.NET in customized deployment packages.	
Oracle Data Provider for .NET enables fast data access for any .NET application, such as C# .NET, Visual Basic .NET, and ASP.NET, to TimesTen In-memory databases. ODP.NET support for TimesTen includes the classes, enumerations, interfaces, delegates and structures of the Oracle.DataAccess.Client	
and Oracle.DataAccess.Types	
namespaces. ODP.NET supports TimesTen Release 11.2.1.6.1 or later on Microsoft Windows 32-bit and 64-bit platforms. TimesTen can be used with .NET Framework 2.0, 3.0, 3.5, and 4 with Microsoft Visual Studio 2005 or later.	
See Also: The latest TimesTen In-Memory Database documentation and resources can be accessed from:	
Oracle Data Provider for .NET release 11.2.0.1.2 includes the following:	
ODP.NET for .NET Framework 4 supports .NET Framework 4 and the .NET Framework 4 Client Profile.	
Oracle Data Provider for .NET release 11.2 includes the following:	
ClientInfo	
Property ODP.NET now supports the ClientInfo	
write-only property, in addition to the ActionName	
, ClientId	
, and ModuleName	
properties, on the OracleConnection	
object. This property specifies the client information for the connection.	
The ClientInfo	
property is an end-to-end tracing attribute that can be set on the client or middle tier. This attribute is propagated to the database server whenever the next server round-trip happens. This reduces the added overhead associated with an independent database round trip. Using the ClientInfo	
property is helpful in tracking database user activities and debugging applications.	
Edition-based redefinition enables you to upgrade the database component of an application even while the .NET application is being used. This minimizes or eliminates downtime for the application.	
Oracle Data Provider for .NET release 11.1.0.7.20 includes the following:	
Based on run-time sampling, ODP.NET dynamically adjusts statement cache size to provide better application performance. Self-tuning also takes into account memory usage on the client machine in order to prevent excessive memory usage. Self-tuning improves ODP.NET performance, reduces network usage, and decreases server CPU and client CPU activity.	
Retrieving data using OracleDataReader	
or populating a DataSet	
from an OracleDataAdapter	
is now faster.	
ODP.NET reuses the same fetch array buffer for statements executed non-concurrently, saving on memory usage. The fetch array buffer stores data retrieved from the database.	
No code changes are necessary to use these features. These features provide better performance and scalability for ODP.NET applications.	
ODP.NET supports access to Oracle Streams Advanced Queuing (AQ). AQ provides database-integrated message queuing functionality to store messages persistently, propagate messages between queues on different machines and databases, and transmit messages using Oracle NET services, HTTP, HTTPS and SMTP.	
ODP.NET can access all the operational featuers of AQ, such as enqueue, dequeue, listen and notification. Oracle Developer Tools for Visual Studio can administer and manage AQ resources.	
Distributed transactions require the orchestration of application, transaction coordinator, and multiple databases. Local transactions only require an application and a single resource manager, or database. Local transactions have less of an overhead when compared to distributed transactions.	
It may be difficult to determine whether a transaction will be local or distributed at design time. Developers are forced to design applications for distributed transactions, even if local transactions are used most of the time. This situation leads to more resource usage than necessary at run time.	
Promotable local transactions allow all transactions to remain local until more than one database is brought into the transaction. At this point, the transaction is promoted to a distributed transaction so that it can be managed by the transaction coordinator. This provides a better utilization of system resources. This feature is supported with Oracle Database 11g release 1 (11.1.0.7) and higher.	
ODP.NET makes use of the OraclePermission	
class to enforce imperative security. This helps ensure that a user or application has a security level adequate for accessing data.	
ODP.NET can register for Oracle High Availability (HA) events when "ha events=true	
" is specified in the connection string. ODP.NET is then able to receive notifications on which database, service, host, or instance has gone down or come up. .NET developers can register a callback with ODP.NET to notify the application when one of these events occurs and subsequently execute an event handler, as needed.	
Users with database administrator privileges can use the OracleDatabase	
class to startup or shutdown a database instance.	
Oracle Data Provider for .NET release 11.1.0.6.20 includes the following:	
Oracle XCopy provides system administrators with an ODP.NET client that is smaller in disk size than the standard ODP.NET client and is easily configurable. Oracle XCopy makes embedding ODP.NET in customized deployment packages much simpler.	
ODP.NET has the ability to represent Oracle UDTs defined in the database as custom types in .NET applications.	
ODP.NET supports the Bulk Copy operations to load a large amount of data efficiently.	
ODP.NET now cleans up the connection pool when the database down event is received from Oracle RAC or Oracle Data Guard. This is in addition to the events that ODP.NET already cleaned up the connection pool for: node down, service member down, and service down events.	
Operating system-authenticated connections can now be managed as part of ODP.NET connection pools	
ODP.NET publishes performance counters for connection pooling, which can be viewed using the Windows Performance Monitor.	
ODP.NET supports the ActionName, ClientId,	
ClientInfo,	
and ModuleName	
write-only properties on the OracleConnection	
object. These properties correspond to end-to-end tracing attributes that can be set on the client or middle-tier, and propagated to the database server whenever the next server round-trip happens. This reduces the added overhead associated with an independent database round trip. Using these attributes is helpful in tracking database user activities and debugging applications.	
Oracle Data Provider for .NET release 11.1 includes the following:	
The following performance enhancements have been made:	
This release enhances the existing caching infrastructure to cache ODP.NET parameter contexts. This enhancement is independent of database version and it is available for all the supported database versions. This feature provides significant performance improvement for the applications that execute the same statement repeatedly.	
This enhancement is transparent to the developer. No code changes are needed to use this feature.	
When using LOBS or SecureFiles, this release improves the performance of small-sized LOB retrieval by reducing the number of round-trips to the database. SecureFiles is available with Oracle 11g release 1 or later database versions.	
This enhancement is transparent to the developer. No code changes are needed to use this feature.	
Oracle Data Provider for .NET release 10.2.0.4 includes the following:	
Developers can now configure ODP.NET using configuration files, including application config, web.config	
, or machine.config	
.	
Settings in the machine.config	
override the registry settings.The settings in the application config or the web.config	
override the values in the machine.config	
.	
Oracle Data Provider for .NET release 10.2.0.3 includes the following:	
ODP.NET natively supports the 64-bit .NET Framework for both 64-bit Windows platforms:	
64-bit systems allow for more scalable and better performing ODP.NET applications.	
FetchSize	
Through the Windows Registry This feature enables applications to specify the default result set fetch size through the registry.	
System.Transactions	
This feature enables System.Transactions	
to use local transactions rather than distributed transactions. This can be specified either through the registry or through a connection string attribute.	
Oracle Data Provider for .NET release 10.2.0.2 includes the following:	
Simplifies data access code to access multiple data sources with a provider generic API.	
Makes creating connections strings less error-prone and easier to manage.	
Enables the application to generically obtain a collection of the Oracle data sources that the application can connect to.	
Permits application developers to find and return database schema information, such as tables, columns, and stored procedures.	
ODP.NET supports implicit and explicit transactions using the System.Transactions	
namespace models.	
Enables batch processing when the OracleDataAdapter.Update	
method is called.	
Oracle Data Provider for .NET release 10.2 includes the following:	
Server-side features for Oracle Data Provider for .NET provide data access from .NET stored procedures. Such procedures are enabled by Oracle Database Extensions for .NET, a new feature included with Oracle database on Windows.	
Oracle Data Provider for .NET exposes the OracleConnection.ClientId	
property, thus providing support for Oracle Virtual Private Database (VPD) and application context. Client identifier makes configuring VPD simpler for the developer.	
Oracle Data Provider for .NET optimizes connection pooling for Oracle RAC databases by balancing work requests across Oracle RAC instances, based on the load balancing advisory and service goal. Furthermore, the ODP.NET connection pool can be enabled to proactively free resources associated with connections that have been severed due to a down Oracle RAC service, instance, or node.	
Oracle Data Provider for .NET provides a notification framework that supports Continuous Query Notification. This enables applications to receive notifications when there is a change in a query result set or a change in the state of the database.	
Oracle Data Provider for .NET connection pool management provides explicit connection pool control to ODP.NET applications. Applications can explicitly clear connections in a connection pool or all the connection pools.	
IN	
and IN	
/OUT	
REF	
CURSOR	
Objects This feature enables applications to retrieve REF	
Cursor	
s from a PL/SQL procedure or function and pass them to another stored procedure or function.	
Oracle Data Provider for .NET release 10.1.0.3 includes the following:	
This feature provides and manages a cache of statements for each session. The developer can control which statements are cached and how many. This improves performance and scalability.	
These enhancements expose new ADO.NET functionality that was introduced in Microsoft .NET Framework 1.1.	
These two new features relate to command cancellation. The CommandTimeout	
feature cancels the execution of a command when a specified amount of time elapses after the execution, while the Cancel	
method can be called explicitly by the application to terminate the execution of a command.	
DeriveParameters	
Method This method populates the parameter collection for the OracleCommand	
that represents a stored procedure or function by querying the database for the parameter information.	
Entire LOB column data can be retrieved even if the select list does not contain a primary key, ROWID	
, or unique key. This enhancement is available by setting the InitialLOBFetchSize	
property value to -1	
for CLOB	
and BLOB	
objects.	
LONG	
Retrieval Enhancement Entire LONG	
column data can be retrieved even if the select list does not contain a primary key, ROWID	
, or unique key. This enhancement is available by setting the InitialLONGFetchSize	
property value to -1	
.	
Oracle Data Provider for .NET release 10.1 includes the following:	
ODP.NET is grid-enabled, allowing developers to take advantage of Oracle Database Grid support without having to make changes to their application code.	
BINARY_FLOAT	
and BINARY_DOUBLE	
data types in the database ODP.NET supports the new database native types BINARY_FLOAT	
and BINARY_DOUBLE	
ODP.NET can be installed in Multiple Oracle Homes.	
In order to make multiple homes available, some of the ODP.NET files include a version number, and the use of a HOME	
ID	
is required.	
XMLType	
in the Database ODP.NET supports the native schema-based XMLType	
.	
Oracle Data Provider for .NET release 9.2.0.4, which was released on Oracle Technology Network (OTN), included the following:	
With XML support, ODP.NET can now:	
XMLType	
. ODP.NET supports PL/SQL Associative Array (formerly known as PL/SQL Index-By Tables) binding.	
An application can bind an OracleParameter	
, as a PL/SQL Associative Array, to a PL/SQL stored procedure using OracleParameter	
properties.	
InitialLOBFetchSize	
property on OracleCommand	
and OracleDataReader	
objects This chapter introduces Oracle Data Provider for .NET (ODP.NET), an implementation of a .NET data provider for Oracle Database.	
This chapter contains these topics:	
This section discusses Oracle components and products that work together to provide .NET data access to Oracle Database, how they relate to each other, and what documentation is provided.	
These Oracle products provide .NET integration on the Windows operating system:	
Oracle Data Provider for .NET provides fast data access from .NET clients to Oracle databases. ODP.NET enables .NET applications to take advantage of Oracle advanced features, such as Oracle Real Application Clusters (Oracle RAC) and XML DB. It is accessible through any .NET language, including C#, Visual Basic .NET, and C++ .NET.	
Oracle Data Provider for .NET Developer's Guide describes Oracle Data Provider for .NET features, their use, installation, requirements, and classes. The guide distinguishes which classes are supported in .NET stored procedures and which classes are supported for .NET clients.	
Additionally, Oracle Data Provider for .NET Dynamic Help, which is context-sensitive online help, contains the same reference sections available in Oracle Data Provider for .NET Developer's Guide, this guide.	
Oracle Data Provider for .NET Dynamic Help is integrated with Visual Studio Dynamic Help. With Dynamic Help, you can access Oracle Data Provider for .NET documentation within Visual Studio by placing the cursor on an Oracle Data Provider for .NET keyword and pressing the F1 function key.	
Oracle Developer Tools is an add-in to Visual Studio that provides graphical user interface (GUI) access to Oracle functionality. It provides improved developer productivity and ease of use. Oracle Developer Tools provide the ability to build .NET stored procedures using Visual Basic .NET, C#, and other .NET languages.	
Oracle Developer Tools for Visual Studio Help describes Oracle Developer Tools. This help is in the form of dynamic help, which installs as part of the product.	
Additionally, the Oracle Developer Tools for Visual Studio Help includes the following documentation:	
Oracle Database Extensions for .NET provides the following:	
Oracle Database Extensions for .NET features, their use, installation, and requirements are described in Oracle Database Extensions for .NET Developer's Guide.	
Oracle Data Provider for .NET Developer's Guide describes all ODP.NET classes. Classes that are not supported by Oracle Database Extensions for .NET are described as Not Supported in a .NET Stored Procedure.	
See Also:	
Oracle Providers for ASP.NET offer ASP.NET developers an easy to use method to store state common to web applications within an Oracle database. These providers are modeled on existing Microsoft ASP.NET providers, sharing similar schema and programming interfaces to provide .NET developers a familiar interface. Oracle supports the following providers:	
Oracle Providers for ASP.NET classes, their use, installation, and requirements are described in Oracle Providers for ASP.NET Developer's Guide, which is also provided as dynamic help.	
Oracle Services for Microsoft Transaction Server (OraMTS) permit Oracle databases to be used as resource managers in Microsoft application coordinated transactions. OraMTS acts as a proxy for the Oracle database to the Microsoft Distributed Transaction Coordinator (MSDTC). As a result, OraMTS provides client-side connection pooling and allows client components that leverage Oracle to participate in promotable and distributed transactions. In addition, OraMTS can operate with Oracle databases running on any operating system, given that the services themselves are run on Windows.	
Oracle Services for Microsoft Transaction Server Developer's Guide describes OraMTS, which allows Oracle databases to be used as resource managers in distributed transactions.	
ODP.NET support for Oracle TimesTen In-Memory Database (TimesTen) provides fast and efficient ADO.NET data access for applications that require the highest performance.	
You can use ODP.NET with any of the following TimesTen installations:	
For more information on ODP.NET features specific to a TimesTen environment, refer to the Oracle Data Provider for .NET Oracle TimesTen In-Memory Database Support User's Guide.	
Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data provider for Oracle Database, using and inheriting from classes and interfaces available in the Microsoft .NET Framework Class Library.	
Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows native providers to expose provider-specific features and data types. This is similar to Oracle Provider for OLE DB, where ADO (ActiveX Data Objects) provides an automation layer that exposes an easy programming model. ADO.NET provides a similar programming model, but without the automation layer, for better performance.	
Oracle Data Provider for .NET uses Oracle native APIs to offer fast and reliable access to Oracle data and features from any .NET application.	
The ODP.NET classes described in this guide are contained in the Oracle.DataAccess.dll	
assembly.	
See Also:	
The Oracle.DataAccess.dll	
assembly provides two namespaces:	
Oracle.DataAccess.Client	
namespace contains ODP.NET classes and enumerations for the client-side provider. Oracle.DataAccess.Types	
namespace contains the Oracle Data Provider for .NET data types (ODP.NET Types). The Oracle.DataAccess.Client	
namespace contains implementations of core ADO.NET classes and enumerations for ODP.NET, as well as ODP.NET specific classes.	
The following tables list ODP.NET classes, enumerations, and types that are supported by the Oracle.DataAccess.Client	
namespace. The tables also indicated which classes are not supported in .NET stored procedures.	
Table 1-1 lists the client classes.	
Table 1-1 Oracle.DataAccess.Client	
Class	Description
---	---
The Not Supported in a .NET Stored Procedure	
The	
An	
The	
An	
OracleAQMessageAvailableEventArgs Class	The
OracleAQMessageAvailableEventHandler Delegate	The
An	
An	
OracleBulkCopyColumnMapping Class	The
OracleBulkCopyColumnMappingCollection Class	The
An	
An	
An	
An	
OracleConnectionStringBuilder Class	An
An	
An	
OracleDataSourceEnumerator Class	An
An Not Supported in a .NET Stored Procedure	
The	
An	
The	
The Not Supported in a .NET Stored Procedure	
OracleFailoverEventHandler Delegate	The Not Supported in a .NET Stored Procedure
The	
The	
The	
OracleInfoMessageEventArgs Class	The
OracleInfoMessageEventHandler Delegate	The
OracleNotificationEventArgs Class	The
OracleNotificationRequest Class	An Not Supported in a .NET Stored Procedure
An	
OracleParameterCollection Class	An
An	
OraclePermissionAttribute Class	An
OracleRowsCopiedEventHandler Delegate	The
OracleRowsCopiedEventArgs Class	The
OracleRowUpdatedEventArgs Class	The
OracleRowUpdatedEventHandler Delegate	The
OracleRowUpdatingEventArgs Class	The
OracleRowUpdatingEventHandler Delegate	The
An Not Supported in a .NET Stored Procedure	
OracleXmlQueryProperties Class	An
An	
Table 1-2 lists the client enumerations.	
Table 1-2 Oracle.DataAccess.Client Enumerations	
Enumeration	Description
---	---
Not Supported in a .NET Stored Procedure	
FailoverReturnCode Enumeration	
Not Supported in a .NET Stored Procedure	
Not Supported in a .NET Stored Procedure	
OracleAQDequeueMode Enumeration	The
OracleAQMessageDeliveryMode Enumeration	The
OracleAQMessageState Enumeration	The
OracleAQMessageType Enumeration	The
OracleAQNavigationMode Enumeration	The
OracleAQNotificationGroupingType Enumeration	The
OracleAQNotificationType Enumeration	The
OracleAQVisibilityMode Enumeration	The
OracleBulkCopyOptions Enumeration	The
OracleCollectionType Enumeration	
Not Supported in a .NET Stored Procedure	
OracleDBShutdownMode Enumeration	
OracleDBStartupMode Enumeration	
OracleHAEventSource Enumeration	The
OracleHAEventStatus Enumeration	The
OracleNotificationInfo Enumeration	
Not Supported in a .NET Stored Procedure	
OracleNotificationSource Enumeration	
Not Supported in a .NET Stored Procedure	
OracleNotificationType Enumeration	
Not Supported in a .NET Stored Procedure	
OracleParameterStatus Enumeration	The
The	
OracleXmlCommandType Enumeration	The
The Oracle.DataAccess.Types	
namespace provides classes, structures, and exceptions for Oracle native types that can be used with Oracle Data Provider for .NET.	
Table 1-3 lists the type structures.	
Table 1-3 Oracle.DataAccess.Types Structures	
Structure	Description
---	---
The	
The	
The	
The	
The	
The	
The	
The	
The	
Type Exceptions are thrown only by ODP.NET type structures. Table 1-4 lists the type exceptions.	
Table 1-4 Oracle.DataAccess.Types Exceptions	
Exception	Description
---	---
The	
OracleNullValueException Class	The
The	
Table 1-5 lists the type classes.	
Table 1-5 Oracle.DataAccess.Types Classes	
Class	Description
---	---
OracleArrayMappingAttribute Class	The
An	
An	
An	
OracleCustomTypeMappingAttribute Class	The
OracleObjectMappingAttribute Class	The
An	
An	
The	
An	
An	
Table 1-6 lists the type interfaces.	
Table 1-6 Oracle.DataAccess.Types Interfaces	
Interface	Description
---	---
IOracleArrayTypeFactory Interface	The
IOracleCustomTypeFactory Interface	The
The	
Table 1-7 lists the type enumerations.	
Table 1-7 Oracle.DataAccess.Types Enumerations	
Enumeration	Description
---	---
OracleUdtFetchOption Enumeration	
The following is a simple C# application that connects to Oracle Database and displays its version number before disconnecting:	
This chapter describes installation and configuration requirements for Oracle Data Provider for .NET.	
This chapter contains these topics:	
Oracle Data Provider for .NET requires the following:	
Oracle supports 32-bit ODP.NET on x86, AMD64, and Intel EM64T processors on these operating systems.	
Oracle supports 32-bit ODP.NET and 64-bit ODP.NET for Windows x64 on these operating systems.	
Note: ODP.NET does not support Itanium systems.	
This is automatically installed as part of the ODP.NET installation.	
Additional requirements are the following:	
OracleXmlStream	
and OracleXmlType	
classes with schema-based XMLType	
require access to Oracle Database 10g release 1 (10.1) or later. See Also:	
Starting with 11.2.0.1.2, Oracle Data Provider for .NET ships with two sets of binaries: one set for .NET Framework 2.0 and another for .NET Framework 4.	
For example, ODP.NET 11.2.0.1.2 binaries would be the following:	
Oracle.DataAccess.dll	
OraOps11w.dll	
Oracle.DataAccess.dll	
OraOps11w.dll	
The convention for ODP.NET assembly/DLL versioning is	
n1.o1o2.o3o4.o5	
where:	
For example, if the ODP.NET product version number is 11.2.0.2, the corresponding ODP.NET assembly versions are:	
Note that the Oracle installer and documentation still refer to the ODP.NET product version number and not the assembly/DLL version number.	
As with the .NET Framework system libraries, the first digit of the assembly version number indicates the version of the .NET Framework to use with an ODP.NET assembly.	
Publisher Policy DLL is provided as before so that applications built with older versions of ODP.NET are redirected to the newer ODP.NET assembly, even though the versioning scheme has changed.	
Oracle Data Provider for .NET is part of Oracle Data Access Components (ODAC), which can be downloaded from OTN. Beginning with ODAC 11.1.0.6.20, Oracle Data Provider for .NET can be installed through XCopy or Oracle Universal Installer.	
XCopy	
Administrators use XCopy to deploy Oracle Data Provider for .NET to large numbers of computers for production deployments. The XCopy has a smaller installation size and fine-grain control during installation and configuration than Oracle Universal Installer.	
Developers and administrators use Oracle Universal Installer for automated ODP.NET installations. It includes documentation and code samples that are not part of the XCopy.	
Note: This section describes installation using the Oracle Universal Installer. For installation and configuration using the XCopy install, refer to the README.TXT file that is part of the XCopy installation.	
Additionally, Oracle Data Provider for .NET Dynamic Help is registered with Visual Studio, providing context-sensitive online help that is seamlessly integrated with Visual Studio Dynamic Help. With Dynamic Help, the user can access ODP.NET documentation within the Visual Studio IDE by placing the cursor on an ODP.NET keyword and pressing the F1 function key.	
Oracle Data Provider for .NET creates an entry in the machine.config	
file of the computer on which it is installed, for applications using ADO.NET 2.0 and OracleClientFactory	
class. This enables the DbProviderFactories	
class to recognize ODP.NET.	
The Oracle.DataAccess.dll	
assembly is installed to the following locations:	
.NET Framework 2.0:	
ORACLE_BASE	
\	
ORACLE_HOME	
\	
odp.net\bin\2.x	
directory	
.NET Framework 4:	
ORACLE_BASE	
\	
ORACLE_HOME	
\	
odp.net\bin\4	
directory	
Note: If the machine has the corresponding .NET Framework installed, then theOracle.DataAccess.dll assembly is added to the Global Assembly Cache (GAC) as well. This is to ensure that existing applications can start using the newly installed ODP.NET version immediately. However, if this is not desired, be sure to remove the policy DLLs from the GAC.	
Documentation and the readme.txt	
file are installed in the ORACLE_BASE	
\	
ORACLE_HOME	
\	
ODP.NET	
\	
doc	
directory.	
Samples are provided in the ORACLE_BASE	
\	
ORACLE_HOME	
\	
ODP.NET	
\	
Samples	
directory.	
ODP.NET consists of managed and unmanaged binaries. Through the use of the DllPath	
configuration parameter, each application can specify the ORACLE_BASE\\ORACLE_HOME	
\bin	
location that the dependent unmanaged Oracle Client binaries are loaded from. However, the ORACLE_BASE\\ORACLE_HOME	
must have the same ODP.NET version installed as the version that the application uses. Otherwise, a version mismatch exception is thrown.	
The Oracle.DataAccess.dll	
searches for dependent unmanaged DLLs (such as Oracle Client) based on the following order:	
DllPath	
setting specified by application config or web.config	
. DllPath	
setting specified by machine.config	
. DllPath	
setting specified by the Windows Registry. HKEY_LOCAL_MACHINE\Software\Oracle\	
ODP.NET\	
version	
\DllPath	
PATH	
environment variable. Upon installation of ODP.NET, Oracle Universal Installer sets the DllPath	
Windows Registry value to the ORACLE_BASE\\ORACLE_HOME	
\bin	
directory where the corresponding dependent DLLs are installed. Developers must provide this configuration information on an application-by-application basis.	
When a new ODP.NET version is installed, default values are set in the Windows Registry for the new version. Because the policy DLLs redirect all ODP.NET references to this new ODP.NET version, applications use the default values. Developers can provide a config or web.config	
file specific to the application to prevent this redirection. The configuration file settings always apply to the application, regardless of whether or not patches or new versions are installed later.	
ODP.NET Configuration File Support is only available for version 10.2.0.4 and later.	
Note: BothOracle.DataAccess.dll for .NET Framework 2.0 and Oracle.DataAccess.dll for .NET Framework 4 use the same unmanaged DLL, OraOps11w.dll .	
The settings for specific versions of ODP.NET can be configured in several ways for specific effects on precedence:	
machine.config	
settings are .NET framework-wide settings that override the Windows registry values. machine.config	
settings and the Windows registry settings. The application or web config file can be useful and sometimes essential in scenarios where more than one application on a computer use the same version of ODP.NET, but each application needs a different ODP.NET configuration. The Windows registry value settings for a given version of ODP.NET affect all the applications that use that version of ODP.NET. However, having ODP.NET configuration values in the application or web config file assure that these settings are applied only for that application, thus providing more granularity.	
For example, if the application or web.config	
file has a StatementCacheSize	
configuration setting of 100	
, this application-specific setting forces the version of ODP.NET that is loaded by that application to use 100	
for the StatementCacheSize	
and overrides any setting in the machine.config	
and in the registry. Note that for any setting that does not exist in a config file (machine.config	
or application/web config), the value in the registry for a loaded version of ODP.NET is used, as in previous releases.	
Note that ODP.NET reads the machine.config	
files from the version of the .NET Framework on which ODP.NET runs, not from the version of ODP.NET.	
ODP.NET only reads the Windows Registry and the XML configuration file when it is loaded into memory, thus any configuration changes made after that are not read or used until the application is re-started.	
ODP.NET supports the configuration of an attribute as follows:	
Table 2-1 describes each configurable attribute that is supported by ODP.NET. In the table, the term Configuration Support is followed by the types of configuration support (Windows registry, XML file, and so on) that are available for that attribute.	
The table describes valid values as well as the default for each attribute.	
Note: The default values shown are the values used for an attribute if the registry key does not exist or if it is not configured anywhere.	
Table 2-1 Configuration Attributes	
Attribute/Setting Name	Description
---	---
Specifies whether the status of the connection is checked or not before putting the connection back into the connection pool. This registry entry is not created by the installation of ODP.NET. However, the default value Configuration Support: Windows Registry and XML file Valid Values:	
Default:	
Specifies the port number which ODP.NET listens to, for all notifications sent by the database for change notification, HA, or RLB features. ODP.NET does not throw any errors if an invalid or used port number is specified. The port can also be set to override the Windows registry and XML configuration file by setting the Configuration Support: XML file, and ODP.NET class Valid Values:	
Default:	
Specifies whether ODP.NET demands Configuration Support: Windows Registry and XML file Valid Values: 0: Disables demands for 1: Enables demands for Default: 0	
Specifies the location where dependent unmanaged Oracle Client binaries load from. Configuration Support: Windows Registry and XML file Valid Values: The path where dependent unmanaged Oracle Client binaries reside. Default:	
Specifies whether the application enlists in distributed transactions explicitly after an Configuration Support: Windows Registry, XML file, and Valid Values:	
Default: 0	
Specifies the total memory size, in bytes, that ODP.NET allocates to cache the data fetched from a database round-trip. This value can be set on the Configuration Support: Windows Registry, XML file, and ODP.NET class Valid Values:	
Default:	
Specifies the maximum number of statements that can be cached when self-tuning is enabled. Configuration Support: Windows Registry and XML file Valid Values: 0 to Default:	
Specifies the name of the XML file that customizes the queries to obtain the metadata the ADO.NET 2.0 Configuration Support: XML file only Valid Values: A complete file name for the XML file. Default: none	
Enables or disables publishing performance counters for connection pooling. Multiple performance counters can be obtained by adding the valid values. Configuration Support: Windows Registry and XML file Valid Values:	
Default:	
Specifies the type of transaction to use when the first connection participates in the Configuration Support: Windows Registry, XML file, and promotable transaction connection string attribute Valid Values:	
Default:	
Specifies whether self-tuning is enabled for an ODP.NET application. Configuration Support: Windows Registry, XML file, and Valid Values: 0: Self Tuning is disabled. Used in the registry or XML file.	
1: Self Tuning is enabled. Used in the registry or XML file.	
Default: 1	
Specifies the number of cursors or statements to be cached on the database for each connection. This setting corresponds to Statement Cache Size attribute in the connection string. A value greater than zero also enables statement caching. Configuration Support: Windows Registry, XML file, and Statement Cache Size connection string attribute Valid Values:	
Default:	
Specifies whether or not Oracle UDTs retrieved by executing a Configuration Support: Windows Registry and XML file Valid Values:	
Default:	
Specifies the default maximum size of worker threads for each available processor in a process. This value may affect the performance of ODP.NET connection creation, command execution timeout, and external procedures (Configuration Support: Windows Registry and XML file Valid Values:	
Default: Note that prior to ODAC 2007 or version 11.1.0.6.20, ODP.NET resets the thread pool maximum size to	
Specifies the file name to be used for logging trace information. Configuration Support: Windows Registry and XML file Valid Values: Any valid directory location and file name. Default:	
Specifies the level of tracing in ODP.NET. Because tracing all the entry and exit calls for all the objects can be excessive, Configuration Support: Windows Registry and XML file Valid Values:	
Default: 0 Note: ODP.NET does bit-wise checking on the value. When tracing is enabled, logging to the trace file can affect ODP.NET performance. Note: The user-mode dump creation requires	
Specifies whether to log trace information in single or multiple files for different threads. If a single trace file is specified, the file name specified in Configuration Support: Windows Registry and XML file Valid Values:	
Default:	
Specifies the size of the object cache for each connection in kilobytes (KB) that ODP.NET uses to retrieve and manipulate Oracle UDTs. Configuration Support: Windows Registry and XML file Valid Values:	
Default:	
Specifies a mapping between a custom type and an Oracle UDT in the database. The mappings can be specified in configuration files and custom type factories. However, if the mapping is specified in both places, mappings specified in the configuration files takes precedence over mappings specified using custom type factories. Configuration Support: XML file and Custom Type Factory Classes Valid Values: Any valid mapping. Default: none	
Upon installation, ODP.NET creates entries for configuration and tracing within the Windows Registry. Configuration and tracing registry values apply across all ODP.NET applications running in that Oracle client installation. Individual ODP.NET applications can override some of these values by configuring them within the ODP.NET application itself (for example, FetchSize	
). Applications can also use the .NET configuration files to override some of the ODP.NET Windows Registry values.	
The ODP.NET registry values are located under HKEY_LOCAL_MACHINE\Software\Oracle\ODP.NET\	
version	
\	
. There is one key for .NET Framework 2.0, 3.0, and 3.5, and one key for .NET Framework 4 and higher.	
Note: 32-bit applications running on an x64-based version of Windows use the registry subkey,HKEY_LOCAL_MACHINE\Software\WOW6432node in place of HKEY_LOCAL_MACHINE\Software . If such applications use Oracle Data Provider for .NET (32-bit), then the ODP.NET registry values are located under HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\ODP.NET\version\ .	
For customers who have numerous applications on a computer that depends on a single version of ODP.NET, the Windows Registry settings for a given version of ODP.NET may not necessarily be applicable for all applications that use that version of ODP.NET. To provide more granular control, ODP.NET Configuration File Support allows developers to specify ODP.NET configuration settings in an application config, web.config	
, or a machine.config	
file.	
If a computer does not require granular control beyond configuration settings at the ODP.NET version level, there is no need to specify ODP.NET configuration settings through configuration files.	
The following is an example of a web.config	
file for .NET Framework 2.0 and higher:	
The following is an example of app.config	
for ODP.NET using .NET Framework 2.0, which sets some additional attributes as well as two UDT type mappings:	
Oracle Data Provider for .NET opens a port to listen for database notifications when the following features are used:	
All these features share the same port, which can be configured centrally by setting the db	
notifications	
port in an application or web configuration file.	
If the configuration file does not exist or the db	
notification	
port is not specified, ODP.NET uses a valid, random port number. The configuration file may also request for a random port by specifying a db	
notification	
port value of -1	
. To specify a particular port, for example, 1200	
, an application or web configuration file can be used as shown below.	
The port number should be unique for each process running on a computer. Thus, the port number should be set uniquely for each application either programmatically or through an application config file. Note that if the specified port number is already in use or invalid, ODP.NET does not provide any errors.	
When the process using ODP.NET starts, the application reads the db	
notification	
port number and listens on that port. Once the port is opened, the port number cannot be changed during the lifetime of the process.	
Thread.Abort()	
should not be used, as unmanaged resources may remain unreleased, which can potentially cause memory leaks and hangs. OracleConnection	
and OracleCommand	
, should be explicitly closed or disposed, or both, when they are no longer needed. This should be done rather than relying on the .NET Framework garbage collector to reclaim resources. Many users have found that under stress conditions, explicit Close	
or Dispose	
calls result in much lower resource usage. System.AccessViolationException	
and System.Runtime.InteropServices.SEHException.	
HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG	
registry entry is set to NA	
, ODP.NET encounters ORA-12705 errors. To eliminate this problem, remove the HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG	
registry entry. This chapter describes Oracle Data Provider for .NET provider-specific features and how to use them to develop .NET applications.	
This chapter contains these topics:	
Oracle Data Provider for .NET can connect to Oracle Database in a number of ways, such as using a username and password, Windows Native Authentication, Kerberos, and Secure Sockets Layer (SSL). This section describes OracleConnection	
provider-specific features, including:	
Table 3-1 lists the supported connection string attributes.	
Table 3-1 Supported Connection String Attributes	
Connection String Attribute	Description
---	---
Maximum life time (in seconds) of the connection.	
Maximum time (in seconds) to wait for a free connection from the pool.	
Returns an implicit database connection if set to Supported in a .NET stored procedure only	
Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect.	empty string
Administrative privileges:	empty string
Number of connections that are closed when an excessive amount of established connections are unused.	
Controls the enlistment behavior and capabilities of a connection in context of COM+ transactions or	
Enables ODP.NET connection pool to proactively remove connections from the pool when an Oracle RAC service, service member, database, or node goes down. Works with Oracle RAC, Data Guard, or a single database instance.	
Enables ODP.NET connection pool to balance work requests across Oracle RAC instances based on the load balancing advisory and service goal.	
Number of new connections to be created when all connections in the pool are in use.	
Maximum number of connections in a pool.	
Caches metadata information.	
Minimum number of connections in a pool.	
Password for the user specified by	empty string
Retrieval of the password in the connection string.	
Connection pooling.	
Indicates whether or not a transaction is local or distributed throughout its lifetime.	promotable
User name of the proxy user.	empty string
Password of the proxy user.	empty string
Enables or disables self-tuning for a connection.	
Statement cache purged when the connection goes back to the pool.	
Statement cache enabled and cache size, that is, the maximum number of statements that can be cached.	
Oracle user name.	empty string
Validation of connections coming from the pool.	
The following example uses connection string attributes to connect to Oracle Database:	
See Also:	
This section describes different ways of specifying the data source attribute.	
The following example shows a connect descriptor mapped to a TNS alias called sales	
in the tnsnames.ora	
file:	
To connect as scott/tiger	
using the TNS Alias, a valid connection appears as follows:	
ODP.NET also allows applications to connect without the use of the tnsnames.ora	
file. To do so, the entire connect descriptor can be used as the "data	
source"	
.	
The connection string appears as follows:	
The easy connect naming method enables clients to connect to a database without any configuration.	
Prior to using the easy connect naming method, make sure that EZCONNECT	
is specified by the NAMES.DIRECTORY_PATH	
parameter in the sqlnet.ora	
file as follows:	
With this enabled, ODP.NET allows applications to specify the "Data	
Source"	
attribute in the form of:	
Using the same example, some valid connection strings follow:	
If the port number is not specified, 1521 is used by default.	
See Also: Oracle Net Services Administrator's Guide for details and requirements in the section Using Easy Connect Naming Method	
ODP.NET connection pooling is enabled and disabled using the Pooling	
connection string attribute. By default, connection pooling is enabled. The following are ConnectionString	
attributes that control the behavior of the connection pooling service:	
Connection	
Lifetime	
Connection	
Timeout	
Decr	
Pool	
Size	
HA	
Events	
Incr	
Pool	
Size	
Load	
Balancing	
Max	
Pool	
Size	
Min	
Pool	
Size	
Pooling	
Validate	
Connection	
The following example opens a connection using ConnectionString	
attributes related to connection pooling.	
When connection pooling is enabled (the default), the Open	
and Close	
methods of the OracleConnection	
object implicitly use the connection pooling service, which is responsible for pooling and returning connections to the application.	
The connection pooling service creates connection pools by using the ConnectionString	
property as a signature, to uniquely identify a pool.	
If there is no existing pool with the exact attribute values as the ConnectionString	
property, the connection pooling service creates a new connection pool. If a pool already exists with the requested signature, a connection is returned to the application from that pool.	
When a connection pool is created, the connection pooling service initially creates the number of connections defined by the Min	
Pool	
Size	
attribute of the ConnectionString	
property. This number of connections is always maintained by the connection pooling service for the connection pool.	
At any given time, these connections are in use by the application or are available in the pool.	
The Incr	
Pool	
Size	
attribute of the ConnectionString	
property defines the number of new connections to be created by the connection pooling service when more connections are needed in the connection pool.	
When the application closes a connection, the connection pooling service determines whether or not the connection lifetime has exceeded the value of the Connection	
Lifetime	
attribute. If so, the connection pooling service closes the connection; otherwise, the connection goes back to the connection pool. The connection pooling service enforces the Connection	
Lifetime	
only when a connection is going back to the connection pool.	
The Max	
Pool	
Size	
attribute of the ConnectionString	
property sets the maximum number of connections for a connection pool. If a new connection is requested, but no connections are available and the limit for Max	
Pool	
Size	
has been reached, then the connection pooling service waits for the time defined by the Connection	
Timeout	
attribute. If the Connection	
Timeout	
time has been reached, and there are still no connections available in the pool, the connection pooling service raises an exception indicating that the connection pool request has timed-out.	
The Validate	
Connection	
attribute validates connections coming out of the pool. This attribute should be used only when absolutely necessary, because it causes a round-trip to the database to validate each connection immediately before it is provided to the application. If invalid connections are uncommon, developers can create their own event handler to retrieve and validate a new connection, rather than using the Validate	
Connection	
attribute. This generally provides better performance.	
The connection pooling service closes connections when they are not used; connections are closed every 3 minutes. The Decr	
Pool	
Size	
attribute of the ConnectionString	
property provides connection pooling service for the maximum number of connections that can be closed every 3 minutes.	
Beginning with Oracle Data Provider for .NET release 11.1.0.6.20, enabling connection pooling by setting "pooling=true"	
in the connection string (which is the case by default) will also pool operating system authenticated connections.	
ODP.NET connection pool management provides explicit connection pool control to ODP.NET applications. Applications can explicitly clear connections in a connection pool.	
Using connection pool management, applications can do the following:	
Note: These APIs are not supported in a .NET stored procedure.	
ClearPool	
method. ClearAllPools	
method. When connections are cleared from a pool, ODP.NET repopulates the pool with new connections that have at least the number of connections set by Min	
Pool	
Size	
in the connection string. New connections do not necessarily mean the pool will have valid connections. For example, if the database server is down when ClearPool	
or ClearAllPools	
is called, ODP.NET creates new connections, but these connections are still invalid because they cannot connect to the database, even if the database comes up a later time.	
It is recommended that ClearPool	
and ClearAllPools	
not be called until the application can create valid connections back to the database. .NET developers can develop code that continuously checks whether or not a valid database connection can be created and calls ClearPool	
or ClearAllPools	
once this is true.	
Installing Oracle Data Provider for .NET creates a set of performance counters on the target system. These performance counters are published by ODP.NET for each ODP.NET client application. These performance counters can be viewed using Windows Performance Monitor (Perfmon).	
In Perfmon, administrators can add ODP.NET counters to the performance monitor graph. ODP.NET performance counters are published under the following Category Name: Oracle Data Provider for .NET. Administrators can choose the ODP.NET counters to monitor after selecting the Oracle Data Provider for .NET category.	
As ODP.NET performance counters are not enabled by default, administrators must enable the specific counters of interest before attempting to monitor them. In addition, at least one ODP.NET instance must be actively running when attempting to monitor using Perfmon.	
Oracle Data Provider for .NET enables or disables publishing performance counters for connection pooling, using registry entries.	
Table 3-2 lists the performance counters used for connection pooling with their valid registry values.	
Table 3-2 Performance Counters for Connection Pooling	
Performance Counter	Valid Values
---	---
None	
Not enabled (Default)	
Number of sessions being established with the Oracle Database every second.	
Number of sessions being severed from the Oracle Database every second.	
Number of active connections originating from connection pools every second.	
Number of active connections going back to the connection pool every second.	
Total number of active connection pools.	
Number of inactive connection pools.	
Total number of connections in use.	
Total number of connections available for use in all the connection pools.	
Number of pooled active connections.	
Number of non-pooled active connections.	
Number of connections which were garbage-collected implicitly.	
Number of connections that will be soon available in the pool. User has closed these connections, but they are currently awaiting actions such transaction completion before they can be placed back into the pool as free connections.	
Publication of individual performance counters is enabled or disabled using the registry value PerformanceCounters	
of type REG_SZ	
. This registry value is under:	
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\	
Assembly_Version	
where Assembly_Version	
is the full assembly version number of Oracle.DataAccess.dll	
.	
Multiple performance counters can be obtained by adding the valid values. For example, if PerformanceCounters	
is set to 3, both HardConnectsPerSecond	
and HardDisconnectsPerSecond	
are enabled.	
Performance counters can be set using an app.config	
entry. Since app.config	
entries take precedence over the registry value setting, they can be used for a specific application.	
An app.config	
entry uses name/value pairs as in the following example:	
Performance counters are published instance-wise, that is, for each process, different values of the performance counters are published. The instance name is based on AppDomain	
name, AppDomain	
Id	
and Process	
Id	
and displayed in the following form:	
AppDomain_Name[Process	
Id,	
AppDomain Id]	
For example, if a process named App1.exe	
uses ODP.NET 2.x in default appdomain	
and the process id is 234	
then the instance name would be App1.exe [234,	
1]	
.	
Edition-based redefinition enables you to upgrade the database component of an application even while the application is being used. This minimizes or eliminates downtime for the application.	
See Also: For more information on Editions refer to the Oracle Database Administrator's Guide and Oracle Database Advanced Application Developer's Guide	
ODP.NET 11g Release 2 (11.2.0.1), and higher, supports specifying an Edition at deployment time when used with Oracle Database 11.2 or later. Applications can specify an Edition at deployment time using the registry or configuration file.	
An application can create the following registry entry of type REG_SZ	
:	
Here version	
is the version of ODP.NET, and Edition	
is a valid Edition string value.	
An application can alternatively use the web.config	
or application.config	
configuration file to specify the Edition at deployment time. The machine.config	
configuration file can be used to specify the Edition for all applications that use a particular version of the .NET framework.	
The following example sets the Edition to E1 in a configuration file for .NET 2.0, 3.0, and 3.5:	
Note: ODP.NET only supports deployment-time configuration of Edition.ODP.NET does not support usage of the "	
This section discusses optimization and other aspects of connection and connection pooling for an Oracle Real Application Clusters (Oracle RAC) database. Oracle RAC is the technology that makes grids possible for Oracle database by providing the ability to access the database from multiple instances, each running on nodes in a cluster.	
This section discusses optimization and other aspects of connection and connection pooling for Oracle Real Application Clusters (Oracle RAC) and Data Guard databases. Oracle RAC is the technology that makes grids possible for Oracle database by providing the ability to access the database from multiple instances, each running on nodes in a cluster. Oracle Data Guard is a technology that enables high availability and disaster recovery by maintaining a secondary standby database in case the primary database fails.	
Oracle Data Provider for .NET supports Oracle RAC and Data Guard transparently. Additionally, the Oracle Data Provider for .NET connection pooling features work with Oracle RAC or Data Guard version 10.2 or higher.Oracle Data Provider for .NET optimizes connection and connection pooling for Oracle RAC database by balancing work requests across Oracle RAC instances, based on the load balancing advisory and service goal. Furthermore, the ODP.NET connection pool can be enabled to proactively free resources associated with connections that have been severed due to a down Oracle RAC service, service member, node, or database in the case of Data Guard.	
Oracle Data Provider for .NET uses the following features to optimize connection and connection pooling for Oracle RAC:	
Runtime Connection Load Balancing	
When Runtime Connection Load Balancing is enabled:	
By default, this feature is disabled. To enable runtime connection load balancing, include "Load Balancing=true"	
in the connection string.	
This feature can only be used with an Oracle RAC database and only if "pooling=true"	
. If "Load Balancing=true"	
is set and the connection attempts to connect to a single-instance database, an OracleException	
is thrown with an error of "ORA-1031:	
insufficient privileges	
."	
In order to use Runtime Connection Load Balancing, specific Oracle RAC configurations must be set. For further information, see Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide. Oracle Net Services should also be configured for load balancing. See Oracle Net Services Administrator's Guide for further details.	
The following connection string example enables Runtime Connection Load Balancing:	
When HA (High Availability) events is enabled, Oracle RAC, Data Guard, and single database instances exhibit the following behavior:	
"min	
pool	
size"	
. By default this feature is disabled. To enable HA events, include "HA	
Events=true"	
and "pooling=true"	
in the connection string.	
Note: The database service being connected to must be configured for	
The following connection string example enables HA Events:	
When connection pools are created for a single-instance database, pool size attributes are applied to the single service. Similarly, when connection pools are created for an Oracle RAC database, the pool size attributes are applied to a service and not to service members. For example, if "Min	
Pool	
Size"	
is set to N	
, ODP.NET does not create N	
connections for each service member. Instead, it creates, at minimum, N	
connections for the entire service, where N	
connections are distributed among the service members.	
The following pool size connection string attributes are applied to a service.	
Min	
Pool	
Size	
Max	
Pool	
Size	
Incr	
Pool	
Size	
Decr	
Pool	
Size	
Oracle Database can use Windows user login credentials to authenticate database users. To open a connection using Windows user login credentials, the User	
Id	
connection string attribute must be set to a slash (/)	
. If the Password	
attribute is provided, it is ignored.	
Note: Operating System Authentication is not supported in a .NET stored procedure.	
Beginning with Oracle Data Provider for .NET release 11.1.0.6.20, all connections, including those using operating system authentication, can be pooled. Connections are pooled by default, and no configuration is required, as long as pooling is enabled.	
The following example shows the use of operating system authentication:	
See Also: Oracle Database Platform Guide for Windows for information on how to set up Oracle Database to authenticate database users using Windows user login credentials	
Oracle allows database administrators to connect to Oracle Database with either SYSDBA	
or SYSOPER	
privileges. This is done through the DBA	
Privilege	
attribute of the ConnectionString	
property.	
The following example connects scott	
/tiger	
as SYSDBA	
:	
See Also: DBA Privilege "Supported Connection String Attributes" for further information on privileged connections in the database	
Oracle allows users passwords to expire. ODP.NET lets applications handle the password expiration by providing a new method, OpenWithNewPassword	
, that opens the connection with a new password.	
The following example uses the OracleConnection	
OpenWithNewPassword	
method to connect with a new password of panther	
:	
Note:	
With proper setup in the database, proxy authentication enables middle-tier applications to control the security by preserving database user identities and privileges, and auditing actions taken on behalf of these users. This is accomplished by creating and using a proxy database user that connects and authenticates against the database on behalf of a database user (that is, the real user) or database users.	
Proxy authentication can then be used to provide better scalability with connection pooling. When connection pooling is used in conjunction with proxy authentication, the proxy authenticated connections can be shared among different real users. This is because only the connection and session established for the proxy is cached. An additional session is created for the real user when a proxy authenticated connection is requested, but it will be destroyed appropriately when the proxy authenticated connection is placed back into the pool. This design enables the application to scale well without sacrificing security.	
ODP.NET applications can use proxy authentication by setting the "Proxy	
User	
Id"	
and "Proxy	
Password"	
attributes in the connection string. The real user is specified by the "User	
Id"	
attribute. Optionally, to enforce greater security, the real user's password can be provided through the "Password"	
connection string attribute. When using distributed transactions in conjunction with proxy authentication, the real user's password is no longer optional, and it must be supplied.	
The following example illustrates the use of ODP.NET proxy authentication:	
See Also:	
For those applications that dynamically enlist in distributed transactions through the EnlistDistributedTransaction
of the OracleConnection
object, the "enlist"
connection string attribute must be set to a value of either "dynamic"
or "true"
. If "enlist=true"
, the connection enlists in a transaction when the Open
method is called on the OracleConnection
object, if it is within the context of a COM+ transaction or a System.Transactions
. If not, the OracleConnection
object does not enlist in a distributed transaction, but it can later enlist explicitly using the EnlistDistributedTransaction
or the EnlistTransaction
method. If "enlist=false"
, the connection cannot enlist in the transaction.
For applications that cannot be rebuilt using "Enlist=dynamic"
, a registry string value, named DynamicEnlistment
, of type REG_SZ
, should be created and set to 1
under HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\
Assembly
_Version
where Assembly_Version
is the full assembly version number of Oracle.DataAccess.dll
.If ODP.NET is properly installed, there should already be registry string values such as StatementCacheSize
, TraceFileName
, and so forth, under the same ODP.NET key. Dynamic Enlistment can also be configured through an XML configuration file. For details, see "Configuring Oracle Data Provider for .NET".If the DynamicEnlistment
registry key is set to 0
(or if the registry entry does not exist), it does not affect the application in any way. However, if DynamicEnlistment
is set to 1
, "Enlist=false"
is treated the same as "Enlist=dynamic"
, enabling applications to enlist successfully through the EnlistDistributedTransaction
method without any code change. Having DynamicEnlistment
set to 1
does not affect OracleConnection
objects that have "Enlist=true"
or "Enlist=dynamic"
in the connection string.
The client identifier is a predefined attribute from the Oracle application context namespace USERENV
. It is similar to proxy authentication because it can enable tracking of user identities. However, client identifier does not require the creation of two sessions (one for the proxy user and another for the end user) as proxy authentication does. In addition, the client identifier does not have to be a database user. It can be set to any string. But most importantly, by using client identifier, ODP.NET developers can use application context and Oracle Label Security, and configure Oracle Virtual Private Database (VPD) more easily. To set the client identifier, ODP.NET applications can set the ClientId
property on the OracleConnection
object after opening a connection. If connection pooling is enabled, the ClientId
is reset to null
whenever a connection is placed back into the pool.
The client identifier can also be used for end-to-end application tracing. End-to-end tracing simplifies the process of diagnosing performance problems in multitier environments. In multitier environments, a request from an end client is routed to different database sessions by the middle tier making it difficult to track a client across different database sessions. End-to-end tracing uses the client identifier to uniquely trace a specific end-client through all tiers to the database server.
ODP.NET exposes the ActionName, ClientId,
ClientInfo,
and ModuleName
write-only properties on the OracleConnection
object. These properties correspond to the following end-to-end tracing attributes:
Action
- Specifies an action, such as an INSERT
or UPDATE
operation, in a module ClientId
- Specifies an end user based on the logon ID, such as HR.HR
Client info
- Specifies user session information Module
- Specifies a functional block, such as Accounts Receivable or General Ledger, of an application See Also:
|
Transparent Application Failover (TAF) is a feature in Oracle Database that provides high availability.
Note: TAF is not supported in a .NET stored procedure. |
TAF enables an application connection to automatically reconnect to another database instance if the connection gets severed. Active transactions roll back, but the new database connection, made by way of a different node, is identical to the original. This is true regardless of how the connection fails.
With TAF, a client notices no loss of connection as long as there is one instance left serving the application. The database administrator controls which applications run on which instances, and also creates a failover order for each application.
When a session fails over to another database, the NLS settings that were initially set on the original session are not carried over to the new session. Therefore, it is the responsibility of the application to set these NLS settings on the new session.
Given the delays that failovers can cause, applications may wish to be notified by a TAF callback. ODP.NET supports the TAF callback function through the Failover
event of the OracleConnection
object, which allows applications to be notified whenever a failover occurs. To receive TAF callbacks, an event handler function must be registered with the Failover
event.
When a failover occurs, the Failover
event is raised and the registered event handler is invoked several times during the course of reestablishing the connection to another Oracle instance.
The first call to the event handler occurs when Oracle Database First detects an instance connection loss. This allows the application to act accordingly for the upcoming delay for the failover.
If the failover is successful, the Failover
event is raised again when the connection is reestablished and usable. At this time, the application can resynchronize the OracleGlobalization
session setting and inform the application user that a failover has occurred.
If failover is unsuccessful, the Failover
event is raised to inform the application that a failover did not take place.
The application can determine whether or not the failover is successful by checking the OracleFailoverEventArgs
object that is passed to the event handler.
The following example registers an event handler method called OnFailover
:
The Failover
event invokes only one event handler. If multiple Failover
event handlers are registered with the Failover
event, only the event handler registered last is invoked.
Note: Distributed transactions are not supported in an environment where failover is enabled. |
Oracle Data Provider for .NET 10.2.0.2 or later supports Microsoft ADO.NET 2.0 APIs.
This section contains the following topics:
ADO.NET 2.0 is a Microsoft specification that provides data access features designed to work together for provider independence, increased component reuse, and application convertibility. Additional features make it easier for an application to dynamically discover information about the data source, schema, and provider.
Note: Using ODP.NET with Microsoft ADO.NET 2.0 requires ADO.NET 2.0- compliant ODP.NET. |
See Also: ADO.NET in the MSDN Library |
With ADO.NET 2.0, data classes derive from the base classes defined in the System.Data.Common
namespace. Developers can create provider-specific instances of these base classes using provider factory classes.
Provider factory classes allow generic data access code to access multiple data sources with a minimum of data source-specific code. This reduces much of the conditional logic currently used by applications accessing multiple data sources.
Using Oracle Data Provider for .NET, the OracleClientFactory
class can be returned and instantiated, enabling an application to create instances of the following ODP.NET classes that inherit from the base classes:
Table 3-3 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes
ODP.NET Classes | Inherited from ADO.NET 2.0 Base Class |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In general, applications still require Oracle-specific connection strings, SQL or stored procedure calls, and declare that a factory from Oracle.DataAccess.Client
is used.
The OracleConnectionStringBuilder
class makes creating connection strings less error-prone and easier to manage.
Using this class, developers can employ a configuration file to provide the connection string and/or dynamically set the values though the key/value pairs. One example of a configuration file entry follows:
Connection string information can be retrieved by specifying the connection string name, in this example, Publications
. Then, based on the providerName
, the appropriate factory for that provider can be obtained. This makes managing and modifying the connection string easier. In addition, this provides better security against string injection into a connection string.
The data source enumerator enables the application to generically obtain a collection of the Oracle data sources that the application can connect to.
ODP.NET implements code access security through the OraclePermission
class. This ensures that application code trying to access the database has the requisite permission to do so.
When a .NET assembly tries to access Oracle Database through ODP.NET, ODP.NET demands OraclePermission
. The .NET runtime security system checks to see whether the calling assembly, and all other assemblies in the call stack, have OraclePermission
granted to them. If all assemblies in the call stack have OraclePermission
granted to them, then the calling assembly can access the database. If any one of the assemblies in the call stack does not have OraclePermission
granted to it, then a security exception is thrown.
The DemandOraclePermission
configuration attribute is used to enable or disable OraclePermission
demand for an ODP.NET API. The DemandOraclePermission
value can be specified in the Windows registry or an individual application configuration file.
The following Windows registry key is used to configure the DemandOraclePermission
configuration attribute:
Here Assembly_Version
is the full assembly version number of Oracle.DataAccess.dll.
The DemandOraclePermission
key is of type REG_SZ
. It can be set to either 1
(enabled) or 0
(disabled).
You can also enable OraclePermission
demand for an individual application using its application configuration file. The following example enables the DemandOraclePermission
property in an application configuration file:
An application or assembly can successfully access the database if OraclePermission
has been added to the permission set associated with the assembly's code group. A system administrator can modify the appropriate permission set manually or by using the Microsoft .NET configuration tool (Mscorcfg.msc
).
Administrators may also use an appropriate .NET Framework Tool, such as the Code Access Security Policy Tool (Caspol.exe)
, to modify security policy at the machine, user, and enterprise levels for including OraclePermission
.
OracleConnection
makes security demands using the OraclePermission
object when OraclePermission
demand has been enabled using DemandOraclePermission
configuration attribute. Application developers should make sure that their code has sufficient permission before using OracleConnection
.
For Web applications operating under high or medium trust, OraclePermission
needs to be configured in the appropriate web_
TrustLevel
.config
file, so that the application does not encounter any security errors.
OraclePermission
can be configured using the OracProvCfg
tool. OraProvCfg.exe
adds appropriate entries to the web_hightrust.config
and web_mediumtrust.config
files associated with the specified .NET framework version.The following example illustrates using the OraProvCfg
tool for configuring OraclePermission
in a .NET 2.0 Web application:
On running the preceding command, the following entry is added to the web_hightrust.config
and web_mediumtrust.config
files under the ASP.NET permission set:
OraProvCfg
can also be used to remove these entries from the .config
files when required. The following example illustrates this:
For Windows applications operating in a partial trust environment, the OraclePermission
entry should be specified under the appropriate permission set in the security.config
file. The security.config
file is available in the %windir%\Microsoft.NET\Framework\
{version}
\CONFIG
folder.
The following example specifies the OraclePermission
entry for a .NET 2.0 Windows application:
ADO.NET 2.0 exposes five different types of metadata collections through the OracleConnection.GetSchema
API. This permits application developers to customize metadata retrieval on an individual-application basis, for any Oracle data source. Thus, developers can build a generic set of code to manage metadata from multiple data sources.
The following types of metadata are exposed:
MetaDataCollections
A list of metadata collections that is available from the data source, such as tables, columns, indexes, and stored procedures.
Restrictions
The restrictions that apply to each metadata collection, restricting the scope of the requested schema information.
DataSourceInformation
Information about the instance of the database that is currently being used, such as product name and version.
DataTypes
A set of information about each data type that the database supports.
ReservedWords
Reserved words for the Oracle query language.
ODP.NET provides a comprehensive set of database schema information. Developers can extend or customize the metadata that is returned by the GetSchema
method on an individual application basis.
To do this, developers must create a customized metadata file and provide the file name to the application as follows:
CONFIG
subdirectory where the .NET framework is installed. This is the directory that contains machine.config
and the security configuration settings. This file must contain the entire set of schema configuration information, not just the changes. Developers provide changes that modify the behavior of the schema retrieval to user-specific requirements. For instance, a developer can filter out internal database tables and just retrieve user-specific tables
app.config
file of the application, similar to the following, to provide the name of the metadata file, in name-value pair format. When the GetSchema
method is called, ODP.NET checks the app.config
file for the name of the customized metadata XML file. First, the GetSchema
method searches for an entry in the file with a element named after the provider, in this example, oracle.dataaccess.client
. In this XML element, the value that corresponds to the name MetaDataXml
is the name of the customized XML file, in this example, CustomMetaData.xml
.
If the metadata file is not in the correct directory, then the application loads the default metadata XML file, which is part of ODP.NET.
ODP.NET for .NET Framework 2.0 supports System.Transactions
. A local transaction is created for the first connection opened in the System.Transactions
scope to Oracle Database 11g release 1 (11.1), or higher. When a second connection is opened, this transaction is automatically promoted to a distributed transaction. This functionality provides enhanced performance and scalability.
Connections created within a transaction context, such as TransactionScope
or ServicedComponent
, can be established to different versions of Oracle Database. However, in order to enable the local transaction to be promotable, the following must be true:
"Promotable Transaction"
setting set to "promotable"
. If you try to open a subsequent connection in the same transaction context with the "Promotable Transaction"
setting set to "local"
, an exception is thrown. Setting "local"
as the value of "PromotableTransaction"
in the registry, configuration file (machine/Web/application), or the "Promotable Transaction"
connection string attribute allows only one connection to be opened in the transaction context, which is associated with a local transaction. Such local transactions cannot be promoted.
For applications connecting to a pre-Oracle Database 11g release 1 (11.1) instance, refer to "Local Transaction Support for Older Databases". This section describes how ODP.NET behavior can be controlled using the "Promotable Transaction" setting.
If applications use System.Transactions
, it is required that the "enlist"
connection string attribute is set to either "true"
(default) or "dynamic"
.
ODP.NET supports the following System.Transactions
programming models for applications using distributed transactions.
The TransactionScope
class provides a mechanism to write transactional applications where the applications do not need to explicitly enlist in transactions.To accomplish this, the application uses the TransactionScope
object to define the transactional code. Connections created within this transactional scope will enlist in a local transaction that can be promoted to a distributed transaction.
Note: If the first connection is opened to a pre-Oracle Database 11g release 1 (11.1) instance, then the connection enlists as a distributed transaction, by default. You can optionally create the transaction as a local transaction by using the procedure described in "Local Transaction Support for Older Databases". However, these transactions cannot be promoted to distributed transactions. |
Note that the application must call the Complete
method on the TransactionScope
object to commit the changes. Otherwise, the transaction is aborted by default.
The instantiation of the CommittableTransaction
object and the EnlistTransaction
method provides an explicit way to create and enlist in a transaction. Note that the application must call Commit
or Rollback
on the CommittableTransaction
object.
If the first connection in a TransactionScope
is opened to a pre-Oracle Database 11g release 1 (11.1) instance, then the connection creates a distributed transaction, by default. You can optionally have the fist connection create a local transaction by using the procedure described in this section.
To create local transactions in a System.Transactions
scope, either the PromotableTransaction
setting in the registry, machine/Web/application configuration file, or the "Promotable Transaction"
connection string attribute must be set to "local"
.
If "local"
is specified, the first connection opened in the TransactionScope
uses a local transaction. If any subsequent connections are opened within the same TransactionScope
, an exception is thrown. If there are connections already opened in the TransactionScope
, and an OracleConnection
with "Promotable Transaction=local"
attempts to open within the same TransactionScope
, an exception is thrown.
If "promotable"
is specified, the first and all subsequent connections opened in the same TransactionScope
enlist in the same distributed transaction.
If both the registry and the connection string attribute are used and set to different values, the connection string attribute overrides the registry entry value. If neither are set, "promotable"
is used. This is the default value and is equivalent to previous versions of ODP.NET which only supported distributed transactions.
The registry entry for a particular version of ODP.NET applies for all applications using that version of ODP.NET.
The OracleDataAdapter
UpdateBatchSize
property enables batch processing when the OracleDataAdapter.Update
method is called. UpdateBatchSize
is a numeric property that indicates how many DataSet rows to update the Oracle database for each round-trip.
This enables the developer to reduce the number of round-trips to the database.
Note: Microsoft Hotfix NeededThere is a known issue in Microsoft ADO.NET 2.0 that affects the To resolve this issue, both ODP.NET release 11.1 and a specific Microsoft hotfix must be installed on the same computer. The Microsoft hotfix is available for free download from the following site: Without this fix, the ODP.NET has been enhanced to use this hotfix and to populate the correct error description to the |
In addition to classes which are ADO.NET 2.0 only, other ODP.NET classes that inherit from the System.Data.Common
namespace include methods and properties which require ADO.NET 2.0.
The following classes are ADO.NET 2.0 only:
The following class members are ADO.NET 2.0 only:
OracleCommandBuilder
Class Members OracleConnection
Class Members OracleDataAdapter
Class Members OracleDataReader
Class Members OracleParameter
Class Members OracleParameterCollection
Class Members ODP.NET provides a Bulk Copy feature which enables applications to efficiently load large amounts of data from a table in one database to another table in the same or a different database.
The ODP.NET Bulk Copy feature uses a direct path load approach, which is similar to, but not the same as Oracle SQL*Loader. Using direct path load is faster than conventional loading (using conventional SQL INSERT
statements). Conventional loading formats Oracle data blocks and writes the data blocks directly to the data files. Bulk Copy eliminates considerable processing overhead.
The ODP.NET Bulk Copy feature can load data into older Oracle databases.
See Also: "System Requirements" to learn which versions of the Oracle Database ODP.NET interoperates with |
The ODP.NET Bulk Copy feature is subject to the same basic restrictions and integrity constraints for direct path loads, as discussed in the next few sections.
The data types supported by Bulk Copy are:
ORA_SB4
ORA_VARNUM
ORA_FLOAT
ORA_CHARN
ORA_RAW
ORA_BFLOAT
ORA_BDOUBLE
ORA_IBDOUBLE
ORA_IBFLOAT
ORA_DATE
ORA_TIMESTAMP
ORA_TIMESTAMP_TZ
ORA_TIMESTAMP_LTZ
ORA_INTERVAL_DS
ORA_INTERVAL_YM
Bulk copy does not support overwrites.
During a Oracle bulk copy, some integrity constraints are automatically enabled or disabled, as follows:
Enabled Constraints
During an Oracle bulk copy, the following constraints are automatically enabled by default:
NOT
NULL
UNIQUE
PRIMARY
KEY
(unique-constraints on not-null columns) NOT
NULL
constraints are checked at column array build time. Any row that violates the NOT
NULL
constraint is rejected.
UNIQUE
constraints are verified when indexes are rebuilt at the end of the load. The index is left in an Index Unusable state if it violates a UNIQUE
constraint.
Disabled Constraints
During an Oracle bulk copy, the following constraints are automatically disabled by default:
CHECK
constraints FOREIGN
KEY
) If the EVALUATE
CHECK_CONSTRAINTS
clause is specified, then CHECK
constraints are not automatically disabled. The CHECK
constraints are evaluated during a direct path load and any row that violates the CHECK
constraint is rejected.
Table insert triggers are disabled when a direct path load begins. After the rows are loaded and indexes rebuilt, any triggers that were disabled are automatically reenabled. The log file lists all triggers that were disabled for the load. There should be no errors reenabling triggers.
Unlike integrity constraints, insert triggers are not reapplied to the whole table when they are enabled. As a result, insert triggers do not fire for any rows loaded on the direct path. When using the direct path, the application must ensure that any behavior associated with insert triggers is carried out for the new rows.
Default column specifications defined in the database are not available with direct path loading. Fields for which default values are desired must be specified with the DEFAULTIF
clause. If a DEFAULTIF
clause is not specified and the field is NULL
, then a null value is inserted into the database.
ODP.NET 11.2.0.3.0, and higher, includes support for the ADO.NET Entity Framework and LINQ to Entities. ODP.NET also supports Entity SQL.
Entity Framework is a framework for providing object-relational mapping service on data models. Entity Framework addresses the impedance mismatch between the relational database format and the client's preferred object format. Language Integrated Query (LINQ) defines a set of operators that can be used to query, project, and filter data in arrays, enumerable classes, XML, relational databases, and other data sources. One form of LINQ, LINQ to Entities, allows querying of Entity Framework data sources. ODP.NET supports Entity Framework such that the Oracle database can participate in object-relational modeling and LINQ to Entities queries.
Entity Framework and LINQ provides productivity benefits for the .NET developer. It abstracts the database's data model from the application's data model. Working with object-relational data becomes easier with Entity Framework's tools. Oracle's integration with Entity Framework and LINQ enables Oracle .NET developers to take advantage of all these productivity benefits.
Note:
|
Entity data models can now be generated from Oracle database schemas. These Oracle entity data models can be queried and manipulated using Visual Studio and ODP.NET. Oracle supports Database First and Model First modeling approaches. Specifying filters on the Visual Studio Server Explorer data connection enables the Entity Data Model Wizard to also filter Oracle database objects that are fetched and displayed.
LINQ to Entities can perform queries on the Oracle Database using ODP.NET, including using LINQ to Entities built-in functions. INSERT
s, UPDATE
s, and DELETE
s can be executed using Oracle stored procedures, or by using the ObjectContext
SaveChanges
method.
ODP.NET supports function import of Oracle stored procedures that Entity Framework can then execute. These Oracle function imports can return a collection of scalar, complex, and entity types, including returning an Oracle implicit result set as an entity type. Implicit result set binding is supported using Oracle REF CURSOR.
See "Implicit REF CURSOR Binding" for more details.
See Also: For a tutorial on how to use Entity Framework, Language Integrated Query (LINQ), and generate Data Definition Language (DDL) scripts using Model First, refer to: |
The ODP.NET manifest file describes the primitive types, such as VARCHAR2
and Number
, and the Entity Data Model (EDM) types, such as string
and Int32
, that they map to. It also includes the facets for each EDM type.
ODP.NET does not support Time literals and canonical functions related to the Time type.
Oracle considers both NULL
and empty strings to be NULL
strings and are considered to be equal. Operations, such as Equals(), Length(),
and Trim()
on such strings will result in a NULL
string.
Table 3-4 maps the Oracle data types to their corresponding EDM types. The table also includes details about provider type attributes and the EDM type facets associated with each Oracle data type.
Table 3-4 Mapping of Oracle Data Types and EDM Types
Oracle Data Types | EDM Types(Primitive-TypeKind) | Provider Type Attributes: Name and Value | EDM Type Facets |
---|---|---|---|
|
|
| |
(introduced in 10g) |
|
| Not Applicable |
(introduced in 10g) |
|
| Not Applicable |
|
|
| Not Applicable |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
| Not Applicable |
|
|
| EDM Type Facets for Interval Day To Second |
|
|
| EDM Type Facets for Interval Year To Month |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
| Not Applicable | Not Applicable and Not Supported | |
|
|
| Not Applicable |
|
|
| Not Applicable |
|
|
| Not Applicable |
(all other cases) |
|
| |
|
|
| |
| Not Applicable | Not Applicable and Not Supported | |
|
|
| |
|
|
| Not Applicable |
| Not Applicable | Not Applicable and Not Supported | |
|
|
| |
|
|
| Not Applicable |
|
|
| |
|
|
| EDM Type Facets for Timestamp with Local Time Zone |
|
|
| EDM Type Facets for Timestamp with Time Zone |
(size) |
|
| |
|
|
| |
| Not Applicable | Not Applicable and Not Supported | |
(introduced in 9i) |
|
| |
The following sections enumerate the EDM type facets for the preceding Oracle data types:
EDM Type Facets for Bfile
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483648
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for Blob
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483648
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for Char
Facet name | Attribute name | Value |
---|---|---|
MaxLength | Minimum
| 1
|
Unicode | DefaultValue
| False
|
FixedLength | DefaultValue
| True
|
EDM Type Facets for Clob
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483647
|
Unicode | DefaultValue
| False
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for Date
Facet name | Attribute name | Value |
---|---|---|
Precision | Constant
| True
|
EDM Type Facets for Float
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 0
|
Scale | Minimum
| 0
|
EDM Type Facets for Interval Day To Second
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 1
|
Scale | Minimum
| 0
|
Note: EDM types do not supportTimeSpan . Use |
EDM Type Facets for Interval Year To Month
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 1
|
Scale | Minimum
| 0
|
EDM Type Facets for Long
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483647
|
Unicode | DefaultValue
| False
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for Long Raw
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483647
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for NChar
Facet name | Attribute name | Value |
---|---|---|
MaxLength | Minimum
| 1
|
Unicode | DefaultValue
| True
|
FixedLength | DefaultValue
| True
|
Note: ForNChar, the actual data is subject to the maximum byte limit of 2000. The value of 1000 for |
EDM Type Facets for NClob
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483647
|
Unicode | DefaultValue
| True
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for Number
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 1
|
Scale | Minimum
| 0
|
EDM Type Facets for NVarchar2
Facet name | Attribute name | Value |
---|---|---|
MaxLength | Minimum
| 1
|
Unicode | DefaultValue
| True
|
FixedLength | DefaultValue
| False
|
Note: ForNVARCHAR2, the actual data is subject to the maximum byte limit of 4000. The value of 2000 for |
EDM Type Facets for Raw
Facet name | Attribute name | Value |
---|---|---|
MaxLength | Minimum
| 1
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for ROWID
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 18
|
Unicode | DefaultValue
| False
|
FixedLength | DefaultValue
| True
|
EDM Type Facets for Timestamp
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 0
|
EDM Type Facets for Timestamp with Local Time Zone
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 0
|
EDM Type Facets for Timestamp with Time Zone
Facet name | Attribute name | Value |
---|---|---|
Precision | Minimum
| 0
|
EDM Type Facets for UROWID
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 4000
|
FixedLength | DefaultValue
| True
|
EDM Type Facets for Varchar2
Facet name | Attribute name | Value |
---|---|---|
MaxLength | Minimum
| 1
|
Unicode | DefaultValue Constant | False
|
FixedLength | DefaultValue
| False
|
EDM Type Facets for XMLType
Facet name | Attribute name | Value |
---|---|---|
MaxLength | DefaultValue
| 2147483647
|
Unicode | DefaultValue
| True
|
FixedLength | DefaultValue
| False
|
You can configure a custom mapping in the .NET configuration file to override the default mapping for the Number(p,0)
Oracle data type. So, for example, Number(1,0)
, which is mapped to Int16
by default, can be custom mapped to the .NET Bool
or .NET Byte
type.
Example 3-1 shows a sample app.config
file that uses custom mapping to map the Number(1, 0)
Oracle data type to the bool
EDM type. The example also maps Number(3,0)
to byte
, and sets the maximum precisions for the Int16, Int32,
and Int64
data types to 4, 9, and 18 respectively.
Example 3-1 Sample Application Configuration File to Custom Map the Number (p,0) Data Type
Example 3-1 customizes the mappings as follows:
Oracle Type | Default EDM Type | Custom EDM Type |
---|---|---|
Number(1,0) | Int16 | bool |
Number(2,0) to Number(3,0) | Int16 | byte |
Number(4,0) | Int16 | Int16 |
Number(5,0) | Int16 | Int32 |
Number(6,0) to Number(9,0) | Int32 | Int32 |
Number(10,0) | Int32 | Int64 |
Number(11,0) to Number(18,0) | Int64 | Int64 |
Number(19,0) | Int64 | Decimal |
Custom mapping configures the maximum precision of the Oracle Number
type that would map to the .NET/EDM type. So, for example, the preceding custom application configuration file configures ODP.NET to map Number(10,0)
through Number(18,0)
to Int64
, as opposed to the default range of Number(11,0)
through Number(19,0)
for Int64
.
Note:
|
You must make sure that your mappings allow the data to fit within the range of the .NET/EDM type and the Number(p, s)
type. If you select a .NET/EDM type with a range too small for the Oracle Number
data, then errors will occur during data retrieval. Also, if you select a .NET/EDM type, and the corresponding data is too big for the Oracle Number
column, then INSERTs and UPDATEs to the Oracle database will error out.
If the custom mapping in a .NET configuration file has changed, then regenerate the data model to solve compilation errors introduced by the changes.
Under certain scenarios, custom mapping may cause compilation errors when a project that uses custom mapping is loaded by Visual Studio. You may use the following workaround for such scenarios:
Alternatively, open the to-be-used connection in Server Explorer.
When using your custom INSERT, UPDATE,
or DELETE
stored procedure in Stored Procedure Mapping, the following error might occur:
Error 2042: Parameter Mapping specified is not valid.
This can happen if a Number
parameter has been mapped to a Boolean
attribute, or if a RAW
parameter has been mapped to a Guid
attribute.
The solution is to manually add Precision="1"
for the Number
parameter, and MaxLength="16"
for the RAW parameter of your stored procedure in the SSDL.
The OracleCommand
object represents SQL statements or stored procedures executed on Oracle Database.
Note: Optimizer hint syntax in the form--+ ... is not supported. ODP.NET supports this syntax: /*+ ... */ . |
This section includes the following topics:
Oracle Database starts a transaction only in the context of a connection. Once a transaction starts, all the successive command execution on that connection run in the context of that transaction. Transactions can be started only on an OracleConnection
object, and the read-only Transaction
property on the OracleCommand
object is implicitly set by the OracleConnection
object. Therefore, the application cannot set the Transaction
property, nor does it need to.
Note: Transactions are not supported in a .NET stored procedure. |
Explicit transactions are required with SQL statements containing "FOR
UPDATE"
and "RETURNING"
clauses. This is not necessary if global transactions are used.
When the DbType
property of an OracleParameter
object is set, the OracleDbType
property of the OracleParameter
object changes accordingly, or vice versa. The parameter set last prevails.An application can bind the data and have ODP.NET infer both the DbType
and OracleDbType
properties from the .NET type of the parameter value.ODP.NET allows applications to obtain an output parameter as either a .NET Framework type or an ODP.NET type. The application can specify which type to return for an output parameter by setting the DbType
property of the output parameter (.NET type) or the OracleDbType
property (ODP.NET type) of the OracleParameter
object. For example, if the output parameter is set as a DbType.String
type by setting the DbType
property, the output data is returned as a .NET String type. On the other hand, if the parameter is set as an OracleDbType.Char
type by setting the OracleDbType
property, the output data is returned as an OracleString
type. If both DbType
and OracleDbType
properties are set before the command execution, the last setting takes affect.
ODP.NET populates InputOutput
, Output
, and ReturnValue
parameters with the Oracle data, through the execution of the following OracleCommand
methods:
ExecuteReader
ExecuteNonQuery
ExecuteScalar
An application should not bind a value for output parameters; it is the responsibility of ODP.NET to create the value object and populate the OracleParameter
Value
property with the object.
When binding by position (default) to a function, ODP.NET expects the return value to be bound first, before any other parameters.
This section describes the following:
Starting from Oracle Database 10g, the database supports two new native data types, BINARY_FLOAT
and BINARY_DOUBLE
.
The BINARY_FLOAT
and BINARY_DOUBLE
data types represent single-precision and double-precision, floating-point values respectively.
In OracleParameter
binding, an application should use the enumerations OracleDbType.BinaryFloat
and OracleDbType.BinaryDouble
for BINARY_FLOAT
and BINARY_DOUBLE
data types.
OracleDbType
enumerated values are used to explicitly specify the OracleDbType
value of an OracleParameter
object.
Table 3-5 lists all the OracleDbType
enumeration values with a description of each enumerated value.
Table 3-5 OracleDbType Enumeration Values
Member Name | Description |
---|---|
| Oracle Collection type |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
|
|
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| 8-byte |
| 2-byte |
| 4-byte |
| 8-byte |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle Object type |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| 4-byte |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
Note: PL/SQLLONG, LONG RAW, RAW, and VARCHAR data types can be bound with a size up to 32512 bytes. |
This section explains the inference from the System.Data.DbType
, OracleDbType
, and Value
properties in the OracleParameter
class.
In the OracleParameter
class, DbType
, OracleDbType
, and Value
properties are linked. Specifying the value of any of these properties infers the value of one or more of the other properties.
In the OracleParameter
class, specifying the value of OracleDbType
infers the value of DbType
as shown in Table 3-6.
Table 3-6 Inference of System.Data.DbType from OracleDbType
OracleDbType | System.Data.DbType |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In the OracleParameter
class, specifying the value of DbType
infers the value of OracleDbType
as shown in Table 3-7.
Table 3-7 Inference of OracleDbType from DbType
System.Data.DbType | OracleDbType |
---|---|
|
|
| Not Supported |
|
|
| Not Supported |
|
|
|
|
|
|
|
|
| Not Supported |
|
|
|
|
|
|
|
|
| Not Supported |
|
|
|
|
|
|
|
|
| Not Supported |
| Not Supported |
| Not Supported |
| Not Supported |
In the OracleParameter
class, Value
is an object type that can be of any .NET Framework data type or ODP.NET type. If the OracleDbType
and DbType
properties of the OracleParameter
class are not specified, the OracleDbType
property is inferred from the type of the Value
property.
Table 3-8 shows the inference of DbType
and OracleDbType
properties from the Value
property when the type of Value
is one of the .NET Framework data types.
Table 3-8 Inference of DbType and OracleDbType from Value (.NET Datatypes)
Value (.NET Datatypes) | System.Data.DbType | OracleDbType |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Object |
|
Note: Using other .NET Framework data types as values for theOracleParameter class without specifying either the DbType or the OracleDbType properties raises an exception because inferring DbType and OracleDbType properties from other .NET Framework data types is not supported. |
Table 3-9 shows the inference of DbType
and OracleDbType
properties from the Value
property when type of Value
is one of Oracle.DataAccess.Types
.
Table 3-9 Inference of DbType and OracleDbType from Value (ODP.NET Types)
Value (Oracle.DataAccess.Types) | System.Data.DbType | OracleDbType |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ODP.NET supports PL/SQL Associative Arrays (formerly known as PL/SQL Index-By Tables) binding.
An application can bind an OracleParameter
object, as a PL/SQL Associative Array, to a PL/SQL stored procedure. The following OracleParameter
properties are used for this feature:
CollectionType
This property must be set to OracleCollectionType.PLSQLAssociativeArray
to bind a PL/SQL Associative Array.
ArrayBindSize
This property is ignored for the fixed-length element types (such as Int32
).
For variable-length element types (such as Varchar2
), each element in the ArrayBindSize
property specifies the size of the corresponding element in the Value
property.
For Output
parameters, InputOutput
parameters, and return values, this property must be set for variable-length variables.
ArrayBindStatus
This property specifies the execution status of each element in the OracleParameter.Value
property.
Size
This property specifies the maximum number of elements to be bound in the PL/SQL Associative Array.
Value
This property must be set to an array of values, null
, or the DBNull.Value
property.
ODP.NET supports binding parameters of PL/SQL Associative Arrays which contain the following data types.
BINARY_FLOAT
CHAR
DATE
NCHAR
NUMBER
NVARCHAR2
RAW
ROWID
UROWID
VARCHAR2
Using unsupported data types with associative arrays can cause an ORA-600 error.
Example of PL/SQL Associative Arrays
This example binds three OracleParameter
objects as PL/SQL Associative Arrays: Param1
as an In
parameter, Param2
as an InputOutput
parameter, and Param3
as an Output
parameter.
PL/SQL Package: MYPACK
The array bind feature enables applications to bind arrays of a type using the OracleParameter
class. Using the array bind feature, an application can insert multiple rows into a table in a single database round-trip.
The following example inserts three rows into the Dept
table with a single database round-trip. The OracleCommand
ArrayBindCount
property defines the number of elements of the array to use when executing the statement.
The OracleParameter
class provides two properties for granular control when using the array bind feature:
ArrayBindSize
The ArrayBindSize
property is an array of integers specifying the maximum size for each corresponding value in an array. The ArrayBindSize
property is similar to the Size
property of an OracleParameter
object, except the ArrayBindSize
property specifies the size for each value in an array.
Before the execution, the application must populate the ArrayBindSize
property; after the execution, ODP.NET populates it.
The ArrayBindSize
property is used only for parameter types that have variable length such as Clob
, Blob
, and Varchar2
. The size is represented in bytes for binary data types, and characters for the Unicode string types. The count for string types does not include the terminating character. The size is inferred from the actual size of the value, if it is not explicitly set. For an output parameter, the size of each value is set by ODP.NET. The ArrayBindSize
property is ignored for fixed-length data types.
ArrayBindStatus
The ArrayBindStatus
property is an array of OracleParameterStatus
values that specify the status of each corresponding value in an array for a parameter. This property is similar to the Status
property of the OracleParameter
object, except that the ArrayBindStatus
property specifies the status for each array value.
Before the execution, the application must populate the ArrayBindStatus
property. After the execution, ODP.NET populates the property. Before the execution, an application using the ArrayBindStatus
property can specify a NULL
value for the corresponding element in the array for a parameter. After the execution, ODP.NET populates the ArrayBindStatus
property, indicating whether the corresponding element in the array has a null
value, or if data truncation occurred when the value was fetched.
If an error occurs during an array bind execution, it can be difficult to determine which element in the Value
property caused the error. ODP.NET provides a way to determine the row where the error occurred, making it easier to find the element in the row that caused the error.
When an OracleException
object is thrown during an array bind execution, the OracleErrorCollection
object contains one or more OracleError
objects. Each of these OracleError
objects represents an individual error that occurred during the execution, and contains a provider-specific property, ArrayBindIndex
, which indicates the row number at which the error occurred.
The following example demonstrates error handling for array binding:
Table 3-10 lists OracleParameterStatus
enumeration values.
Table 3-10 OracleParameterStatus Members
Member Names | Description |
---|---|
| For input parameters, indicates that the input value has been assigned to the column. For output parameters, indicates that the provider assigned an intact value to the parameter. |
| Indicates that a |
| Indicates that a |
| Indicates that truncation has occurred when fetching the data from the column. |
Statement caching eliminates the need to parse each SQL or PL/SQL statement before execution by caching server cursors created during the initial statement execution. Subsequent executions of the same statement can reuse the parsed information from the cursor, and then execute the statement without reparsing, for better performance.
In order to see performance gains from statement caching, Oracle recommends caching only those statements that will be repeatedly executed. Furthermore, SQL or PL/SQL statements should use parameters rather than literal values. Doing so takes full advantage of statement caching, because parsed information from parameterized statements can be reused even if the parameter values change in subsequent executions. However, if the literal values in the statements are different, the parsed information cannot be reused unless the subsequent statements also have the same literal values.
The following connection string attributes control the behavior of the ODP.NET statement caching feature:
Statement
Cache
Size
This attribute enables or disables ODP.NET statement caching. By default, this attribute is set to 0
(disabled). If it is set to a value greater than 0
, ODP.NET statement caching is enabled and the value specifies the maximum number of statements that can be cached for a connection. Once a connection has cached up to the specified maximum cache size, the least recently used cursor is freed to make room to cache the newly created cursor.
If self tuning is enabled, then statement caching is enabled as well. The Statement Cache Size
is configured automatically in such cases.
Statement
Cache
Purge
This attribute provides a way for connections to purge all statements that are cached when a connection is closed or placed back into the connection pool. By default, this attribute is set to false
, which means that cursors are not freed when connections are placed back into the pool.
To enable statement caching by default for all ODP.NET applications running in a system, without changing the application, set the registry key of HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\
Assembly_Version
\StatementCacheSize
to a value greater than 0
. This value specifies the number of cursors that are to be cached on the server.
The default value for the system can be overridden at the connection pool level. The Statement
Cache
Size
attribute can be set to a different size than the registry value or it can be turned off. The Statement
Cache
Size
can also be configured through an XML configuration file. For details, see "Configuring Oracle Data Provider for .NET".
The following property and method are relevant only when statement caching is enabled:
OracleCommand.AddToStatementCache
property If statement caching is enabled, having this property set to true
(default) adds statements to the cache when they are executed. If statement caching is disabled or if this property is set to false
, the executed statement is not cached.
OracleConnection.PurgeStatementCache
method This method purges all the cached statements by closing all open cursors on the database that are associated with the particular connection. Note that statement caching remains enabled after this call.
Statement caching is managed separately for each connection. Therefore, executing the same statement on different connections requires parsing once for each connection and caching a separate cursor for each connection.
Pooling and statement caching can be used in conjunction. If connection pooling is enabled and the Statement
Cache
Purge
attribute is set to false
, statements executed on each separate connection are cached throughout the lifetime of the pooled connection.
If the Statement
Cache
Purge
attribute is set to true
, all the cached cursors are freed when the connection is placed back into the pool. When connection pooling is disabled, cursors are cached during the lifetime of the connection, but the cursors are closed when the OracleConnection
object is closed or disposed of.
ODP.NET applications can be self-tuned for performance optimization. ODP.NET dynamically monitors application queries during runtime.
Note: Self-tuning for applications does not take place if thePooling connection string attribute is set to false . Self-tuning is also not supported inside .NET stored procedures. |
The statement cache size (StatementCacheSize) is tuned automatically by monitoring the statements that are executed by the application. The following sections discuss self-tuning in applications:
Statement caching helps improve performance by eliminating the need to re-parse each SQL or PL/SQL statement before execution.
If self-tuning is enabled for an application, then ODP.NET continuously monitors application behavior in order to determine the optimum value for the statement cache size. Any statement cache size value specified in the connection string, configuration file, or registry is ignored.
When the application first initializes, it uses the default value of statement cache size. As the application executes statements, ODP.NET collects statistics that are used to self-tune the value of statement cache size. Self-tuning of statement cache size results in increased performance.
Note: To take full advantage of statement caching, you should not dynamically generate statements, with different inline values, for every statement execution. Instead, use parameterized commands to minimize the number of unique statements that need to be executed and cached. This is because only one statement needs to be cached for every unique command text, regardless of the parameter values and the number of times that the statement is executed. |
The maximum number of statements that can be cached per connection is determined by the MaxStatementCacheSize
configuration attribute. The MaxStatementCacheSize
value can be specified in the Windows registry or XML configuration file.
The MaxStatementCacheSize
setting is useful in limiting the number of cached statements, as well as the number of open cursors. This is because a cached statement equates to a cursor being opened on the server. For this reason, you should not set MaxStatementCacheSize
to a value that is greater than the database MAX_OPEN_CURSORS
setting.
The following Windows registry key is used to configure the MaxStatementCacheSize
configuration attribute:
The MaxStatementCacheSize
key is of type REG_SZ
. It can be set to an integer value between 0 and System.Int32.MaxValue
.
The following example sets the MaxStatementCacheSize
property in an ADO.NET 2.0, or above, configuration file:
If self-tuning is disabled for an application, then the value of statement cache size is determined by the settings in the connection string, configuration file, or the registry. If statement cache size is not specified in any of these sources, then the default value of statement cache size is set to 0. To have ODP.NET configured with the same default settings as previous releases of ODP.NET, disable self-tuning and set the StatementCacheSize
value to 10.
Self-tuning for ODP.NET applications is enabled by default. An application can enable or disable self-tuning using one of the following methods:
An application can modify the Self Tuning
connection string attribute to enable or disable self-tuning for a particular connection pool. The default value for Self Tuning
is true
.
An application can enable or disable self-tuning for a particular version of ODP.NET by modifying the following registry entry:
The SelfTuning
key is of type REG_SZ
. It can be set to either 1
(enabled) or 0
(disabled).
An ODP.NET application can modify the application configuration file (app.config
) or Web configuration file (web.config
) to enable or disable self-tuning.
The following example shows how to enable self-tuning in an ADO.NET 2.0 application configuration file:
Note: If the optimal statement cache size is known for an application, then you can disable self-tuning and setStatementCacheSize to its optimum value in the registry, configuration file, or the application. If self-tuning is disabled and StatementCacheSize is not set at all, then the default value of 0 is used for StatementCacheSize . |
Applications can trace optimization changes made by self-tuning. All changes to StatementCacheSize
are traced. Errors, if any, are also traced.
The TraceLevel
used for tracing self-tuning is 64
.
ODP.NET types represent Oracle native data types and PL/SQL data types as a structure or as a class. ODP.NET type structures follow value semantics, while ODP.NET type classes follow reference semantics. ODP.NET types provide safer and more efficient ways of obtaining Oracle native data and PL/SQL data types in a .NET application than .NET types. For example, an OracleDecimal
structure holds up to 38 digits of precision, while a .NET Decimal
only holds up to 28.
Table 3-11 lists data types supported by ODP.NET and their corresponding ODP.NET types: data types in the first column refer to both Oracle native data types and PL/SQL data types of that name. Those data types that exist only in PL/SQL are indicated by (PL/SQL only) after the data type name. The entries for the PL/SQL data types also represent the subtypes of the data types, if any. The third column lists the .NET Framework data type that corresponds to the Value
property of each ODP.NET type.
Table 3-11 Value Property Type of ODP.NET Type
Oracle Native Data Type or PL/SQL Data Type | ODP.NET Type | .NET Framework Data Types |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Not Applicable |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The ExecuteReader
method of the OracleCommand
object returns an OracleDataReader
object, which is a read-only, forward-only result set.
This section provides the following information about the OracleDataReader
object:
The OracleDataReader
class provides two types of typed accessors:
Table 3-12 lists all the Oracle native database types that ODP.NET supports, and the corresponding .NET types that can represent the Oracle native type. If more than one .NET type can be used to represent an Oracle native type, the first entry is the .NET type that best represents the Oracle native type. The third column indicates the valid typed accessor that can be invoked for an Oracle native type to be obtained as a .NET type. If an invalid typed accessor is used for a column, an InvalidCastException
is thrown. Oracle native data types depend on the version of the database; therefore, some data types are not available in earlier versions of Oracle Database.
Table 3-12 .NET Type Accessors
Oracle Native Data Type | .NET Type | Typed Accessor |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Certain methods and properties of the OracleDataReader
object require ODP.NET to map a NUMBER
column to a .NET type based on the precision and scale of the column. These members are:
Item
property GetFieldType
method GetValue
method GetValues
method ODP.NET determines the appropriate .NET type by considering the following .NET types in order, and selecting the first .NET type from the list that can represent the entire range of values of the column:
System.Byte
System.Int16
System.Int32
System.Int64
System.Single
System.Double
System.Decimal
If no .NET type exists that can represent the entire range of values of the column, then an attempt is made to represent the column values as a System.Decimal
type. If the value in the column cannot be represented as System.Decimal
, then an exception is raised.
For example, consider two columns defined as NUMBER(4,0)
and NUMBER(10,2)
. The first .NET types from the previous list that can represent the entire range of values of the columns are System.Int16
and System.Double
, respectively. However, consider a column defined as NUMBER(20,10)
. In this case, there is no .NET type that can represent the entire range of values on the column, so an attempt is made to return values in the column as a System.Decimal
type. If a value in the column cannot be represented as a System.Decimal type
, then an exception is raised.
The Fill
method of the OracleDataAdapter
class uses the OracleDataReader
object to populate or refresh a DataTable
or DataSet
with .NET types. As a result, the .NET type used to represent a NUMBER
column in the DataTable
or DataSet
also depends on the precision and scale of the column.
ODP.NET exposes provider-specific types that natively represent the data types in the database. In some cases, these ODP.NET types provide better performance and functioning than the corresponding .NET types. The ODP.NET types can be obtained from the OracleDataReader
object by calling their respective typed accessor.
Table 3-13 lists the valid type accessors that ODP.NET uses to obtain ODP.NET types for an Oracle native type.
Table 3-13 ODP.NET Type Accessors
Oracle Native Data Type | ODP.NET Type | Typed Accessor |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| OracleRef |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ODP.NET fetches and caches rows from the database during the Read
method invocations on the OracleDataReader
object. The amount of LONG
and LONG
RAW
column data that is retrieved from this operation is determined by InitialLONGFetchSize
. The different behaviors observed when InitialLONGFetchSize
is set to 0
, greater than 0
, and -1
are explained in the following sections.
Note: ODP.NET does not support theCommandBehavior.SequentialAccess enumeration value. Therefore, LONG and LONG RAW data can be fetched randomly. |
The specified amount of InitialLONGFetchSize
characters or bytes for LONG
or LONG
RAW
column data is retrieved into the cache during the Read
method invocations on the OracleDataReader
object.
By default, InitialLONGFetchSize
is set to 0. In this case, ODP.NET does not fetch any LONG
or LONG
RAW
column data during the Read
method invocations on the OracleDataReader
object. The LONG
or LONG
RAW
data is fetched when the typed accessor method is explicitly invoked for the LONG
or LONG
RAW
column, which incurs a database round-trip because no data is cached.
If InitialLONGFetchSize
is set to a value greater than 0
, that amount of specified data is cached by ODP.NET during the Read
method invocations on the OracleDataReader
object. If the application requests an amount of data less than or equal to the InitialLONGFetchSize
through the typed accessor methods, no database round-trip is incurred. However, an additional database round-trip is required to fetch data beyond InitialLONGFetchSize
.
To obtain data beyond the InitialLONGFetchSize
characters or bytes, one of the following must be in the select list:
ROWID
NOT
NULL
constraint defined on it) To be able to fetch the entire LONG
or LONG
RAW
data without having a primary key column, a ROWID
, or unique columns in the select list, set the size of the InitialLONGFetchSize
property on the OracleCommand
object to equal or greater than the number of characters or bytes needed to be retrieved.
The LONG
or LONG
RAW
data is returned when the appropriate typed accessor method (GetChars
, GetOracleString
, or GetString
for LONG
or GetOracleBinary
or GetBytes
for LONG
RAW
) is called on the OracleDataReader
object.
By setting InitialLONGFetchSize
to -1
, it is possible to fetch the entire LONG
or LONG
RAW
data from the database for a select query, without requiring a primary key, ROWID
, or unique column in the select list.
When InitialLONGFetchSize
is set to -1
, the entire LONG
or LONG
RAW
data is retrieved and cached during Read
method invocations on the OracleDataReader
object. Calls to GetString
, GetOracleString
, GetChars
, GetBytes
, or GetOracleBinary
in the OracleDataReader
return the entire column data.
ODP.NET fetches and caches rows from the database during the Read
method invocations on the OracleDataReader
object. The amount of LOB column data that is retrieved from this operation is determined by InitialLOBFetchSize
.
The following sections explain the different behaviors observed when InitialLOBFetchSize
is set to 0
, greater than 0
, and -1.
By default, when the InitialLOBFetchSize
property is 0
, the GetOracleBlob
and GetOracleClob
methods can be invoked on the OracleDataReader
object to obtain OracleBlob
and OracleClob
objects.
The following is a complete list of typed accessor methods that an application can call for the CLOB
and BLOB
columns, if InitialLOBFetchSize
is set to 0:
BLOB
column GetBytes
GetValue
GetValues
GetOracleBinary
GetOracleBlob
GetOracleBlobForUpdate
GetOracleValue
GetOracleValues
CLOB
column GetChars
GetString
GetValue
GetValues
GetOracleString
GetOracleClob
GetOracleClobForUpdate
GetOracleValue
GetOracleValues
If InitialLOBFetchSize
is set to a value greater than 0
, ODP.NET caches LOB data up to InitialLOBFetchSize
characters or bytes for each LOB selected during the Read
method invocations on the OracleDataReader
object.
This section discusses the ways to fetch beyond the InitialLOBFetchSize
characters or bytes that are cached. The functionality has changed from Oracle Database 10g release 2 (10.2) and later.
With releases prior to Oracle Database 10g release 2 (10.2), obtaining data beyond InitialLOBFetchSize
characters or bytes requires one of the following in the query select list:
ROWID
NOT
NULL
constraint defined on it) The requested LOB data is fetched from the database when the appropriate typed accessor method is called on the OracleDataReader
object.
To be able to fetch the entire LOB data without having a primary key column, a ROWID
, or unique columns in the select list, set the size of the InitialLOBFetchSize
property on the OracleCommand
object to equal or greater than the number of characters or bytes needed to be retrieved.
When the InitialLOBFetchSize
property is set to a nonzero value, the GetOracleBlob
, GetOracleClob
, GetOracleBlobForUpdate
, and GetOracleClobForUpdate
typed accessor methods are disabled.
Starting with Oracle Database 10g release 2 (10.2), the entire LOB data is returned when a typed accessor is invoked, regardless of the value set to the InitialLOBFetchSize
property. Primary key, ROWID
, or unique columns are not required to be in the query select list to obtain data beyond the specified InitialLOBFetchSize
.
The GetOracleBlob
, GetOracleClob
, GetOracleBlobForUpdate
, and GetOracleClobForUpdate
methods can now be invoked even if InitialLOBFetchSize
is greater than 0
, starting with Oracle Database 10g release 2.
The following is a complete list of typed accessor methods that an application can call for the CLOB
and BLOB
columns if InitialLOBFetchSize
is set to a value greater than 0
:
BLOB
column GetBytes
GetValue
GetValues
GetOracleBinary
GetOracleBlob
GetOracleBlobForUpdate
GetOracleValue
GetOracleValues
CLOB
column GetChars
GetString
GetValue
GetValues
GetOracleString
GetOracleClob
GetOracleClobForUpdate
GetOracleValue
GetOracleValues
By setting InitialLOBFetchSize
to -1
, it is possible to fetch the entire LOB data from the database for a select query, without requiring a primary key, ROWID
, or unique column in the select list. When InitialLOBFetchSize
is set to -1
, the entire LOB column data is fetched and cached during the Read
method invocations on the OracleDataReader
object. Calls to GetString
, GetOracleString
, GetChars
, GetBytes
, or GetOracleBinary
in the OracleDataReader
allow retrieving all data.
This section lists supported and not supported methods for the CLOB
and BLOB
data types when the InitialLOBFetchSize
property is set to -1
.
Table 3-14 lists supported and not supported methods for the CLOB
data types.
Table 3-14 OracleDataReader CLOB Methods
Supported | Not Supported |
---|---|
|
|
|
|
| |
| |
| |
| |
|
Table 3-15 lists supported and not supported methods for the BLOB
data types.
This section discusses the advantages and disadvantages of the various InitialLOBFetchSize
property settings in different situations. It also discusses ways to enhance performance, depending on which database release you are using.
Setting the InitialLOBFetchSize
property to a nonzero value can improve performance in certain cases. Using the InitialLOBFetchSize
property can provide better performance than retrieving the underlying LOB data using OracleBlob
or OracleClob
objects. This is true if an application does not need to obtain OracleBlob
and OracleClob
objects from the OracleDataReader
object and the size of the LOB column data is not very large. The InitialLOBFetchSize
property is particularly useful in cases where the size of the LOB column data returned by the query is approximately the same for all the rows.
It is generally recommended that the InitialLOBFetchSize
property be set to a value larger than the size of the LOB data for more than 80% of the rows returned by the query. For example, if the size of the LOB data is less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the rows, set the InitialLOBFetchSize
property to 1 KB.
An application does not have to choose between performance and OracleBlob
and OracleClob
functionality. Setting the InitialLOBFetchSize
property results in a performance boost and still gives the flexibility to use the OracleBlob
and OracleClob
objects.
If the size of the LOB data is unknown or if the LOB data size varies irregularly, then it is better to leave the InitialLOBFetchSize
property to its default value of 0
. This still gives better performance in most cases.
Setting the InitialLOBFetchSize
property to a size equal to or greater than the LOB data size for most rows improves performance. It is generally recommended that the InitialLOBFetchSize
property be set to a value larger than the size of the LOB data for more than 80% of the rows returned by the query. For example, if the size of the LOB data is less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the rows, set the InitialLOBFetchSize
property to 1 KB.
Application performance depends on the number of rows the application needs to fetch, and the number of database round-trips that are needed to retrieve them.
The FetchSize
property represents the total memory size in bytes that ODP.NET allocates to cache the data fetched from a database round-trip.
The FetchSize
property can be set on the OracleCommand,
OracleDataReader
, or OracleRefCursor
object, depending on the situation. It controls the fetch size for filling a DataSet
or DataTable
using an OracleDataAdapter
.
If the FetchSize
property is set on the OracleCommand
object, then the newly created OracleDataReader
object inherits the FetchSize
property of the OracleCommand
object. This inherited FetchSize
value can be left as is, or modified to override the inherited value. The FetchSize
property of the OracleDataReader
object can be changed before the first Read
method invocation, which allocates memory specified by the FetchSize
property. All subsequent fetches from the database use the same cache allocated for that OracleDataReader
object. Therefore, changing the FetchSize
value after the first Read
method invocation has no effect.
By fine-tuning the FetchSize
property, applications can control memory usage and the number of rows fetched in one database round-trip for better performance.
For example, if a query returns 100 rows and each row takes 1024 bytes, then setting the FetchSize
property to 102400 takes just one database round-trip to fetch 100 rows. For the same query, if the FetchSize
property is set to 10240, it takes 10 database round-trips to retrieve 100 rows. If the application requires all the rows to be fetched from the result set, the first scenario is faster than the second. However, if the application requires just the first 10 rows from the result set, the second scenario can perform better because it fetches only 10 rows, not 100 rows. When the next 10 rows are fetched, then the memory allocated for rows 1-10 is reused for rows 11-20.
The larger the FetchSize
, the more system memory is used. Developers should not set large fetch sizes if their client systems have limited memory resources.
The RowSize
property of the OracleCommand
or OracleRefCursor
object is populated with the row size (in bytes) after an execution of a SELECT
statement. The FetchSize
property can then be set to a value relative to the RowSize
property by setting it to the result of multiplying the RowSize
value times the number of rows to fetch for each database round-trip.
For example, setting the FetchSize
to RowSize
* 10 forces the OracleDataReader
object to fetch exactly 10 rows for each database round-trip. Note that the RowSize
value does not change due to the data length in each individual column. Instead, the RowSize
value is determined strictly from the metadata information of the database table(s) that the SELECT
statement is executed against.
The RowSize
property can be used to set the FetchSize
property at design time or at run time, as described in the following sections.
The HKLM\Software\Oracle\ODP.NET\
version
\FetchSize
registry entry can be set to specify the default result set fetch size (in bytes) for all applications that use that particular version of ODP.NET or the FetchSize
attribute in the application configuration or web.config
file can specify the default value for a given application. By default, the fetch size is 131072 bytes. This value can be overridden programmatically by having the applications set the FetchSize
property on either the OracleCommand
or the OracleDataReader
at run time.
If the row size for a particular SELECT
statement is already known from a previous execution, the FetchSize
value of the OracleCommand
object can be set at design time to the result of multiplying that row size times the number of rows the application wishes to fetch for each database round-trip. The FetchSize
value set on the OracleCommand
object is inherited by the OracleDataReader
object that is created by the ExecuteReader
method invocation on the OracleCommand
object. Rather than setting the FetchSize
value on the OracleCommand
object, the FetchSize
value can also be set on the OracleDataReader
object directly. In either case, the FetchSize
value is set at design time, without accessing the RowSize
property value at run time.
Applications that do not know the row size at design time can use the RowSize
property of the OracleCommand
object to set the FetchSize
property of the OracleDataReader
object. The RowSize
property provides a dynamic way of setting the FetchSize
property based on the size of a row.
After an OracleDataReader
object is obtained by invoking the ExecuteReader
method on the OracleCommand
object, the RowSize
property is populated with the size of the row (in bytes). By using the RowSize
property, the application can dynamically set the FetchSize
property of the OracleDataReader
object to the product of the RowSize
property value multiplied by the number of rows the application wishes to fetch for each database round-trip. In this scenario, the FetchSize
property is set by accessing the RowSize
property at run time.
The REF
CURSOR
is a data type in the Oracle PL/SQL language. It represents a cursor or a result set in Oracle Database. The OracleRefCursor
object is a corresponding ODP.NET type for the REF
CURSOR
type.
This section discusses the following aspects of using the REF
CURSOR
data type and OracleRefCursor
objects:
There are no constructors for OracleRefCursor
objects. They can be acquired only as parameter values from PL/SQL stored procedures, stored functions, or anonymous blocks.
An OracleRefCursor
object is a connected object. The connection used to execute the command returning an OracleRefCursor
object is required for its lifetime. Once the connection associated with an OracleRefCursor object
is closed, the OracleRefCursor
object cannot be used.
A REF
CURSOR
data type can be obtained as an OracleDataReader
, DataSet
, or OracleRefCursor
object. If the REF
CURSOR
data type is obtained as an OracleRefCursor
object, it can be used to create an OracleDataReader
object or populate a DataSet
from it. When accessing a REF
CURSOR
data type, always bind it as an OracleDbType.RefCursor
parameter.
A REF
CURSOR
data type can be obtained as an OracleDataReader
object by calling the ExecuteReader
method of the OracleCommand
object. The output parameter with the OracleDbType
property set is bound to OracleDbType.RefCursor
. None of the output parameters of type OracleDbType.RefCursor
is populated after the ExecuteReader
method is invoked.
If there are multiple output REF
CURSOR
parameters, use the NextResult
method of the OracleDataReader
object to access the next REF
CURSOR
data type. The OracleDataReader
NextResult
method provides sequential access to the REF
CURSOR
data types; only one REF
CURSOR
data type can be accessed at a given time.
The order in which OracleDataReader
objects are created for the corresponding REF
CURSOR
data types depends on the order in which the parameters are bound. If a PL/SQL stored function returns a REF
CURSOR
data type, then it becomes the first OracleDataReader
object and all the output REF
CURSOR
data types follow the order in which the parameters are bound.
For the Fill
method to populate the DataSet
properly, the SelectCommand
property of the OracleDataAdapter
class must be bound with an output parameter of type OracleDbType.RefCursor
. If the Fill
method is successful, the DataSet
is populated with a DataTable
that represents a REF
CURSOR
data type.
If the command execution returns multiple REF
CURSOR
data types, the DataSet
is populated with multiple DataTable
objects.
With Oracle Data Provider for .NET release 11.1.0.6.20, the extended property, REFCursorName
, has been introduced on the DataTable
, to identify the REF
CURSOR
that populates the DataTable
.
This property is particularly useful when a DataSet
is being populated with more than one REF
CURSOR
, one or more of which is NULL
. For example, if a DataSet
is populated by executing a stored procedure that returns three REF
CURSOR
s and the second REF
CURSOR
is NULL
, the REFCursorName
property value for the first DataTable
is REFCursor
and for the second DataTable
, REFCursor2
. No DataTable
is populated for the NULL
REF
CURSOR
.
When the ExecuteNonQuery
method is invoked on a command that returns one or more REF
CURSOR
data types, each of the OracleCommand
parameters that are bound as an OracleDbType.RefCursor
gets a reference to an OracleRefCursor
object.
To create an OracleDataReader
object from an OracleRefCursor
object, invoke the GetDataReader
method from the OracleRefCursor
object. Subsequent calls to the GetDataReader
method return a reference to the same OracleDataReader
object.
To populate a DataSet
with an OracleRefCursor
object, the application can invoke a Fill
method of the OracleDataAdapter
class that takes an OracleRefCursor
object. Similar to the OracleDataReader
object, an OracleRefCursor
object is forward-only. Therefore, once a row is read from an OracleRefCursor
object, that same row cannot be obtained again from it unless it is populated again from a query.
When multiple REF
CURSOR
data types are returned from a command execution as OracleRefCursor
objects, the application can choose to create an OracleDataReader
object or populate a DataSet
with a particular OracleRefCursor
object. All the OracleDataReader
objects or DataSet
objects created from the OracleRefCursor
objects are active at the same time, and can be accessed in any order.
REF
CURSOR
types cannot be updated. However, data that is retrieved into a DataSet
can be updated. Therefore, the OracleDataAdapter
class requires a custom SQL statement to flush any REF
CURSOR
data updates to the database.
The OracleCommandBuilder
object cannot be used to generate SQL statements for REF
CURSOR
updates.
The ExecuteScalar
method returns the value of the first column of the first row of the REF
CURSOR
if it is one of the following:
An application can retrieve a REF
CURSOR
type from a PL/SQL stored procedure or function and pass it to another stored procedure or function. This feature is useful in scenarios where a stored procedure or a function returns a REF
CURSOR
type to the .NET application, and based on the application logic, the application passes this REF
CURSOR
to another stored procedure for processing. Note that if you retrieve the data from a REF
CURSOR
type in the .NET application, you cannot pass it back to another stored procedure.
The following example demonstrate passing a REF
CURSOR
:
ODP.NET 11g Release 2 (11.2.0.3.0), and higher, enables applications to run stored procedures with REF CURSOR
parameters without using explicit binding for these parameters in the .NET code.
For a read-only result set, such as a REF CURSOR
using OracleDataReader
, REF CURSOR
schema information is retrieved automatically.
For some scenarios, such as when updateable REF CURSOR
s or Entity Framework is used, developers need to define the REF CURSOR
schema information so that the application can bind the implicit REF CURSOR
. Entity Framework applications use implicit REF CURSOR
binding to instantiate complex types from REF CURSOR
data. Applications must specify REF CURSOR
bind and metadata information in the app.config
, web.config,
or machine.config
.NET configuration file.
The attributes supplied in the .NET configuration file are also used when the application requests for schema information from the OracleDataReader
object that represents a REF CURSOR
. This means that for REF CURSOR
s that are created using a SELECT
from a single table, the application can update that table through the use of OracleDataAdapter
and OracleCommandBuilder
.
When using the Entity Framework, function imports can return an implicitly-bound REF CURSOR
. The REF CURSOR
can be returned as a collection of complex types or entity types. To return a complex type collection, the .NET configuration file needs to define the REF CURSOR
bind and metadata information. To return an entity type collection, only the bind information needs to be defined in the .NET configuration file.
This section contains the following topics:
Specify the REF CURSOR
information in the oracle.dataacccess.client
configuration section of the .NET configuration file. Use an <add>
element for each piece of information. The add
element uses name
-value
attributes to specify REF CURSOR
information. Use the following format to specify bind information:
Use the following format to specify metadata information:
Each REF CURSOR
column needs to have an add
element defined for it. For example, if you have a REF CURSOR
returning five columns, then you need to define five add
elements in the config file.
Each add
element contains the name
and value
attributes. The value
attribute must begin with the word implicitRefCursor
followed by the bindinfo
or metadata
attribute for specifying bind or metadata information.
The bindinfo
information is used by ODP.NET for binding REF CURSOR
parameters. The metadata
information is used by ODP.NET to associate the schema information with the appropriate REF CURSOR
. The metadata comprises of an attributes list that includes parameters together with their values.
The SchemaName
, PackageName
, and StoredProcedureName
are case-sensitive. In order to run a stored procedure with implicit REF CURSOR
binding, the SchemaName
.
PackageName
.
StoredProcedureName
portion of the name
attribute must exactly match the name specified in the data dictionary for that stored procedure.
Note: If the application uses implicitREF CURSOR binding feature outside of Entity Framework, then the .NET configuration file and OracleCommand CommandText do not require the schema name concatenated before the stored procedure name. |
If any schema, package, or stored procedure name in the database contains lowercase characters, then it must be enclosed within double quotation marks ("
) in the config file to preserve the case. Double quotation marks are used within the name
attribute by using "
when needed. For example, if the schema name is HrSchema
, the package name is HrPackage
, and the stored procedure name is HrStoredProcedure
in the database, the config file should use the following:
By default, Oracle Database stores these names as uppercase characters. ODP.NET assumes default behavior, and converts all names to uppercase characters unless you explicitly preserve the case by using double quotation marks.
Note: TheSchemaName , PackageName , StoredProcedureName , or ParameterName cannot contain a period (". ") in the name. For example, P.0 is an unacceptable parameter name. |
Depending on whether the application uses bind-by-name or bind-by-position, the RefCursorParameterPositionOrName
portion of the name attribute must be set with the correct parameter position (for bind by position) or parameter name (for bind by name). For functions, the position is 0-based, where the position 0 represents the return value. For procedures, the position is 1-based, as there are no return values for procedures. For example, if a stored procedure accepts five parameters, returning only two REF CURSOR
s in the third and fifth parameter positions, then the .NET config REF CURSOR
bind information should contain one entry for position 3 and one entry for position 5.
If bind-by-name is used, the attribute name is used to identify the REF CURSOR
parameter. The name
should use the same name and case as the one specified in the data dictionary for that stored procedure.
For bindinfo
, the mode
specifies the parameter direction of the parameter. The mode must be either InputOutput
, Output
, or ReturnValue
.
Note: ImplicitREF CURSOR binding for an input REF CURSOR parameter is not supported. An exception is thrown at runtime if the .NET configuration file contains an entry for a |
For metadata
, The AttributesList
contains the list of parameters. Table 3-16 describes the parameters that can be included in the AttributesList
.
Example 3-2 shows a sample add
element that uses bindinfo
. Here, the schema name is SCOTT
and the stored procedure name is TESTPROC
. The parameter name is parameter1
. The mode is output
.
Example 3-2 Using the add Element with bindinfo
Example 3-3 shows a sample add
element that uses metadata
.
Example 3-3 Using the add Element with metadata
Table 3-16 Allowed Parameters in Attributes List
Name | Type | Required/Optional for Entity Framework | Description |
---|---|---|---|
|
| Required | The name of the column. |
|
| Required | The database column type (|
|
| Required | The Oracle type. For example, |
|
| Optional | The name of the column in the database if an alias is used for the column. |
|
| Optional | The name of the schema in the database that contains the column. |
|
| Optional | The name of the table or view in the database that contains the column. |
|
| Optional | The maximum possible length of a value in the column |
|
| Optional | The maximum precision of the column, if the column is a numeric data type. |
|
| Optional | The maximum scale of the column, if the column is a numeric data type. |
|
| Optional | Indicates whether or not the column is unique. |
|
| Optional | Indicates whether or not the column is a key column. For a table to be updated with the |
|
| Optional |
|
|
| Optional | Maps to the common language runtime type. |
|
| Optional |
|
|
| Optional |
|
|
| Optional |
|
|
| Optional |
|
|
| Optional |
|
|
| Optional |
|
|
| Optional |
|
|
| Optional | The type name of the UDT. |
|
| Optional |
|
|
| Optional | Represents the name of the object. |
Some of the attributes, listed in Table 3-16, automatically have their values set using the result set's metadata. Developers can override these default values by setting a value explicitly.
You may have to explicitly define some attributes listed as optional for certain operations. For example, updateable REF CURSOR
requires the developer to define key information.
This section builds a sample application to illustrate implicit REF CURSOR
binding. It contains the following topics:
Sample Stored Procedure and Function
Sample Application Configuration File
Sample Application That Uses the Configuration File
This section discusses the following usage considerations when using implicit REF CURSOR
:
ODP.NET applications should ensure that the stored procedure name and the OracleCommand CommandText
match exactly. Let's take a scenario where the stored procedure name in the database is SCOTT.TESTPROC
. Now, if the CommandText
uses TESTPROC
, ODP.NET will look for entries matching TESTPROC
only. The current schema name will not be automatically appended to TESTPROC
. So, the correct CommandText
to use in this scenario would be SCOTT.TESTPROC
.
Also, the CommandText
is case-sensitive and must use the same case as the stored procedure name in the database. So if the stored procedure name in the database is SCOTT.Testproc
, then the CommandText
must use SCOTT.Testproc
.
If information about a REF CURSOR
parameter has been added to the configuration file, then applications should not try to explicitly bind the REF CURSOR
parameter to OracleCommand
. ODP.NET automatically binds the REF CURSOR
parameter at the appropriate locations based on the information provided in the configuration file. If the application stored procedure also has non-REF CURSOR
parameters, then these parameters must still be explicitly bound to OracleCommand
.
If the information specified in the configuration file for a stored procedure identifies the REF CURSOR
parameter by name, then all the other non-REF CURSOR
parameters should also be bound by name. Also the BindByName
property for the OracleCommand
object should be set to true
in this case. Entity Framework always uses BindByName to run stored procedures. Your .NET configuration file parameter names must use the same case that was used when creating the stored procedure in the database.
If the OracleCommand
BindByName
property is set to false
(default), then ODP.NET assumes that the parameters have been bound based on their position, and all parameters have been specified in the correct order. For such cases, the parameters specified in the configuration file are bound in the same order in which they appear in the configuration file.
ODP.NET does not support multiple stored procedures with the same name inside the configuration file. If an ODP.NET application uses an overloaded stored procedure, the application can store only one overloaded stored procedure information in the configuration file.
Type initialization exceptions can be caused by invalid .NET configuration file entries. Evaluate the exception that is caught as well as its inner exceptions to determine the .NET configuration file entry or the attribute setting that is causing the exception.
ODP.NET tracing logs the valid and invalid .NET configuration file entries that ODP.NET has parsed. To look for .NET configuration file related entries, set the TraceLevel
to the Entry, exit, and SQL statement information level setting. Trace entries related to implicit REF CURSOR
binding have a (REFCURSOR)
entry along with (ERROR),
if any errors are encountered.
Function Import only supports stored procedures, and does not support functions. When using the Add Function Import dialog for the Entity Data Model that you have created, the Get Column Information button does not return the metadata information for the REF CURSOR
that is being returned by a stored function, even if it is configured properly in the .NET configuration file.
ODP.NET provides an easy and optimal way to access and manipulate large object (LOB) data types.
Note: SecureFiles can be used with existing ODP.NET LOB classes. |
This section includes the following topics:
Oracle Database supports large character and large binary data types.
CLOB
- Character data can store up to 4 gigabytes. NCLOB
- Unicode National character set data can store up to 4 gigabytes. BLOB
- Unstructured binary data can store up to 4 gigabytes. BFILE
- Binary data stored in external file can store up to 4 gigabytes. ODP.NET provides three objects for manipulating LOB data: OracleBFile
, OracleBlob
, and OracleClob
.
Table 3-17 shows the proper ODP.NET object to use for a particular Oracle LOB type.
Table 3-17 ODP.NET LOB Objects
Oracle LOB Type | ODP.NET LOB Object |
---|---|
|
|
|
|
|
|
|
|
The ODP.NET LOB objects can be obtained by calling the proper typed accessor on the OracleDataReader
object, or by calling the proper typed accessor as an output parameter on a command execution with the proper bind type.
All ODP.NET LOB objects inherit from the .NET Stream
class to provide generic Stream
operations. The LOB data (except for BFILE
types) can be updated using the ODP.NET LOB objects by using methods such as Write
. Data is not cached in the LOB objects when read and write operations are carried out. Therefore, each read or write request incurs a database round-trip. The OracleClob
object overloads the Read
method, providing two ways to read data from a CLOB
. The Read
method that takes a byte[]
as the buffer populates it with CLOB
data as Unicode byte array. The Read
method that takes a char[]
as the buffer populates it with Unicode characters.
Additional methods can also be found on the OracleBFile
object. An OracleBFile
object must be explicitly opened using the OpenFile
method before any data can be read from it. To close a previously opened BFILE
, use the CloseFile
method.
Every ODP.NET LOB object is a connected object and requires a connection during its lifetime. If the connection associated with a LOB object is closed, then the LOB object is not usable and should be disposed of.
If an ODP.NET LOB object is obtained from an OracleDataReader
object through a typed accessor, then its Connection
property is set with a reference to the same OracleConnection
object used by the OracleDataReader
object. If a LOB object is obtained as an output parameter, then its Connection
property is set with a reference to the same OracleConnection
property used by the OracleCommand
object. If a LOB object is obtained by invoking an ODP.NET LOB object constructor to create a temporary LOB, the Connection
property is set with a reference to the OracleConnection
object provided in the constructor.
The ODP.NET LOB object Connection
property is read-only and cannot be changed during its lifetime. In addition, the ODP.NET LOB types object can be used only within the context of the same OracleConnection
referenced by the ODP.NET LOB object. For example, the ODP.NET LOB Connection
property must reference the same connection as the OracleCommand
object if the ODP.NET LOB object is a parameter of the OracleCommand
. If that is not the case, ODP.NET raises an exception when the command is executed.
See Also: Oracle Database Application Developer's Guide - Large Objects for complete information about Oracle Database 10g LOBs and how to use them |
BFILE
and BLOB
data are stored in the DataSet
as byte
arrays while CLOB
and NCLOB
data are stored as string
s. In a similar manner to other types, an OracleDataAdapter
object can be used to fill and update LOB data changes along with the use of the OracleCommandBuilder
object for automatically generating SQL.
Note that an Oracle LOB column can store up to 4 GB of data. When the LOB data is fetched into the DataSet
, the actual amount of LOB data the DataSet
can hold for a LOB column is limited to the maximum size of a .NET string type, which is 2 GB. Therefore, when fetching LOB data that is greater than 2 GB, ODP.NET LOB objects must be used to avoid any data loss.
To update LOB columns, LOB data can be bound as a parameter for SQL statements, anonymous PL/SQL blocks, or stored procedures. The parameter value can be set as a NET Framework type, ODP.NET type, or as an ODP.NET LOB object type. For example, when inserting .NET string data into a LOB column in an Oracle9i database or later, that parameter can be bound as OracleDbType.Varchar2
. For a parameter whose value is set to an OracleClob
object, the parameter should be bound as OracleDbType.Clob
.
Oracle BFILE
s cannot be updated; therefore, OracleBFile
objects do not allow updates to BFILE
columns.
Two requirements must be met to update LOB data using ODP.NET LOB objects:
The transaction must be started using the BeginTransaction
method on the OracleConnection
object before the command execution, so that the lock can be released when the OracleTransaction
Commit
or Rollback
method is invoked.
Add the FOR
UPDATE
clause to the end of the SELECT
statement. After execution of the command, the entire result set is locked.
OracleDataReader
typed accessors (GetOracleClobForUpdate
or GetOracleBlobForUpdate
) on the OracleDataReader
object to obtain an ODP.NET LOB object, while also locking the current row. This approach requires a primary key, unique column(s), or a ROWID
in the result set because the OracleDataReader
object must uniquely identify the row to re-select it for locking.
INSERT
or an UPDATE
statement that returns a LOB in the RETURNING
clause. Temporary LOBs can be instantiated for BLOB
, CLOB
, and NCLOB
objects. To instantiate an ODP.NET LOB object that represents a temporary LOB, the OracleClob
or the OracleBlob
constructor can be used.
Temporary ODP.NET LOB objects can be used for the following purposes:
CopyTo
operation. Note: Temporary LOBs are not transaction aware. Commit and rollback operations do not affect the data referenced by a temporary LOB. |
ODP.NET allows the extraction of data from relational and object-relational tables and views as XML documents. The use of XML documents for insert, update, and delete operations to the database is also allowed. Oracle Database supports XML natively in the database, through Oracle XML DB, a distinct group of technologies related to high-performance XML storage and retrieval. Oracle XML DB is an evolution of the database that encompasses both SQL and XML data models in a highly interoperable manner, providing native XML support.
For samples related to ODP.NET XML support, see the following directory:
This section includes these topics:
XML support in ODP.NET provides the ability to do the following:
XMLType
. For the .NET application developer, these features include the following:
OracleCommand
, OracleConnection
, and OracleDataReader
classes. OracleXmlType
OracleXmlType
objects are used to retrieve Oracle native XMLType
data.
OracleXmlStream
OracleXmlStream
objects are used to retrieve XML data from OracleXmlType
objects as a read-only .NET Stream
object.
OracleXmlQueryProperties
OracleXmlQueryProperties
objects represent the XML properties used by the OracleCommand
class when the XmlCommandType
property is Query
.
OracleXmlSaveProperties
OracleXmlSaveProperties
objects represent the XML properties used by the OracleCommand
class when the XmlCommandType
property is Insert
, Update
, or Delete
.
Beginning with Oracle Database 10g release 2(10.2), ODP.NET supports the XQuery language through a native implementation of SQL/XML functions, XMLQuery
and XMLTable
. When executing XQuery statements, Oracle XML DB generally evaluates XQuery expressions by compiling them into the same underlying structures as relational queries. Queries are optimized, leveraging both relational-database and XQuery-specific optimization technologies, so that Oracle XML DB serves as a native XQuery engine.The treatment of all XQuery expressions, whether natively compiled or evaluated functionally, is transparent: programmers do not need to change their code to take advantage of XQuery optimizations.
The read-only Connection
property of the OracleXmlType
class holds a reference to the OracleConnection
object used to instantiate the OracleXmlType
class.
How the OracleXmlType
object obtains a reference to an OracleConnection
object depends on how the OracleXmlType
class is instantiated:
OracleDataReader
class using the GetOracleXmlType
, GetOracleValue
, or GetOracleValues
method: The Connection
property is set with a reference to the same OracleConnection
object used by the OracleDataReader
object.
OracleXmlType
constructor with one of the parameters of type OracleConnection
: The Connection
property is set with a reference to the same OracleConnection
object provided in the constructor.
OracleXmlType(OracleClob)
constructor: The Connection
property is set with a reference to the OracleConnection
object used by the OracleClob
object.
An OracleXmlType
object that is associated with one connection cannot be used with a different connection. For example, if an OracleXmlType
object is obtained using OracleConnection
A
, that OracleXmlType
object cannot be used as an input parameter of a command that uses OracleConnection
B
. By checking the Connection
property of the OracleXmlType
objects, the application can ensure that OracleXmlType
objects are used only within the context of the OracleConnection
referenced by its connection property. Otherwise, ODP.NET raises an exception.
Updating XMLType
columns does not require a transaction. However, encapsulating the entire database update process within a transaction is highly recommended. This allows the updates to be rolled back if there are any errors.
XMLType
columns in the database can be updated using Oracle Data Provider for .NET in a few ways:
If the XMLType
column is fetched into the DataSet
, the XMLType
data is represented as a .NET String
.
Modifying XMLType
data in the DataSet
does not require special treatment. XMLType
data can be modified in the same way as any data that is stored in the DataSet
. When a change is made and the OracleDataAdapter.Update
method is invoked, the OracleDataAdapter
object ensures that the XMLType
data is handled properly. The OracleDataAdapter
object uses any custom SQL INSERT
, UPDATE
, or DELETE
statements that are provided. Otherwise, valid SQL statements are generated by the OracleCommandBuilder
object as needed to flush the changes to the database.
The OracleCommand
class provides a powerful way of updating XMLType
data, especially with the use of an OracleParameter
object. To update columns in a database table, the new value for the column can be passed as an input parameter of a command.
To update an XMLType
column in the database, a SQL statement can be executed using static values. In addition, input parameters can be bound to SQL statements, anonymous PL/SQL blocks, or stored procedures to update XMLType
columns. The parameter value can be set as .NET Framework Types, ODP.NET Types, or OracleXmlType
objects.
While XMLType
columns can be updated using an OracleXmlType
object, having an instance of an OracleXmlType
class does not guarantee that the XMLType
column in the database can be updated.
Applications can set an XMLType
column in the database to a NULL
value, with or without input binding, as follows:
NULL
values in an XMLType
column with input binding To set the XMLType
column to NULL
, the application can bind an input parameter whose value is DBNull
.Value
. This indicates to the OracleCommand
object that a NULL
value is to be inserted.
Passing in a null OracleXmlType
object as an input parameter does not insert a NULL
value into the XMLType
column. In this case, the OracleCommand
object raises an exception.
NULL
Values in an XMLType
Column without input binding The following example demonstrates setting NULL
values in an XMLType
column without input binding:
An application can set a NULL
value in the XMLType
column by explicitly inserting a NULL
value or by not inserting anything into that column as in the following examples:
The XMLType
column can be initialized with empty XML data, using a SQL statement:
The following are ways that XML data can be updated in an OracleXmlType
object.
Update
method on the OracleXmlType
object. XmlDocument
object using the GetXmlDocument
method on the OracleXmlType
object. This XML data can then be manipulated using suitable .NET Framework classes. A new OracleXmlType
can be created with the updated XML data from the .NET Framework classes. This new OracleXmlType
is bound as an input parameter to an update or insert statement. The following characters in Table 3-18 have special meaning in XML. For more information, refer to the XML 1.0 specifications
Table 3-18 Characters with Special Meaning in XML
Character | Meaning in XML | Entity Encoding |
---|---|---|
< | Begins an XML tag | < |
> | Ends an XML tag | > |
" | Quotation mark | " |
' | Apostrophe or single quotation mark | ' |
& | Ampersand | & |
When these characters appear as data in an XML element, they are replaced with their equivalent entity encoding.
Also certain characters are not valid in XML element names. When SQL identifiers (such as column names) are mapped to XML element names, these characters are converted to a sequence of hexadecimal digits, derived from the Unicode encoding of the character, bracketed by an introductory underscore, a lowercase x
and a trailing underscore. A blank space is not a valid character in an XML element name. If a SQL identifier contains a space character, then in the corresponding XML element name, the space character is replaced by _x0020_
, which is based on Unicode encoding of the space character.
This section discusses retrieving the result set from a SQL query as XML data.
Table 3-19 lists the date and time format handling when retrieving data, for different database releases.
Table 3-19 Date and Time Format Handling When Retrieving Data
Database Release | Date and Time Format Supported |
---|---|
Oracle9i release 2 (9.2.x) and Oracle Database 10g | Oracle
If the result XML document is used to save changes back to the database, then all To do this, before the query is executed, the application must explicitly perform an
|
Oracle Database 10g release 2 (10.2) or later | The generated XML For more information on the XML Schema specification, see
|
If the data in any of the select list columns in the query contains any characters with special meaning in XML (see Table 3-18), these characters are replaced with their corresponding entity encoding in the result XML document.
The following examples demonstrate how ODP.NET handles the angle bracket characters in the column data:
The following XML document is generated for that table: The XML entity encoding that represents the angle brackets appears in bold.
If a table or view name has any non-alphanumeric characters other than an underscore (_), the table or view name must be enclosed in quotation marks.
For example, to select all entries from a table with the name test'ing
, the CommandText
property of the OracleCommand
object must be set to the following string:
The mapping of SQL identifiers (column names) to XML element names is case- sensitive, and the element names are in exactly the same case as the column names of the table or view.
However, the root tag and row tag names are case-insensitive. The following example demonstrates case-sensitivity in this situation:
The following XML document is generated:
Note that the element name for the Id
column matches the case of the column name.
For each row generated by the SQL query, the SQL identifier (column name) maps to an XML element in the generated XML document, as shown in the following example:
The SQL query, SELECT
*
FROM
EMP_TABLE
, generates the following XML document:
The EMPLOYEE_ID
and LAST_NAME
database columns of the employees
table map to the EMPLOYEE_ID
and LAST_NAME
elements of the generated XML document.
This section demonstrates how Oracle database handles the mapping of SQL identifiers to XML element names, when retrieving query results as XML from the database. The demonstration uses the specialchars
table involving the some
id
column.
some
id
" number, name varchar2(255));Note that the specialchars
table has a column named some
id
that contains a blank space character. The space character is not allowed in an XML element name.
When retrieving the query results as XML, the SQL identifiers in the query select list can contain characters that are not valid in XML element names. When these SQL identifiers (such as column names) are mapped to XML element names, each of these characters is converted to a sequence of hexadecimal digits, derived from the Unicode encoding of the characters, bracketed by an introductory underscore, a lowercase x, and a trailing underscore.
Thus, the SQL query in the following example can be used to get a result as an XML document from the specialchars
table:
You can improve the default mapping of SQL identifiers to XML element names by using the following techniques:
ODP.NET can generate an XML document for data stored in object-relational columns, tables, and views, as shown in the following example:
The following XML document is generated for the table:
ODP.NET encloses each item in a collection element, with the database type name of the element in the collection. The mydept
table has a collection in the EMPLIST
database column and each item in the collection is of type EmployeeType
. Therefore, in the XML document, each item in the collection is enclosed in the type name EmployeeType
, which appears in bold in the example.
This section discusses making changes to the database data using XML.
Table 3-20 lists the date and time format handling when saving data, for different database releases.
Table 3-20 Date and Time Format Handling When Saving Data
Database Release	Date and Time Format Supported
Oracle9i release 2 (9.2.x) and Oracle Database 10g	All The following string is the ISO Date and Time Format notation represented in the Oracle Date and Time Format notation: In addition to using the ISO Format notation in the XML document, before the save is executed, the application must explicitly perform an
Oracle Database 10g release 2 (10.2) or later	The generated XML For more information on the XML Schema specification, see
Changes can be saved to database tables and views using XML data. However, insert, update, and delete operations cannot be combined in a single XML document. ODP.NET cannot accept a single XML document and determine which are insert, update, or delete changes.	
The insert change must be in an XML document containing only rows to be inserted, the update changes only with rows to be updated, and the delete changes only with rows to be deleted.	
For example, using the employees	
table that comes with the HR sample schema, you can specify the following query:	
The following XML document is generated:	
To change the name of employee 205	
from Higgins	
to Smith	
, specify the employees	
table and the XML data containing the changes as follows:	
If the data in any of the elements in the XML document contains characters that have a special meaning in XML (see Table 3-18), these characters must be replaced with appropriate entity encoding, or be preceded by an escape character in the XML document, so that the data is stored correctly in the database table column. Otherwise, ODP.NET throws an exception.	
The following example demonstrates how ODP.NET handles the angle bracket special characters in the column data, using entity encoding:	
The following XML document can be used to insert values (1,	
'<Jones>')	
into the specialchars	
table. The XML entity encoding that represents the angle brackets appears in bold.	
If a table or view name has any non-alphanumeric characters other than an underscore (_), the table or view name must be enclosed in quotation marks.	
For example, to save changes to a table with the name test'ing	
, the OracleCommand.XmlSaveProperties.TableName	
property must be set to "\"test'ing\""	
.	
For each XML element that represents a row of data in the XML document, the child XML elements map to database column names. The mapping of the child element name to the column name is always case-sensitive, but the root tag and row tag names are case-insensitive. The following example demonstrates this case-sensitivity:	
The following XML document can be used to insert values (1	
, Smith	
) into the casesensitive_table	
:	
Note that the element name for the Id	
column matches the case of the column name.	
This section describes how Oracle database handles the mapping of XML element names to column names when using XML for data manipulation in the database. The following specialchars	
table involving the some	
id	
column demonstrates this handling.	
some	
id	
" number, name varchar2(255));Note that the specialchars	
table has a column named some	
id	
that contains a blank space character. The space character is not allowed in an XML element name.	
When an XML document is used to save changes to a table or view, the OracleCommand.XmlSaveProperties.UpdateColumnsList	
property is used to specify the list of columns to update or insert.	
When an XML document is used to save changes to a column in a table or view, and the corresponding column name contains any of the characters that are not valid in an XML element name, the escaped column name must be specified in the UpdateColumnsList	
property as in the following example.	
The following XML document can be used to insert values (2	
, <Jones>	
) into the specialchars	
table:	
The following example specifies the list of columns to update or insert:	
You can improve the default mapping by using the following techniques:	
Changes in an XML document can also be saved to object-relational data. Each item in a collection can be specified in one of the following ways in the XML document:	
_ITEM	
appended as the XML element name. ODP.NET has the ability to represent Oracle UDTs found in the database as custom types in .NET applications. UDTs are useful in representing complex entities as a single object that can be shared among applications. Oracle products, such as Oracle Spatial and Oracle XML DB, use their own complex types frequently.	
To represent Oracle UDTs as .NET custom types, applications must apply .NET attributes to custom classes and structs, and to their public fields and properties	
To convert between UDTs and custom types, ODP.NET uses custom interfaces.	
This section discusses the following topics:	
Oracle Data Provider for .NET supports Oracle object types or user-defined types (UDTs), which are defined in the Oracle database.	
There are two kinds of UDTs:	
VARRAY	
types or nested table types) Additionally, ODP.NET supports references (REF	
) to object types.	
The term UDT is used interchangeably with Oracle object types and abstract data types (ADTs).	
See Also: Oracle Database Application Developer's Guide - Object-Relational Features for complete descriptions of object types	
The name of the Oracle UDT is case-sensitive and must be in the form schema_name.type_name	
.	
UDT samples are provided in the ORACLE_BASE\\ORACLE_HOME	
\ODP.NET\Samples\UDT	
directory.	
Oracle Data Provider for .NET supports UDTs by representing Oracle UDTs defined in the database as .NET types, that is, custom types. For every Oracle UDT that the application wishes to fetch and manipulate, one custom type factory and one custom type are needed. The custom factory class is solely responsible for instantiating the custom type. ODP.NET uses the interfaces implemented on the custom factory classes to instantiate custom types at run time. Custom types define the mapping between the Oracle UDT attributes or elements to the .NET members. ODP.NET uses the interfaces implemented on the custom type instances to transfer values between the Oracle UDT and the custom type at run time.	
Custom types can be .NET classes or structures. They can represent either Oracle Objects or Oracle Collections. Custom types can be implemented manually by the application developer or generated through an ODP.NET code generation tool.	
Once the factory class and the custom type are defined and meet the implementation requirements, the application may set ODP.NET to automatically discover the mapping between the Oracle UDT and the custom type. This discovery process is based on the attribute that is applied on the custom factory class. Alternatively, the application can provide an explicit mapping through a configuration file.	
Oracle Collections can be represented as an array of .NET Types. For example, an Oracle Collection type of NUMBER	
can be mapped to an int[]	
. Moreover, an Oracle Collection type of an Oracle UDT can be mapped to an array of the custom type.	
Custom types must adhere to certain requirements in order for ODP.NET to represent Oracle UDTs as custom types. These requirements are as follows:	
This section lists the required implementations for a custom .NET class or structure.	
Oracle.DataAcess.Types.IOracleCustomType	
interface implementation This interface is used for conversions between custom types and Oracle UDTs.	
The interface methods are implemented using the static methods of the OracleUdt	
class.	
A custom type factory is used to create an instance of a custom type. A custom type factory is an implementation of either the IOracleCustomTypeFactory	
interface, the IOracleArrayTypeFactory	
interface, or both interfaces, as follows:	
Oracle.DataAccess.Types.IOracleCustomTypeFactory	
interface. Oracle.DataAccess.Types.IOracleCustomTypeFactory	
interface and the Oracle.DataAccess.Types.IOracleArrayTypeFactory	
interface. Oracle.DataAccess.Types.IOracleArrayTypeFactory	
interface. The custom type member mapping attributes specify the mapping between custom type members and either Oracle object attributes or Oracle collection elements.	
There are two types of custom type member mapping attributes:	
OracleObjectMappingAttribute	
This attribute specifies the mapping between custom type members and Oracle object attributes for custom types that represent Oracle objects. This attribute must be applied to each custom type member (either field or property) that represents an Oracle Object attribute.	
Note: Not all Oracle object attributes need to be mapped to custom type members. If there is noOracleObjectMappingAttribute for a particular object attribute, ODP.NET ignores that object attribute when converting between Oracle objects and custom types.	
OracleArrayMappingAttribute	
This attribute specifies the custom type member that stores the elements of an Oracle collection for custom types representing Oracle collections.The attribute must be specified on only one of the custom type members.	
Oracle.DataAcess.Types.INullable	
interface implementation This interface is used to determine if an instance of a custom type represents a null UDT. The IsNull	
property of the interface enables applications and ODP.NET to determine whether or not the UDT is null.	
The public static Null	
property is used to return a null UDT. This property returns a custom type with an IsNull	
property that returns true.	
The following are optional:	
IXMLSerializable	
The IXMLSerializable	
interface is used in the .NET 2.0 framework to enable conversion between the custom type and its XML representation.This interface is only used if the serialization and deserialization of a custom type is needed in the DataSet	
.	
Static Parse	
and Public ToString	
methods These methods enable conversion between the custom type and its string representation.	
These methods are invoked when a DataGrid	
control is used to accept changes and display instance values.	
Type Inheritance refers to the process of deriving an Oracle UDT in the database from a super type.	
If the custom type represents an Oracle UDT that is derived from a super type, the custom class should follow the same type hierarchy, that is, the custom class should be derived from another custom class that represents the super type defined in the database.	
OracleCustomTypeMappingAttribute	
The OracleCustomTypeMappingAttribute	
object specifies the mapping between a custom type (or an array type) and an Oracle UDT.	
There must be a unique custom type factory for each Oracle UDT used by the application as follows:	
The custom type factory must return a custom type that only represents the specified Oracle Object Type.	
The custom type factory may return a custom type that can be used by other Oracle Collection Types. This is common when an array type is used to represent an Oracle Collection, for example, when an int[]	
is used to represent a collection of NUMBER	
s.	
If the OracleCustomTypeMappingAttribute	
is not specified, then custom type mappings must be specified through XML configuration files, that is, machine.config	
, and either app.config	
for Windows applications or web.config	
for web applications.	
After creating a custom type, the application must specify a custom type mapping that maps the custom type to an Oracle UDT in the database. This can be done using a custom type factory or XML in configuration files.	
Using XML to specify custom type mappings has priority, if both techniques have been implemented. At run time, if ODP.NET finds custom type mappings specified in configuration files, it ignores any custom type mappings specified through the OracleCustomTypeMappingAttribute	
object.	
Custom type mappings cannot be specified using synonyms, regardless of whether or not the mapping is provided through the OracleCustomTypeMappingAttribute	
object or the XML configuration file.	
See Also: Oracle Developer Tools for Visual Studio help sections on User-Defined Types Node, under Server Explorer for Visual Studio 2005 and Oracle Explorer for Visual Studio 2003, for further information on UDT mapping	
This section contains these topics:	
The application can specify a custom type mapping using a custom type factory. The application supplies the name of the Oracle UDT, in the format schema_name.type_name	
, to an OracleCustomTypeMappingAttribute	
object and applies the name to the corresponding custom type factory. A custom type factory is a class or struct that implements either or both the IOracleCustomTypeFactory	
and IOracleArrayTypeFactory	
interfaces.	
Note that for each Oracle UDT used by the application, there must be a unique custom type factory. Additionally, for Oracle Object Types, the custom type factory must return a custom type that uniquely represents the specified Oracle Object Type. For Oracle Collection Types, the custom type factory returns a custom type that can be used by other Oracle Collection Types. This is common when an custom type that is an array type represents an Oracle Collection, that is, when an int[]	
is used to represent a collection of NUMBER	
s.	
At run time, using reflection programming, ODP.NET discovers all the custom type mappings specified by the application through the OracleCustomTypeMappingAttribute	
object.	
Note: The UDT name that is specified in theOracleCustomTypeMappingAttribute may not contain a period.	
The application can specify a custom type mapping with XML in configuration files, for example: using machine.config	
, and either app.config	
for Windows applications or web.config	
for web applications.	
The custom type mappings must be specified in the oracle.dataaccess.client	
configuration section group. Each custom type mapping must be added to the collection of custom type mappings using the XML element <add>	
.	
Each custom type mapping is consists of a name attribute and a value attribute. The name attribute may be any user-specified name that represents the custom type mapping. The value attribute must begin with udtMapping	
and be followed by the required and optional attributes listed below.	
factoryName	
The case-sensitive assembly qualified name of the custom type factory class or struct.	
If the assembly that defines the custom type factory does not have a strong name, then a partial assembly name consisting of just the assembly name is sufficient. In the case of strongly named assemblies, a complete assembly name is required. It must include the assembly name, the Version	
, Culture	
, PublicKeyToken	
.	
typeName	
The case-sensitive name of the UDT defined in the database. By default all UDTs are created in the database with upper case names	
schemaName	
The case-sensitive schema in which the UDT is defined in the database. By default all schemas are created in the database with upper case names	
dataSource	
If specified, indicates that the custom type mapping applies only to Oracle UDTs defined in the database that the application connects to, as specified by the TNS name alias.	
The Data Source is case-insensitive.	
The following is an example of the format of the XML that can be specified in the configuration file for .NET 2.0:	
During data retrieval, the application uses the custom type mappings to convert an Oracle UDT to a custom type. When data is provided back to the database through an input or input/output parameter, or by an update through an Oracle REF	
, the application uses the mappings to convert the custom type to an Oracle UDT.	
In the case of input and input/output parameters, the application must also set the OracleParameter	
UdtTypeName	
property to the user-defined type name of the parameter.	
In certain cases, where Oracle UDTs are part of a type hierarchy, the custom type must be instantiated as a specific type in the type hierarchy. The Oracle UDT provided by the custom type mapping must a subtype of the Oracle UDT specified by the OracleParameter	
UdtTypeName	
property.	
For example, the parameter for a stored procedure is of type, SCOTT.PERSON	
and has a subtype, SCOTT.STUDENT	
. The application has a custom class instance that represents SCOTT.STUDENT	
. The UdtTypeName	
is set to SCOTT.PERSON	
, but the custom type mapping indicates that the custom class is mapped to SCOTT.STUDENT	
and overrides the UdtTypeName	
when it instantiates the Oracle UDT. Thus, ODP.NET instantiates and binds Oracle UDTs appropriately when the custom object represents an Oracle UDT that is a subtype of the parameter type.	
ODP.NET can convert between Oracle UDTs and custom types, if the proper attribute mappings are specified and the custom types are defined properly.	
ODP.NET performs a conversion whenever an Oracle UDT is fetched as:	
The DbType	
property of OracleParameter	
must be set to DbType.Object	
or the OracleDbType	
property must be set to OracleDbType.Object	
or OracleDbType.Array	
.	
For parameters that are user-defined types, the UdtTypeName	
property of the OracleParameter	
object must be always set to the parameter type.	
Note: The UdtTypeName	
may differ from the Oracle UDT specified in the custom type mapping. This is the case when the parameter type is a super type of the Oracle UDT that the custom type represents.	
OracleDataReader	
object If the application requests for the value either through the GetValue	
, GetValues	
, GetOracleValue	
, GetOracleValues	
, GetProviderSpecificValue	
, or GetProviderSpecificValues	
methods or the Item[]	
property for a UDT column, ODP.NET finds the corresponding custom type that represents the Oracle UDT and carries out the proper conversion.	
DataSet	
If the application populates the DataSet	
with a result that contains UDTs using the Fill	
method on the OracleDataAdapter	
, the DataSet	
is populated with custom types that represent Oracle UDTs. With ADO.NET 2.0, the DataSet	
is populated with custom types for UDT columns regardless of whether the ReturnProviderSpecificTypes	
on the OracleDataAdapter	
is set to true	
or false	
.	
REF	
When an Object referenced by a REF	
is retrieved, the custom type that represents the Oracle UDT is returned.	
The application can use the OracleUdtFetchOption	
method to control the copy of the Object that is returned as follows:	
OracleUdtFetchOption.Cache	
option is specified and a cached copy of the object exists, the cached copy is immediately returned. If no cached copy exists, the latest object copy from the database is cached and returned. OracleUdtFetchOption.Server	
option is specified, the latest object copy from the database is cached and returned. If the object is already cached, the latest object copy overwrites the existing one. OracleUdtFetchOption.TransactionCache	
option is specified, there are two possibilities within the same transaction: Server	
or TransactionCache	
option, the TransactionCache	
option behavior becomes equivalent to the Cache	
option behavior. TransactionCache	
option, the TransactionCache	
option behavior becomes equivalent to the Server	
option behavior. Table 3-21 lists valid mappings of attributes (for objects) and elements (for collections), between Oracle UDT types and custom object types which can be either .NET types or Oracle provider-specific types (ODP.NET types).	
Oracle collections do not have to map to a custom class. They can map to arrays of a specific type. Table 3-21 indicates those collections with elements of a specified Oracle type that can map to arrays of a .NET Type or a provider-specific type. For example, if an Oracle Collection is a VARRAY	
of NUMBER(8)	
, it can map to a typeof(int[]	
). This eliminates the need to construct a class that only holds an int[]	
.	
For .NET 2.0, Oracle Collections can be mapped to Nullable types. This allows .NET 2.0 applications to obtain a nullable int[]	
which can hold null values in the int[]	
.	
Note that Oracle UDT attributes and elements cannot be mapped to object	
or object[]	
.	
Table 3-21 Attribute Mappings Between UDTs and Custom Object Types	
Type of UDT Attribute or Element	.NET Type
---	---
Nested Table	
Object Type	
N/A	
Notes:	
In order to retrieve Oracle UDTs from the OracleDataReader	
, an application must specify a custom type mapping that determines the type that will represent the Oracle UDT. Once a custom type mapping has been specified and any necessary custom types have been created, the application can retrieve Oracle UDTs.	
Table 3-22 shows the type and value returned from an OracleDataReader	
object based on the method invoked, the column type, and whether or not there is a valid Custom type mapping.	
Note: PS Object refers to a provider-specific object.	
Table 3-22 Type and Value Returned from OracleDataReader Object	
OracleDataReader method/property invocation	Column Data Type
---	---
none	Exception thrown
none	
none	
Exception thrown	
none	
none	
An OracleDataReader	
object can return metadata used to determine the custom type that represents an Oracle UDT when a .NET Type or Provider-Specific Type accessor is invoked. The same custom type is used when populating the DataSet	
using the OracleDataAdapter.Fill	
method.	
Table 3-23 shows the values returned from the OracleDataReader	
GetFieldType	
and GetProviderSpecificFieldType	
methods that specify the .NET type of the column.	
Table 3-23 Values Returned from OracleDataReader Methods	
OracleDataReader Method/Property invocation	Column Data Type
---	---
none	Exception thrown
none	
none	Exception thrown
none	
This section discusses using UDT output and input parameter bindings with an OracleParameter	
object.	
This section contains these topics:	
Developers must consider the following when using UDT parameter bindings with an OracleParameter	
object.	
UdtTypeName	
property must be set. Binding is based on the UdtTypeName	
property regardless of the parameter direction. Note: TheUdtTypeName may differ from the Oracle UDT specified in the custom type mapping. This occurs when the parameter type is a super type of the Oracle UDT that the custom type represents.	
DbType	
or OracleDbType	
. REF	
, then no custom type mapping is required. Only certain combinations of these OracleParameter	
property values, DbType	
, OracleDbType	
, and UdtTypeName	
, can exist on the OracleParameter	
object. OracleParameter	
objects cannot be set to combinations that are not listed.	
Table 3-24 describes the valid ways of binding input parameters for Oracle UDTs.	
The last column indicates the Oracle type that ODP.NET converts the OracleParameter	
value to before binding.	
Table 3-24 Valid Ways to Bind Input Parameters for Oracle UDTs	
OracleParameter. Value	OracleParameter. DbType or OracleParameter. OracleDbType
---	---
not set	none
none	Exception thrown
Specified UDT is instantiated. Value is bound as Object or Collection, based on the	
Specified UDT is instantiated.	
Specified UDT is instantiated.	
UDT specified by	
none	
none	
none	
Char[] (HEX)	
none	
Only certain combinations of these OracleParameter	
property values, DbType	
, OracleDbType	
, and UdtTypeName	
, can exist on the OracleParameter	
object. OracleParameter	
objects cannot be set to combinations that are not listed.	
Table 3-25 shows the supported ODP.NET output parameter bindings of Oracle database objects.	
The last column indicates the type that ODP.NET converts the OracleParameter	
value to before binding.	
Table 3-25 Valid Ways to Bind Output Parameters for Oracle UDTs	
Type returned from Oracle	OracleParameter. DbType
---	---
not set	none
none	Exception thrown
none	
none	
none	
none	
The DataSet	
is a disconnected result set. With ADO.NET 2.0, both .NET types and provider-specific types can be used to populate the DataSet	
. This section describes the types used to populate the DataSet	
when the column is an Oracle UDT.	
Table 3-26 lists the types that populate the DataSet	
column, based on the Oracle column type, the ReturnProviderSpecificTypes	
property of the DataAdapter	
, the existence of a custom type mapping, the DataSet	
column type, the DataSet	
column value, and the DataSet	
column null value.	
Table 3-26 Types that Populate the DataSet with ADO.NET 2.0	
Oracle Column Type	ReturnProvider- SpecificTypes Property
---	---
none	Exception thrown
schema.type	
schema.type	
schema.type	
schema.type	
none	schema.type
none	schema.type
ODP.NET supports invocation of methods defined for a UDT on the database. This can be accomplished by doing the following:
CommandType
as CommandType.StoredProcedure
. CommandText
as "
type_name.procedure_name
"
Execute
methods on the OracleCommand
object. For instance functions, the parameters are as follows:
For instance procedures, the first parameter must be the UDT instance.
For static methods, the UDT instance is not needed.
ODP.NET exposes two configuration settings to determine how ODP.NET handles Oracle UDTs.
These configuration settings can be specified as machine-wide settings for a particular version of ODP.NET, using the registry key with the name that exists under HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE
\ODP.NET\
Assembly_Version
. The configuration settings specified in the registry can be overridden if an entry is created in the machine.config
for .NET framework-wide settings, or in the app.config
or web.config
for application-specific settings. For details on configuring ODP.NET, see "Configuring Oracle Data Provider for .NET".
StatementCacheWithUdts
specifies whether or not ODP.NET caches Oracle UDTs retrieved by a SELECT
statement along with the statement when it is returned to the statement cache. Possible values are 1
- Yes (the default) or 0 - No.
For the value of 1, the Oracle UDTs are cached along with the statements. Therefore, the memory that contained the UDTs can be re-used; subsequent executions of the same statement do not require additional memory. This may result in an overall higher performance.
For the value of 0, ODP.NET frees the memory for the retrieved Oracle UDTs before the statement is returned to the statement cache. This may result in poorer performance because subsequent executions will require new memory allocations.
UdtCacheSize
specifies the size of the object cache for each connection that ODP.NET uses when retrieving and manipulating Oracle UDTs. The value for this setting must be specified in kilobytes (KB) with the default 4096KB, equivalent to 4 MB.
This configuration setting is used to determine how frequently the objects in the object cache will be purged (using an LRU approach) as the limit of the object cache size approaches.
Oracle Streams Advanced Queuing (AQ) provides database-integrated message queuing functionality. Oracle Streams AQ is built on top of Oracle Streams and leverages the functions of Oracle Database so that messages can be stored persistently, propagated between queues on different computers and databases, and transmitted using Oracle Net Services and HTTP(S).
As Oracle Streams AQ is implemented in database tables, all operational benefits of high availability, scalability, and reliability are also applicable to queue data. Oracle Streams AQ supports standard database features such as recovery, restart, and security.
The following items discuss Oracle Streams AQ concepts:
Messages enqueued in a queue are stored in a queue table. A queue table must be created before creating a queue based on it. Use the DBMS_AQADM
PL/SQL package or Oracle Developer Tools for Visual Studio to create and administer queue tables and queues.
Queues are represented by OracleAQQueue
objects.
A single-consumer queue is created based on a single consumer queue table. Messages enqueued in a single-consumer queue can be dequeued by only a single consumer.
A multiple-consumer queue is based on a multiple-consumer queue table. This queue supports queue subscribers and message recipients.
A message producer can submit a list of recipients when enqueuing a message. This allows for a unique set of recipients for each message in the queue. The recipient list associated with the message overrides the subscriber list, if any, associated with the queue. The recipients need not be in the subscriber list. However, recipients can be selected from among the subscribers.The Recipients
property of an OracleAQMessage
can be used to specify the recipients to a specific message in terms of OracleAQAgent
objects.
Messages are enqueued when producer applications push the messages into a queue. This is accomplished by calling the Enqueue
method on an OracleAQQueue
object. Multiple messages can be enqueued using the EnqueueArray
method.
Messages are dequeued when consumer applications pull the messages from a queue. This is accomplished by calling the Dequeue
method on an OracleAQQueue
object. Multiple messages can be dequeued using the DequeueArray
method.
Subscriber applications can use a Listen
call to monitor multiple queues for subscriptions on different queues. This is a more scalable solution for cases where a subscriber application has subscribed to many queues and wishes to receive messages that arrive in any of the queues.This is accomplished by calling the Listen
method of the OracleAQQueue
class, passing the list of subscriptions in form of an array.
Subscriber applications can utilize the notification mechanism to get notifications about message availability in a queue. The applications can decide to skip or dequeue the message from the queue based on the information received.
A subscriber application must register for event notification on the queues from which it wants to receive notifications. This is represented by the MessageAvailable
event on OracleAQQueue
. The event is triggered when messages matching the subscriptions arrive.
Notifications can be registered as regular or grouping notifications. A time out value for these notifications can also be specified. Various notification options can be set using the OracleAQQueue.Notification
property. Notifications set on an OracleAQQueue
object gets cancelled automatically when the object gets disposed.
Buffered messaging was introduced in Oracle Streams AQ 10g Release 2 (10.2). In buffered messaging, messages reside in a shared memory area. This makes it faster than persistent messaging. The messages are written to disk only when the total memory consumption of buffered messages approaches the available shared memory limit. Buffered messaging is ideal for applications that do not require the reliability and transaction support of Oracle Streams AQ persistent messaging.
Buffered and persistent messages use the same single-consumer or multi-consumer queues, and the same administrative and operational interfaces. They are distinguished from each other by a delivery mode parameter. When an application enqueues a message to an Oracle Streams AQ queue, it sets the delivery mode parameter as well.
The delivery mode parameter can be set on OracleAQMessage
by modifying the DeliveryMode
property. Buffered messaging is supported in all queue tables created with compatibility 8.1 or higher.
.NET applications can use ODP.NET to access all the operational features of AQ such as Enqueuing, Dequeuing, Listen, and Notification.
Table 3-27 maps the AQ features to their corresponding ODP.NET implementation.
Table 3-27 Mapping AQ Features with their ODP.NET Implementation
Functionality | ODP.NET Implementation |
---|---|
Create a Message | Create an |
Enqueue a single message | Specify the message as |
Enqueue multiple messages | Specify the messages as an |
Dequeue a single message | Specify dequeue options on |
Dequeue multiple messages | Call |
Listen for messages on Queue(s) | Call |
Message Notifications | Use |
Note: AQ samples are provided in theORACLE_BASE \ ORACLE_HOME \ODP.NET\Samples directory. |
The following example demonstrates enqueuing and dequeuing messages using a single consumer queue. The first part of the example performs the requisite database setup for the database user, SCOTT
. The second part of the example demonstrates enqueuing and dequeuing messages.
Oracle Data Provider for .NET provides a notification framework that supports Continuous Query Notification, enabling applications to receive client-side notifications when there is a change in a query result set, schema objects, or the state of the database, even if no Oracle Data Provider for .NET database connection exists. Using Continuous Query Notification, an application can maintain the validity of the client-side cache (for example, the ADO.NET DataSet
) easily.
Note: The ODP.NET Database Change Notification feature uses the Continuous Query Notification feature in the Oracle database. |
Note: Database change notification is not supported in a .NET stored procedure. |
Using the notification framework, applications can specify a query result set as a registered query for notification request on the database, and create this notification registration to maintain the validity of the query result set. When there is a change on the database that could affect the client-side cache's query results, the notification framework notifies the application.
Note: The content of a change notification is referred to as an invalidation message. It indicates that the query result set is now invalid and provides information about the changes. |
Based on the information provided by the invalidation message, the application can then act accordingly. For example, the application might need to refresh its own copy of the data for the registered query that is stored locally in the application.
Note: If a registered object is dropped from the database and a new one is created with the same name in the same schema, re-registration is required to receive notifications for the newly created object. |
See Also: Oracle Database Advanced Application Developer's Guide for further information on Continuous Query Notification |
By default, Windows Vista and Windows XP Service Pack 2 and later enable the Windows Firewall to block virtually all TCP network ports to incoming connections. Therefore, for Continuous Query Notification to work properly on these operating systems, the Windows Firewall must be configured properly to allow specific executables to open specific ports.
See Also: Oracle Database Platform Guide for Windows for details on configuring the Windows Firewall |
Beginning with Oracle Database 11g and ODP.NET 11g (11.1), Database Change Notification queries can be query-based (default) or object-based. The query-based registrations allow ODP.NET to notify applications when the selected rows have changed in the database. The object-based registrations allow ODP.NET to notify applications for any changes that occur in the table(s) containing the selected rows.
Query-based registrations have two modes: guaranteed mode and best-effort mode. In guaranteed mode, any database change notification ensures that a change occurred to something contained in the queried result set. However, if a query is complex, then it cannot be registered in guaranteed mode. Best-effort mode is used in such cases.
Best-effort mode simplifies the query for query-based registration. No notifications are lost from the simplification. However, the simplification may cause false positives, as the simpler version's query result could change when the original query result would not.There still remain some restrictions on which queries can have best-effort mode query-based registrations. In such cases, developers can use object-based registrations, which can register most query types. Object-based registrations generate notifications when the query object changes, even if the actual query result does not. This also means that object-based registrations are more prone to false positives than query-based registrations. Developers should be aware of the relative strengths and weaknesses of each database change notification option and choose the one that best suits their requirements.
See Also:
|
This section contains the following topics:
The following classes are associated with Continuous Query Notification Support:
OracleDependency
Represents a dependency between an application and an Oracle database based on the database events which the application is interested in. It contains information about the dependency and provides the mechanism to notify the application when specified database events occurs. The OracleDependency
class is also responsible for creating the notification listener to listen for database notifications. There is only one database notification listener for each application domain. This notification listener terminates when the application process terminates.
The dependency between the application and the database is not established when the OracleDependency
object is created. The dependency is established when the command that is associated with this OracleDependency
object is executed. That command execution creates a database change notification registration in the database.
When a change has occurred in the database, the HasChanges
property of the OracleDependency
object is set to true. Furthermore, if an event handler was registered with the OnChange
event of the OracleDependency
object, the registered event handler function will be invoked.
OracleNotificationRequest
Represents a notification request to be registered in the database. It contains information about the request and the properties of the notification.
OracleNotificationEventArgs
Represents the invalidation message generated for a notification when a specified database event occurs and contains details about that database event.
The ODP.NET notification framework in conjunction with Continuous Query Notification supports the following activities:
OracleDependency
instance and binding it to an OracleCommand
instance. OracleDependency.AddCommandDependency
method. OracleCommand.Notification
request using the same OracleNotificationRequest
instance. OracleCommand
. If either the notification property is null or NotificationAutoEnlist
is false, the notification will not be made. OracleDependency.RemoveRegistration
method. Timeout
property in the OracleNotificationRequest
instance before the registration is created. IsNotifiedOnce
property to true
in the OracleNotificationRequest
instance before the registration is created. The registration is removed once a database notification is sent. RowID
of the modified object row. In Oracle SQL, the ROWIDTOCHAR(ROWID)
and ROWIDTONCHAR(ROWID)
functions convert a ROWID
value to VARCHAR2
and NVARCHAR
data types, respectively. If these functions are used within a SQL statement, ROWID
s are not returned in the OracleNotificationEventArgs
object that is passed to the database change notification callback.
By default, the static OracleDependency.Port
property is set to -1
. This indicates that the ODP.NET listens on a port that is randomly picked when ODP.NET registers a database change notification request for the first time during the execution of an application.
ODP.NET creates only one listener that listens on one port within an application domain. Once ODP.NET starts the listener, the port number cannot be changed; Changes to the static OracleDependency.Port
property will generate an error if a listener has already been created.
The connected user must have the CHANGE
NOTIFICATION
privilege to create a notification registration.
This SQL statement grants the CHANGE
NOTIFICATION
privilege:
This SQL statement revokes the CHANGE
NOTIFICATION
privilege:
This section describes what the application should do, and the flow of the process, when an application uses Continuous Query Notification to receive notifications for any changes in the registered query result set.
The application should do the following:
OracleDependency
instance. OracleDependency.OnChange
event property if the application wishes to have an event handler invoked when database changes are detected. Otherwise, the application can choose to poll on the HasChanges
property of the OracleDependency
object. This event handler is invoked when the change notification is received. OracleDependency
instance to an OracleCommand
instance that contains the actual query to be executed. Internally, the Continuous Query Notification request (an OracleNotificationRequest
instance) is created and assigned to the OracleCommand.Notification
property. REF
cursors for a PL/SQL stored procedure. OracleDependency.OnChange
event property, or the application can poll the OracleDependency.HasChanges
property. The following example demonstrates the database change notification feature.
This section provides guidelines for working with Continuous Query Notification and the ODP.NET notification framework, and discusses the performance impacts.Every change notification registration consumes database memory, storage or network resources, or some combination thereof. The resource consumption further depends on the volume and size of the invalidation message. In order to scale well with a large number of mid-tier clients, Oracle recommends that the client implement these best practices:
There should be few registered objects, and these should be mostly read-only, with very infrequent invalidations. If an object is extremely volatile, then a large number of invalidation notifications are sent, potentially requiring a lot of space (in memory or on disk) in the invalidation queue. This is also true if a large number of objects are registered.
Transactions should update (or insert or delete) only a small number of rows within the registered tables. Depending on database resources, a whole table could be invalidated if too many rows are updated within a single transaction, for a given table.
This policy helps to contain the size of a single invalidation message, and reduces disk storage for the invalidation queue.
See Also: Oracle Database Advanced Application Developer's Guide for further information on Continuous Query Notification |
The ODP.NET OracleDataAdapter
class provides the Safe Type Mapping feature to ensure that the following Oracle data types do not lose data when converted to their closely related .NET types in the DataSet
:
NUMBER
DATE
TimeStamp
(refers to all TimeStamp
objects) INTERVAL
DAY
TO
SECOND
This section includes the following topics:
The following sections provide more details about the differences between the Oracle data types and the corresponding .NET types. In general, the Oracle data types allow a greater degree of precision than the .NET types do.
Oracle NUMBER Type to .NET Decimal Type
The Oracle data type NUMBER
can hold up to 38 precision, and the .NET Decimal
type can hold up to 28 precision. If a NUMBER
data type that has more than 28 precision is retrieved into a .NET Decimal
type, it loses precision.
Table 3-28 lists the maximum and minimum values for Oracle NUMBER
and .NET Decimal
types.
Table 3-28 Oracle NUMBER to .NET Decimal Comparisons
Value Limits | Oracle NUMBER | .NET Decimal |
---|---|---|
Maximum | 9.9999999999999999999999999999999999999 e125 | 79,228,162,514,264,337,593,543,950,335 |
Minimum | -9.9999999999999999999999999999999999999 e125 | -79,228,162,514,264,337,593,543,950,335 |
Oracle Date Type to .NET DateTime Type
The Oracle data type DATE
can represent dates in BC whereas the .NET DateTime
type cannot. If a DATE
that goes to BC get retrieved into a .NET DateTime
type, it loses data.
Table 3-29 lists the maximum and minimum values for Oracle Date
and .NET DateTime
types.
Table 3-29 Oracle Date to .NET DateTime Comparisons
Value Limits | Oracle Date | .NET DateTime |
---|---|---|
Maximum | Dec 31, 9999 AD | Dec 31, 9999 AD 23:59:59.9999999 |
Minimum | Jan 1, 4712 BC | Jan 1, 0001 AD 00:00:00.0000000 |
Oracle TimeStamp Type to .NET DateTime Type
Similar to the DATE
data type, the Oracle TimeStamp
data type can represent a date in BC, and a .NET DateTime
type cannot. If a TimeStamp
that goes to BC is retrieved into a.NET DateTime
type, it loses data. The Oracle TimeStamp
type can represent values in units of e-9; the .NET DateTime
type can represent only values in units of e-7. The Oracle TimeStamp
with time zone data type can store time zone information, and the .NET DateTime
type cannot.
Table 3-30 lists the maximum and minimum values for Oracle TimeStamp
and .NET DateTime
types.
Table 3-30 Oracle TimeStamp to .NET DateTime Comparisons
Value Limits | Oracle TimeStamp | .NET DateTime |
---|---|---|
Maximum | Dec 31, 9999 AD 23:59:59.999999999 | Dec 31, 9999 AD 23:59:59.9999999 |
Minimum | Jan 1, 4712 BC 00:00:00.000000000 | Jan 1, 0001 AD 00:00:00.0000000 |
Oracle INTERVAL DAY TO SECOND to .NET TimeSpan
The Oracle data type INTERVAL
DAY
TO
SECOND
can hold up to 9 precision, and the .NET TimeSpan type can hold up to 7 precision. If an INTERVAL
DAY
TO
SECOND
data type that has more than 7 precision is retrieved into a .NET TimeSpan type, it loses precision. The Oracle INTERVAL
DAY
TO
SECOND
type can represent values in units of e-9, and the .NET TimeSpan
type can represent only values in units of e-7.
Table 3-31 lists the maximum and minimum values for Oracle INTERVAL
DAY
TO
SECOND
and .NET DateTime
types.
The OracleDataAdapter
Safe Type Mapping feature prevents data loss when populating Oracle data for any of these types into a .NET DataSet
. By setting the SafeMapping
property appropriately, these types can be safely represented in the DataSet
, as either of the following:
byte[]
in Oracle format String
By default, Safe Type Mapping is disabled.
To use the Safe Type Mapping feature, the OracleDataAdapter
.SafeMapping
property must be set with a hash table of key-value pairs. The key-value pairs must map database table column names (of type string
) to a .NET type (of type Type
). ODP.NET supports Safe Type Mapping to byte[]
and String
types. Any other type mapping causes an exception.
In situations where the column names are not known at design time, an asterisk ("*") can be used to map all occurrences of database types to a safe .NET type. If both the valid column name and the asterisk are present, the column name is used.
Note:
|
Safe Type Mapping as a string is more readable without further conversion. Converting certain Oracle data types to a string requires extra conversion, which can be slower than converting it to a byte[]
. Conversion of .NET strings back to ODP.NET types relies on the formatting information of the session.
SafeTyping Example
The OracleDataAdapter
Requery
property controls whether or not queries are reexecuted for OracleDataAdapter
Fill
calls after the initial Fill
call.
The OracleDataAdapter
Fill
method allows appending or refreshing data in the DataSet
. When appending the DataSet
using the same query with subsequent Fill
calls, reexecuting the query may not be desirable.
When the Requery
property is set to true
, each subsequent Fill
call reexecutes the query and fills the DataSet
. This is an expensive operation, and if the reexecution is not required, set Requery
to false
. If any of the SelectCommand
properties or associated parameters must be changed, Requery
must be set to true
.
When the Requery
property is set to false
, the DataSet
has all the data as a snapshot at a particular time. The query is executed only for the first Fill
call; subsequent Fill
calls fetch the data from a cursor opened with the first execution of the query. This feature is supported only for forward-only fetches. Fill
calls that try to fetch rows before the last fetched row raise an exception. The connection used for the first Fill
call must be available for subsequent Fill
calls.
When filling a DataSet
with an OracleRefCursor
object, the Requery
property can be used in a similar manner. When the Requery
property is set to false
, both the connection used for the first Fill
call and the OracleRefCursor
object must be available for the subsequent Fill
calls.
This section describes how the OracleDataAdapter
object configures the PrimaryKey
and Constraints
properties of the DataTable
object which guarantee uniqueness when the OracleCommandBuilder
object is updating DataSet
changes to the database.
Using the OracleCommandBuilder
object to dynamically generate DML statements to be executed against the database is one of the ways to reconcile changes made in a single DataTable
object with the database.
In this process, the OracleCommandBuilder
object must not be allowed to generate DML statements that may affect (update or delete) more that a single row in the database when reconciling a single DataRow
change. Otherwise the OracleCommandBuilder
could corrupt data in the database.
To guarantee that each DataRow
object change affects only a single row, there must be a set of DataColumn
objects in the DataTable
for which all rows in the DataTable
have a unique set of values. The set of DataColumn
objects indicated by the properties DataTable.PrimaryKey
and DataTable.Constraints
meets this requirement. The OracleCommandBuilder
object determines uniqueness in the DataTable
by checking if the DataTable.PrimaryKey
is not a null value or if there exists a UniqueConstraint
object in the DataTable.Constraints
collection.
This discussion first explains what constitutes uniqueness in DataRow
objects and then explains how to maintain that uniqueness while updating, through the DataTable
property configuration.
This section includes the following topics:
This section describes the minimal conditions that must be met to guarantee uniqueness of DataRow
objects. The condition of uniqueness must be guaranteed before the DataTable.PrimaryKey
and DataTable.Constraints
properties can be configured, as described in the next section.
Uniqueness is guaranteed in a DataTable
object if any one of the following is true:
OracleDataAdapter.SelectCommand
property. OracleDataAdapter.SelectCommand
property, with at least one involved column having a NOT
NULL
constraint defined on it. OracleDataAdapter.SelectCommand
property, with at least one of the involved columns having a NOT
NULL
constraint defined on it. ROWID
is present in the select list of the OracleDataAdapter.SelectCommand
property. Note: A set of columns, on which a unique constraint has been defined or a unique index has been created, requires at least one column that cannot be null for the following reason: if all the columns of the column set can be null, then multiple rows could exist that have aNULL value for each column in the column set. This would violate the uniqueness condition that each row has a unique set of values for the column set. |
If the minimal conditions described in "What Constitutes Uniqueness in DataRow Objects?" are met, then the DataTable.PrimaryKey
or DataTable.Constraints
properties can be set.
After these properties are set, the OracleCommandBuilder
object can determine uniqueness in the DataTable
by checking the DataTable.PrimaryKey
property or the presence of a UniqueConstraint
object in the DataTable.Constraints
collection. Once uniqueness is determined, the OracleCommandBuilder
object can safely generate DML statements to update the database.
The OracleDataAdapter.FillSchema
method attempts to set these properties according to this order of priority:
DataTable.PrimaryKey
property. DataTable.PrimaryKey
property. Criteria: The set of columns has a unique constraint defined on it or a unique index created on it, with each column having a NOT
NULL
constraint defined on it.
UniqueConstraint
object is added to the DataTable.Constraints
collection, but the DataTable.PrimaryKey
property is not set. Criteria: The set of columns has a unique constraint defined on it or a unique index created on it, with at least one column having a NOT
NULL
constraint defined on it.
ROWID
is part of the select list, it is set as the DataTable.PrimaryKey
property. Additionally, the OracleDataAdapter.FillSchema
method performs as follows:
DataTable.PrimaryKey
property implicitly creates a UniqueConstraint
object. DataTable.PrimaryKey
property or the UniqueConstraint
object, or both, it will be repeated for each occurrence of the column in the select list. If the DataTable.PrimaryKey
or Constraints
properties have not been configured, for example, if the application has not called the OracleDataAdapter.FillSchema
method, the OracleCommandBuilder
object directly checks the select list of the OracleDataAdapter.SelectCommand
property to determine if it guarantees uniqueness in the DataTable
. However this check results in a database round-trip to retrieve the metadata for the SELECT
statement of the OracleDataAdapter.SelectCommand
.
Note that OracleCommandBuilder
object cannot update a DataTable
created from PL/SQL statements because they do not return any key information in their metadata.
ODP.NET globalization support enables applications to manipulate culture-sensitive data appropriately. This feature ensures proper string format, date, time, monetary, numeric, sort order, and calendar conventions depending on the Oracle globalization settings.
This section includes the following:
An OracleGlobalization
object can be used to represent the following:
Client globalization settings are derived from the Oracle globalization setting (NLS_LANG
) in the Windows registry of the local computer. The client globalization parameter settings are read-only and remain constant throughout the lifetime of the application. These settings can be obtained by calling the OracleGlobalization.GetClientInfo
static method.
The following example retrieves the client globalization settings:
The properties of the OracleGlobalization
object provide the Oracle globalization value settings.
Session globalization parameters are initially identical to client globalization settings. Unlike client settings, session globalization settings can be updated. However, they can be obtained only after establishing a connection against the database. The session globalization settings can be obtained by calling the GetSessionInfo
method on the OracleConnection
object. Invoking this method returns an instance of an OracleGlobalization
class whose properties represent the globalization settings of the session.
When the OracleConnection
object establishes a connection, it implicitly opens a session whose globalization parameters are initialized with those values specified by the client computer's Oracle globalization (or (NLS)) registry settings. The session settings can be updated and can change during its lifetime.
The following example changes the date format setting on the session:
Thread-based globalization parameter settings are specific to each thread. Initially, these settings are identical to the client globalization parameters, but they can be changed as specified by the application. When ODP.NET Types are converted to and from strings, the thread-based globalization parameters are used, if applicable.
Thread-based globalization parameter settings are obtained by invoking the GetThreadInfo
static method of the OracleGlobalization
class. The SetThreadInfo
static method of the OracleGlobalization
class can be called to set the thread's globalization settings.
ODP.NET classes and structures rely solely on the OracleGlobalization
settings when manipulating culture-sensitive data. They do not use .NET thread culture information. If the application uses only .NET types, OracleGlobalization
settings have no effect. However, when conversions are made between ODP.NET types and .NET types, OracleGlobalization
settings are used where applicable.
Note: Changes to theSystem.Threading.Thread. CurrentThread.CurrentCulture property do not impact the OracleGlobalization settings of the thread or the session, or the reverse. |
The following example shows how the thread's globalization settings are used by the ODP.NET Types:
The OracleGlobalization
object validates property changes made to it. If an invalid value is used to set a property, an exception is thrown. Note that changes made to the Territory
and Language
properties change other properties of the OracleGlobalization
object implicitly.
See Also: Oracle Database Globalization Support Guide for more information on the properties affected byTerritory and Language globalization settings |
This section lists ODP.NET types and operations that are dependent on or sensitive to globalization settings.
The OracleString
structure depends on the OracleGlobalization
settings of the client computer. The client character set of the local computer is used when it converts a Unicode string to a byte[]
in the GetNonUnicode
method and when it converts a byte[]
of ANSI characters to Unicode in the OracleString
constructor that accepts a byte[]
.
The thread globalization settings are used by ODP.NET types whenever they are converted to and from .NET string types, where applicable. Specific thread globalization settings are used in most cases, depending on the ODP.NET type, by the following:
ToString
method Parse
static method For example, the OracleDate
type uses the DateFormat
property of the thread globalization settings when the ToString
method is invoked on it. This returns a DATE
as a string in the format specified by the thread's settings.
For more details on the ODP.NET type methods that convert between ODP.NET types and .NET string types, and to identify which thread globalization settings are used for that particular method, read the remarks in Chapter 10.
The thread globalization settings also affect data that is retrieved into the DataSet
as a string using Safe Type Mapping. If the type is format-sensitive, the strings are always in the format specified by the thread globalization settings.
For example, INTERVAL
DAY
TO
SECOND
data is not affected by thread settings because no format is applicable for this type. However, the DateFormat
and NumericCharacters
properties can impact the string representation of DATE
and NUMBER
types, respectively, when they are retrieved as strings into the DataSet
through Safe Type Mapping.
Session globalization settings affect any data that is retrieved from or sent to the database as a string.
For example, if a DATE
column is selected with the TO_CHAR
function applied on it, the DATE
column data will be a string in the date format specified by the DateFormat
property of the session globalization settings. Transmitting data in the other direction, the string data that is to be inserted into the DATE
column, must be in the format specified by the DateFormat
property of the session globalization settings.
ODP.NET provides debug tracing support, which allows logging of all the ODP.NET activities into a trace file. Different levels of tracing are available.
The provider can record the following information:
To enable ODP.NET for tracing, TraceFileName
, TraceLevel
, and TraceOption
must be set appropriately either in the Windows Registry or in an XML configuration file.
This chapter discusses server-side features provided by Oracle Data Provider for .NET.
With the support for .NET stored procedures in Oracle Databases for Windows that Oracle Database Extensions for .NET provides, ODP.NET can be used to access Oracle data through the implicit database connection that is available from the context of the .NET stored procedure execution. Explicit user connections can also be created to establish connections to the database that hosts the .NET stored procedure or to other Oracle Databases.
This chapter contains these topics:
Oracle Data Provider for .NET classes and APIs provide data access to the Oracle Database from a .NET client application and from .NET stored procedures and functions.
However, some limitations and restrictions exist when Oracle Data Provider for .NET is used within a .NET stored procedure. These are discussed in the next section.
The following is a simple .NET stored procedure example.
See Also:
|
This section covers important concepts that apply when Oracle Data Provider for .NET is used within a .NET stored procedure.
Within a .NET stored procedure, an implicit database connection is available for use to access Oracle data. This implicit database connection should be used rather than establishing a user connection because the implicit database connection is already established by the caller of the .NET stored procedure, thereby minimizing resource usage.
To obtain an OracleConnection
object in a .NET stored procedure that represents the implicit database connection, set the ConnectionString
property of the OracleConnection
object to "context
connection=true"
and invoke the Open
method. No connection string attributes can be used with "context
connection=true"
, except the Statement
Cache
Size
attribute.
The availability of the implicit database connection can be checked at run time through the static OracleConnection.IsAvailable
property. This property always returns true
when Oracle Data Provider for .NET is used within a .NET stored procedure. Otherwise, false
is returned.
Note: DBLinks are not supported in .NET stored procedures. |
Only one implicit database connection is available within a .NET stored procedure invocation. To establish more connections in addition to the implicit database connection, an explicit connection must be created. When the Close
method is invoked on the OracleConnection
that represents the implicit database connection, the connection is not actually closed. Therefore, the Open
method of the same or another OracleConnection
object can be invoked to obtain the connection that represents the implicit database connection.
The implicit database connection can only be acquired by the Open
method invocation by a native Oracle thread that initially invokes the .NET stored procedure. However, threads spawned from the native Oracle thread can use implicit database connections that are obtained by the native Oracle thread.
The .NET stored procedure execution automatically inherits the current transaction on the implicit database connection. No explicit transaction can be started, committed, or rolled back inside a .NET stored procedure on a Context connection. However, explicit transaction can be started, committed, or rolled back inside a .NET stored procedure on a Client connection.
For example, OracleConnection.BeginTransaction
is not allowed inside a .NET stored procedure for a context connection, but is allowed for a client connection. .NET stored procedures do not support distributed transactions. If you have enlisted a client connection in a distributed transaction and call a .NET stored procedure or function, an error occurs.
If a .NET stored procedure or function performs operations on the database that are required to be part of a transaction, the transaction must be started prior to calling the .NET stored procedure. Any desired commit or rollback must be performed after returning from the .NET stored procedure or function.
The following example consists of a client application and a .NET stored procedure, InsertRecordSP
, that inserts an employee record into an EMP
table.
Example (.NET Stored Procedure)
Example (Client Application)
The example enters new employee, Bernstein, employee number 7950, into the EMP
table.
Transaction controls commands such as COMMIT
, ROLLBACK
, and SAVEPOINT
are not supported in a .NET stored procedure.
Data definition commands such as CREATE
and ALTER
are not supported with an implicit database connection, but they are supported with an explicit user connection in a .NET stored procedure.
All classes and class members provide the same functionality for both client applications and .NET stored procedures, unless it is otherwise stated.
Table 4-1 lists those classes or class members that have different behavior depending on whether or not they are used in a client application or in a .NET stored procedure.
Column Headings
The column heading for this table are:
Client application: The client application.
Implicit connection: The implicit database connections in a .NET stored procedure.
Explicit connection: The explicit user connections in a .NET stored procedure.
Table 4-1 API Support Comparison Between Client Application and .NET Stored Procedure
Comments on Items in Table 4-1
This chapter describes the following Oracle Data Provider for .NET classes.
An OracleCommand
object represents a SQL command, a stored procedure, or a table name. The OracleCommand
object is responsible for formulating the request and passing it to the database. If results are returned, OracleCommand
is responsible for returning results as an OracleDataReader
, a .NET XmlReader
, a .NET Stream
, a scalar value, or as output parameters.
Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Data.Common.DbCommand
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleCommand
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The execution of any transaction-related statements from an OracleCommand
is not recommended because it is not reflected in the state of the OracleTransaction
object represents the current local transaction, if one exists.
ExecuteXmlReader
, ExecuteStream
, and ExecuteToStream
methods are only supported for XML operations.
ExecuteReader
and ExecuteScalar
methods are not supported for XML operations.
To minimize the number of open server cursors, OracleCommand
objects should be explicitly disposed.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleCommand
members are listed in the following tables.
OracleCommand Constructors
OracleCommand
constructors are listed in Table 5-1.
Table 5-1 OracleCommand Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleCommand Static Methods
The OracleCommand
static method is listed in Table 5-2.
Table 5-2 OracleCommand Static Method
Method | Description |
---|---|
| Inherited from |
OracleCommand Properties
OracleCommand
properties are listed in Table 5-3.
Table 5-3 OracleCommand Properties
Property | Description |
---|---|
Adds the | |
| Causes executed statements to be cached, when the property is set to |
Specifies if the array binding feature is to be used and also specifies the maximum number of array elements to be bound in the | |
Specifies the binding method in the collection | |
Specifies the SQL statement or stored procedure to run against the Oracle database or the XML data used to store changes to the Oracle database | |
| Specifies the number of seconds the command is allowed to execute before terminating the execution with an exception |
Specifies the command type that indicates how the | |
Specifies the | |
| Inherited from |
| Specifies whether or not the |
Specifies the size of | |
Specifies the amount of data that the | |
Specifies the amount of data that the | |
| Indicates that there is a notification request for the command |
| Indicates whether or not to register for a database change notification with the database automatically when the command is executed |
Specifies the parameters for the SQL statement or stored procedure | |
Specifies the amount of memory needed by the | |
Site | Inherited from |
Specifies the Not supported in a .NET stored procedure | |
Specifies how query command results are applied to the row being updated Not supported in a .NET stored procedure | |
Specifies the type of XML operation on the | |
Specifies the properties that are used when an XML document is created from the result set of a SQL query statement | |
Specifies the properties that are used when an XML document is used to save changes to the database |
OracleCommand Public Methods
OracleCommand
public methods are listed in Table 5-4.
Table 5-4 OracleCommand Public Methods
Public Method | Description |
---|---|
| Attempts to cancels a command that is currently executing on a particular connection |
Creates a copy of | |
| Inherited from |
Creates a new instance of | |
| Inherited from |
| Inherited from |
Executes a SQL statement or a command using the | |
Executes a command (Overloaded) | |
Returns the first column of the first row in the result set returned by the query | |
Executes a command using the | |
Executes a command using the | |
Executes a command using the | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| This method is a no-op |
| Inherited from |
OracleCommand
constructors instantiate new instances of OracleCommand
class.
Overload List:
This constructor instantiates a new instance of OracleCommand
class.
This constructor instantiates a new instance of OracleCommand
class using the supplied SQL command or stored procedure, and connection to the Oracle database.
This constructor instantiates a new instance of OracleCommand
class using the supplied SQL command or stored procedure, and connection to the Oracle database.
This constructor instantiates a new instance of OracleCommand
class.
Declaration
Remarks
Default constructor.
This constructor instantiates a new instance of OracleCommand
class using the supplied SQL command or stored procedure, and connection to the Oracle database.
Declaration
Parameters
cmdText
The SQL command or stored procedure to be executed.
This constructor instantiates a new instance of OracleCommand
class using the supplied SQL command or stored procedure, and connection to the Oracle database.
Declaration
Parameters
cmdText
The SQL command or stored procedure to be executed.
OracleConnection
The connection to the Oracle database.
The OracleCommand
static method is listed in Table 5-5.
Table 5-5 OracleCommand Static Method
Method | Description |
---|---|
| Inherited from |
OracleCommand
properties are listed in Table 5-6.
Table 5-6 OracleCommand Properties
Property | Description |
---|---|
| Adds the |
| Causes executed statements to be cached, when the property is set to |
Specifies if the array binding feature is to be used and also specifies the maximum number of array elements to be bound in the | |
Specifies the binding method in the collection | |
Specifies the SQL statement or stored procedure to run against the Oracle database or the XML data used to store changes to the Oracle database | |
| Specifies the number of seconds the command is allowed to execute before terminating the execution with an exception |
Specifies the command type that indicates how the | |
Specifies the | |
Container | Inherited from |
| Specifies whether or not the |
Specifies the size of | |
Specifies the amount of data that the | |
Specifies the amount that of data the | |
| Indicates that there is a notification request for the command |
| Indicates whether or not to register for a database change notification with the database automatically when the command is executed |
Specifies the parameters for the SQL statement or stored procedure | |
Specifies the amount of memory needed by the | |
Site | Inherited from |
| Specifies the Not supported in a .NET stored procedure |
| Specifies how query command results are applied to the row being updated Not supported in a .NET stored procedure |
Specifies the type of XML operation on the | |
Specifies the properties that are used when an XML document is created from the result set of a SQL query statement | |
Specifies the properties that are used when an XML document is used to save changes to the database |
This property adds the ROWID
as part of the select list.
Declaration
Property Value
bool
Remarks
Default is false
.
This ROWID
column is hidden and is not accessible by the application. To gain access to the ROWID
s of a table, the ROWID
must explicitly be added to the select list without the use of this property.
See Also:
|
This property causes executed statements to be cached when the property is set to true
and statement caching is enabled. If statement caching is disabled or if this property is set to false
, the executed statement is not cached.
Declaration
Return Value
Returns bool
value. A value of true
indicates that statements are being added to the cache, false
indicates otherwise.
Property Value
A bool
value that indicates that the statements will be cached when they are executed, if statement caching is enabled.
Remarks
Default is true
.
AddToStatementCache
is ignored if statement caching is disabled. Statement caching is enabled by setting the Statement
Cache
Size
connection string attribute to a value greater than 0
.
When statement caching is enabled, however, this property provides a way to selectively add statements to the cache.
Example
This property specifies if the array binding feature is to be used and also specifies the number of array elements to be bound in the OracleParameter
Value
property.
Declaration
Property Value
An int
value that specifies number of array elements to be bound in the OracleParameter
Value
property.
Exceptions
ArgumentException
- The ArrayBindCount
value specified is invalid.
Remarks
Default = 0.
If ArrayBindCount
is equal to 0
, array binding is not used; otherwise, array binding is used and OracleParameter
Value
property is interpreted as an array of values. The value of ArrayBindCount
must be specified to use the array binding feature.
If neither DbType
nor OracleDbType
is set, it is strongly recommended that you set ArrayBindCount
before setting the OracleParameter
Value
property so that inference of DbType
and OracleDbType
from Value
can be correctly done.
Array binding is not used by default.
If the XmlCommandType
property is set to any value other than None
, this property is ignored.
This property specifies the binding method in the collection.
Declaration
Property Value
Returns true
if the parameters are bound by name; returns false
if the parameters are bound by position.
Remarks
Default = false
.
BindByName
is ignored under the following conditions:
XmlCommandType
property is Insert
, Update
, or Delete
. XmlCommandType
property is Query
, but there are no parameters set on the OracleCommand
. If the XmlCommandType
property is OracleXmlCommandType.Query
and any parameters are set on the OracleCommand
, the BindByName
property must be set to true
. Otherwise, the following OracleCommand
methods throw an InvalidOperationException
.
ExecuteNonQuery
ExecuteXmlReader
ExecuteStream
ExecuteToStream
This property specifies the SQL statement or stored procedure to run against the Oracle database or the XML data used to store changes to the Oracle database.
Declaration
Property Value
A string
.
Implements
IDbCommand
Remarks
The default is an empty string.
When the CommandType
property is set to StoredProcedure
, the CommandText
property is set to the name of the stored procedure. The command calls this stored procedure when an Execute
method is called.
The effects of XmlCommandType
values on CommandText
are:
XmlCommandType
= None
. CommandType
property determines the contents of CommandText
.
XmlCommandType
= Query
. CommandText
must be a SQL query. The SQL query should be a select statement. CommandType
property is ignored.
XmlCommandType
property is Insert
, Update
, or Delete
. CommandText
must be an XML document. CommandType
property is ignored.
This property specifies the number of seconds that the command is allowed to execute before terminating with an exception.
Declaration
Property Value
int
Implements
IDbCommand.CommandTimeout
Exceptions
InvalidArgument
- The specified value is less than 0.
Remarks
Default is 0
seconds, which enforces no time limit.
When the specified timeout value expires before a command execution finishes, the command attempts to cancel. If cancellation is successful, an exception is thrown with the message of ORA-01013:
user
requested
cancel
of
current
operation
. Other possible exceptions thrown after a command timeout expiration occurs include ORA-00936
and ORA-00604.
If the command executed in time without any errors, no exceptions are thrown.
In a situation where multiple OracleCommand
objects use the same connection, the timeout expiration on one of the OracleCommand
objects may terminate any of the executions on the single connection. To make the timeout expiration of a OracleCommand
cancel only its own command execution, simply use one OracleCommand
for each connection if that OracleCommand
sets the CommandTimeout
property to a value greater than 0
.
See Also:
|
This property specifies the command type that indicates how the CommandText
property is to be interpreted.
Declaration
Property Value
A CommandType
.
Exceptions
ArgumentException
- The value is not a valid CommandType
such as: CommandType.Text
, CommandType.StoredProcedure
, CommandType.TableDirect
.
Remarks
Default = CommandType.Text
If the value of the XmlCommandType
property is not None
, then the CommandType
property is ignored.
This property specifies the OracleConnection
object that is used to identify the connection to execute a command.
Declaration
Property Value
An OracleConnection
object.
Implements
IDbCommand
Remarks
Default = null
This property specifies whether or not the OracleCommand
object is visible on designer controls.
Declaration
Property Value
A value that indicate whether or not OracleCommand
object is visible in a control. The default is true
.
Remarks
This property is used by developers to indicate whether or not OracleCommand
object is visible in a control.
This property specifies the size of OracleDataReader
's internal cache to store result set data.
Declaration
Property Value
A long
that specifies the size (in bytes) of the OracleDataReader
's internal cache.
Exceptions
ArgumentException
- The FetchSize
value specified is invalid.
Remarks
Default = 131072.
The FetchSize
property is inherited by the OracleDataReader
that is created by a command execution returning a result set. The FetchSize
property on the OracleDataReader
object determines the amount of data the OracleDataReader
fetches into its internal cache for each database round-trip.
If the XmlCommandType
property is set to any value other than None
, this property is ignored.
The RowSize
and FetchSize
properties handle UDT and XMLType
data differently than other scalar data types. Because only a reference to the UDT and XMLType
data is stored in the ODP.NET's internal cache, the RowSize
property accounts for only the memory needed for the reference (which is very small) and not the actual size of the UDT and XMLType
data. Thus, applications can inadvertently fetch a large number of UDT or XMLType
instances from the database in a single database round-trip. This is because the actual size of UDT and XMLType
data do not count against the FetchSize,
and it would require numerous UDT and XMLType
references to fill up the default cache size of 131072 bytes. Therefore, when fetching UDT or XMLType
data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and XMLType
data to be fetched.
NOTE: For LOB and LONG
data types, only the sizes specified in the InitialLOBFetchSize
and InitialLONGFetchSize
properties are accounted for by the RowSize
property in addition to the metadata and reference information that is maintained by the cache for each LOB in the select list.
See Also: |
This property specifies the amount of data that the OracleDataReader
initially fetches for LOB columns.
Declaration
Property Value
An int
specifying the number of characters or bytes to fetch initially.
Exceptions
ArgumentException
- The InitialLOBFetchSize
value specified is invalid.
Remarks
The value of InitialLOBFetchSize
specifies the initial amount of LOB data that is immediately fetched by the OracleDataReader
. The property value specifies the number of characters for CLOB
and NCLOB
data, and the number of bytes for BLOB
data.
The InitialLOBFetchSize
value is used to determine the length of the LOB column data to fetch, if the LOB column is in the select list. If the select list does not contain a LOB column, the InitialLOBFetchSize
value is ignored.
When InitialLOBFetchSize
is set to -1
, the entire LOB data is prefetched and stored in the fetch array. Calls to GetString
, GetChars
or GetBytes
in OracleDataReader
allow retrieving the entire data. In this case, the following methods are disabled.
GetOracleBlob
GetOracleClob
GetOracleClobForUpdate
GetOracleBlobForUpdate
This feature works for retrieving data from Oracle Database 9i release 2 (9.2) and later
Default = 0.
For Oracle Database 10g release 2 (10.2) and later:
The maximum value supported for InitialLOBFetchSize
is 2 GB.
Prior to Oracle Database 10g release 2 (10.2), if the InitialLOBFetchSize
is set to a nonzero value, GetOracleBlob
and GetOracleClob
methods were disabled. BLOB
and CLOB
data was fetched by using GetBytes
and GetChars
methods, respectively. In Oracle Database 10g release 2 (10.2), this restriction no longer exists. GetOracleBlob
and GetOracleClob
methods can be used for any InitialLOBFetchSize
value zero or greater.
For releases prior to Oracle Database 10g release 2 (10.2):
The maximum value supported for InitialLOBFetchSize
is 32 K.
To fetch more than the specified InitialLOBFetchSize
value, one of the following must be in the select list:
ROWID
NOT
NULL
constraint defined on it) If this property is set to 0
, none of the preceding is required
This property specifies the amount of data that the OracleDataReader
initially fetches for LONG
and LONG
RAW
columns.
Declaration
Property Value
An int
specifying the amount.
Exceptions
ArgumentException
- The InitialLONGFetchSize
value specified is invalid.
Remarks
The maximum value supported for InitialLONGFetchSize
is 32767
. If this property is set to a higher value, the provider resets it to 32767
.
The value of InitialLONGFetchSize
specifies the initial amount of LONG
or LONG
RAW
data that is immediately fetched by the OracleDataReader
. The property value specifies the number of characters for LONG
data and the number of bytes for LONG
RAW
. To fetch more than the specified InitialLONGFetchSize
amount, one of the following must be in the select list:
ROWID
NOT
NULL
constraint defined on it) The InitialLONGFetchSize
value is used to determine the length of the LONG
and LONG
RAW
column data to fetch if one of the two is in the select list. If the select list does not contain a LONG
or a LONG
RAW
column, the InitialLONGFetchSize
value is ignored.
When InitialLONGFetchSize
is set to -1
, the entire LONG
or LONG
RAW
data is prefetched and stored in the fetch array. Calls to GetString
, GetChars
, or GetBytes
in OracleDataReader
allow retrieving the entire data.
Default = 0
.
Setting this property to 0
defers the LONG
and LONG
RAW
data retrieval entirely until the application specifically requests it.
See Also: |
This instance property indicates that there is a notification request for the command.
Declaration
Property Value
A notification request for the command.
Remarks
When a changed notification is first registered, the client listener is started in order to receive any database notification. The listener uses the port number defined in the OracleDependency.Port
static field. Subsequent change notification registrations use the same listener in the same client process and do not start another listener.
When Notification
is set to an OracleNotificationRequest
instance, a notification registration is created (if it has not already been created) when the command is executed. Once the registration is created, the properties of the OracleNotificationRequest
instance cannot be modified. If the notification registration has already been created, the result set that is associated with the command is added to the existing registration.
When Notification
is set to null
, subsequent command executions do not require a notification request. If a notification request is not required, set the Notification
property to null
, or set the NotificationAutoEnlist
property to false
.
For Continuous Query Notification, a notification request can be used for multiple command executions. In that case, any query result set associated with different commands can be invalidated within the same registration.
When the OracleDependency.OnChange
event is fired, if the ROWID
column is explicitly included in the query (or AddRowid
property is set to true
), then the Rowid
column contains ROWID
values in the DataTable
referenced by the OracleNotificationEventArgs.Details
property. This behavior can be overridden by explicitly requesting for an inclusion and exclusion of ROWID
values in the OracleNotificationEventArgs
by setting the OracleDependency.RowidInfo
to OracleRowidInfo.Include
or OracleRowidInfo.Exclude
, respectively.
This instance property indicates whether or not to register for a database change notification with the database automatically when the command is executed.
Declaration
Property Value
A bool
value indicating whether or not to make a database change notification request automatically, when the command is executed. If NotificationAutoEnlist
is set to true
, and the Notification
property is set appropriately, a database change notification request is registered automatically; otherwise, no database change notification registration is made.
Default value: true
Remarks
A notification request can be used for multiple command executions using the same OracleCommand
instance. In that case, set the NotificationAutoEnlist
property to true
.
This property specifies the parameters for the SQL statement or stored procedure.
Declaration
Property Value
OracleParameterCollection
Implements
IDbCommand
Remarks
Default value = an empty collection
The number of the parameters in the collection must be equal to the number of parameter placeholders within the command text, or an error is raised.
If the command text does not contain any parameter tokens (such as,:1
,:2
), the values in the Parameters
property are ignored.
This property specifies the amount of memory needed by the OracleDataReader
internal cache to store one row of data.
Declaration
Property Value
A long
that indicates the amount of memory (in bytes) that an OracleDataReader
needs to store one row of data for the executed query.
Remarks
Default value = 0
The RowSize
property is set to a nonzero value after the execution of a command that returns a result set. This property can be used at design time or dynamically during run time, to set the FetchSize
, based on number of rows. For example, to enable the OracleDataReader
to fetch N
rows for each database round-trip, the OracleDataReader
FetchSize
property can be set dynamically to RowSize * N
. Note that for the FetchSize
to take effect appropriately, it must be set after OracleCommand.ExecuteReader()
but before OracleDataReader.Read()
.
See Also: |
This property specifies the OracleTransaction
object in which the OracleCommand
executes.
Declaration
Property Value
OracleTransaction
Implements
IDbCommand
Remarks
Default value = null
Transaction
returns a reference to the transaction object associated with the OracleCommand
connection object. Thus the command is executed in whatever transaction context its connection is currently in.
Note: When this property is accessed through anIDbCommand reference, its set accessor method is not operational. |
Remarks (.NET Stored Procedure)
Always returns null
.
This property specifies how query command results are applied to the row to be updated.
Declaration
Property Value
An UpdateRowSource
.
Implements
IDbCommand
Exceptions
ArgumentException
- The UpdateRowSource
value specified is invalid.
Remarks
Always returns UpdateRowSource,
Set accessor throws an ArgumentException
if the value is other than UpdateRowSource.None
.
This property specifies the type of XML operation on the OracleCommand
.
Declaration
Property Value
An OracleXmlCommandType
.
Remarks
Default value is None
.
XmlCommandType
values and usage:
None
- The CommandType
property specifies the type of operation. Query
- CommandText
property must be set to a SQL select statement. The query is executed, and the results are returned as an XML document. The SQL select statement in the CommandText
and the properties specified by the XmlQueryProperties
property are used to perform the operation. The CommandType
property is ignored. Insert
, Update
, or Delete
- CommandText
property is an XML document containing the changes to be made. The XML document in the CommandText
and the properties specified by the XmlSaveProperties
property are used to perform the operation. The CommandType
property is ignored. This property specifies the properties that are used when an XML document is created from the result set of a SQL query statement.
Declaration
Property Value
OracleXmlQueryProperties
.
Remarks
When a new instance of OracleCommand
is created, an instance of OracleXmlQueryProperties
is automatically available on the OracleCommand
instance through the OracleCommand.XmlQueryProperties
property.
A new instance of OracleXmlQueryProperties
can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlQueryProperties
to the XmlQueryProperties
of an OracleCommand
instance creates a new instance of the given OracleXmlQueryProperties
instance for the OracleCommand
. This way each OracleCommand
instance has its own OracleXmlQueryProperties
instance.
Use the default constructor to get a new instance of OracleXmlQueryProperties
.
Use the OracleXmlQueryProperties.Clone()
method to get a copy of an OracleXmlQueryProperties
instance.
This property specifies the properties that are used when an XML document is used to save changes to the database.
Declaration
Property Value
OracleXmlSaveProperties
.
Remarks
When a new instance of OracleCommand
is created, an instance of OracleXmlSaveProperties
is automatically available on the OracleCommand
instance through the OracleCommand.XmlSaveProperties
property.
A new instance of OracleXmlSaveProperties
can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlSaveProperties
to the XmlSaveProperties
of an OracleCommand
instance creates a new instance of the given OracleXmlSaveProperties
instance for the OracleCommand
. This way each OracleCommand
instance has its own OracleXmlSaveProperties
instance.
Use the default constructor to get a new instance of OracleXmlSaveProperties
.
Use the OracleXmlSaveProperties.Clone()
method to get a copy of an OracleXmlSaveProperties
instance.
OracleCommand
public methods are listed in Table 5-7.
Table 5-7 OracleCommand Public Methods
Public Method | Description |
---|---|
| Attempts to cancels a command that is currently executing on a particular connection |
Creates a copy of | |
| Inherited from |
Creates a new instance of | |
| Inherited from |
| Inherited from |
Executes a SQL statement or a command using the | |
Executes a command (Overloaded) | |
Returns the first column of the first row in the result set returned by the query | |
Executes a command using the | |
Executes a command using the | |
Executes a command using the | |
| Inherited from |
| Inherited from System. |
| Inherited from |
| Inherited from |
| This method is a no-op |
| Inherited from |
This method attempts to cancel a command that is currently executing on a particular connection.
Declaration
Implements
IDbCommand.Cancel
Remarks
If cancellation of the command succeeds, an exception is thrown. If cancellation is not successful, no exception is thrown. If there is no command being executed at the time of the Cancel
invocation, Cancel
does nothing. Invoking the Cancel
method does not guarantee that the command executing at the time will always be cancelled. The execution may complete before it can be terminated. In such cases, no exception is thrown.
When multiple OracleCommand
objects share the same connection, only one command can be executed on that connection at any one time. When it is invoked, the Cancel
method attempts to cancel the statement currently running on the connection that the OracleCommand
object is using to execute the command. However, when multiple OracleCommand
objects execute statements on the same connection simultaneously, issuing a Cancel
method invocation may cancel any of the issued commands. This is because the command designated for cancellation may complete before the Cancel
invocation is effective. If this happens, a command executed by a different OracleCommand
could be cancelled instead.
There are several ways to avoid this non-deterministic situation that the Cancel
method can cause:
OracleCommand
object for each connection. Doing so assures that the Cancel
invocation only cancels commands executed by the OracleCommand
object using a particular connection. OracleCommand
objects that use the same connection. These suggestions do not apply if Cancel
is not used in the application.
Because the termination on the currently running execution is non-deterministic, it is recommended that any non-atomic SQL or PL/SQL execution be started within a transaction. When the command execution successfully terminates with an exception of ORA-01013:
user
requested
cancel
of
current
operation
, the transaction can be rolled back for data integrity. Other possible exceptions thrown after a command cancellation occurs include ORA-00936
and ORA-00604.
Examples of non-atomic execution are collections of DML command executions that are executed one-by-one and multiple DML commands that are part of a PL/SQL stored procedure or function.
Example
See Also:
|
This method creates a copy of an OracleCommand
object.
Declaration
Return Value
An OracleCommand
object.
Implements
ICloneable
Remarks
The cloned object has the same property values as that of the object being cloned.
This method creates a new instance of OracleParameter
class.
Declaration
Return Value
A new OracleParameter
with default values.
Implements
IDbCommand
This method executes a SQL statement or a command using the XmlCommandType
and CommandText
properties and returns the number of rows affected.
Declaration
Return Value
The number of rows affected.
Implements
IDbCommand
Exceptions
InvalidOperationException
- The command cannot be executed.
Remarks
ExecuteNonQuery
returns the number of rows affected, for the following:
UPDATE
, INSERT
, or DELETE
and the XmlCommandType
property is set to OracleXmlCommandType.None
. XmlCommandType
property is set to OracleXmlCommandType.Insert
, OracleXmlCommandType.Update
, OracleXmlCommandType.Delete
. For all other types of statements, the return value is -1
.
ExecuteNonQuery
is used for either of the following:
DataSet
, by executing UPDATE
, INSERT
, or DELETE
statements. Although ExecuteNonQuery
does not return any rows, it populates any output parameters or return values mapped to parameters with data.
If the XmlCommandType
property is set to OracleXmlCommandType.Query
then ExecuteNonQuery
executes the select statement in the CommandText
property, and if successful, returns -1
. The XML document that is generated is discarded. This is useful for determining if the operation completes successfully without getting the XML document back as a result.
If the XmlCommandType
property is set to OracleXmlCommandType.Insert
, OracleXmlCommandType.Update
, or OracleXmlCommandType.Delete
, then the value of the CommandText
property is an XML document. ExecuteNonQuery
saves the changes in that XML document to the table or view that is specified in the XmlSaveProperties
property. The return value is the number of rows that are processed in the XML document. Also, each row in the XML document could affect multiple rows in the database, but the return value is still the number of rows in the XML document.
Example
Requirements
For XML support, this method requires Oracle9i XML Developer's Kits (Oracle XDK) or later, to be installed in the database. Oracle XDK can be downloaded from Oracle Technology Network (OTN).
Overload List:
ExecuteReader
executes a command specified in the CommandText
.
This method executes a command specified in the CommandText
and returns an OracleDataReader
object.
This method executes a command specified in the CommandText
and returns an OracleDataReader
object, using the specified CommandBehavior
value.
This method executes a command specified in the CommandText
and returns an OracleDataReader
object.
Declaration
Return Value
An OracleDataReader
.
Implements
IDbCommand
Exceptions
InvalidOperationException
- The command cannot be executed.
Remarks
When the CommandType
property is set to CommandType.StoredProcedure
, the CommandText
property should be set to the name of the stored procedure.
The specified command executes this stored procedure when ExecuteReader
is called. If parameters for the stored procedure consist of REF
CURSOR
objects, behavior differs depending on whether ExecuteReader()
or ExecuteNonQuery()
is called. If ExecuteReader()
is invoked, REF
CURSOR
objects can be accessed through the OracleDataReader
that is returned.If more than one REF
CURSOR
is returned from a single execution, subsequent REF
CURSOR
objects can be accessed sequentially by the NextResult
method on the OracleDataReader
. If the ExecuteNonQuery
method is invoked, the output parameter value can be cast to a OracleRefCursor
type and the OracleRefCursor
object then can be used to either populate a DataSet
or create an OracleDataReader
object from it. This approach provides random access to all the REF
CURSOR
objects returned as output parameters.
The value of 100
is used for the FetchSize
. If 0
is specified, no rows are fetched. For further information, see "Obtaining LONG and LONG RAW Data".
If the value of the XmlCommandType
property is set to OracleXmlCommandType.Insert
, OracleXmlCommandType.Update
, OracleXmlCommandType.Delete
, or OracleXmlCommandType.Query
then the ExecuteReader
method throws an InvalidOperationException
.
Example
This method executes a command specified in the CommandText
and returns an OracleDataReader
object, using the specified behavior.
Declaration
Parameters
behavior
The expected behavior.
Return Value
An OracleDataReader
.
Implements
IDbCommand
Exceptions
InvalidOperationException
- The command cannot be executed.
Remarks
A description of the results and the effect on the database of the query command is indicated by the supplied behavior
that specifies command behavior.
For valid CommandBehavior
values and for the command behavior of each CommandBehavior
enumerated type, read the .NET Framework documentation.
When the CommandType
property is set to CommandType.StoredProcedure
, the CommandText
property should be set to the name of the stored procedure. The command executes this stored procedure when ExecuteReader()
is called.
If the stored procedure returns stored REF
CURSOR
s, read the section on OracleRefCursor
s for more details. See "OracleRefCursor Class".
The value of 100
is used for the FetchSize
. If 0
is specified, no rows are fetched. For more information, see "Obtaining LONG and LONG RAW Data".
If the value of the XmlCommandType
property is set to OracleXmlCommandType.Insert
, OracleXmlCommandType.Update
, OracleXmlCommandType.Delete
, or OracleXmlCommandType.Query
then the ExecuteReader
method throws an InvalidOperationException
.
This method executes the query using the connection, and returns the first column of the first row in the result set returned by the query.
Declaration
Return Value
An object which represents the value of the first row, first column.
Implements
IDbCommand
Exceptions
InvalidOperationException
- The command cannot be executed.
Remarks
Extra columns or rows are ignored. ExecuteScalar
retrieves a single value (for example, an aggregate value) from a database. This requires less code than using the ExecuteReader()
method, and then performing the operations necessary to generate the single value using the data returned by an OracleDataReader
.
If the query does not return any row, it returns null
.
The ExecuteScalar
method throws an InvalidOperationException
, if the value of the XmlCommandType
property is set to one of the following OracleXmlCommandType
values: Insert
, Update
, Delete
, Query
.
Example
This method executes a command using the XmlCommandType
and CommandText
properties and returns the result as an XML document in a new Stream
object.
Declaration
Return Value
A Stream
.
Remarks
The behavior of ExecuteStream
varies depending on the XmlCommandType
property value:
XmlCommandType
= OracleXmlCommandType.None
ExecuteStream
throws an InvalidOperationException
.
XmlCommandType
= OracleXmlCommandType
.Query
ExecuteStream
executes the select statement in the CommandText
property, and if successful, returns an OracleClob
object containing the XML document that was generated. OracleClob
contains Unicode characters.
If the SQL query does not return any rows, then ExcecuteStream
returns an OracleClob
object containing an empty XML document.
XmlCommandType
= OracleXmlCommandType
.Insert
, OracleXmlCommandType
.Update
, or OracleXmlCommandType
.Delete
. The value of the CommandText
property is an XML document. ExecuteStream
saves the data in that XML document to the table or view that is specified in the XmlSaveProperties
property and an empty OracleClob
is returned.
This method executes a command using the XmlCommandType
and CommandText
properties and appends the result as an XML document to the existing Stream
provided by the application.
Declaration
Parameters
outputStream
A Stream
.
Remarks
The behavior of ExecuteToStream
varies depending on the XmlCommandType
property value:
XmlCommandType
= OracleXmlCommandType.None
ExecuteToStream
throws an InvalidOperationException
.
XmlCommandType
= OracleXmlCommandType
.Query
ExecuteToStream
executes the select statement in the CommandText
property, and if successful, appends the XML document that was generated to the given Stream
.
If the SQL query does not return any rows, then nothing is appended to the given Stream
. The character set of the appended data is Unicode.
XmlCommandType
= OracleXmlCommandType
.Insert
, OracleXmlCommandType
.Update
, or OracleXmlCommandType
.Delete
The value of the CommandText
property is an XML document. ExecuteToStream
saves the changes in that XML document to the table or view that is specified in the XmlSaveProperties
property. Nothing is appended to the given Stream
.
See Also:
|
This method executes the command using the XmlCommandType
and CommandText
properties and returns the result as an XML document in a .NET XmlTextReader
object.
Declaration
Return Value
An XmlReader
.
Remarks
The behavior of ExecuteXmlReader
varies depending on the XmlCommandType
property value:
XmlCommandType
= OracleXmlCommandType.None
ExecuteStream
throws an InvalidOperationException
.
XmlCommandType
= OracleXmlCommandType
.Query
ExecuteXmlReader
executes the select statement in the CommandText
property, and if successful, returns a .NET XmlTextReader
object containing the XML document that was generated.
If the XML document is empty, which can happen if the SQL query does not return any rows, then an empty .NET XmlTextReader
object is returned.
XmlCommandType
= OracleXmlCommandType
.Insert
, OracleXmlCommandType
.Update
, or OracleXmlCommandType
.Delete
. The value of the CommandText
property is an XML document, and ExecuteXmlReader
saves the changes in that XML document to the table or view that is specified in the XmlSaveProperties
property. An empty .NET XmlTextReader
object is returned.
See Also:
|
An OracleCommandBuilder
object provides automatic SQL generation for the OracleDataAdapter
when updates are made to the database.
Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Data.Common.DbCommandBuilder
(ADO.NET 2.0 only)
OracleDataAccess.Client.OracleCommandBuilder
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleCommandBuilder
automatically generates SQL statements for single-table updates when the SelectCommand
property of the OracleDataAdapter
is set. An exception is thrown if the DataSet
contains multiple tables. The OracleCommandBuilder
registers itself as a listener for RowUpdating
events whenever its DataAdapter
property is set. Only one OracleDataAdapter
object and one OracleCommandBuilder
object can be associated with each other at one time.
To generate INSERT
, UPDATE
, or DELETE
statements, the OracleCommandBuilder
uses ExtendedProperties
within the DataSet
to retrieve a required set of metadata. If the SelectCommand
is changed after the metadata is retrieved (for example, after the first update), the RefreshSchema
method should be called to update the metadata.
OracleCommandBuilder
first looks for the metadata from the ExtendedProperties
of the DataSet
; if the metadata is not available, OracleCommandBuilder
uses the SelectCommand
property of the OracleDataAdapter
to retrieve the metadata.
Example
The following example performs an update on the EMP
table. It uses the OracleCommandBuilder
object to create the UpdateCommand
for the OracleDataAdapter
object when OracleDataAdapter.Update()
is called.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleCommandBuilder
members are listed in the following tables.
OracleCommandBuilder Constructors
OracleCommandBuilder
constructors are listed in Table 5-8.
Table 5-8 OracleCommandBuilder Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleCommandBuilder Static Methods
OracleCommandBuilder
static methods are listed in Table 5-9.
Table 5-9 OracleCommandBuilder Static Methods
Method | Description |
---|---|
| Queries for the parameters of a stored procedure or function, represented by a specified |
| Inherited from |
OracleCommandBuilder Properties
OracleCommandBuilder
properties are listed in Table 5-10.
Table 5-10 OracleCommandBuilder Properties
Property | Description |
---|---|
| Inherited from |
Indicates whether or not double quotes are used around Oracle object names when generating SQL statements | |
| Not Supported |
| Not Supported |
| Not Supported |
Indicates the | |
| Specifies the beginning character or characters used to specify database objects whose names contain special characters such as spaces or reserved words Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Specifies the ending character or characters used to specify database objects whose names contain special characters such as spaces or reserved words Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Specifies the character to be used for the separator between the schema identifier and other identifiers Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
OracleCommandBuilder Public Methods
OracleCommandBuilder
public methods are listed in Table 5-11.
Table 5-11 OracleCommandBuilder Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
| Returns the correct quoted form of the provided unquoted identifier, with any embedded quotes in the identifier properly escaped Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Refreshes the database schema information used to generate | |
| Returns the correct unquoted form of the provided quoted identifier, removing any escape notation for quotes embedded in the identifier Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
OracleCommandBuilder Events
The OracleCommandBuilder
event is listed in Table 5-12.
Table 5-12 OracleCommandBuilder Events
Event Name | Description |
---|---|
| Inherited from |
OracleCommandBuilder
constructors create new instances of the OracleCommandBuilder
class.
Overload List:
This constructor creates an instance of the OracleCommandBuilder
class.
This constructor creates an instance of the OracleCommandBuilder
class and sets the DataAdapter
property to the provided OracleDataAdapter
object.
This constructor creates an instance of the OracleCommandBuilder
class.
Declaration
Remarks
Default constructor.
This constructor creates an instance of the OracleCommandBuilder
class and sets the DataAdapter
property to the provided OracleDataAdapter
object.
Declaration
Parameters
da
The OracleDataAdapter
object provided.
OracleCommandBuilder
static methods are listed in Table 5-13.
Table 5-13 OracleCommandBuilder Static Methods
Method | Description |
---|---|
| Queries for the parameters of a stored procedure or function, represented by a specified |
| Inherited from |
This method queries for the parameters of a stored procedure or function, represented by a specified OracleCommand
, and populates the OracleParameterCollection
of the command with the return values.
Declaration
Parameters
command
The command that represents the stored procedure or function for which parameters are to be derived.
Exceptions
InvalidOperationException
- The CommandText
is not a valid stored procedure or function name, the CommandType
is not CommandType.StoredProcedure
, or the Connection.State
is not ConnectionState.Open
.
Remarks
When DeriveParameters
is used to populate the Parameter
collection of an OracleCommand
Object that represents a stored function, the return value of the function is bound as the first parameter (at position 0
of the OracleParameterCollection
).
DeriveParameters
can only be used for stored procedures or functions, not for anonymous PL/SQL blocks.
Invoking DeriveParameters
deletes all existing parameters in the parameter collection of the command.
DeriveParameters
incurs a database round-trip and should only be used during design time. To avoid unnecessary database round-trips in a production environment, the DeriveParameters
method itself should be replaced with the explicit parameter settings that were returned by the DeriveParameters
method at design time.
DeriveParameters
can only preserve the case of the stored procedure or function name if it is encapsulated by double-quotes. For example, if the stored procedure in the database is named GetEmployees
with mixed-case, the CommandText
property on the OracleCommand
object must be set appropriately as in the following example:
Stored procedures and functions in a package must be provided in the following format:
For example, to obtain parameters for a stored procedure named GetEmployees
(mixed-case) in a package named EmpProcedures
(mixed-case), the name provided to the OracleCommand
is:
DeriveParameters
cannot be used for object type methods.
The derived parameters contain all the metadata information that is needed for the stored procedure to execute properly. The application must provide the value of the parameters before execution, if required. The application may also modify the metadata information of the parameters before execution. For example, the Size
property of the OracleParameter
may be modified for PL/SQL character and string types to optimize the execution of the stored procedure.
The output values of derived parameters return as .NET Types by default. To obtain output parameters as provider types, the OracleDbType
property of the parameter must be set explicitly by the application to override this default behavior. One quick way to do this is to set the OracleDbType
to itself for all output parameters that should be returned as provider types.
The BindByName
property of the supplied OracleCommand
is left as is, but the application can change its value.
If the specified stored procedure or function is overloaded, the first overload is used to populate the parameters collection.
Example
See Also:
|
OracleCommandBuilder
properties are listed in Table 5-14.
Table 5-14 OracleCommandBuilder Properties
Property | Description |
---|---|
| Inherited from |
Indicates whether or not double quotes are used around Oracle object names when generating SQL statements | |
| Not Supported |
| Not Supported |
| Not Supported |
Indicates the | |
| Specifies the beginning character or characters used to specify database objects whose names contain special characters such as spaces or reserved words Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Specifies the ending character or characters used to specify database objects whose names contain special characters such as spaces or reserved words Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Specifies the character to be used for the separator between the schema identifier and other identifiers Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
This property indicates whether or not double quotes are used around Oracle object names (for example, tables or columns) when generating SQL statements.
Declaration
Property Value
A bool
that indicates whether or not double quotes are used.
Remarks
Default = false
This property is not supported.
Declaration
Exceptions
NotSupportedException
- This property is not supported.
Remarks
This property is not supported.
This property is not supported.
Declaration
Exceptions
NotSupportedException
- This property is not supported.
Remarks
This property is not supported.
This property is not supported.
Declaration
Exceptions
NotSupportedException
- This property is not supported.
Remarks
This property is not supported.
This property indicates the OracleDataAdapter
object for which the SQL statements are generated.
Declaration
Property Value
An OracleDataAdapter
object.
Remarks
Default = null
This property specifies the beginning character or characters used to specify database objects whose names contain special characters such as spaces or reserved words.
Declaration
Property Value
The beginning character or characters to use. The default value is "\""
.
Remarks
This property is independent of any OracleConnection
or OracleCommand
objects.
This property specifies the ending character or characters used to specify database objects whose names contain special characters such as spaces or reserved words.
Declaration
Property Value
The ending character or characters to use. The default value is "\""
.
Remarks
This property is independent of any OracleConnection
or OracleCommand
objects.
This property specifies the character to be used for the separator between the schema identifier and other identifiers.
Declaration
Property Value
The character to be used as the schema separator.
Exceptions
NotSupportedException
- The input value is not a dot (.
).
Remarks
The default schema separator is a dot (.
). The only acceptable value for this property is a dot (.
).
This property is independent of any OracleConnection
or OracleCommand
objects.
Example
OracleCommandBuilder
public methods are listed in Table 5-15.
Table 5-15 OracleCommandBuilder Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
| Inherited from |
Gets the automatically generated | |
| Inherited from |
| Returns the correct quoted form of the provided unquoted identifier, with any embedded quotes in the identifier properly escaped Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Refreshes the database schema information used to generate | |
| Returns the correct unquoted form of the provided quoted identifier, removing any escape notation for quotes embedded in the identifier Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
This method gets the automatically generated OracleCommand
object that has the SQL statement (CommandText
) perform deletions on the database when an application calls Update()
on the OracleDataAdapter
.
Declaration
Return Value
An OracleCommand
.
Exceptions
ObjectDisposedException
- The OracleCommandBuilder
object is already disposed.
InvalidOperationException
- Either the SelectCommand
or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter
.
This method gets the automatically generated OracleCommand
object that has the SQL statement (CommandText
) perform insertions on the database when an application calls Update()
on the OracleDataAdapter
.
Declaration
Return Value
An OracleCommand
.
Exceptions
ObjectDisposedException
- The OracleCommandBuilder
object is already disposed.
InvalidOperationException
- Either the SelectCommand
or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter
.
This method gets the automatically generated OracleCommand
object that has the SQL statement (CommandText
) perform updates on the database when an application calls Update()
on the OracleDataAdapter
.
Declaration
Return Value
An OracleCommand
.
Exceptions
ObjectDisposedException
- The OracleCommandBuilder
object is already disposed.
InvalidOperationException
- Either the SelectCommand
or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter
.
This method returns the correct quoted form of the provided unquoted identifier, with any embedded quotes in the identifier properly escaped.
Declaration
Parameters
UnquotedIdentifier
An unquoted identifier string.
Return Value
The quoted version of the identifier. Embedded quotes within the identifier are properly escaped.
Exceptions
ArgumentNullException
- The input parameter is null.
Remarks
This method is independent of any OracleConnection
or OracleCommand
objects.
Example
This method refreshes the database schema information used to generate INSERT
, UPDATE
, or DELETE
statements.
Declaration
Remarks
An application should call RefreshSchema
whenever the SelectCommand
value of the OracleDataAdapter
object changes.
This method returns the correct unquoted form of the provided quoted identifier, removing any escape notation for quotes embedded in the identifier.
Declaration
Parameters
quotedIdentifier
The quoted string identifier.
Return Value
The unquoted identifier, with escape notation for any embedded quotes removed.
Exceptions
ArgumentNullException
- The input parameter is null.
ArgumentException
- The input parameter is empty.
Remarks
This method is independent of any OracleConnection
or OracleCommand
objects.
Example
The OracleCommandBuilder
event is listed in Table 5-16.
An OracleConnection
object represents a connection to an Oracle database.
Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Data.Common.DbConnection
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleConnection
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleConnection
members are listed in the following tables.
OracleConnection Constructors
OracleConnection
constructors are listed in Table 5-17.
Table 5-17 OracleConnection Constructors
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleConnection Static Properties
The OracleConnection
static property is listed in Table 5-19.
Table 5-18 OracleConnection Static Property
Property | Description |
---|---|
| Indicates whether or not the implicit database connection is available for use |
OracleConnection Static Methods
The OracleConnection
static methods are listed in Table 5-19.
Table 5-19 OracleConnection Static Methods
Method | Description |
---|---|
| Inherited from |
| Clears the connection pool that is associated with the provided Not supported in a .NET stored procedure |
| Clears all connections from all the connection pools Not supported in a .NET stored procedure |
OracleConnection Properties
OracleConnection
properties are listed in Table 5-20.
Table 5-20 OracleConnection Properties
Property | Description |
---|---|
| Specifies the action name for the connection |
| Specifies the client identifier for the connection |
| Specifies the client information for the connection |
Specifies connection information used to connect to an Oracle database | |
Indicates the maximum amount of time that the | |
| Inherited from |
| Not Supported |
| Specifies the name of the database domain to which the connection is set |
| Specifies the name of the database to which the connection is set |
| Specifies the Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect |
| Specifies the name of the host to which the connection is set |
| Specifies the name of the instance to which the connection is set |
| Specifies the module name for the connection |
Specifies the version number of the Oracle database to which the | |
| Specifies the name of the service to which the connection is set |
| Inherited from |
Specifies the current state of the connection | |
| Specifies the current size of the statement cache associated with this connection |
OracleConnection Public Methods
OracleConnection
public methods are listed in Table 5-21.
Table 5-21 OracleConnection Public Methods
Public Method | Description |
---|---|
Begins a local transaction (Overloaded) Not supported in a .NET stored procedure for context connection | |
Not Supported | |
| Creates a copy of an Not supported in a .NET stored procedure |
| Closes the database connection |
Creates and returns an | |
| Inherited from |
| Inherited from |
| Enables applications to explicitly enlist in a specified distributed transaction Not supported in a .NET stored procedure |
| Enables applications to enlist in a specified distributed transaction Supported Only in ADO.NET 2.0-Compliant ODP.NET Not supported in a .NET stored procedure |
| Inherited from |
| Flushes all updates and deletes made through |
| Inherited from |
| Inherited from |
| Returns schema information for the data source of the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Returns or refreshes the property values of the | |
| Inherited from |
| Inherited from |
Opens a database connection with the property settings specified by the | |
Opens a new connection with the new password Not supported in a .NET stored procedure for context connection | |
| Flushes the Statement Cache by closing all open cursors on the database, when statement caching is enabled |
Alters the session's globalization settings with the property values provided by the | |
| Inherited from |
OracleConnection Events
OracleConnection
events are listed in Table 5-22.
Table 5-22 OracleConnection Events
Event Name | Description |
---|---|
| Inherited from |
An event that is triggered when an Oracle failover occurs Not supported in a .NET stored procedure | |
| An event that is triggered when an HA event occurs. |
An event that is triggered for any message or warning sent by the database | |
An event that is triggered when the connection state changes |
OracleConnection
constructors instantiate new instances of the OracleConnection
class.
Overload List:
This constructor instantiates a new instance of the OracleConnection
class using default property values.
This constructor instantiates a new instance of the OracleConnection
class with the provided connection string.
This constructor instantiates a new instance of the OracleConnection
class using default property values.
Declaration
Remarks
The properties for OracleConnection
are set to the following default values:
ConnectionString
= empty string ConnectionTimeout
= 15
(default value of 0
is used for the implicit database connection) DataSource
= empty string ServerVersion
= empty string This constructor instantiates a new instance of the OracleConnection
class with the provided connection string.
Declaration
Parameters
connectionString
The connection information used to connect to the Oracle database.
Remarks
The ConnectionString
property is set to the supplied connectionString
. The ConnectionString
property is parsed and an exception is thrown if it contains invalid connection string attributes or attribute values.
The properties of the OracleConnection
object default to the following values unless they are set by the connection string:
ConnectionString
= empty string ConnectionTimeout
= 15
(default value of 0
is used for the implicit database connection) DataSource
= empty string ServerVersion
= empty string The OracleConnection
static property is listed in Table 5-23.
Table 5-23 OracleConnection Static Property
Property | Description |
---|---|
| Indicates whether or not the implicit database connection is available for use |
This property indicates whether or the implicit database connection is available for use.
Declaration
Property Value
Returns true
if the implicit database connection is available for use.
Remarks
The availability of the implicit database connection can be checked at run time through this static property. When Oracle Data Provider for .NET is used within a .NET stored procedure, this property always returns true
. Otherwise, false
is returned.
To obtain an OracleConnection
object in a .NET stored procedure that represents the implicit database connection, set the ConnectionString
property of the OracleConnection
object to "context
connection=true"
and invoke the Open
method.
Note that not all features that are available for an explicit user connection are available for an implicit database connection. See "Implicit Database Connection" for details.
Example
The OracleConnection
static methods are listed in Table 5-24.
Table 5-24 OracleConnection Static Methods
Method | Description |
---|---|
| Inherited from |
| Clears the connection pool that is associated with the provided Not supported in a .NET stored procedure |
| Clears all connections from all the connection pools Not supported in a .NET stored procedure |
This method clears the connection pool that is associated with the provided OracleConnection
object.
Declaration
Remarks
When this method is invoked, all idle connections are closed and freed from the pool. Currently used connections are not discarded until they are returned to the pool.
The ClearPool
method should be invoked only when valid connections can be created (that is, the database is up and can be connected to). Otherwise, the ClearPool
method may just create invalid connections to a downed database instance. Assuming valid database connections, a ClearPool
invocation creates a connection pool with usable connections. Therefore, connection requests succeed even after the invocation of this method. Connections created after this method invocation are not cleared unless another invocation is made.
This method can be invoked with an OracleConnection
object before opening the connection as well as after, provided the ConnectionString
is properly set.
Exceptions
InvalidOperationException
– Either the connection pool cannot be found or the provided connection string is invalid.
Example
This method clears all connections from all the connection pools.
Declaration
Remarks
This call is analogous to calling ClearPool
for all the connection pools that are created for the application.
Exceptions
InvalidOperationException
– No connection pool could be found for the application.
Example
OracleConnection
properties are listed in Table 5-25
Table 5-25 OracleConnection Properties
Property | Description |
---|---|
| Specifies the action name for the connection |
| Specifies the client identifier for the connection |
| Specifies the client information for the connection |
Specifies connection information used to connect to an Oracle database | |
Indicates the maximum amount of time that the | |
| Determines whether a particular connection object is associated with a TimesTen database connection, an Oracle database connection, or no physical connection |
| Inherited from |
| Not Supported |
| Specifies the name of the database domain to which the connection is set |
| Specifies the name of the database to which the connection is set |
| Specifies the Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect |
| Specifies the name of the host to which the connection is set |
| Specifies the name of the instance to which the connection is set |
| Specifies the module name for the connection |
Specifies the version number of the Oracle database to which the | |
| Specifies the name of the service to which the connection is set |
| Inherited from |
Specifies the current state of the connection | |
| Specifies the current size of the statement cache associated with this connection |
This property specifies the action name for the connection.
Declaration
Property Value
The string to be used as the action name.
Remarks
The default value is null
.
Using the ActionName
property allows the application to set the action name in the application context for a given OracleConnection
object.
The ActionName
property is reset to null
when the Close
or Dispose
method is called on the OracleConnection
object.
This property specifies the client identifier for the connection.
Declaration
Property Value
The string to be used as the client identifier.
Remarks
The default value is null
.
Using the ClientId
property allows the application to set the client identifier in the application context for a given OracleConnection
object.
Setting ClientId
to null
resets the client identifier for the connection. ClientId
is set to null
when the Close
or Dispose
method is called on the OracleConnection
object.
This property specifies the client information for the connection.
Declaration
Property Value
The string to be used as the client information.
Remarks
The default value is null
.
Using the ClientInfo
property allows the application to set the client information in the application context for a given OracleConnection
object.
The ClientInfo
property is reset to null
when the Close
or Dispose
method is called on the OracleConnection
object.
This property specifies connection information used to connect to an Oracle database.
Declaration
Property Value
If the connection string is supplied through the constructor, this property is set to that string.
Implements
IDbConnection
Exceptions
ArgumentException
- An invalid syntax is specified for the connection string.
InvalidOperationException
- ConnectionString
is being set while the connection is open.
Remarks
The default value is an empty string.
ConnectionString
must be a string of attribute name and value pairings, separated by a semi-colon, for example:
If the ConnectionString
is not in a proper format, an exception is thrown. All spaces are ignored unless they are within double quotes.
When the ConnectionString
property is set, the OracleConnection
object immediately parses the string for errors. An ArgumentException
is thrown if the ConnectionString
contains invalid attributes or invalid values. Attribute values for User
Id
, Password
, Proxy
User
Id
, Proxy
Password
, and Data
Source
(if provided) are not validated until the Open
method is called.
The connection must be closed to set the ConnectionString
property. When the ConnectionString
property is reset, all previously set values are reinitialized to their default values before the new values are applied.
Starting with ODP.NET 11.1, password and proxy password connection string attribute values are accepted as case-sensitive strings. Thus, they are passed to the database for authentication in the case provided in the connection string. Therefore, if the database is configured to support case-sensitive passwords, passwords must be passed in the correct case.
If a connection string attribute is set more than once, the last setting takes effect and no exceptions are thrown.
Boolean connection string attributes can be set to either true
, false
, yes
, or no
.
Remarks (.NET Stored Procedure)
To obtain an OracleConnection
object in a .NET stored procedure that represents the implicit database connection, set the ConnectionString
property of the OracleConnection
object to "context
connection=true"
and invoke the Open
method. Other connection string attributes cannot be used in conjunction with "context
connection"
when it is set to true.
Supported Connection String Attributes
Table 5-26 lists the supported connection string attributes.
Table 5-26 Supported Connection String Attributes
Connection String Attribute | Description | Default Value |
---|---|---|
| Maximum life time (in seconds) of the connection. This attribute specifies the lifetime of the connection in seconds. Before the |
|
| Maximum time (in seconds) to wait for a free connection from the pool. This attribute specifies the maximum amount of time (in seconds) that the This attribute value takes effect for pooled connection requests and not for new connection requests. (The default value is |
|
| Returns an implicit database connection if set to An implicit database connection can only be obtained from within a .NET stored procedure. Other connection string attributes cannot be used in conjunction with Supported in a .NET stored procedure only |
|
| Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect. | empty string |
| Administrative privileges This connection string attribute only accepts | empty string |
| Number of connections that are closed when an excessive amount of established connections are unused. This connection string attribute controls the maximum number of unused connections that are closed when the pool regulator makes periodic checks. The regulator thread is spawned every 3 minutes and closes up to |
|
| Controls the enlistment behavior and capabilities of a connection in context of COM+ transactions or If this attribute is set to |
|
| Enables ODP.NET connection pool to proactively remove connections from the pool when an Oracle RAC service, service member, or node goes down. This feature can only used against an Oracle RAC database and only if This attribute can be set to |
|
| Enables ODP.NET connection pool to balance work requests across Oracle RAC instances based on the load balancing advisory and service goal. This feature can only used against an Oracle RAC database and only if This attribute can be set to |
|
| Number of new connections to be created when all connections in the pool are in use. This connection string attribute determines the number of new connections that are established when a pooled connection is requested, but no unused connections are available and |
|
| Maximum number of connections in a pool. This attribute specifies the maximum number of connections allowed in the particular pool used by that |
|
| Caches metadata information. This attribute indicates whether or not metadata information for executed queries are cached for improved performance. |
|
| Minimum number of connections in a pool. This attribute specifies the minimum number of connections to be maintained by the pool during its entire lifetime. Simply changing this attribute in the connection string does not change the |
|
| Password for the user specified by This attribute specifies an Oracle user's password. | empty string |
| Retrieval of the password in the connection string. If this attribute is set to |
|
| Connection pooling. This attribute specifies whether or not connection pooling is to be used. Pools are created using an attribute value matching algorithm. This means that connection strings which only differ in the number of spaces in the connection string use the same pool. If two connection strings are identical except that one sets an attribute to a default value while the other does not set that attribute, both requests obtain connections from the same pool. This attribute can be set to either |
|
| Promotable to distributed transaction or not. If | promotable |
| User name of the proxy user. This connection string attribute specifies the middle-tier user, or the proxy user, who establishes a connection on behalf of a client user specified by the | empty string |
| For the proxy user to connect to an Oracle database using operating system authentication, the |
|
| Password of the proxy user. This connection string attribute specifies the password of the middle-tier user or the proxy user. This user establishes a connection on behalf of a client user specified by the The case of this attribute value is preserved if it is surrounded by double quotes. | empty string |
| Statement cache purged when the connection goes back to the pool. If statement caching is enabled, setting this attribute to |
|
| Statement cache enabled and cache size set size, that is, the maximum number of statements that can be cached. A value greater than zero enables statement caching and sets the cache size to itself. This value should not be greater than the value of the | 0 |
| Enables or disables self-tuning for the connection. If self-tuning is enabled, then the If self-tuning is disabled, then a |
|
| Oracle user name. This attribute specifies the Oracle user name. The case of this attribute value is preserved if it is surrounded by double quotes. For the user to connect to an Oracle database using operating system authentication, set the | empty string |
| Validation of connections coming from the pool. Validation causes a round-trip to the database for each connection. Therefore, it should only be used when necessary. |
|
This property indicates the maximum amount of time that the Open
method can take to obtain a pooled connection before the request is terminated.
Declaration
Property Value
The maximum time allowed for a pooled connection request, in seconds.
Implements
IDbConnection
Remarks
This property indicates the connection timeout that has been set using the ConnectionString
attribute Connection
TimeOut
.
This property is read-only.
Remarks (.NET Stored Procedure)
There is no connection string specified by the application and a connection on the implicit database is always available, therefore, this property is set to 0
.
This property enables an ODP.NET application to determine whether a particular connection object is associated with an Oracle database connection, a TimesTen database connection, or no physical connection at all.
Declaration
Property Value
The OracleConnectionType
that this connection object is associated with.
This property is not supported.
Declaration
Property Value
A string.
Implements
IDbConnection.Database
Remarks
This property is not supported. It always returns an empty string.
This property specifies the name of the database domain that this connection is connected to.
Declaration
Property Value
The database domain that this connection is connected to.
This property specifies the name of the database that this connection is connected to.
Declaration
Property Value
The database that this connection is connected to.
This property specifies the Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect
Declaration
Property Value
Oracle Net Services Name, Connect Descriptor, or an easy connect naming that identifies the database to which to connect.
Remarks (.NET Stored Procedure)
The value of this property is always an empty string for the implicit database connection.
This property specifies the name of the host that this connection is connected to.
Declaration
Property Value
The host that this connection is connected to.
This property specifies the name of the instance that this connection is connected to.
Declaration
Property Value
The instance that this connection is connected to.
This property specifies the module name for the connection.
Declaration
Property Value
The string to be used as the module name.
Remarks
The default value is null
.
Using the ModuleName
property allows the application to set the module name in the application context for a given OracleConnection
object.
The ModuleName
property is reset to null
when the Close
or Dispose
method is called on the OracleConnection
object.
This property specifies the version number of the Oracle database to which the OracleConnection
has established a connection.
Declaration
Property Value
The version of the Oracle database.
Exceptions
InvalidOperationException
- The connection is closed.
Remarks
The default is an empty string.
This property specifies the name of the service that this connection is connected to.
Declaration
Property Value
The service that this connection is connected to.
This property specifies the current state of the connection.
Declaration
Property Value
The ConnectionState
of the connection.
Implements
IDbConnection
Remarks
ODP.NET supports ConnectionState.Closed
and ConnectionState.Open
for this property. The default value is ConnectionState.Closed
.
This property specifies the current size of the statement cache associated with this connection.
Declaration
Property Value
An integer value indicating the size of the statement cache.
Remarks
If self tuning is not enabled, then the default value of this property depends upon the statement cache size specified in the connection string, application configuration file, or the registry. If none of these values are specified, then a default value of 0 is used.
If self tuning is enabled, then the property value is adjusted automatically. Any values specified in the connection string, application configuration file, or the registry are ignored.
OracleConnection
public methods are listed in Table 5-27.
Table 5-27 OracleConnection Public Methods
Public Method | Description |
---|---|
Begins a local transaction (Overloaded) Not supported in a .NET stored procedure for context connection | |
Not Supported | |
| Creates a copy of an Not supported in a .NET stored procedure |
| Closes the database connection |
Creates and returns an | |
| Inherited from |
| Inherited from |
| Enables applications to explicitly enlist in a specified distributed transaction Not supported in a .NET stored procedure |
| Enables applications to enlist in a specified distributed transaction Supported Only in ADO.NET 2.0-Compliant ODP.NET Not supported in a .NET stored procedure |
| Inherited from |
| Flushes all updates and deletes made through |
| Inherited from |
| Inherited from |
| Returns schema information for the data source of the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Returns or refreshes the property values of the | |
| Inherited from |
| Inherited from |
Opens a database connection with the property settings specified by the | |
Opens a new connection with the new password Not supported in a .NET stored procedure for context connection | |
| Flushes the Statement Cache by closing all open cursors on the database, when statement caching is enabled |
Alters the session's globalization settings with the property values provided by the | |
| Inherited from |
BeginTransaction
methods begin local transactions.
Overload List
This method begins a local transaction.
This method begins a local transaction with the specified isolation level.
This method begins a local transaction.
Declaration
Return Value
An OracleTransaction
object representing the new transaction.
Implements
IDbConnection
Exceptions
InvalidOperationException
- A transaction has already been started.
Remarks
The transaction is created with its isolation level set to its default value of IsolationLevel.ReadCommitted
. All further operations related to the transaction must be performed on the returned OracleTransaction
object.
Remarks (.NET Stored Procedure)
Using this method in a .NET stored procedure for context connection causes a Not Supported exception.
This method begins a local transaction with the specified isolation level.
Declaration
Parameters
isolationLevel
The isolation level for the new transaction.
Return Value
An OracleTransaction
object representing the new transaction.
Implements
IDbConnection
Exceptions
InvalidOperationException
- A transaction has already been started.
ArgumentException
- The isolationLevel
specified is invalid.
Remarks
The following isolation levels are supported: IsolationLevel.ReadCommitted
and IsolationLevel.Serializable
.
Although the BeginTransaction
method supports the IsolationLevel.Serializable
isolation level, serializable transactions are not supported when using System.Transactions
and TransactionScope
.
Requesting other isolation levels causes an exception.
Remarks (.NET Stored Procedure)
Using this method in a .NET stored procedure for context connection causes a Not Supported exception.
Example
This method is not supported.
Declaration
Parameters
databaseName
The name of the database that replaces the current database name.
Implements
IDbConnection.ChangeDatabase
Exceptions
NotSupportedException
- Method not supported.
Remarks
This method is not supported and throws a NotSupportedException
if invoked.
This method creates a copy of an OracleConnection
object.
Declaration
Return Value
An OracleConnection
object.
Implements
ICloneable
Remarks
The cloned object has the same property values as that of the object being cloned.
Remarks (.NET Stored Procedure)
This method is not supported for an implicit database connection.
Example
This method closes the connection to the database.
Declaration
Implements
IDbConnection
Remarks
Performs the following:
The connection can be reopened using Open()
.
This method creates and returns an OracleCommand
object associated with the OracleConnection
object.
Declaration
Return Value
The OracleCommand
object.
Implements
IDbConnection
Example
This method enables applications to explicitly enlist in a specific distributed transaction after a connection has been opened.
Declaration
Parameters
transaction
An ITransaction
interface.
Exceptions
InvalidOperationException
- The connection is part of a local transaction or the connection is closed.
Remarks
EnlistDistributedTransaction
enables objects to enlist in a specific transaction that is passed to the method. The ITransaction
interface can be obtained by applying an (ITransaction
) cast to the ContexUtil.Transaction
property within the component that started the distributed transaction.
The connection must be open before calling this method or an InvalidOperationException
is thrown.
If a connection is part of a local transaction that was started implicitly or explicitly while attempting to enlist in a distributed transaction, the local transaction is rolled back and an exception is thrown.
By default, distributed transactions roll back, unless the method-level AutoComplete
declaration is set.
Invoking the commit on the ITranasction
raises an exception.
Invoking the rollback on the ITransaction
method and calling ContextUtil.SetComplete
on the same distributed transaction raises an exception.
Remarks (.NET Stored Procedure)
Using this method causes a Not Supported exception.
Example
Application:
Component:
See Also:
|
This method enlists the connection to the specified transaction.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Declaration
Parameters
transaction
A System.Transactions.Transaction
object.
Exceptions
InvalidOperationException
- The connection is part of a local transaction or the connection is closed.
Remarks
Invocation of this method immediately enlists the connection to a transaction that is specified by the provided transaction parameter.
If OracleConnection
is still associated with a distributed transaction that has not completed from a previous EnlistTransaction
method invocation, calling this method will cause an exception to be thrown.
In general, for transaction enlistments to succeed, the "enlist"
connection string attribute must be set to either "true"
or "dynamic"
before invoking the Open
method. Setting the "enlist"
connection string attribute to "true"
will implicitly enlist the connection when the Open
method is called, if the connection is within a transaction context. Setting it to "dynamic"
allows the connection to dynamically enlist in transactions when an EnlistTransaction
or EnlistDistributedTransaction
method is called. The "enlist"
attribute should be set to "false"
only if the connection will never enlist in a transaction.
This method flushes all updates and deletes made through REF
objects retrieved using this connection.
Declaration
Exceptions
InvalidOperationException
- The specified connection is not open.
Remarks
Before flushing objects, it is required that the application has explicitly started a transaction by executing the BeginTransaction
method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the application, an exclusive lock is obtained implicitly for the object. The lock is only released when the transaction commits or rollbacks.
GetSchema
methods return schema information for the data source of the OracleConnection
.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Overload List
This method returns schema information for the data source of the OracleConnection
.
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name.
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name and the specified string array for the restriction values.
This method returns schema information for the data source of the OracleConnection
.
Declaration
Return Value
A DataTable
object.
Exceptions
InvalidOperationException
– The connection is closed.
Remarks
This method returns a DataTable
object that contains a row for each metadata collection available from the database.
The method is equivalent to specifying the String value "MetaDataCollections"
when using the GetSchema(String)
method.
Example
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name.
Declaration
Parameters
collectionName
Name of the collection for which metadata is required.
Return Value
A DataTable
object.
Exceptions
ArgumentException
– The requested collection is not defined.
InvalidOperationException
– The connection is closed.
InvalidOperationException
– The requested collection is not supported by current version of Oracle database.
InvalidOperationException
– No population string is specified for requested collection.
Example
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name and the specified string array for the restriction values.
Declaration
Parameters
collectionName
The name of the collection of metadata being retrieved.
restrictions
An array of restrictions that apply to the metadata being retrieved.
Return Value
A DataTable
object.
Exception
ArgumentException
– The requested collection is not defined. InvalidOperationException
– One of the following conditions exist: Remarks
This method takes the name of a metadata collection and an array of String values that specify the restrictions for filtering the rows in the returned DataTable
. This returns a DataTable
that contains only rows from the specified metadata collection that match the specified restrictions.
For example, if the Columns
collection has three restrictions (owner
, tablename
, and columnname
), to retrieve all the columns for the EMP
table regardless of schema, the GetSchema
method must pass in at least these values: null, EMP
.
If no restriction value is passed in, default values are used for that restriction, which is the same as passing in null. This differs from passing in an empty string for the parameter value. In this case, the empty string (""
) is considered the value for the specified parameter.
collectionName
is not case-sensitive, but restrictions (string values) are.
Example
GetSessionInfo
returns or refreshes an OracleGlobalization
object that represents the globalization settings of the session.
Overload List:
This method returns a new instance of the OracleGlobalization
object that represents the globalization settings of the session.
This method refreshes the provided OracleGlobalization
object with the globalization settings of the session.
This method returns a new instance of the OracleGlobalization
object that represents the globalization settings of the session.
Declaration
Return Value
The newly created OracleGlobalization
object.
Example
This method refreshes the provided OracleGlobalization
object with the globalization settings of the session.
Declaration
Parameters
oraGlob
The OracleGlobalization
object to be updated.
This method opens a connection to an Oracle database.
Declaration
Implements
IDbConnection
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The connection is already opened or the connection string is null or empty.
Remarks
The connection is obtained from the pool if connection pooling is enabled. Otherwise, a new connection is established.
It is possible that the pool does not contain any unused connections when the Open()
method is invoked. In this case, a new connection is established.
If no connections are available within the specified connection timeout value, when the Max
Pool
Size
is reached, an OracleException
is thrown.
This method opens a new connection with the new password.
Declaration
Parameters
newPassword
A string that contains the new password.
Remarks
This method uses the ConnectionString
property settings to establish a new connection. The old password must be provided in the connection string as the Password
attribute value.
This method can only be called on an OracleConnection
in the closed state.
Remarks (.NET Stored Procedure)
This method is not supported in a .NET stored procedure for context connection.
Note: If connection pooling is enabled, then invoking theOpenWithNewPassword method also clears the connection pool. This closes all idle connections created with the old password. |
This method flushes the statement cache by closing all open cursors on the database, when statement caching is enabled.
Declaration
Remarks
Flushing the statement cache repetitively results in decreased performance and may negate the performance benefit gained by enabling the statement cache.
Statement caching remains enabled after the call to PurgeStatementCache
.
Invocation of this method purges the cached cursors that are associated with the OracleConnection
. It does not purge all the cached cursors in the database.
Example
This method alters the session's globalization settings with all the property values specified in the provided OracleGlobalization
object.
Declaration
Parameters
oraGlob
An OracleGlobalization
object.
Remarks
Calling this method is equivalent to calling an ALTER
SESSION
SQL
on the session.
Example
OracleConnection
events are listed in Table 5-28.
Table 5-28 OracleConnection Events
Event Name | Description |
---|---|
| Inherited from |
An event that is triggered when an Oracle failover occurs Not supported in a .NET stored procedure | |
| An event that is triggered when an HA event occurs. |
An event that is triggered for any message or warning sent by the database | |
An event that is triggered when the connection state changes |
This event is triggered when an Oracle failover occurs.
Declaration
Event Data
The event handler receives an OracleFailoverEventArgs
object which exposes the following properties containing information about the event.
FailoverType
Indicates the type of the failover.
FailoverEvent
Indicates the state of the failover.
Remarks
The Failover
event is raised when a connection to an Oracle instance is unexpectedly severed. The client should create an OracleFailoverEventHandler
delegate to listen to this event.
This event is triggered when an HA event occurs.
Declaration
Event Data
The event handler receives an OracleHAEventArgs
object which exposes the following properties containing information about the event.
Source
Indicates the source of the event.
Status
Indicates the status of the event.
DatabaseName
Indicates the database name affected by this event.
DatabaseDomainName
Indicates the database domain name affected by this event.
HostName
Indicates the host name affected by this event.
InstanceName
Indicates the instance name affected by this event.
ServiceName
Indicates the service name affected by this event.
Time
Indicates the time of the event.
Remarks
The HAEvent
is static, which means that any HA Events that happen within the application domain can trigger this event. Note that in order to receive HA event notifications, OracleConnection
objects that establish connections within the application domain must have "ha events=true"
in the application. Otherwise, the application never receives any HA Events.
This event is triggered for any message or warning sent by the database.
Declaration
Event Data
The event handler receives an OracleInfoMessageEventArgs
object which exposes the following properties containing information about the event.
Errors
The collection of errors generated by the data source.
Message
The error text generated by the data source.
Source
The name of the object that generated the error.
Remarks
In order to respond to warnings and messages from the database, the client should create an OracleInfoMessageEventHandler
delegate to listen to this event.
This event is triggered when the connection state changes.
Declaration
Event Data
The event handler receives a StateChangeEventArgs
object which exposes the following properties containing information about the event.
CurrentState
The new state of the connection.
OriginalState
The original state of the connection.
Remarks
The StateChange
event is raised after a connection changes state, whenever an explicit call is made to Open
, Close
or Dispose
.
See Also:
|
An OracleDataAdapter
object represents a data provider object that populates the DataSet
and updates changes in the DataSet
to the Oracle database.
Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Data.Common.DataAdapter
System.Data.Common.DbDataAdapter
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleDataAdapter
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
The following example uses the OracleDataAdapter
and the dataset to update the EMP
table:
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDataAdapter
members are listed in the following tables.
OracleDataAdapter Constructors
OracleDataAdapter
constructors are listed in Table 5-29.
Table 5-29 OracleDataAdapter Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleDataAdapter Static Methods
The OracleDataAdapter
static method is listed in Table 5-30.
Table 5-30 OracleDataAdapter Static Method
Method | Description |
---|---|
| Inherited from |
OracleDataAdapter Properties
OracleDataAdapter
properties are listed in Table 5-31.
Table 5-31 OracleDataAdapter Properties
Property | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
A SQL statement or stored procedure to delete rows from an Oracle database | |
A SQL statement or stored procedure to insert new rows into an Oracle database | |
| Inherited from |
| Inherited from |
Determines whether or not the | |
| Determines if the |
Creates a mapping between column names in the result set to .NET types, to preserve the data | |
A SQL statement or stored procedure that returns a single or multiple result set | |
| Inherited from |
| Inherited from |
| Specifies a value that enables or disables batch processing support, and specifies the number of SQL statements that can be executed in a single round-trip to the database Supported Only in ADO.NET 2.0-Compliant ODP.NET |
A SQL statement or stored procedure to update rows from the |
OracleDataAdapter Public Methods
OracleDataAdapter
public methods are listed in Table 5-32.
Table 5-32 OracleDataAdapter Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Adds or refreshes rows in the | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleDataAdapter Events
OracleDataAdapter
events are listed in Table 5-33.
Table 5-33 OracleDataAdapter Events
Event Name | Description |
---|---|
| Inherited from |
| Inherited from |
This event is raised when row(s) have been updated by the | |
This event is raised when row data are about to be updated to the database |
OracleDataAdapter
constructors create new instances of an OracleDataAdapter
class.
Overload List:
This constructor creates an instance of an OracleDataAdapter
class.
This constructor creates an instance of an OracleDataAdapter
class with the provided OracleCommand
as the SelectCommand
.
This constructor creates an instance of an OracleDataAdapter
class with the provided OracleConnection
object and the command text for the SelectCommand
.
This constructor creates an instance of an OracleDataAdapter
class with the provided connection string and the command text for the SelectCommand
.
This constructor creates an instance of an OracleDataAdapter
class with no arguments.
Declaration
Remarks
Initial values are set for the following OracleDataAdapter
properties as indicated:
MissingMappingAction = MissingMappingAction.Passthrough
MissingSchemaAction = MissingSchemaAction.Add
This constructor creates an instance of an OracleDataAdapter
class with the provided OracleCommand
as the SelectCommand
.
Declaration
Parameters
selectCommand
The OracleCommand
that is to be set as the SelectCommand
property.
Remarks
Initial values are set for the following OracleDataAdapter
properties as indicated:
MissingMappingAction = MissingMappingAction.Passthrough
MissingSchemaAction = MissingSchemaAction.Add
This constructor creates an instance of an OracleDataAdapter
class with the provided OracleConnection
object and the command text for the SelectCommand
.
Declaration
Parameters
selectCommandText
The string that is set as the CommandText
of the SelectCommand
property of the OracleDataAdapter
.
selectConnection
The OracleConnection
to connect to the Oracle database.
Remarks
The OracleDataAdapter
opens and closes the connection, if it is not already open. If the connection is open, it must be explicitly closed.
Initial values are set for the following OracleDataAdapter
properties as indicated:
MissingMappingAction = MissingMappingAction.Passthrough
MissingSchemaAction = MissingSchemaAction.Add
This constructor creates an instance of an OracleDataAdapter
class with the provided connection string and the command text for the SelectCommand
.
Declaration
Parameters
selectCommandText
The string that is set as the CommandText
of the SelectCommand
property of the OracleDataAdapter
.
selectConnectionString
The connection string.
Remarks
Initial values are set for the following OracleDataAdapter
properties as indicated:
MissingMappingAction = MissingMappingAction.Passthrough
MissingSchemaAction = MissingSchemaAction.Add
The OracleDataAdapter
static method is listed in Table 5-34.
Table 5-34 OracleDataAdapter Static Method
Method | Description |
---|---|
| Inherited from |
OracleDataAdapter
properties are listed in Table 5-35.
Table 5-35 OracleDataAdapter Properties
Property | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
A SQL statement or stored procedure to delete rows from an Oracle database | |
A SQL statement or stored procedure to insert new rows into an Oracle database | |
| Inherited from |
| Inherited from |
Determines whether or not the | |
| Determines if the |
Creates a mapping between column names in the result set to .NET types, to preserve the data | |
A SQL statement or stored procedure that returns a single or multiple result set | |
| Inherited from |
| Inherited from |
| Specifies a value that enables or disables batch processing support, and specifies the number of SQL statements that can be executed in a single round-trip to the database Supported Only in ADO.NET 2.0-Compliant ODP.NET |
A SQL statement or stored procedure to update rows from the |
This property is a SQL statement or stored procedure to delete rows from an Oracle database.
Declaration
Property Value
An OracleCommand
used during the Update
call to delete rows from tables in the Oracle database, corresponding to the deleted rows in the DataSet
.
Remarks
Default = null
If there is primary key information in the DataSet
, the DeleteCommand
can be automatically generated using the OracleCommandBuilder
, if no command is provided for this.
This property is a SQL statement or stored procedure to insert new rows into an Oracle database.
Declaration
Property Value
An OracleCommand
used during the Update
call to insert rows into a table, corresponding to the inserted rows in the DataSet
.
Remarks
Default = null
If there is primary key information in the DataSet
, the InsertCommand
can be automatically generated using the OracleCommandBuilder
, if no command is provided for this property.
This property determines whether or not the SelectCommand
is reexecuted on the next call to Fill
.
Declaration
Property Value
Returns true
if the SelectCommand
is reexecuted on the next call to Fill
; otherwise, returns false
.
This property determines if the Fill
method returns ODP.NET-specific values or .NET common language specification compliant values.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Declaration
Property Value
A value that indicates whether or not the Fill
method returns ODP.NET-specific values. A value of false
indicates that the Fill
method returns .NET common language specification compliant values. The default is false
.
This property creates a mapping between column names in the result set to .NET types that represent column values in the DataSet
, to preserve the data.
Declaration
Property Value
A hash table.
Remarks
Default = null
The SafeMapping
property is used, when necessary, to preserve data in the following types:
DATE
TimeStamp
(refers to all TimeStamp
objects) INTERVAL
DAY
TO
SECOND
NUMBER
Example
See the example in "OracleDataAdapter Safe Type Mapping".
This property is a SQL statement or stored procedure that returns single or multiple result sets.
Declaration
Property Value
An OracleCommand
used during the Fill
call to populate the selected rows to the DataSet
.
Remarks
Default = null
If the SelectCommand
does not return any rows, no tables are added to the dataset and no exception is raised.
If the SELECT
statement selects from a VIEW
, no key information is retrieved when a FillSchema()
or a Fill()
with MissingSchemaAction.AddWithKey
is invoked.
This property specifies a value that enables or disables batch processing support, and specifies the number of SQL statements that can be executed in a single round-trip to the database.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Declaration
Property Value
An integer that returns the batch size.
Exceptions
ArgumentOutOfRangeException
- The value is set to a number < 0.
Remarks
Update batches executed with large amounts of data may encounter an "PLS-00123:
Program
too
large"
error. To avoid this error, reduce the size of UpdateBatchSize
to a smaller value.
For each row in the DataSet
that has been modified, added, or deleted, one SQL statement will be executed on the database.
Values are as follows:
0
The data adapter executes all the SQL statements in a single database round-trip
1
- Default value This value disables batch updating and SQL statements are executed one at a time.
n
where n
> 1
The data adapter updates n
rows of data per database round-trip.
This property is a SQL statement or stored procedure to update rows from the DataSet
to an Oracle database.
Declaration
Property Value
An OracleCommand
used during the Update
call to update rows in the Oracle database, corresponding to the updated rows in the DataSet
.
Remarks
Default = null
If there is primary key information in the DataSet
, the UpdateCommand
can be automatically generated using the OracleCommandBuilder
, if no command is provided for this property.
OracleDataAdapter
public methods are listed in Table 5-36.
Table 5-36 OracleDataAdapter Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Adds or refreshes rows in the | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from System. |
| Inherited from |
| Inherited from |
Fill
populates or refreshes the specified DataTable
or DataSet
.
Overload List:
This method adds or refreshes rows in the specified DataTable
to match those in the provided OracleRefCursor
object.
This method adds or refreshes rows in the DataSet
to match those in the provided OracleRefCursor
object.
This method adds or refreshes rows in the specified source table of the DataSet
to match those in the provided OracleRefCursor
object.
This method adds or refreshes rows in a specified range in the DataSet
to match rows in the provided OracleRefCursor
object.
This method adds or refreshes rows in the specified DataTable
to match those in the provided OracleRefCursor
object.
Declaration
Parameters
dataTable
The DataTable
object being populated.
refCursor
The OracleRefCursor
that rows are being retrieved from.
Return Value
The number of rows added to or refreshed in the DataTable
.
Exceptions
ArgumentNullException
- The dataTable
or refCursor
parameter is null.
InvalidOperationException
- The OracleRefCursor
is already being used to fetch data.
NotSupportedException
- The SafeMapping
type is not supported.
Remarks
No schema or key information is provided, even if the Fill
method is called with MissingSchemaAction
set to MissingSchemaAction.AddWithKey
.
This method adds or refreshes rows in the DataSet
to match those in the provided OracleRefCursor
object.
Declaration
Parameters
dataSet
The DataSet
object being populated.
refCursor
The OracleRefCursor
that rows are being retrieved from.
Return Value
Returns the number of rows added or refreshed in the DataSet
.
Exceptions
ArgumentNullException
- The dataSet
or refCursor
parameter is null.
InvalidOperationException
- The OracleRefCursor
is already being used to fetch data.
InvalidOperationException
- The OracleRefCursor
is ready to fetch data.
NotSupportedException
- The SafeMapping
type is not supported.
Remarks
If there is no DataTable
to refresh, a new DataTable
named Table
is created and populated using the provided OracleRefCursor
object.
No schema or key information is provided, even if the Fill
method is called with MissingSchemaAction
set to MissingSchemaAction.AddWithKey
.
This method adds or refreshes rows in the specified source table of the DataSet
to match those in the provided OracleRefCursor
object.
Declaration
Parameters
dataSet
The DataSet
object being populated.
srcTable
The name of the source table used in the table mapping.
refCursor
The OracleRefCursor
that rows are being retrieved from.
Return Value
Returns the number of rows added or refreshed into the DataSet
.
Exceptions
ArgumentNullException
- The dataSet
or refCursor
parameter is null.
InvalidOperationException
- The OracleRefCursor
is already being used to fetch data or the source table name is invalid.
NotSupportedException
- The SafeMapping
type is not supported.
Remarks
No schema or key information is provided, even if the Fill
method is called with MissingSchemaAction
set to MissingSchemaAction.AddWithKey
.
This method adds or refreshes rows in a specified range in the DataSet
to match rows in the provided OracleRefCursor
object.
Declaration
Parameters
dataSet
The DataSet
object being populated.
startRecord
The record number to start with.
maxRecords
The maximum number of records to obtain.
srcTable
The name of the source table used in the table mapping.
refCursor
The OracleRefCursor
that rows are being retrieved from.
Return Value
This method returns the number of rows added or refreshed in the DataSet
. This does not include rows affected by statements that do not return rows.
Exceptions
ArgumentNullException
- The dataSet
or refCursor
parameter is null.
InvalidOperationException
- The OracleRefCursor
is already being used to fetch data or the source table name is invalid.
NotSupportedException
- The SafeMapping
type is not supported.
Remarks
No schema or key information is provided, even if the Fill
method is called with MissingSchemaAction
set to MissingSchemaAction.AddWithKey
.
OracleDataAdapter
events are listed in Table 5-37.
Table 5-37 OracleDataAdapter Events
Event Name | Description |
---|---|
| Inherited from |
| Inherited from |
This event is raised when row(s) have been updated by the | |
This event is raised when row data are about to be updated to the database |
This event is raised when row(s) have been updated by the Update()
method.
Declaration
Event Data
The event handler receives an OracleRowUpdatedEventArgs
object which exposes the following properties containing information about the event.
Command
The OracleCommand
executed during the Update
.
Errors
(inherited from RowUpdatedEventArgs
) The exception, if any, is generated during the Update
.
RecordsAffected
(inherited from RowUpdatedEventArgs
) The number of rows modified, inserted, or deleted by the execution of the Command
.
Row
(inherited from RowUpdatedEventArgs
) The DataRow
sent for Update
.
StatementType
(inherited from RowUpdatedEventArgs
) The type of SQL statement executed.
Status
(inherited from RowUpdatedEventArgs
) The UpdateStatus
of the Command
.
TableMapping
(inherited from RowUpdatedEventArgs
) The DataTableMapping
used during the Update
.
Example
The following example shows how to use the RowUpdating
and RowUpdated
events.
This event is raised when row data are about to be updated to the database.
Declaration
Event Data
The event handler receives an OracleRowUpdatingEventArgs
object which exposes the following properties containing information about the event.
Command
The OracleCommand
executed during the Update
.
Errors
(inherited from RowUpdatingEventArgs
) The exception, if any, is generated during the Update
.
Row
(inherited from RowUpdatingEventArgs
) The DataRow
sent for Update
.
StatementType
(inherited from RowUpdatingEventArgs
) The type of SQL statement executed.
Status
(inherited from RowUpdatingEventArgs
) The UpdateStatus
of the Command
.
TableMapping
(inherited from RowUpdatingEventArgs
) The DataTableMapping
used during the Update
.
Example
The example for the RowUpdated
event also shows how to use the RowUpdating
event. See RowUpdated
event "Example".
An OracleDatabase
object represents an Oracle Database instance.
Class Inheritance
System.Object
Oracle.DataAccess.Client.OracleDatabase
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDatabase
members are listed in the following tables.
OracleDatabase Constructors
The OracleDatabase
constructor is listed in Table 5-38.
Table 5-38 OracleDatabase Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleDatabase Properties
The OracleDatabase
properties are listed in Table 5-39.
Table 5-39 OracleDatabase Properties
Property | Description |
---|---|
Specifies the database version number of the Oracle Database instance to which the connection is made |
OracleDatabase Public Methods
The OracleDatabase
public methods are listed in Table 5-40.
Table 5-40 OracleDatabase Public Methods
Public Method | Description |
---|---|
| Executes the supplied non- |
| Shuts down the database (Overloaded) |
| Starts up the database (Overloaded) |
The OracleDatabase
constructor instantiates a new instance of the OracleDatabase
class using the supplied connection string.
Declaration
Parameters
connectionString
The connection information used to connect to the Oracle Database instance.
Remarks
The connectionString
follows the same format used by the OracleConnection
object. However, the OracleDatabase
constructor accepts only the user id
, password
, data source
, and dba privilege
connection string attributes. All other attribute values are ignored. The supplied connectionString
must contain the dba privilege
connection string attribute that is set to either SYSDBA
or SYSOPER
.
The OracleDatabase
object creates a connection upon construction and remains connected throughout its lifetime. The connection is destroyed when the OracleDatabase object is disposed. This connection is not pooled to be used by another OracleDatabase
object.
The OracleDatabase
properties are listed in Table 5-41.
Table 5-41 OracleDatabase Properties
Property | Description |
---|---|
Specifies the database version number of the Oracle Database instance to which the connection is made |
This property returns the database version number of the Oracle Database instance to which the connection is made.
Declaration
Public string ServerVersion {get;}
Property value
Returns the database version of the Oracle Database instance.
The OracleDatabase
public methods are listed in Table 5-42.
Table 5-42 OracleDatabase Public Methods
Public Method | Description |
---|---|
| Executes the supplied non- |
| Shuts down the database (Overloaded) |
| Starts up the database (Overloaded) |
This method executes the supplied non-SELECT
statement against the database.
Declaration
Exceptions
OracleException
- The command execution has failed.
Remarks
This method is meant for execution of DDL statements such as ALTER DATABASE
statements to OPEN
and MOUNT
the database, for example. This method should not be used to execute SQL SELECT
statements. This method does not support any parameter binding.
Shutdown
methods shut down a database instance.
Overload List
This method shuts down the database.
This method shuts down the database using the specified mode.
This method shuts down the database.
Declaration
Exceptions
OracleException
- The database shutdown request has failed.
Remarks
This method shuts down a database instance in the OracleDBShutdownMode.Default
mode. New connections are refused, and the method waits for the existing connections to end.
Note: As the shutdown is effected using theOracleDBShutdownMode.Default mode, the shutdown request may remain pending if there are open connections other than the connection created by the OracleDatabase object. |
After the connections have closed, the method closes the database, dismounts the database, and shuts down the instance using the OracleDBShutdownMode.Final
mode.
This method does not throw exceptions for cases where the database has been already closed, dismounted, or shutdown appropriately. If other errors are encountered, then an exception is thrown.
Invoking this method against an Oracle Real Application Clusters (Oracle RAC) database shuts down only that database instance to which the OracleDatabase
object is connected.
This method shuts down the database instance using the specified mode.
Declaration
Parameters
shutdownMode
A OracleDBShutdownMode
enumeration value.
bCloseDismountAndFinalize
A boolean
signifying whether the database is to be closed, dismounted, and finalized.
Exceptions
OracleException
- The database shutdown request has failed.
Remarks
This method shuts down a database instance in the specified mode. If the bCloseDismountAndFinalize
parameter is true
, then the method also closes the database, dismounts the database, and shuts down the instance using the OracleDBShutdownMode.Final
mode.
If the bCloseDismountAndFinalize
parameter is true
, then this method does not throw exceptions for cases where the database has been already closed, dismounted, or shutdown appropriately. If other errors are encountered, then an exception is thrown.
If the bCloseDismountAndFinalize
parameter is false
, then the application needs to explicitly close and dismount the database. The application can then reinvoke the method using the OracleDBShutdownMode.Final
mode to properly shut down the database. For example, if db
is an instance of the OracleDatabase
class, then the application invokes the following:
db.Shutdown(OracleDBShutdownMode.Default, false);
db.ExecuteNonQuery("ALTER DATABASE CLOSE NORMAL");
db.ExecuteNonQuery("ALTER DATABASE DISMOUNT");
db.Shutdown(OracleDBShutdownMode.Final);
Note:
|
If the specified shutdownMode
is OracleDBShutdownMode.Abort
, then the value of the bCloseDismountAndFinalize
input parameter is ignored, as the Abort
mode requires the database to be closed, dismounted, and finalized.
Invoking this method against an Oracle Real Application Clusters (Oracle RAC) database shuts down only that database instance to which the OracleDatabase
object is connected.
Example
Startup
methods enable a user with database administrator privileges to start a database instance.
Overload List
This method starts a database instance using the server-side parameter file.
This method starts a database instance using the client-side parameter file.
This method starts up the database.
Declaration
Exceptions
OracleException
- The database startup request has failed.
Remarks
This method starts a database instance in the OracleDbStartupMode.Normal
mode using the server-side parameter file (spfile
). After the database is successfully started, this method also executes the ALTER DATABASE MOUNT
and ALTER DATABASE OPEN
statements.
This method does not throw exceptions for cases where the database is already mounted, opened, or started appropriately. If other errors are encountered, then an exception is thrown.
This method starts up the database using the specified startup mode.
Declaration
Parameters
startupMode
An OracleDBStartupMode
enumeration value.
pfile
The location and name of the client-side parameter file. For example, "c:\\admin\\init.ora".
The name of the parameter file varies depending on the operating system. For example, it can be in mixed case or lowercase, or it can have a logical name or a variation of the name init.ora
. The default location is usually ORACLE_HOME
/dbs
or ORACLE_HOME
\database.
bMountAndOpen
A true/false
value signifying whether the database is to be mounted and opened.
Exceptions
OracleException
- The database startup request has failed.
Remarks
This method starts a database instance in the specified mode using the specified client-side parameter file. After the database is successfully started, and if bMountAndOpen
input parameter is true
, this method also executes the ALTER DATABASE MOUNT
and ALTER DATABASE OPEN
statements.
If bMountAndOpen
is true
, then this method does not throw an exception for cases where the database is already mounted, opened, or started appropriately. If other errors are encountered, then an exception is thrown.
If bMountAndOpen
is false
, then the database must be mounted and opened explicitly by the application. For example, if db
is an instance of the OracleDatabase
class, then the application invokes the following:
db.Startup(OracleDBStartupMode.NoRestriction, null, false);
db.ExecuteNonQuery("ALTER DATABASE MOUNT");
db.ExecuteNonQuery("ALTER DATABASE OPEN");
An OracleDataReader
object represents a forward-only, read-only, in-memory result set.
Unlike the DataSet
, the OracleDataReader
object stays connected and fetches one row at a time.
The following section contain related information:
Class Inheritance
System.Object
System.MarshalByRefObject
System.Data.Common.DataReader
System.Data.Common.DbDataReader
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleDataReader
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
An OracleDataReader
instance is constructed by a call to the ExecuteReader
method of the OracleCommand
object. The only properties that can be accessed after the DataReader
is closed or has been disposed, are IsClosed
and RecordsAffected
.
To minimize the number of open database cursors, OracleDataReader
objects should be explicitly disposed.
Example
The following OracleDataReader
example retrieves the data from the EMP
table:
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDataReader
members are listed in the following tables.
OracleDataReader Static Methods
The OracleDataReader
static method is listed in Table 5-43.
Table 5-43 OracleDataReader Static Method
Method | Description |
---|---|
| Inherited from |
OracleDataReader Properties
OracleDataReader
properties are listed in Table 5-44.
Table 5-44 OracleDataReader Properties
Property | Description |
---|---|
Gets a value indicating the depth of nesting for the current row | |
Specifies the size of | |
Gets the number of columns in the result set | |
| Indicates whether the |
| Gets the number of fields in the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Indicates whether or not the data reader is closed | |
Gets the value of the column (Overloaded) | |
| Specifies the amount that the |
Specifies the amount that the | |
Gets the number of rows changed, inserted, or deleted by execution of the SQL statement | |
| Gets the amount of memory the internal cache of the |
| Gets the number of fields in the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
OracleDataReader Public Methods
OracleDataReader
public methods are listed in Table 5-45.
Table 5-45 OracleDataReader Public Methods
Public Method | Description |
---|---|
Closes the | |
| Inherited from |
Releases any resources or memory allocated by the object | |
| Inherited from |
Not Supported | |
Returns the byte value of the specified column | |
Populates the provided byte array with up to the maximum number of bytes, from the specified offset (in bytes) of the column | |
Not Supported | |
Populates the provided character array with up to the maximum number of characters, from the specified offset (in characters) of the column | |
| Not Supported |
Returns the ODP.NET type name of the specified column | |
Returns the | |
Returns the | |
Returns the | |
| Returns an |
Returns the | |
Returns the | |
Not Supported | |
| Inherited from |
Returns the | |
Returns the | |
Returns the | |
| Inherited by System. |
Returns the name of the specified column | |
Returns an | |
Returns an | |
Returns an | |
Returns an updatable | |
Returns an | |
Returns an updatable | |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
| Returns an |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
Returns the specified column value as a ODP.NET type | |
Gets all the column values as ODP.NET types | |
Returns the | |
| Returns the provider-specific type of the specified column Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Returns an object that represents the underlying provider-specific value of the specified ordinal Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Returns an array of objects that represent the underlying provider-specific values Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Returns a | |
Returns the string value of the specified column | |
Returns the | |
| Inherited from |
Returns the column value as a .NET type | |
Gets all the column values as .NET types | |
Returns the value of an | |
Indicates whether or not the column value is null | |
Advances the data reader to the next result set when reading the results | |
Reads the next row in the result set | |
| Inherited from |
The OracleDataReader
static method is listed in Table 5-46.
Table 5-46 OracleDataReader Static Method
Method | Description |
---|---|
| Inherited from |
OracleDataReader
properties are listed in Table 5-47.
Table 5-47 OracleDataReader Properties
Property | Description |
---|---|
Gets a value indicating the depth of nesting for the current row | |
Specifies the size of | |
Gets the number of columns in the result set | |
| Indicates whether the |
| Gets the number of fields in the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Indicates whether or not the data reader is closed | |
Gets the value of the column (Overloaded) | |
| Specifies the amount that the |
Specifies the amount that the | |
Gets the number of rows changed, inserted, or deleted by execution of the SQL statement | |
| Gets the amount of memory the internal cache of the |
| Gets the number of fields in the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
This property gets a value indicating the depth of nesting for the current row.
Declaration
Property Value
The depth of nesting for the current row.
Implements
IDataReader
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
Default = 0
This property always returns zero because Oracle does not support nesting.
This property specifies the size of OracleDataReader
's internal cache.
Declaration
Property Value
A long
that specifies the amount of memory (in bytes) that the OracleDataReader
uses for its internal cache.
Exceptions
ArgumentException
- The FetchSize
value specified is invalid.
Remarks
Default = The OracleCommand
's FetchSize
property value.
The FetchSize
property is inherited by the OracleDataReader
that is created by a command execution returning a result set. The FetchSize
property on the OracleDataReader
object determines the amount of data fetched into its internal cache for each database round-trip.
The RowSize
and FetchSize
properties handle UDT and XMLType
data differently than other scalar data types. Because only a reference to the UDT and XMLType
data is stored in the ODP.NET's internal cache, the RowSize
property accounts for only the memory needed for the reference (which is very small) and not the actual size of the UDT and XMLType
data. Thus, applications can inadvertently fetch a large number of UDT or XMLType
instances from the database in a single database round-trip. This is because the actual size of UDT and XMLType
data does not count against the FetchSize,
and it would require numerous UDT and XMLType
references to fill up the default cache size of 131072 bytes. Therefore, when fetching UDT or XMLType
data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and XMLType
data to be fetched.
NOTE: For LOB and LONG
data types, only the sizes specified in the InitialLOBFetchSize
and InitialLONGFetchSize
properties are accounted for by the RowSize
property in addition to the metadata and reference information that is maintained by the cache for each LOB in the select list.
See Also:
|
This property returns the number of columns in the result set.
Declaration
Property Value
The number of columns in the result set if one exists, otherwise 0
.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
Default = 0
This property has a value of 0 for queries that do not return result sets.
This property indicates whether the OracleDataReader
has one or more rows.
Declaration
Return Value
bool
Remarks
HasRows
indicates whether or not the OracleDataReader
has any rows.
The value of HasRows
does not change based on the row position. For example, even if the application has read all the rows from the result set and the next Read method invocation will return false, the HasRows
property still returns true since the result set was not empty to begin with.
Rows are fetched to determine the emptiness of the OracleDataReader
when HasRows
property is accessed for the first time after the creation of the OracleDataReader
object.
Example
See Also:
|
This property gets the number of fields in the OracleDataReader
that are hidden.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Declaration
Property Value
The number of fields in the OracleDataReader
that are hidden.
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
OracleDataReader.FieldCount
and OracleDataReader.VisibleFieldCount
return the visible field count.
This property indicates whether or not the data reader is closed.
Declaration
Property Value
If the OracleDataReader
is in a closed state, returns true
; otherwise, returns false
.
Implements
IDataReader
Remarks
Default = true
IsClosed
and RecordsAffected
are the only two properties that are accessible after the OracleDataReader
is closed.
This property gets the value of the column in .NET data type.
Overload List:
This property gets the .NET Value
of the column specified by the column index.
This property gets the .NET Value
of the column specified by the column name.
This property gets the .NET Value
of the column specified by the column index.
Declaration
Parameters
index
The zero-based index of the column.
Property Value
The .NET value of the specified column.
Implements
IDataRecord
Remarks
Default = Not Applicable
In C#, this property is the indexer for this class.
This property gets the .NET Value
of the column specified by the column name.
Declaration
Parameters
columnName
The name of the column.
Property Value
The .NET Value
of the specified column.
Implements
IDataRecord
Remarks
Default = Not Applicable
A case-sensitive search is made to locate the specified column by its name. If this fails, then a case-insensitive search is made.
In C#, this property is the indexer for this class.
This property specifies the amount that the OracleDataReader
initially fetches for LOB columns.
Declaration
Property Value
The size of the chunk to retrieve.
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
For Oracle Database 10g release 2 (10.2) and later, the maximum value supported for InitialLOBFetchSize
is 2 GB.
For releases prior to Oracle Database 10g release 2 (10.2), the maximum value supported for InitialLOBFetchSize
is 32K.
Default is the OracleCommand.InitialLOBFetchSize
, from which this value is inherited.
See Also:
|
This property specifies the amount that the OracleDataReader
initially fetches for LONG
and LONG
RAW
columns.
Declaration
Property Value
The size of the chunk to retrieve. The default is 0
.
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
The maximum value supported for InitialLONGFetchSize
is 32767
. If this property is set to a higher value, the provider resets it to 32767
.
Default is OracleCommand.InitialLONGFetchSize
, from which this value is inherited.
This property is read-only for the OracleDataReader
.
See Also:
|
This property gets the number of rows changed, inserted, or deleted by execution of the SQL statement.
Declaration
Property Value
The number of rows affected by execution of the SQL statement.
Implements
IDataReader
Remarks
Default = 0
The value of -1
is returned for SELECT
statements.
IsClosed
and RecordsAffected
are the only two properties that are accessible after the OracleDataReader
is closed.
This property gets the amount of memory the internal cache of the OracleDataReader
needs to store one row of data.
Declaration
Property Value
A long
that indicates the amount of memory (in bytes) that an OracleDataReader
needs to store one row of data for the executed query.
Remarks
The RowSize
property is set to a nonzero value when the OracleDataReader
object is created. This property can be used at design time or dynamically during run time, to set the FetchSize
property, based on the number of rows. For example, to enable the OracleDataReader
object to fetch N
rows for each database round-trip, the OracleDataReader
FetchSize
property can be set dynamically to RowSize
*
N
. Note that for the FetchSize
property to take effect appropriately, it must be set before the first invocation of OracleDataReader.Read()
for the particular result set.
This property gets the number of fields in the OracleDataReader
that are not hidden.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Declaration
Property Value
The number of fields that are not hidden.
Exceptions
InvalidOperationException
- The reader is closed.
Remarks
If an application sets the AddRowid
property on an OracleCommand
object to true
, then the application can access the RowId
but it is not a visible field. If RowId
is added in the select statement list, then it is a visible field. OracleDataReader.VisibleFieldCount
and OracleDataReader.FieldCount
always have the same value.
Example
OracleDataReader
public methods are listed in Table 5-48.
Table 5-48 OracleDataReader Public Methods
Public Method | Description |
---|---|
Closes the | |
| Inherited from |
Releases any resources or memory allocated by the object | |
| Inherited from |
Not Supported | |
Returns the byte value of the specified column | |
Populates the provided byte array with up to the maximum number of bytes, from the specified offset (in bytes) of the column | |
Not Supported | |
Populates the provided character array with up to the maximum number of characters, from the specified offset (in characters) of the column | |
| Not Supported |
Returns the ODP.NET type name of the specified column | |
Returns the | |
Returns the | |
Returns the | |
| Returns an |
Returns the | |
Returns the | |
Not Supported | |
| Inherited from |
Returns the | |
Returns the | |
Returns the | |
| Inherited by System. |
Returns the name of the specified column | |
Returns an | |
Returns an | |
Returns an | |
Returns an updatable | |
Returns an | |
Returns an updatable | |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
| Returns an |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
Returns an | |
Returns the specified column value as a ODP.NET type | |
Gets all the column values as ODP.NET types | |
Returns the | |
| Returns the provider-specific type of the specified column Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Returns an object that represents the underlying provider-specific value of the specified ordinal Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Returns an array of objects that represent the underlying provider-specific values Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Returns a | |
Returns the string value of the specified column | |
Returns the | |
| Inherited from |
Returns the column value as a .NET type | |
Gets all the column values as .NET types | |
Returns the value of an | |
Indicates whether or not the column value is null | |
Advances the data reader to the next result set when reading the results | |
Reads the next row in the result set | |
| Inherited from |
This method closes the OracleDataReader
.
Declaration
Implements
IDataReader
Remarks
The Close
method frees all resources associated with the OracleDataReader
.
Example
The code example for the OracleDataReader
class includes the Close
method. See OracleDataReader
Overview "Example".
This method releases any resources or memory allocated by the object.
Declaration
Implements
IDisposable
Remarks
The Dispose
method also closes the OracleDataReader
.
This method is not supported.
Declaration
Parameters
index
The zero-based column index.
Implements
IDataRecord
Exceptions
NotSupportedException
- This property is not supported.
This method returns the byte value of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The value of the column as a byte.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method populates the provided byte array with up to the maximum number of bytes, from the specified offset (in bytes) of the column.
Declaration
Parameters
index
The zero-based column index.
fieldOffset
The offset within the column from which reading begins (in bytes).
buffer
The byte array that the data is read into.
bufferOffset
The offset within the buffer to begin reading data into (in bytes).
length
The maximum number of bytes to read (in bytes).
Return Value
The number of bytes read.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
This method returns the number of bytes read into the buffer. This may be less than the actual length of the field if the method has been called previously for the same column.
If a null reference is passed for buffer, the length of the field in bytes is returned.
IsDBNull
should be called to check for NULL
values before calling this method.
This method is not supported.
Declaration
Parameters
index
The zero based column index.
Implements
IDataRecord
Exceptions
NotSupportedException
- This property is not supported.
This method populates the provided character array with up to the maximum number of characters, from the specified offset (in characters) of the column.
Declaration
Parameters
index
The zero based column index.
fieldOffset
The index within the column from which to begin reading (in characters).
buffer
The character array that the data is read into.
bufferOffset
The index within the buffer to begin reading data into (in characters).
length
The maximum number of characters to read (in characters).
Return Value
The number of characters read.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
This method returns the number of characters read into the buffer. This may be less than the actual length of the field, if the method has been called previously for the same column.
If a null reference is passed for buffer, the length of the field in characters is returned.
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the ODP.NET type name of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The name of the ODP.NET type of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed.
IndexOutOfRangeException
- The column index is invalid.
This method returns the DateTime
value of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The DateTime
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the decimal
value of the specified NUMBER
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The decimal
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the double
value of the specified NUMBER
column or BINARY_DOUBLE
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The double
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
Starting with Oracle Database 10g, GetDouble
now supports retrieval of data from BINARY_DOUBLE
columns.
This method returns an IEnumerator
that can be used to iterate through the collection (record set).
Declaration
Return Value
An IEnumerator
that can be used to iterate through the collection (record set).
Exceptions
InvalidOperationException
- The reader is closed.
This method returns the type
of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The type
of the default .NET type of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed, or the specified column is a UDT but no registered custom type mapping exists for the UDT.
IndexOutOfRangeException
- The column index is invalid.
Remarks
GetFieldType
returns a type that corresponds to the value that the application obtains after invoking the GetValue
accessor or Item
property on the OracleDataReader
. For example, if the column is a string, this method returns a .NET Type object for a .NET string.
If the attribute is a UDT, this method may return either of the following:
REF
. This method returns the float
value of the specified NUMBER
column or BINARY_FLOAT
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The float
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
Starting with Oracle Database 10g, GetFloat
now supports retrieval of data from BINARY_FLOAT
columns.
This method is not supported.
Declaration
Parameters
index
The zero-based column index.
Implements
IDataRecord
Exceptions
NotSupportedException
- This property is not supported.
This method returns the Int16
value of the specified NUMBER
column.
Note: short is equivalent to Int16 . |
Declaration
Parameters
index
The zero-based column index.
Return Value
The Int16
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the Int32
value of the specified NUMBER
column.
Note: int is equivalent to Int32 . |
Declaration
Parameters
index
The zero-based column index.
Return Value
The Int32
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the Int64
value of the specified NUMBER
column.
Note: long is equivalent to Int64 . |
Declaration
Parameters
index
The zero-based column index.
Return Value
The Int64
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the name of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The name of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed.
IndexOutOfRangeException
- The column index is invalid.
This method returns an OracleBFile
object of the specified BFILE
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleBFile
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleBinary
structure of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleBinary
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
GetOracleBinary
is used on the following Oracle types:
BFILE
BLOB
LONG
RAW
RAW
This method returns an OracleBlob
object of the specified BLOB
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleBlob
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
GetOracleBlobForUpdate
returns an updatable OracleBlob
object of the specified BLOB
column.
Overload List:
This method returns an updatable OracleBlob
object of the specified BLOB
column.
This method returns an updatable OracleBlob
object of the specified BLOB
column using a WAIT
clause.
This method returns an updatable OracleBlob
object of the specified BLOB
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
An updatable OracleBlob
object.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
When the OracleCommand
's ExecuteReader()
method is invoked, all the data fetched by the OracleDataReader
is from a particular snapshot. Therefore, calling an accessor method on the same column always returns the same value. However, the GetOracleBlobForUpdate()
method incurs a database round-trip to obtain a reference to the current BLOB
data while also locking the row using the FOR
UPDATE
clause. This means that the OracleBlob
obtained from GetOracleBlob()
can have a different value than the OracleBlob
obtained from GetOracleBlobForUpdate()
since it is not obtained from the original snapshot.
The returned OracleBlob
object can be used to safely update the BLOB
because the BLOB
column has been locked after a call to this method.
Invoking this method internally executes a SELECT..FOR UPDATE
statement without a WAIT
clause. Therefore, the statement can wait indefinitely until a lock is acquired for that row.
IsDBNull
should be called to check for NULL
values before calling this method.
Example
The following example gets the OracleBlob
object for update from the reader, updates the OracleBlob
object, and then commits the transaction.
This method returns an updatable OracleBlob
object of the specified BLOB
column using a WAIT
clause.
Declaration
Parameters
index
The zero-based column index.
wait
The number of seconds the method waits to acquire a lock.
Return Value
An updatable OracleBlob
object.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
When the OracleCommand
's ExecuteReader()
method is invoked, all the data fetched by the OracleDataReader
is from a particular snapshot. Therefore, calling an accessor method on the same column always returns the same value. However, the GetOracleBlobForUpdate()
method incurs a database round-trip to obtain a reference to the current BLOB
data while also locking the row using the FOR
UPDATE
clause. This means that the OracleBlob
obtained from GetOracleBlob()
can have a different value than the OracleBlob
obtained from GetOracleBlobForUpdate()
since it is not obtained from the original snapshot.
IsDBNull
should be called to check for NULL
values before calling this method.
The returned OracleBlob
object can be used to safely update the BLOB
because the BLOB
column has been locked after a call to this method.
Invoking this method internally executes a SELECT..FOR UPDATE
statement which locks the row.
Different WAIT
clauses are appended to the statement, depending on the wait
value. If the wait
value is:
0
"NOWAIT
" is appended at the end of a SELECT..FOR
UPDATE
statement. The statement executes immediately whether the lock is acquired or not. If the lock is not acquired, an exception is thrown.
n
"WAIT
n
" is appended at the end of a SELECT..FOR
UPDATE
statement. The statement executes as soon as the lock is acquired. However, if the lock cannot be acquired by n
seconds, this method call throws an exception.
The WAIT
n
" feature is only available for Oracle9i or later. For any version lower than Oracle9i, n
is implicitly treated as -1
and nothing is appended at the end of a SELECT..FOR
UPDATE
statement.
-1
Nothing is appended at the end of the SELECT..FOR
UPDATE
. The statement execution waits indefinitely until a lock can be acquired.
Example
The GetOracleBlobForUpdate
methods are comparable. See "Example" for a code example demonstrating usage.
This method returns an OracleClob object of the specified CLOB column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleClob
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
GetOracleClobForUpdate
returns an updatable OracleClob
object of the specified CLOB
column.
Overload List:
This method returns an updatable OracleClob
object of the specified CLOB
column.
This method returns an updatable OracleClob
object of the specified CLOB
column using a WAIT
clause.
This method returns an updatable OracleClob
object of the specified CLOB
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
An updatable OracleClob
.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
When the OracleCommand
's ExecuteReader()
method is invoked, all the data fetched by the OracleDataReader
is from a particular snapshot. Therefore, calling an accessor method on the same column always returns the same value. However, the GetOracleClobForUpdate()
method incurs a database round-trip to obtain a reference to the current CLOB
data while also locking the row using the FOR
UPDATE
clause. This means that the OracleClob
obtained from GetOracleClob()
can have a different value than the OracleClob
obtained from GetOracleClobForUpdate()
since it is not obtained from the original snapshot.
The returned OracleClob
object can be used to safely update the CLOB
because the CLOB
column is locked after a call to this method.
Invoking this method internally executes a SELECT..FOR
UPDATE
statement without a WAIT
clause. Therefore, the statement can wait indefinitely until a lock is acquired for that row.
IsDBNull
should be called to check for NULL
values before calling this method.
Example
The following example gets the OracleClob
object for update from the reader, updates the OracleClob
object, and then commits the transaction.
This method returns an updatable OracleClob
object of the specified CLOB
column using a WAIT
clause.
Declaration
Parameters
index
The zero-based column index.
wait
The number of seconds the method waits to acquire a lock.
Return Value
An updatable OracleClob
.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
When the OracleCommand
's ExecuteReader()
method is invoked, all the data fetched by the OracleDataReader
is from a particular snapshot. Therefore, calling an accessor method on the same column always returns the same value. However, the GetOracleClobForUpdate()
method incurs a database round-trip to obtain a reference to the current CLOB
data while also locking the row using the FOR
UPDATE
clause. This means that the OracleClob
obtained from GetOracleClob()
can have a different value than the OracleClob
obtained from GetOracleClobForUpdate()
since it is not obtained from the original snapshot.
Invoking this method internally executes a SELECT..FOR UPDATE
statement which locks the row.
The returned OracleClob
object can be used to safely update the CLOB
because the CLOB
column is locked after a call to this method.
Different WAIT
clauses are appended to the statement, depending on the wait
value. If the wait
value is:
0
"NOWAIT
" is appended at the end of a SELECT..FOR UPDATE
statement. The statement executes immediately whether the lock is acquired or not. If the lock is not acquired, an exception is thrown.
n
"WAIT
n
" is appended at the end of a SELECT..FOR UPDATE
statement. The statement executes as soon as the lock is acquired. However, if the lock cannot be acquired by n
seconds, this method call throws an exception.
The WAIT
n
" feature is only available for Oracle9i or later. For any version lower than Oracle9i, n
is implicitly treated as -1
and nothing is appended at the end of a SELECT..FOR
UPDATE
statement.
-1
Nothing is appended at the end of the SELECT..FOR UPDATE
. The statement execution waits indefinitely until a lock can be acquired.
IsDBNull
should be called to check for NULL
values before calling this method.
Example
The GetOracleClobForUpdate methods are comparable. See "Example" for a code example demonstrating usage.
This method returns an OracleDate structure of the specified DATE column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleDate
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleDecimal
structure of the specified NUMBER
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleDecimal
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleIntervalDS
structure of the specified INTERVAL
DAY
TO
SECOND
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleIntervalDS
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleIntervalYM
structure of the specified INTERVAL
YEAR
TO
MONTH
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleIntervalYM
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleRef
object of the specified REF
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleRef
object of the specified column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, the Read
method has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type.
This method returns an OracleString
structure of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleString
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
If the column is an Oracle REF
column, the string returned is a hexadecimal value that represents the REF
in the database.
This method returns an OracleTimeStamp
structure of the Oracle TimeStamp
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleTimeStamp
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
GetOracleTimeStamp
is used with the Oracle Type TimeStamp
.
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleTimeStampLTZ
structure of the specified Oracle TimeStamp
WITH
LOCAL
TIME
ZONE
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleTimeStampLTZ
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
GetOracleTimeStampLTZ
is used with the Oracle Type TimeStamp
with Local Time Zone columns.
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleTimeStampTZ
structure of the specified Oracle TimeStamp
WITH
TIME
ZONE
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleTimeStampTZ
value of the column.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
Used with the Oracle Type TimeStamp
with Local Time Zone columns
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns an OracleXmlType
object of the specified XMLType
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The OracleXmlType
value of the column.
Exceptions
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
Requirements
This property can only be used with Oracle9i Release 2 (9.2) or later.
This method returns the specified column value as an ODP.NET type.
Declaration
Parameters
index
The zero-based column index.
Return Value
The value of the column as an ODP.NET type.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
Remarks
If the column is an Oracle object or Oracle collection column and a custom type mapping exists, then a custom type is returned.
If the column is an Oracle REF
column, then an OracleRef
is returned.
This method gets all the column values as ODP.NET types.
Declaration
Parameters
values
An array of objects to hold the ODP.NET types as the column values.
Return Value
The number of ODP.NET types in the values
array.
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
Remarks
This method provides a way to retrieve all column values rather than retrieving each column value individually.
The number of column values retrieved is the minimum of the length of the values
array and the number of columns in the result set.
This method returns the 0
-based ordinal (or index) of the specified column name.
Declaration
Parameters
name
The specified column name.
Return Value
The index of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed.
IndexOutOfRangeException
- The column index is invalid.
Remarks
A case-sensitive search is made to locate the specified column by its name. If this fails, then a case-insensitive search is made.
This method returns the provider-specific type of the specified column.
Declaration
Parameters
index
A zero-based column index.
Return Value
The provider-specific type of the specified column. This is a member of the Oracle.DataAccess.Types
namespace.
Exceptions
IndexOutOfRangeException
- The column index is invalid.
InvalidOperationException
- The reader is closed, or the specified column is a UDT but no registered custom type mapping exists for the UDT.
Remarks
GetProviderSpecficFieldType
returns a type that corresponds to the value the application obtains after invoking the GetProviderSpecificValue
accessor on the OracleDataReader
. For example, if the column is a string, this method returns a .NET Type object for an OracleString
.
If the attribute is a UDT, this method may return any of the following:
OracleRef
if the column is an Oracle REF
. This method returns an object that represents the underlying provider-specific value of the specified ordinal.
Declaration
Parameters
index
A zero-based column index.
Return Value
An Object
that is a representation of the underlying provider-specific field type.
Exceptions
IndexOutOfRangeException
- The column index is invalid.
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called or all rows have been read.
Remarks
If the column is an Oracle object or collection column, and a custom type mapping exists, a custom type is returned.
If the column is an Oracle REF
column, an OracleRef
is returned.
This method returns an array of objects that represent the underlying provider-specific values.
Declaration
Parameters
values
An array of objects.
Return Value
The number of Object
instances in the array.
Exceptions
InvalidOperationException
- The reader is closed.
This method returns a DataTable
that describes the column metadata of the OracleDataReader
.
Declaration
Return Value
A DataTable
that contains the metadata of the result set.
Implements
IDataReader
Exceptions
InvalidOperationException
- The connection is closed or the reader is closed.
Remarks
The OracleDataReader.GetSchemaTable
method returns the SchemaTable
.
The OracleDataReader
SchemaTable
is a DataTable
that describes the column metadata of the OracleDataReader
.
The columns of the SchemaTable
are in the order shown.
Table 5-49 OracleDataReader SchemaTable
Name | Name Type | Description |
---|---|---|
|
| The name of the column. |
|
| The |
|
| The maximum possible length of a value in the column.
See " |
|
| The maximum precision of the column, if the column is a numeric data type. This column has valid values for Oracle |
|
| The scale of the column. This column has valid values for Oracle |
|
| Indicates whether or not the column is unique.
The default is The value of this property is the same for each occurrence of the base table column in the select list. |
|
| Indicates whether or not the column is a key column.
This set of columns can be generated from one of the following in descending order of priority:
An explicitly selected |
|
|
|
|
| The name of the column in the database if an alias is used for the column. |
|
| The name of the schema in the database that contains the column. |
|
| The name of the table or view in the database that contains the column. |
|
| Maps to the common language runtime type. |
|
| The database column type (|
|
|
|
|
|
|
|
|
This value is always |
|
|
|
|
|
|
|
|
|
|
|
|
|
| The type name of the UDT. |
Example
This example creates and uses the SchemaTable
from the reader.
This method returns the string
value of the specified column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The string
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
Call the IsDBNull
method to check for null values before calling this method.
If the column is an Oracle REF
column, the string returned is a hexadecimal string that represents the REF
in the database.
This method returns the TimeSpan
value of the specified INTERVAL
DAY
TO
SECOND
column.
Declaration
Parameters
index
The zero-based column index.
Return Value
The TimeSpan
value of the column.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method returns the column value as a .NET type.
Declaration
Parameters
index
The zero-based column index.
Return Value
The value of the column as a .NET type.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, all rows have been read, or no valid custom type mapping has been specified for the Oracle Object or Oracle Collection column.
IndexOutOfRangeException
- The column index is invalid.
Remarks
If the column is an Oracle Object or an Oracle Collection column, the .NET custom type corresponding to the custom type mapping is returned.
If the column is an Oracle REF
column, a hexidecimal value is returned as a .NET string that represents the REF
in the database.
If the UDT is NULL
, DBNull.Value
is returned
This method gets all the column values as .NET types.
Declaration
Parameters
values
An array of objects to hold the .NET types as the column values.
Return Value
The number of objects in the values
array.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.
Remarks
This method provides a way to retrieve all column values rather than retrieving each column value individually.
The number of column values retrieved is the minimum of the length of the values array and the number of columns in the result set.
This method returns the contents of an XMLType
column as an instance of an .NET XmlTextReader
object.
Declaration
Parameters
index
The zero-based column index.
Return Value
A .NET XmlTextReader
.
Exceptions
InvalidCastException
- The accessor method is invalid for this column type or the column value is NULL
.
Remarks
IsDBNull
should be called to check for NULL
values before calling this method.
This method indicates whether or not the column value is NULL
.
Declaration
Parameters
index
The zero-based column index.
Return Value
Returns true
if the column is a NULL
value; otherwise, returns false
.
Implements
IDataRecord
Exceptions
InvalidOperationException
- The reader is closed, Read()
has not been called, or all rows have been read.
IndexOutOfRangeException
- The column index is invalid.
Remarks
This method should be called to check for NULL
values before calling the other accessor methods.
Example
The code example for the OracleDataReader
class includes the IsDBNull
method. See "Example".
This method advances the data reader to the next result set.
Declaration
Return Value
Returns true
if another result set exists; otherwise, returns false
.
Implements
IDataReader
Exceptions
InvalidOperationException
- The connection is closed or the reader is closed.
Remarks
NextResult
is used when reading results from stored procedure execution that return more than one result set.
This method reads the next row in the result set.
Declaration
Return Value
Returns true
if another row exists; otherwise, returns false
.
Implements
IDataReader
Exceptions
InvalidOperationException
- The connection is closed or the reader is closed.
Remarks
The initial position of the data reader is before the first row. Therefore, the Read
method must be called to fetch the first row. The row that was just read is considered the current row. If the OracleDataReader
has no more rows to read, it returns false
.
Example
The code example for the OracleDataReader
class includes the Read
method. See "Example".
The OracleError
class represents an error reported by Oracle.
Class Inheritance
System.Object
Oracle.DataAccess.Client.OracleError
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The OracleError
class represents a warning or an error reported by Oracle.
If there are multiple errors, ODP.NET only returns the first error message on the stack.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleError
members are listed in the following tables.
OracleError Static Methods
The OracleError
static method is listed in Table 5-50.
Table 5-50 OracleError Static Method
Method | Description |
---|---|
| Inherited from |
OracleError Properties
OracleError
properties are listed in Table 5-51.
Table 5-51 OracleError Properties
Property | Description |
---|---|
| Specifies the row number of errors that occurred during the Array Bind execution |
Specifies the Oracle service name (TNS name) that identifies the Oracle database | |
Specifies the | |
Specifies the Oracle | |
Specifies the stored procedure that causes the | |
Specifies the name of the data provider that generates the |
OracleError Methods
OracleError
methods are listed in Table 5-52.
Table 5-52 OracleError Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Returns a string representation of the |
The OracleError
static method is listed in Table 5-53.
Table 5-53 OracleError Static Method
Method | Description |
---|---|
| Inherited from |
OracleError
properties are listed in Table 5-54.
Table 5-54 OracleError Properties
Property | Description |
---|---|
| Specifies the row number of errors that occurred during the Array Bind execution |
Specifies the Oracle service name (TNS name) that identifies the Oracle database | |
Specifies the | |
Specifies the Oracle | |
Specifies the stored procedure that causes the | |
Specifies the name of the data provider that generates the |
This property specifies the row number of errors that occurred during the Array Bind execution.
Declaration
Property Value
An int
value that specifies the row number for errors that occurred during the Array Bind execution.
Remarks
Default = 0.
This property is used for Array Bind operations only.
ArrayBindIndex
represents the zero-based row number at which the error occurred during an Array Bind operation. For example, if an array bind execution causes two errors on the 2nd and 4th operations, two OracleError
objects appear in the OracleErrorCollection
with the ArrayBindIndex
property values 2 and 4 respectively.
This property specifies the Oracle service name (TNS name) that identifies the Oracle database.
Declaration
Property Value
A string
.
This property specifies the message
describing the error
.
Declaration
Property Value
A string
.
This property specifies the Oracle error
number.
Declaration
Property Value
An int
.
This property specifies the stored procedure that causes the error
.
Declaration
Property Value
The stored procedure name.
Remarks
Represents the stored procedure which creates this OracleError
object.
This property specifies the name of the data provider that generates the error
.
Declaration
Property Value
A string
.
OracleError
methods are listed in Table 5-55.
Table 5-55 OracleError Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from System. |
Returns a string representation of the |
Overrides Object
This method returns a string representation of the OracleError
.
Declaration
Return Value
Returns a string with the format Ora- error number: Class.Method name error message stack trace information.
Example
ORA-24333: zero iteration count
An OracleErrorCollection
class represents a collection of all errors that are thrown by the Oracle Data Provider for .NET.
Class Inheritance
System.Object
System.ArrayList
Oracle.DataAccess.Client.OracleErrorCollection
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
A simple ArrayList
that holds a list of OracleError
s.
If there are multiple errors, ODP.NET only returns the first error message on the stack.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleErrorCollection
members are listed in the following tables.
OracleErrorCollection Static Methods
OracleErrorCollection
static methods are listed in Table 5-56.
Table 5-56 OracleErrorCollection Static Methods
Method | Description |
---|---|
| Inherited from |
OracleErrorCollection Properties
OracleErrorCollection
properties are listed in Table 5-57.
Table 5-57 OracleErrorCollection Properties
Property | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleErrorCollection Public Methods
OracleErrorCollection
public methods are listed in Table 5-58.
Table 5-58 OracleErrorCollection Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleErrorCollection
static method is listed in Table 5-59.
Table 5-59 OracleErrorCollection Static Method
Method | Description |
---|---|
| Inherited from |
OracleErrorCollection
properties are listed in Table 5-60.
Table 5-60 OracleErrorCollection Properties
Property | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleErrorCollection
public methods are listed in Table 5-61.
The OracleException
class represents an exception that is thrown when the Oracle Data Provider for .NET encounters an error. Each OracleException
object contains at least one OracleError
object in the Error
property that describes the error or warning.
Class Inheritance
System.Object
System.Exception
System.SystemException
System.Runtime.InteropServices.ExternalException
(ADO.NET 2.0 only)
System.Data.Common.DbException
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleException
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
If there are multiple errors, ODP.NET only returns the first error message on the stack.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleException
members are listed in the following tables.
OracleException Static Methods
The OracleException
static method is listed in Table 5-62.
Table 5-62 OracleException Static Method
Method | Description |
---|---|
| Inherited from |
OracleException Properties
OracleException
properties are listed in Table 5-63.
Table 5-63 OracleException Properties
Property | Description |
---|---|
Specifies the TNS name that contains the information for connecting to an Oracle instance | |
Specifies a collection of one or more | |
| Inherited from |
| Inherited from |
Specifies the error messages that occur in the exception | |
Specifies the Oracle error number | |
Specifies the stored procedure that cause the exception | |
Specifies the name of the data provider that generates the error | |
| Inherited from |
| Inherited from |
OracleException Methods
OracleException
methods are listed in Table 5-64.
Table 5-64 OracleException Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
Sets the serializable | |
| Inherited from |
Returns the fully qualified name of this exception |
The OracleException
static method is listed in Table 5-65.
Table 5-65 OracleException Static Method
Method | Description |
---|---|
| Inherited from |
OracleException
properties are listed in Table 5-66.
Table 5-66 OracleException Properties
Property | Description |
---|---|
Specifies the TNS name that contains the information for connecting to an Oracle instance | |
Specifies a collection of one or more | |
| Inherited from |
| Inherited from |
Specifies the error messages that occur in the exception | |
Specifies the Oracle error number | |
Specifies the stored procedure that cause the exception | |
Specifies the name of the data provider that generates the error | |
| Inherited from |
| Inherited from |
This property specifies the TNS name that contains the information for connecting to an Oracle instance.
Declaration
Property Value
The TNS name containing the connect information.
This property specifies a collection of one or more OracleError
objects that contain information about exceptions generated by the Oracle database.
Declaration
Property Value
An OracleErrorCollection
.
Remarks
The Errors
property contains at least one instance of OracleError
objects.
Overrides Exception
This property specifies the error messages that occur in the exception.
Declaration
Property Value
A string
.
Remarks
Message
is a concatenation of all errors in the Errors
collection. Each error message is concatenated and is followed by a carriage return, except the last one.
This property specifies the Oracle error number.
Declaration
Property Value
The error number.
Remarks
This error number can be the topmost level of error generated by Oracle and can be a provider-specific error number.
This property specifies the stored procedure that caused the exception.
Declaration
Property Value
The stored procedure name.
Overrides Exception
This property specifies the name of the data provider that generates the error.
Declaration
Property Value
The name of the data provider.
OracleException
methods are listed in Table 5-67.
Table 5-67 OracleException Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from System. |
Sets the serializable | |
| Inherited from |
Returns the fully qualified name of this exception |
Overrides Exception
This method sets the serializable info
object with information about the exception.
Declaration
Parameters
info
A SerializationInfo
object.
context
A StreamingContext
object.
Remarks
The information includes DataSource
, Message
, Number
, Procedure
, Source
, and StackTrace
.
Overrides Exception
This method returns the fully qualified name of this exception, the error
message in the Message
property, the InnerException.ToString()
message, and the stack trace.
Declaration
Return Value
The string representation of the exception.
Example
The OracleInfoMessageEventArgs
class provides event data for the OracleConnection.InfoMessage
event. When any warning occurs in the database, the OracleConnection.InfoMessage
event is triggered along with the OracleInfoMessageEventArgs
object that stores the event data.
Class Inheritance
System.Object
System.EventArgs
Oracle.DataAccess.Client.OracleInfoMessageEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleInfoMessageEventArgs
members are listed in the following tables.
OracleInfoMessageEventArgs Static Methods
The OracleInfoMessageEventArgs
static methods is listed in Table 5-68.
Table 5-68 OracleInfoMessageEventArgs Static Method
Method | Description |
---|---|
| Inherited from |
OracleInfoMessageEventArgs Properties
The OracleInfoMessageEventArgs
properties are listed in Table 5-69.
Table 5-69 OracleInfoMessageEventArgs Properties
Property | Description |
---|---|
Specifies the collection of errors generated by the data source | |
Specifies the error text generated by the data source | |
Specifies the name of the object that generated the error |
OracleInfoMessageEventArgs Public Methods
The OracleInfoMessageEventArgs
methods are listed in Table 5-70.
Table 5-70 OracleInfoMessageEventArgs Public Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleInfoMessageEventArgs
static method is listed in Table 5-71.
Table 5-71 OracleInfoMessageEventArgs Static Method
Method | Description |
---|---|
| Inherited from |
The OracleInfoMessageEventArgs
properties are listed in Table 5-72.
Table 5-72 OracleInfoMessageEventArgs Properties
Property | Description |
---|---|
Specifies the collection of errors generated by the data source | |
Specifies the error text generated by the data source | |
Specifies the name of the object that generated the error |
This property specifies the collection of errors generated by the data source.
Declaration
Property Value
The collection of errors.
This property specifies the error text generated by the data source.
Declaration
Property Value
The error text.
This property specifies the name of the object that generated the error.
Declaration
Property Value
The object that generated the error.
The OracleInfoMessageEventArgs
methods are listed in Table 5-73.
The OracleInfoMessageEventHandler
represents the signature of the method that handles the OracleConnection.InfoMessage
event.
Declaration
Parameters
sender
The source of the event.
eventArgs
The OracleInfoMessageEventArgs
object that contains the event data.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
An OracleParameter
object represents a parameter for an OracleCommand
or a DataSet
column.
Class Inheritance
System.Object
System.MarshalByRefObject
System.Data.Common.DbParameter
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleParameter
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Exceptions
ArgumentException
- The type binding is invalid.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleParameter
members are listed in the following tables.
OracleParameter Constructors
OracleParameter
constructors are listed in Table 5-74.
Table 5-74 OracleParameter Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleParameter Static Methods
OracleParameter
static methods are listed in Table 5-75.
Table 5-75 OracleParameter Static Methods
Method | Description |
---|---|
| Inherited from |
OracleParameter Properties
OracleParameter
properties are listed in Table 5-76.
Table 5-76 OracleParameter Properties
Property | Description |
---|---|
Specifies the input or output size of elements in | |
Specifies the input or output status of elements in | |
| Specifies whether or not the |
Specifies the data type of the parameter using the | |
Specifies whether the parameter is input-only, output-only, bi-directional, or a stored function return value parameter | |
| Not supported |
Specifies the offset to the | |
Specifies the Oracle data type | |
| Specifies the Oracle data type to bind the parameter as, but returns a .NET type as output |
Specifies the name of the parameter | |
Specifies the maximum number of digits used to represent the | |
Specifies the number of decimal places to which | |
Specifies the maximum size, in bytes or characters, of the data transmitted to or from the database. For PL/SQL Associative Array Bind, | |
Specifies the name of the | |
| Specifies a value which indicates whether the source column is nullable Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Specifies the | |
Indicates the status of the execution related to the data in the | |
| Specifies the Oracle user-defined type name if the parameter is a user-defined data type |
| Specifies the value of the |
OracleParameter Public Methods
OracleParameter
public methods are listed in Table 5-77.
Table 5-77 OracleParameter Public Methods
Public Method | Description |
---|---|
Creates a shallow copy of an | |
| Inherited from |
| Releases allocated resources |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Resets the type associated with the parameter so that it can infer its type from the value passed in the parameter Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Resets the type associated with the parameter so that it can infer its type from the value passed in the parameter Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
OracleParameter
constructors instantiate new instances of the OracleParameter
class.
Overload List:
This constructor instantiates a new instance of OracleParameter
class.
This constructor instantiates a new instance of OracleParameter
class using the supplied parameter name and Oracle data type.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name and parameter value.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, and parameter direction.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, value, and direction.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, and size.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, and source column.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, direction, null indicator, precision, scale, source column, source version and parameter value.
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, value, and direction.
This constructor instantiates a new instance of OracleParameter
class.
Declaration
Remarks
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of OracleParameter
class using the supplied parameter name and Oracle data type.
Declaration
Parameters
parameterName
The parameter name.
oraType
The data type of the OracleParameter
.
Remarks
Changing the DbType
implicitly changes the OracleDbType
.
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name and parameter value.
Declaration
Parameters
parameterName
The parameter name.
obj
The value of the OracleParameter
.
Remarks
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, and parameter direction.
Declaration
Parameters
parameterName
The parameter name.
type
The data type of the OracleParameter
.
direction
The direction of the OracleParameter
.
Remarks
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, value, and direction.
Declaration
Parameters
parameterName
The parameter name.
type
The data type of the OracleParameter
.
obj
The value of the OracleParameter
.
direction
The ParameterDirection
value.
Remarks
Changing the DbType
implicitly changes the OracleDbType
.
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, and size.
Declaration
Parameters
parameterName
The parameter name.
type
The data type of the OracleParameter
.
size
The size of the OracleParameter
value.
Remarks
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, and source column.
Declaration
Parameters
parameterName
The parameter name.
type
The data type of the OracleParameter
.
size
The size of the OracleParameter
value.
srcColumn
The name of the source column.
Remarks
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, direction, null indicator, precision, scale, source column, source version and parameter value.
Declaration
Parameters
parameterName
The parameter name.
oraType
The data type of the OracleParameter
.
size
The size of the OracleParameter
value.
direction
The ParameterDirection
value.
isNullable
An indicator that specifies if the parameter value can be null
.
precision
The precision of the parameter value.
scale
The scale of the parameter value.
srcColumn
The name of the source column.
srcVersion
The DataRowVersion
value.
obj
The parameter value.
Exceptions
ArgumentException
- The supplied value does not belong to the type of Value
property in any of the OracleType
s.
Remarks
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
This constructor instantiates a new instance of the OracleParameter
class using the supplied parameter name, data type, size, value, and direction.
Declaration
Parameters
parameterName
The parameter name.
type
The data type of the OracleParameter
.
size
The size of the OracleParameter
value.
obj
The value of the OracleParameter
.
direction
The ParameterDirection
value.
Remarks
Changing the DbType
implicitly changes the OracleDbType
.
Unless explicitly set in the constructor, all the properties have the default values.
Default Values:
DbType
- String
ParameterDirection
- Input
isNullable
- true
offset
- 0
OracleDbType
- Varchar2
ParameterAlias
- Empty string ParameterName
- Empty string Precision
- 0
Size
- 0
SourceColumn
- Empty string SourceVersion
- Current
ArrayBindStatus
- Success
Value
- null
The OracleParameter
static method is listed in Table 5-78.
OracleParameter
properties are listed in Table 5-79.
Table 5-79 OracleParameter Properties
Property | Description |
---|---|
Specifies the input or output size of elements in | |
Specifies the input or output status of elements in | |
| Specifies whether or not the |
Specifies the data type of the parameter using the | |
Specifies whether the parameter is input-only, output-only, bi-directional, or a stored function return value parameter | |
| Not supported |
Specifies the offset to the | |
Specifies the Oracle data type | |
| Specifies the Oracle data type to bind the parameter as, but returns a .NET type as output |
Specifies the name of the parameter | |
Specifies the maximum number of digits used to represent the | |
Specifies the number of decimal places to which | |
Specifies the maximum size, in bytes or characters, of the data transmitted to or from the database. For PL/SQL Associative Array Bind, | |
Specifies the name of the | |
| Specifies a value which indicates whether the source column is nullable Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Specifies the | |
Indicates the status of the execution related to the data in the | |
| Specifies the Oracle user-defined type name if the parameter is a user-defined data type |
| Specifies the value of the |
This property specifies the maximum size, in bytes or characters, of the data for each array element transmitted to or from the database. This property is used for Array Bind or PL/SQL Associative Array execution.
Declaration
Property Value
An array of int
values specifying the size.
Remarks
Default = null
.
This property is only used for variable size element types for an Array Bind or PL/SQL Associative Array. For fixed size element types, this property is ignored.
Each element in the ArrayBindSize
corresponds to the bind size of an element in the Value
property. Before execution, ArrayBindSize
specifies the maximum size of each element to be bound in the Value
property. After execution, it contains the size of each element returned in the Value
property.
For binding a PL/SQL Associative Array, whose elements are of a variable-length element type, as an InputOutput
, Out
, or ReturnValue
parameter, this property must be set properly. The number of elements in ArrayBindSize
must be equal to the value specified in the OracleParameter.Size
property.
Example
See Also:
|
This property specifies the input or output status of each element in the Value
property before or after an Array Bind or PL/SQL Associative Array execution.
Declaration
Property Value
An array of OracleParameterStatus
enumerated values.
Exceptions
ArgumentOutofRangeException
- The Status
value specified is invalid.
Remarks
Default = null
.
ArrayBindStatus
is used for Array Bind and PL/SQL Associative Array execution only.
Before execution, ArrayBindStatus
indicates the bind status of each element in the Value
property. After execution, it contains the execution status of each element in the Value
property.
See Also:
|
This property specifies whether or not the OracleParameter
represents a collection, and if so, specifies the collection type.
Declaration
Property Value
An OracleCollectionType
enumerated value.
Exceptions
ArgumentException
- The OracleCollectionType
value specified is invalid.
Remarks
Default = OracleCollectionType.None
. If OracleParameter
is used to bind a PL/SQL Associative Array, then CollectionType
must be set to OracleCollectionType.PLSQLAssociativeArray
.
This property specifies the data type of the parameter using the Data.DbType
enumeration type.
Declaration
Property Value
A DbType
enumerated value.
Implements
IDataParameter
Exceptions
ArgumentException
- The DbType
value specified is invalid.
Remarks
Default = DbType.String
DbType
is the data type of each element in the array if the OracleParameter
object is used for Array Bind or PL/SQL Associative Array Bind execution.
Due to the link between DbType
and OracleDbType
properties, if the DbType
property is set, the OracleDbType
property is inferred from DbType
.
This property specifies whether the parameter is input-only, output-only, bi-directional, or a stored function return value parameter.
Declaration
Property Value
A ParameterDirection
enumerated value.
Implements
IDataParameter
Exceptions
ArgumentOutOfRangeException
- The ParameterDirection
value specified is invalid.
Remarks
Default = ParameterDirection.Input
Possible values: Input
, InputOutput
, Output
, and ReturnValue
.
This property is not supported.
Declaration
Implements
IDataParameter
Property Value
This property is not supported.
This property specifies the offset to the Value
property.
Declaration
Property Value
An int
that specifies the offset.
Exceptions
ArgumentOutOfRangeException
- The Offset
value specified is invalid.
Remarks
Default = 0
For Array Bind and PL/SQL Associative Array Bind, Offset
applies to every element in the Value
property.
The Offset
property is used for binary and string data types. The Offset
property represents the number of bytes for binary types and the number of characters for strings. The count for strings does not include the terminating character if a null
is referenced. The Offset
property is used by parameters of the following types:
OracleDbType.BFile
OracleDbType.Blob
OracleDbType.LongRaw
OracleDbType.Raw
OracleDbType.Char
OracleDbType.Clob
OracleDbType.NClob
OracleDbType.NChar
OracleDbType.NVarchar2
OracleDbType.Varchar2
This property specifies the Oracle data type.
Declaration
Property Value
An OracleDbType
enumerated value.
Remarks
Default = OracleDbType.Varchar2
If the OracleParameter
object is used for Array Bind or PL/SQL Associative Array Bind execution, OracleDbType
is the data type of each element in the array.
The OracleDbType
property and DbType
property are linked. Therefore, setting the OracleDbType
property changes the DbType
property to a supporting DbType
.
This property specifies the Oracle data type to bind the parameter as, but returns a .NET type as output.
Declaration
Property Value
An OracleDbType
enumerated value.
Remarks
This property is used by applications that need to bind a parameter value as an Oracle type, but need a .NET type back for output. This property should be used with an output or input/output parameter. For an input parameter, using OracleDbTypeEx
has the same affect as using OracleDbType
. The .NET type that is returned for the output is the .NET type that the Oracle type closely maps to.
This property specifies the name of the parameter.
Declaration
Property Value
String
Implements
IDataParameter
Remarks
Default = null
Oracle supports ParameterName
up to 30 characters.
This property specifies the maximum number of digits used to represent the Value
property.
Declaration
Property Value
byte
Remarks
Default = 0
The Precision
property is used by parameters of type OracleDbType.Decimal
.
Oracle supports Precision
range from 0
to 38
.
For Array Bind and PL/SQL Associative Array Bind, Precision
applies to each element in the Value
property.
This property specifies the number of decimal places to which Value
property is resolved.
Declaration
Property Value
byte
Remarks
Default = 0
.
Scale
is used by parameters of type OracleDbType.Decimal
.
Oracle supports Scale
between -84
and 127
.
For Array Bind and PL/SQL Associative Array Bind, Scale
applies to each element in the Value
property.
This property specifies the maximum size, in bytes or characters, of the data transmitted to or from the database.
Declaration
Property Value
int
Exceptions
ArgumentOutOfRangeException
- The Size
value specified is invalid.
InvalidOperationException
- The Size
= 0 when the OracleParameter
object is used to bind a PL/SQL Associative Array.
Remarks
For PL/SQL Associative Array Bind, Size
specifies the maximum number of elements in PL/SQL Associative Array.
If Size
is not explicitly set, it is inferred from the actual size of the specified parameter value when binding only for input parameters. Output parameters must have their size defined explicitly.
The default value is 0
.
Before execution, this property specifies the maximum size to be bound in the Value
property. After execution, it contains the size of the type in the Value
property.
Size
is used for parameters of the following types:
OracleDbType.Blob
OracleDbType.Char
OracleDbType.Clob
OracleDbType.LongRaw
OracleDbType.NChar
OracleDbType.NClob
OracleDbType.NVarchar2
OracleDbType.Raw
OracleDbType.Varchar2
The value of Size
is handled as follows:
Size
is in number of characters and for binary data, it is in number of bytes. If the Size
is not explicitly set, it is inferred from the actual size of the specified parameter value when binding.
Note: Size does not include the null terminating character for the string data. |
If the OracleParameter
object is used to bind a PL/SQL Associative Array, Size
specifies the maximum number of elements in the PL/SQL Associative Array. Before the execution, this property specifies the maximum number of elements in the PL/SQL Associative Array. After the execution, it specifies the current number of elements returned in the PL/SQL Associative Array. For Output
and InputOutput
parameters and return values, Size
specifies the maximum number of elements in the PL/SQL Associative Array.
ODP.NET does not support binding an empty PL/SQL Associative Array. Therefore, Size
cannot be set to 0
when the OracleParameter
object is used to bind a PL/SQL Associative Array.
This property specifies the name of the DataTable
Column of the DataSet
.
Declaration
Property Value
A string
.
Implements
IDataParameter
Remarks
Default = empty string
This property specifies a value which indicates whether the source column is nullable.
Declaration
Property Value
Returns true
if the source column can be nullified; otherwise, returns false
.
Remarks
The default value is false
.
This property specifies the DataRowVersion
value to use when loading the Value
property of the parameter.
Declaration
Property Value
DataRowVersion
Implements
IDataParameter
Exceptions
ArgumentOutOfRangeException
- The DataRowVersion
value specified is invalid.
Remarks
Default = DataRowVersion.Current
SourceVersion
is used by the OracleDataAdapter.UpdateCommand()
during the OracleDataAdapter.Update
to determine whether the original or current value is used for a parameter value. This allows primary keys to be updated. This property is ignored by the OracleDataAdapter.InsertCommand()
and the OracleDataAdapter.DeleteCommand()
.
This property indicates the status of the execution related to the data in the Value
property.
Declaration
Property Value
An OracleParameterStatus
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The Status
value specified is invalid.
Remarks
Default = OracleParameterStatus.Success
Before execution, this property indicates the bind status related to the Value
property. After execution, it returns the status of the execution.
Status
indicates if:
NULL
is fetched from a column. Value
was not big enough to hold the data. NULL
is to be inserted into a database column; then Value
is ignored, and a NULL
is inserted into a database column. This property is ignored for Array Bind and PL/SQL Associative Array Bind. Instead, ArrayBindStatus
property is used.
This property specifies the Oracle user-defined type name if the parameter is a user-defined data type.
Declaration
Property Value
Name of the Oracle UDT.
Remarks
The UdtTypeName
property corresponds to the user-defined type name of the parameter. This property must always be specified if the parameter is a user-defined type. Note that when a custom object is provided as an input parameter value, it is converted to the Oracle UDT that is specified by the custom type mapping on the connection used to execute the command.The Oracle UDT specified by the custom type mapping and by the OracleParamter.UdtTypeName
property differs if the application binds a custom object that represents a subtype of the parameter type.
This property specifies the value of the Parameter
.
Declaration
Property Value
An object
.
Implements
IDataParameter
Exceptions
ArgumentException
- The Value
property specified is invalid.
InvalidArgumentException
- The Value
property specified is invalid.
Remarks
Default = null
If the OracleParameter
object is used for Array Bind or PL/SQL Associative Array, Value
is an array of parameter values.
The Value
property can be overwritten by OracleDataAdapter.Update()
.
The provider attempts to convert any type of value if it supports the IConvertible
interface. Conversion errors occur if the specified type is not compatible with the value.
When sending a null
parameter value to the database, the user must specify DBNull
, not null
. The null
value in the system is an empty object that has no value. DBNull
is used to represent null
values. The user can also specify a null
value by setting Status
to OracleParameterStatus.NullValue
. In this case, the provider sends a null
value to the database.
If neither OracleDbType
nor DbType
are set, their values can be inferred by Value
. Please see the following for related information:
For input parameters the value is:
OracleCommand
that is sent to the database. OracleDbType
or DbType
when the provider sends the data to the database. For output parameters the value is:
OracleCommand
(true for return value parameters also). OracleDbType
or DbType
. When array binding is used with:
Value
should be set to an array of values. OracleCommand.ArrayBindCount
should be set to a value that is greater than zero to indicate the number of elements to be bound. The number of elements in the array should be equal to the OracleCommand.ArrayBindCount
property; otherwise, their minimum value is used to bind the elements in the array.
OracleCommand.ArrayBindCount
should be set to a value that is greater than zero to indicate the number of elements to be retrieved (for SELECT
statements). When PL/SQL Associative Array binding is used with:
CollectionType
should be set to OracleCollection.PLSQLAssociativeArray.Size
should be set to specify the possible maximum number of array elements in the PL/SQL Associative Array. If Size
is smaller than the number of elements in Value
, then Size
specifies the number of elements in the Value property to be bound. CollectionType
should be set to OracleCollection.PLSQLAssociativeArray
. Size
should be set to specify the maximum number of array elements in PL/SQL Associative Array. Each parameter should have a value. To bind a parameter with a null
value, set Value
to DBNull.Value
, or set Status
to OracleParameterStatus.
NullInsert
.
OracleParameter
public methods are listed in Table 5-80.
Table 5-80 OracleParameter Public Methods
Public Method | Description |
---|---|
Creates a shallow copy of an | |
| Inherited from |
| Releases allocated resources |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Resets the type associated with the parameter so that it can infer its type from the value passed in the parameter Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Resets the type associated with the parameter so that it can infer its type from the value passed in the parameter Supported Only in ADO.NET 2.0-Compliant ODP.NET |
| Inherited from |
This method creates a shallow copy of an OracleParameter
object.
Declaration
Return Value
An OracleParameter
object.
Implements
ICloneable
Remarks
The cloned object has the same property values as that of the object being cloned.
Example
This method releases resources allocated for an OracleParameter
object.
Declaration
Implements
IDisposable
This method resets the type associated with the parameter so that it can infer its type from the value passed in the parameter.
Declaration
Remarks
If an application does not set the DbType
or OracleDbType
properties of an OracleParameter
object, then these values are inferred from the value set by the application to that OracleParameter
object. Calling ResetDbType
method resets these properties so that OracleParameter
can again infer its type from the value passed into the OracleParameter
. Calling this method affects both the DbType
and OracleDbType
properties of the OracleParameter
object.
This method resets the type associated with the parameter so that it can infer its type from the value passed in the parameter.
Declaration
Remarks
If an application does not set the DbType
or OracleDbType
properties of an OracleParameter
object, then these values are inferred from the value set by the application to that OracleParameter
object. Calling the ResetOracleDbType
method resets these properties so that OracleParameter
can again infer its type from the value passed into the OracleParameter
. Calling this method affects both the DbType
and OracleDbType
properties of the OracleParameter
object.
An OracleParameterCollection
class represents a collection of all parameters relevant to an OracleCommand
object and their mappings to DataSet
columns.
Class Inheritance
System.Object
System.MarshalByRefObject
System.Data.Common.DbParameterCollection
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleParameterCollection
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The position of an OracleParameter
added into the OracleParameterCollection
is the binding position in the SQL statement. Position is 0
-based and is used only for positional binding. If named binding is used, the position of an OracleParameter
in the OracleParameterCollection
is ignored.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleParameterCollection
members are listed in the following tables.
OracleParameterCollection Static Methods
OracleParameterCollection
static methods are listed in Table 5-81.
Table 5-81 OracleParameterCollection Static Methods
Method | Description |
---|---|
| Inherited from |
OracleParameterCollection Properties
OracleParameterCollection
properties are listed in Table 5-82.
Table 5-82 OracleParameterCollection Properties
Property | Description |
---|---|
Specifies the number of | |
Gets and sets the |
OracleParameterCollection Public Methods
OracleParameterCollection
public methods are listed in Table 5-83.
Table 5-83 OracleParameterCollection Public Methods
Public Method | Description |
---|---|
Adds objects to the collection (Overloaded) | |
| Adds elements to the end of the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Removes all the | |
Indicates whether or not objects exist in the collection (Overloaded) | |
Copies | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
Returns the | |
Inserts the supplied | |
Removes objects from the collection | |
Removes objects from the collection by location (Overloaded) | |
| Inherited from |
The OracleParameterCollection
static method is listed in Table 5-84.
Table 5-84 OracleParameterCollection Static Method
Method | Description |
---|---|
| Inherited from |
OracleParameterCollection
properties are listed in Table 5-85.
Table 5-85 OracleParameterCollection Properties
Property | Description |
---|---|
Specifies the number of | |
Gets and sets the |
This property specifies the number of OracleParameter
objects in the collection.
Declaration
Property Value
The number of OracleParameter
objects.
Implements
ICollection
Remarks
Default = 0
Item
gets and sets the OracleParameter
object.
Overload List:
This property gets and sets the OracleParameter
object at the index specified by the supplied parameterIndex
.
This property gets and sets the OracleParameter
object using the parameter name specified by the supplied parameterName
.
This property gets and sets the OracleParameter
object at the index specified by the supplied parameterIndex
.
Declaration
Property Value
An object.
Implements
IList
Exceptions
IndexOutOfRangeException
- The supplied index does not exist.
Remarks
The OracleParameterCollection
class is a zero-based index.
This property gets and sets the OracleParameter
object using the parameter name specified by the supplied parameterName
.
Declaration
Property Value
An OracleParameter
.
Implements
IDataParameterCollection
Exceptions
IndexOutOfRangeException
- The supplied parameter name does not exist.
OracleParameterCollection
public methods are listed in Table 5-86.
Table 5-86 OracleParameterCollection Public Methods
Public Method | Description |
---|---|
Adds objects to the collection (Overloaded) | |
| Adds elements to the end of the Supported Only in ADO.NET 2.0-Compliant ODP.NET |
Removes all the | |
Indicates whether or not objects exist in the collection (Overloaded) | |
Copies | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
Returns the | |
Inserts the supplied | |
Removes objects from the collection | |
Removes objects from the collection by location (Overloaded) | |
| Inherited from |
Add
adds objects to the collection.
Overload List:
This method adds the supplied object to the collection.
This method adds the supplied OracleParameter
object to the collection.
This method adds an OracleParameter
object to the collection using the supplied name and object value.
This method adds an OracleParameter
object to the collection using the supplied name and database type.
This method adds an OracleParameter
object to the collection using the supplied name, database type, and direction.
This method adds an OracleParameter
object to the collection using the supplied name, database type, parameter value, and direction.
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, parameter value, and direction.
This method adds an OracleParameter
object to the collection using the supplied name, database type, and size.
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, and source column.
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, direction, null indicator, precision, scale, source column, source version, and parameter value.
This method adds the supplied object to the collection.
Declaration
Parameters
obj
The supplied object.
Return Value
The index at which the new OracleParameter
is added.
Implements
IList
Remarks
InvalidCastException
- The supplied obj
cannot be cast to an OracleParameter
object.
This method adds the supplied OracleParameter
object to the collection.
Declaration
Parameters
paramObj
The supplied OracleParameter
object.
Return Value
The newly created OracleParameter
object which was added to the collection.
This method adds an OracleParameter
object to the collection using the supplied name and object value
Declaration
Parameters
name
The parameter name.
val
The OracleParameter
value.
Return Value
The newly created OracleParameter
object which was added to the collection.
This method adds an OracleParameter
object to the collection using the supplied name and database type.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
Return Value
The newly created OracleParameter
object which was added to the collection.
This method adds an OracleParameter
object to the collection using the supplied name, database type, and direction.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
direction
The OracleParameter
direction.
Return Value
The newly created OracleParameter
object which was added to the collection.
This method adds an OracleParameter
object to the collection using the supplied name, database type, parameter value, and direction.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
val
The OracleParameter
value.
dir
The ParameterDirection
value.
Return Value
The newly created OracleParameter
object which was added to the collection.
Example
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, parameter value, and direction.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
size
The size of OracleParameter
.
val
The OracleParameter
value.
dir
The ParameterDirection
value.
Return Value
The newly created OracleParameter
object which was added to the collection.
This method adds an OracleParameter
object to the collection using the supplied name, database type, and size.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
size
The size of OracleParameter
.
Return Value
The newly created OracleParameter
object which was added to the collection.
Example
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, and source column.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
size
The size of OracleParameter
.
srcColumn
The name of the source column.
Return Value
An OracleParameter
.
This method adds an OracleParameter
object to the collection using the supplied name, database type, size, direction, null indicator, precision, scale, source column, source version, and parameter value.
Declaration
Parameters
name
The parameter name.
dbType
The data type of the OracleParameter
.
size
The size of OracleParameter
.
dir
The ParameterDirection
value.
isNullable
An indicator that specifies if the parameter
value can be null
.
precision
The precision of the parameter
value.
scale
The scale of the parameter
value.
srcColumn
The name of the source column.
version
The DataRowVersion
value.
val
The parameter
value.
Return Value
The newly created OracleParameter
object which was added to the collection.
Exceptions
ArgumentException
- The type of supplied val
does not belong to the type of Value
property in any of the ODP.NET Types.
This method adds elements to the end of the OracleParameterCollection
.
Declaration
Parameters
paramArray
An array of OracleParameter
objects.
Exceptions
ArgumentNullException
- The input parameter is null.
This method removes all the OracleParameter
objects from the collection.
Declaration
Implements
IList
Example
Contains
indicates whether or not the supplied object exists in the collection.
Overload List:
This method indicates whether or not the supplied object exists in the collection.
This method indicates whether or not an OracleParameter
object exists in the collection using the supplied string.
This method indicates whether or not the supplied object exists in the collection.
Declaration
Parameters
obj
The object.
Return Value
A bool
that indicates whether or not the OracleParameter
specified is inside the collection.
Implements
IList
Exceptions
InvalidCastException
- The supplied obj
is not an OracleParameter
object.
Remarks
Returns true
if the collection contains the OracleParameter
object; otherwise, returns false
.
Example
This method indicates whether or not an OracleParameter
object exists in the collection using the supplied string.
Declaration
Parameters
name
The name of OracleParameter
object.
Return Value
Returns true
if the collection contains the OracleParameter
object with the specified parameter name; otherwise, returns false
.
Implements
IDataParameterCollection
Example
This method copies OracleParameter
objects from the collection, starting with the supplied index
to the supplied array
.
Declaration
Parameters
array
The specified array.
index
The array index.
Implements
ICollection
IndexOf
returns the index of the OracleParameter
object in the collection.
Overload List:
This method returns the index of the OracleParameter
object in the collection.
This method returns the index
of the OracleParameter
object with the specified name in the collection.
This method returns the index of the OracleParameter
object in the collection.
Declaration
Parameters
obj
The specified object.
Return Value
Returns the index of the OracleParameter
object in the collection.
Implements
IList
Exceptions
InvalidCastException
- The supplied obj
cannot be cast to an OracleParameter
object.
Remarks
Returns the index
of the supplied OracleParameter
obj
in the collection.
This method returns the index
of the OracleParameter
object with the specified name in the collection.
Declaration
Parameters
name
The name of parameter.
Return Value
Returns the index
of the supplied OracleParameter
in the collection.
Implements
IDataParameterCollection
This method inserts the supplied OracleParameter
object to the collection at the specified index
.
Declaration
Parameters
index
The specified index.
obj
The OracleParameter
object.
Implements
IList
Remarks
An InvalidCastException
is thrown if the supplied obj
cannot be cast to an OracleParameter
object.
This method removes the supplied OracleParameter
from the collection.
Declaration
Parameters
obj
The specified object to remove.
Implements
IList
Exceptions
InvalidCastException
- The supplied obj
cannot be cast to an OracleParameter
object.
Example
RemoveAt
removes the OracleParameter
object from the collection by location.
Overload List:
This method removes from the collection the OracleParameter
object located at the index specified by the supplied index.
This method removes from the collection the OracleParameter
object specified by the supplied name.
This method removes from the collection the OracleParameter
object located at the index specified by the supplied index.
Declaration
Parameters
index
The specified index from which the OracleParameter
is to be removed.
Implements
IList
This method removes from the collection the OracleParameter
object specified by the supplied name.
Declaration
Parameters
name
The name of the OracleParameter
object to be removed from the collection.
Implements
IDataParameterCollection
An OraclePermission
object enables ODP.NET to enforce imperative security and helps ensure that a user has a security level adequate for accessing data.
Class Inheritance
System.Object
System.Security.CodeAccessPermission
System.Data.Common.DBDataPermission
Oracle.DataAccess.Client.OraclePermission
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OraclePermission
members are listed in the following tables.
OraclePermission Constructors
The OraclePermission
constructor is listed in Table 5-87.
Table 5-87 OraclePermission Constructor
Constructor | Description |
---|---|
Instantiates a new instance of the |
OraclePermission Static Methods
The OraclePermission
static methods are listed in Table 5-88.
Table 5-88 OraclePermission Static Methods
Static Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OraclePermission Public Properties
The OraclePermission
public methods are listed in Table 5-92.
Table 5-89 OraclePermission Public Properties
Public Properties | Description |
---|---|
| Inherited from
|
OraclePermission Public Methods
The OraclePermission
public methods are listed in Table 5-90.
Table 5-90 OraclePermission Public Methods
Public Method | Description |
---|---|
Adds a new connection string fragment and a list of restricted keywords to the | |
| Inherited from |
| Returns a copy of the current permission object |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Returns a boolean value that indicates whether or not the current permission is a subset of the target permission |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OraclePermission
constructor instantiates a new instance of the OraclePermission
class.
Declaration
Parameters
state
The state
parameter takes one of the following two values: PermissionState.None
or PermissionState.Unrestricted
.
Exceptions
ArgumentException
- The PermissionState
value is invalid.
The OraclePermission
static methods are listed in Table 5-91.
Table 5-91 OraclePermission Static Methods
Static Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OraclePermission
public methods are listed in Table 5-92.
Table 5-92 OraclePermission Public Properties
Public Properties | Description |
---|---|
| Inherited from
|
The OraclePermission
public methods are listed in Table 5-93.
Table 5-93 OraclePermission Public Methods
Public Method | Description |
---|---|
Adds a new connection string fragment and a list of restricted keywords to the | |
| Inherited from |
| Returns a copy of the current permission object |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Returns a boolean value that indicates whether or not the current permission is a subset of the target permission |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
This method adds a new connection string fragment and a list of restricted keywords to the OraclePermission
object.
Declaration
Parameters
connStr
The connection string fragment.
keyRestrict
The key restrictions.
behavior
One of the following KeyRestrictionBehavior
enumerations:
AllowOnly
Exceptions
ArgumentException
- The KeyRestrictionBehavior
value or the format of the connStr
or keyRestict
string is invalid.
Remarks
The Add
method configures the connection strings allowed or disallowed by the permission object.
Opening an OracleConnection
is allowed or denied based upon the connection string fragment, key restrictions combination, and the key restriction behavior.
In the following example, KeyRestrictionBehavior.AllowOnly
allows connection strings that use orcl
as the Data Source
with any User Id
and Password
combination but no other connection string keywords. Connection string keywords other than User Id
and Password
cause security exceptions.
In the next example, KeyRestrictionBehavior.PreventUsage
restricts connection strings that use the keyword Pooling
. Use of the Pooling
keyword causes an exception.
As a general rule, in an unrestricted environment, any connection string that is not allowed is restricted and throws a security exception.
If a connection string fragment contains key-value pairs for the password
and proxy password
attributes, then values for these attributes are ignored. However, the presence of the attributes themselves is still checked. This means that the connection is allowed only if the password
and proxy attributes
keywords are allowed in the connection string.
This method returns a copy of the current permission object.
Declaration
Return Value
A copy of the OraclePermission
object.
This method returns a boolean value that indicates whether or not the current permission is a subset of the target permission.
Declaration
Parameters
target
A permission that must be of type OraclePermission
.
Return Value
A bool
value that indicates whether or not the current permission is a subset of the target permission.
Exceptions
ArgumentException
- The permission is not of the OraclePermission
type.
Remarks
The AllowBlankPassword
property is ignored when evaluating whether or not the current permission is a subset of the target permission.
An OraclePermissionAttribute
object enables ODP.NET to enforce declarative security and helps ensure that a user has a security level adequate for accessing data.
Class Inheritance
System.Object
System.Attribute
System.Security.Permissions.SecurityAttribute
System.Security.Permissions.CodeAccessSecurityAttribute
System.Data.Common.DBDataPermissionAttribute
Oracle.DataAccess.Client.OraclePermissionAttribute
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess
OraclePermissionAttribute
members are listed in the following tables.
OraclePermissionAttribute Constructor
The OraclePermissionAttribute
constructor is listed in Table 5-94.
Table 5-94 OraclePermission Constructor
Constructor | Description |
---|---|
Instantiates a new instance of the |
OraclePermissionAttribute Static Methods
The OraclePermissionAttribute
static methods are listed in Table 5-95.
Table 5-95 OraclePermissionAttribute Static Methods
Static Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OraclePermissionAttribute Public Properties
The OraclePermissionAttribute
public properties are listed in Table 5-96.
Table 5-96 OraclePermissionAttribute Public Properties
Public Properties | Description |
---|---|
| Inherited from |
| Inherited from
|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OraclePermissionAttribute Public Methods
The OraclePermissionAttribute
public methods are listed in Table 5-97.
Table 5-97 OraclePermissionAttribute Public Methods
Public Methods | Description |
---|---|
Returns a new | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OraclePermissionAttribute
constructor instantiates new instances of the OraclePermissionAttribute
class.
Declaration
Parameters
action
A System.Security.Permissions.SecurityAction
value representing an action that can be performed using declarative security.
The OraclePermissionAttribute
static methods are listed in Table 5-98.
Table 5-98 OraclePermissionAttribute Static Methods
Static Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OraclePermissionAttribute
public properties are listed in Table 5-99.
Table 5-99 OraclePermissionAttribute Public Properties
Public Properties | Description |
---|---|
| Inherited from |
| Inherited from
|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OraclePermissionAttribute
public methods are listed in Table 5-100.
Table 5-100 OraclePermissionAttribute Public Methods
Public Methods | Description |
---|---|
Returns a new | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
This method returns a new OraclePermissionAttribute
object that is configured based on the attributes set.
Declaration
Return Value
An OraclePermission
object.
The OracleRowUpdatedEventArgs
class provides event data for the OracleDataAdapter.RowUpdated
event.
Class Inheritance
System.Object
System.EventArgs
System.RowUpdatedEventArgs
System.OracleRowUpdatedEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
The example for the RowUpdated
event shows how to use OracleRowUpdatedEventArgs
. See RowUpdated
event "Example".
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleRowUpdatedEventArgs
members are listed in the following tables.
OracleRowUpdatedEventArgs Constructors
OracleRowUpdatedEventArgs
constructors are listed in Table 5-101.
Table 5-101 OracleRowUpdatedEventArgs Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleRowUpdatedEventArgs Static Methods
The OracleRowUpdatedEventArgs
static method is listed in Table 5-102.
Table 5-102 OracleRowUpdatedEventArgs Static Method
Method | Description |
---|---|
| Inherited from |
OracleRowUpdatedEventArgs Properties
The OracleRowUpdatedEventArgs
properties are listed in Table 5-103.
Table 5-103 OracleRowUpdatedEventArgs Properties
Property | Description |
---|---|
Specifies the | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleRowUpdatedEventArgs Public Methods
The OracleRowUpdatedEventArgs
properties are listed in Table 5-104.
Table 5-104 OracleRowUpdatedEventArgs Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleRowUpdatedEventArgs
constructor creates a new OracleRowUpdatedEventArgs
instance.
Declaration
Parameters
row
The DataRow
sent for Update
.
command
The IDbCommand
executed during the Update
.
statementType
The StatementType
Enumeration value indicating the type of SQL statement executed.
tableMapping
The DataTableMapping
used for the Update
.
The OracleRowUpdatedEventArgs
static method is listed in Table 5-105.
Table 5-105 OracleRowUpdatedEventArgs Static Method
Method | Description |
---|---|
| Inherited from |
The OracleRowUpdatedEventArgs
properties are listed in Table 5-106.
Table 5-106 OracleRowUpdatedEventArgs Properties
Property | Description |
---|---|
Specifies the | |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
This property specifies the OracleCommand
that is used when OracleDataAdapter.Update()
is called.
Declaration
Property Value
The OracleCommand
executed when Update
is called.
The OracleRowUpdatedEventArgs
properties are listed in Table 5-107.
The OracleRowUpdatedEventHandler
delegate represents the signature of the method that handles the OracleDataAdapter.RowUpdated
event.
Declaration
Parameters
sender
The source of the event.
eventArgs
The OracleRowUpdatedEventArgs
object that contains the event data.
Remarks
Event callbacks can be registered through this event delegate for applications that wish to be notified after a row is updated.
In the .NET framework, the convention of an event delegate requires two parameters: the object that raises the event and the event data.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleRowUpdatingEventArgs
class provides event data for the OracleDataAdapter.RowUpdating
event.
Class Inheritance
System.Object
System.EventArgs
System.RowUpdatingEventArgs
System.OracleRowUpdatingEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
The example for the RowUpdated
event shows how to use OracleRowUpdatingEventArgs
. See RowUpdated
event "Example".
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleRowUpdatingEventArgs
members are listed in the following tables.
OracleRowUpdatingEventArgs Constructors
OracleRowUpdatingEventArgs
constructors are listed in Table 5-108.
Table 5-108 OracleRowUpdatingEventArgs Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleRowUpdatingEventArgs Static Methods
The OracleRowUpdatingEventArgs
static methods are listed in Table 5-109.
Table 5-109 OracleRowUpdatingEventArgs Static Methods
Method | Description |
---|---|
| Inherited from |
OracleRowUpdatingEventArgs Properties
The OracleRowUpdatingEventArgs
properties are listed in Table 5-110.
Table 5-110 OracleRowUpdatingEventArgs Properties
Property | Description |
---|---|
| Specifies the |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleRowUpdatingEventArgs Public Methods
The OracleRowUpdatingEventArgs
public methods are listed in Table 5-111.
Table 5-111 OracleRowUpdatingEventArgs Public Methods
Public Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleRowUpdatingEventArgs
constructor creates a new instance of the OracleRowUpdatingEventArgs
class using the supplied data row, IDbCommand
, type of SQL statement, and table mapping.
Declaration
Parameters
row
The DataRow
sent for Update
.
command
The IDbCommand
executed during the Update
.
statementType
The StatementType
enumeration value indicating the type of SQL statement executed.
tableMapping
The DataTableMapping
used for the Update
.
The OracleRowUpdatingEventArgs
static method is listed in Table 5-112.
Table 5-112 OracleRowUpdatingEventArgs Static Method
Method | Description |
---|---|
| Inherited from |
The OracleRowUpdatingEventArgs
properties are listed in Table 5-113.
Table 5-113 OracleRowUpdatingEventArgs Properties
Property | Description |
---|---|
| Specifies the |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
This property specifies the OracleCommand
that is used when the OracleDataAdapter.Update()
is called.
Declaration
Property Value
The OracleCommand
executed when Update
is called.
The OracleRowUpdatingEventArgs
public methods are listed in Table 5-114.
The OracleRowUpdatingEventHandler
delegate represents the signature of the method that handles the OracleDataAdapter.RowUpdating
event.
Declaration
Parameters
sender
The source of the event.
eventArgs
The OracleRowUpdatingEventArgs
object that contains the event data.
Remarks
Event callbacks can be registered through this event delegate for applications that wish to be notified after a row is updated.
In the .NET framework, the convention of an event delegate requires two parameters: the object that raises the event and the event data.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
An OracleTransaction
object represents a local transaction.
Class Inheritance
System.Object
System.MarshalByRefObject
System.Data.Common.DbTransaction
(ADO.NET 2.0 only)
Oracle.DataAccess.Client.OracleTransaction
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The application calls BeginTransaction
on the OracleConnection
object to create an OracleTransaction
object. The OracleTransaction
object can be created in Read Committed mode only. Any other mode results in an exception.
The execution of a DDL statement in the context of a transaction is not recommended since it results in an implicit commit that is not reflected in the state of the OracleTransaction
object.
All operations related to savepoints pertain to the current local transaction. Operations like commit and rollback performed on the transaction have no effect on data in any existing DataSet
.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleTransaction
members are listed in the following tables.
OracleTransaction Static Methods
The OracleTransaction
static method is listed in Table 5-115.
Table 5-115 OracleTransaction Static Method
Method | Description |
---|---|
| Inherited from |
OracleTransaction Properties
OracleTransaction
properties are listed in Table 5-116.
Table 5-116 OracleTransaction Properties
Property | Description |
---|---|
| Specifies the isolation level for the transaction |
| Specifies the connection that is associated with the transaction |
OracleTransaction Public Methods
OracleTransaction
public methods are listed in Table 5-117.
Table 5-117 OracleTransaction Public Methods
Public Method | Description |
---|---|
| Commits the database transaction |
| Inherited from |
| Frees the resources used by the |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Rolls back a database transaction (Overloaded) |
Creates a savepoint within the current transaction | |
| Inherited from |
The OracleTransaction
static method is listed in Table 5-118.
Table 5-118 OracleTransaction Static Method
Method | Description |
---|---|
| Inherited from |
OracleTransaction
properties are listed in Table 5-119.
Table 5-119 OracleTransaction Properties
Property | Description |
---|---|
| Specifies the isolation level for the transaction |
| Specifies the connection that is associated with the transaction |
This property specifies the isolation level for the transaction.
Declaration
Property Value
IsolationLevel
Implements
IDbTransaction
Exceptions
InvalidOperationException
- The transaction has already completed.
Remarks
Default = IsolationLevel.ReadCommitted
This property specifies the connection that is associated with the transaction.
Declaration
Property Value
Connection
Implements
IDbTransaction
Remarks
This property indicates the OracleConnection
object that is associated with the transaction.
OracleTransaction
public methods are listed in Table 5-120.
Table 5-120 OracleTransaction Public Methods
Public Method | Description |
---|---|
| Commits the database transaction |
| Inherited from |
| Frees the resources used by the |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Rolls back a database transaction (Overloaded) |
Creates a savepoint within the current transaction | |
| Inherited from |
This method commits the database transaction.
Declaration
Implements
IDbTransaction
Exceptions
InvalidOperationException
- The transaction has already been completed successfully, has been rolled back, or the associated connection is closed.
Remarks
Upon a successful commit, the transaction enters a completed state.
Example
This method frees the resources used by the OracleTransaction
object.
Declaration
Implements
IDisposable
Remarks
This method releases both the managed and unmanaged resources held by the OracleTransaction
object. If the transaction is not in a completed state, an attempt to rollback the transaction is made.
Rollback
rolls back a database transaction.
Overload List:
This method rolls back a database transaction.
This method rolls back a database transaction to a savepoint within the current transaction.
This method rolls back a database transaction.
Declaration
Implements
IDbTransaction
Exceptions
InvalidOperationException
- The transaction has already been completed successfully, has been rolled back, or the associated connection is closed.
Remarks
After a Rollback()
, the OracleTransaction
object can no longer be used because the Rollback
ends the transaction.
Example
This method rolls back a database transaction to a savepoint within the current transaction.
Declaration
Parameters
savepointName
The name of the savepoint to rollback to, in the current transaction.
Exceptions
InvalidOperationException
- The transaction has already been completed successfully, has been rolled back, or the associated connection is closed.
Remarks
After a rollback to a savepoint, the current transaction remains active and can be used for further operations.
The savepointName
specified does not have to match the case of the savepointName
created using the Save
method, since savepoints are created in the database in a case-insensitive manner.
This method creates a savepoint within the current transaction.
Declaration
Parameters
savepointName
The name of the savepoint being created in the current transaction.
Exceptions
InvalidOperationException
- The transaction has already been completed.
Remarks
After creating a savepoint, the transaction does not enter a completed state and can be used for further operations.
The savepointName
specified is created in the database in a case-insensitive manner. Calling the Rollback
method rolls back to savepointName
. This allows portions of a transaction to be rolled back, instead of the entire transaction.
Example
OracleConnectionType
enumerated values specify whether a particular connection object is associated with an Oracle database connection, a TimesTen database connection, or no physical connection at all.
Table 5-121 lists all the OracleConnectionType
enumeration values with a description of each enumerated value.
Table 5-121 OracleConnectionType Enumeration Values
Member Name | Description |
---|---|
| No connection is associated with the |
| The |
| The |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleCollectionType
enumerated values specify whether or not the OracleParameter
object represents a collection, and if so, specifies the collection type.
Table 5-122 lists all the OracleCollectionType
enumeration values with a description of each enumerated value.
Table 5-122 OracleCollectionType Enumeration Values
Member Name | Description |
---|---|
| Is not a collection type |
Indicates that the collection type is a PL/SQL Associative Array (or PL/SQL Index-By Table) |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDBShutdownMode
enumerated values specify the database shutdown options.
Table 5-124 lists all the OracleDBShutdownMode
enumeration values with a description of each enumerated value.
Table 5-123 OracleDBShutdownMode Enumeration Values
Member Name | Description |
---|---|
| Refuses new connections and waits for existing connections to end. |
| Refuses new connections and does not allow any new transactions. Waits for active transactions to commit. |
| Refuses new connections and does not allow any new transactions. Waits for only local transactions to commit. |
| Does not wait for current calls to complete or users to disconnect from the database. All uncommitted transactions are terminated and rolled back. |
| Shuts down the database. Used in the second call for shutdown after the database has been closed and dismounted. |
| Does not wait for current calls to complete or users to disconnect from the database. All uncommitted transactions are terminated and are not rolled back. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDBStartupMode
enumerated values specify the database startup options.
Table 5-124 lists all the OracleDBStartupMode
enumeration values with a description of each enumerated value.
Table 5-124 OracleDBStartupMode Enumeration Values
Member Name | Description |
---|---|
| Starts the database and allows access to all users. |
| Starts the database and allows database access only to users having the |
| Shuts down a running instance in abort mode and starts a new instance. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDbType
enumerated values are used to explicitly specify the OracleDbType
of an OracleParameter
.
Table 5-125 lists all the OracleDbType
enumeration values with a description of each enumerated value.
Table 5-125 OracleDbType Enumeration Values
Member Name | Description |
---|---|
| Oracle Collection (|
| Oracle |
| Oracle |
| Oracle |
| Oracle |
|
|
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| 8-byte |
| 2-byte |
| 4-byte |
| 8-byte |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| 4-byte |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
| Oracle |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
See Also: |
The OracleParameterStatus
enumeration type indicates whether a NULL
value is fetched from a column, or truncation has occurred during the fetch, or a NULL
value is to be inserted into a database column.
Table 5-126 lists all the OracleParameterStatus
enumeration values with a description of each enumerated value.
Table 5-126 OracleParameterStatus Members
Member Name | Description |
---|---|
| Indicates that (for input parameters) the input value has been assigned to the column. For output parameter, it indicates that the provider assigned an intact value to the parameter. |
| Indicates that a |
| Indicates that a |
| Indicates that truncation has occurred when fetching the data from the column. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
See Also:
|
This chapter describes ODP.NET XML-related classes and enumerations.
This chapter contains these topics:
All offsets are 0
-based for OracleXmlStream
object parameters.
The OracleXmlCommandType
enumeration specifies the values that are allowed for the XmlCommandType
property of the OracleCommand
class. It is used to specify the type of XML operation.
Table 6-1 lists all the OracleXmlCommandType
enumeration values with a description of each enumerated value.
Table 6-1 OracleXmlCommandType Members
Member Name | Description |
---|---|
| No XML operation is desired |
| The command text is a SQL query and the result of the query is an XML document. The SQL query needs to be a select statement |
| The command text is an XML document containing rows to insert. |
| The command text is an XML document containing rows to update. |
| The command text is an XML document containing rows to delete. |
An OracleXmlQueryProperties
object represents the XML properties used by the OracleCommand
class when the XmlCommandType
property is Query
.
Class Inheritance
System.Object
System.OracleXmlQueryProperties
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleXmlQueryProperties
can be accessed, and modified using the XmlQueryProperties
property of the OracleCommand
class. Each OracleCommand
object has its own instance of the OracleXmlQueryProperties
class in the XmlQueryProperties
property.
Use the default constructor to get a new instance of the OracleXmlQueryProperties
. Use the OracleXmlQueryProperties
.Clone()
method to get a copy of an OracleXmlQueryProperties
instance.
Example
This example retrieves relational data as XML.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleXmlQueryProperties
members are listed in the following tables.
OracleXmlQueryProperties Constructors
The OracleXmlQueryProperties
constructors are listed in Table 6-2.
Table 6-2 OracleXmlQueryProperties Constructors
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleXmlQueryProperties Properties
The OracleXmlQueryProperties
properties are listed in Table 6-3.
Table 6-3 OracleXmlQueryProperties Properties
Name | Description |
---|---|
Specifies the maximum number of rows from the result set of the query that can be represented in the result XML document | |
Specifies the root element of the result XML document | |
Specifies the value of the XML element which identifies a row of data from the result set in an XML document | |
Specifies the XSL document used for XML transformation using XSLT | |
Specifies parameters for the XSL document |
OracleXmlQueryProperties Public Methods
The OracleXmlQueryProperties
public methods are listed in Table 6-4.
Table 6-4 OracleXmlQueryProperties Public Methods
Name | Description |
---|---|
Creates a copy of an |
The OracleXmlQueryProperties
constructor instantiates a new instance of the OracleXmlQueryProperties
class.
Declaration
The OracleXmlQueryProperties
properties are listed in Table 6-5.
Table 6-5 OracleXmlQueryProperties Properties
Name | Description |
---|---|
Specifies the maximum number of rows from the result set of the query that can be represented in the result XML document | |
Specifies the root element of the result XML document | |
Specifies the value of the XML element which identifies a row of data from the result set in an XML document | |
Specifies the XSL document used for XML transformation using XSLT | |
Specifies parameters for the XSL document |
This property specifies the maximum number of rows from the result set of the query that can be represented in the result XML document.
Declaration
Property Value
The maximum number of rows.
Exceptions
ArgumentException
- The new value for MaxRows
is not valid.
Remarks
Default value is -1
.
Possible values are:
-1
(all rows). 0
. This property specifies the root element of the result XML document.
Declaration
Property Value
The root element of the result XML document.
Remarks
The default root tag is ROWSET
.
To indicate that no root tag is be used in the result XML document, set this property to null
or ""
or String.Empty
.
If both RootTag
and RowTag
are set to null
, an XML document is returned only if the result set returns one row and one column.
This property specifies the value of the XML element which identifies a row of data from the result set in an XML document.
Declaration
Property Value
The value of the XML element.
Remarks
The default is ROW
.
To indicate that no row tag is be used in the result XML document, set this property to null
or ""
or String.Empty
.
If both RootTag
and RowTag
are set to null
, an XML document is returned only if the result set returns one row and one column.
This property specifies the XSL document used for XML transformation using XSLT.
Declaration
Property Value
The XSL document used for XML transformation.
Remarks
Default value is null
.
The XSL document is used for XML transformation of the XML document generated from the result set of the query.
This property specifies parameters for the XSL document.
Declaration
Property Value
The parameters for the XSL document.
Remarks
Default value is null
.
The parameters are specified as a string of "name=value
" pairs of the form "param1=value1; param2=value2;...
" delimited by semicolons.
The OracleXmlQueryProperties
public methods are listed in Table 6-6.
Table 6-6 OracleXmlQueryProperties Public Methods
Name | Description |
---|---|
Creates a copy of an |
This method creates a copy of an OracleXmlQueryProperties
object.
Declaration
Return Value
An OracleXmlQueryProperties
object
Implements
ICloneable
An OracleXmlSaveProperties
object represents the XML properties used by the OracleCommand
class when the XmlCommandType
property is Insert
, Update
, or Delete
.
Class Inheritance
System.Object
System.OracleXmlSaveProperties
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleXmlSaveProperties
can be accessed and modified using the XmlSaveProperties
property of the OracleCommand
class. Each OracleCommand
object has its own instance of the OracleXmlSaveProperties
class in the XmlSaveProperties
property.
Use the default constructor to get a new instance of OracleXmlSaveProperties
. Use the OracleXmlSaveProperties
.Clone()
method to get a copy of an OracleXmlSaveProperties
instance.
Example
This sample demonstrates how to do inserts, updates, and deletes to a relational table or view using an XML document.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleXmlSaveProperties
members are listed in the following tables.
OracleXmlSaveProperties Constructor
OracleXmlSaveProperties
constructors are listed in Table 6-7
Table 6-7 OracleXmlSaveProperties Constructor
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleXmlSaveProperties Properties
The OracleXmlSaveProperties
properties are listed in Table 6-8.
Table 6-8 OracleXmlSaveProperties Properties
Name | Description |
---|---|
Specifies the list of columns used as a key to locate existing rows for update or delete using an XML document | |
Specifies the value for the XML element that identifies a row of data in an XML document | |
Specifies the name of the table or view to which changes are saved | |
Specifies the list of columns to update or insert | |
Specifies the XSL document used for XML transformation using XSLT | |
Specifies the parameters for the XSLT document specified in the Xslt property |
OracleXmlSaveProperties Public Methods
The OracleXmlSaveProperties
public methods are listed in Table 6-9.
Table 6-9 OracleXmlSaveProperties Public Methods
Name | Description |
---|---|
Creates a copy of an |
The OracleXmlSaveProperties
constructor instantiates a new instance of OracleXmlSaveProperties
class.
Declaration
The OracleXmlSaveProperties
properties are listed in Table 6-10.
Table 6-10 OracleXmlSaveProperties Properties
Name | Description |
---|---|
Specifies the list of columns used as a key to locate existing rows for update or delete using an XML document | |
Specifies the value for the XML element that identifies a row of data in an XML document | |
Specifies the name of the table or view to which changes are saved | |
Specifies the list of columns to update or insert | |
Specifies the XSL document used for XML transformation using XSLT | |
Specifies the parameters for the XSLT document specified in the Xslt property |
This property specifies the list of columns used as a key to locate existing rows for update or delete using an XML document.
Declaration
Property Value
The list of columns.
Remarks
Default value is null.
The first null value (if any) terminates the list.
KeyColumnsList
usage with XMLCommandType
property values:
Insert
- KeyColumnsList
is ignored and can be null. Update
- KeyColumnsList
must be specified; it identifies the columns to use to find the rows to be updated. Delete
- If KeyColumnsList
is null, all the column values in each row element in the XML document are used to locate the rows to delete. Otherwise, KeyColumnsList
specifies the columns used to identify the rows to delete. This property specifies the value for the XML element that identifies a row of data in an XML document.
Declaration
Property Value
An XML element name.
Remarks
The default value is ROW
.
Each element in the XML document identifies one row in a table or view.
If RowTag
is set to ""
or null
, no row tag is used in the XML document. In this case, the XML document is assumed to contain only one row.
This property specifies the name of the table or view to which changes are saved.
Declaration
Property Value
A table name.
Remarks
Default value is null
.
The property must be set to a valid table or view name.
This property specifies the list of columns to update or insert.
Declaration
Property Value
A list of columns.
Remarks
Default value is null.
The first null value (if any) terminates the list.
UpdateColumnList
usage with XMLCommandType
property values:
Insert
- UpdateColumnList
indicates which columns are assigned values when a new row is created. If UpdateColumnList
is null, then all columns are assigned values. If a column is on the UpdateColumnList
, but no value is specified for the row in the XML file, then NULL
is used. If a column is not on the UpdateColumnList
, then the default value for that column is used. Update
- UpdateColumnList
specifies columns to modify for each row of data in the XML document. If UpdateColumnList
is null, all the values in each XML element in the XML document are used to modify the columns. Delete
- UpdateColumnsList
is ignored and can be null. This property specifies the XSL document used for XML transformation using XSLT.
Declaration
Property Value
The XSL document used for XML transformation.
Remarks
Default = null
.
The XSL document is used for XSLT transformation of a given XML document. The transformed XML document is used to save changes to the table or view.
This property specifies the parameters for the XSLT document specified in the Xslt
property.
Declaration
Property Value
The parameters for the XSLT document.
Remarks
Default is null
.
This property is a string delimited by semicolons in "name=value
" pairs of the form "param1=value1; param2=value2; …
".
The OracleXmlSaveProperties
public methods are listed in Table 6-11.
Table 6-11 OracleXmlSaveProperties Public Methods
Name | Description |
---|---|
Creates a copy of an |
This method creates a copy of an OracleXmlSaveProperties
object.
Declaration
Return Value
An OracleXmlSaveProperties
object
Implements
ICloneable
An OracleXmlStream
object represents a read-only stream of XML data stored in an OracleXmlType
object.
Class Inheritance
System.Object
System.MarshalByRefObject
System.Stream
System.OracleXmlStream
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleXmlStream
members are listed in the following tables.
OracleXmlStream Constructors
The OracleXmlStream
constructors are listed in Table 6-12.
Table 6-12 OracleXmlStream Constructors
Constructor | Description |
---|---|
Creates an instance of an |
OracleXmlStream Static Methods
The OracleXmlStream
static methods are listed in Table 6-13.
Table 6-13 OracleXmlStream Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleXmlStream Instance Properties
The OracleXmlStream
instance properties are listed in Table 6-14.
Table 6-14 OracleXmlStream Instance Properties
Properties | Description |
---|---|
Indicates whether or not the XML stream can be read | |
Indicates whether or not forward and backward seek operation can be performed | |
CanWrite | Not Supported |
Indicates the | |
Indicates the number of bytes in the XML stream | |
Gets or sets the byte position within the stream | |
Returns the XML data, starting from the first character in the stream as a string |
OracleXmlStream Instance Methods
The OracleXmlStream
instance methods are listed in Table 6-15.
Table 6-15 OracleXmlStream Instance Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
Creates a copy of an | |
Closes the current stream and releases any resources associated with it | |
Releases resources allocated by this object | |
| Inherited from |
| Inherited from |
| Inherited from |
| Not Supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
Reads a specified amount from the current stream instance and populates the array buffer (Overloaded) | |
| Inherited from |
Sets the position within the current stream and returns the new position within the current stream | |
| Not Supported |
| Inherited from |
| Not Supported |
| Not Supported |
This constructor creates an instance of an OracleXmlStream
object which provides a Stream
representation of the XML data stored in an OracleXmlType
object.
Declaration
Parameters
xmlType
The OracleXmlType
object.
Remarks
The OracleXmlStream
implicitly uses the OracleConnection
object from the OracleXmlType
object from which it was constructed.
The OracleXmlStream
static methods are listed in Table 6-16.
Table 6-16 OracleXmlStream Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleXmlStream
instance properties are listed in Table 6-17.
Table 6-17 OracleXmlStream Instance Properties
Properties | Description |
---|---|
Indicates whether or not the XML stream can be read | |
Indicates whether or not forward and backward seek operation can be performed | |
| Not Supported |
Indicates the | |
Indicates the number of bytes in the XML stream | |
Gets or sets the byte position within the stream | |
Returns the XML data, starting from the first character in the stream as a string |
Overrides Stream
This property indicates whether or not the XML stream can be read.
Declaration
Property Value
If the XML stream is can be read, returns true
; otherwise, returns false
.
Overrides Stream
This property indicates whether or not forward and backward seek operation can be performed.
Declaration
Property Value
If forward and backward seek operations can be performed, this property returns true
. Otherwise, returns false
.
This instance property indicates the OracleConnection
that is used to retrieve the XML data.
Declaration
Property Value
An OracleConnection
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Overrides Stream
This property indicates the number of bytes in the XML stream.
Declaration
Property Value
An Int64
value representing the number of bytes in the XML stream. An empty stream has a length of 0 bytes.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Overrides Stream
This property gets or sets the byte position within the stream.
Declaration
Property Value
An Int64
that indicates the current position in the stream.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The Position
is less than 0.
Remarks
The beginning of the stream is represented by position 0
. Seeking to any location beyond the length of the stream is supported.
This property returns the XML data, starting from the first character of the stream as a string.
Declaration
Property Value
A string
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The value of Position
is neither used nor changed by using this property.
The maximum length of the string that can be returned by this property is 2 GB.
The OracleXmlStream
instance methods are listed in Table 6-18.
Table 6-18 OracleXmlStream Instance Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
Creates a copy of an | |
Closes the current stream and releases any resources associated with it | |
Releases resources allocated by this object | |
| Inherited from |
| Inherited from |
| Inherited from |
| Not Supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
Reads a specified amount from the current XML stream instance and populates the array buffer (Overloaded) | |
| Inherited from |
Sets the position within the current stream and returns the new position within the current stream | |
| Not Supported |
| Inherited from |
| Not Supported |
| Not Supported |
This method creates a copy of an OracleXmlStream
object.
Declaration
Return Value
An OracleXmlStream
object.
Implements
ICloneable
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The cloned object has the same property values as that of the object being cloned.
Overrides Stream
This method closes the current stream and releases any resources associated with it.
Declaration
This public method releases resources allocated by this object.
Declaration
Implements
IDisposable
Remarks
The object cannot be reused after being disposed. Although some properties can still be accessed, their values cannot be accountable. Since resources are freed, method calls can lead to exceptions.
This method reads a specified amount from the current XML stream instance and populates the array buffer.
Overload List:
This method reads a specified amount of unicode bytes from the current instance, advances the position within the stream, and populates the byte array buffer.
This method reads a specified amount of characters from the current instance, advances the position within the stream, and populates the character array buffer.
Overrides Stream
This method reads a specified amount of unicode bytes from the current instance, advances the position within the stream, and populates the byte array buffer.
Declaration
Parameters
buffer
The byte array buffer that is populated.
offset
The zero-based offset (in bytes) at which the buffer is populated.
count
The maximum amount of bytes to be read.
Return Value
The number of unicode bytes read into the given byte[]
buffer or 0
if the end of the stream has been reached.
Remarks
This method reads a maximum of count
bytes from the current stream and stores them in buffer beginning at offset
. The current position within the stream is advanced by the number of bytes read. However, if an exception occurs, the current position within the stream remains unchanged.
The XML data is read starting from the position specified by the Position
property.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Overrides Stream
This method reads a specified amount of characters from the current instance, advances the position within the stream, and populates the character array buffer.
Declaration
Parameters
buffer
The character array buffer to be populated.
offset
The zero-based offset (in characters) in the buffer at which the buffer is populated.
count
The maximum amount of characters to be read from the stream.
Return Value
The return value indicates the number of characters read from the stream or 0
if the end of the stream has been reached.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
This method requires that the Position
on the stream instance be zero or an even number.
The XML data is read starting from the position specified by the Position
property.
Overrides Stream
.
This method sets the position within the current stream and returns the new position within the current stream.
Declaration
Parameters
offset
A byte offset relative to origin.
offset
is negative, the new position precedes the position specified by origin
by the number of bytes specified by offset
. origin
. offset
is positive, the new position follows the position specified by origin
by the number of bytes specified by offset
. origin
A value of type SeekOrigin
indicating the reference point used to obtain the new position.
Return Value
The new Position
within the current stream.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object
Remarks
Use the CanSeek
property to determine whether or not the current instance supports seeking. Seeking to any location beyond the length of the stream is supported.
An OracleXmlType
object represents an Oracle XMLType
instance.
Class Inheritance
System.Object
System.OracleXmlType
Declaration
// C#
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleXmlType
objects can be used for well-formed XML documents with or without XML schemas or XML fragments.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleXmlType
members are listed in the following tables.
OracleXmlType Constructors
The OracleXmlType
constructors are listed in Table 6-19.
Table 6-19 OracleXmlType Constructors
Constructor | Description |
---|---|
Creates an instance of the |
OracleXmlType Static Methods
The OracleXmlType
static methods are listed in Table 6-20.
Table 6-20 OracleXmlType Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleXmlType Instance Properties
The OracleXmlType
instance properties are listed in Table 6-21.
Table 6-21 OracleXmlType Instance Properties
Properties | Description |
---|---|
Indicates the | |
Indicates whether or not the | |
Indicates whether the XML data is a collection of XML elements or a well-formed XML document | |
Indicates whether or not the XML data represented by the | |
| Represents the name of the top-level element of the schema-based XML data contained in the |
| Represents the XML schema of the XML data contained in the |
| Represents in the database for the XML schema of the XML data contained in the |
| Returns the XML data starting from the first character in the current instance as a string |
OracleXmlType Instance Methods
The OracleXmlType
instance methods are listed in Table 6-22.
Table 6-22 OracleXmlType Instance Methods
Methods | Description |
---|---|
Creates a copy of the | |
Releases the resources allocated by this | |
| Inherited from |
Extracts a subset from the XML data using the given XPath expression (Overloaded) | |
| Inherited from |
Returns an instance of | |
| Inherited from |
Returns a | |
Returns a | |
Checks for the existence of a particular set of nodes identified by the given XPath expression in the XMLdata (Overloaded) | |
| Inherited from |
Transforms the | |
Updates the XML node or fragment identified by the given XPath expression in the current | |
| Validates whether or not the XML data in the |
OracleXmlType
constructors create instances of the OracleXmlType
class.
Overload List:
This constructor creates an instance of the OracleXmlType
class using the XML data contained in an OracleClob
object.
This constructor creates an instance of the OracleXmlType
class using the XML data contained in the .NET String
.
This constructor creates an instance of the OracleXmlType
class using the contents of the .NET XmlReader
object.
This constructor creates an instance of the OracleXmlType
object using the contents of the XML DOM document in the .NET XmlDocument
object.
This constructor creates an instance of the OracleXmlType
class using the XML data contained in an OracleClob
object.
Declaration
Parameters
oraClob
An OracleClob
object.
Exceptions
ArgumentNullException
- The OracleClob
object is null.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The CLOB
data depends on a valid connection object and the new OracleXMLType
uses the OracleConnection
in the OracleClob
object to store data for the current instance.
This constructor creates an instance of the OracleXmlType
class using the XML data contained in the .NET String
.
Declaration
Parameters
con
An OracleConnection
object.
xmlData
A string containing the XML data.
Exceptions
ArgumentNullException -
The OracleConnection
object is null.
ArgumentException -
The xmlData
argument is an empty string.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The new OracleXmlType
uses the given OracleConnection
object to store data for the current instance.
This constructor creates an instance of the OracleXmlType
class using the contents of the .NET XmlReader
object.
Declaration
Parameters
con
An OracleConnection
object.
reader
An XmlReader
object.
Exceptions
ArgumentNullException -
The OracleConnection
object is null.
ArgumentException
- The reader
argument contains no data.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The new OracleXMLType
uses the given OracleConnection
object to store data for the current instance.
This constructor creates an instance of the OracleXmlType
object using the contents of the XML DOM document in the .NET XmlDocument
object.
Declaration
Parameters
con
An OracleConnection
object.
domDoc
An XML document.
Exceptions
ArgumentNullException -
The OracleConnection
object is null.
ArgumentException -
The domDoc
argument contains no data.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The new OracleXMLType
uses the given OracleConnection
object to store data for the current instance.
The OracleXmlType
static methods are listed in Table 6-23.
Table 6-23 OracleXmlType Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleXmlType
instance properties are listed in Table 6-24.
Table 6-24 OracleXmlType Instance Properties
Properties | Description |
---|---|
| Indicates the |
| Indicates whether or not the |
| Indicates whether the XML data is a collection of XML elements or a well-formed XML document |
| Indicates whether or not the XML data represented by the |
| Represents the name of the top-level element of the schema-based XML data contained in the |
| Represents the XML schema of the XML data contained in the |
| Represents URL in the database for the XML schema of the XML data contained in the |
| Returns the XML data starting from the first character in the current instance as a string |
This property indicates the OracleConnection
that is used to retrieve and store XML data in the OracleXmlType
.
Declaration
Property Value
An OracleConnection
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The connection must explicitly be opened by the user before creating or using OracleXmlType
.
This property indicates whether or not the OracleXmlType
is empty.
Declaration
Property Value
Returns true
if the OracleXmlType
represents an empty XML document. Returns false
otherwise.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This property indicates whether the XML data is a collection of XML elements or a well-formed XML document.
Declaration
Property Value
Returns true
if the XML data contained in the OracleXmlType
object is a collection of XML elements with no root element. Returns false
otherwise.
Exceptions
ObjectDisposedException
- The object is already disposed.
This property indicates whether or not the XML data represented by the OracleXmlType
is based on an XML schema.
Declaration
Property Value
Returns true
if the XML data represented by the OracleXmlType
is based on an XML schema. Returns false
otherwise.
Exceptions
ObjectDisposedException
- The object is already disposed.
This property represents the name of the top-level or root element of the schema-based XML data contained in the OracleXmlType
.
Declaration
Property Value
A string that represents the name of the top-level or root element of the XML data contained in the OracleXmlType
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
If the OracleXmlType
instance contains non-schema based XML data, this property returns an empty string.
This property represents the XML schema for the XML data contained in the OracleXmlType
.
Declaration
Property Value
An OracleXmlType
instance that represents the XML schema for the XML data contained in the OracleXmlType
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
If the OracleXmlType
instance contains non-schema based XML data, this property returns an OracleXmlType
instance representing an empty XML document.
This property represents the XML schema in the database for the XML schema of the XML data contained in the OracleXmlType
.
Declaration
Property Value
A string that represents the URL in the database for the XML schema of the XML data.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
If the OracleXmlType
instance contains non-schema based XML data, this property returns an empty string.
This property returns the XML data starting from the first character in the current instance as a string
.
Declaration
Property Value
The entire XML data as a string
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
The OracleXmlType
instance methods are listed in Table 6-25.
Table 6-25 OracleXmlType Instance Methods
Methods | Description |
---|---|
Creates a copy of the | |
Releases the resources allocated by this | |
| Inherited from |
Extracts a subset from the XML data using the given XPath expression (Overloaded) | |
| Inherited from |
Returns an instance of | |
| Inherited from |
Returns a | |
Returns a | |
Checks for the existence of a particular set of nodes identified by the given XPath expression in the XMLdata (Overloaded) | |
| Inherited from |
Transforms the | |
Updates the XML node or fragment identified by the given XPath expression in the current | |
| Validates whether or not the XML data in the |
This method creates a copy of this OracleXmlType
instance.
Declaration
Implements
ICloneable
Return Value
An OracleXmlType
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This method releases the resources allocated by this object.
Declaration
Implements
IDisposable
This method extracts a subset from the XML data using the given XPath expression.
Overload List:
This method extracts a subset from the XML data represented by the OracleXmlType
object using the given XPath expression and a string parameter for namespace resolution.
This method extracts a subset from the XML data represented by the OracleXmlType
object, using the given XPath expression and a .NET XmlNameSpaceManager
object for namespace resolution.
This method extracts a subset from the XML data represented by the OracleXmlType
object using the given XPath expression and a string parameter for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression.
nsMap
The string parameter used for namespace resolution of the XPath expression. nsMap
has zero or more namespaces separated by spaces. nsMap
can be null. For example:
Return Value
An OracleXmlType
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This public method extracts a subset from the XML data represented by the OracleXmlType
object, using the given XPath expression and a .NET XmlNameSpaceManager
object for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression.
nsMgr
The .NET XmlNameSpaceManager
object used for namespace resolution of the XPath expression. nsMgr
can be null.
Return Value
An OracleXmlType
.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This public method returns an instance of OracleXmlStream
which provides a read-only stream of the XML data stored in this OracleXmlType
instance.
Declaration
Return Value
A Stream
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This public method returns a XmlDocument
object containing the XML data stored in this OracleXmlType
instance.
Declaration
Return Value
An XmlDocument
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The XML data in the XmlDocument
object is a copy of the XML data in the OracleXmlType
instance and modifying it does not automatically modify the XML data in the OracleXmlType
instance. The XmlDocument
instance returned has the PreserveWhitespace
property set to true
.
This public method returns a XmlTextReader
object that can be used to manipulate XML data directly using the .NET Framework classes and methods.
Declaration
Return Value
An XmlTextReader
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The XmlTextReader
is a read-only, forward-only representation of the XML data stored in the OracleXmlType
instance.
IsExists
checks for the existence of a particular set of nodes identified by the XPath expression in the XML data.
Overload List:
This method checks for the existence of a particular set of nodes identified by the XPath expression in the XML data represented by the current OracleXmlType
instance using a string parameter for namespace resolution.
This method checks for the existence of a particular set of nodes identified by the XPath expression in the XML document represented by the current OracleXmlType
instance using a .NET XmlNameSpaceManager
object for namespace resolution.
This method checks for the existence of a particular set of nodes identified by the XPath expression in the XML data represented by the current OracleXmlType
instance using a string parameter for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression.
nsMap
The string parameter used for namespace resolution of the XPath expression. nsMap
has zero or more namespaces separated by spaces. nsMap
can be null.
Return Value
Returns true
if the required set of nodes exists; otherwise, returns false
.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This method checks the existence of a particular set of nodes identified by the XPath expression in the XML document represented by the current OracleXmlType
instance using a .NET XmlNameSpaceManager
object for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression.
nsMgr
The .NET XmlNameSpaceManager
object used for namespace resolution of the XPath expression. nsMgr
can be null.
Return Value
Returns true
if the required set of nodes exists; otherwise, returns false
.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This method transforms the OracleXmlType
into another OracleXmlType
instance using the given XSL document.
Overload List:
This method transforms the current OracleXmlType
instance into another OracleXmlType
instance using the given XSL document (as an OracleXmlType
object) and a string of XSLT parameters.
This public method transforms the current OracleXmlType
instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.
This method transforms the current OracleXmlType
instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.
Declaration
Parameters
xsldoc
The XSL document as an OracleXmlType
object.
paramMap
A string which provides the parameters for the XSL document.
For this release, paramMap
is ignored.
Return Value
An OracleXmlType
object containing the transformed XML document.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xsldoc
parameter is null.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This method transforms the current OracleXmlType
instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.
Declaration
Parameters
xsldoc
The XSL document to be used for XSLT.
paramMap
A string which provides the parameters for the XSL document.
For this release, paramMap
is ignored.
Return Value
An OracleXmlType
object containing the transformed XML document.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xsldoc
parameter is null.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This method updates the XML node or fragment identified by the given XPath expression in the current OracleXmlType
instance.
Overload List:
This method updates the XML nodes identified by the given XPath expression with the given string value and a string parameter for namespace resolution.
This method updates the XML nodes identified by the given XPath expression with the given string value and a .NET XmlNameSpaceManager
object for namespace resolution.
This method updates the XML nodes identified by the given XPath expression with the XML data stored in the given OracleXmlType
value and a string parameter for namespace resolution.
This method updates the XML nodes identified by the given XPath expression with the XML data stored in the given OracleXmlType
value and a .NET XmlNameSpaceManager
object for namespace resolution.
This method updates the XML nodes identified by the given XPath expression with the given string value and a string parameter for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression that identifies the nodes to update.
nsMap
The string parameter used for namespace resolution of the XPath expression. nsMap
has zero or more namespaces separated by spaces. nsMap
can be null. For example:
value
The new value as a string
.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This method updates the XML nodes identified by the given XPath expression with the given string value and a .NET XmlNameSpaceManager
object for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression that identifies the nodes to update.
nsMgr
The .NET XmlNameSpaceManager
object used for namespace resolution of the XPath expression. nsMgr
can be null.
value
The new value as a string
.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This method updates the XML nodes identified by the given XPath expression with the XML data stored in the given OracleXmlType
value and a string parameter for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression that identifies the nodes to update.
nsMap
The string parameter used for namespace resolution of the XPath expression. nsMap
has zero or more namespaces separated by spaces. nsMap
can be null.
value
The new value as an OracleXmlType
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This method updates the XML nodes identified by the given XPath expression with the XML data stored in the given OracleXmlType
value and a .NET XmlNameSpaceManager
object for namespace resolution.
Declaration
Parameters
xpathExpr
The XPath expression that identifies the nodes to update.
nsMgr
The .NET XmlNameSpaceManager
object used for namespace resolution of the XPath expression. nsMgr
can be null.
value
The new value as an OracleXmlType
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentNullException
- The xpathExpr
is null or zero-length.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The default namespace is ignored if its value is an empty string.
This methods validates whether or not the XML data in the OracleXmlType
object conforms to the given XML schema.
Declaration
Parameters
schemaUrl
A string representing the URL in the database of the XML schema.
Return Value
Returns true if the XML data conforms to the XML schema; otherwise, returns false.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentNullException
- The schemaUrl
argument is null or an empty string.
This chapter describes the following Oracle Data Provider for .NET classes that support the ADO.NET 2.0 specification.
An OracleClientFactory
object allows applications to instantiate ODP.NET classes in a generic way.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Class Inheritance
System.Object
System.Data.Common.DbProviderFactory
Oracle.DataAccess.Client.OracleClientFactory
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleClientFactory
members are listed in the following tables.
OracleClientFactory Public Properties
The OracleClientFactory
public properties are listed in Table 7-1.
Table 7-1 OracleClientFactory Public Properties
Property | Description |
---|---|
| Indicates whether or not the |
OracleClientFactory Public Methods
OracleClientFactory
Public Methods are listed in Table 7-2.
Table 7-2 OracleClientFactory Public Method
Method | Description |
---|---|
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
Returns a |
The OracleClientFactory
public properties are listed in Table 7-3.
Table 7-3 OracleClientFactory Public Properties
Property | Description |
---|---|
| Indicates whether or not the |
This property indicates whether or not the CreateDataSourceEnumerator
method is supported.
Declaration
Property Value
Returns true
.
Remarks
ODP.NET supports the OracleDataSourceEnumerator
object.
The OracleClientFactory
public method is listed in Table 7-4.
Table 7-4 OracleClientFactory Public Method
Method | Description |
---|---|
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
| Returns a |
Returns a |
This method returns a DbCommand
object that represents an OracleCommand
object.
Declaration
Return Value
A DbCommand
object that represents an OracleCommand
object.
This method returns a DbCommandBuilder
object that represents an OracleCommandBuilder
object.
Declaration
Return Value
A DbCommandBuilder
object that represents an OracleCommandBuilder
object.
This method returns a DbConnection
object that represents an OracleConnection
object.
Declaration
Return Value
A DbConnection
object that represents an OracleConnection
object.
This method returns a DbConnectionStringBuilder
object that represents an OracleConnectionStringBuilder
object.
Declaration
Return Value
A DbConnectionStringBuilder
object that represents an OracleConnectionStringBuilder
object.
This method returns a DbDataAdapter
object that represents an OracleDataAdapter
object.
Declaration
Return Value
A DbDataAdapter
object that represents an OracleDataAdapter
object.
This method returns a DbDataSourceEnumerator
object that represents an OracleDataSourceEnumerator
object.
Declaration
Return Value
A DbDataSourceEnumerator
object that represents an OracleDataSourceEnumerator
object.
This method returns a DbParameter
object that represents an OracleParameter
object.
Declaration
Return Value
A DbParameter
object that represents an OracleParameter
object.
This method returns a CodeAccessPermission
object that represents an OraclePermission
object.
Declaration
Parameter
state
A PermissionState
object.
Return Value
A CodeAccessPermission
object that represents an OraclePermission
object.
Remarks
This method enables users, writing provider-independent code, to get a CodeAccessPermission
instance that represents an OraclePermission
object.
An OracleConnectionStringBuilder
object allows applications to create or modify connection strings.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Class Inheritance
System.Object
System.Data.Common.DbConnectionStringBuilder
Oracle.DataAccess.Client.OracleConnectionStringBuilder
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The following rules must be followed for setting values with reserved characters:
If the value contains characters that are enclosed within single quotation marks, then the entire value must be enclosed within double quotation marks.
For example, password =
"'scoTT'"
where the value is 'scoTT'
.
Values should be enclosed in double quotation marks to preserve the case and to avoid the upper casing of values.
If the value contains characters enclosed in double quotation marks, then it must be enclosed in single quotation marks.
For example, password =
'"scoTT"'
where the value is "scoTT"
.
If the value contains characters enclosed in both single and double quotation marks, the quotation mark used to enclose the value must be doubled each time it occurs within the value.
For example, password =
'"sco''TT"'
where the value is "sco'TT"
.
All leading and trailing spaces are ignored, but the spaces between the value are recognized. If the value needs to have leading or trailing spaces then it must be enclosed in double quotation marks.
For example, User ID =
Sco
TT
where the value is <Sco
TT>
.
For example, User ID =
"Sco
TT "
where the value is <Sco
TT>
.
If a specific keyword occurs multiple times in a connection string, the last occurrence listed is used in the value set.
For example, with "User ID = scott; password = tiger; User ID = david"
connection string, User ID
value is david
.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleConnectionStringBuilder
members are listed in the following tables.
OracleConnectionStringBuilder Constructors
OracleConnectionStringBuilder
constructors are listed in Table 7-5.
Table 7-5 OracleConnectionStringBuilder Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleConnectionStringBuilder Public Properties
OracleConnectionStringBuilder
instance properties are listed in Table 7-6.
Table 7-6 OracleConnectionStringBuilder Public Properties
Properties | Description |
---|---|
| Inherited from |
| Specifies the value corresponding to the |
| Inherited from |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Inherited from |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Indicates whether or not the Connection String Builder has a fixed size |
| Inherited from |
| Specifies the value associated with the specified attribute |
| Specifies a collection of attributes contained in the Connection String Builder |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value that corresponds to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies a collection of values contained in the Connection String Builder |
OracleConnectionStringBuilder Public Methods
OracleConnectionStringBuilder
instance methods are listed in Table 7-7.
Table 7-7 OracleConnectionStringBuilder Public Methods
Methods | Description |
---|---|
| Inherited from |
| Clears the connection string contents |
| Indicates whether or not a specific attribute in the connection string is supported by ODP.NET |
| Inherited from |
| Removes the entry corresponding to the specified attribute from the connection string |
| Inherited from |
| Inherited from |
| Returns the value corresponding to the supplied attribute, as an output parameter |
OracleConnectionStringBuilder
constructors instantiate new instances of the OracleConnectionStringBuilder
class.
Overload List:
This constructor instantiates a new instance of OracleConnectionStringBuilder
class.
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class with the provided connection string.
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class.
Declaration
Remarks
The ConnectionString
property is empty after the object is created.
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class with the provided connection string.
Declaration
Parameters
connectionString
The connection information.
Exceptions
ArgumentNullException
- The connectionString
parameter is null.
ArgumentException
- The connectionString
parameter is invalid.
Remarks
The ConnectionString
property of this instance is set to the supplied connection string.
OracleConnectionStringBuilder
public properties are listed in Table 7-8.
Table 7-8 OracleConnectionStringBuilder Public Properties
Properties | Description |
---|---|
| Inherited from |
| Specifies the value corresponding to the |
| Inherited from |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Inherited from |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Indicates whether or not the Connection String Builder has a fixed size |
| Inherited from |
| Specifies the value associated with the specified attribute |
| Specifies a collection of attributes contained in the Connection String Builder |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value that corresponds to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies the value corresponding to the |
| Specifies a collection of values contained in the Connection String Builder |
This property specifies the value corresponding to the Connection
Lifetime
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than zero.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Connection
Timeout
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than zero.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Context
Connection
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
This property specifies the value corresponding to the Data
Source
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute.
Exceptions
ArgumentNullException
- The specified value is null.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the DBA
Privilege
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute.
Possible values are SYSDBA
or SYSOPER
.
Exceptions
ArgumentNullException
- The specified value is null.
OracleException
- The specified value is invalid.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Decr
Pool
Size
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than 1
.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Enlist
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute. Values are case-insensitive. Possible values are: dynamic, true, false, yes, and no.
Exceptions
ArgumentNullException
- The specified value is null.
OracleException
- The supplied value is not one of following: dynamic
, true
, false
, yes
, or no
.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the HA
Events
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Incr
Pool
Size
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than 1
.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
Indicates whether or not the Connection String Builder has a fixed size.
Declaration
Property Value
Returns true
if the Connection String Builder has a fixed size; otherwise, returns false
.
Remarks
Attributes cannot be added or removed. They can only be modified for connection strings with a fixed size.
This property specifies the value associated with the specified attribute.
Declaration
Property Value
An object value corresponding to the attribute.
Exceptions
ArgumentNullException
- The specified attribute is null.
OracleException
- The specified attribute is not supported or the specified value is invalid.
This property specifies a collection of attributes contained in the Connection String Builder.
Declaration
Property Value
Returns an ICollection
that represents the attributes in the Connection String Builder.
This property specifies the value corresponding to the Load
Balancing
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that contains the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Max
Pool
Size
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than 1
.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value that corresponds to the Metadata
Pooling
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
containing the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Min
Pool
Size
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that contains the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than 0
.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Password
attribute in the ConnectionString
property.
Declaration
Property Value
A string that contains the value of the supplied attribute.
Exception
ArgumentNullException
- The specified value is null.
This property specifies the value corresponding to the Persist
Security
Info
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property gets set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Pooling
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Proxy
Password
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute.
Exception
ArgumentNullException
- The specified value is null.
This property specifies the value corresponding to the Proxy
User
Id
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute.
Exception
ArgumentNullException
- The specified value is null.
This property specifies the value corresponding to the Self Tuning
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
This property specifies the value corresponding to the Statement
Cache
Purge
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the Statement
Cache
Size
attribute in the ConnectionString
property.
Declaration
Property Value
An int
that represents the value of the supplied attribute.
Exceptions
OracleException
- The specified value is less than zero.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies the value corresponding to the User
Id
attribute in the ConnectionString
property.
Declaration
Property Value
A string that represents the value of the supplied attribute.
Exception
ArgumentNullException
- The specified value is null.
This property specifies the value corresponding to the Validate
Connection
attribute in the ConnectionString
property.
Declaration
Property Value
A bool
that represents the value of the supplied attribute.
Remarks
When an OracleConnectionStringBuilder
instance is created, this property is set to the default value of the corresponding connection string attribute.
This property specifies a collection of values contained in the Connection String Builder.
Declaration
Property Value
Returns an ICollection
that represents the values in the Connection String Builder.
Remarks
The order of the values in the ICollection
is unspecified, but is the same as the associated attributes in the ICollection
returned by the Keys
property.
OracleConnectionStringBuilder
public methods are listed in Table 7-9.
Table 7-9 OracleConnectionStringBuilder Public Methods
Methods | Description |
---|---|
| Inherited from |
| Clears the connection string contents |
| Indicates whether or not a specific attribute in the connection string is supported by ODP.NET |
| Inherited from |
| Removes the entry corresponding to the specified attribute from the connection string |
| Inherited from |
| Inherited from |
| Returns the value corresponding to the supplied attribute, as an output parameter |
This method clears the connection string contents.
Declaration
Remarks
All key/value pairs are removed from the OracleConnectionStringBuilder
object and the ConnectionString
property is set to Empty.
This method indicates whether or not a specific attribute in the connection string is supported by ODP.NET.
Declaration
Parameters
keyword
The attribute being verified.
Return Value
Returns true
if the specified attribute exists; otherwise, returns false
.
Exceptions
ArgumentNullException
- The specified attribute is null.
Remarks
This method indicates if the attribute is part of the provider-supported attributes. It does not indicate if the user added the attribute to the connection string.
This method removes the entry corresponding to the specified attribute from the connection string.
Declaration
Parameters
keyword
The attribute that specifies the entry to be removed.
Return Value
Returns true
if the attribute existed in the connection string and the corresponding entry was removed; otherwise, returns false
.
Exceptions
ArgumentNullException
- The specified attribute is null.
This method returns the value corresponding to the supplied attribute, as an output parameter.
Declaration
Parameters
keyword
The attribute for which the value is being retrieved.
value
The value of the supplied attribute.
Sets value
to the default value if the attribute is not present in the connection string.
Return Value
Returns true
if the value that corresponds to the attribute has been successfully retrieved; otherwise, returns false
. If the attribute is not present in the connection string, returns false
and sets the value
to null.
Exceptions
ArgumentNullException
- The specified attribute is null.
Remarks
If the function returns false
, sets value
to null
.
If the attribute is not present in the connection string, sets value
to the default value.
An OracleDataSourceEnumerator
object allows applications to generically obtain a collection of data sources to connect to.
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Class Inheritance
System.Object
System.DbDataSourceEnumerator
Oracle.DataAccess.Client.OracleDataSourceEnumerator
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDataSourceEnumerator
members are listed in the following tables.
OracleDataSourceEnumerator Public Methods
OracleDataSourceEnumerator
Public Methods are listed in Table 7-10.
Table 7-10 OracleDataSourceEnumerator Method
Method | Description |
---|---|
Returns a |
The OracleDataSourceEnumerator
static method is listed in Table 7-11.
Table 7-11 OracleDataSourceEnumerator Method
Method | Description |
---|---|
Returns a |
This method returns a DataTable
object with information on all the TNS alias entries in the tnsnames.ora
file.
Declaration
Return Value
A DataTable
object.
Remarks
This method returns a DataTable
object for each TNS Alias entry that exists in the tnsnames.ora
file.
If the tnsnames.ora
file is not found, then the returned DataTable
object is empty.
The following columns are returned for each row, but only the InstanceName
column is populated.
InstanceName
(type: System.String
) ServerName
(type: System.String
) ServiceName
(type: System.String
) Protocol
(type: System.String
) Port
(type: System.String
) This chapter describes the following ODP.NET HA event class and enumerations:
The OracleHAEventArgs
class provides event data for the OracleConnection.HAEvent
event.
Class Inheritance
System.Object
System.EventArgs
Oracle.DataAccess.Client.OracleHAEventArgs
Declaration
Thread Safety
All public methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
When any HA event occurs for a service, service member, host, node, or instance that an OracleConnection
object is set to with "ha events=true"
, the OracleConnection.HAEvent
is triggered and passes an instance of OracleHAEventArgs
to all the delegates that have registered with the event.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4.
OracleHAEventArgs
members are listed in the following table.
OracleHAEventArgs Properties
The OracleHAEventArgs
properties are listed in Table 8-2.
Table 8-1 OracleHAEventArgs Properties
Name | Description |
---|---|
| Specifies the domain name of the database affected by the |
| Specifies the database affected by the |
| Specifies the host that triggered the event |
| Specifies the instance that triggered the event |
| Specifies the service that triggered the event |
Specifies the source that triggered the event | |
Specifies the status of the source that triggered the event | |
| Specifies the time when the event was triggered on the server |
The OracleHAEventArgs
properties are listed in Table 8-2.
Table 8-2 OracleHAEventArgs Properties
Name | Description |
---|---|
| Specifies the domain name of the database affected by the |
| Specifies the database affected by the HAevent |
| Specifies the host that triggered the event |
| Specifies the instance that triggered the event |
| Specifies the service that triggered the event |
Specifies the source that triggered the event | |
Specifies the status of the source that triggered the event | |
| Specifies the time when the event was triggered on the server |
This property specifies the domain name of the database that is affected by the HA event.
Declaration
Property Value
The domain name of the database that is affected by the HA Event.
This property specifies the database that is affected by the HA event.
Declaration
Property Value
This property specifies the database name that is affected by the HA event.
This property specifies the host that triggered the HA event.
Declaration
Property Value
The host that is affected by the HA Event.
This property specifies the instance that triggered the HA event.
Declaration
Property Value
The instance that is affected by the HA Event.
This property specifies the service that triggered the HA event.
Declaration
Property Value
The service that is affected by the HA Event.
This property specifies the source that triggered the HA event.
Declaration
Property Value
The source that triggered the HA Event.
This property specifies the status of the source that triggered the HA event.
Declaration
Property Value
The status of the source that triggered the HA Event.
This property specifies the time when the HA event was triggered on the server.
Declaration
Property Value
The time that the HA Event was triggered.
The OracleHAEventHandler
delegate represents the signature of the method that handles the OracleConnection.HAEvent
event.
Declaration
Parameters
sender
The source of the event.
EventArgs
The OracleHAEventArgs
object that contains the event data.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4.
The OracleHAEventSource
enumeration indicates the source of the HA event.
Table 8-3 lists all the OracleHAEventSource
enumeration values with a description of each enumerated value.
Table 8-3 OracleHAEventSource Enumeration Member Values
Member Name | Description |
---|---|
| The source of the HA Event is a service. |
| The source of the HA Event is a service member. |
| The source of the HA Event is a database. |
| The source of the HA Event is a host. |
Instance | The source of the HA Event is an instance. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4.
The OracleHAEventStatus
enumeration indicates the status of the HA event source.
Table 8-4 lists all the OracleHAEventStatus
enumeration values with a description of each enumerated value.
Table 8-4 OracleHAEventStatus Enumeration Values
Member Name | Description |
---|---|
| The source of the HA Event is up. |
| The source of the HA Event is down. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4.
This chapter describes Oracle Data Provider for .NET Change Notification Classes, Event Delegates, and Enumerations, which support Continuous Query Notification.
Note: Database Change Notification is known as Continuous Query Notification in Oracle database documentation. |
This chapter contains these topics:
An OracleDependency
class represents a dependency between an application and an Oracle database, enabling the application to get notifications whenever the data of interest or the state of the Oracle database changes.
Class Inheritance
System.Object
Oracle.DataAccess.Client.OracleDependency
Declaration
Thread Safety
All public static methods are thread-safe, although methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleDependency
members are listed in the following tables.
OracleDependency Constructors
OracleDependency
constructors are listed in Table 9-1.
Table 9-1 OracleDependency Constructors
Constructors | Description |
---|---|
Instantiates a new instance of |
OracleDependency Static Fields
The OracleDependency
static field is listed in Table 9-2.
Table 9-2 OracleDependency Static Field
Static Field | Description |
---|---|
| Indicates the port number that the notification listener listens on, for database notifications |
OracleDependency Static Methods
OracleDependency
static methods are listed in Table 9-3.
Table 9-3 OracleDependency Static Methods
Static Methods | Description |
---|---|
| Inherited from |
| Returns an |
OracleDependency Properties
OracleDependency
properties are listed in Table 9-4.
Table 9-4 OracleDependency Properties
Properties | Description |
---|---|
| Indicates the data source associated with the |
| Indicates whether or not there is any change in the database associated with this dependency |
| Represents the unique identifier for the |
| Specifies whether or not the dependency is enabled between the application and the database |
| Specifies whether the change notification registration is object-based or query-based |
| Provides a list of |
| Indicates the database resources that are registered in the notification registration |
| Specifies whether or not |
| Indicates the database user name associated with the |
OracleDependency Methods
OracleDependency
methods are listed in Table 9-5.
Table 9-5 OracleDependency Methods
Methods | Description |
---|---|
| Binds the |
| Inherited from |
| Inherited from |
| Inherited from |
| Removes the specified dependency between the application and the database |
| Inherited from |
OracleDependency Events
The OracleDependency
event is listed in Table 9-6.
Table 9-6 OracleDependency Events
Event | Description |
---|---|
| An event that is sent when a database notification associated with the dependency is received from the database |
OracleDependency
constructors create instances of the OracleDependency
class.
Overload List:
This constructor creates an instance of the OracleDependency
class.
This constructor creates an instance of the OracleDependency
class and binds it to the specified OracleCommand
instance.
This constructor creates an instance of the OracleDependency
class and binds it to the specified OracleCommand
instance, specifying whether or not a notification is to be removed upon notification, the timeout value of the notification registration, and the persistence of the notification.
This constructor creates an instance of the OracleDependency
class.
Declaration
Remarks
Using this constructor does not bind any OracleCommand
to the newly constructed OracleDependency
. Use the AddCommandDependency
method to do so.
Note: The dependency between the application and the database is not established when theOracleDependency instance is created. The dependency is established when the command that is associated with this dependency is executed. |
This constructor creates an instance of the OracleDependency
class and binds it to an OracleCommand
instance.
Declaration
Parameters
cmd
The command that the OracleDependecy
object binds to.
Exceptions
ArgumentNullException
- The cmd
parameter is null.
InvalidOperationException
- The specified OracleCommand
instance already contains a notification request.
Remarks
When this OracleDependency
constructor binds the OracleCommand
instance to an OracleDependency
instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest
instance to the OracleCommand.
Notification
property.
The Continuous Query Notification is registered with the database, when the command is executed. Any of the command execution methods (for example, ExecuteNonQuery
, ExecuteReader
, and so on) will register the notification request. An OracleDependency
may be bound to more than one OracleCommand
. When one of these OracleCommand
object statements is executed, the statement is registered with the associated OracleCommand
. Although the registration happens on each OracleCommand
separately, one OracleDependency
can be responsible for detecting and sending notifications that occur for all OracleCommand
objects that the OracleDependency
is associated with. The OnChangeEventArgs
that is passed to the application for the OnChange
event provides information on what has changed in the database.
The OracleNotificationRequest
instance that is created by this constructor has the following default property values:
IsNotifiedOnce
is set to the value True
. Timeout
is set to 50,000 seconds. IsPersistent
is set to the value False
, that is, the invalidation message is not persistent, but is stored in an in-memory queue before delivery. This constructor creates an instance of the OracleDependency
class and binds it to the specified OracleCommand
instance, while specifying whether or not a registration is to be removed upon notification, the timeout value of the notification registration, and the persistence of the notification.
Declaration
Parameters
cmd
The command associated with the Continuous Query Notification request.
isNotifiedOnce
An indicator that specifies whether or not the registration is removed automatically once the notification occurs.
timeout
The amount of time, in seconds, that the registration stays active. When timeout
is set to 0
, the registration never expires. The valid values for timeout
are between 0
and 4294967295
.
isPersistent
Indicates whether or not the invalidation message should be queued persistently in the database before delivery. If the isPersistent
parameter is set to True
, the message is queued persistently in the database and cannot be lost upon database failures or shutdowns. If the isPersistent
property is set to False
, the message is stored in an in-memory queue before delivery and might be lost.
Database performance is faster if the message is stored in an in-memory queue rather than in the database queue.
Exceptions
ArgumentNullException
- The cmd
parameter is null.
ArgumentOutOfRangeException
- The specified timeout
is invalid.
InvalidOperationException
- The specified OracleCommand
instance already contains a notification request.
Remarks
When this OracleDependency
constructor binds the OracleCommand
instance to an OracleDependency
instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest
instance to the OracleCommand.
Notification
property.
The Continuous Query Notification is registered with the database, when the command is executed. Any of the command execution methods (for example, ExecuteNonQuery
, ExecuteReader
, and so on) will register the notification request. An OracleDependency
may be bound to more than one OracleCommand
. When one of these OracleCommand
object statements is executed, the statement is registered with the associated OracleCommand
. Although the registration happens on each OracleCommand
separately, one OracleDependency
can be responsible for detecting and sending notifications that occur for all OracleCommand
objects that the OracleDependency
is associated with. The OnChangeEventArgs
that is passed to the application for the OnChange
event provides information on what has changed in the database.
The OracleNotificationRequest
instance that is created by this constructor has the following default property values:
IsNotifiedOnce
is set to the specified value. Timeout
is set to the specified value. IsPersistent
is set to the specified value. The OracleDependency
static field is listed in Table 9-7.
Table 9-7 OracleDependency Static Field
Static Field | Description |
---|---|
| Indicates the port number that the notification listener listens on, for database notifications |
This static field indicates the port number that the notification listener listens on, for database notifications.
Declaration
Property Value
An int
value that represents the number of the port that listens for the database notifications. If the port number is set to -1
, a random port number is assigned for the listener when the listener is started. Otherwise, the specified port number is used to start the listener.
Exceptions
ArgumentOutOfRangeException
- The port number is set to a negative value.
InvalidOperationException
- The port number is being changed after the listener has started.
Remarks
The port number specified by the OracleDependency.Port
static field is used by the notification listener that runs within the same application domain as ODP.NET. This port number receives Continuous Query Notifications from the database. One notification listener is capable of listening to all Continuous Query Notifications and therefore, only one notification listener is created for each application domain.
The notification listener is created when a command associated with an OracleDependency
object is executed for the first time during the application domain lifetime. The port number specified for the OracleDependency.Port
static field is used by the listener for its lifetime. The OracleDependency.Port
static field can be changed after the creation of the notification listener, but doing so does not affect the actual port number that the notification listener listens on.
OracleDependency
static methods are listed in Table 9-8.
Table 9-8 OracleDependency Static Methods
Static Methods | Description |
---|---|
| Inherited from |
| Returns an |
This static method returns an OracleDependency
instance based on the specified unique identifier.
Declaration
Parameters
guid
The string representation of the unique identifier of an OracleDependency
instance.
Exceptions
ArgumentException
- The specified unique identifier cannot locate an OracleDependency
instance.
Return Value
An OracleDependency
instance that has the specified guid
parameter.
OracleDependency
properties are listed in Table 9-9.
Table 9-9 OracleDependency Properties
Properties | Description |
---|---|
| Indicates the data source associated with the |
| Indicates whether or not there is any change in the database associated with this dependency |
| Represents the unique identifier for the |
| Specifies whether or not the dependency is enabled between the application and the database |
| Specifies whether the change notification registration is object-based or query-based |
| Provides a list of |
| Indicates the database resources that are registered in the notification registration |
| Specifies whether or not |
| Indicates the database user name associated with the |
This property indicates the data source associated with the OracleDependency
instance.
Declaration
Property Value
A string that indicates the data source associated with the OracleDependency
instance.
Remarks
The DataSource
property is populated with the data source once the OracleCommand
associated with the OracleDependency
executes and registers for the notification successfully.
This property indicates whether or not there is any change in the database associated with this dependency.
Declaration
Property Value
A bool
value that returns True
if the database has detected changes that are associated with this dependency; otherwise, returns False
.
Remarks
As an alternative to using the OnChange
event, applications can check the HasChanges
property to determine if there are any changes in the database associated with this dependency.
Once the HasChanges
property is accessed, its value is reset to False
so that the next notification can then be acknowledged.
This property represents the unique identifier for the OracleDependency
instance.
Declaration
Property Value
A string that represents the unique identifier that was generated for the OracleDependency
instance when it was created.
Remarks
This property is set when the OracleDependency
instance is created.
This property specifies whether or not the dependency is enabled between the application and the database.
Declaration
Property Value
A bool
value that specifies whether or not dependency is enabled between the application and the database.
Remarks
The dependency between the application and the database is not established when the OracleDependency
instance is created. The dependency is established when the command that is associated with this dependency is executed, at which time the notification request is registered with the database. The dependency ends when the notification registration is removed from the database or when it times out.
This instance property specifies whether the change notification registration is object-based or query-based.
Declaration
Property Value
Specifies whether the change notification registration is object-based or not.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This property value will be ignored if it is set after the command execution that registers the command for change notification.
By default, this property is true.
ODP.NET developers can register their queries on the row level, not just the object level, beginning with Oracle Data Provider for .NET release 11.1 and Oracle Database 11g release 1 (11.1). The application only receives notification when the selected row or rows change. Query-based notifications provide developers more granularity for using client-side cached data, as they can be more specific about what changes the application needs to be notified of.
OracleNotificationType
enumeration is set to Query
for query-based notifications.
This instance property provides a list of CHANGE_NOTIFICATION_QUERY_ID
s.
Declaration
Property Value
This property is an ArrayList
of CHANGE_NOTIFICATION_QUERY_ID
s.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This property provides a list of CHANGE_NOTIFICATION_QUERY_ID
s that uniquely identify the query that has been registered for change notification. The notification returned from the database will also contain these IDs, allowing applications to determine the query that the notifications are for.
The QueryId
at index n in RegisteredQueryIDs
is for the statement at index n the RegisteredResources
at index n.
This property indicates the database resources that are registered in the notification registration.
Declaration
Property Value
The registered resources in the notification registration.
Remarks
The ArrayList
contains all the command statement or statements that are registered for notification through this OracleDependency
object. It is appropriately updated when the Continuous Query Notification is registered by a command execution.
This property specifies whether or not ROWID
information is part of change notification events fired whenever data changes on the database.
Declaration
Property Value
An OracleRowidInfo
enumeration type that determines the inclusion of ROWID
in the change notification event.
Remarks
There are three OracleRowidInfo
enumeration types that are valid for this property:
Default
includes ROWID
information in the change notification event only if OracleCommand.AddRowid
property is set to true or if ROWID
is in the select list of the query that is registered for change notification. Include
includes ROWID
information regardless of whether or not ROWID
is in the select-list for the query. Exclude
excludes ROWID
information regardless of whether or not ROWID
is in the select-list. For change notification registrations that involve stored procedure executions, change notification events related to the REF
CURSOR
contain ROWID
information only if RowidInfo
property is set to OracleRowidInfo.Include
.
This property indicates the database user name associated with the OracleDependency
instance.
Declaration
Property Value
A string that indicates the database user name associated with the OracleDependency
instance. This database user registers the Continuous Query Notification request with the database.
Remarks
The UserName
property is populated with the user name once the OracleCommand
associated with the OracleDependency
executes and registers for the notification successfully. Only the database user who creates the notification registration, or the database system administrator, can remove the registration.
The user specified by this property must have the CHANGE
NOTIFICATION
privilege to register successfully for the Continuous Query Notification with the database.
OracleDependency
methods are listed in Table 9-10.
Table 9-10 OracleDependency Methods
Methods | Description |
---|---|
| Binds the |
| Inherited from |
| Inherited from |
| Inherited from |
| Removes the specified dependency between the application and the database |
| Inherited from |
This instance method binds the OracleDependency
instance to the specified OracleCommand
instance.
Declaration
Parameters
cmd
The command that is to be bound to the OracleDependency
object.
Exceptions
ArgumentNullException
- The cmd
parameter is null.
InvalidOperationException
- The specified OracleCommand
instance already contains a notification request.
Remarks
An OracleDependency
instance can bind to multiple OracleCommand
instances.
While it binds an existing OracleDependency
instance to an OracleCommand
instance, the AddCommandDependency
method creates an OracleNotificationRequest
instance, and sets it to the specified OracleCommand.Notification
property.
When this method creates an OracleNotificationRequest
instance, the following OracleNotificationRequest
properties are set:
IsNotifiedOnce
is set to the value True
. Timeout
is set to 50,000 seconds. IsPersistent
is set to the value False
, indicating that the invalidation message is stored in an in-memory queue before delivery. With this method, multiple commands can be associated with a single Continuous Query Notification registration request. Furthermore, the OracleNotificationRequest
attribute values assigned to the OracleCommand
can be changed once the association between the OracleCommand
and the OracleDependency
is established.
However, when multiple OracleCommand
objects are associated with a single OracleDependency
object, the OracleNotificationRequest
attributes (Timeout
, IsPersistent
, and IsNotifiedOnce
) of the first executed OracleCommand
object are used for registration, the attributes associated with subsequent OracleCommand
executions will be ignored.
Furthermore, once a command associated with an OracleDependency
is executed and registered, all other subsequent command executions and registration associated with the same OracleDependency
must use a connection with the same "User
Id"
and "Data
Source"
connection string attribute value settings.
Otherwise, an exception will be thrown.
See Also:
|
This instance method removes the specified dependency between the application and the database. Once the registration of the dependency is removed from the database, the OracleDependency
is no longer able to detect any changes that the database undergoes.
Declaration
Parameters
con
The connection associated with the OracleDependency
instance.
Exceptions
InvalidOperationException
- The associated connection is not open.
Remarks
The notification registration associated with the OracleDependency
instance is removed from the database.
The OracleConnection
parameter must be in an opened state. This instance method does not open the connection implicitly for the application.
An exception is thrown if the dependency is not valid.
The OracleDependency
event is listed in Table 9-11.
Table 9-11 OracleDependency Event
Event | Description |
---|---|
| An event that is sent when a database notification associated with the dependency is received from the database |
The OnChange
event is sent when a database notification associated with the dependency is received from the database. The information related to the notification is stored in the OracleChangeNotificationEventArgs
class.
Declaration
Remarks
The OnChange
event occurs if any result set associated with the dependency changes. For objects that are part of a Transaction, notifications will be received for each modified object. This event also occurs for other actions related to database or registration status, such as database shutdowns and startups, or registration timeouts.
An OracleNotificationRequest
class represents a notification request to be subscribed in the database. It contains information about the request and the characteristics of the notification. Using the OracleNotificationRequest
class, Oracle Data Provider for .NET can create the notification registration in the database.
Class Inheritance
System.Object
Oracle.DataAccess.Client.OracleNotificationRequest
Declaration
Thread Safety
All public static methods are thread-safe, although methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleNotificationRequest
members are listed in the following tables.
OracleNotificationRequest Static Method
The OracleNotificationRequest
static method is listed in Table 9-12.
Table 9-12 OracleNotificationRequest Static Method
Static Method | Description |
---|---|
| Inherited from |
OracleNotificationRequest Properties
OracleNotificationRequest
properties are listed in Table 9-13.
Table 9-13 OracleNotificationRequest Properties
Properties | Description |
---|---|
| Indicates whether or not the registration is to be removed upon notification |
| Indicates whether or not the notification message should be queued persistently in the database before delivery |
| Specifies the time that the registration remains alive |
| Specifies whether grouping notification is enabled or not |
| Specifies the type of grouping notification |
| Specifies the interval between grouping notifications, in seconds |
OracleNotificationRequest Methods
OracleNotificationRequest
methods are listed in Table 9-14.
Table 9-14 OracleNotificationRequest Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleNotificationRequest
static method is listed in Table 9-15.
Table 9-15 OracleNotificationRequest Static Method
Static Method | Description |
---|---|
| Inherited from |
The OracleNotificationRequest
properties are listed in Table 9-16.
Table 9-16 OracleNotificationRequest Properties
Properties | Description |
---|---|
| Indicates whether or not the registration is to be removed upon notification |
| Indicates whether or not the notification message should be queued persistently in the database before delivery |
| Specifies the time that the registration remains alive |
| Specifies whether grouping notification is enabled or not |
| Specifies the type of grouping notification |
| Specifies the interval between grouping notifications, in seconds |
This property indicates whether or not the registration is to be removed upon notification.
Declaration
Property Value
A bool
value that indicates whether or not the registration is to be removed upon notification.
Remarks
The default value is false
for AQ. This is different from change notification where the default value is true
.
Modifying this property after the completion of a successful registration has no effect.
This property indicates whether or not the notification message should be queued persistently in the database until delivery.
Declaration
Property Value
A bool
value that indicates whether or not the notifications should be stored persistently in the database until delivery.
When the IsPersistent
property is set to True
, the message is queued persistently in the database and cannot be lost upon database failures or shutdowns. When the IsPersistent
property is set to False
, the message is stored in an in-memory queue before delivery and could be lost.
This property does not apply to NotificationRegistration
which is always persistent.
This property only applies to the notification message after it has been sent.
Remarks
The default value is false
.
The database performs faster if the message is stored in an in-memory queue rather than a database queue.
Modifying this property after the completion of a successful registration has no effect.
This property is ignored for grouping notifications.
This property specifies the time, in seconds, that the registration remains alive.
Declaration
Property Value
A long
value that specifies the time, in seconds, that the registration remains alive. The valid values for the Timeout
property are between 0
and 4294967295
.
Exceptions
ArgumentOutOfRangeException
- The specified Timeout
is invalid.
Remarks
The default value is 0
(infinite) for AQ and 50000 for change notification. If the Timeout
property is set to 0
, then the registration does not expire.
If the registration is removed because the Timeout
value has been reached, then the database sends a notification indicating the expiration.
Modifying this property after the completion of a successful registration has no effect.
This property specifies whether grouping notification is enabled or not.
Declaration
Property Value
A true
value indicates that grouping notification is enabled. A false
value indicates that grouping notification is disabled.
Remarks
The default value is false
.
Modifying this property after the completion of a successful registration has no effect.
This property specifies the type of grouping notification.
Declaration
Property Value
An OracleAQNotificationGroupingType
enum value
Remarks
The default value is OracleAQNotificationGroupingType.Summary
.
Modifying this property after the completion of a successful registration has no effect.
This property specifies the interval of grouping notification in seconds. The group notifications are delivered at intervals specified by this property.
Declaration
Property Value
An integer
specifying the grouping interval in seconds.
Remarks
The default value is 600 seconds.
The range of GroupingInterval
is from 0
to Int32.MaxValue
.
Modifying this property after the completion of a successful registration has no effect.
OracleNotificationRequest
methods are listed in Table 9-17.
The OracleNotificationEventArgs
class provides event data for a notification.
Class Inheritance
System.Object
System.EventArgs
Oracle.DataAccess.Client.OracleNotificationEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleNotificationEventArgs
members are listed in the following tables.
OracleNotificationEventArgs Static Fields
The OracleNotificationEventArgs
static field is listed in Table 9-18.
Table 9-18 OracleNotificationEventArgs Static Field
Static Field | Description |
---|---|
| Inherited from |
OracleNotificationEventArgs Static Methods
The OracleNotificationEventArgs
static method is listed in Table 9-19.
Table 9-19 OracleNotificationEventArgs Static Method
Static Method | Description |
---|---|
| Inherited from |
OracleNotificationEventArgs Properties
OracleNotificationEventArgs
properties are listed in Table 9-20.
Table 9-20 OracleNotificationEventArgs Properties
Properties | Description |
---|---|
| Contains detailed information about the current notification |
| Indicates the database events for the notification |
| Indicates the database resources related to the current notification |
| Returns the database event source for the notification |
| Returns the database event type for the notification |
OracleNotificationEventArgs Methods
OracleNotificationEventArgs
methods are listed in Table 9-21.
Table 9-21 OracleNotificationEventArgs Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleNotificationEventArgs
static field is listed in Table 9-22.
Table 9-22 OracleNotificationEventArgs Static Field
Static Field | Description |
---|---|
| Inherited from |
The OracleNotificationEventArgs
static method is listed in Table 9-23.
Table 9-23 OracleNotificationEventArgs Static Method
Static Method | Description |
---|---|
| Inherited from |
OracleNotificationEventArgs
properties are listed in Table 9-24.
Table 9-24 OracleNotificationEventArgs Properties
Properties | Description |
---|---|
| Contains detailed information about the current notification |
| Indicates the database events for the notification |
| Indicates the database resources related to the current notification |
| Returns the database event source for the notification |
| Returns the database event type for the notification |
This property contains detailed information about the current notification.
Declaration
Property Value
A DataTable
instance that contains detailed information about the current notification.
Remarks
The returned DataTable
object contains column data about the current notification in order as shown in Table 9-25.
Table 9-25 DataTable Object Column Data
Name | Type | Description |
---|---|---|
|
| The resource name of the invalidated object in the format < |
|
| The information about the database event that occurs on a resource |
|
| The rowid for the invalidated table row |
|
| The |
The QueryId
column contains the CHANGE_NOTIFICATION_QUERY_ID
that corresponds to the pseudo-column that may have been retrieved by a SELECT statement at the time of the query-based notification. Also, the OracleDependency
object maintains all the CHANGE_NOTIFICATION_QUERY_ID
s that are registered with it.
For Continuous Query Notification:
Details
property indicates changes for each invalidated object in the notification in the data table. ROWID
information is requested, then the ROWID
information is populated into the Rowid
column. However, if many rows are modified in a table, then the whole table is invalidated, and ROWID
information is not provided. Therefore, the Rowid
column contains all Null
values. Rowid
column is set to Null
. This property indicates the database events for the notification.
Declaration
Property Value
An OracleNotificationInfo
value that indicates the database event for the notification.
Remarks
The OracleNotificationInfo
value is an enumeration type. If several events are received from the invalidation message, the Info
property is set to one of the OracleNotificationInfo
enumeration values associated with the database events. For example, if a table has been altered and a new row has been inserted into another table, the Info
property is set to either OracleNotificationInfo.Alter
ed or OracleNotificationInfo.Insert
.
To obtain more detailed information from the invalidation message, use the Details
and the ResourceNames
properties.
This property indicates the database resources related to the current notification.
Declaration
Property Value
A string array that indicates the database resources related to the current notification.
Remarks
For Continuous Query Notification, the ResourceNames
property contains information about the invalidated object names in the format <schema_name
>.<object
_name
>. To obtain more detailed information about the changes for invalidated objects, use the Details
property.
This property returns the database event source for the notification.
Declaration
Property Value
The OracleNotificationSource
value for the notification.
Remarks
The OracleNotificationSource
value is an enumeration type. If several event sources are received from the notification message, the Source
property is set to one of the OracleNotificationSource
enumeration values related to the database event source. For example, if a table has been altered (by the ALTER
TABLE
command) and a new row has been inserted into the same table, the Source
property is set to either OracleNotificationSource.Object
or OracleNotificationSource.Data
.
For Continuous Query Notification:
Source
property is set to OracleNotificationSource.Data
: Info
property is set to one of the following: OracleNotificationInfo.Insert
OracleNotificationInfo.Delete
OracleNotificationInfo.Update
ResourceNames
property is set, and the elements are set to the invalidated object names. Details
property contains detailed information on the change of each invalidated table. Source
property is set to OracleNotificationSource.Database
: Info
property is set to one of the following: OracleNotificationInfo.Startup
OracleNotificationInfo.Shutdown
OracleNotificationInfo.Shutdown_Any
OracleNotificationInfo.Dropped
Source
property is set to OracleNotificationSource.Object
: Info
property is set to either OracleNotificationInfo.Altered
or OracleNotificationInfo.Dropped
. ResourceNames
property is set, and the array elements of the ResourceNames
property are set to the object names that have been altered or dropped. Details
property contains detailed information on the changes of the object. Source
property is set to OracleNotificationSource.Subscription
: Info
property is set to the following: OracleNotificationInfo.End
This property returns the database event type for the notification.
Declaration
Property Value
An OracleNotificationType
enumeration value that represents the type of the database event notification.
Remarks
The OracleNotificationType
value is an enumeration type. If several event types are received from the notification message, then the Type
property is set to one of the OracleNotificationType
enumeration values related to the database event type.
OracleNotificationEventArgs
methods are listed in Table 9-26.
The OnChangeEventHandler
delegate represents the signature of the method that handles the notification.
Declaration
Parameters
sender
The source of the event.
args
The OracleNotificationEventArgs
instance that contains the event data.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleRowidInfo
enumeration values specify whether ROWID
information is included as part of the ChangeNotificationEventArgs
or not.
Table 9-28 lists all the OracleRowidInfo
enumeration values with a description of each enumerated value.
Table 9-27 OracleRowidInfo Members
Member Name | Description |
---|---|
|
|
|
|
|
|
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleNotificationType
enumerated values specify the different types that cause the notification.
Table 9-28 lists all the OracleNotificationType
enumeration values with a description of each enumerated value.
Table 9-28 OracleNotificationType Members
Member Name | Description |
---|---|
| A change occurs in the database. |
| A change occurs in the subscription. |
| A query-based change occurs in the database |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleNotificationSource
enumerated values specify the different sources that cause notification.
Table 9-29 lists all the OracleNotificationSource
enumeration values with a description of each enumerated value.
Table 9-29 OracleNotificationSource Members
Member Name | Description |
---|---|
| The data in a table has changed. |
| A database event such as a database startup or shutdown occurs. |
| A database object is altered or dropped. |
| The subscription is changed. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleNotificationInfo
enumerated values specify the database event that causes the notification.
Table 9-30 lists all the OracleNotificationInfo
enumeration values with a description of each enumerated value.
Table 9-30 OracleNotificationInfo Members
Member Name | Description |
---|---|
| A row is inserted. |
| A row is deleted. |
| A row is updated. |
| A database starts. |
| A database shuts down. |
| A database instance in a Real Application Cluster (Oracle RAC) environment shuts down. |
| An object is altered. |
| An object or database is dropped. |
| A registration is removed. |
| A notification error occurs. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
This chapter describes the ODP.NET globalization classes.
This chapter contains these topics:
The OracleGlobalization
class is used to obtain and set the Oracle globalization settings of the session, thread, and local computer (read-only).
Class Inheritance
System.Object
Oracle.DataAccess.Client.OracleGlobalization
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
An exception is thrown for invalid property values. All newly set property values are validated, except the TimeZone
property.
Changing the OracleGlobalization
object properties does not change the globalization settings of the session or the thread. Either the SetSessionInfo
method of the OracleConnection
object or the SetThreadInfo
method of the OracleGlobalization
object must be called to alter the session's and thread's globalization settings, respectively.
Example
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleGlobalization
members are listed in the following tables.
OracleGlobalization Static Methods
The OracleGlobalization
static methods are listed in Table 10-1.
Table 10-1 OracleGlobalization Static Methods
Name | Description |
---|---|
Returns an | |
Returns or refreshes an | |
Sets Oracle globalization parameters to the current thread |
OracleGlobalization Properties
The OracleGlobalization
properties are listed in Table 10-2.
Table 10-2 OracleGlobalization Properties
Name | Description |
---|---|
Specifies the calendar system | |
Specifies a client character set | |
Specifies a method of comparison for | |
Specifies the string to use as a local currency symbol for the L number format element | |
Specifies the date format for Oracle | |
Specifies the language used to spell day and month names and date abbreviations | |
Specifies the dual currency symbol, such as Euro, for the U number format element | |
Specifies the string to use as an international currency symbol for the C number format element | |
Specifies the default language of the database | |
Enables creation of | |
Determines whether or not data loss during an implicit or explicit character type conversion reports an error | |
Specifies the characters used for the decimal character and the group separator character for numeric values in strings | |
Specifies the collating sequence for | |
Specifies the name of the territory | |
Specifies the string format for | |
Specifies the string format for | |
Specifies the time zone region name |
OracleGlobalization Public Methods
OracleGlobalization
public methods are listed in Table 10-3.
Table 10-3 OracleGlobalization Public Methods
Public Method | Description |
---|---|
Creates a copy of an | |
| Inherited from |
The OracleGlobalization
static methods are listed in Table 10-4.
Table 10-4 OracleGlobalization Static Methods
Name | Description |
---|---|
Returns an | |
Returns or refreshes an | |
Sets Oracle globalization parameters to the current thread |
GetClientInfo
returns an OracleGlobalization
object instance that represents the Oracle globalization settings of the local computer.
Overload List:
This method returns an OracleGlobalization
instance that represents the globalization settings of the local computer.
This method refreshes the provided OracleGlobalization
object with the globalization settings of the local computer.
This method returns an OracleGlobalization
instance that represents the globalization settings of the local computer.
Declaration
Return Value
An OracleGlobalization
instance.
Example
This method refreshes the provided OracleGlobalization
object with the globalization settings of the local computer.
Declaration
Parameters
oraGlob
The OracleGlobalization
object being updated.
Example
GetThreadInfo
returns or refreshes an OracleGlobalization
instance.
Overload List:
This method returns an OracleGlobalization
object instance of the current thread.
This method refreshes the OracleGlobalization
object instance with the globalization settings of the current thread.
This method returns an OracleGlobalization
instance of the current thread.
Declaration
Return Value
An OracleGlobalization
instance.
Remarks
Initially, GetThreadInfo()
returns an OracleGlobalization
object that has the same property values as that returned by GetClientInfo()
, unless the application changes it by invoking SetThreadInfo()
.
Example
This method refreshes the OracleGlobalization
object with the globalization settings of the current thread.
Declaration
Parameters
oraGlob
The OracleGlobalization
object being updated.
Remarks
Initially GetThreadInfo()
returns an OracleGlobalization
object that has the same property values as that returned by GetClientInfo()
, unless the application changes it by invoking SetThreadInfo()
.
Example
This method sets Oracle globalization parameters to the current thread.
Declaration
Parameters
oraGlob
An OracleGlobalization
object.
Remarks
Any .NET string conversions to and from ODP.NET Types, as well as ODP.NET Type constructors, use the globalization property values where applicable. For example, when constructing an OracleDate
structure from a .NET string, that string is expected to be in the format specified by the OracleGlobalization
.DateFormat
property of the thread.
Example
The OracleGlobalization
properties are listed in Table 10-5.
Table 10-5 OracleGlobalization Properties
Name | Description |
---|---|
Specifies the calendar system | |
Specifies a client character set | |
Specifies a method of comparison for | |
Specifies the string to use as a local currency symbol for the L number format element | |
Specifies the date format for Oracle | |
Specifies the language used to spell day and month names and date abbreviations | |
Specifies the dual currency symbol, such as Euro, for the U number format element | |
Specifies the string to use as an international currency symbol for the C number format element | |
Specifies the default language of the database | |
Enables creation of | |
Determines whether or not data loss during an implicit or explicit character type conversion reports an error | |
Specifies the characters used for the decimal character and the group separator character for numeric values in strings | |
Specifies the collating sequence for | |
Specifies the name of the territory | |
Specifies the string format for | |
Specifies the string format for | |
Specifies the time zone region name |
This property specifies the calendar system.
Declaration
Property Value
A string representing the Calendar
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_CALENDAR
setting of the local computer. This value is the same regardless of whether or not the OracleGlobalization
object represents the settings of the client, thread, or session.
This property specifies a client character set.
Declaration
Property Value
A string that the provides the name of the character set of the local computer.
Remarks
The default value is the character set of the local computer.
This property represents a method of comparison for WHERE
clauses and comparison in PL/SQL blocks.
Declaration
Property Value
A string that provides the name of the method of comparison.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_COMP
setting of the local computer.
This property specifies the string to use as a local currency symbol for the L number format element.
Declaration
Property Value
The string to use as a local currency symbol for the L number format element.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_CURRENCY
setting of the local computer.
See Also:
|
This property specifies the date format for Oracle Date
type as a string.
Declaration
Property Value
The date format for Oracle Date
type as a string
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_DATE_FORMAT
setting of the local computer.
This property specifies the language used to spell names of days and months, and date abbreviations (for example: a.m., p.m., AD, BC).
Declaration
Property Value
A string specifying the language.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_DATE_LANGUAGE
setting of the local computer.
This property specifies the dual currency symbol, such as Euro, for the U number format element.
Declaration
Property Value
A string that provides the dual currency symbol.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_DUAL_CURRENCY
setting of the local computer.
See Also:
|
This property specifies the string to use as an international currency symbol for the C number format element.
Declaration
Property Value
The string used as an international currency symbol.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_ISO_CURRENCY
setting of the local computer.
See Also:
|
This property specifies the default language of the database.
Declaration
Property Value
The default language of the database.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_LANGUAGE
setting of the local computer.
Language
is used for messages, day and month names, and sorting algorithms. It also determines NLS_DATE_LANGUAGE
and NLS_SORT
parameter values.
This property indicates whether or not CHAR
and VARCHAR2
columns use byte or character (default) length semantics.
Declaration
Property Value
A string that indicates either byte or character length semantics.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_LENGTH_SEMANTICS
setting of the local computer.
This property determines whether or not data loss during an implicit or explicit character type conversion reports an error.
Declaration
Property Value
A string that indicates whether or not a character type conversion causes an error message.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value of NLS_NCHAR_CONV_EXCP
is False
, unless it is overridden by a setting in the INIT.ORA
file.
This property specifies the characters used for the decimal character and the group separator character for numeric values in strings.
Declaration
Property Value
A string that represents the characters used.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_NUMERIC_CHARACTERS
setting of the local computer.
This property specifies the collating sequence for ORDER
by clause.
Declaration
Property Value
A string that indicates the collating sequence.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_SORT
setting of the local computer.
This property specifies the name of the territory.
Declaration
Property Value
A string that provides the name of the territory.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_TERRITORY
setting of the local computer.
Changing this property changes other globalization properties.
This property specifies the string format for TimeStamp
types.
Declaration
Property Value
The string format for TimeStamp
types.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_TIMESTAMP_FORMAT
setting of the local computer.
This property specifies the string format for TimeStampTZ
types.
Declaration
Property Value
The string format for TimeStampTZ
types.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the NLS_TIMESTAMP_TZ_FORMAT
setting of the local computer.
This property specifies the time zone region name or hour offset.
Declaration
Property Value
The string represents the time zone region name or the time zone offset.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is the time zone region name of the local computer
TimeZone
is only used when the thread constructs one of the TimeStamp
structures. TimeZone
has no effect on the session.
TimeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleGlobalization . |
This property returns an empty string if the OracleGlobalization
object is obtained using GetSessionInfo()
or GetSessionInfo(OracleGlobalization)
. Initially, by default, the time zone of the session is identical to the time zone of the thread. Therefore, given that the session time zone is not changed by invoking ALTER
SESSION
calls, the session time zone can be fetched from the client's globalization settings.
OracleGlobalization
public methods are listed in Table 10-6.
Table 10-6 OracleGlobalization Public Methods
Public Method | Description |
---|---|
Creates a copy of an | |
| Inherited from |
This method creates a copy of an OracleGlobalization
object.
Declaration
Return Value
An OracleGlobalization
object.
Implements
ICloneable
Remarks
The cloned object has the same property values as that of the object being cloned.
This chapter describes the ODP.NET failover classes and enumerations.
This chapter contains these topics:
The OracleFailoverEventArgs
class provides event data for the OracleConnection.Failover
event. When database failover occurs, the OracleConnection.Failover
event is triggered along with the OracleFailoverEventArgs
object that stores the event data.
Class Inheritance
System.Object
System.EventArgs
Oracle.DataAccess.Client.OracleFailoverEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example (Oracle.DataAccess.Client only)
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
OracleFailoverEventArgs
members are listed in the following tables.
OracleFailoverEventArgs Static Methods
The OracleFailoverEventArgs
static methods are listed in Table 11-1.
Table 11-1 OracleFailoverEventArgs Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleFailoverEventArgs Properties
The OracleFailoverEventArgs
properties are listed in Table 11-2.
Table 11-2 OracleFailoverEventArgs Properties
Name | Description |
---|---|
Specifies the type of failover the client has requested | |
Indicates the state of the failover |
OracleFailoverEventArgs Public Methods
The OracleFailoverEventArgs
public methods are listed in Table 11-3.
Table 11-3 OracleFailoverEventArgs Public Methods
Name | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleFailoverEventArgs
static methods are listed in Table 11-1.
Table 11-4 OracleFailoverEventArgs Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleFailoverEventArgs
properties are listed in Table 11-5.
Table 11-5 OracleFailoverEventArgs Properties
Name | Description |
---|---|
Specifies the type of failover the client has requested | |
Indicates the state of the failover |
This property indicates the state of the failover.
Declaration
Property Value
A FailoverType
enumeration value.
This property indicates the state of the failover.
Declaration
Property Value
A FailoverEvent
enumerated value.
The OracleFailoverEventArgs
public methods are listed in Table 11-6.
The OracleFailoverEventHandler
represents the signature of the method that handles the OracleConnection.Failover
event.
Declaration
Parameter
sender
The source of the event.
eventArgs
The OracleFailoverEventArgs
object that contains the event data.
Return Type
An int
.
Remarks
To receive failover notifications, a callback function can be registered as follows:
The definition of the callback function OnFailover
can be as follows:
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Comment: Not supported in a .NET stored procedure
FailoverEvent
enumerated values are used to specify the state of the failover.
Table 11-7 lists all the FailoverEvent
enumeration values with a description of each enumerated value.
Table 11-7 FailoverEvent Enumeration Values
Member Names | Description |
---|---|
| Indicates that failover has detected a lost connection and that failover is starting. |
| Indicates successful completion of failover. |
| Indicates that failover was unsuccessful, and there is no option of retrying. |
| Indicates that failover was unsuccessful, and it gives the application the opportunity to handle the error and retry failover. The application can retry failover by returning |
| Indicates that a user handle has been reauthenticated. This applies to the situation where a client has multiple user sessions on a single server connection. During the initial failover, only the active user session is failed over. Other sessions are failed over when the application tries to use them. This is the value passed to the callback during these subsequent failovers. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
FailoverReturnCode
enumerated values are passed back by the application to the ODP.NET provider to request a retry in case of a failover error, or to continue in case of a successful failover.
Table 11-8 lists the FailoverReturnCode
enumeration values with a description of each enumerated value.
Table 11-8 FailoverReturnCode Enumeration Values
Member Names | Description |
---|---|
| Requests ODP.NET to retry failover in case |
| Requests ODP.NET to proceed so that the application receive more notifications, if any |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
FailoverType
enumerated values are used to indicate the type of failover event that was raised.
Table 11-9 lists all the FailoverType
enumeration values with a description of each enumerated value.
Table 11-9 FailoverType Enumeration Values
Member Names | Description |
---|---|
| Indicates that the user has requested only session failover. |
| Indicates that the user has requested select and session failover. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
This chapter describes the following Oracle Data Provider for .NET classes:
The OracleAQAgent
class represents agents that may be senders or recipients of a message.
Class Inheritance
System.Object
OracleAQAgent
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
An agent may be a consumer, another queue, or a consumer of another queue. The queue may be either local or remote. A remote queue is specified through a database link.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleAQAgent
members are listed in the following tables.
OracleAQAgent Constructors
OracleAQAgent
constructors are listed in Table 12-1.
Table 12-1 OracleAQAgent Constructors
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleAQAgent Properties
OracleAQAgent
properties are listed in Table 12-2.
Table 12-2 OracleAQAgent Properties
Property | Description |
---|---|
| Specifies the address of the agent. |
| Specifies the name of the agent. |
OracleAQAgent
constructors instantiate new instances of the OracleAQAgent
class.
Overload List:
This constructor instantiates the OracleAQAgent
class using the specified name.
This constructor instantiates the OracleAQAgent
class using the specified name and address.
This constructor instantiates the OracleAQAgent
class using the specified name.
Declaration
Parameters
name
The name of the agent.
Exceptions
ArgumentNullException
- The name
parameter is null
.
ArgumentException
- The name
parameter is empty.
Remarks
The agent name signifies the name of a producer or consumer of a message. In the context of functionality exposed by Listen
, an agent name corresponds to the name of a consumer for which a message is expected on a multiconsumer queue. It may also be set on a message to signify sender identification or intended recipients of the message.
This constructor instantiates the OracleAQAgent
class using the specified name and address.
Declaration
Parameters
name
The name of the agent.
address
The address is of the form [schema.
]queue
[@
dblink
].
Exceptions
ArgumentNullException
- The address
parameter is null.
ArgumentException
- The address
parameter is empty.
Remarks
The agent name signifies the name of a producer or consumer of a message. In the context of functionality exposed by Listen
, an agent name corresponds to the name of a consumer for which a message is expected on a multiconsumer queue.
The name
parameter can be specified as null
in this constructor. In such a scenario, the agent only has an address
.
The address
parameter signifies the name of the queue against which this agent listens for new messages. The address
represents a queue at a local or remote database.The validity of the address
is not checked implicitly. The exceptions due to wrong address
are thrown only during database operations such as Listen
.
OracleAQAgent
properties are listed in Table 12-3.
Table 12-3 OracleAQAgent Properties
Property | Description |
---|---|
| Specifies the address of the agent. |
| Specifies the name of the agent. |
This instance property specifies the address of the agent.
Declaration
Property Value
A string
that specifies the agent address.
Remarks
The address represents a queue at a local or remote database. The default value is null
. The address of the agent is of the form [schema.
]queue
[@
dblink
]. The string length can be up to 128 characters.
This instance property specifies the name of the agent.
Declaration
Property Value
A string
.
Remarks
The default is null
. The string length can be up to 30 characters. A non-null
value implies that this agent name either corresponds to a consumer name in a multiconsumer queue, or a recipient as specified in message properties.
An OracleAQDequeueOptions
object represents the options available when dequeuing a message from an OracleAQQueue
object.
Class Inheritance
System.Object
OracleAQDequeueOptions
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleAQDequeueOptions
members are listed in the following tables.
OracleAQDequeueOptions Constructor
The OracleAQDequeueOptions
constructor is listed in Table 12-4.
Table 12-4 OracleAQDequeueOptions Constructor
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleAQDequeueOptions Properties
OracleAQDequeueOptions
properties are listed in Table 12-5.
Table 12-5 OracleAQDequeueOptions Properties
Property | Description |
---|---|
| Specifies the consumer name for which to dequeue the message |
| Specifies the correlation identifier of the message to be dequeued |
| Specifies the expected delivery mode of the message being dequeued |
| Specifies the locking behavior associated with the dequeue operation |
| Specifies the message identifier of the message to be dequeued |
| Specifies the position of the message that will be retrieved |
| Specifies whether the payload of a dequeued message is provided as an ODP.NET specific type or a .NET type |
| Specifies whether or not the new message is dequeued as part of the current transaction |
| Specifies the wait time, in seconds, for a message that matches the search criteria |
OracleAQDequeueOptions Public Methods
OracleAQDequeueOptions
public methods are listed in Table 12-6.
Table 12-6 OracleAQDequeueOptions Public Methods
Public Method | Description |
---|---|
| Creates a copy of an |
The OracleAQDequeueOptions
constructor creates an instance of the OracleAQDequeueOptions
class and sets all its properties to their default values.
Declaration
OracleAQDequeueOptions
properties are listed in Table 12-7.
Table 12-7 OracleAQDequeueOptions Properties
Property | Description |
---|---|
| Specifies the consumer name for which to dequeue the message |
| Specifies the correlation identifier of the message to be dequeued |
| Specifies the expected delivery mode of the message being dequeued |
| Specifies the locking behavior associated with the dequeue operation |
| Specifies the message identifier of the message to be dequeued |
| Specifies the position of the message that will be retrieved |
| Specifies whether the payload of a dequeued message is provided as an ODP.NET specific type or a .NET type |
| Specifies whether or not the new message is dequeued as part of the current transaction |
| Specifies the wait time, in seconds, for a message that matches the search criteria |
This instance property specifies the consumer name for which to dequeue the message.
Declaration
Property Value
A string
.
Remarks
The ConsumerName
property only accesses those messages that match the consumer name. If a queue is not set up for multiple consumers, then this field should be set to null
.
This instance property specifies the correlation identifier of the message to be dequeued.
Declaration
Property Value
A string
.
Remarks
This property specifies the identification of the message to be dequeued. Special pattern matching characters, such as the percent sign (%
) and the underscore (_
) can be used. If more than one message satisfies the pattern, then the order of dequeuing is undetermined.
The maximum length of Correlation
is 128.
MessageId
and Correlation
are two independent identifiers. While MessageId
is unique for a message, a group of messages can be assigned the same Correlation
. Also, pattern matching is possible only with Correlation
.
This instance property specifies the expected delivery mode of the message being dequeued.
Declaration
Property Value
An OracleAQMessageDeliveryMode
enumerated value.
Remarks
This property specifies the type of messages to be dequeued. It can be set to dequeue either persistent or buffered messages, or both from a queue. The following values are valid:
OracleAQMessageDeliveryMode.Persistent
OracleAQMessageDeliveryMode.Buffered
OracleAQMessageDeliveryMode.PersistentOrBuffered
The default value is OracleAQMessageDeliveryMode.Persistent
.
Buffered messaging is supported in all queue tables created with a database compatibility level of 8.1 or higher.
This instance property specifies the locking behavior associated with the dequeue operation.
Declaration
Property Value
An OracleAQDequeueMode
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The specified DequeueMode
value is invalid.
Remarks
The default value is OracleAQDequeueMode.Remove
.
This instance property specifies the message identifier of the message to be dequeued.
Declaration
Property Value
A byte[].
Remarks
The dequeue operation succeeds only if the message ID of the message being dequeued matches with the message ID specified.
This instance property specifies the position of the message that will be retrieved.
Declaration
Property Value
An OracleAQNavigationMode
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The specified NavigationMode
value is invalid.
Remarks
The default value is OracleAQNavigationMode.NextMessage
.
This property specifies whether the payload of a dequeued message is provided as an ODP.NET specific type or a .NET type.
Declaration
Property Value
A bool.
Remarks
The default value of this property is false
. For a discussion of how this property affects payload type, refer to "MessageType" under the OracleAQQueue
class.
This instance property specifies whether or not the new message is dequeued as part of the current transaction.
Declaration
Property Value
An OracleAQVisibilityMode
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The Visibility
value specified is invalid.
Remarks
The default value is OracleAQVisibilityMode.OnCommit
. You must use transactions when using the default value for this property. This ensures that applications do not lose messages and the messages are appropriately removed from the queue after the dequeue operation is successful. If transactions are not used when using the default visibility mode of OracleAQVisibilityMode.OnCommit
, then messages are not removed from the queue.
Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate
can eliminate the need to create, commit, and rollback a transaction. However, if an error occurs during the dequeue operation, then the message may be lost.
The visibility parameter is ignored when DequeueMode
is set to OracleAQDequeueMode.Browse
.
This instance property specifies the wait time, in seconds, for a message that matches the search criteria.
Declaration
Property Value
Any positive integer
value or 0 or -1.
Exceptions
ArgumentOutOfRangeException
- The specified Wait
value is invalid.
Remarks
The default value is -1, which implies an infinite wait. The following values are valid:
-1
: Wait forever. 0
: Do not wait. A value of less than -1 raises an ArgumentOutOfRangeException
.
This parameter is ignored if messages in the same group are being dequeued.
The OracleAQDequeueOptions
public method is listed in Table 12-8.
Table 12-8 OracleAQDequeueOptions Public Methods
Public Method | Description |
---|---|
| Creates a copy of an |
This method creates a copy of an OracleAQDequeueOptions
object.
Declaration
Return Value
An OracleAQDequeueOptions
object.
Implements
ICloneable
.
Remarks
The cloned object has the same property values as the object being cloned.
The OracleAQEnqueueOptions
class represents the options available when enqueuing a message to an OracleAQQueue
.
Class Inheritance
System.Object
OracleAQEnqueueOptions
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQEnqueueOptions
members are listed in the following tables.
OracleAQEnqueueOptions Constructor
OracleAQEnqueueOptions
constructor is listed in Table 12-9.
Table 12-9 OracleAQEnqueueOptions Constructor
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleAQEnqueueOptions Properties
OracleAQEnqueueOptions
properties are listed in Table 12-10.
Table 12-10 OracleAQEnqueueOptions Properties
Property | Description |
---|---|
| Specifies the delivery mode of the message being enqueued. |
| Specifies whether or not the new message is enqueued as part of the current transaction. |
OracleAQEnqueueOptions Public Methods
The OracleAQEnqueueOptions
public method is listed in Table 12-11.
Table 12-11 OracleAQEnqueueOptions Public Methods
Public Method | Description |
---|---|
| Creates a copy of an |
This constructor creates an instance of the OracleAQEnqueueOptions
class with default property values.
Declaration
OracleAQEnqueueOptions
properties are listed in Table 12-12.
Table 12-12 OracleAQEnqueueOptions Properties
Property | Description |
---|---|
| Specifies the delivery mode of the message being enqueued. |
| Specifies whether or not the new message is enqueued as part of the current transaction. |
This instance property specifies the delivery mode of the message being enqueued.
Declaration
Exceptions
ArgumentOutOfRangeException
- The specified Visibility
value is invalid.
Remarks
The valid values can be any of the following enumerated values:
OracleAQMessageDeliveryMode.Persistent
OracleAQMessageDeliveryMode.Buffered
The default is OracleAQMessageDeliveryMode.Persistent
.
OracleAQMessageDeliveryMode.PersistentOrBuffered
cannot be set on this property.
OracleAQMessageDeliveryMode.Buffered
can be specified only with Oracle Database 10g release 2 (10.2) or higher. Buffered messaging is supported in all queue tables created with a database compatibility level of 8.1 or higher.
This instance property specifies whether or not the new message is enqueued as part of the current transaction.
Declaration
Property Value
An OracleAQVisibilityMode
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The specified Visibility
value is invalid.
Remarks
The default value is OracleAQVisibilityMode.OnCommit
. You must use transactions when using the default value. If transactions are not used when using the default visibility mode of OracleAQVisibilityMode.OnCommit
, then messages are not enqueued to the queue.
Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate
eliminates the need to use a transaction. The queue is not affected in case the enqueue operation fails. The message does not get enqueued to the queue for such cases.
OracleAQEnqueueOptions
public method is listed in Table 12-13.
Table 12-13 OracleAQEnqueueOptions Public Methods
Public Method | Description |
---|---|
| Creates a copy of an |
This method creates a copy of an OracleAQEnqueueOptions
object.
Declaration
Return Value
An OracleAQEnqueueOptions
object.
Implements
ICloneable.
Remarks
The cloned object has the same property values as that of the object being cloned.
An OracleAQMessage
object represents a message to be enqueued and dequeued.
Class Inheritance
System.Object
OracleAQMessage
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
An OracleAQMessage
object consists of control information (metadata) and Payload (data). The control information is exposed by various properties on the OracleAQMessage
object and is used by Oracle Streams Advanced Queuing to manage messages. The payload is the information stored in the queue.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleAQMessage
members are listed in the following tables.
OracleAQMessage Constructor
OracleAQMessage
constructors are listed in Table 12-14.
Table 12-14 OracleAQMessage Constructors
Constructor | Description |
---|---|
Instantiates a new instance of the |
OracleAQMessage Properties
OracleAQMessage
properties are listed in Table 12-15.
Table 12-15 OracleAQMessage Properties
Property | Description |
---|---|
| Specifies an identification for the message. |
| Specifies the duration, in seconds, after which an enqueued message is available for dequeuing. |
| Specifies the delivery mode of the dequeued message. |
| Returns the number of attempts that have been made to dequeue the message. |
| Specifies the time when the message was enqueued. |
| Specifies the name of the queue that the message should be moved to if it cannot be processed successfully. |
| Specifies the duration, in seconds, for which an enqueued message is available for dequeuing. |
| Returns the message identifier. |
| Specifies the identifier of the message in the last queue that generated this message. |
| Specifies the payload of the message. |
| Specifies the priority of the message. |
| Specifies the list of recipients that overrides the default queue subscribers. |
| Identifies the original sender of the message. |
| Specifies the state of the message at the time of dequeue. |
| Specifies the transaction group for the dequeued message. |
OracleAQMessage
constructors create new instances of the OracleAQMessage
class.
Overload List:
This constructor instantiates the OracleAQMessage
class.
This constructor instantiates the OracleAQMessage
class using the object provided as the payload.
This constructor instantiates the OracleAQMessage
class.
Declaration
This constructor instantiates the OracleAQMessage
class using the Object
provided as the payload
.
Declaration
Parameters
payload
An Object
specifying payload
. It can be one of the following types:
byte[]
IOracleCustomType
OracleBinary
OracleXmlType
String
XmlReader
Exceptions
ArgumentException
- The specified payload
value is of invalid type.
Remarks
The ODP.NET AQ implementation currently does not support user defined types with LOB attributes. It also does not support other variants of user defined types such as VARRAY
and nested tables, as Oracle Streams AQ does not support them inherently.
OracleAQMessage
properties are listed in Table 12-16.
Table 12-16 OracleAQMessage Properties
Property | Description |
---|---|
| Specifies an identification for the message. |
| Specifies the duration, in seconds, after which an enqueued message is available for dequeuing. |
| Specifies the delivery mode of the dequeued message. |
| Returns the number of attempts that have been made to dequeue the message. |
| Specifies the time when the message was enqueued. |
| Specifies the name of the queue that the message should be moved to if it cannot be processed successfully. |
| Specifies the duration, in seconds, for which an enqueued message is available for dequeuing. |
| Returns the message identifier. |
| Specifies the identifier of the message in the last queue that generated this message. |
| Specifies the payload of the message. |
| Specifies the priority of the message. |
| Specifies the list of recipients that overrides the default queue subscribers. |
| Identifies the original sender of the message. |
| Specifies the state of the message at the time of dequeue. |
| Specifies the transaction group for the dequeued message. |
This instance property specifies an identification for the message.
Declaration
Property Value
A string
that specifies the identification for the message.
Remarks
The producer of a message can set this property at the time of enqueuing. The consumer can then use this identification to dequeue specific messages by setting the Correlation
property of an OracleAQDequeueOptions
object. For more information regarding dequeuing messages based on Correlation
, refer to "Correlation" under the OracleAQDequeueOptions
class.
This instance property specifies the duration, in seconds, after which an enqueued message is available for dequeuing.
Declaration
Property Value
An integer
that indicates the number of seconds after which an enqueued message is available for dequeuing.
Exceptions
ArgumentException
- The value specified is less than 0.
Remarks
This property delays the immediate consumption of an enqueued message. The following are valid values for this property:
The default value is 0. The Delay
property is not supported with buffered messaging.
This instance property specifies the delivery mode of the dequeued message.
Declaration
Property Value
An OracleAQMessageDeliveryMode
enumerated value (OracleAQMessageDeliveryMode.Persistent
or OracleAQMessageDeliveryMode.Buffered
).
This instance property returns the number of attempts that have been made to dequeue the message.
Declaration
Property Value
An integer
that indicates the number of dequeue attempts.
Remarks
This property is available in an OracleAQMessage
after the message has been dequeued from a queue.
This instance property specifies the time when the message was enqueued.
Declaration
Property Value
A DateTime
object.
Remarks
This property is available after the message is dequeued. It provides the enqueue time of a dequeued message.
This instance property specifies the name of the queue that the message should be moved to if it cannot be processed successfully.
Declaration
Property Value
The name of the queue that a message should be moved to if it cannot be processed successfully. The default value is null
.
Remarks
This property specifies the queue that a message should be moved to if the message has expired or if the number of unsuccessful dequeue attempts have exceeded the max_retries
value for the queue.
If this property is not set or the specified exception queue name does not exist, then the default exception queue associated with the queue table is used.
This instance property specifies the duration, in seconds, for which an enqueued message is available for dequeuing.
Declaration
Property Value
An integer
that specifies the number of seconds an enqueued message is available for dequeuing.
Exceptions
ArgumentException
- The value specified is less than -1.
Remarks
The value specified is an offset from the value specified in the Delay
property.
The following are valid values for the property:
-1
- Indicates that the message never expires. The default value is -1
. When a message expires, the message moves from the READY
state to the EXPIRED
state.
This instance property returns the message identifier.
Declaration
Property Value
A byte[]
that specifies the message identifier.
Remarks
This property is available after an enqueue or dequeue operation. Dequeued buffered messages have a null
value for MessageId
.
This instance property specifies the identifier of the message in the last queue that generated this message.
Declaration
Property Value
A byte[]
that specifies the original message identifier.
This instance property specifies the payload of the message.
Declaration
Property Value
An Object
that specifies the payload of the message.
Exceptions
ArgumentException
- The specified object is not one of the allowed types.
Remarks
For a complete discussion of various payload types, refer to "MessageType" under the OracleAQQueue
class.
This instance property specifies the priority of the message.
Declaration
Property Value
An integer
that specifies the priority of the message.
Remarks
The default value is 0. In order to take effect, this property must be set prior to enqueuing the message.
Smaller values indicate higher priority for the message. Negative values may also be used.
The priority of an enqueued message is useful for priority-based dequeuing.
This instance property specifies the list of recipients that overrides the default queue subscribers.
Declaration
Property Value
An OracleAQAgent[]
.
Remarks
This recipient list is valid only for messages being enqueued to multiconsumer queues. The list of recipients is not returned with the message at the time of dequeuing.
This instance property identifies the original sender of the message.
Declaration
Property Value
An OracleAQAgent
object.
Remarks
Sender identification is supported in all queue tables created with a database compatibility level of 8.1 or higher.
This instance property specifies the state of the message at the time of dequeue.
Declaration
Property Value
An OracleAQMessageState
enumerated value.
Remarks
This property is available after the message is dequeued.
The state of buffered messages dequeued by specifying Correlation
under dequeue options is always OracleAQMessageState.Ready
.
This instance property specifies the transaction group for the dequeued message.
Declaration
Property Value
A string
that specifies the transaction group.
Remarks
This property is set only after the call to DequeueArray
. This property is supported only when using Oracle Database 10g database or higher.
Messages belonging to one queue can be grouped to form a set that can only be consumed by one user at a time. This requires that the queue be created in a queue table that is enabled for message grouping. All messages belonging to a group must be created in the same transaction. Also, all messages created in one transaction belong to the same group.
The OracleAQMessageAvailableEventArgs
class provides event data for the OracleAQQueue.MessageAvailable
event.
Class Inheritance
System.Object
System.EventArgs
Oracle.DataAccess.Client.OracleAQMessageAvailableEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
This class cannot be inherited.
For detailed information on all the inherited properties and methods, please read the documentation provided by Microsoft's .NET Documentation.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleAQMessageAvailableEventArgs
members are listed in the following tables.
OracleAQMessageAvailableEventArgs Properties
OracleAQMessageAvailableEventArgs
properties are listed in Table 12-17.
Table 12-17 OracleAQMessageAvailableEventArgs Properties
Property | Description |
---|---|
| Specifies the number of messages that raised this notification. |
| Provides the name of the consumer for which the message is available for dequeuing. |
| Provides the name of the consumer for which the message is available for dequeuing. |
| Specifies the duration, in seconds, after which an enqueued message is available for dequeuing. |
| Specifies the delivery mode of the message. |
| Specifies the time when the message was enqueued. |
| Specifies the name of the queue that the message is moved to if it cannot be processed successfully. |
| Specifies the duration, in seconds, for which an enqueued message is available for dequeuing before expiring. |
| Returns an array of message identifiers. |
| Indicates the type of notification such as regular, grouping, or timeout. |
| Specifies the ID of the message, in the last queue, that generated this message. |
| Specifies the priority of the message. |
| Indicates the name of the queue that contains the message to be dequeued. |
| Identifies the original sender of the message. |
| Specifies the state of the message. |
OracleAQMessageAvailableEventArgs
properties are listed in Table 12-18.
Table 12-18 OracleAQMessageAvailableEventArgs Properties
Property | Description |
---|---|
| Specifies the number of messages that raised this notification. |
| Provides the name of the consumer for which the message is available for dequeuing. |
| Provides the name of the consumer for which the message is available for dequeuing. |
| Specifies the duration, in seconds, after which an enqueued message is available for dequeuing. |
| Specifies the delivery mode of the message. |
| Specifies the time when the message was enqueued. |
| Specifies the name of the queue that the message is moved to if it cannot be processed successfully. |
| Specifies the duration, in seconds, for which an enqueued message is available for dequeuing before expiring. |
| Returns an array of message identifiers. |
| Indicates the type of notification such as regular, grouping, or timeout. |
| Specifies the ID of the message, in the last queue, that generated this message. |
| Specifies the priority of the message. |
| Indicates the name of the queue that contains the message to be dequeued. |
| Identifies the original sender of the message. |
| Specifies the state of the message. |
This instance property specifies the number of messages that raised this notification.
Declaration
Property Value
An integer
indicating the number of messages that raised this notification.
Remarks
The property value is 1 for a regular notification type. The notification type can be specified using the OracleAQQueue.Notification
property.
This property is not relevant if the NotificationType
is OracleAQNotificationType.Timeout
.
This property provides the name of the consumer for which the message is available for dequeuing.
Declaration
Property Value
A string
that identifies the name of the consumer.
This instance property specifies the identification for the message.
Declaration
Property Value
A string
that specifies the identification for the message.
Remarks
This property specifies the correlation of the message for which the notification is raised. The consumer can then use this identification to dequeue specific messages by setting the "Correlation" property of the OracleAQDequeueOptions
object.
This instance property specifies the duration, in seconds, after which an enqueued message is available for dequeuing.
Declaration
Property Value
An integer
that indicates the duration, in seconds, after which an enqueued message is available for dequeuing.
This instance property specifies the delivery mode of the message.
Declaration
Property Value
An OracleAQMessageDeliveryMode
enumerated value.
This instance property specifies the time when the message was enqueued.
Declaration
Property Value
A DateTime
object.
This instance property specifies the name of the queue that the message is moved to if it cannot be processed successfully.
Declaration
Property Value
The name of the queue that a message to is moved if it cannot be processed successfully.
This instance property specifies the duration, in seconds, for which an enqueued message is available for dequeuing before expiring.
Declaration
Property Value
An integer
that specifies the duration, in seconds, for which an enqueued message is available for dequeuing.
This instance property returns an array of message identifiers.
Declaration
Property Value
A byte[][]
that specifies the message identifiers received as part of the notification.
Remarks
This property specifies the message identifiers of the messages that raise the notification.
The size of the MessageId
array is 1 for regular notifications. The size of the MessageId array is 1 for grouping notifications if the notification grouping type is OracleAQNotificationGroupingType.Last
. This property is not relevant if the NotificationType
is OracleAQNotificationType.Timeout
.
This property indicates the type of notification such as regular, grouping, or timeout.
Declaration
Property Value
An OracleAQNotificationType
enum value.
This property specifies the ID of the message, in the last queue, that generated this message.
Declaration
Property Value
A byte[]
that specifies the original message ID.
This instance property specifies the priority of the message.
Declaration
Property Value
An integer
that specifies the priority of the message.
This property indicates the name of the queue that contains the message to be dequeued.
Declaration
Property Value
A string
.
This property identifies the original sender of the message.
Declaration
Property Value
An OracleAQAgent
object.
This instance property specifies the state of the message.
Declaration
Property Value
An OracleAQMessageState
enumerated value.
The OracleAQMessageAvailableEventHandler
delegate represents the signature of the method that handles the OracleAQQueue.MessageAvailable
event.
Declaration
Parameters
sender
The source of the event.
eventArgs
The OracleAQMessageAvailableEventArgs
object that contains the event data.
An OracleAQQueue
object represents a queue.
Class Inheritance
System.Object
OracleAQQueue
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
A queue is a repository of messages and may either be a user queue, or an exception queue. A user queue is for normal message processing. A message is moved from a user queue to an exception queue if it cannot be retrieved and processed for some reason.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleAQQueue
members are listed in the following tables.
OracleAQQueue Constructors
OracleAQQueue
constructors are listed in Table 12-19.
Table 12-19 OracleAQQueue Constructors
Constructor | Description |
---|---|
Instantiate a new instance of the |
OracleAQQueue Static Methods
The OracleAQQueue
static method is listed in Table 12-20.
Table 12-20 OracleAQQueue Static Methods
Static Method | Description |
---|---|
| Listens for messages on one or more queues for one or more consumers, as specified in the array of |
OracleAQQueue Properties
OracleAQQueue
properties are listed in Table 12-21.
Table 12-21 OracleAQQueue Properties
Property | Description |
---|---|
| Specifies the |
| Specifies the dequeueing options to use when dequeuing a message from a queue. |
| Specifies the enqueueing options used to enqueue a message to a queue. |
| Specifies the type of queue table associated with this queue. |
| Returns the name of the queue. |
| Specifies the various notification options for notifications that are registered using the |
| Specifies the array of consumers, for a multiconsumer queue, that are to be notified asynchronously for any incoming messages on the queue. |
| Specifies the type name on which the queue and the corresponding queue table is based if the |
OracleAQQueue Public Methods
The OracleAQQueue
public methods are listed in Table 12-22.
Table 12-22 OracleAQQueue Public Methods
Public Method | Description |
---|---|
| Dequeues messages from queues (Overloaded). |
| Dequeues multiple messages from queues (Overloaded). |
| Releases any resources or memory allocated by the object |
| Enqueues messages to queues (Overloaded). |
| Enqueues multiple messages to a queue (Overloaded). |
| Listens for messages on the queue on behalf of |
OracleAQQueue Events
The OracleAQQueue
event is listed in Table 12-23.
Table 12-23 OracleAQQueue Events
Event Name | Description |
---|---|
| Notifies when a message is available in the queue for |
OracleAQQueue
constructors create new instances of the OracleAQQueue
class.
Overload List:
This constructor takes a queue name to initialize a queue object.
This constructor takes a queue name and connection to initialize a queue object. The connection does not need be open during the queue object construction.
This constructor takes a queue name, connection, and message type enumeration to initialize a queue object.
This constructor takes a queue name, connection, message type enumeration, and UDT type name to initialize a queue object.
This constructor takes a queue name to initialize a queue object.
Declaration
Parameters
name
The name of the queue as specified in the database.
Exceptions
ArgumentNullException
- The queue name is null
.
ArgumentException
- The queue name is empty.
Remarks
The operation of creating an OracleAQQueue
object does not involve checking for the existence of the queue in the database.
This constructor takes a queue name and connection to initialize a queue object. The connection does not need to be open during the queue object construction.
Declaration
Parameters
name
Name of the queue as specified in the database.
con
An OracleConnection
object that connects to the queue.
Exceptions
ArgumentNullException
- Either the connection is null or queue name is null
.
ArgumentException
- Queue name is empty.
Remarks
The connection can be accessed using the Connection
property, and it must be opened before calling any operational APIs such as Enqueue
and Dequeue
.
Creating an OracleAQQueue
object does not check for the existence of the queue in the database.
This constructor takes a queue name, connection and message type enumeration to initialize a queue object. The connection does not need to be open during the queue object construction.
Declaration
Parameters
name
The name of the queue as specified in the database.
con
An OracleConnection
object that is used to connect to the queue.
messageType
An OracleAQMessageType
enumeration specifying the type of the message that is enqueued or dequeued from this queue.
Exceptions
ArgumentNullException
- Either the connection is null
or queue name is null
.
ArgumentException
- Queue name is empty or the specified message type is not valid.
Remarks
Creating an OracleAQQueue
object does not check for the existence of the queue in the database.
You need to set the UdtTypeName
property before using the queue object if the messageType
is a UDT. Another approach is to create a queue using the other constructor overload by supplying the udtTypeName
.
This constructor takes a queue name, connection, message type enumeration, and UDT type name to initialize a queue object. The connection does not need to be open during the queue object construction.
Declaration
Parameters
name
The name of the queue as specified in the database.
con
An OracleConnection
object that is used to connect to the queue.
messageType
An OracleAQMessageType
enumeration specifying the type of the message that is enqueued or dequeued from this queue.
udtTypeName
The name of the database object type used if the messageType
is UDT. The udtTypeName
parameter represents the type on which the queue is based.
Exceptions
ArgumentNullException
- The connection is null
or the queue name is null
.
ArgumentException
- The queue name is empty or the specified messageType
is not valid.
Remarks
Creating an OracleAQQueue
object does not check for the existence of the queue in the database.
OracleAQQueue
static methods are listed in Table 12-24.
Table 12-24 OracleAQQueue Static Methods
Static Method | Description |
---|---|
| Listens for messages on one or more queues for one or more consumers, as specified in the array of |
Listen
methods listen for messages on one or more queues for one or more consumers as specified in the array of OracleAQAgent
objects.
Overload list
This static method listens for messages on one or more queues for one or more consumers as specified in the array of OracleAQAgent
objects.
This static method listens for messages on one or more queues for one or more consumers as specified in the array of OracleAQAgent
objects. It also specifies a wait time.
This static method listens for messages on one or more queues for one or more consumers as specified in the array of OracleAQAgent
objects.
Declaration
Parameters
con
An OracleConnection
instance.
listenConsumers
The array of consumers being listened for. The name of the OracleAQAgent
object must be null
or empty for single consumer queues.
Return Value
An OracleAQAgent
object.
Exceptions
ArgumentNullException
- The con
or listenConsumers
parameter is null.
InvalidOperationException
- The connection is not open.
Remarks
Listen
is useful in situations where one needs to monitor multiple queues until a message is available for a consumer in one of the queues. The Name
property of the OracleAQAgent
object represents the name of the consumer and the Address
property represents the name of the queue.
This call blocks the calling thread until there is a message ready for consumption for a consumer in the list. It returns an OracleAQAgent
object which specifies the consumer and queue for which a message is ready to be dequeued.
This static method listens for messages on one or more queues for one or more consumers as specified in the array of OracleAQAgent
objects. The Name
property of the OracleAQAgent
object represents the name of the consumer and the Address
property of the OracleAQAgent
object represents the name of the queue.
In case of timeout, this method returns null
.
Declaration
Parameters
con
An OracleConnection
instance.
listenConsumers
The array of consumers being listened for. The name of the OracleAQAgent
object must be null
or empty for single consumer queues.
waitTime
Wait time in seconds.
Return Value
An OracleAQAgent
object.
Exceptions
ArgumentNullException
- The con
or listenConsumers
parameter is null.
InvalidOperationException
- The connection is not open.
ArgumentException
- waitTime
is less than -1.
Remarks
Listen
is useful in situations where one needs to monitor multiple queues until a message is available for a consumer in one of the queues. The Name
property of the OracleAQAgent
object represents the name of the consumer and the Address
property of the OracleAQAgent
object represents the name of the queue.
A waitTime
of -1
implies an infinite wait time.
This call blocks the calling thread until there is a message ready for consumption for a consumer in the list. It returns an OracleAQAgent
object which specifies the consumer and queue for which a message is ready to be dequeued.
OracleAQQueue
properties are listed in Table 12-25.
Table 12-25 OracleAQQueue Properties
Property | Description |
---|---|
| Specifies the |
| Specifies the dequeueing options to use when dequeuing a message from a queue. |
| Specifies the enqueueing options used to enqueue a message to a queue. |
| Specifies the type of queue table associated with this queue. |
| Returns the name of the queue. |
| Specifies the various notification options for notifications that are registered using the |
| Specifies the array of consumers, for a multiconsumer queue, that are to be notified asynchronously for any incoming messages on the queue. |
| Specifies the type name on which the queue and the corresponding queue table is based if the |
This property specifies the OracleConnection
object associated with the queue.
Declaration
Property Value
An OracleConnection
object that indicates the connection associated with the queue.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This connection must be opened before calling methods like Enqueue
and Dequeue
.
This instance property specifies the dequeueing options to use when dequeuing a message from a queue.
Declaration
Property Value
An OracleAQDequeueOptions
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is an OracleAQDequeueOptions
object with default property values. Setting this property to null
resets all dequeue options to their default values.
This instance property specifies the enqueueing options used to enqueue a message to a queue.
Declaration
Property Value
An OracleAQEnqueueOptions
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The default value is an OracleAQEnqueueOptions
object with default property values. Setting this property to null
resets all enqueue options to their default values.
This instance property specifies the type of queue table associated with this queue.
Declaration
Property Value
An OracleAQMessageType
enumerated value.
Exceptions
ArgumentOutOfRangeException
- The type value specified is invalid.
ObjectDisposedException
- The object is already disposed.
Remarks
The MessageType
property also dictates the type of message payloads that are enqueued or dequeued from the queue. It is possible to enqueue a variety of payloads depending on the MessageType
.
Table 12-26 lists the allowed payload types for various message types.
Table 12-26 Message Types and Payloads
OracleAQQueue.MessageType | Allowed OracleAQMessage.Payload type to Enqueue |
---|---|
|
|
|
|
|
|
Table 12-27 lists the payload types for dequeued messages.
Table 12-27 Payload Types for Dequeued Messages
OracleAQQueue.MessageType | DequeueOptions.ProviderSpecificType | OracleAQMessage.Payload of dequeued message |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
| N.A. |
|
This instance property returns the name of the queue.
Declaration
Property Value
A string
that indicates the name of the queue.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property specifies the various notification options for notifications that are registered using the MessageAvailable
event.
Declaration
Property Value
Specifies an OracleNotificationRequest
object whose properties can be changed to alter the notification behavior.
Remarks
This property can be used to change various notification options. The notification options must be changed before registering with the MessageAvailable
event. This property can be modified again only after unregistering from the MessageAvailable
event.
This instance property specifies the array of consumers, for a multiconsumer queue, that are to be notified asynchronously for any incoming messages on the queue.
Declaration
Property Value
Specifies an array of consumer name strings for which the notifications are delivered.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- MessageAvailable
registration is active.
Remarks
The consumer names must be in uppercase. This functionality only supports queues with uppercase names.
The list of consumers is used in the MessageAvailable
event. The list must be set before registering for the event. This property cannot be modified after registering for the MessageAvailable
event. This property can be modified again only after unregistering from MessageAvailable
event.
This instance property specifies the type name on which the queue and the corresponding queue table is based if the MessageType
is OracleAQMessageType.UDT
.
Declaration
Property Value
Specifies the Oracle user-defined type name if the MessageType
is OracleAQMessageType.UDT
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The UdtTypeName
property corresponds to the user-defined type name of the payload. This property must always be specified if the payload is a user-defined type. This property need not be set for other payload types.
OracleAQQueue
public methods are listed in Table 12-28.
Table 12-28 OracleAQQueue Public Methods
Public Method | Description |
---|---|
| Dequeues messages from queues (Overloaded). |
| Dequeues multiple messages from queues (Overloaded). |
| Releases any resources or memory allocated by the object |
| Enqueues messages to queues (Overloaded). |
| Enqueues multiple messages to a queue (Overloaded). |
| Listens for messages on the queue on behalf of |
Dequeue methods dequeue messages from queues.
Overload List
This instance method dequeues messages from a queue using the DequeueOptions
for the instance.
This instance method dequeues messages from a queue using the supplied dequeue options.
This instance method is used to dequeue a message from a queue using the DequeueOptions
for the instance.
Declaration
Return Value
An OracleAQMessage
instance representing the dequeued message.
Exceptions
InvalidOperationException
- The connection is not open.
ObjectDisposedException
- The object is already disposed.
OracleException
- In case of timeout, an exception is thrown with the message, ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.
Timeout may happen if DequeueOptions.Wait
is set to a value other than -1
.
Remarks
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must also be set.
Dequeued buffered messages always have null
MessageId
values.
This instance method dequeues messages from a queue using the supplied dequeue options.
Declaration
Parameters
dequeueOptions
An OracleAQDequeueOptions
object.
Return Value
An OracleAQMessage
instance representing the dequeued message.
Exceptions
InvalidOperationException
- The connection is not open.
ObjectDisposedException
- The object is already disposed.
OracleException
- In case of timeout, an exception is thrown with the message, ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.
Timeout may happen if DequeueOptions.Wait
is set to a value other than -1
.
Remarks
If the supplied dequeueOptions
object is null,
then the dequeue options default values are used. The queue object's DequeueOptions
property is ignored for this operation.
Calling this method does not change the DequeueOptions
property of the queue.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must also be set.
Dequeued buffered messages always have null
MessageId
values.
DequeueArray
methods dequeue multiple messages from queues.
Overload List
This instance method dequeues multiple messages from a queue using the DequeueOptions
of the instance.
This instance method dequeues multiple messages from a queue using the supplied dequeue options.
This instance method dequeues multiple messages from a queue using the DequeueOptions
of the instance.
Declaration
Parameters
dequeueCount
An integer
specifying the numbers of messages to dequeue.
Return Value
An array of OracleAQMessage
instances representing the dequeued messages.
Exceptions
ArgumentOutOfRangeException
- dequeueCount
is less than or equal to 0.
InvalidOperationException
- The connection is not open.
ObjectDisposedException
- The object is already disposed.
OracleException - In case of timeout, an exception is thrown with the message, ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.
Timeout may happen if DequeueOptions.Wait
is set to a value other than -1
.
Remarks
This method is supported for Oracle Database 10g and higher releases.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must be set as well.
The size of the returned array may be less than the dequeueCount
. It depends on the actual number of messages present in the queue.
For database versions earlier than Oracle Database 11g Release 2 (11.2.0.3), the MessageId
property of persistent OracleAQMessage
objects retrieved using DequeueArray
is always null
.
Dequeued buffered messages always have null
MessageId
values irrespective of the database version.
This instance method dequeues multiple messages from a queue using the supplied dequeue options.
Declaration
Parameters
dequeueCount
An integer
specifying the numbers of messages to dequeue.
dequeueOptions
An OracleAQDequeueOptions
object.
Return Value
An array of OracleAQMessage
instances representing the dequeued messages.
Exceptions
ArgumentOutOfRangeException
- dequeueCount
is less than or equal to 0.
InvalidOperationException
- The connection is not open.
ObjectDisposedException
- The object is already disposed.
OracleException
- In case of timeout, an exception is thrown with the message, ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.
Timeout may happen if DequeueOptions.Wait
is set to a value other than -1
.
Remarks
This method is supported for Oracle Database 10g Release 1 (10.1) and higher releases. Calling this method does not change the DequeueOptions
property of the queue.
If the supplied dequeueOptions
object is null
, then the dequeue options default values are used. The DequeueOptions
property of the queue object is ignored in this operation.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must be set as well.
The size of the returned array may be less than the dequeueCount
. It dependes on the actual number of messages present in the queue.
For database versions earlier than Oracle Database 11g Release 2 (11.2.0.3), the MessageId
property of persistent OracleAQMessage
objects retrieved using DequeueArray
is always null
.
Dequeued buffered messages always have null
MessageId
values irrespective of the database version.
This method releases any resources or memory allocated by the object.
Declaration
Implements
IDisposable
.
Enqueue
instance methods enqueue messages to queues.
Overload List
This instance method enqueues messages to a queue using the EnqueueOptions
of the instance.
This instance method enqueues messages to a queue using the supplied enqueue options.
This instance method enqueues messages to a queue using the EnqueueOptions
of the instance.
Declaration
Parameters
message
An OracleAQMessage
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The connection is not open.
ArgumentNullException
- The message parameter is null
.
ArgumentException
- The message payload is OracleXmlType
and the connection used to create OracleXmlType
is different from the queue's connection.
Remarks
MessageId
of the enqueued message is populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId
values.
The MessageType
property needs to be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must be set as well.
This instance method enqueues messages to a queue using the supplied enqueue options.
Declaration
Parameters
message
An OracleAQMessage
object.
enqueueOptions
An OracleAQEnqueueOptions
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The connection is not open.
ArgumentNullException
- The message parameter is null
.
ArgumentException
- The message payload is OracleXmlType
and the connection used to create OracleXmlType
is different from the queue's connection.
Remarks
If the supplied enqueueOptions
object is null
, then the enqueue options default values are used. The EnqueueOptions
property of the queue object is ignored in this operation.
The MessageId
of the enqueued message is populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId
values. Calling this method does not change the EnqueueOptions
property of the queue.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must also be set.
EnqueueArray
instance methods enqueue multiple messages to a queue.
Overload List
This instance method enqueues multiple messages to a queue using the EnqueueOptions
of the instance.
This instance method enqueues multiple messages to a queue using the supplied enqueue options.
This instance method enqueues multiple messages to a queue using the EnqueueOptions
of the instance.
Declaration
Parameters
messages
An array of OracleAQMessage
objects.
Return Value
An integer
representing the number of messages actually enqueued.
Exceptions
ArgumentNullException
- The message parameter is null
.
ArgumentException
- At least one of the OracleAQMessage[]
elements is null,
or at least one of the OracleAQMessage[]
elements has a payload of OracleXmlType
, which is created using a connection that is different from the queue's connection.
InvalidOperationException
- The OracleAQMessage
array is empty or the connection is not open.
ObjectDisposedException
- The object is already disposed.
Remarks
This method is supported by Oracle Database 10g and higher releases. The MessageId
properties of the enqueued messages are populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId
values.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must also be set.
This instance method enqueues multiple messages to a queue using the supplied enqueue options.
Declaration
Parameters
messages
An array of OracleAQMessage
objects.
enqueueOptions
An OracleAQEnqueueOptions
object.
Return Value
An integer
representing the number of messages actually enqueued.
Exceptions
ArgumentNullException
- The message parameter is null
.
ArgumentException
- At least one of the OracleAQMessage[]
elements is null,
or at least one of the OracleAQMessage[]
elements has a payload of OracleXmlType
, which is created using a connection that is different from the queue's connection.
InvalidOperationException
- The OracleAQMessage
array is empty or the connection is not open.
ObjectDisposedException
- The object is already disposed.
Remarks
This method is supported by Oracle Database 10g and higher releases. MessageId
properties of the enqueued messages are populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId
values. Calling this method does not change the EnqueueOptions
property of the queue.
If the supplied enqueueOptions
object is null
, then the enqueue options default values are used. The EnqueueOptions
property of the queue object is ignored in this operation.
The MessageType
property must be set appropriately before calling this function. If the MessageType
is OracleAQMessageType.UDT
, then the UdtTypeName
property must also be set.
Listen methods listen for messages on the queue on behalf of listenConsumers
.
Overload List
This method listens for messages on the queue on behalf of listenConsumers
.
This method listens for messages on behalf of listenConsumers
for a specified time.
This method listens for messages on the queue on behalf of listenConsumers
.
Declaration
Parameters
listenConsumers
An array of consumers to listen for on this queue. This parameter should be null
in case of single consumer queues.
Return Value
A string
.
Exceptions
InvalidOperationException
- The connection is not open.
ObjectDisposedException
- The object is already disposed.
Remarks
This call blocks the calling thread until there is a message ready for consumption for a consumer in the listenConsumers
array. It returns a string
representing the consumer name for which the message is ready.
Listen
is useful in situations that require waiting until a message is available in the queue for consumers whose names are specified in listenConsumers
.
Example
The following example demonstrates using the Listen
method. The first part of the example performs the requisite database setup for the database user, SCOTT
. The second part of the example demonstrates how a thread can listen and wait until a message is enqueued.
This method listens for messages on behalf of listenConsumers
for a specified time.
Declaration
Parameters
listenConsumers
Array of consumers for which to listen on this queue.
waitTime
Wait time in seconds.
Return Value
A string
Exceptions
InvalidOperationException
- The connection is not open.
ArgumentException - waitTime
is less than -1
.
ObjectDisposedException
- The object is already disposed.
Remarks
Listen
is useful in situations that require waiting until a message is available in the queue for consumers whose names are specified in listenConsumers
.
This call blocks the calling thread until there is a message ready for consumption for a consumer in the listenConsumers
array. It returns a string
representing the consumer name for which the message is ready.The method returns null
if a timeout occurs.
The listenConsumers
parameter should be null
for single consumer queues. An empty string is returned in such cases.
A waitTime
of -1
implies infinite wait time.
The OracleAQQueue
event is listed in Table 12-29.
Table 12-29 OracleAQQueue Events
Event Name | Description |
---|---|
| Notifies when a message is available in the queue for |
This event is notified when a message is available in the queue for NotificationConsumers
.
Declaration
Event Data
The event handler receives an OracleAQMessageAvailableEventArgs
object.
Exceptions
InvalidOperationException
- The connection is not open.
Remarks
Asynchronous notification is supported in all queue tables created with a database compatibility level of 8.1 or higher.
In order to receive the notification about message availability, the client must create an OracleAQMessageAvailableEventHandler
delegate to listen to this event. The delegate should be added to this event only after setting the NotificationConsumers and Notification properties.
The notification registration takes place after the first delegate is added to the event. The notification is unregistered when the last delegate is removed from the event. Notifications set on an OracleAQQueue
object get cancelled automatically when the object gets disposed.
Oracle Data Provider for .NET opens a port to listen for notifications. HA events, load balancing, and database change notification features also share the same port. This port can be configured centrally by setting the database notification port in an application or Web configuration file. The following example code specifies a port number of 1200:
If the configuration file does not exist or the db notification port is not specified, then ODP.NET uses a valid and random port number. The configuration file may also request for a random port number by specifying a db notification port value of -1.
The notification listener, which runs in the same application domain as ODP.NET, uses the specified port number to listen to notifications from the database. A notification listener gets created when the application registers with OracleAQQueue.MessageAvailable
event. One notification listener can listen to all notification types. Only one notification listener is created for each application domain.
Example
The following example demonstrates application notification. The first part of the example performs the requisite database setup for the database user, SCOTT
. The second part of the example demonstrates how an application is notified when a message is available in the queue.
Table 12-30 lists all the OracleAQDequeueMode
enumeration values with a description of each enumerated value.
Table 12-30 OracleAQDequeueMode Members
Member Name | Description |
---|---|
| Reads the message without acquiring any lock on the message. This is equivalent to a |
| Reads and obtains a write lock on the message. The lock lasts for the duration of the transaction. This is equivalent to a |
| Reads the message and updates or deletes it. This is the default. The message can be retained in the queue table based on the retention properties |
| Confirms receipt of the message but does not deliver the actual message content. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQMessageDeliveryMode
enumeration type specifies the delivery mode of the message.
Table 12-31 lists all the OracleAQMessageDeliveryMode
enumeration values with a description of each enumerated value.
Table 12-31 OracleAQMessageDeliveryMode Members
Member Name | Description |
---|---|
| Indicates a buffered message. Both enqueue and dequeue buffered messaging operations must be in Dequeuing applications can choose to dequeue persistent messages only, buffered messages only, or both types. Buffered messages can be queried using the Buffered messaging is supported in Oracle Database 10g release 2 (10.2) and higher releases. Recipient lists are supported for buffered messaging. Buffered messaging is supported in all queue tables created with a database compatibility level of 8.1 or higher. Transaction grouping queues and array enqueues are not supported for buffered messages in Oracle Database 11g release 1 (11.1) . One can still use the array enqueue procedure to enqueue buffered messages, but the array size must be set to Buffered messaging is faster than persistent messaging. Use buffered messaging for applications that do not require the reliability and transaction support of Oracle Streams AQ persistent messaging. |
| Indicates a persistent message. Persistent messaging ensures reliability and support transactions. It is slower than buffered messaging. |
| Indicates a persistent or buffered message. This is used with |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQMessageState
enumeration type identifies the state of the message at the time of dequeue.
Table 12-32 lists all the OracleAQMessageState
enumeration values with a description of each enumerated value.
Table 12-32 OracleAQMessageState Members
Member Name | Description |
---|---|
| Indicates that the message has been moved to the exception queue. |
| Indicates that the message has been processed and retained. |
| Indicates that the message is ready to be processed. |
| Indicates that the message delay has not been reached. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQMessageType
enumeration type specifies the message payload type.
Table 12-33 lists all the OracleAQMessageType
enumeration values with a description of each enumerated value.
Table 12-33 OracleAQMessageType Members
Member Name | Description |
---|---|
| Indicates the Raw message type. The data type of the payload must be either |
| Indicates the Oracle UDT message type. The ODP.NET AQ implementation currently does not support user defined types with LOB attributes. It also does not support other variants of user defined types such as VARRAY and nested tables, as Oracle Streams AQ does not support them inherently. |
| Indicates the XML message type. The data type of the payload must be |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Table 12-34 lists all the OracleAQNavigationMode
enumeration values with a description of each enumerated value.
Table 12-34 OracleAQNavigationMode Members
Member Name | Description |
---|---|
| Retrieves the first message that is available and matches the search criteria. This resets the position to the beginning of the queue. |
| Indicates that a call to You can use the |
| Retrieves the next message that is available and matches the search criteria. If the previous message belongs to a message group, AQ retrieves the next available message that matches the search criteria and belongs to the message group. |
| Indicates that a call to You can use the |
| Skips the remainder of the current transaction group (if any) and retrieves the first message of the next transaction group. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQNotificationGroupingType
enumeration type specifies the notification grouping type.
Table 12-35 lists all the OracleAQNotificationGroupingType
enumeration values with a description of each enumerated value.
Table 12-35 OracleAQNotificationGroupingType Members
Member Name | Description |
---|---|
| Indicates that only details of the last message in the notification group are provided. |
| Indicates that the |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleAQNotificationType
enumeration type specifies the notification type of the received notification.
Table 12-36 lists all the OracleAQNotificationType
enumeration values with a description of each enumerated value.
Table 12-36 OracleAQNotificationType Members
Member Name | Description |
---|---|
| Indicates that the received notification is a grouping notification. |
| Indicates that the received notification is a regular notification. |
| Indicates that the received notification is raised due to a timeout. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
Table 12-37 lists all the OracleAQVisibilityMode
enumeration values with a description of each enumerated value.
Table 12-37 OracleAQVisibilityMode Members
Member Name | Description |
---|---|
| Indicates that the enqueue or dequeue operation is not part of the current transaction. The operation constitutes a transaction of its own. |
| Indicates that the enqueue or dequeue operation is part of the current transaction. This is the default case. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
This chapter describes the large object and REF
CURSOR
objects provided by Oracle Data Provider for .NET.
This chapter contains these topics:
All offsets are 0
-based for all ODP.NET LOB object parameters.
An OracleBFile
is an object that has a reference to BFILE
data. It provides methods for performing operations on BFILE
s.
Note: OracleBFile is supported for applications running against Oracle8.x and later. |
Class Inheritance
System.Object
System.MarshalByRefObject
System.IO.Stream
Oracle.DataAccess.Types.OracleBFile
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleBFile
is supported for applications running against Oracle8.x and later.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBFile
members are listed in the following tables.
OracleBFile Constructors
OracleBFile
constructors are listed in Table 13-1.
Table 13-1 OracleBFile Constructors
Constructor | Description |
---|---|
| Creates an instance of the |
OracleBFile Static Fields
OracleBFile
static fields are listed in Table 13-2.
Table 13-2 OracleBFile Static Fields
Field | Description |
---|---|
| The static field holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
OracleBFile Static Methods
OracleBFile
static methods are listed in Table 13-3.
Table 13-3 OracleBFile Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleBFile Instance Properties
OracleBFile
instance properties are listed in Table 13-4.
Table 13-4 OracleBFile Instance Properties
Properties | Description |
---|---|
Indicates whether or not the LOB stream can be read | |
Indicates whether or not forward and backward seek operations can be performed | |
| Indicates whether or not the LOB object supports writing |
| Indicates the connection used to read from a |
| Indicates the directory alias of the |
| Indicates whether or not the specified |
| Indicates the name of the |
| Indicates whether the |
| Indicates whether or not the current instance has a null value |
| Indicates whether the |
| Indicates the size of the |
| Indicates the current read position in the LOB stream |
| Returns the data, starting from the first byte in |
OracleBFile Instance Methods
OracleBFile
instance methods are listed in Table 13-5.
Table 13-5 OracleBFile Instance Methods
Methods | Description |
---|---|
| Inherited from |
| Not Supported |
| Creates a copy of an |
| Closes the current stream and releases any resources associated with the stream |
| Closes the |
| Compares data referenced by the two |
| Inherited from |
| Copies data as specified (Overloaded) |
| Releases resources allocated by this object |
| Inherited from |
| Not Supported |
| Inherited from |
| Not Supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB references |
| Opens the |
| Reads a specified amount of bytes from the |
| Inherited from |
| Searches for a binary pattern in the current instance of an |
| Sets the position on the current LOB stream |
| Not Supported |
| Inherited from |
| Not Supported |
| Not Supported |
OracleBFile
constructors create new instances of the OracleBFile
class.
Overload List:
This constructor creates an instance of the OracleBFile
class with an OracleConnection
object.
This constructor creates an instance of the OracleBFile
class with an OracleConnection
object, the location of the BFILE
, and the name of the BFILE
.
This constructor creates an instance of the OracleBFile
class with an OracleConnection
object.
Declaration
Parameters
con
The OracleConnection
object.
Exceptions
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The connection must be opened explicitly by the application. OracleBFile
does not open the connection implicitly.
This constructor creates an instance of the OracleBFile
class with an OracleConnection
object, the location of the BFILE
, and the name of the BFILE
.
Declaration
Parameters
con
The OracleConnection
object.
directoryName
The directory alias created by the CREATE
DIRECTORY
SQL statement.
fileName
The name of the external LOB.
Exceptions
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The OracleConnection
must be opened explicitly by the application. OracleBFile
does not open the connection implicitly.
To initialize a BFILE
column using an OracleBFile
instance as an input parameter of a SQL INSERT
statement, directoryName
and fileName
must be properly set.
OracleBFile
static fields are listed in Table 13-6.
Table 13-6 OracleBFile Static Fields
Field | Description |
---|---|
| The static field holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
This static field holds the maximum number of bytes a BFILE
can hold, which is 4,294,967,295 (2^32 - 1) bytes.
Declaration
Remarks
This field is useful in code that checks whether or not the operation exceeds the maximum length allowed.
This static field represents a null value that can be assigned to the value of an OracleBFile
instance.
Declaration
OracleBFile
static methods are listed in Table 13-7.
Table 13-7 OracleBFile Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleBFile
instance properties are listed in Table 13-8.
Table 13-8 OracleBFile Instance Properties
Properties | Description |
---|---|
Indicates whether or not the LOB stream can be read | |
Indicates whether or not forward and backward seek operations can be performed | |
| Indicates whether or not the LOB object supports writing |
| Indicates the connection used to read from a |
| Indicates the directory alias of the |
| Indicates whether or not the specified |
| Indicates the name of the |
| Indicates whether the |
| Indicates whether or not the current instance has a null value |
| Indicates whether the |
| Indicates the size of the |
| Indicates the current read position in the LOB stream |
| Returns the data, starting from the first byte in |
Overrides Stream
This instance property indicates whether or not the LOB stream can be read.
Declaration
Property Value
If the LOB stream can be read, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not forward and backward seek operations can be performed.
Declaration
Property Value
If forward and backward seek operations can be performed, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.
Declaration
Property Value
BFILE
is read only.
Remarks
BFILE
is read-only, therefore, the boolean value is always false
.
This instance property indicates the connection used to read from a BFILE
.
Declaration
Property Value
An object of OracleConnection
.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates the directory alias of the BFILE
.
Declaration
Property Value
A string
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The value of the DirectoryName
changed while the BFILE
is open.
Remarks
The maximum length of a DirectoryName
is 30 bytes.
This instance property indicates whether or not the BFILE
specified by the DirectoryName
and FileName
exists.
Declaration
Property Value
bool
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Unless a connection, file name, and directory name are provided, this property is set to false
by default.
This instance property indicates the name of the BFILE
.
Declaration
Property Value
A string
that contains the BFILE
name.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The value of the DirectoryName
changed while the BFILE
is open.
Remarks
The maximum length of a FileName
is 255 bytes.
Changing the FileName
property while the BFILE
object is opened causes an exception.
This instance property indicates whether the BFILE
is empty or not.
Declaration
Property Value
bool
Exceptions
ObjectDisposedException
- The object is already disposed.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false
.
This instance property indicates whether the BFILE
has been opened by this instance or not.
Declaration
Property Value
A bool
.
Overrides Stream
This instance property indicates the size of the BFILE
data in bytes.
Declaration
Property Value
Int64
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Overrides Stream
This instance property indicates the current read position in the LOB stream.
Declaration
Property Value
An Int64
value that indicates the read position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The value is less than 0.
This instance property returns the data, starting from the first byte in BFILE
, as a byte array.
Declaration
Property Value
A byte array.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The length of data is bound by the maximum length of the byte array. The current value of the Position
property is not used or changed.
OracleBFile
instance methods are listed in Table 13-9.
Table 13-9 OracleBFile Instance Methods
Methods | Description |
---|---|
| Inherited from |
| Not Supported |
| Creates a copy of an |
| Closes the current stream and releases any resources associated with the stream |
| Closes the |
| Compares data referenced by the two |
| Inherited from |
| Copies data as specified (Overloaded) |
| Releases resources allocated by this object |
| Inherited from |
| Not Supported |
| Inherited from |
| Not Supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB references |
| Opens the |
| Reads a specified amount of bytes from the |
| Inherited from |
| Searches for a binary pattern in the current instance of an |
| Sets the position on the current LOB stream |
| Not Supported |
| Inherited from |
| Not Supported |
| Not Supported |
This instance method creates a copy of an OracleBFile
object.
Declaration
Return Value
An OracleBFile
object.
Implements
ICloneable
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The cloned object has the same property values as that of the object being cloned.
Example
Overrides Stream
This instance method closes the current stream and releases any resources associated with it.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This instance method closes the BFILE
referenced by the current BFILE
instance.
Declaration
Remarks
No error is returned if the BFILE
exists, but is not opened.
This instance method compares data referenced by the two OracleBFile
s.
Declaration
Parameters
src_offset
The offset of the current instance.
obj
The provided OracleBFile
object.
dst_offset
The offset of the OracleBFile
object.
amount
The number of bytes to compare.
Return Value
Returns a number that is:
BFILE
data of the current instance is less than that of the provided BFILE
data. BFILE
s store the same data. BFILE
data of the current instance is greater than that of the provided BFILE
data. Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
is less than 0
.
Remarks
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
The BFILE
needs to be opened using OpenFile
before the operation.
Example
CopyTo
copies data from the current instance to the provided object.
Overload List:
This instance method copies data from the current instance to the provided OracleBlob
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleBlob
object with the specified destination offset.
This instance method copies data from the current OracleBFile
instance to the provided OracleBlob
object with the specified source offset, destination offset, and character amounts.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object with the specified destination offset.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object with the specified source offset, destination offset, and amount of characters.
This instance method copies data from the current instance to the provided OracleBlob
object.
Declaration
Parameters
obj
The OracleBlob
object to which the data is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleBlob
object with the specified destination offset.
Declaration
Parameters
obj
The OracleBlob
object to which the data is copied.
dst_offset
The offset (in bytes) at which the OracleBlob
object is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The dst_offset
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the OracleBlob
data, spaces are written into the OracleBlob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleBlob
object with the specified source offset, destination offset, and character amounts.
Declaration
Parameters
src_offset
The offset (in bytes) in the current instance, from which the data is read.
obj
An OracleBlob
object to which the data is copied.
dst_offset
The offset (in bytes) to which the OracleBlob
object is copied.
amount
The amount of data to be copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the OracleBlob
data, spaces are written into the OracleBlob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object.
Declaration
Parameters
obj
The OracleClob
object to which the data is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object with the specified destination offset.
Declaration
Parameters
obj
The OracleClob
object that the data is copied to.
dst_offset
The offset (in characters) at which the OracleClob
object is copied to.
Return Value
The amount copied.
Exceptions
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The dst_offset
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the OracleClob
data, spaces are written into the OracleClob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
This instance method copies data from the current OracleBFile
instance to the provided OracleClob
object with the specified source offset, destination offset, and amount of characters.
Declaration
Parameters
src_offset
The offset (in characters) in the current instance, from which the data is read.
obj
An OracleClob
object that the data is copied to.
dst_offset
The offset (in characters) at which the OracleClob
object is copied to.
amount
The amount of data to be copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the current OracleClob
data, spaces are written into the OracleClob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
This instance method releases resources allocated by this object.
Declaration
Implements
IDisposable
Remarks
Although some properties can still be accessed, their values may not be accountable. Since resources are freed, method calls may lead to exceptions. The object cannot be reused after being disposed.
This instance method compares the LOB references.
Declaration
Parameters
obj
The provided OracleBFile
object.
Return Value
Returns true
if the current OracleBFile
and the provided OracleBFile
object refer to the same external LOB. Returns false
otherwise.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Note that this method can return true
even if the two OracleBFile
objects return false
for ==
or Equals()
since two different OracleBFile
instances can refer to the same external LOB.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method opens the BFILE
specified by the FileName
and DirectoryName
.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Many operations, such as Compare()
, CopyTo()
, Read()
, and Search()
require that the BFILE
be opened using OpenFile
before the operation.
Calling OpenFile
on an opened BFILE
is not operational.
Overrides Stream
This instance method reads a specified amount of bytes from the OracleBFile
instance and populates the buffer
.
Declaration
Parameters
buffer
The byte array buffer to be populated.
offset
The offset of the byte array buffer to be populated.
count
The amount of bytes to read.
Return Value
The return value indicates the number of bytes read from the BFILE
, that is, the external LOB.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- Either the offset
or the count
parameter is less than 0
or the offset
is greater than or equal to the buffer
.Length
or the offset
and the count
together are greater than buffer
.Length
.
Remarks
The LOB data is read starting from the position specified by the Position
property.
Example
This instance method searches for a binary pattern in the current instance of an OracleBFile
.
Declaration
Parameters
val
The binary pattern being searched for.
offset
The 0
-based offset (in bytes) starting from which the OracleBFile
is searched.
nth
The specific occurrence (1
-based) of the match for which the offset is returned.
Return Value
Returns the absolute offset
of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0
is returned.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- Either the offset
is less than 0
or nth
is less than or equal to 0
or val
.Length
is greater than 16383
or nth
is greater than or equal to OracleBFile.MaxSize
or offset
is greater than or equal to OracleBFile.MaxSize
.
Remarks
The limit of the search pattern is 16383 bytes.
Example
Overrides Stream
This instance method sets the position on the current LOB stream.
Declaration
Parameters
offset
A byte offset relative to origin.
origin
A value of type System.IO.SeekOrigin
indicating the reference point used to obtain the new position.
Return Value
Returns an Int64
that indicates the position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
If offset
is negative, the new position precedes the position specified by origin
by the number of bytes specified by offset
.
If offset
is zero, the new position is the position specified by origin
.
If offset
is positive, the new position follows the position specified by origin
by the number of bytes specified by offset
.
SeekOrigin.Begin
specifies the beginning of a stream.
SeekOrigin.Current
specifies the current position within a stream.
SeekOrigin.End
specifies the end of a stream.
Example
An OracleBlob
object is an object that has a reference to BLOB
data. It provides methods for performing operations on BLOB
s.
Class Inheritance
System.Object
System.MarshalByRefObject
System.IO.Stream
Oracle.DataAccess.Types.OracleBlob
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBlob
members are listed in the following tables.
OracleBlob Constructors
OracleBlob
constructors are listed in Table 13-10.
Table 13-10 OracleBlob Constructors
Constructor | Description |
---|---|
| Creates an instance of the |
OracleBlob Static Fields
OracleBlob
static fields are listed in Table 13-11.
Table 13-11 OracleBlob Static Fields
Field | Description |
---|---|
| Holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
OracleBlob Static Methods
OracleBlob
static methods are listed in Table 13-12.
Table 13-12 OracleBlob Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleBlob Instance Properties
OracleBlob
instance properties are listed in Table 13-13.
Table 13-13 OracleBlob Instance Properties
Properties | Description |
---|---|
| Indicates whether or not the LOB stream can be read |
| Indicates whether or not forward and backward seek operations be performed |
| Indicates whether or not the LOB object supports writing |
| Indicates the |
| Indicates whether the |
| Indicates whether or not the |
| Indicates whether or not the current instance has a null value |
| Indicates whether or not the current instance is bound to a temporary |
| Indicates the size of the |
| Indicates the optimal data buffer length (or multiples thereof) that read and write operations should use to improve performance |
| Indicates the current read or write position in the LOB stream |
| Returns the data, starting from the first byte in |
OracleBlob Instance Methods
OracleBlob
instance methods are listed in Table 13-14.
Table 13-14 OracleBlob Instance Methods
Methods | Description |
---|---|
| Appends the supplied data to the current |
| Opens the |
| Inherited from |
| Inherited from |
| Creates a copy of an |
| Closes the current stream and releases any resources associated with it |
| Compares data referenced by the current instance and that of the supplied object |
| Copies from the current |
| Inherited from |
| Releases resources allocated by this |
| Closes the |
| Inherited from |
| Inherited from |
| Inherited from |
| Erases data (Overloaded) |
| Not supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB data referenced by the two |
| Reads a specified amount of bytes from the ODP.NET LOB Type instance and populates the |
| Inherited from |
| Searches for a binary pattern in the current instance of an |
| Sets the position in the current LOB stream |
| Trims or truncates the |
| Inherited from |
| Writes the supplied buffer into the |
| Inherited from |
OracleBlob
constructors are listed in Table 13-10.
Overload List:
This constructor creates an instance of the OracleBlob
class bound to a temporary BLOB
with an OracleConnection
object.
This constructor creates an instance of the OracleBlob
class bound to a temporary BLOB
with an OracleConnection
object and a boolean value for caching.
This constructor creates an instance of the OracleBlob
class bound to a temporary BLOB
with an OracleConnection
object.
Declaration
Parameters
con
The OracleConnection
object.
Exceptions
InvalidOperationException
- The OracleConnection
is not opened.
Remarks
The connection must be opened explicitly by the application. OracleBlob
does not open the connection implicitly.
The temporary BLOB
utilizes the provided connection to store BLOB
data. Caching is not turned on by this constructor.
This constructor creates an instance of the OracleBlob
class bound to a temporary BLOB
with an OracleConnection
object and a boolean value for caching.
Declaration
Parameters
con
The OracleConnection
object.
bCaching
A flag for enabling or disabling server-side caching.
Exceptions
InvalidOperationException
- The OracleConnection
is not opened.
Remarks
The connection must be opened explicitly by the application. OracleBlob
does not open the connection implicitly.
The temporary BLOB
uses the provided connection to store BLOB
data. The bCaching
input parameter determines whether or not server-side caching is used.
OracleBlob
static fields are listed in Table 13-15.
Table 13-15 OracleBlob Static Fields
Field | Description |
---|---|
| Holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
The MaxSize
field holds the maximum number of bytes a BLOB
can hold, which is 4,294,967,295 (2^32 - 1) bytes.
Declaration
Remarks
This field can be useful in code that checks whether or not the operation exceeds the maximum length allowed.
This static field represents a null value that can be assigned to the value of an OracleBlob
instance.
Declaration
OracleBlob
static methods are listed in Table 13-16.
Table 13-16 OracleBlob Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleBlob
instance properties are listed in Table 13-17.
Table 13-17 OracleBlob Instance Properties
Properties | Description |
---|---|
| Indicates whether or not the LOB stream can be read |
| Indicates whether or not forward and backward seek operations be performed |
| Indicates whether or not the LOB object supports writing |
| Indicates the |
| Indicates whether the |
| Indicates whether or not the |
| Indicates whether or not the current instance has a null value |
| Indicates whether or not the current instance is bound to a temporary |
| Indicates the size of the |
| Indicates the optimal data buffer length (or multiples thereof) that read and write operations should use to improve performance |
| Indicates the current read or write position in the LOB stream |
| Returns the data, starting from the first byte in |
Overrides Stream
This instance property indicates whether or not the LOB stream can be read.
Declaration
Property Value
If the LOB stream can be read, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not forward and backward seek operations can be performed.
Declaration
Property Value
If forward and backward seek operations can be performed, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.
Declaration
Property Value
If the LOB stream can be written, returns true
; otherwise, returns false
.
This instance property indicates the OracleConnection
that is used to retrieve and write BLOB
data.
Declaration
Property Value
An object of OracleConnection
.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates whether the BLOB
is empty or not.
Declaration
Property Value
A bool
that indicates whether or not the BLOB
is empty.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates whether or not the BLOB
has been opened to defer index updates.
Declaration
Property Value
If the BLOB
has been opened, returns true
; otherwise, returns false
.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false
.
This instance property indicates whether or not the current instance is bound to a temporary BLOB
.
Declaration
Property Value
bool
Overrides Stream
This instance property indicates the size of the BLOB
data in bytes.
Declaration
Property Value
A number indicating the size of the BLOB
data in bytes.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This instance property indicates the optimal data buffer length (or multiples thereof) that read and write operations should use to improve performance.
Declaration
Property Value
A number representing the minimum bytes to retrieve or send.
Exceptions
ObjectDisposedException
- The object is already disposed.
Overrides Stream
This instance property indicates the current read or write position in the LOB stream.
Declaration
Property Value
An Int64
that indicates the read or write position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The Position
is less than 0
.
This instance property returns the data, starting from the first byte in the BLOB
, as a byte array.
Declaration
Property Value
A byte array.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The Value
is less than 0
.
Remarks
The value of Position
is not used or changed by using this property. 2 GB is the maximum byte array length that can be returned by this property.
OracleBlob
instance methods are listed in Table 13-18.
Table 13-18 OracleBlob Instance Methods
Methods | Description |
---|---|
| Appends the supplied data to the current |
| Opens the |
| Inherited from |
| Inherited from |
| Creates a copy of an |
| Closes the current stream and releases any resources associated with it |
| Compares data referenced by the current instance and that of the supplied object |
| Copies from the current |
| Inherited from |
| Releases resources allocated by this |
| Closes the |
| Inherited from |
| Inherited from |
| Inherited from |
| Erases data (Overloaded) |
| Not supported |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB data referenced by the two |
| Reads a specified amount of bytes from the ODP.NET LOB Type instance and populates the |
| Inherited from |
| Searches for a binary pattern in the current instance of an |
| Sets the position in the current LOB stream |
| Trims or truncates the |
| Inherited from |
| Writes the supplied buffer into the |
| Inherited from |
Append
appends the supplied data to the end of the current OracleBlob
instance.
Overload List:
This instance method appends the BLOB
data referenced by the provided OracleBlob
object to the current OracleBlob
instance.
This instance method appends data from the supplied byte array buffer to the end of the current OracleBlob
instance.
This instance method appends the BLOB
data referenced by the provided OracleBlob
object to the current OracleBlob
instance.
Declaration
Parameters
obj
An object of OracleBlob
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
Remarks
No character set conversions are made.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method appends data from the supplied byte array buffer to the end of the current OracleBlob
instance.
Declaration
Parameters
buffer
An array of bytes.
offset
The zero-based byte offset in the buffer from which data is read.
count
The number of bytes to be appended.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Example
This instance method opens the BLOB
.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
BeginChunkWrite
does not need to be called before manipulating the BLOB data. This is provided for performance reasons.
After this method is called, write operations do not cause the domain or function-based index on the column to be updated. Index updates occur only once after EndChunkWrite
is called.
This instance method creates a copy of an OracleBlob
object.
Declaration
Return Value
An OracleBlob
object.
Implements
ICloneable
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The cloned object has the same property values as that of the object being cloned.
Example
Overrides Stream
This instance method closes the current stream and releases any resources associated with it.
Declaration
This instance method compares data referenced by the current instance and that of the supplied object.
Declaration
Parameters
src_offset
The comparison starting point (in bytes) for the current instance.
obj
The provided OracleBlob
object.
dst_offset
The comparison starting point (in bytes) for the provided OracleBlob
.
amount
The number of bytes to compare.
Return Value
Returns a value that is:
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
parameter is less than 0
.
Remarks
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
CopyTo
copies data from the current instance to the provided OracleBlob
object.
Overload List:
This instance method copies data from the current instance to the provided OracleBlob
object.
This instance method copies data from the current OracleBlob
instance to the provided OracleBlob
object with the specified destination offset.
This instance method copies data from the current OracleBlob
instance to the provided OracleBlob
object with the specified source offset, destination offset, and character amounts.
This instance method copies data from the current instance to the provided OracleBlob
object.
Declaration
Parameters
obj
The OracleBlob
object to which the data is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleBlob
instance to the provided OracleBlob
object with the specified destination offset.
Declaration
Parameters
obj
The OracleBlob
object to which the data is copied.
dst_offset
The offset (in bytes) at which the OracleBlob
object is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The dst_offset
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the OracleBlob
data, spaces are written into the OracleBlob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleBlob
instance to the provided OracleBlob
object with the specified source offset, destination offset, and character amounts.
Declaration
Parameters
src_offset
The offset (in bytes) in the current instance, from which the data is read.
obj
The OracleBlob
object to which the data is copied.
dst_offset
The offset (in bytes) at which the OracleBlob
object is copied.
amount
The amount of data to be copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
parameter is less than 0
.
Remarks
If the dst_offset
is beyond the end of the OracleBlob
data, spaces are written into the OracleBlob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
Example
This instance method releases resources allocated by this object.
Declaration
Implements
IDisposable
Remarks
Once Dispose()
is called, the object of OracleBlob
is in an uninitialized state.
Although some properties can still be accessed, their values may not be accountable. Since resources are freed, method calls may lead to exceptions. The object cannot be reused after being disposed.
This instance method closes the BLOB
referenced by the current OracleBlob
instance.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Index updates occur immediately if there is write operation(s) deferred by the BeginChunkWrite
method.
Erase
erases a portion or all data.
Overload List:
This instance method erases all data.
This instance method erases a specified portion of data.
This instance method erases all data.
Declaration
Return Value
The number of bytes erased.
Remarks
Erase()
replaces all data with zero-byte fillers.
This instance method erases a specified portion of data.
Declaration
Parameters
offset
The offset from which to erase.
amount
The quantity (in bytes) to erase.
Return Value
The number of bytes erased.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The offset
or amount
parameter is less than 0
.
Remarks
Replaces the specified amount
of data with zero-byte fillers.
This instance method compares the LOB data referenced by the two OracleBlob
s.
Declaration
Parameters
obj
An OracleBlob
object.
Return Value
If the current OracleBlob
and the provided OracleBlob
refer to the same LOB, returns true
. Returns false
otherwise.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Note that this method can return true
even if the two OracleBlob
objects return false
for == or Equals()
because two different OracleBlob
instances can refer to the same LOB.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
Overrides Stream
This instance method reads a specified amount of bytes from the ODP.NET LOB instance and populates the buffer
.
Declaration
Parameters
buffer
The byte array buffer to be populated.
offset
The starting offset (in bytes) at which the buffer is populated.
count
The amount of bytes to read.
Return Value
The return value indicates the number of bytes read from the LOB.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
or the count
parameter is less than 0
. offset
is greater than or equal to the buffer
.Length
. offset
and the count
together are greater than the buffer
.Length
. Remarks
The LOB data is read starting from the position specified by the Position
property.
Example
This instance method searches for a binary pattern in the current instance of an OracleBlob
.
Declaration
Parameters
val
The binary pattern being searched for.
offset
The 0
-based offset (in bytes) starting from which the OracleBlob
is searched.
nth
The specific occurrence (1-based) of the match for which the absolute offset (in bytes) is returned.
Return Value
Returns the absolute offset
of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0
is returned.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
is less than 0
. nth
is less than or equal to 0
. val
.Length
is greater than 16383
. nth
is greater than or equal to OracleBlob.MaxSize
. offset
is greater than or equal to OracleBlob.MaxSize
. Remarks
The limit of the search pattern is 16383 bytes.
Example
Overrides Stream
This instance method sets the position on the current LOB stream.
Declaration
Parameters
offset
A byte offset relative to origin.
origin
A value of type System.IO.SeekOrigin
indicating the reference point used to obtain the new position.
Return Value
Returns Int64
for the position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
If offset
is negative, the new position precedes the position specified by origin
by the number of bytes specified by offset
.
If offset
is zero, the new position is the position specified by origin
.
If offset
is positive, the new position follows the position specified by origin
by the number of bytes specified by offset
.
SeekOrigin.Begin
specifies the beginning of a stream.
SeekOrigin.Current
specifies the current position within a stream.
SeekOrigin.End
specifies the end of a stream.
Overrides Stream
This instance method trims or truncates the BLOB
value to the specified length (in bytes).
Declaration
Parameters
newlen
The desired length of the current stream in bytes.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The newlen
parameter is less than 0
.
Overrides Stream
This instance method writes the supplied buffer into the OracleBlob
.
Declaration
Parameters
buffer
The byte array buffer
that provides the data.
offset
The 0
-based offset (in bytes) from which the buffer
is read.
count
The amount of data (in bytes) that is to be written into the OracleBlob
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
or the count
is less than 0
. offset
is greater than or equal to the buffer
.Length
. offset
and the count
together are greater than buffer
.Length
. Remarks
Destination offset
in the OracleBlob
can be specified by the Position
property.
Example
An OracleClob
is an object that has a reference to CLOB
data. It provides methods for performing operations on CLOB
s.
Note: TheOracleClob object uses the client side character set when retrieving or writing CLOB data using a .NET Framework byte array. |
Class Inheritance
System.Object
System.MarshalByRefObject
System.IO.Stream
Oracle.DataAccess.Types.OracleClob
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleClob
members are listed in the following tables.
OracleClob Constructors
OracleClob
constructors are listed in Table 13-19.
Table 13-19 OracleClob Constructors
Constructor | Description |
---|---|
| Creates an instance of the |
OracleClob Static Fields
OracleClob
static fields are listed in Table 13-20.
Table 13-20 OracleClob Static Fields
Field | Description |
---|---|
| Holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
OracleClob Static Methods
OracleClob
static methods are listed in Table 13-21.
Table 13-21 OracleClob Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleClob Instance Properties
OracleClob
instance properties are listed in Table 13-22.
Table 13-22 OracleClob Instance Properties
Properties | Description |
---|---|
| Indicates whether or not the LOB stream can be read |
| Indicates whether or not forward and backward seek operations can be performed |
| Indicates whether or not the LOB stream can be written |
| Indicates the |
| Indicates whether the |
| Indicates whether or not the |
| Indicates whether or not the |
| Indicates whether or not the current instance has a null value |
| Indicates whether or not the current instance is bound to a temporary |
| Indicates the size of the |
| Indicates the minimum number of bytes to retrieve or send from the database during a read or write operation |
| Indicates the current read or write position in the LOB stream in bytes |
| Returns the data, starting from the first character in the |
OracleClob Instance Methods
The OracleClob
instance methods are listed in Table 13-23.
Table 13-23 OracleClob Instance Methods
Methods | Description |
---|---|
| Appends data to the current |
| Opens the |
| Inherited from |
| Inherited from |
| Creates a copy of an |
| Closes the current stream and releases resources associated with it |
| Compares data referenced by the current instance to that of the supplied object |
| Copies the data to an |
| Inherited from |
| Releases resources allocated by this object |
| Closes the |
| Inherited from |
| Inherited from |
| Inherited from |
| Erases the specified |
| Not supported |
| Returns a hash code for the current instance |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB data referenced by two |
| Reads from the current instance (Overloaded) |
| Inherited from |
| Searches for a character pattern in the current instance of |
| Sets the position in the current LOB stream |
| Trims or truncates the |
| Inherited from |
| Writes the provided |
| Inherited from |
OracleClob
constructors create instances of the OracleClob
class bound to a temporary CLOB
.
Overload List:
This constructor creates an instance of the OracleClob
class bound to a temporary CLOB
with an OracleConnection
object.
This constructor creates an instance of the OracleClob
class that is bound to a temporary CLOB
, with an OracleConnection
object, a boolean value for caching, and a boolean value for NCLOB
.
This constructor creates an instance of the OracleClob
class bound to a temporary CLOB
with an OracleConnection
object.
Declaration
Parameters
con
The OracleConnection
object.
Exceptions
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The connection must be opened explicitly by the application. OracleClob
does not open the connection implicitly. The temporary CLOB
utilizes the provided connection to store CLOB
data. Caching is not enabled by default.
This constructor creates an instance of the OracleClob
class that is bound to a temporary CLOB
, with an OracleConnection
object, a boolean value for caching, and a boolean value for NCLOB
.
Declaration
Parameters
con
The OracleConnection
object connection.
bCaching
A flag that indicates whether or not server-side caching is enabled.
bNCLOB
A flag that is set to true
if the instance is a NCLOB
or false
if it is a CLOB
.
Exceptions
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The connection must be opened explicitly by the application. OracleClob
does not open the connection implicitly. The temporary CLOB
or NCLOB
uses the provided connection to store CLOB
data.
OracleClob
static fields are listed in Table 13-24.
Table 13-24 OracleClob Static Fields
Field | Description |
---|---|
| Holds the maximum number of bytes a |
| Represents a null value that can be assigned to the value of an |
The MaxSize
field holds the maximum number of bytes a CLOB
can hold, which is 4,294,967,295 (2^32 - 1) bytes.
Declaration
Remarks
This field is useful in code that checks whether or not your operation exceeds the maximum length (in bytes) allowed.
This static field represents a null value that can be assigned to the value of an OracleClob
instance.
Declaration
OracleClob
static methods are listed in Table 13-25.
Table 13-25 OracleClob Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleClob
instance properties are listed in Table 13-26.
Table 13-26 OracleClob Instance Properties
Properties | Description |
---|---|
| Indicates whether or not the LOB stream can be read |
| Indicates whether or not forward and backward seek operations can be performed |
| Indicates whether or not the LOB stream can be written |
| Indicates the |
| Indicates whether the |
| Indicates whether or not the |
| Indicates whether or not the |
| Indicates whether or not the current instance has a null value |
| Indicates whether or not the current instance is bound to a temporary |
| Indicates the size of the |
| Indicates the minimum number of bytes to retrieve or send from the database during a read or write operation |
| Indicates the current read or write position in the LOB stream in bytes |
| Returns the data, starting from the first character in the |
Overrides Stream
This instance property indicates whether or not the LOB stream can be read.
Declaration
Property Value
If the LOB stream can be read, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not forward and backward seek operations can be performed.
Declaration
Property Value
If forward and backward seek operations can be performed, returns true
; otherwise, returns false
.
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.
Declaration
Property Value
If the LOB stream can be written, returns true
; otherwise, returns false
.
This instance property indicates the OracleConnection
that is used to retrieve and write CLOB
data.
Declaration
Property Value
An OracleConnection
.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates whether the CLOB
is empty or not.
Declaration
Property Value
A bool
.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates whether or not the CLOB
has been opened to defer index updates.
Declaration
Property Value
If the CLOB
has been opened, returns true
; otherwise, returns false
.
This instance property indicates whether or not the OracleClob
object represents an NCLOB
.
Declaration
Property Value
A bool
.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false
.
This instance property indicates whether or not the current instance is bound to a temporary CLOB
.
Declaration
Property Value
A bool
.
Overrides Stream
This instance property indicates the size of the CLOB
data in bytes.
Declaration
Property Value
An Int64
that indicates the size of the CLOB
in bytes.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
This instance property indicates the minimum number of bytes to retrieve or send from the database during a read or write operation.
Declaration
Property Value
A number representing the minimum bytes to retrieve or send.
Exceptions
ObjectDisposedException
- The object is already disposed.
Overrides Stream
This instance property indicates the current read or write position in the LOB stream in bytes.
Declaration
Property Value
An Int64
that indicates the read or write position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The Position
is less than 0
.
This instance property returns the data, starting from the first character in the CLOB
or NCLOB
, as a string.
Declaration
Property Value
A string.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The Value
is less than 0
.
Remarks
The value of Position
is neither used nor changed by using this property.
The maximum string length that can be returned by this property is 2 GB.
The OracleClob
instance methods are listed in Table 13-27.
Table 13-27 OracleClob Instance Methods
Methods | Description |
---|---|
| Appends data to the current |
| Opens the |
| Inherited from |
| Inherited from |
| Creates a copy of an |
| Closes the current stream and releases resources associated with it |
| Compares data referenced by the current instance to that of the supplied object |
| Copies the data to an |
| Inherited from |
| Releases resources allocated by this object |
| Closes the |
| Inherited from |
| Inherited from |
| Inherited from |
| Erases the specified |
| Not supported |
| Returns a hash code for the current instance |
| Inherited from |
| Inherited from |
| Inherited from |
| Compares the LOB data referenced by two |
| Reads from the current instance (Overloaded) |
| Inherited from |
| Searches for a character pattern in the current instance of |
| Sets the position in the current LOB stream |
| Trims or truncates the |
| Inherited from |
| Writes the provided |
| Inherited from |
This instance method appends data to the current OracleClob
instance.
Overload List:
This instance method appends the CLOB
data referenced by the provided OracleClob
object to the current OracleClob
instance.
This instance method appends data at the end of the CLOB
, from the supplied byte array buffer, starting from offset (in bytes) of the supplied byte array buffer.
This instance method appends data from the supplied character array buffer to the end of the current OracleClob
instance, starting at the offset (in characters) of the supplied character buffer.
This instance method appends the CLOB
data referenced by the provided OracleClob
object to the current OracleClob
instance.
Declaration
Parameters
obj
An OracleClob
object.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
Remarks
No character set conversions are made.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method appends data at the end of the CLOB
, from the supplied byte array buffer, starting from offset (in bytes) of the supplied byte array buffer.
Declaration
Parameters
buffer
An array of bytes, representing a Unicode string.
offset
The zero-based byte offset in the buffer from which data is read.
count
The number of bytes to be appended.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- Either the offset
or the count
parameter is not even.
Remarks
Both offset
and count
must be even numbers for CLOB
and NCLOB
because every two bytes represent a Unicode character.
This instance method appends data from the supplied character array buffer to the end of the current OracleClob
instance, starting at the offset (in characters) of the supplied character buffer.
Declaration
Parameters
buffer
An array of characters.
offset
The zero-based offset (in characters) in the buffer from which data is read.
count
The number of characters to be appended.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Example
This instance method opens the CLOB
.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
BeginChunkWrite
does not need to be called before manipulating the CLOB
data. This is provided for performance reasons.
After this method is called, write operations do not cause the domain or function-based index on the column to be updated. Index updates occur only once after EndChunkWrite
is called.
This instance method creates a copy of an OracleClob
object.
Declaration
Return Value
An OracleClob
object.
Implements
ICloneable
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
The cloned object has the same property values as that of the object being cloned.
Example
Overrides Stream
This instance method closes the current stream and releases resources associated with it.
Declaration
This instance method compares data referenced by the current instance to that of the supplied object.
Declaration
Parameters
src_offset
The comparison starting point (in characters) for the current instance.
obj
The provided OracleClob
object.
dst_offset
The comparison starting point (in characters) for the provided OracleClob
.
amount
The number of characters to compare.
Return Value
The method returns a value that is:
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
ArgumentOutOfRangeException
- Either the src_offset
, dst_offset
, or amount
parameter is less than 0
.
Remarks
The character set of the two OracleClob
objects being compared should be the same for a meaningful comparison.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
CopyTo
copies data from the current instance to the provided OracleClob
object.
Overload List:
This instance method copies data from the current instance to the provided OracleClob
object.
This instance method copies data from the current OracleClob
instance to the provided OracleClob
object with the specified destination offset.
This instance method copies data from the current OracleClob
instance to the provided OracleClob
object with the specified source offset, destination offset, and character amounts.
This instance method copies data from the current instance to the provided OracleClob
object.
Declaration
Parameters
obj
The OracleClob
object to which the data is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
This instance method copies data from the current OracleClob
instance to the provided OracleClob
object with the specified destination offset.
Declaration
Parameters
obj
The OracleClob
object to which the data is copied.
dst_offset
The offset (in characters) at which the OracleClob
object is copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
ArgumentOutOfRangeException
- The dst_offset
is less than 0
.
InvalidOperationException
- This exception is thrown if any of the following conditions exist:
OracleConnection
is not open or has been closed during the lifetime of the object. Remarks
If the dst_offset
is beyond the end of the OracleClob
data, spaces are written into the OracleClob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection; that is, the same OracleConnection
object.
This instance method copies data from the current OracleClob
instance to the provided OracleClob
object with the specified source offset, destination offset, and character amounts.
Declaration
Parameters
src_offset
The offset (in characters) in the current instance, from which the data is read.
obj
The OracleClob
object to which the data is copied.
dst_offset
The offset (in characters) at which the OracleClob
object is copied.
amount
The amount of data to be copied.
Return Value
The return value is the amount copied.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The parameter has a different connection than the object, OracleConnection
is not opened, or OracleConnection
has been reopened.
ArgumentOutOfRangeException
- The src_offset
, the dst_offset
, or the amount
parameter is less than 0
.
Remarks
If the dst_offset
is beyond the end of the OracleClob
data, spaces are written into the OracleClob
until the dst_offset
is met.
The offsets are 0
-based. No character conversion is performed by this operation.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
Example
This instance method releases resources allocated by this object.
Declaration
Implements
IDisposable
Remarks
The object cannot be reused after being disposed. Although some properties can still be accessed, their values cannot be accountable. Since resources are freed, method calls can lead to exceptions.
This instance method closes the CLOB
referenced by the current OracleClob
instance.
Declaration
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Index updates occur immediately if write operation(s) are deferred by the BeginChunkWrite
method.
Erase
erases part or all data.
Overload List:
This instance method erases all data.
This instance method replaces the specified amount
of data (in characters) starting from the specified offset
with zero-byte fillers (in characters).
This instance method erases all data.
Declaration
Return Value
The number of characters erased.
This instance method replaces the specified amount
of data (in characters) starting from the specified offset
with zero-byte fillers (in characters).
Declaration
Parameters
offset
The offset.
amount
The amount of data.
Return Value
The actual number of characters erased.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The offset
or amount
parameter is less than 0
.
Overrides Object
This method returns a hash code for the current instance.
Declaration
Return Value
An int
representing a hash code.
This instance method compares the LOB data referenced by two OracleClob
s.
Declaration
Parameters
obj
An OracleClob
object.
Return Value
Returns true
if the current OracleClob
and the provided OracleClob
refer to the same LOB. Otherwise, returns false
.
Remarks
Note that this method can return true
even if the two OracleClob
objects returns false
for == or Equals()
because two different OracleClob
instances can refer to the same LOB.
The provided object and the current instance must be using the same connection, that is, the same OracleConnection
object.
Read
reads a specified amount from the current instance and populates the array buffer.
Overload List:
This instance method reads a specified amount of bytes from the current instance and populates the byte array buffer
.
This instance method reads a specified amount of characters from the current instance and populates the character array buffer.
Overrides Stream
This instance method reads a specified amount of bytes from the current instance and populates the byte array buffer
.
Declaration
Parameters
buffer
The byte array buffer that is populated.
offset
The offset (in bytes) at which the buffer is populated.
count
The amount of bytes to be read.
Return Value
The number of bytes read from the CLOB
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
Both offset
and count
must be even numbers for CLOB
and NCLOB
because every two bytes represent a Unicode character.
The LOB data is read starting from the position specified by the Position
property, which must also be an even number.
OracleClob
is free to return fewer bytes than requested, even if the end of the stream has not been reached.
This instance method reads a specified amount of characters from the current instance and populates the character array buffer.
Declaration
Parameters
buffer
The character array buffer that is populated.
offset
The offset (in characters) at which the buffer is populated.
count
The amount of characters to be read.
Return Value
The return value indicates the number of characters read from the CLOB
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
or the count
is less than 0
. offset
is greater than or equal to the buffer
.Length
. offset
and the count
together are greater than buffer
.Length
. Remarks
Handles all CLOB
and NCLOB
data as Unicode.
The LOB data is read starting from the position specified by the Position
property.
Example
Search
searches for a character pattern in the current instance of OracleClob
.
Overload List:
This instance method searches for a character pattern, represented by the byte array, in the current instance of OracleClob
.
This instance method searches for a character pattern in the current instance of OracleClob
.
This instance method searches for a character pattern, represented by the byte array, in the current instance of OracleClob
.
Declaration
Parameters
val
A Unicode byte array.
offset
The 0
-based offset (in characters) starting from which the OracleClob
is searched.
nth
The specific occurrence (1
-based) of the match for which the absolute offset (in characters) is returned.
Return Value
Returns the absolute offset
of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0
is returned.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
is less than 0
. nth
is less than or equal to 0
. nth
is greater than or equal to OracleClob.MaxSize
. offset
is greater than or equal to OracleClob.MaxSize
. Remarks
The byte[
]
is converted to Unicode before the search is made.
The limit of the search pattern is 16383 bytes.
This instance method searches for a character pattern in the current instance of OracleClob
.
Declaration
Parameters
val
The Unicode string being searched for.
offset
The 0
-based offset (in characters) starting from which the OracleClob
is searched.
nth
The specific occurrence (1
-based) of the match for which the absolute offset (in characters) is returned.
Return Value
Returns the absolute offset
of the start of the matched pattern (in characters) for the nth
occurrence of the match. Otherwise, 0
is returned.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
is less than 0
. nth
is less than or equal to 0
. val
.Length
doubled is greater than 16383
. nth
is greater than or equal to OracleClob.MaxSize
. offset
is greater than or equal to OracleClob.MaxSize
. Remarks
The limit of the search pattern is 16383 bytes.
Example
Overrides Stream
This instance method sets the position on the current LOB stream.
Declaration
Parameters
offset
A byte offset relative to origin.
origin
A value of type System.IO.SeekOrigin
indicating the reference point used to obtain the new position.
Return Value
Returns an Int64
that indicates the position.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
Remarks
If offset
is negative, the new position precedes the position specified by origin
by the number of characters specified by offset
.
If offset
is zero, the new position is the position specified by origin
.
If offset
is positive, the new position follows the position specified by origin
by the number of characters specified by offset
.
SeekOrigin.Begin
specifies the beginning of a stream.
SeekOrigin.Current
specifies the current position within a stream.
SeekOrigin.End
specifies the end of a stream.
Overrides Stream
This instance method trims or truncates the CLOB
value to the specified length (in characters).
Declaration
Parameters
newlen
The desired length of the current stream in characters.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- The newlen
parameter is greater than 0
.
This instance method writes data from the provided array buffer into the OracleClob
.
Overload List:
This instance method writes data from the provided byte array buffer into the OracleClob
.
This instance method writes data from the provided character array buffer into the OracleClob
.
Overrides Stream
This instance method writes data from the provided byte array buffer into the OracleClob
.
Declaration
Parameters
buffer
The byte array buffer that represents a Unicode string.
offset
The offset (in bytes) from which the buffer
is read.
count
The amount of data (in bytes) from the buffer to be written into the OracleClob
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
or the count
is less than 0
. offset
is greater than or equal to the buffer
.Length
. offset
and the count
together are greater than the buffer
.Length
. offset
, the count
, or the Position
is not even. Remarks
Both offset
and count
must be even numbers for CLOB
and NCLOB
because every two bytes represent a Unicode character.
The LOB data is read starting from the position specified by the Position
property. The Position
property must be an even number.
If necessary, proper data conversion is carried out from the client character set to the database character set.
This instance method writes data from the provided character array buffer into the OracleClob
.
Declaration
Parameters
buffer
The character array buffer that is written to the OracleClob
.
offset
The offset (in characters) from which the buffer
is read.
count
The amount (in characters) from the buffer that is to be written into the OracleClob
.
Exceptions
ObjectDisposedException
- The object is already disposed.
InvalidOperationException
- The OracleConnection
is not open or has been closed during the lifetime of the object.
ArgumentOutOfRangeException
- This exception is thrown if any of the following conditions exist:
offset
or the count
is less than 0
. offset
is greater than or equal to the buffer
.Length
. offset
and the count
together are greater than buffer
.Length
. Position
is not even. Remarks
Handles all CLOB
and NCLOB
data as Unicode.
The LOB data is read starting from the position specified by the Position
property.
If necessary, proper data conversion is carried out from the client character set to the database character set.
Example
An OracleRefCursor
object represents an Oracle REF
CURSOR
.
Class Inheritance
System.Object
System.MarshalRefByObject
Oracle.DataAccess.Types.OracleRefCursor
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
To minimize the number of open server cursors, OracleRefReader
objects should be explicitly disposed.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleRefCursor
members are listed in the following tables.
OracleRefCursor Static Methods
OracleRefCursor
static methods are listed in Table 13-28.
Table 13-28 OracleRefCursor Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleRefCursor Properties
OracleRefCursor
properties are listed in Table 13-29.
Table 13-29 OracleRefCursor Properties
Properties | Description |
---|---|
| A reference to the |
| Specifies the size that the |
| Specifies the amount of memory the |
OracleRefCursor Instance Methods
OracleRefCursor
instance methods are listed in Table 13-30.
Table 13-30 OracleRefCursor Instance Methods
Methods | Description |
---|---|
| Disposes the resources allocated by the |
| Inherited from |
| Returns an |
| Inherited from |
| Inherited from |
| Inherited from |
OracleRefCursor
static methods are listed in Table 13-31.
Table 13-31 OracleRefCursor Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleRefCursor
properties are listed in Table 13-32.
Table 13-32 OracleRefCursor Properties
Properties | Description |
---|---|
| A reference to the |
| Specifies the size that the |
| Specifies the amount of memory the |
This property refers to the OracleConnection
used to fetch the REF
CURSOR
data.
Declaration
Property Value
An OracleConnection.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This property is bound to a REF
CURSOR
once it is set. After the OracleRefCursor
object is created by the constructor, this property is initially null
. An OracleRefCursor
object can be bound to a REF
CURSOR
after a command execution.
If the connection is closed or returned to the connection pool, the OracleRefCursor
is placed in an uninitialized state and no operation can be carried out from it. However, the uninitialized OracleRefCursor
can be reassigned to another REF
CURSOR
.
This property specifies the size that the OracleDataReader
internal cache needs to store result set data.
Declaration
Property Value
A long
that specifies the size (in bytes) of the OracleRefCursor
internal cache.
Exceptions
ArgumentException
- The FetchSize
value specified is invalid.
Remarks
Default = 131072
.
The FetchSize
property value is inherited by the OracleCommand
that created the OracleRefCursor
object. The FetchSize
property on the OracleDataReader
object determines the amount of data the OracleRefCursor
fetches into its internal cache for each database round-trip.
This property is useful if the OracleRefCursor
is explicitly used to fill the DataSet
or DataTable
through the OracleDataAdapter
, because it can provide control on how the data of the REF
CURSOR
is fetched.
If an OracleDataReader
object is created from the OracleRefCursor
, the resulting OracleDataReader
object inherits the FetchSize
value of the OracleDataReader
object. However, the inherited value can be overridden, if it is set before the first invocation of the OracleDataReader
Read
method for the given result set, by setting the OracleDataReader
FetchSize
property.
The RowSize
and FetchSize
properties handle UDT and XMLType
data differently than other scalar data types. Because only a reference to the UDT and XMLType
data is stored in the ODP.NET's internal cache, the RowSize
property accounts for only the memory needed for the reference (which is very small) and not the actual size of the UDT and XMLType
data. Thus, applications can inadvertently fetch a large number of UDT or XMLType
instances from the database in a single database round-trip. This is because the actual size of UDT and XMLType
data does not count against the FetchSize,
and it would require numerous UDT and XMLType
references to fill up the default cache size of 131072 bytes. Therefore, when fetching UDT or XMLType
data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and XMLType
data to be fetched.
NOTE: For LOB and LONG
data types, only the sizes specified in the InitialLOBFetchSize
and InitialLONGFetchSize
properties are accounted for by the RowSize
property in addition to the metadata and reference information that is maintained by the cache for each LOB in the select list.
This property specifies the amount of memory the OracleRefcursor
internal cache needs to store one row of data.
Declaration
Property Value
A long
that indicates the amount of memory (in bytes) that an OracleRefcursor
needs to store one row of data for the executed query.
Remarks
The RowSize
property is set to a nonzero value when the OracleRefcursor
object is created. This property can be used at design time or dynamically during run time, to set the FetchSize
, based on number of rows. For example, to enable the OracleRefcursor
to fetch N
rows for each database round-trip, the OracleRefcursor
FetchSize
property can be set dynamically to RowSize
*
N
. Note that for the FetchSize
to take effect appropriately, it must be set before the it is used to fill the DataSet
/DataTable
using OracleDataAdapter
.
If an OracleDataReader
is obtained from the OracleRefCursor
through the GetDataReader
method, the resulting OracleDataReader
will have its FetchSize
property set to the FetchSize
value of the OracleRefCursor
.
OracleRefCursor
instance methods are listed in Table 13-33.
Table 13-33 OracleRefCursor Instance Methods
Methods	Description
Disposes the resources allocated by the	
Inherited from	
Returns an	
Inherited from	
Inherited from	
Inherited from	
This instance method disposes of the resources allocated by the OracleRefCursor
object.
Declaration
Implements
IDisposable
Remarks
The object cannot be reused after being disposed.
Once Dispose()
is called, the object of OracleRefCursor
is in an uninitialized state. Although some properties can still be accessed, their values may not be accountable. Since resources are freed, method calls can lead to exceptions.
This instance method returns an OracleDataReader
object for the REF
CURSOR
.
Declaration
Return Value
OracleDataReader
Remarks
Using the OracleDataReader
, rows can be fetched from the REF
CURSOR
.
This chapter describes the ODP.NET Types structures.
This chapter contains these topics:
The OracleBinary
structure represents a variable-length stream of binary data to be stored in or retrieved from a database.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleBinary
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBinary
members are listed in the following tables:
OracleBinary Constructors
OracleBinary
constructors are listed in Table 14-1
Table 14-1 OracleBinary Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleBinary Static Fields
The OracleBinary
static fields are listed in Table 14-2.
Table 14-2 OracleBinary Static Fields
Field | Description |
---|---|
Represents a null value that can be assigned to an instance of the |
OracleBinary Static Methods
The OracleBinary
static methods are listed in Table 14-3.
Table 14-3 OracleBinary Static Methods
Methods | Description |
---|---|
Returns the concatenation of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two |
OracleBinary Static Operators
The OracleBinary
static operators are listed in Table 14-4.
Table 14-4 OracleBinary Static Operators
Operator | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two |
OracleBinary Static Type Conversion Operators
The OracleBinary
static type conversion operators are listed in Table 14-5.
Table 14-5 OracleBinary Static Type Conversion Operators
Operator | Description |
---|---|
Converts an instance value to a byte array | |
Converts an instance value to an |
OracleBinary Properties
The OracleBinary
properties are listed in Table 14-6.
Table 14-6 OracleBinary Properties
Properties | Description |
---|---|
Indicates whether or not the current instance has a null value | |
Obtains the particular | |
Returns the length of the binary data | |
Returns the binary data that is stored in an |
OracleBinary Instance Methods
The OracleBinary
instance methods are listed in Table 14-7.
Table 14-7 OracleBinary Instance Methods
Methods | Description |
---|---|
Compares the current instance to an object and returns an integer that represents their relative values | |
Determines if two objects contain the same binary data (Overloaded) | |
Returns a hash code for the current instance | |
GetType | Inherited from |
Converts the current |
The OracleBinary
constructor instantiates a new instance of the OracleBinary
structure and sets its value to the provided array of bytes.
Declaration
Parameters
bytes
A byte array.
The OracleBinary
static fields are listed in Table 14-8.
Table 14-8 OracleBinary Static Fields
Field | Description |
---|---|
Represents a null value that can be assigned to an instance of the |
This static field represents a null value that can be assigned to an instance of the OracleBinary
structure.
Declaration
The OracleBinary
static methods are listed in Table 14-9.
Table 14-9 OracleBinary Static Methods
Methods | Description |
---|---|
Returns the concatenation of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two |
This method returns the concatenation of two OracleBinary
structures.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
An OracleBinary
.
Remarks
If either argument has a null value, the returned OracleBinary
structure has a null value.
This method determines if two OracleBinary
values are equal.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if two OracleBinary
values are equal; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines whether or not the first of two OracleBinary
values is greater than the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is greater than the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. Example
This method determines whether or not the first of two OracleBinary
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is greater than or equal to the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines whether or not the first of two OracleBinary
values is less than the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is less than the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines whether or not the first of two OracleBinary
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is less than or equal to the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines whether or not two OracleBinary
values are not equal.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if two OracleBinary
values are not equal; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. The OracleBinary
static operators are listed in Table 14-10.
Table 14-10 OracleBinary Static Operators
Operator | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two |
This method concatenates two OracleBinary
values.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
OracleBinary
Remarks
If either argument has a null value, the returned OacleBinary
structure has a null value.
This method determines if two OracleBinary
values are equal.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if they are the same; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines if the first of two OracleBinary
values is greater than the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. Example
This method determines if the first of two OracleBinary
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines if two OracleBinary
values are not equal.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the two OracleBinary
values are not equal; otherwise, returns false
.
This method determines if the first of two OracleBinary
values is less than the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. This method determines if the first of two OracleBinary
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleBinary
.
value2
The second OracleBinary
.
Return Value
Returns true
if the first of two OracleBinary
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. The OracleBinary
static type conversion operators are listed in Table 14-11.
Table 14-11 OracleBinary Static Type Conversion Operators
Operator | Description |
---|---|
Converts an instance value to a byte array | |
Converts an instance value to an |
This method converts an OracleBinary
value to a byte array.
Declaration
Parameters
val
An OracleBinary
.
Return Value
A byte array.
Exceptions
OracleNullValueException
- The OracleBinary
structure has a null value.
This method converts a byte array to an OracleBinary
structure.
Declaration
Parameters
bytes
A byte array.
Return Value
OracleBinary
The OracleBinary
properties are listed in Table 14-12.
Table 14-12 OracleBinary Properties
Properties | Description |
---|---|
Indicates whether or not the current instance has a null value | |
Obtains the particular | |
Returns the length of the binary data | |
Returns the binary data that is stored in an |
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise returns false
.
This property obtains the particular byte
in an OracleBinary
structure using an index.
Declaration
Property Value
A byte in the specified index.
Exceptions
OracleNullValueException
- The current instance has a null value.
Example
This property returns the length of the binary data.
Declaration
Property Value
Length of the binary data.
Exceptions
OracleNullValueException
- The current instance has a null value.
Example
This property returns the binary data that is stored in the OracleBinary
structure.
Declaration
Property Value
Binary data.
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleBinary
instance methods are listed in Table 14-13.
Table 14-13 OracleBinary Instance Methods
Methods | Description |
---|---|
Compares the current instance to an object and returns an integer that represents their relative values | |
Determines if two objects contain the same binary data (Overloaded) | |
Returns a hash code for the current instance | |
GetType | Inherited from |
Converts the current |
This method compares the current instance to an object and returns an integer that represents their relative values
Declaration
Parameters
obj
The object being compared.
Return Value
The method returns a number that is:
OracleBinary
instance value is less than obj
. OracleBinary
instance and obj
values have the same binary data. OracleBinary
instance value is greater than obj
. Implements
IComparable
Exceptions
ArgumentException
- The parameter is not of type OracleBinary
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
s. For example, comparing an OracleBinary
instance with an OracleTimeStamp
instance is not allowed. When an OracleBinary
is compared with a different type, an ArgumentException
is thrown. OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. Example
This method determines whether or not an object is an instance of OracleBinary
, and has the same binary data as the current instance.
Declaration
Parameters
obj
The object being compared.
Return Value
Returns true
if obj
is an instance of OracleBinary
, and has the same binary data as the current instance; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleBinary
that has a value is greater than an OracleBinary
that has a null value. OracleBinary
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleBinary
instance.
Declaration
Return Value
An int
that represents the hash.
Overrides Object
This method converts an OracleBinary
instance to a string instance.
Declaration
Return Value
string
Remarks
If the current OracleBinary
instance has a null value, the returned string "null"
.
The OracleDate
structure represents the Oracle DATE
data type to be stored in or retrieved from a database. Each OracleDate
stores the following information: year, month, day, hour, minute, and second.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleDate
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDate
members are listed in the following tables:
OracleDate Constructors
OracleDate
constructors are listed in Table 14-14
Table 14-14 OracleDate Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleDate Static Fields
The OracleDate
static fields are listed in Table 14-15.
Table 14-15 OracleDate Static Fields
Field | Description |
---|---|
Represents the maximum valid date for an | |
Represents the minimum valid date for an | |
Represents a null value that can be assigned to the value of an |
OracleDate Static Methods
The OracleDate
static methods are listed in Table 14-16.
Table 14-16 OracleDate Static Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Returns an | |
Returns an |
OracleDate Static Operators
The OracleDate
static operators are listed in Table 14-17.
Table 14-17 OracleDate Static Operators
Operator | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two |
OracleDate Static Type Conversions
The OracleDate
static type conversions are listed in Table 14-18.
Table 14-18 OracleDate Static Type Conversions
Operator | Description |
---|---|
Converts a structure to a | |
Converts a structure to an |
OracleDate Properties
The OracleDate
properties are listed in Table 14-19.
Table 14-19 OracleDate Properties
Properties | Description |
---|---|
Gets an array of bytes that represents an Oracle | |
Gets the day component of an | |
Indicates whether or not the current instance has a null value | |
Gets the | |
Gets the minute component of an | |
Gets the | |
Gets the | |
Gets the date and time that is stored in the | |
Gets the |
OracleDate Methods
The OracleDate
methods are listed in Table 14-20.
Table 14-20 OracleDate Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not an object has the same date and time as the current | |
Returns a hash code for the | |
Calculates the number of days between the current | |
GetType | Inherited from |
Converts the current | |
Converts the current |
The OracleDate
constructors instantiates a new instance of the OracleDate
structure.
Overload List:
This constructor creates a new instance of the OracleDate
structure and sets its value for date and time using the supplied DateTime
value.
This constructor creates a new instance of the OracleDate
structure and sets its value using the supplied string.
This constructor creates a new instance of the OracleDate
structure and set its value for date using the supplied year, month, and day.
This constructor creates a new instance of the OracleDate
structure and set its value for time using the supplied year, month, day, hour, minute, and second.
This constructor creates a new instance of the OracleDate
structure and sets its value to the provided byte array, which is in the internal Oracle DATE
format.
This constructor creates a new instance of the OracleDate
structure and sets its value for date and time using the supplied DateTime
value.
Declaration
Parameters
dt
The provided DateTime
value.
Remarks
The OracleDate
structure only supports up to a second precision. The time value in the provided DateTime
structure that has a precision smaller than second is ignored.
This constructor creates a new instance of the OracleDate
structure and sets its value using the supplied string.
Declaration
Parameters
dateStr
A string that represents an Oracle DATE
.
Exceptions
ArgumentException
- The dateStr
is an invalid string representation of an Oracle DATE
or the dateStr
is not in the date format specified by the thread's OracleGlobalization
.DateFormat
property, which represents the Oracle NLS_DATE_FORMAT
parameter.
ArgumentNullException
- The dateStr
is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
This constructor creates a new instance of the OracleDate
structure and set its value for date using the supplied year, month, and day.
Declaration
Parameters
year
The supplied year. Range of year
is (-4712 to 9999).
month
The supplied month. Range of month
is (1 to 12).
day
The supplied day. Range of day
is (1 to 31).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleDate
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleDate
structure and set its value for time using the supplied year, month, day, hour, minute, and second.
Declaration
Parameters
year
The supplied year. Range of year
is (-4712 to 9999).
month
The supplied month. Range of month
is (1 to 12).
day
The supplied day. Range of day
is (1 to 31).
hour
The supplied hour. Range of hour
is (0 to 23).
minute
The supplied minute. Range of minute
is (0 to 59).
second
The supplied second. Range of second
is (0 to 59).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleDate
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleDate
structure and sets its value to the provided byte array, which is in the internal Oracle DATE
format.
Declaration
Parameters
bytes
A byte array that represents Oracle DATE
in the internal Oracle DATE
format.
Exceptions
ArgumentException
- bytes
is null or bytes
is not in internal Oracle DATE
format or bytes
is not a valid Oracle DATE
.
The OracleDate
static fields are listed in Table 14-21.
Table 14-21 OracleDate Static Fields
Field | Description |
---|---|
Represents the maximum valid date for an | |
Represents the minimum valid date for an | |
Represents a null value that can be assigned to the value of an |
This static field represents the maximum valid date for an OracleDate
structure, which is December 31, 9999 23:59:59.
Declaration
This static field represents the minimum valid date for an OracleDate
structure, which is January 1, -4712.
Declaration
This static field represents a null value that can be assigned to the value of an OracleDate
instance.
Declaration
The OracleDate
static methods are listed in Table 14-22.
Table 14-22 OracleDate Static Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Returns an | |
Returns an |
Overloads Object
This method determines if two OracleDate
values are equal.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if two OracleDate
values are equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is greater than the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is less than the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is less than the second. Otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if two OracleDate
values are not equal.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if two OracleDate
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method gets an OracleDate
structure that represents the current date and time.
Declaration
Return Value
An OracleDate
structure that represents the current date and time.
This method gets an OracleDate
structure and sets its value for date and time using the supplied string.
Declaration
Parameters
dateStr
A string that represents an Oracle DATE
.
Return Value
An OracleDate
structure.
Exceptions
ArgumentException
- The dateStr
is an invalid string representation of an Oracle DATE
or the dateStr
is not in the date format specified by the thread's OracleGlobalization
.DateFormat
property, which represents the Oracle NLS_DATE_FORMAT
parameter.
ArgumentNullException
- The dateStr
is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
The OracleDate
static operators are listed in Table 14-23.
Table 14-23 OracleDate Static Operators
Operator | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two |
This method determines if two OracleDate
values are the same.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if they are the same; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is greater than the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the two OracleDate
values are not equal.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the two OracleDate
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is less than the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines if the first of two OracleDate
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleDate
.
value2
The second OracleDate
.
Return Value
Returns true
if the first of two OracleDate
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. The OracleDate
static type conversions are listed in Table 14-24.
Table 14-24 OracleDate Static Type Conversions
Operator | Description |
---|---|
Converts a structure to a | |
Converts a structure to an |
This method converts an OracleDate
structure to a DateTime
structure.
Declaration
Parameters
val
An OracleDate
structure.
Return Value
A DateTime
structure.
explicit
operator
OracleDate
converts the provided structure to an OracleDate
structure.
Overload List:
This method converts a DateTime
structure to an OracleDate
structure.
This method converts an OracleTimeStamp
structure to an OracleDate
structure.
This method converts the supplied string to an OracleDate
structure.
This method converts a DateTime
structure to an OracleDate
structure.
Declaration
Parameters
dt
A DateTime
structure.
Return Value
An OracleDate
structure.
This method converts an OracleTimeStamp
structure to an OracleDate
structure.
Declaration
Parameters
ts
OracleTimeStamp
Return Value
The returned OracleDate
structure contains the date and time in the OracleTimeStamp
structure.
Remarks
The precision of the OracleTimeStamp
value can be lost during the conversion.
If the OracleTimeStamp
structure has a null value, the returned OracleDate
structure also has a null value.
This method converts the supplied string to an OracleDate
structure.
Declaration
Parameters
dateStr
A string representation of an Oracle DATE
.
Return Value
The returned OracleDate
structure contains the date and time in the string dateStr
.
Exceptions
ArgumentNullException
- The dateStr
is null.
ArgumentException
- This exception is thrown if any of the following conditions exist:
dateStr
is an invalid string representation of an Oracle DATE
. dateStr
is not in the date format specified by the thread's OracleGlobalization
.DateFormat
property, which represents the Oracle NLS_DATE_FORMAT
parameter. Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
The OracleDate
properties are listed in Table 14-25.
Table 14-25 OracleDate Properties
Properties | Description |
---|---|
Gets an array of bytes that represents an Oracle | |
Gets the day component of an | |
Indicates whether or not the current instance has a null value | |
Gets the | |
Gets the minute component of an | |
Gets the | |
Gets the | |
Gets the date and time that is stored in the | |
Gets the |
This property gets a array of bytes that represents an Oracle DATE
in Oracle internal format.
Declaration
Property Value
An array of bytes.
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property gets the day component of an OracleDate
.
Declaration
Property Value
A number that represents the day. Range of Day
is (1 to 31).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false.
This property gets the hour
component of an OracleDate
.
Declaration
Property Value
A number that represents Hour
. Range of Hour
is (0 to 23).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property gets the minute component of an OracleDate
.
Declaration
Property Value
A number that represents Minute
. Range of Minute
is (0 to 59).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property gets the month
component of an OracleDate.
Declaration
Property Value
A number that represents Month
. Range of Month
is (1 to 12).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property gets the second
component of an OracleDate.
Declaration
Property Value
A number that represents Second
. Range of Second
is (0 to 59).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property specifies the date and time that is stored in the OracleDate
structure.
Declaration
Property Value
A DateTime
.
Exceptions
OracleNullValueException
- OracleDate
has a null value.
This property gets the year
component of an OracleDate
.
Declaration
Property Value
A number that represents Year
. Range of Year
is (-4712 to 9999).
Exceptions
OracleNullValueException
- OracleDate
has a null value.
The OracleDate
methods are listed in Table 14-26.
Table 14-26 OracleDate Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not an object has the same date and time as the current | |
Returns a hash code for the | |
Calculates the number of days between the current | |
GetType | Inherited from |
Converts the current | |
Converts the current |
This method compares the current OracleDate
instance to an object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
An object.
Return Value
The method returns:
OracleDate
instance value is less than that of obj
. OracleDate
instance and obj
values are equal. OracleDate
instance value is greater than obj
. Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not an instance of OracleDate
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
s. For example, comparing an OracleDate
instance with an OracleBinary
instance is not allowed. When an OracleDate
is compared with a different type, an ArgumentException
is thrown. OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. This method determines whether or not an object has the same date and time as the current OracleDate
instance.
Declaration
Parameters
obj
An object.
Return Value
Returns true
if obj
has the same type as the current instance and represents the same date and time; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDate
that has a value compares greater than an OracleDate
that has a null value. OracleDate
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleDate
instance.
Declaration
Return Value
A number that represents the hash code.
This method calculates the number of days between the current OracleDate
instance and the supplied OracleDate
structure.
Declaration
Parameters
val
An OracleDate
structure.
Return Value
The number of days between the current OracleDate
instance and the OracleDate
structure.
Exceptions
OracleNullValueException
- The current instance or the supplied OracleDate
structure has a null value.
This method converts the current OracleDate
structure to an OracleTimeStamp
structure.
Declaration
Return Value
An OracleTimeStamp
structure.
Remarks
The returned OracleTimeStamp
structure has date and time in the current instance.
If the OracleDate
instance has a null value, the returned OracleTimeStamp
structure has a null value.
Overrides ValueType
This method converts the current OracleDate
structure to a string
.
Declaration
Return Value
A string.
Remarks
The returned value is a string representation of the OracleDate
in the format specified by the thread's OracleGlobalization
.DateFormat
property. The names and abbreviations used for months and days are in the language specified by the thread's OracleGlobalization
.DateLanguage
and OracleGlobalization.Calendar
properties. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
The OracleDecimal
structure represents an Oracle NUMBER
in the database or any Oracle numeric value.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleDecimal
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
OracleDecimal
can store up to 38 precision, while the .NET Decimal
data type can only hold up to 28 precision. When accessing the OracleDecimal.Value
property from an OracleDecimal
that has a value greater than 28 precision, an exception is thrown. To retrieve the actual value of OracleDecimal
, use the OracleDecimal.ToString()
method. Another approach is to obtain the OracleDecimal
value as a byte array in an internal Oracle NUMBER
format through the BinData
property.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleDecimal
members are listed in the following tables:
OracleDecimal Constructors
OracleDecimal
constructors are listed in Table 14-27
Table 14-27 OracleDecimal Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleDecimal Static Fields
The OracleDecimal
static fields are listed in Table 14-28.
Table 14-28 OracleDecimal Static Fields
Field | Description |
---|---|
A constant representing the maximum precision, which is 38 | |
A constant representing the maximum scale, which is 127 | |
A constant representing the maximum value for this structure, which is 9.9…9 x 10125 | |
A constant representing the minimum scale, which is -84 | |
A constant representing the minimum value for this structure, which is -1.0 x 10130 | |
A constant representing the negative one value | |
Represents a null value that can be assigned to an | |
A constant representing the positive one value | |
A constant representing the numeric Pi value | |
A constant representing the zero value |
OracleDecimal Static (Comparison) Methods
The OracleDecimal
static (comparison) methods are listed in Table 14-29.
Table 14-29 OracleDecimal Static (Comparison) Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two |
OracleDecimal Static (Manipulation) Methods
The OracleDecimal
static (manipulation) methods are listed in Table 14-30.
Table 14-30 OracleDecimal Static (Manipulation) Methods
Methods | Description |
---|---|
Returns the absolute value of an | |
Adds two | |
Returns a new | |
Returns a new | |
Returns a new | |
Divides one | |
Returns a new | |
Returns the maximum value of the two supplied | |
Returns the minimum value of the two supplied | |
Returns a new | |
Returns a new | |
Returns a new | |
Converts a | |
Returns a new | |
Returns a new | |
Returns a new | |
Determines the sign of an | |
Returns a new | |
Returns a new | |
Truncates the |
OracleDecimal Static (Logarithmic) Methods
The OracleDecimal
static (logarithmic) methods are listed in Table 14-31.
Table 14-31 OracleDecimal Static (Logarithmic) Methods
Methods | Description |
---|---|
Returns a new | |
Returns the supplied | |
Returns a new |
OracleDecimal Static (Trigonometric) Methods
The OracleDecimal
static (trigonometric) methods are listed in Table 14-32.
Table 14-32 OracleDecimal Static (Trigonometric) Methods
Methods | Description |
---|---|
Returns an angle in radians whose cosine is the supplied | |
Returns an angle in radians whose sine is the supplied | |
Returns an angle in radians whose tangent is the supplied | |
Returns an angle in radians whose tangent is the quotient of the two supplied | |
Returns the cosine of the supplied angle in radians | |
Returns the sine of the supplied angle in radians | |
Returns the tangent of the supplied angle in radians | |
Returns the hyperbolic cosine of the supplied angle in radians | |
Returns the hyperbolic sine of the supplied angle in radians | |
Returns the hyperbolic tangent of the supplied angle in radians |
OracleDecimal Static (Comparison) Operators
The OracleDecimal
static (comparison) operators are listed in Table 14-33.
Table 14-33 OracleDecimal Static (Comparison) Operators
Operator | Description |
---|---|
Adds two | |
Divides one | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
Multiplies two | |
Subtracts one | |
Negates an | |
Returns a new |
OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
The OracleDecimal
static operators (Conversion from .NET Type to OracleDecimal
) are listed in Table 14-34.
Table 14-34 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an |
OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
The OracleDecimal
static operators (Conversion from OracleDecimal
to .NET) are listed in Table 14-35.
Table 14-35 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
Operator | Description |
---|---|
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the |
OracleDecimal Properties
The OracleDecimal
properties are listed in Table 14-36.
Table 14-36 OracleDecimal Properties
Properties | Description |
---|---|
Returns a byte array that represents the Oracle | |
Specifies the format for | |
Indicates whether or not the current instance is an integer | |
Indicates whether or not the current instance has a null value | |
Indicates whether or not the current instance is greater than | |
Indicates whether or not the current instance has a | |
Returns a |
OracleDecimal Instance Methods
The OracleDecimal
instance methods are listed in Table 14-37.
Table 14-37 OracleDecimal Instance Methods
Method | Description |
---|---|
Compares the current instance to the supplied object and returns an integer that represents their relative values | |
Determines whether or not an object is an instance of | |
Returns a hash code for the current instance | |
GetType | Inherited from |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Overloads Returns the |
The OracleDecimal
constructors instantiate a new instance of the OracleDecimal
structure.
Overload List:
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied byte array, which is in an Oracle NUMBER
format.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Decimal
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied double
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Int32
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Single
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Int64
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied string
value.
This constructor creates a new instance of the OracleDecimal
structure with the supplied string
value and number format.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied byte array, which is in an Oracle NUMBER
format.
Declaration
Parameters
bytes
A byte array that represents an Oracle NUMBER
in an internal Oracle format.
Exceptions
ArgumentException
- The bytes
parameter is not in a internal Oracle NUMBER
format or bytes
has an invalid value.
ArgumentNullException
- The bytes
parameter is null.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Decimal
value.
Declaration
Parameters
decX
The provided Decimal
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied double
value.
Declaration
Parameters
doubleX
The provided double value.
Exceptions
OverFlowException
- The value of the supplied double
is greater than the maximum value or less than the minimum value of OracleDecimal
.
Remarks
OracleDecimal
contains the following values depending on the provided double value:
double.PositiveInfinity
: positive infinity value double.NegativeInfinity
: negative infinity value. double.NaN
: null value This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Int32
value.
Declaration
Parameters
intX
The provided Int32
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Single
value.
Declaration
Parameters
floatX
The provided float
value.
Remarks
OracleDecimal
contains the following values depending on the provided float
value:
float.PositiveInfinity
: positive infinity value
float.NegativeInfinity
: negative infinity value
float.NaN
: null value
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied Int64
value.
Declaration
Parameters
longX
The provided Int64
value.
This constructor creates a new instance of the OracleDecimal
structure and sets its value to the supplied string
value.
Declaration
Parameters
numStr
The provided string
value.
Exceptions
ArgumentException
- The numStr
parameter is an invalid string representation of an OracleDecimal
.
ArgumentNullException
- The numStr
parameter is null.
OverFlowException
- The value of numStr
is greater than the maximum value or less than the minimum value of OracleDecimal
.
This constructor creates a new instance of the OracleDecimal
structure with the supplied string
value and number format.
Declaration
Parameters
numStr
The provided string
value.
format
The provided number format
.
Exceptions
ArgumentException
- The numStr
parameter is an invalid string representation of an OracleDecimal
or the numStr
is not in the numeric format specified by format
.
ArgumentNullException
- The numStr
parameter is null.
OverFlowException
- The value of numStr
parameter is greater than the maximum value or less than the minimum value of OracleDecimal
.
Remarks
If the numeric format includes decimal and group separators, then the provided string must use those characters defined by the OracleGlobalization
.NumericCharacters
of the thread.
If the numeric format includes the currency symbol, ISO currency symbol, or the dual currency symbol, then the provided string must use those symbols defined by the OracleGlobalization.Currency
, OracleGlobalization
.ISOCurrency
, and OracleGlobalization
.DualCurrency
properties respectively.
Example
The OracleDecimal
static fields are listed in Table 14-38.
Table 14-38 OracleDecimal Static Fields
Field | Description |
---|---|
A constant representing the maximum precision, which is 38 | |
A constant representing the maximum scale, which is 127 | |
A constant representing the maximum value for this structure, which is 9.9…9 x 10125 | |
A constant representing the minimum scale, which is -84 | |
A constant representing the minimum value for this structure, which is -1.0 x 10130 | |
A constant representing the negative one value | |
Represents a null value that can be assigned to an | |
A constant representing the positive one value | |
A constant representing the numeric Pi value | |
A constant representing the zero value |
This static field represents the maximum precision, which is 38.
Declaration
This static field a constant representing the maximum scale, which is 127.
Declaration
This static field indicates a constant representing the maximum value for this structure, which is 9.9…9 x 10125 (38 nines followed by 88 zeroes).
Declaration
This static field indicates a constant representing the maximum scale, which is -84.
Declaration
This static field indicates a constant representing the minimum value for this structure, which is -1.0 x 10130.
Declaration
This static field indicates a constant representing the negative one value.
Declaration
This static field represents a null value that can be assigned to an OracleDecimal
instance.
Declaration
This static field indicates a constant representing the positive one value.
Declaration
This static field indicates a constant representing the numeric Pi value.
Declaration
This static field indicates a constant representing the zero value.
Declaration
The OracleDecimal
static (comparison) methods are listed in Table 14-39.
Table 14-39 OracleDecimal Static (Comparison) Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two |
This method determines if two OracleDecimal
values are equal.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal
.
Return Value
Returns true
if two OracleDecimal
values are equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is greater than the second.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal.
Return Value
Returns true
if the first of two OracleDecimal
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is less than the second.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if two OracleDecimal
values are not equal.
Declaration
Parameters
value1
The first OracleDecimal
.
value2
The second OracleDecimal
.
Return Value
Returns true
if two OracleDecimal
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. The OracleDecimal
static (manipulation) methods are listed in Table 14-40.
Table 14-40 OracleDecimal Static (Manipulation) Methods
Methods | Description |
---|---|
Returns the absolute value of an | |
Adds two | |
Returns a new | |
Returns a new | |
Returns a new | |
Divides one | |
Returns a new | |
Returns the maximum value of the two supplied | |
Returns the minimum value of the two supplied | |
Returns a new | |
Returns a new | |
Returns a new | |
Converts a | |
Returns a new | |
Returns a new | |
Returns a new | |
Determines the sign of an | |
Returns a new | |
Returns a new | |
Truncates the |
This method returns the absolute value of an OracleDecimal
.
Declaration
Parameters
val
An OracleDecimal
.
Return Value
The absolute value of an OracleDecimal
.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method adds two OracleDecimal
structures.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns an OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
with the specified number of digits and indicates whether or not to round or truncate the number if the scale is less than the original.
Declaration
Parameters
val
An OracleDecimal
.
digits
The number of digits.
fRound
Indicates whether or not to round or truncate the number. Setting it to true
rounds the number and setting it to false
truncates the number.
Return Value
An OracleDecimal
.
Remarks
If the supplied OracleDecimal
has a null value, the returned OracleDecimal
has a null value.
Example
This method returns a new OracleDecimal
structure with its value set to the ceiling of the supplied OracleDecimal
.
Declaration
Parameters
val
An OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with a new precision and scale.
Declaration
Parameters
val
An OracleDecimal
structure.
precision
The precision. Range of precision is 1 to 38.
scale
The number of digits to the right of the decimal point. Range of scale is -84 to 127.
Return Value
A new OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
has a null value, the returned OracleDecimal
has a null value.
Example
This method divides one OracleDecimal
value by another.
Declaration
Parameters
val1
An OracleDecimal
.
val2
An OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to the floor of the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A new OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the maximum value of the two supplied OracleDecimal
structures.
Declaration
Parameters
val1
An OracleDecimal
structure.
val2
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure that has the greater value.
This method returns the minimum value of the two supplied OracleDecimal
structures.
Declaration
Parameters
val1
An OracleDecimal
structure.
val2
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure that has the smaller value.
This method returns a new OracleDecimal
structure with its value set to the modulus of two OracleDecimal
structures.
Declaration
Parameters
val1
An OracleDecimal
structure.
divider
An OracleDecimal
structure.
Return Value
An OracleDecimal
.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to the result of multiplying two OracleDecimal
structures.
Declaration
Parameters
val1
An OracleDecimal
structure.
val2
An OracleDecimal
structure.
Return Value
A new OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to the negation of the supplied OracleDecimal
structures.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A new OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method converts a string
to an OracleDecimal
.
Declaration
Parameters
str
The string being converted.
Return Value
A new OracleDecimal
structure.
Exceptions
ArgumentException
- The numStr
parameter is an invalid string representation of an OracleDecimal
.
ArgumentNullException
- The numStr
parameter is null.
OverFlowException
- The value of numStr
is greater than the maximum value or less than the minimum value of OracleDecimal
.
This method returns a new OracleDecimal
structure with its value set to that of the supplied OracleDecimal
structure and rounded off to the specified place.
Declaration
Parameters
val
An OracleDecimal
structure.
decplace
The specified decimal place. If the value is positive, the function rounds the OracleDecimal
structure to the right of the decimal point. If the value is negative, the function rounds to the left of the decimal point.
Return Value
An OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with a new specified precision.
Declaration
Parameters
val
An OracleDecimal
structure.
precision
The specified precision. Range of precision is 1 to 38.
Return Value
An OracleDecimal
structure.
Remarks
The returned OracleDecimal
is rounded off if the specified precision is smaller than the precision of val
.
If val
has a null value, the returned OracleDecimal
has a null value.
Example
This method returns a new OracleDecimal
structure with its value set to that of the supplied OracleDecimal
structure, and its decimal place shifted to the specified number of places to the right.
Declaration
Parameters
val
An OracleDecimal
structure.
decplaces
The specified number of places to be shifted.
Return Value
An OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
If decplaces
is negative, the shift is to the left.
This method determines the sign of an OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
-1
: if the supplied OracleDecimal
<
0 0
: if the supplied OracleDecimal
==
0 1
: if the supplied OracleDecimal
>
0 Exceptions
OracleNullValueException
- The argument has a null value.
This method returns a new OracleDecimal
structure with its value set to the square root of the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure.
Exceptions
ArgumentOutOfRangeException
- The provided OracleDecimal
structure is less than zero.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to result of subtracting one OracleDecimal
structure from another.
Declaration
Parameters
val1
An OracleDecimal
structure.
val2
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method truncates the OracleDecimal
at a specified position.
Declaration
Parameters
val
An OracleDecimal
structure.
pos
The specified position. If the value is positive, the function truncates the OracleDecimal
structure to the right of the decimal point. If the value is negative, it truncates the OracleDecimal
structure to the left of the decimal point.
Return Value
An OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
The OracleDecimal
static (logarithmic) methods are listed in Table 14-41.
Table 14-41 OracleDecimal Static (Logarithmic) Methods
Methods | Description |
---|---|
Returns a new | |
Returns the supplied | |
Returns a new |
This method returns a new OracleDecimal
structure with its value set to e raised to the supplied OracleDecimal
.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
Log
returns the supplied OracleDecimal
structure with its value set to the logarithm of the supplied OracleDecimal
structure.
Overload List:
This method returns a new OracleDecimal
structure with its value set to the natural logarithm (base e) of the supplied OracleDecimal
structure.
This method returns the supplied OracleDecimal
structure with its value set to the logarithm of the supplied OracleDecimal
structure in the supplied base.
This method returns the supplied OracleDecimal
structure with its value set to the logarithm of the supplied OracleDecimal
structure in the supplied base.
This method returns a new OracleDecimal
structure with its value set to the natural logarithm (base e) of the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure whose logarithm is to be calculated.
Return Value
Returns a new OracleDecimal
structure with its value set to the natural logarithm (base e) of val
.
Exceptions
ArgumentOutOfRangeException
- The supplied OracleDecimal
value is less than zero.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
If the supplied OracleDecimal
structure has zero value, the result is undefined, and the returned OracleDecimal
structure has a null value.
This method returns the supplied OracleDecimal
structure with its value set to the logarithm of the supplied OracleDecimal
structure in the supplied base.
Declaration
Parameters
val
An OracleDecimal
structure whose logarithm is to be calculated.
logBase
An int
that specifies the base of the logarithm.
Return Value
A new OracleDecimal
structure with its value set to the logarithm of val
in the supplied base.
Exceptions
ArgumentOutOfRangeException
- Either argument is less than zero.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
If both arguments have zero value, the result is undefined, and the returned OracleDecimal
structure has a null value.
This method returns the supplied OracleDecimal
structure with its value set to the logarithm of the supplied OracleDecimal
structure in the supplied base.
Declaration
Parameters
val
An OracleDecimal
structure whose logarithm is to be calculated.
logBase
An OracleDecimal
structure that specifies the base of the logarithm.
Return Value
Returns the logarithm of val
in the supplied base.
Exceptions
ArgumentOutOfRangeException
- Either the val
or logBase
parameter is less than zero.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
If both arguments have zero value, the result is undefined, and the returned OracleDecimal
structure has a null value.
Pow
returns a new OracleDecimal
structure with its value set to the supplied OracleDecimal
structure raised to the supplied power.
Overload List:
This method returns a new OracleDecimal
structure with its value set to the supplied OracleDecimal
value raised to the supplied Int32
power.
This method returns a new OracleDecimal
structure with its value set to the supplied OracleDecimal
structure raised to the supplied OracleDecimal
power.
This method returns a new OracleDecimal
structure with its value set to the supplied OracleDecimal
value raised to the supplied Int32
power.
Declaration
Parameters
val
An OracleDecimal
structure.
power
An int
value that specifies the power.
Return Value
An OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to the supplied OracleDecimal
structure raised to the supplied OracleDecimal
power.
Declaration
Parameters
val
An OracleDecimal
structure.
power
An OracleDecimal
structure that specifies the power.
Return Value
An OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
The OracleDecimal
static (trigonometric) methods are listed in Table 14-42.
Table 14-42 OracleDecimal Static (Trigonometric) Methods
Methods | Description |
---|---|
Returns an angle in radians whose cosine is the supplied | |
Returns an angle in radians whose sine is the supplied | |
Returns an angle in radians whose tangent is the supplied | |
Returns an angle in radians whose tangent is the quotient of the two supplied | |
Returns the cosine of the supplied angle in radians | |
Returns the sine of the supplied angle in radians | |
Returns the tangent of the supplied angle in radians | |
Returns the hyperbolic cosine of the supplied angle in radians | |
Returns the hyperbolic sine of the supplied angle in radians | |
Returns the hyperbolic tangent of the supplied angle in radians |
This method returns an angle in radians whose cosine is the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure. Range is (-1 to 1).
Return Value
An OracleDecimal
structure that represents an angle in radians.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns an angle in radians whose sine is the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
structure. Range is (-1 to 1).
Return Value
An OracleDecimal
structure that represents an angle in radians.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns an angle in radians whose tangent is the supplied OracleDecimal
structure
Declaration
Parameters
val
An OracleDecimal
.
Return Value
An OracleDecimal
structure that represents an angle in radians.
Remarks
If the argument has a null value, the returned OracleDecimal
has a null value.
This method returns an angle in radians whose tangent is the quotient of the two supplied OracleDecimal
structures.
Declaration
Parameters
val1
An OracleDecimal
structure that represents the y-coordinate.
val2
An OracleDecimal
structure that represents the x-coordinate.
Return Value
An OracleDecimal
structure that represents an angle in radians.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the cosine of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure that represents an angle in radians.
Return Value
An OracleDecimal
instance.
Exceptions
ArgumentOutOfRangeException
- The val
parameter is positive or negative infinity.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the sine of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
An OracleDecimal
structure that represents an angle in radians.
Exceptions
ArgumentOutOfRangeException
- The val
parameter is positive or negative infinity.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the tangent of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure that represents an angle in radians.
Return Value
An OracleDecimal
instance.
Exceptions
ArgumentOutOfRangeException
- The val
parameter is positive or negative infinity.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the hyperbolic cosine of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure that represents an angle in radians.
Return Value
An OracleDecimal
instance.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the hyperbolic sine of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure that represents an angle in radians.
Return Value
An OracleDecimal
instance.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
This method returns the hyperbolic tangent of the supplied angle in radians.
Declaration
Parameters
val
An OracleDecimal
structure that represents an angle in radians.
Return Value
An OracleDecimal
instance.
Remarks
If either argument has a null value, the returned OracleDecimal
has a null value.
The OracleDecimal
static (comparison) operators are listed in Table 14-43.
Table 14-43 OracleDecimal Static (Comparison) Operators
Operator | Description |
---|---|
Adds two | |
Divides one | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
Multiplies two | |
Subtracts one | |
Negates an | |
Returns a new |
This method adds two OracleDecimal
values.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
An OracleDecimal
structure.
Remarks
If either operand has a null value, the returned OracleDecimal
has a null value.
This method divides one OracleDecimal
value by another.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
An OracleDecimal
structure.
Remarks
If either operand has a null value, the returned OracleDecimal
has a null value.
This method determines if two OracleDecimal
values are equal.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if their values are equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is greater than the second.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if the two OracleDecimal
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is greater than or equal to the second.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values are not equal.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if the two OracleDecimal
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is less than the second.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method determines if the first of two OracleDecimal
values is less than or equal to the second.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
Returns true
if the first of two OracleDecimal
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. This method multiplies two OracleDecimal
structures.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If either operand has a null value, the returned OracleDecimal
has a null value.
This method subtracts one OracleDecimal
structure from another.
Declaration
Parameters
val1
The first OracleDecimal
.
val2
The second OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If either operand has a null value, the returned OracleDecimal
has a null value.
This method negates the supplied OracleDecimal
structure.
Declaration
Parameters
val
An OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If the supplied OracleDecimal
structure has a null value, the returned OracleDecimal
has a null value.
This method returns a new OracleDecimal
structure with its value set to the modulus of two OracleDecimal
structures.
Declaration
Parameters
val
An OracleDecimal
.
divider
An OracleDecimal
.
Return Value
A new OracleDecimal
structure.
Remarks
If either operand has a null value, the returned OracleDecimal
has a null value.
The OracleDecimal
static operators (Conversion from .NET Type to OracleDecimal
) are listed in Table 14-44.
Table 14-44 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an |
implicit
operator
OracleDecimal
returns the OracleDecimal
representation of a value.
Overload List:
This method returns the OracleDecimal
representation of a decimal
value.
This method returns the OracleDecimal
representation of an int
value.
This method returns the OracleDecimal
representation of a long
value.
This method returns the OracleDecimal
representation of a decimal
value.
Declaration
Parameters
val
A decimal
value.
Return Value
An OracleDecimal
.
This method returns the OracleDecimal
representation of an int
value.
Declaration
Parameters
val
An int
value.
Return Value
An OracleDecimal
.
This method returns the OracleDecimal
representation of a long
value.
Declaration
Parameters
val
A long
value.
Return Value
An OracleDecimal
.
OracleDecimal
returns the OracleDecimal
representation of a value.
Overload List:
This method returns the OracleDecimal
representation of a double.
This method returns the OracleDecimal
representation of a string.
This method returns the OracleDecimal
representation of a double.
Declaration
Parameters
val
A double
.
Return Value
An OracleDecimal
.
Exceptions
OverFlowException
- The value of the supplied double
is greater than the maximum value of OracleDecimal
or less than the minimum value of OracleDecimal
.
Remarks
OracleDecimal
contains the following values depending on the provided double value:
double.PositiveInfinity
: positive infinity value double.NegativeInfinity
: negative infinity value. double.NaN
: null value This method returns the OracleDecimal
representation of a string.
Declaration
Parameters
numStr
A string
that represents a numeric value.
Return Value
An OracleDecimal
.
Exceptions
ArgumentException
- The numStr
parameter is an invalid string representation of an OracleDecimal
.
The OracleDecimal
static operators (Conversion from OracleDecimal
to .NET) are listed in Table 14-45.
Table 14-45 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
Operator | Description |
---|---|
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the |
This method returns the byte
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A byte
.
Exceptions
OracleNullValueException
- OracleDecimal
has a null value.
OverFlowException
- The byte
cannot represent the supplied OracleDecimal
structure.
This method returns the decimal
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A decimal
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The decimal
cannot represent the supplied OracleDecimal
structure.
This method returns the double
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A double
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The double
cannot represent the supplied OracleDecimal
structure.
This method returns the short
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A short
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The short
cannot represent the supplied OracleDecimal
structure.
This method returns the int
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
An int
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The int
cannot represent the supplied OracleDecimal
structure.
This method returns the long
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A long
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The long
cannot represent the supplied OracleDecimal
structure.
This method returns the float
representation of the OracleDecimal
value.
Declaration
Parameters
val
An OracleDecimal
structure.
Return Value
A float
.
Exceptions
OracleNullValueException
- The OracleDecimal
has a null value.
OverFlowException
- The float
cannot represent the supplied OracleDecimal
structure.
The OracleDecimal
properties are listed in Table 14-46.
Table 14-46 OracleDecimal Properties
Properties | Description |
---|---|
Returns a byte array that represents the Oracle | |
Specifies the format for | |
Indicates whether or not the current instance is an integer | |
Indicates whether or not the current instance has a null value | |
Indicates whether or not the current instance is greater than | |
Indicates whether or not the current instance has a | |
Returns a |
This property returns a byte array that represents the Oracle NUMBER
in an internal Oracle format.
Declaration
Property Value
A byte array that represents the Oracle NUMBER
in an internal Oracle format.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the format for ToString()
.
Declaration
Property Value
The string which specifies the format.
Remarks
Format
is used when ToString()
is called on an instance of an OracleDecimal
. It is useful if the ToString()
method needs a specific currency symbol, group, or decimal separator as part of a string.
By default, this property is null
which indicates that no special formatting is used.
The decimal and group separator characters are specified by the thread's OracleGlobalization.NumericCharacters
.
The currency symbols are specified by the following thread properties:
OracleGlobalization.Currency
OracleGlobalization.ISOCurrency
OracleGlobalization.DualCurrency
This property indicates whether or not the current instance is an integer value.
Declaration
Property Value
A bool
value that returns true
if the current instance is an integer value; otherwise, returns false
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
A bool
value that returns true
if the current instance has a null value; otherwise, returns false
.
This property indicates whether or not the value of the current instance is greater than 0
.
Declaration
Property Value
A bool
value that returns true
if the current instance is greater than 0
; otherwise, returns false
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a zero value.
Declaration
Property Value
A bool
value that returns true
if the current instance has a zero value; otherwise, returns false
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This method returns a decimal
value.
Declaration
Property Value
A decimal
value.
Exceptions
OracleNullValueException
- The current instance has a null value.
OverFlowException
- The decimal
cannot represent the supplied OracleDecimal
structure.
Remarks
Precision can be lost when the decimal
value is obtained from an OracleDecimal
. See Remarks under "OracleDecimal Structure" for further information.
The OracleDecimal
instance methods are listed in Table 14-47.
Table 14-47 OracleDecimal Instance Methods
Method | Description |
---|---|
Compares the current instance to the supplied object and returns an integer that represents their relative values | |
Determines whether or not an object is an instance of | |
Returns a hash code for the current instance | |
GetType | Inherited from |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Returns the | |
Overloads Returns the |
This method compares the current instance to the supplied object and returns an integer that represents their relative values.
Declaration
Parameters
obj
The supplied instance.
Return Value
The method returns a number:
obj
.
obj
. obj
. Implements
IComparable
Exceptions
ArgumentException
- The parameter is not of type OracleDecimal
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
s. For example, comparing an OracleDecimal
instance with an OracleBinary
instance is not allowed. When an OracleDecimal
is compared with a different type, an ArgumentException
is thrown. OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. Overrides Object
This method determines whether or not an object is an instance of OracleDecimal
, and whether or not the value of the object is equal to the current instance.
Declaration
Parameters
obj
An OracleDecimal
instance.
Return Value
Returns true
if obj
is an instance of OracleDecimal
, and the value of obj
is equal to the current instance; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleDecimal
that has a value compares greater than an OracleDecimal
that has a null value. OracleDecimal
s that contain a null value are equal. Overrides Object
This method returns a hash code for the current instance.
Declaration
Return Value
Returns a hash code.
This method returns the byte
representation of the current instance.
Declaration
Return Value
A byte
.
Exceptions
OverFlowException
- The byte
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
This method returns the double
representation of the current instance.
Declaration
Return Value
A double
.
Exceptions
OverFlowException
- The double
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
This method returns the Int16
representation of the current instance.
Declaration
Return Value
A short
.
Exceptions
OverFlowException
- The short
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
This method returns the Int32
representation of the current instance.
Declaration
Return Value
An int
.
Exceptions
OverFlowException
- The int
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
This method returns the Int64
representation of the current instance.
Declaration
Return Value
A long
.
Exceptions
OverFlowException
- The long
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
This method returns the Single
representation of the current instance.
Declaration
Return Value
A float
.
Exceptions
OverFlowException
- The float
cannot represent the current instance.
OracleNullValueException
- The current instance has a null value.
Overrides Object
This method returns the string
representation of the current instance.
Declaration
Return Value
Returns the number in a string.
Remarks
If the current instance has a null value, the returned string is "null".
The returned value is a string representation of an OracleDecimal
in the numeric format specified by the Format
property.
The decimal and group separator characters are specified by the thread's OracleGlobalization
.NumericCharacters
.
The currency symbols are specified by the following thread properties:
OracleGlobalization.Currency
OracleGlobalization
.ISOCurrency
OracleGlobalization
.DualCurrency
If the numeric format is not specified, an Oracle default value is used.
The OracleIntervalDS
structure represents the Oracle INTERVAL
DAY
TO
SECOND
data type to be stored in or retrieved from a database. Each OracleIntervalDS
stores a period of time in term of days, hours, minutes, seconds, and fractional seconds.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleIntervalDS
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleIntervalDS
members are listed in the following tables:
OracleIntervalDS Constructors
OracleIntervalDS
constructors are listed in Table 14-48
Table 14-48 OracleIntervalDS Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleIntervalDS Static Fields
The OracleIntervalDS
static fields are listed in Table 14-49.
Table 14-49 OracleIntervalDS Static Fields
Field | Description |
---|---|
Represents the maximum valid time interval for an | |
Represents the minimum valid time interval for an | |
Represents a null value that can be assigned to an | |
Represents a zero value for an |
OracleIntervalDS Static Methods
The OracleIntervalDS
static methods are listed in Table 14-50.
Table 14-50 OracleIntervalDS Static Methods
Methods | Description |
---|---|
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not two | |
Returns an | |
Returns a new instance of an |
OracleIntervalDS Static Operators
The OracleIntervalDS
static operators are listed in Table 14-51.
Table 14-51 OracleIntervalDS Static Operators
Operator | Description |
---|---|
Adds two | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Subtracts one | |
Negates an | |
Multiplies an | |
Divides an |
OracleIntervalDS Type Conversions
The OracleIntervalDS
type conversions are listed in Table 14-52.
Table 14-52 OracleIntervalDS Type Conversions
Operator | Description |
---|---|
Converts an | |
Converts a string to an | |
Converts a |
OracleIntervalDS Properties
The OracleIntervalDS
properties are listed in Table 14-53.
Table 14-53 OracleIntervalDS Properties
Properties | Description |
---|---|
Returns an array of bytes that represents the Oracle | |
Gets the days component of an | |
Gets the hours component of an | |
Indicates whether or not the current instance has a null value | |
Gets the milliseconds component of an | |
Gets the minutes component of an | |
Gets the nanoseconds component of an | |
Gets the seconds component of an | |
Returns the total number, in days, that represent the time period in the | |
Specifies the time interval that is stored in the |
OracleIntervalDS Methods
The OracleIntervalDS
methods are listed in Table 14-54.
Table 14-54 OracleIntervalDS Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not the specified | |
Returns a hash code for the | |
GetType | Inherited from |
Converts the current |
OracleIntervalDS
constructors create a new instance of the OracleIntervalDS
structure.
Overload List:
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using a TimeSpan
structure.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using a string that indicates a period of time.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the total number of days.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the supplied days, hours, minutes, seconds and milliseconds.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the supplied days, hours, minutes, seconds, and nanoseconds.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value to the provided byte array, which is in an internal Oracle INTERVAL
DAY
TO
SECOND
format.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using a TimeSpan
structure.
Declaration
Parameters
ts
A TimeSpan
structure.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using a string that indicates a period of time.
Declaration
Parameters
intervalStr
A string representing the Oracle INTERVAL
DAY
TO
SECOND
.
Exceptions
ArgumentException
- The intervalStr
parameter is not in the valid format or has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Remarks
The value specified in the supplied intervalStr
must be in Day HH:MI:SSxFF format.
Example
"1 2:3:4.99" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1 day, 2 hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the total number of days.
Declaration
Parameters
totalDays
The supplied total number of days for a time interval. Range of days is -1000,000,000 < totalDays
< 1000,000,000.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleIntervalDS
.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the supplied days, hours, minutes, seconds, and milliseconds.
Declaration
Parameters
days
The days provided. Range of day is (-999,999,999 to 999,999,999).
hours
The hours provided. Range of hour is (-23 to 23).
minutes
The minutes provided. Range of minute is (-59 to 59).
seconds
The seconds provided. Range of second is (-59 to 59).
milliSeconds
The milliseconds provided. Range of millisecond is (- 999.999999 to 999.999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleIntervalDS
.
Remarks
The sign of all the arguments must be the same.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value using the supplied days, hours, minutes, seconds, and nanoseconds.
Declaration
Parameters
days
The days provided. Range of day is (-999,999,999 to 999,999,999).
hours
The hours provided. Range of hour is (-23 to 23).
minutes
The minutes provided. Range of minute is (-59 to 59).
seconds
The seconds provided. Range of second is (-59 to 59).
nanoseconds
The nanoseconds provided. Range of nanosecond is (-999,999,999 to 999,999,999)
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleIntervalDS
.
Remarks
The sign of all the arguments must be the same.
This constructor creates a new instance of the OracleIntervalDS
structure and sets its value to the provided byte array, which is in an internal Oracle INTERVAL
DAY
TO
SECOND
format.
Declaration
Parameters
bytes
A byte array that is in an internal Oracle INTERVAL
DAY
TO
SECOND
format.
Exceptions
ArgumentException
- bytes
is not in internal Oracle INTERVAL
DAY
TO
SECOND
format, or bytes
is not a valid Oracle INTERVAL
DAY
TO
SECOND
.
ArgumentNullException
- bytes
is null.
The OracleIntervalDS
static fields are listed in Table 14-55.
Table 14-55 OracleIntervalDS Static Fields
Field | Description |
---|---|
Represents the maximum valid time interval for an | |
Represents the minimum valid time interval for an | |
Represents a null value that can be assigned to an | |
Represents a zero value for an |
This static field represents the maximum value for an OracleIntervalDS
structure.
Declaration
Remarks
Maximum values:
This static field represents the minimum value for an OracleIntervalDS
structure.
Declaration
Remarks
Minimum values:
This static field represents a null value that can be assigned to an OracleIntervalDS
instance.
Declaration
This static field represents a zero value for an OracleIntervalDS
structure.
Declaration
The OracleIntervalDS
static methods are listed in Table 14-56.
Table 14-56 OracleIntervalDS Static Methods
Methods | Description |
---|---|
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not two | |
Returns an | |
Returns a new instance of an |
This static method determines whether or not two OracleIntervalDS
values are equal.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
If the two OracleIntervalDS
structures represent the same time interval, returns true
; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalDS
values is greater than the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalDS
values is greater than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalDS
values is less than the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalDS
values is less than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method determines whether or not two OracleIntervalDS
values are not equal.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if two OracleIntervalDS
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static method returns an OracleIntervalDS
instance and sets its value for time interval using a string.
Declaration
Parameters
intervalStr
A string representing the Oracle INTERVAL
DAY
TO
SECOND
.
Return Value
Returns an OracleIntervalDS
instance representing the time interval from the supplied string.
Exceptions
ArgumentException
- The intervalStr
parameter is not in the valid format or intervalStr
has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Remarks
The value specified in intervalStr
must be in Day HH:MI:SSxFF format.
Example
"1
2:3:4.99
" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1 day, 2 hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.
This static method returns a new instance of an OracleIntervalDS
with the specified day precision and fractional second precision.
Declaration
Parameters
value1
An OracleIntervalDS
structure.
dayPrecision
The day precision provided. Range of day precision is (0 to 9).
fracSecPrecision
The fractional second precision provided. Range of fractional second precision is (0 to 9).
Return Value
An OracleIntervalDS
instance.
Exceptions
ArgumentOutOfRangeException
- An argument value is out of the specified range.
Remarks
Depending on the value specified in the supplied dayPrecision
, 0 or more leading zeros are displayed in the string returned by ToString()
.
The value specified in the supplied fracSecPrecision
is used to perform a rounding off operation on the supplied OracleIntervalDS
value. Depending on this value, 0
or more trailing zeros are displayed in the string returned by ToString()
.
Example
The OracleIntervalDS
with a value of "1
2:3:4.99
" results in the string "001
2:3:4.99000
" when SetPrecision()
is called, with the day precision set to 3
and fractional second precision set to 5
.
The OracleIntervalDS
static operators are listed in Table 14-57.
Table 14-57 OracleIntervalDS Static Operators
Operator | Description |
---|---|
Adds two | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Subtracts one | |
Negates an | |
Multiplies an | |
Divides an |
This static operator adds two OracleIntervalDS
values.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
An OracleIntervalDS.
Remarks
If either argument has a null value, the returned OracleIntervalDS
structure has a null value.
This static operator determines if two OracleIntervalDS
values are equal.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the two OracleIntervalDS
values are the same; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalDS
values is greater than the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if one OracleIntervalDS
value is greater than another; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalDS
values is greater than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator determines if the two OracleIntervalDS
values are not equal.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the two OracleIntervalDS
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalDS
values is less than the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalDS
values is less than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
Returns true
if the first of two OracleIntervalDS
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This static operator subtracts one OracleIntervalDS
structure from another.
Declaration
Parameters
val1
The first OracleIntervalDS
.
val2
The second OracleIntervalDS
.
Return Value
An OracleIntervalDS
structure.
Remarks
If either argument has a null value, the returned OracleIntervalDS
structure has a null value.
This static operator negates the supplied OracleIntervalDS
structure.
Declaration
Parameters
val
An OracleIntervalDS
.
Return Value
An OracleIntervalDS
structure.
Remarks
If the supplied OracleIntervalDS
structure has a null value, the returned OracleIntervalDS
structure has a null value.
This static operator multiplies an OracleIntervalDS
value by a number.
Declaration
Parameters
val1
The first OracleIntervalDS
.
multiplier
A multiplier.
Return Value
A new OracleIntervalDS
instance.
Remarks
If the OracleIntervalDS
structure has a null value, the returned OracleIntervalDS
structure has a null value.
This static operator divides an OracleIntervalDS
value by a number.
Declaration
Parameters
val1
The first OracleIntervalDS
.
divisor
A divisor.
Return Value
An OracleIntervalDS
structure.
Remarks
If the OracleIntervalDS
structure has a null value, the returned OracleIntervalDS
structure has a null value.
The OracleIntervalDS
type conversions are listed in Table 14-58.
Table 14-58 OracleIntervalDS Type Conversions
Operator | Description |
---|---|
Converts an | |
Converts a string to an | |
Converts a |
This type conversion operator converts an OracleIntervalDS
structure to a TimeSpan
structure.
Declaration
Parameters
val
An OracleIntervalDS
instance.
Return Value
A TimeSpan
structure.
Exceptions
OracleNullValueException
- The OracleIntervalDS
structure has a null value.
Remarks
This type conversion operator converts a string to an OracleIntervalDS
structure.
Declaration
Parameters
intervalStr
A string representation of an Oracle INTERVAL
DAY
TO
SECOND
.
Return Value
An OracleIntervalDS
structure.
Exceptions
ArgumentException
- The supplied intervalStr
parameter is not in the correct format or has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Remarks
The returned OracleIntervalDS
structure contains the same time interval represented by the supplied intervalStr
. The value specified in the supplied intervalStr
must be in Day HH:MI:SSxFF format.
Example
"1 2:3:4.99"
means 1 day, 2 hours, 3 minutes 4 seconds and 990 milliseconds or 1 day, 2 hours, 3 minutes 4 seconds and 990000000 nanoseconds.
This type conversion operator converts a TimeSpan
structure to an OracleIntervalDS
structure.
Declaration
Parameters
val
A TimeSpan
instance.
Return Value
An OracleIntervalDS
structure.
Remarks
The returned OracleIntervalDS
structure contains the same days, hours, seconds, and milliseconds as the supplied TimeSpan
val
.
The OracleIntervalDS
properties are listed in Table 14-59.
Table 14-59 OracleIntervalDS Properties
Properties | Description |
---|---|
Returns an array of bytes that represents the Oracle | |
Gets the days component of an | |
Gets the hours component of an | |
Indicates whether or not the current instance has a null value | |
Gets the milliseconds component of an | |
Gets the minutes component of an | |
Gets the nanoseconds component of an | |
Gets the seconds component of an | |
Returns the total number, in days, that represent the time period in the | |
Specifies the time interval that is stored in the |
This property returns an array of bytes that represents the Oracle INTERVAL
DAY
TO
SECOND
in Oracle internal format.
Declaration
Property Value
A byte array that represents an Oracle INTERVAL
DAY
TO
SECOND
in Oracle internal format.
Exceptions
OracleNullValueException
- The current instance has a null value.
Remarks
This property gets the days component of an OracleIntervalDS
.
Declaration
Property Value
An int
representing the days component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the hours component of an OracleIntervalDS.
Declaration
Property Value
An int
representing the hours component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false
.
This property gets the milliseconds component of an OracleIntervalDS.
Declaration
Property Value
A double
that represents milliseconds component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the minutes component of an OracleIntervalDS.
Declaration
Property Value
A int
that represents minutes component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the nanoseconds component of an OracleIntervalDS
.
Declaration
Property Value
An int
that represents nanoseconds component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the seconds component of an OracleIntervalDS.
Declaration
Property Value
An int
that represents seconds component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property returns the total number, in days, that represent the time period in the OracleIntervalDS
structure.
Declaration
Property Value
A double
that represents the total number of days.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the time interval that is stored in the OracleIntervalDS
structure.
Declaration
Property Value
A time interval.
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleIntervalDS
methods are listed in Table 14-60.
Table 14-60 OracleIntervalDS Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not the specified | |
Returns a hash code for the | |
GetType | Inherited from |
Converts the current |
This method compares the current OracleIntervalDS
instance to an object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The object being compared to.
Return Value
The method returns:
OracleIntervalDS
represents a shorter time interval than obj
. OracleIntervalDS
and obj
represent the same time interval. OracleIntervalDS
represents a longer time interval than obj
. Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not of type OracleIntervalDS
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
s. For example, comparing an OracleIntervalDS
instance with an OracleBinary
instance is not allowed. When an OracleIntervalDS
is compared with a different type, an ArgumentException
is thrown. OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. This method determines whether or not the specified object
has the same time interval as the current instance.
Declaration
Parameters
obj
The specified object.
Return Value
Returns true
if obj
is of type OracleIntervalDS
and has the same time interval as the current instance; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalDS
that has a value compares greater than an OracleIntervalDS
that has a null value. OracleIntervalDS
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleIntervalDS
instance.
Declaration
Overrides Object
This method converts the current OracleIntervalDS
structure to a string.
Declaration
Return Value
Returns a string
.
Remarks
If the current instance has a null value, the returned string contains "null".
The OracleIntervalYM
structure represents the Oracle INTERVAL
YEAR
TO
MONTH
data type to be stored in or retrieved from a database. Each OracleIntervalYM
stores a period of time in years and months.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleIntervalYM
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleIntervalYM
members are listed in the following tables:
OracleIntervalYM Constructors
OracleIntervalYM
constructors are listed in Table 14-61
Table 14-61 OracleIntervalYM Constructors
Constructor | Description |
---|---|
| Instantiates a new instance of |
OracleIntervalYM Static Fields
The OracleIntervalYM
static fields are listed in Table 14-62.
Table 14-62 OracleIntervalYM Static Fields
Field | Description |
---|---|
Represents the maximum value for an | |
Represents the minimum value for an | |
Represents a null value that can be assigned to an | |
Represents a zero value for an |
OracleIntervalYM Static Methods
The OracleIntervalYM
static methods are listed in Table 14-63.
Table 14-63 OracleIntervalYM Static Methods
Methods | Description |
---|---|
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether two | |
Returns an | |
Returns a new instance of an |
OracleIntervalYM Static Operators
The OracleIntervalYM
static operators are listed in Table 14-64.
Table 14-64 OracleIntervalYM Static Operators
Operator | Description |
---|---|
Adds two | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether two | |
Determines whether or not one | |
Determines whether or not one | |
Subtracts one | |
Negates an | |
Multiplies an | |
Divides an |
OracleIntervalYM Type Conversions
The OracleIntervalYM
conversions are listed in Table 14-65.
Table 14-65 OracleIntervalYM Type Conversions
Operator | Description |
---|---|
Converts an | |
Converts a string to an | |
Converts the number of months to an |
OracleIntervalYM Properties
The OracleIntervalYM
properties are listed in Table 14-66.
Table 14-66 OracleIntervalYM Properties
Properties | Description |
---|---|
Returns an array of bytes that represents the Oracle | |
Indicates whether or not the current instance has a null value | |
Gets the months component of an | |
Returns the total number, in years, that represents the period of time in the current | |
Specifies the total number of months that is stored in the | |
Gets the years component of an |
OracleIntervalYM Methods
The OracleIntervalYM
methods are listed in Table 14-67.
Table 14-67 OracleIntervalYM Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not the specified | |
Returns a hash code for the | |
GetType | Inherited from |
Converts the current |
The OracleIntervalYM
constructors creates a new instance of the OracleIntervalYM
structure.
Overload List:
This method creates a new instance of the OracleIntervalYM
structure using the supplied total number of months for a period of time.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using the supplied string.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using the total number of years.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using years and months.
This method creates a new instance of the OracleIntervalYM
structure and sets its value to the provided byte array, which is in an internal Oracle INTERVAL
DAY
TO
SECOND
format.
This method creates a new instance of the OracleIntervalYM
structure using the supplied total number of months for a period of time.
Declaration
Parameters
totalMonths
The number of total months for a time interval. Range is -12,000,000,000 < totalMonths
< 12,000,000,000.
Exceptions
ArgumentOutOfRangeException
- The totalMonths
parameter is out of the specified range.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using the supplied string.
Declaration
Parameters
intervalStr
A string representing the Oracle INTERVAL
YEAR
TO
MONTH
.
Remarks
The value specified in the supplied intervalStr
must be in Year-Month format.
Exceptions
ArgumentException
- The intervalStr
parameter is not in the valid format or intervalStr
has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Example
"1-2" means 1 year and 2 months.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using the total number of years.
Declaration
Parameters
totalYears
Number of total years. Range is -1,000,000,000 < totalYears
> 1,000,000,000.
Exceptions
ArgumentOutOfRangeException
- The totalYears
parameter is out of the specified range.
ArgumentException
- The totalYears
parameter cannot be used to construct a valid OracleIntervalYM
.
This method creates a new instance of the OracleIntervalYM
structure and sets its value using years and months.
Declaration
Parameters
years
Number of years. Range of year is (-999,999,999 to 999,999,999).
months
Number of months. Range of month is (-11 to 11).
Remarks
The sign of all the arguments must be the same.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleIntervalYM
.
This method creates a new instance of the OracleIntervalYM
structure and sets its value to the provided byte array, which is in an internal Oracle INTERVAL
DAY
TO
SECOND
format.
Declaration
Parameters
bytes
A byte array that is in an internal Oracle INTERVAL
YEAR
TO
MONTH
format.
Exceptions
ArgumentException
- The supplied byte array is not in an internal Oracle INTERVAL
YEAR
TO
MONTH
format or the supplied byte array has an invalid value.
ArgumentNullException
- bytes
is null.
Remarks
The supplied byte array must be in an internal Oracle INTERVAL
YEAR
TO
MONTH
format.
The OracleIntervalYM
static fields are listed in Table 14-68.
Table 14-68 OracleIntervalYM Static Fields
Field | Description |
---|---|
Represents the maximum value for an | |
Represents the minimum value for an | |
Represents a null value that can be assigned to an | |
Represents a zero value for an |
This static field represents the maximum value for an OracleIntervalYM
structure.
Declaration
Remarks
Year is 999999999 and Month is 11.
This static field represents the minimum value for an OracleIntervalYM
structure.
Declaration
Remarks
Year is -999999999 and Month is -11.
This static field represents a null value that can be assigned to an OracleIntervalYM
instance.
Declaration
This static field represents a zero value for an OracleIntervalYM
structure.
Declaration
The OracleIntervalYM
static methods are listed in Table 14-69.
Table 14-69 OracleIntervalYM Static Methods
Methods | Description |
---|---|
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether two | |
Returns an | |
Returns a new instance of an |
This static method determines whether or not two OracleIntervalYM
values are equal.
Declaration
Parameters
val1
An OracleIntervalYM
structure.
val2
An OracleIntervalYM
structure.
Return Value
Returns true
if two OracleIntervalYM
values represent the same time interval, otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalYM
values is greater than the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalYM
values is greater than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is greater than or equal to the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalYM
values is less than the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method determines whether or not the first of two OracleIntervalYM
values is less than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is less than or equal to the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method determines whether two OracleIntervalYM
values are not equal.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if two OracleIntervalYM
values are not equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static method returns an OracleIntervalYM
structure and sets its value for time interval using a string.
Declaration
Parameters
intervalStr
A string representing the Oracle INTERVAL
YEAR
TO
MONTH
.
Return Value
Returns an OracleIntervalYM
structure.
Exceptions
ArgumentException
- The intervalStr
parameter is not in the valid format or intervalStr
has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Remarks
The value specified in the supplied intervalStr
must be in the Year-Month format.
Example
"1-2" means 1 year and 2 months.
This static method returns a new instance of an OracleIntervalYM
with the specified year precision.
Declaration
Parameters
value1
An OracleIntervalYM
structure.
yearPrecision
The year precision provided. Range of year precision is (0 to 9).
Return Value
An OracleIntervalDS
instance.
Exceptions
ArgumentOutOfRangeException
- yearPrecision
is out of the specified range.
Remarks
Depending on the value specified in the supplied yearPrecision
, 0
or more leading zeros are displayed in the string returned by ToString()
.
Example
An OracleIntervalYM
with a value of "1-2
" results in the string "001-2
" when SetPrecision()
is called with the year precision set to 3
.
The OracleIntervalYM
static operators are listed in Table 14-70.
Table 14-70 OracleIntervalYM Static Operators
Operator | Description |
---|---|
Adds two | |
Determines whether or not two | |
Determines whether or not one | |
Determines whether or not one | |
Determines whether two | |
Determines whether or not one | |
Determines whether or not one | |
Subtracts one | |
Negates an | |
Multiplies an | |
Divides an |
This static operator adds two OracleIntervalYM
values.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
OracleIntervalYM
Remarks
If either argument has a null value, the returned OracleIntervalYM
structure has a null value.
This static operator determines if two OracleIntervalYM
values are equal.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if they are equal; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalYM
values is greater than the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if one OracleIntervalYM
value is greater than another; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalYM
values is greater than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if one OracleIntervalYM
value is greater than or equal to another; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator determines whether two OracleIntervalYM
values are not equal.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if two OracleIntervalYM
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalYM
values is less than the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator determines if the first of two OracleIntervalYM
values is less than or equal to the second.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
Returns true
if the first of two OracleIntervalYM
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. This static operator subtracts one OracleIntervalYM
structure from another.
Declaration
Parameters
val1
The first OracleIntervalYM
.
val2
The second OracleIntervalYM
.
Return Value
An OracleIntervalYM
structure.
Remarks
If either argument has a null value, the returned OracleIntervalYM
structure has a null value.
This static operator negates an OracleIntervalYM
structure.
Declaration
Parameters
val
An OracleIntervalYM
.
Return Value
An OracleIntervalYM
structure.
Remarks
If the supplied OracleIntervalYM
structure has a null value, the returned OracleIntervalYM
structure has a null value.
This static operator multiplies an OracleIntervalYM
value by a number.
Declaration
Parameters
val1
The first OracleIntervalYM
.
multiplier
A multiplier.
Return Value
An OracleIntervalYM
structure.
Remarks
If the supplied OracleIntervalYM
structure has a null value, the returned OracleIntervalYM
structure has a null value.
This static operator divides an OracleIntervalYM
value by a number.
Declaration
Parameters
val1
The first OracleIntervalYM
.
divisor
A divisor.
Return Value
An OracleIntervalYM
structure.
Remarks
If the supplied OracleIntervalYM
structure has a null value, the returned OracleIntervalYM
structure has a null value.
The OracleIntervalYM
conversions are listed in Table 14-71.
Table 14-71 OracleIntervalYM Type Conversions
Operator | Description |
---|---|
Converts an | |
Converts a string to an | |
Converts the number of months to an |
This type conversion operator converts an OracleIntervalYM
to a number that represents the number of months in the time interval.
Declaration
Parameters
val
An OracleIntervalYM
structure.
Return Value
A long
number in months.
Exceptions
OracleNullValueException
- The OracleIntervalYM
structure has a null value.
This type conversion operator converts the string intervalStr
to an OracleIntervalYM
structure.
Declaration
Parameters
intervalStr
A string representation of an Oracle INTERVAL
YEAR
TO
MONTH
.
Return Value
An OracleIntervalYM
structure.
Exceptions
ArgumentException
- The supplied intervalStr
parameter is not in the correct format or has an invalid value.
ArgumentNullException
- The intervalStr
parameter is null.
Remarks
The returned OracleIntervalDS
structure contains the same time interval represented by the supplied intervalStr
. The value specified in the supplied intervalStr
must be in Year-Month format.
This type conversion operator converts the total number of months as time interval to an OracleIntervalYM
structure.
Declaration
Parameters
months
The number of months to be converted. Range is (-999,999,999 * 12)-11 <= months
<= (999,999,999 * 12)+11.
Return Value
An OracleIntervalYM
structure.
Exceptions
ArgumentOutOfRangeException
- The months
parameter is out of the specified range.
The OracleIntervalYM
properties are listed in Table 14-72.
Table 14-72 OracleIntervalYM Properties
Properties | Description |
---|---|
Returns an array of bytes that represents the Oracle | |
Indicates whether or not the current instance has a null value | |
Gets the months component of an | |
Returns the total number, in years, that represents the period of time in the current | |
Specifies the total number of months that is stored in the | |
Gets the years component of an |
This property returns an array of bytes that represents the Oracle INTERVAL
YEAR
TO
MONTH
in Oracle internal format.
Declaration
Property Value
A byte array that represents an Oracle INTERVAL
YEAR
TO
MONTH
in Oracle internal format.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the value has a null value.
Declaration
Property Value
Returns true
if value has a null value; otherwise, returns false
.
This property gets the months component of an OracleIntervalYM.
Declaration
Property Value
An int
representing the months component.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property returns the total number, in years, that represents the period of time in the current OracleIntervalYM
structure.
Declaration
Property Value
A double
representing the total number of years.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the total number of months that is stored in the OracleIntervalYM
structure.
Declaration
Property Value
The total number of months representing the time interval.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the years component of an OracleIntervalYM
.
Declaration
Property Value
An int
representing the years component.
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleIntervalYM
methods are listed in Table 14-73.
Table 14-73 OracleIntervalYM Methods
Methods | Description |
---|---|
Compares the current | |
Determines whether or not the specified | |
Returns a hash code for the | |
GetType | Inherited from |
Converts the current |
This method compares the current OracleIntervalYM
instance to the supplied object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The supplied object.
Return Value
The method returns a number:
Less than zero: if the current OracleIntervalYM
represents a shorter time interval than obj.
Zero: if the current OracleIntervalYM
and obj
represent the same time interval.
Greater than zero: if the current OracleIntervalYM
represents a longer time interval than obj.
Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not of type OracleIntervalYM
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
s. For example, comparing an OracleIntervalYM
instance with an OracleBinary
instance is not allowed. When an OracleIntervalYM
is compared with a different type, an ArgumentException
is thrown. OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. Overrides Object
This method determines whether or not the specified object has the same time interval as the current instance.
Declaration
bool Equals(object
obj);
Parameters
obj
The supplied object.
Return Value
Returns true
if the specified object instance is of type OracleIntervalYM
and has the same time interval; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleIntervalYM
that has a value compares greater than an OracleIntervalYM
that has a null value. OracleIntervalYM
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleIntervalYM
instance.
Declaration
Return Value
An int
representing a hash code.
Overrides Object
This method converts the current OracleIntervalYM
structure to a string.
Declaration
Return Value
A string that represents the current OracleIntervalYM
structure.
Remarks
If the current instance has a null value, the returned string contain "null".
The OracleString
structure represents a variable-length stream of characters to be stored in or retrieved from a database.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleString
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleString
members are listed in the following tables:
OracleString Constructors
OracleString
constructors are listed in Table 14-74
Table 14-74 OracleString Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleString Static Fields
The OracleString
static fields are listed in Table 14-75.
Table 14-75 OracleString Static Fields
Field | Description |
---|---|
Represents a null value that can be assigned to an instance of the |
OracleString Static Methods
The OracleString
static methods are listed in Table 14-76.
Table 14-76 OracleString Static Methods
Methods | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether two |
OracleString Static Operators
The OracleString
static operators are listed in Table 14-77.
Table 14-77 OracleString Static Operators
Operator | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if two |
OracleString Type Conversions
The OracleString
type conversions are listed in Table 14-78.
Table 14-78 OracleString Type Conversions
Operator | Description |
---|---|
Converts the supplied | |
Converts the supplied |
OracleString Properties
The OracleString
properties are listed in Table 14-79.
Table 14-79 OracleString Properties
Properties | Description |
---|---|
Indicates whether or not case should be ignored when performing string comparison | |
Indicates whether or not the current instance has a null value | |
Obtains the particular character in an | |
Returns the length of the |
OracleString Methods
The OracleString
methods are listed in Table 14-80.
Table 14-80 OracleString Methods
Methods | Description |
---|---|
Returns a copy of the current | |
Compares the current | |
Determines whether or not an object has the same string value as the current | |
Returns a hash code for the | |
Returns an array of bytes, containing the contents of the | |
GetType | Inherited from |
Returns an array of bytes, containing the contents of the | |
Converts the current |
The OracleString
constructors create new instances of the OracleString
structure.
Overload List:
This constructor creates a new instance of the OracleString
structure and sets its value using a string.
This constructor creates a new instance of the OracleString
structure and sets its value using a string and specifies if case is ignored in comparison.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array and specifies if the supplied byte array is Unicode encoded.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array and specifies the following: if the supplied byte array is Unicode encoded and if case is ignored in comparison.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array, and specifies the following: the starting index in the byte array, the number of bytes to copy from the byte array, and if the supplied byte array is Unicode encoded.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array, and specifies the following: the starting index in the byte array, the number of bytes to copy from the byte array, if the supplied byte array is Unicode encoded, and if case is ignored in comparison.
This constructor creates a new instance of the OracleString
structure and sets its value using a string.
Declaration
Parameters
data
A string value.
This constructor creates a new instance of the OracleString
structure and sets its value using a string and specifies if case is ignored in comparison.
Declaration
Parameters
data
A string value.
isCaseIgnored
Specifies if case is ignored in comparison. Specifies true
if case is to be ignored; otherwise, specifies false
.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array and specifies if the supplied byte array is Unicode encoded.
Declaration
Parameters
data
Byte array data for the new OracleString
.
fUnicode
Specifies if the supplied data
is Unicode encoded. Specifies true
if Unicode encoded; otherwise, false
.
Exceptions
ArgumentNullException
- The data
parameter is null.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array and specifies the following: if the supplied byte array is Unicode encoded and if case is ignored in comparison.
Declaration
Parameters
data
Byte array data for the new OracleString
.
fUnicode
Specifies if the supplied data
is Unicode encoded. Specifies true
if Unicode encoded; otherwise, false
.
isCaseIgnored
Specifies if case is ignored in comparison. Specifies true
if case is to be ignored; otherwise, specifies false
.
Exceptions
ArgumentNullException
- The data
parameter is null.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array, and specifies the following: the starting index in the byte array, the number of bytes to copy from the byte array, and if the supplied byte array is Unicode encoded.
Declaration
Parameters
data
Byte array data for the new OracleString
.
index
The starting index to copy from data
.
count
The number of bytes to copy.
fUnicode
Specifies if the supplied data
is Unicode encoded. Specifies true
if Unicode encoded; otherwise, false
.
Exceptions
ArgumentNullException
- The data
parameter is null.
ArgumentOutOfRangeException
- The count
parameter is less than zero.
IndexOutOfRangeException
- The index
parameter is greater than or equal to the length of data
or less than zero.
This constructor creates a new instance of the OracleString
structure and sets its value using a byte array, and specifies the following: the starting index in the byte array, the number of bytes to copy from the byte array, if the supplied byte array is Unicode encoded, and if case is ignored in comparison.
Declaration
Parameters
data
Byte array data for the new OracleString
.
index
The starting index to copy from data
.
count
The number of bytes to copy.
fUnicode
Specifies if the supplied data
is Unicode encoded. Specifies true
if Unicode encoded; otherwise, false
.
isCaseIgnored
Specifies if case is ignored in comparison. Specifies true
if case is to be ignored; otherwise, specifies false
.
Exceptions
ArgumentNullException
- The data
parameter is null.
ArgumentOutOfRangeException
- The count
parameter is less than zero.
IndexOutOfRangeException
- The index
parameter is greater than or equal to the length of data
or less than zero.
The OracleString
static fields are listed in Table 14-81.
Table 14-81 OracleString Static Fields
Field | Description |
---|---|
Represents a null value that can be assigned to an instance of the |
This static field represents a null value that can be assigned to an instance of the OracleString
structure.
Declaration
The OracleString
static methods are listed in Table 14-82.
Table 14-82 OracleString Static Methods
Methods | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether or not the first of two | |
Determines whether two |
This static method concatenates two OracleString
instances and returns a new OracleString
instance that represents the result.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString
.
Return Value
An OracleString.
Remarks
If either argument has a null value, the returned OracleString
structure has a null value.
Overloads Object
This static method determines whether or not the two OracleString
s being compared are equal.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString.
Return Value
Returns true
if the two OracleString
s being compared are equal; returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static method determines whether or not the first of two OracleString
values is greater than the second.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString.
Return Value
Returns true
if the first of two OracleString
s is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static method determines whether or not the first of two OracleString
values is greater than or equal to the second.
Declaration
Parameters
str1
The first OracleString
.
str2
The second OracleString
.
Return Value
Returns true
if the first of two OracleString
s is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static method determines whether or not the first of two OracleString
values is less than the second.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString.
Return Value
Returns true
if the first is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static method determines whether or not the first of two OracleString
values is less than or equal to the second.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString.
Return Value
Returns true
if the first is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static method determines whether two OracleString
values are not equal.
Declaration
Parameters
str1
The first OracleString.
str2
The second OracleString.
Return Value
Returns true
if the two OracleString
instances are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. The OracleString
static operators are listed in Table 14-83.
Table 14-83 OracleString Static Operators
Operator | Description |
---|---|
Concatenates two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if two |
This static operator concatenates two OracleString
values.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
An OracleString.
Remarks
If either argument has a null value, the returned OracleString
structure has a null value.
This static operator determines if two OracleString
values are equal.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if two OracleString
values are equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static operator determines if the first of two OracleString
values is greater than the second.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if the first of two OracleString
values is greater than the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static operator determines if the first of two OracleString
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if the first of two OracleString
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static operator determines if two OracleString
values are not equal.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if two OracleString
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This static operator determines if the first of two OracleString
s is less than the second.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if the first of two OracleString
s is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
has a null value. OracleString
s that contain a null value are equal. This static operator determines if the first of two OracleString
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleString
.
value2
The second OracleString
.
Return Value
Returns true
if the first of two OracleString
values is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. The OracleString
type conversions are listed in Table 14-84.
Table 14-84 OracleString Type Conversions
Operator | Description |
---|---|
Converts the supplied | |
Converts the supplied |
This type conversion operator converts the supplied OracleString
to a string
.
Declaration
Parameters
value1
The supplied OracleString
.
Return Value
string
Exceptions
OracleNullValueException
- The OracleString
structure has a null value.
This type conversion operator converts the supplied string
to an OracleString
.
Declaration
Parameters
value1
The supplied string.
Return Value
An OracleString.
The OracleString
properties are listed in Table 14-85.
Table 14-85 OracleString Properties
Properties | Description |
---|---|
Indicates whether or not case should be ignored when performing string comparison | |
Indicates whether or not the current instance has a null value | |
Obtains the particular character in an | |
Returns the length of the |
This property indicates whether or not case should be ignored when performing string comparison.
Declaration
Property Value
Returns true
if string comparison must ignore case; otherwise false
.
Remarks
Default value is true
.
Example
This property indicates whether or not the current instance contains a null value.
Declaration
Property Value
Returns true
if the current instance contains has a null value; otherwise, returns false
.
This property obtains the particular character in an OracleString
using an index.
Declaration
Property Value
A char
value.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property returns the length of the OracleString
.
Declaration
Property Value
A int
value.
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleString
methods are listed in Table 14-86.
Table 14-86 OracleString Methods
Methods | Description |
---|---|
Returns a copy of the current | |
Compares the current | |
Determines whether or not an object has the same string value as the current | |
Returns a hash code for the | |
Returns an array of bytes, containing the contents of the | |
GetType | Inherited from |
Returns an array of bytes, containing the contents of the | |
Converts the current |
This method creates a copy of an OracleString
instance.
Declaration
Return Value
An OracleString
structure.
Remarks
The cloned object has the same property values as that of the object being cloned.
Example
This method compares the current OracleString
instance to the supplied object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The object being compared to the current instance.
Return Value
The method returns a number that is:
OracleString
value is less than obj
. OracleString
value is equal to obj
. OracleString
value is greater than obj
. Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not of type OracleString
.
Remarks
The following rules apply to the behavior of this method.
OracleString
s. For example, comparing an OracleString
instance with an OracleBinary
instance is not allowed. When an OracleString
is compared with a different type, an ArgumentException
is thrown. OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. This method determines whether or not supplied object is an instance of OracleString
and has the same values as the current OracleString
instance.
Declaration
Parameters
obj
An object being compared.
Return Value
Returns true
if the supplied object is an instance of OracleString
and has the same values as the current OracleString
instance; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleString
that has a value is greater than an OracleString
that has a null value. OracleString
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleString
instance.
Declaration
Return Value
A number that represents the hash code.
This method returns an array of bytes, containing the contents of the OracleString
, in the client character set format.
Declaration
Return Value
A byte array that contains the contents of the OracleString
in the client character set format.
Remarks
If the current instance has a null value, an OracleNullValueException
is thrown.
This method returns an array of bytes, containing the contents of the OracleString
in Unicode format.
Declaration
Return Value
A byte array that contains the contents of the OracleString
in Unicode format.
Remarks
If the current instance has a null value, an OracleNullValueException
is thrown.
Overrides Object
This method converts the current OracleString
instance to a string
.
Declaration
Return Value
A string.
Remarks
If the current OracleString
instance has a null value, the string contains "null"
.
The OracleTimeStamp
structure represents the Oracle TIMESTAMP
data type to be stored in or retrieved from a database. Each OracleTimeStamp
stores the following information: year, month, day, hour, minute, second, and nanosecond.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleTimeStamp
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleTimeStamp
members are listed in the following tables:
OracleTimeStamp Constructors
OracleTimeStamp
constructors are listed in Table 14-87
Table 14-87 OracleTimeStamp Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleTimeStamp Static Fields
The OracleTimeStamp
static fields are listed in Table 14-88.
Table 14-88 OracleTimeStamp Static Fields
Field | Description |
---|---|
Represents the maximum valid date for an | |
Represents the minimum valid date for an | |
Represents a null value that can be assigned to an instance of the |
OracleTimeStamp Static Methods
The OracleTimeStamp
static methods are listed in Table 14-89.
Table 14-89 OracleTimeStamp Static Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Gets an | |
Gets an | |
Returns a new instance of an |
OracleTimeStamp Static Operators
The OracleTimeStamp
static operators are listed in Table 14-90.
Table 14-90 OracleTimeStamp Static Operators
Operator | Description |
---|---|
Adds the supplied instance value to the supplied | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
Subtracts the supplied instance value from the supplied |
OracleTimeStamp Static Type Conversions
The OracleTimeStamp
static type conversions are listed in Table 14-91.
Table 14-91 OracleTimeStamp Static Type Conversions
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an | |
Converts an |
OracleTimeStamp Properties
The OracleTimeStamp
properties are listed in Table 14-92.
Table 14-92 OracleTimeStamp Properties
Properties | Description |
---|---|
Returns an array of bytes that represents an Oracle | |
Specifies the day component of an | |
Indicates whether or not the | |
Specifies the hour component of an | |
Specifies the millisecond component of an | |
Specifies the minute component of an | |
Specifies the month component of an | |
Specifies the nanosecond component of an | |
Specifies the second component of an | |
Specifies the date and time that is stored in the | |
Specifies the year component of an |
OracleTimeStamp Methods
The OracleTimeStamp
methods are listed in Table 14-93.
Table 14-93 OracleTimeStamp Methods
Methods | Description |
---|---|
Adds the supplied number of days to the current instance | |
Adds the supplied number of hours to the current instance | |
Adds the supplied number of milliseconds to the current instance | |
Adds the supplied number of minutes to the current instance | |
Adds the supplied number of months to the current instance | |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
Adds the supplied number of years to the current instance | |
Compares the current | |
Determines whether or not an object has the same date and time as the current | |
Returns a hash code for the | |
Subtracts an | |
Subtracts | |
GetType | Inherited from |
Converts the current | |
Converts the current | |
Converts the current | |
Converts the current |
The OracleTimeStamp
constructors create new instances of the OracleTimeStamp
structure.
Overload List:
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using the supplied DateTime
value.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value using the supplied string.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date using year, month, and day.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, and second.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
format.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using the supplied DateTime
value.
Declaration
Parameters
dt
The supplied DateTime
value.
Exceptions
ArgumentException
- The dt
parameter cannot be used to construct a valid OracleTimeStamp
.
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value using the supplied string.
Declaration
Parameters
tsStr
A string that represents an Oracle TIMESTAMP
.
Exceptions
ArgumentException
- The tsStr
value is an invalid string representation of an Oracle TIMESTAMP
or the supplied tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampFormat
property of the thread, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date using year, month, and day.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStamp
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, and second.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStamp
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
milliSeconds
The milliseconds provided. Range of millisecond
is (0 to 999.999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStamp
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
Declaration
public
OracleTimeStamp (int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
nanosecond
The nanosecond provided. Range of nanosecond
is (0 to 999999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStamp
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStamp
structure and sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
format.
Declaration
public
OracleTimeStamp (byte[] bytes);Parameters
bytes
A byte array that represents an Oracle TIMESTAMP
in Oracle internal format.
Exceptions
ArgumentException
- bytes
is not in an internal Oracle TIMESTAMP
format or bytes
is not a valid Oracle TIMESTAMP
.
ArgumentNullException
- bytes
is null.
The OracleTimeStamp
static fields are listed in Table 14-94.
Table 14-94 OracleTimeStamp Static Fields
Field | Description |
---|---|
Represents the maximum valid date for an | |
Represents the minimum valid date for an | |
Represents a null value that can be assigned to an instance of the |
This static field represents the maximum valid date and time for an OracleTimeStamp
structure, which is December 31, 9999 23:59:59.999999999.
Declaration
This static field represents the minimum valid date and time for an OracleTimeStamp
structure, which is January 1, -4712 0:0:0.
Declaration
This static field represents a null value that can be assigned to an instance of the OracleTimeStamp
structure.
Declaration
The OracleTimeStamp
static methods are listed in Table 14-95.
Table 14-95 OracleTimeStamp Static Methods
Methods | Description |
---|---|
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Gets an | |
Gets an | |
Returns a new instance of an |
This static method determines if two OracleTimeStamp
values are equal.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if two OracleTimeStamp
values are equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method determines if the first of two OracleTimeStamp
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first of two OracleTimeStamp
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method determines if the first of two OracleTimeStamp
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first of two OracleTimeStamp
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method determines if the first of two OracleTimeStamp
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first of two OracleTimeStamp
values is less than the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method determines if the first of two OracleTimeStamp
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first of two OracleTimeStamp
values is less than or equal to the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method determines if two OracleTimeStamp
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if two OracleTimeStamp
values are not equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static method gets an OracleTimeStamp
structure that represents the current date and time.
Declaration
Return Value
An OracleTimeStamp
structure that represents the current date and time.
This static method gets an OracleTimeStamp
structure and sets its value using the supplied string.
Declaration
Parameters
datetime
A string that represents an Oracle TIMESTAMP
.
Return Value
An OracleTimeStamp
structure.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
or the supplied tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampFormat
property of the thread, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
This static method returns a new instance of an OracleTimeStamp
with the specified fractional second precision.
Declaration
Parameters
value1
The provided OracleTimeStamp
object.
fracSecPrecision
The fractional second precision provided. Range of fractional second precision is (0 to 9).
Return Value
An OracleTimeStamp
structure with the specified fractional second precision.
Exceptions
ArgumentOutOfRangeException
- fracSecPrecision
is out of the specified range.
Remarks
The value specified in the supplied fracSecPrecision
is used to perform a rounding off operation on the supplied OracleTimeStamp
value. Depending on this value, 0
or more trailing zeros are displayed in the string returned by ToString()
.
Example
The OracleTimeStamp
with a value of "December
31,
9999
23:59:59.99
" results in the string "December
31,
9999
23:59:59.99000
" when SetPrecision()
is called with the fractional second precision set to 5
.
The OracleTimeStamp
static operators are listed in Table 14-96.
Table 14-96 OracleTimeStamp Static Operators
Operator | Description |
---|---|
| Adds the supplied instance value to the supplied |
| Determines if two |
| Determines if the first of two |
| Determines if the first of two |
Determines if the two | |
Determines if the first of two | |
Determines if the first of two | |
| Subtracts the supplied instance value from the supplied |
operator+
adds the supplied object to the OracleTimeStamp
and returns a new OracleTimeStamp
structure.
Overload List:
This static operator adds the supplied OracleIntervalDS
to the OracleTimeStamp
and returns a new OracleTimeStamp
structure.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStamp
and returns a new OracleTimeStamp
structure.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStamp
and returns a new OracleTimeStamp
structure.
This static operator adds the supplied OracleIntervalDS
to the OracleTimeStamp
and returns a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
An OracleIntervalDS
.
Return Value
An OracleTimeStamp.
Remarks
If either parameter has a null value, the returned OracleTimeStamp
has a null value.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStamp
and returns a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
An OracleIntervalYM.
Return Value
An OracleTimeStamp
.
Remarks
If either parameter has a null value, the returned OracleTimeStamp
has a null value.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStamp
and returns a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
A TimeSpan.
Return Value
An OracleTimeStamp.
Remarks
If the OracleTimeStamp
instance has a null value, the returned OracleTimeStamp
has a null value.
This static operator determines if two OracleTimeStamp
values are equal.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if they are the same; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStamp
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first OracleTimeStamp
value is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStamp
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first OracleTimeStamp
is greater than or equal to the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static operator determines if two OracleTimeStamp
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if two OracleTimeStamp
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStamp
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStamp
.
value2
The second OracleTimeStamp
.
Return Value
Returns true
if the first OracleTimeStamp
is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStamp
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStamp.
value2
The second OracleTimeStamp.
Return Value
Returns true
if the first OracleTimeStamp
is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. operator-
subtracts the supplied value, from the supplied OracleTimeStamp
value, and returns a new OracleTimeStamp
structure.
Overload List:
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStamp
value, and return a new OracleTimeStamp
structure.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStamp
value, and returns a new OracleTimeStamp
structure.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStamp
value, and returns a new OracleTimeStamp
structure.
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStamp
value, and return a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
An OracleIntervalDS
instance.
Return Value
An OracleTimeStamp
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStamp
has a null value.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStamp
value, and returns a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
An OracleIntervalYM
instance.
Return Value
An OracleTimeStamp
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStamp
has a null value.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStamp
value, and returns a new OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
value2
A TimeSpan
instance.
Return Value
An OracleTimeStamp
structure.
Remarks
If the OracleTimeStamp
instance has a null value, the returned OracleTimeStamp
structure has a null value.
The OracleTimeStamp
static type conversions are listed in Table 14-97.
Table 14-97 OracleTimeStamp Static Type Conversions
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an | |
Converts an |
explicit operator OracleTimeStamp
converts the supplied value to an OracleTimeStamp
structure
Overload List:
This static type conversion operator converts an OracleTimeStampLTZ
value to an OracleTimeStamp
structure.
This static type conversion operator converts an OracleTimeStampTZ
value to an OracleTimeStamp
structure.
This static type conversion operator converts the supplied string to an OracleTimeStamp
structure.
This static type conversion operator converts an OracleTimeStampLTZ
value to an OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
instance.
Return Value
The returned OracleTimeStamp
contains the date and time of the OracleTimeStampLTZ
structure.
Remarks
If the OracleTimeStampLTZ
structure has a null value, the returned OracleTimeStamp
structure also has a null value.
This static type conversion operator converts an OracleTimeStampTZ
value to an OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
instance.
Return Value
The returned OracleTimeStamp
contains the date and time information from value1
, but the time zone information from value1
is truncated.
Remarks
If the OracleTimeStampTZ
structure has a null value, the returned OracleTimeStamp
structure also has a null value.
This static type conversion operator converts the supplied string to an OracleTimeStamp
structure.
Declaration
Parameters
tsStr
A string representation of an Oracle TIMESTAMP
.
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
or the tsStr
is not in the timestamp format specified by the thread's OracleGlobalization
.TimeStampFormat
property, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
This static type conversion operator converts a value to an OracleTimeStamp
structure.
Overload List:
This static type conversion operator converts an OracleDate
value to an OracleTimeStamp
structure.
This static type conversion operator converts a DateTime
value to an OracleTimeStamp
structure.
This static type conversion operator converts an OracleDate
value to an OracleTimeStamp
structure.
Declaration
Parameters
value1
An OracleDate
instance.
Return Value
An OracleTimeStamp
structure that contains the date and time of the OracleDate
structure, value1
.
Remarks
If the OracleDate
structure has a null value, the returned OracleTimeStamp
structure also has a null value.
This static type conversion operator converts a DateTime
value to an OracleTimeStamp
structure.
Declaration
Parameters
value
A DateTime
instance.
Return Value
An OracleTimeStamp
structure.
This static type conversion operator converts an OracleTimeStamp
value to a DateTime
structure.
Declaration
Parameters
value1
An OracleTimeStamp
instance.
Return Value
A DateTime
containing the date and time in the current instance.
Exceptions
OracleNullValueException
- The OracleTimeStamp
structure has a null value.
Remarks
The precision of the OracleTimeStamp
can be lost during the conversion.
The OracleTimeStamp
properties are listed in Table 14-98.
Table 14-98 OracleTimeStamp Properties
Properties | Description |
---|---|
Returns an array of bytes that represents an Oracle | |
Specifies the day component of an | |
Indicates whether or not the | |
Specifies the hour component of an | |
Specifies the millisecond component of an | |
Specifies the minute component of an | |
Specifies the month component of an | |
Specifies the nanosecond component of an | |
Specifies the second component of an | |
Specifies the date and time that is stored in the | |
Specifies the year component of an |
This property returns an array of bytes that represents an Oracle TIMESTAMP
in Oracle internal format.
Declaration
Property Value
A byte array that represents an Oracle TIMESTAMP
in an internal format.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the day component of an OracleTimeStamp.
Declaration
Property Value
A number that represents the day. Range of Day
is (1 to 31).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value; otherwise, returns false
.
This property specifies the hour component of an OracleTimeStamp
.
Declaration
Property Value
A number that represents the hour. Range of hour
is (0 to 23).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the millisecond component of an OracleTimeStamp.
Declaration
Property Value
A number that represents a millisecond. Range of Millisecond
is (0 to 999.999999).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the minute component of an OracleTimeStamp.
Declaration
Property Value
A number that represent a minute. Range of Minute
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the month component of an OracleTimeStamp
.
Declaration
Property Value
A number that represents a month. Range of Month
is (1 to 12).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the nanosecond component of an OracleTimeStamp.
Declaration
Property Value
A number that represents a nanosecond. Range of Nanosecond
is (0 to 999999999).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the second component of an OracleTimeStamp.
Declaration
Property Value
A number that represents a second. Range of Second
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the date and time that is stored in the OracleTimeStamp
structure.
Declaration
Property Value
A DateTime
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the year component of an OracleTimeStamp.
Declaration
Property Value
A number that represents a year. The range of Year
is (-4712 to 9999).
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleTimeStamp
methods are listed in Table 14-99.
Table 14-99 OracleTimeStamp Methods
Methods | Description |
---|---|
Adds the supplied number of days to the current instance | |
Adds the supplied number of hours to the current instance | |
Adds the supplied number of milliseconds to the current instance | |
Adds the supplied number of minutes to the current instance | |
Adds the supplied number of months to the current instance | |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
Adds the supplied number of years to the current instance | |
Compares the current | |
Determines whether or not an object has the same date and time as the current | |
Returns a hash code for the | |
Subtracts an | |
Subtracts | |
GetType | Inherited from |
Converts the current | |
Converts the current | |
Converts the current | |
Converts the current |
This method adds the supplied number of days to the current instance.
Declaration
Parameters
days
The supplied number of days. Range is (-1,000,000,000 < days
< 1,000,000,000)
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of hours to the current instance.
Declaration
Parameters
hours
The supplied number of hours. Range is (-24,000,000,000 < hours
< 24,000,000,000).
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of milliseconds to the current instance.
Declaration
Parameters
milliseconds
The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds
< 8.64 * 1016).
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of minutes to the current instance.
Declaration
Parameters
minutes
The supplied number of minutes. Range is (-1,440,000,000,000 < minutes
< 1,440,000,000,000).
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of months to the current instance.
Declaration
Parameters
months
The supplied number of months. Range is (-12,000,000,000 < months
< 12,000,000,000).
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of nanoseconds to the current instance.
Declaration
Parameters
nanoseconds
The supplied number of nanoseconds.
Return Value
An OracleTimeStamp
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of seconds to the current instance.
Declaration
Parameters
seconds
The supplied number of seconds. Range is (-8.64 * 1013< seconds
< 8.64 * 1013).
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of years to the current instance.
Declaration
Parameters
years
The supplied number of years. Range is (-999,999,999 <= years
< = 999,999,999)
Return Value
An OracleTimeStamp
.
Exceptions
ArgumentOutofRangeException
- The argument value is out of the specified range.
OracleNullValueException
- The current instance has a null value.
This method compares the current OracleTimeStamp
instance to an object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStamp
instance.
Return Value
The method returns a number that is:
Less than zero: if the current OracleTimeStamp
instance value is less than that of obj
.
Zero: if the current OracleTimeStamp
instance and obj
values are equal.
Greater than zero: if the current OracleTimeStamp
instance value is greater than that of obj
.
Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not of type OracleTimeStamp
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
s. For example, comparing an OracleTimeStamp
instance with an OracleBinary
instance is not allowed. When an OracleTimeStamp
is compared with a different type, an ArgumentException
is thrown. OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. Overrides Object
This method determines whether or not an object has the same date and time as the current OracleTimeStamp
instance.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStamp
instance.
Return Value
Returns true
if the obj
is of type OracleTimeStamp
and represents the same date and time; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStamp
that has a value is greater than an OracleTimeStamp
that has a null value. OracleTimeStamp
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleTimeStamp
instance.
Declaration
Return Value
A number that represents the hash code.
This method subtracts an OracleTimeStamp
value from the current instance and returns an OracleIntervalDS
that represents the time difference between the supplied OracleTimeStamp
structure and the current instance.
Declaration
Parameters
value1
The OracleTimeStamp
value being subtracted.
Return Value
An OracleIntervalDS
that represents the interval between two OracleTimeStamp
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalDS
has a null value.
This method subtracts an OracleTimeStamp
value from the current instance and returns an OracleIntervalYM
that represents the time difference between the OracleTimeStamp
value and the current instance.
Declaration
Parameters
value1
The OracleTimeStamp
value being subtracted.
Return Value
An OracleIntervalYM
that represents the interval between two OracleTimeStamp
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalYM
has a null value.
This method converts the current OracleTimeStamp
structure to an OracleDate
structure.
Declaration
Return Value
The returned OracleDate
contains the date and time in the current instance.
Remarks
The precision of the OracleTimeStamp
value can be lost during the conversion.
If the value of the OracleTimeStamp
has a null value, the value of the returned OracleDate
structure has a null value.
This method converts the current OracleTimeStamp
structure to an OracleTimeStampLTZ
structure.
Declaration
Return Value
The returned OracleTimeStampLTZ
contains date and time in the current instance.
Remarks
If the value of the current instance has a null value, the value of the returned OracleTimeStampLTZ
structure has a null value.
This method converts the current OracleTimeStamp
structure to an OracleTimeStampTZ
structure.
Declaration
Return Value
The returned OracleTimeStampTZ
contains the date and time from the OracleTimeStamp
and the time zone from the OracleGlobalization.TimeZone
of the thread.
Remarks
If the value of the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.
Overrides Object
This method converts the current OracleTimeStamp
structure to a string.
Declaration
Return Value
A string
that represents the same date and time as the current OracleTimeStamp
structure.
Remarks
The returned value is a string representation of an OracleTimeStamp
in the format specified by the OracleGlobalization
.TimeStampFormat
property of the thread.
The names and abbreviations used for months and days are in the language specified by the OracleGlobalization
's DateLanguage
and Calendar
properties of the thread. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
The OracleTimeStampLTZ
structure represents the Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
data type to be stored in or retrieved from a database. Each OracleTimeStampLTZ
stores the following information: year, month, day, hour, minute, second, and nanosecond.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleTimeStampLTZ
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
See Also: |
OracleTimeStampLTZ
members are listed in the following tables:
OracleTimeStampLTZ Constructors
OracleTimeStampLTZ
constructors are listed in Table 14-100
Table 14-100 OracleTimeStampLTZConstructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleTimeStampLTZ Static Fields
The OracleTimeStampLTZ
static fields are listed in Table 14-101.
Table 14-101 OracleTimeStampLTZ Static Fields
Field | Description |
---|---|
| Represents the maximum valid date for an |
| Represents the minimum valid date for an |
Represents a null value that can be assigned to an instance of the |
OracleTimeStampLTZ Static Methods
The OracleTimeStampLTZ
static methods are listed in Table 14-102.
Table 14-102 OracleTimeStampLTZ Static Methods
Methods | Description |
---|---|
| Determines if two |
| Gets the client's local time zone name |
| Gets the client's local time zone offset relative to UTC |
Gets an | |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if two |
Gets an | |
| Returns a new instance of an |
OracleTimeStampLTZ Static Operators
The OracleTimeStampLTZ
static operators are listed in Table 14-103.
Table 14-103 OracleTimeStampLTZ Static Operators
Operator | Description |
---|---|
Adds the supplied instance value to the supplied | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
| Subtracts the supplied instance value from the supplied |
OracleTimeStampLTZ Static Type Conversions
The OracleTimeStampLTZ
static type conversions are listed in Table 14-104.
Table 14-104 OracleTimeStampLTZ Static Type Conversions
Operator | Description |
---|---|
explicit operator OracleTimeStampLTZ | Converts an instance value to an |
implicit operator OracleTimeStampLTZ | Converts an instance value to an |
| Converts an |
OracleTimeStampLTZ Properties
The OracleTimeStampLTZ
properties are listed in Table 14-105.
Table 14-105 OracleTimeStampLTZ Properties
Properties | Description |
---|---|
| Returns an array of bytes that represents an |
| Specifies the |
| Indicates whether or not the |
| Specifies the hour component of an |
| Specifies the millisecond component of an |
| Specifies the minute component of an |
| Specifies the month component of an |
| Specifies the nanosecond component of an |
| Specifies the second component of an |
| Specifies the date and time that is stored in the |
| Specifies the year component of an |
OracleTimeStampLTZ Methods
The OracleTimeStampLTZ
methods are listed in Table 14-106.
Table 14-106 OracleTimeStampLTZ Methods
Methods | Description |
---|---|
| Adds the supplied number of days to the current instance |
| Adds the supplied number of hours to the current instance |
| Adds the supplied number of milliseconds to the current instance |
| Adds the supplied number of minutes to the current instance |
| Adds the supplied number of months to the current instance |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
| Adds the supplied number of years to the current instance |
| Compares the current |
| Determines whether or not an object has the same date and time as the current |
| Returns a hash code for the |
| Subtracts an |
| Subtracts an |
GetType | Inherited from |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current local time to Coordinated Universal Time (UTC) |
The OracleTimeStampLTZ
constructors create new instances of the OracleTimeStampLTZ
structure.
Overload List:
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using the supplied DateTime
value.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using the supplied string.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date using year, month, and day.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, and second.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
format.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using the supplied DateTime
value.
Declaration
Parameters
dt
The supplied DateTime
value.
Exceptions
ArgumentException
- The dt
parameter cannot be used to construct a valid OracleTimeStampLTZ
.
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using the supplied string.
Declaration
Parameters
tsStr
A string that represents an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
or the supplied tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampFormat
property of the thread, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date using year, month, and day.
Declaration
public
OracleTimeStampLTZ(int year, int month, int day);Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampLTZ
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, and second.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampLTZ
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
milliSeconds
The milliseconds provided. Range of millisecond
is (0 to 999.999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampLTZ
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
Declaration
public
OracleTimeStampLTZ (int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
nanosecond
The nanosecond provided. Range of nanosecond
is (0 to 999999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampLTZ
(that is, the day is out of range for the month).
This constructor creates a new instance of the OracleTimeStampLTZ
structure and sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
format.
Declaration
public
OracleTimeStampLTZ (byte[] bytes);Parameters
bytes
A byte array that represents an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
in Oracle internal format.
Exceptions
ArgumentException
- bytes
is not in an internal Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
format or bytes
is not a valid Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
.
ArgumentNullException
- bytes
is null.
The OracleTimeStampLTZ
static fields are listed in Table 14-107.
Table 14-107 OracleTimeStampLTZ Static Fields
Field | Description |
---|---|
| Represents the maximum valid date for an |
| Represents the minimum valid date for an |
Represents a null value that can be assigned to an instance of the |
This static field represents the maximum valid date for an OracleTimeStampLTZ
structure, which is December 31, 9999 23:59:59.999999999.
Declaration
Remarks
This value is the maximum date and time in the client time zone.
This static field represents the minimum valid date for an OracleTimeStampLTZ
structure, which is January 1, -4712 0:0:0.
Declaration
Remarks
This value is the minimum date and time in the client time zone.
This static field represents a null value that can be assigned to an instance of the OracleTimeStampLTZ
structure.
Declaration
The OracleTimeStampLTZ
static methods are listed in Table 14-108.
Table 14-108 OracleTimeStampLTZ Static Methods
Methods | Description |
---|---|
| Determines if two |
| Gets the client's local time zone name |
| Gets the client's local time zone offset relative to UTC |
Gets an | |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if two |
Gets an | |
| Returns a new instance of an |
This static method determines if two OracleTimeStampLTZ
values are equal.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if two OracleTimeStampLTZ
values are equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method gets the client's local time zone name.
Declaration
Return Value
A string containing the local time zone.
This static method gets the client's local time zone offset relative to Coordinated Universal Time (UTC).
Declaration
Return Value
A TimeSpan
structure containing the local time zone hours and time zone minutes.
This static method gets an OracleTimeStampLTZ
structure that represents the current date and time.
Declaration
Return Value
An OracleTimeStampLTZ
structure that represents the current date and time.
This static method determines if the first of two OracleTimeStampLTZ
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first of two OracleTimeStampLTZ
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampLTZ
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first of two OracleTimeStampLTZ
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampLTZ
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first of two OracleTimeStampLTZ
values is less than the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampLTZ
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first of two OracleTimeStampLTZ
values is less than or equal to the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method determines if two OracleTimeStampLTZ
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if two OracleTimeStampLTZ
values are not equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static method creates an OracleTimeStampLTZ
structure and sets its value using the supplied string.
Declaration
Parameters
tsStr
A string that represents an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
.
Return Value
An OracleTimeStampLTZ
structure.
Exceptions
ArgumentException
- The tsStr
parameter is an invalid string representation of an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
or the tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampFormat
property of the thread, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
This static method returns a new instance of an OracleTimeStampLTZ
with the specified fractional second precision.
Declaration
Parameters
value1
The provided OracleTimeStampLTZ
object.
fracSecPrecision
The fractional second precision provided. Range of fractional second precision is (0 to 9).
Return Value
An OracleTimeStampLTZ
structure with the specified fractional second precision
Exceptions
ArgumentOutOfRangeException
- fracSecPrecision
is out of the specified range.
Remarks
The value specified in the supplied fracSecPrecision
parameter is used to perform a rounding off operation on the supplied OracleTimeStampLTZ
value. Depending on this value, 0
or more trailing zeros are displayed in the string returned by ToString()
.
Example
The OracleTimeStampLTZ
with a value of "December
31,
9999
23:59:59.99
" results in the string "December
31,
9999
23:59:59.99000
" when SetPrecision()
is called with the fractional second precision set to 5
.
The OracleTimeStampLTZ
static operators are listed in Table 14-109.
Table 14-109 OracleTimeStampLTZ Static Operators
Operator | Description |
---|---|
Adds the supplied instance value to the supplied | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Subtracts the supplied instance value from the supplied |
operator+
adds the supplied value to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
Overload List:
This static operator adds the supplied OracleIntervalDS
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
This static operator adds the supplied OracleIntervalDS
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
An OracleIntervalDS.
Return Value
An OracleTimeStampLTZ.
Remarks
If either parameter has a null value, the returned OracleTimeStampLTZ
has a null value.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
An OracleIntervalYM
.
Return Value
An OracleTimeStampLTZ
.
Remarks
If either parameter has a null value, the returned OracleTimeStampLTZ
has a null value.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
A TimeSpan
.
Return Value
An OracleTimeStampLTZ.
Remarks
If the OracleTimeStampLTZ
instance has a null value, the returned OracleTimeStampLTZ
has a null value.
This static operator determines if two OracleTimeStampLTZ
values are equal.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if they are the same; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampLTZ
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first OracleTimeStampLTZ
value is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampLTZ
values is greater than or equal to the second.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first OracleTimeStampLTZ
is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static operator determines if two OracleTimeStampLTZ
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if two OracleTimeStampLTZ
values are not equal; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampLTZ
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first OracleTimeStampLTZ
is less than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampLTZ
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampLTZ
.
value2
The second OracleTimeStampLTZ
.
Return Value
Returns true
if the first OracleTimeStampLTZ
is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. operator-
subtracts the supplied value, from the supplied OracleTimeStampLTZ
value, and returns a new OracleTimeStampLTZ
structure.
Overload List:
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStampLTZ
value, and return a new OracleTimeStampLTZ
structure.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStampLTZ
value, and returns a new OracleTimeStampLTZ
structure.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStampLTZ
value, and returns a new OracleTimeStampLTZ
structure.
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStampLTZ
value, and return a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
An OracleIntervalDS
instance.
Return Value
An OracleTimeStampLTZ
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStampLTZ
has a null value.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStampLTZ
value, and returns a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
An OracleIntervalYM
.
Return Value
An OracleTimeStampLTZ
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStampLTZ
has a null value.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStampLTZ
value, and returns a new OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
value2
A TimeSpan
.
Return Value
An OracleTimeStampLTZ
structure.
Remarks
If the OracleTimeStampLTZ
instance has a null value, the returned OracleTimeStampLTZ
structure has a null value.
The OracleTimeStampLTZ
static type conversions are listed in Table 14-110.
Table 14-110 OracleTimeStampLTZ Static Type Conversions
Operator | Description |
---|---|
explicit operator OracleTimeStampLTZ | Converts an instance value to an |
implicit operator OracleTimeStampLTZ | Converts an instance value to an |
Converts an |
explicit operator OracleTimeStampLTZ
converts the supplied value to an OracleTimeStampLTZ
structure.
Overload List:
This static type conversion operator converts an OracleTimeStamp
value to an OracleTimeStampLTZ
structure.
This static type conversion operator converts an OracleTimeStampTZ
value to an OracleTimeStampLTZ
structure.
This static type conversion operator converts the supplied string to an OracleTimeStampLTZ
structure.
This static type conversion operator converts an OracleTimeStamp
value to an OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
Return Value
The OracleTimeStampLTZ
structure contains the date and time of the OracleTimeStampTZ
structure.
Remarks
If the OracleTimeStamp
structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.
This static type conversion operator converts an OracleTimeStampTZ
value to an OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
instance.
Return Value
The OracleTimeStampLTZ
structure contains the date and time in the OracleTimeStampTZ
structure (which is normalized to the client local time zone).
Remarks
If the OracleTimeStampTZ
structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.
This static type conversion operator converts the supplied string to an OracleTimeStampLTZ
structure.
Declaration
Parameters
tsStr
A string representation of an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
.
Return Value
A OracleTimeStampLTZ
.
Exceptions
ArgumentException
- ThetsStr
parameter is an invalid string representation of an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
or the tsStr
is not in the timestamp format specified by the thread's OracleGlobalization
.TimeStampFormat
property, which represents the Oracle NLS_TIMESTAMP_FORMAT
parameter.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
implicit operator OracleTimeStampLTZ
converts the supplied structure to an OracleTimeStampLTZ
structure.
Overload List:
This static type conversion operator converts an OracleDate
value to an OracleTimeStampLTZ
structure.
This static type conversion operator converts a DateTime
structure to an OracleTimeStampLTZ
structure.
This static type conversion operator converts an OracleDate
value to an OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
An OracleDate
.
Return Value
The returned OracleTimeStampLTZ
structure contains the date and time in the OracleDate
structure.
Remarks
If the OracleDate
structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.
This static type conversion operator converts a DateTime
structure to an OracleTimeStampLTZ
structure.
Declaration
Parameters
value1
A DateTime
structure.
Return Value
An OracleTimeStampLTZ
structure.
This static type conversion operator converts an OracleTimeStampLTZ
value to a DateTime
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
instance.
Return Value
A DateTime
that contains the date and time in the current instance.
Exceptions
OracleNullValueException
- The OracleTimeStampLTZ
structure has a null value.
Remarks
The precision of the OracleTimeStampLTZ
value can be lost during the conversion.
The OracleTimeStampLTZ
properties are listed in Table 14-111.
Table 14-111 OracleTimeStampLTZ Properties
Properties | Description |
---|---|
| Returns an array of bytes that represents an |
| Specifies the |
| Indicates whether or not the |
| Specifies the hour component of an |
| Specifies the millisecond component of an |
| Specifies the minute component of an |
| Specifies the month component of an |
| Specifies the nanosecond component of an |
| Specifies the second component of an |
| Specifies the date and time that is stored in the |
| Specifies the year component of an |
This property returns an array of bytes that represents an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
in Oracle internal format.
Declaration
Property Value
A byte array that represents an Oracle TIMESTAMP
WITH
LOCAL
TIME
ZONE
internal format.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the day component of an OracleTimeStampLTZ.
Declaration
Property Value
A number that represents the day. Range of Day
is (1 to 31).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance contains a null value; otherwise, returns false
.
This property specifies the hour component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents the hour. Range of Hour
is (0 to 23).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the millisecond component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents a millisecond. Range of Millisecond
is (0 to 999.999999)
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the minute component of an OracleTimeStampLTZ.
Declaration
Property Value
A number that represent a minute. Range of Minute
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the month component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents a month. Range of Month
is (1 to 12).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the nanosecond component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents a nanosecond. Range of Nanosecond
is (0 to 999999999).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the second component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents a second. Range of Second
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the date and time that is stored in the OracleTimeStampLTZ
structure.
Declaration
Property Value
A DateTime
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the year component of an OracleTimeStampLTZ
.
Declaration
Property Value
A number that represents a year. The range of Year
is (-4712 to 9999).
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleTimeStampLTZ
methods are listed in Table 14-112.
Table 14-112 OracleTimeStampLTZ Methods
Methods | Description |
---|---|
| Adds the supplied number of days to the current instance |
| Adds the supplied number of hours to the current instance |
| Adds the supplied number of milliseconds to the current instance |
| Adds the supplied number of minutes to the current instance |
| Adds the supplied number of months to the current instance |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
| Adds the supplied number of years to the current instance |
| Compares the current |
| Determines whether or not an object has the same date and time as the current |
| Returns a hash code for the |
| Subtracts an |
| Subtracts an |
GetType | Inherited from |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current local time to Coordinated Universal Time (UTC) |
This method adds the supplied number of days to the current instance.
Declaration
Parameters
days
The supplied number of days. Range is (-1,000,000,000 < days
< 1,000,000,000)
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of hours to the current instance.
Declaration
Parameters
hours
The supplied number of hours. Range is (-24,000,000,000 < hours
< 24,000,000,000).
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of milliseconds to the current instance.
Declaration
Parameters
milliseconds
The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds
< 8.64 * 1016).
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of minutes to the current instance.
Declaration
Parameters
minutes
The supplied number of minutes. Range is (-1,440,000,000,000 < minutes
< 1,440,000,000,000).
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of months to the current instance.
Declaration
Parameters
months
The supplied number of months. Range is (-12,000,000,000 < months
< 12,000,000,000).
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of nanoseconds to the current instance.
Declaration
Parameters
nanoseconds
The supplied number of nanoseconds.
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of seconds to the current instance.
Declaration
Parameters
seconds
The supplied number of seconds. Range is (-8.64 * 1013< seconds
< 8.64 * 1013).
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of years to the current instance
Declaration
Parameters
years
The supplied number of years. Range is (-999,999,999 <= years
< = 999,999,999)
Return Value
An OracleTimeStampLTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method compares the current OracleTimeStampLTZ
instance to an object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStampLTZ
instance.
Return Value
The method returns a number that is:
OracleTimeStampLTZ
instance value is less than that of obj
. OracleTimeStampLTZ
instance and obj
values are equal. OracleTimeStampLTZ
instance value is greater than that of obj
. Implements
IComparable
Exceptions
ArgumentException
- The obj
parameter is not of type OracleTimeStampLTZ
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
s. For example, comparing an OracleTimeStampLTZ
instance with an OracleBinary
instance is not allowed. When an OracleTimeStampLTZ
is compared with a different type, an ArgumentException
is thrown. OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. Overrides Object
This method determines whether or not an object has the same date and time as the current OracleTimeStampLTZ
instance.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStampLTZ
instance.
Return Value
Returns true
if the obj
is of type OracleTimeStampLTZ
and represents the same date and time; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampLTZ
that has a value is greater than an OracleTimeStampLTZ
that has a null value. OracleTimeStampLTZ
s that contain a null value are equal. Overrides Object
This method returns a hash code for the OracleTimeStampLTZ
instance.
Declaration
Return Value
A number that represents the hash code.
This method subtracts an OracleTimeStampLTZ
value from the current instance and returns an OracleIntervalDS
that represents the difference.
Declaration
Parameters
value1
The OracleTimeStampLTZ
value being subtracted.
Return Value
An OracleIntervalDS
that represents the interval between two OracleTimeStampLTZ
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalDS
has a null value.
This method subtracts an OracleTimeStampLTZ
value from the current instance and returns an OracleIntervalYM
that represents the time interval.
Declaration
Parameters
value1
The OracleTimeStampLTZ
value being subtracted.
Return Value
An OracleIntervalYM
that represents the interval between two OracleTimeStampLTZ
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalYM
has a null value.
This method converts the current OracleTimeStampLTZ
structure to an OracleDate
structure.
Declaration
Return Value
The returned OracleDate
structure contains the date and time in the current instance.
Remarks
The precision of the OracleTimeStampLTZ
value can be lost during the conversion.
If the current instance has a null value, the value of the returned OracleDate
structure has a null value.
This method converts the current OracleTimeStampLTZ
structure to an OracleTimeStamp
structure.
Declaration
Return Value
The returned OracleTimeStamp
contains the date and time in the current instance.
Remarks
If the current instance has a null value, the value of the returned OracleTimeStamp
structure has a null value.
This method converts the current OracleTimeStampLTZ
structure to an OracleTimeStampTZ
structure.
Declaration
Return Value
The returned OracleTimeStampTZ
contains the date and time of the current instance, with the time zone set to the OracleGlobalization.TimeZone
from the thread.
Remarks
If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.
Overrides Object
This method converts the current OracleTimeStampLTZ
structure to a string.
Declaration
Return Value
A string
that represents the same date and time as the current OracleTimeStampLTZ
structure.
Remarks
The returned value is a string representation of the OracleTimeStampLTZ
in the format specified by the OracleGlobalization
.TimeStampFormat
property of the thread.
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
This method converts the current local time to Coordinated Universal Time (UTC).
Declaration
Return Value
An OracleTimeStampTZ
structure.
Remarks
If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.
The OracleTimeStampTZ
structure represents the Oracle TIMESTAMP
WITH
TIME
ZONE
data type to be stored in or retrieved from a database. Each OracleTimeStampTZ
stores the following information: year, month, day, hour, minute, second, nanosecond, and time zone.
Class Inheritance
System.Object
System.ValueType
Oracle.DataAccess.Types.OracleTimeStampTZ
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Example
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleTimeStampTZ
members are listed in the following tables:
OracleTimeStampTZ Constructors
OracleTimeStampTZ
constructors are listed in Table 14-113
Table 14-113 OracleTimeStampTZ Constructors
Constructor | Description |
---|---|
OracleTimeStampTZ Constructors | Instantiates a new instance of |
OracleTimeStampTZ Static Fields
The OracleTimeStampTZ
static fields are listed in Table 14-114.
Table 14-114 OracleTimeStampTZ Static Fields
Field | Description |
---|---|
| Represents the maximum valid date for an |
| Represents the minimum valid date for an |
Represents a null value that can be assigned to an instance of the |
OracleTimeStampTZ Static Methods
The OracleTimeStampTZ
static methods are listed in Table 14-115.
Table 14-115 OracleTimeStampTZ Static Methods
Methods | Description |
---|---|
| Determines if two |
Gets an | |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if two |
Gets an | |
| Returns a new instance of an |
OracleTimeStampTZ Static Operators
The OracleTimeStampTZ
static operators are listed in Table 14-116.
Table 14-116 OracleTimeStampTZ Static Operators
Operator | Description |
---|---|
Adds the supplied instance value to the supplied | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Subtracts the supplied instance value from the supplied |
OracleTimeStampTZ Static Type Conversions
The OracleTimeStampTZ
static type conversions are listed in Table 14-117.
Table 14-117 OracleTimeStampTZ Static Type Conversions
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an | |
Converts an |
OracleTimeStampTZ Properties
The OracleTimeStampTZ
properties are listed in Table 14-118.
Table 14-118 OracleTimeStampTZ Properties
Properties | Description |
---|---|
| Returns an array of bytes that represents an Oracle |
| Specifies the day component of an |
| Indicates whether or not the current instance has a null value |
| Specifies the hour component of an |
| Specifies the millisecond component of an |
| Specifies the minute component of an |
| Specifies the month component of an |
| Specifies the nanosecond component of an |
| Specifies the second component of an |
| Returns the time zone of the |
| Returns the date and time that is stored in the |
| Specifies the year component of an |
OracleTimeStampTZ Methods
The OracleTimeStampTZ
methods are listed in Table 14-119.
Table 14-119 OracleTimeStampTZ Methods
Methods | Description |
---|---|
| Adds the supplied number of days to the current instance |
| Adds the supplied number of hours to the current instance |
| Adds the supplied number of milliseconds to the current instance |
| Adds the supplied number of minutes to the current instance |
| Adds the supplied number of months to the current instance |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
| Adds the supplied number of years to the current instance |
| Compares the current |
| Determines whether or not an object has the same date and time as the current |
| Subtracts an |
| Returns a hash code for the |
| Gets the time zone information in hours and minutes of the current |
| Subtracts an |
GetType | Inherited from |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current datetime to Coordinated Universal Time (UTC) |
The OracleTimeStampTZ
constructors create new instances of the OracleTimeStampTZ
structure.
Overload List:
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using the supplied DateTime
value.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using the supplied DateTime
value and the supplied time zone data.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using the supplied string.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, and day.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, and time zone data.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, and second.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and time zone data.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, millisecond, and time zone data.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, nanosecond, and time zone data.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value to the provided byte array, that represents the internal Oracle TIMESTAMP
WITH
TIME
ZONE
format.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using the supplied DateTime
value.
Declaration
Parameters
dt
The supplied DateTime
value.
Remarks
The time zone is set to the OracleGlobalization.TimeZone
of the thread.
Exceptions
ArgumentException
- The dt
parameter cannot be used to construct a valid OracleTimeStampTZ
.
This constructor creates a new instance of the OracleTimeStampTZ
structure with the supplied DateTime
value and the time zone data.
Declaration
Parameters
value1
The supplied DateTime
value.
timeZone
The time zone data provided.
Exceptions
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
.
Remarks
timeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
If time zone is null, the OracleGlobalization.TimeZone
of the thread is used.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleTimeStampTZ . |
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using the supplied string.
Declaration
Parameters
tsStr
A string that represents an Oracle TIMESTAMP
WITH
TIME
ZONE
.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
WITH
TIME
ZONE
or the tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampTZFormat
property of the thread.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
See Also:
|
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, and day.
Declaration
public
OracleTimeStampTZ(int year, int month, int day);Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month).
Remarks
The time zone is set to the OracleGlobalization.TimeZone
of the thread.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, and time zone data.
Declaration
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
timeZone
The time zone data provided.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month or the time zone is invalid).
Remarks
timeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
If time zone is null, the OracleGlobalization.TimeZone
of the thread is used.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleTimeStampTZ . |
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, and second.
Declaration
public OracleTimeStampTZ(int
year, int
month, int
day, int
hour,int
minute,
int
second);
Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month).
Remarks
The time zone is set to the OracleGlobalization.TimeZone
of the thread.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and time zone data.
Declaration
public
OracleTimeStampTZ (int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
timeZone
The time zone data provided.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range of the month or the time zone is invalid).
Remarks
timeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
If time zone is null, the OracleGlobalization.TimeZone
of the thread is used.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleTimeStampTZ . |
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and millisecond.
Declaration
public
OracleTimeStampTZ(int year, int month, int day, int hour,Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
millisecond
The millisecond provided. Range of millisecond
is (0 to 999.999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month).
Remarks
The time zone is set to the OracleGlobalization.TimeZone
of the thread.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, millisecond, and time zone data.
Declaration
public
OracleTimeStampTZ(int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
millisecond
The millisecond provided. Range of millisecond
is (0 to 999.999999).
timeZone
The time zone data provided.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month or the time zone is invalid).
Remarks
timeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
If time zone is null, the OracleGlobalization.TimeZone
of the thread is used.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleTimeStampTZ . |
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, and nanosecond.
Declaration
public
OracleTimeStampTZ(int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
nanosecond
The nanosecond provided. Range of nanosecond
is (0 to 999999999).
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month).
Remarks
The time zone is set to the OracleGlobalization.TimeZone
of the thread.
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value for date and time using year, month, day, hour, minute, second, nanosecond, and time zone data.
Declaration
public
OracleTimeStampTZ(int year, int month, int day, int hour, Parameters
year
The year provided. Range of year
is (-4712 to 9999).
month
The month provided. Range of month
is (1 to 12).
day
The day provided. Range of day
is (1 to 31).
hour
The hour provided. Range of hour
is (0 to 23).
minute
The minute provided. Range of minute
is (0 to 59).
second
The second provided. Range of second
is (0 to 59).
nanosecond
The nanosecond provided. Range of nanosecond
is (0 to 999999999).
timeZone
The time zone data provided.
Exceptions
ArgumentOutOfRangeException
- The argument value for one or more of the parameters is out of the specified range.
ArgumentException
- The argument values of the parameters cannot be used to construct a valid OracleTimeStampTZ
(that is, the day is out of range for the month or the time zone is invalid).
Remarks
timeZone
can be either an hour offset, for example, 7:00, or a valid time zone region name that is provided in V$TIMEZONE_NAMES
, such as US/Pacific. Time zone abbreviations are not supported.
If time zone is null, the OracleGlobalization.TimeZone
of the thread is used.
Note: PST is a time zone region name as well as a time zone abbreviation; therefore it is accepted byOracleTimeStampTZ . |
This constructor creates a new instance of the OracleTimeStampTZ
structure and sets its value to the provided byte array, that represents the internal Oracle TIMESTAMP
WITH
TIME
ZONE
format.
Declaration
public
OracleTimeStampLTZ (byte[] bytes);Parameters
bytes
The provided byte array that represents an Oracle TIMESTAMP
WITH
TIME
ZONE
in Oracle internal format.
Exceptions
ArgumentException
- bytes
is not in internal Oracle TIMESTAMP
WITH
TIME
ZONE
format or bytes
is not a valid Oracle TIMESTAMP
WITH
TIME
ZONE
.
ArgumentNullException
- bytes
is null.
The OracleTimeStampTZ
static fields are listed in Table 14-120.
Table 14-120 OracleTimeStampTZ Static Fields
Field | Description |
---|---|
| Represents the maximum valid date for an |
| Represents the minimum valid date for an |
Represents a null value that can be assigned to an instance of the |
This static field represents the maximum valid datetime time for an OracleTimeStampTZ
structure in UTC, which is December 31, 999923:59:59.999999999.
Declaration
This static field represents the minimum valid datetime for an OracleTimeStampTZ
structure in UTC, which is January 1, -4712 0:0:0.
Declaration
This static field represents a null value that can be assigned to an instance of the OracleTimeStampTZ
structure.
Declaration
The OracleTimeStampTZ
static methods are listed in Table 14-121.
Table 14-121 OracleTimeStampTZ Static Methods
Methods | Description |
---|---|
| Determines if two |
Gets an | |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if the first of two |
| Determines if two |
Gets an | |
| Returns a new instance of an |
This static method determines if two OracleTimeStampTZ
values are equal.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if two OracleTimeStampTZ
values are equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method gets an OracleTimeStampTZ
structure that represents the current date and time.
Declaration
Return Value
An OracleTimeStampTZ
structure that represents the current date and time.
This static method determines if the first of two OracleTimeStampTZ
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first of two OracleTimeStampTZ
values is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first of two OracleTimeStampTZ
values is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampTZ
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first of two OracleTimeStampTZ
values is less than the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method determines if the first of two OracleTimeStampTZ
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first of two OracleTimeStampTZ
values is less than or equal to the second. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method determines if two OracleTimeStampTZ
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if two OracleTimeStampTZ
values are not equal. Returns false
otherwise.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static method returns an OracleTimeStampTZ
structure and sets its value for date and time using the supplied string.
Declaration
Parameters
tsStr
A string that represents an Oracle TIMESTAMP
WITH
TIME
ZONE
.
Return Value
An OracleTimeStampTZ
structure.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
WITH
TIME
ZONE
or the tsStr
is not in the timestamp format specified by the OracleGlobalization
.TimeStampTZFormat
property of the thread, which represents the Oracle NLS_TIMESTAMP_TZ_FORMAT
parameter.
ArgumentNullException
- The tsStr
value is null.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
This static method returns a new instance of an OracleTimeStampTZ
with the specified fractional second precision.
Declaration
Parameters
value1
The provided OracleTimeStampTZ
object.
fracSecPrecision
The fractional second precision provided. Range of fractional second precision is (0 to 9).
Return Value
An OracleTimeStampTZ
structure with the specified fractional second precision
Exceptions
ArgumentOutOfRangeException
- fracSecPrecision
is out of the specified range.
Remarks
The value specified in the supplied fracSecPrecision
is used to perform a rounding off operation on the supplied OracleTimeStampTZ
value. Depending on this value, 0
or more trailing zeros are displayed in the string returned by ToString()
.
Example
The OracleTimeStampTZ
with a value of "December 31,
9999
23:59:59.99
US/Pacific
" results in the string "December
31,
9999 23:59:59.99000
US/Pacific
" when SetPrecision()
is called with the fractional second precision set to 5
.
The OracleTimeStampTZ
static operators are listed in Table 14-122.
Table 14-122 OracleTimeStampTZ Static Operators
Operator | Description |
---|---|
Adds the supplied instance value to the supplied | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Determines if two | |
Determines if the first of two | |
Determines if the first of two | |
Subtracts the supplied instance value from the supplied |
operator+
adds the supplied structure to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
Overload List:
This static operator adds the supplied OracleIntervalDS
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
This static operator adds the supplied OracleIntervalDS
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
An OracleIntervalDS
.
Return Value
An OracleTimeStampTZ
.
Remarks
If either parameter has a null value, the returned OracleTimeStampTZ
has a null value.
This static operator adds the supplied OracleIntervalYM
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
An OracleIntervalYM
.
Return Value
An OracleTimeStampTZ
.
Remarks
If either parameter has a null value, the returned OracleTimeStampTZ
has a null value.
This static operator adds the supplied TimeSpan
to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
A TimeSpan.
Return Value
An OracleTimeStampTZ
.
Remarks
If the OracleTimeStampTZ
instance has a null value, the returned OracleTimeStampTZ
has a null value.
This static operator determines if two OracleTimeStampTZ
values are equal.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ.
Return Value
Returns true
if they are equal; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampTZ
values is greater than the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first OracleTimeStampTZ
value is greater than the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first OracleTimeStampTZ
is greater than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static operator determines if two OracleTimeStampTZ
values are not equal.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if two OracleTimeStampTZ
values are not equal; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampTZ
values is less than the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first OracleTimeStampTZ
is less than the second; otherwise returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This static operator determines if the first of two OracleTimeStampTZ
values is less than or equal to the second.
Declaration
Parameters
value1
The first OracleTimeStampTZ
.
value2
The second OracleTimeStampTZ
.
Return Value
Returns true
if the first OracleTimeStampTZ
is less than or equal to the second; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. operator-
subtracts the supplied value, from the supplied OracleTimeStampTZ
value, and returns a new OracleTimeStampTZ
structure.
Overload List:
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStampTZ
value, and return a new OracleTimeStampTZ
structure.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStampTZ
value, and returns a new OracleTimeStampTZ
structure.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStampTZ
value, and returns a new OracleTimeStampTZ
structure.
This static operator subtracts the supplied OracleIntervalDS
value, from the supplied OracleTimeStampTZ
value, and return a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
An OracleIntervalDS
.
Return Value
An OracleTimeStampTZ
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStampTZ
has a null value.
This static operator subtracts the supplied OracleIntervalYM
value, from the supplied OracleTimeStampTZ
value, and returns a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
An OracleIntervalYM
.
Return Value
An OracleTimeStampTZ
structure.
Remarks
If either parameter has a null value, the returned OracleTimeStampTZ
has a null value.
This static operator subtracts the supplied TimeSpan
value, from the supplied OracleTimeStampTZ
value, and returns a new OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
value2
A TimeSpan
.
Return Value
An OracleTimeStampTZ
structure.
Remarks
If the OracleTimeStampTZ
instance has a null value, the returned OracleTimeStampTZ
structure has a null value.
The OracleTimeStampTZ
static type conversions are listed in Table 14-123.
Table 14-123 OracleTimeStampTZ Static Type Conversions
Operator | Description |
---|---|
Converts an instance value to an | |
Converts an instance value to an | |
Converts an |
explicit operator OracleTimeStampTZ
converts an instance value to an OracleTimeStampTZ
structure.
Overload List:
This static type conversion operator converts an OracleTimeStamp
value to an OracleTimeStampTZ
structure.
This static type conversion operator converts an OracleTimeStampLTZ
value to an OracleTimeStampTZ
structure.
This static type conversion operator converts the supplied string value to an OracleTimeStampTZ
structure.
This static type conversion operator converts an OracleTimeStamp
value to an OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStamp
.
Return Value
The returned OracleTimeStampTZ
contains the date and time from the OracleTimeStamp
and the time zone from the OracleGlobalization.TimeZone
of the thread.
Remarks
The OracleGlobalization.TimeZone
of the thread is used to convert from an OracleTimeStamp
structure to an OracleTimeStampTZ
structure.
If the OracleTimeStamp
structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.
This static type conversion operator converts an OracleTimeStampLTZ
value to an OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleTimeStampLTZ
.
Return Value
The returned OracleTimeStampTZ
contains the date and time from the OracleTimeStampLTZ
and the time zone from the OracleGlobalization.TimeZone
of the thread.
Remarks
If the OracleTimeStampLTZ
structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.
This static type conversion operator converts the supplied string value to an OracleTimeStampTZ
structure.
Declaration
Parameters
tsStr
A string representation of an Oracle TIMESTAMP
WITH
TIME
ZONE
.
Return Value
An OracleTimeStampTZ
value.
Exceptions
ArgumentException
- The tsStr
is an invalid string representation of an Oracle TIMESTAMP
WITH
TIME
ZONE
. or the tsStr
is not in the timestamp format specified by the thread's OracleGlobalization
.TimeStampTZFormat
property, which represents the Oracle NLS_TIMESTAMP_TZ_FORMAT
parameter.
Remarks
The names and abbreviations used for months and days are in the language specified by the DateLanguage
and Calendar
properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
implicit operator OracleTimeStampTZ
converts a DateTime
structure to an OracleTimeStampTZ
structure.
Overload List:
This static type conversion operator converts an OracleDate
value to an OracleTimeStampTZ
structure.
This static type conversion operator converts a DateTime
structure to an OracleTimeStampTZ
structure.
This static type conversion operator converts an OracleDate
value to an OracleTimeStampTZ
structure.
Declaration
Parameters
value1
An OracleDate
.
Return Value
The returned OracleTimeStampTZ
contains the date and time from the OracleDate
and the time zone from the OracleGlobalization.TimeZone
of the thread.
Remarks
The OracleGlobalization.TimeZone
of the thread is used to convert from an OracleDate
to an OracleTimeStampTZ
structure. If the OracleDate
structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.
This static type conversion operator converts a DateTime
structure to an OracleTimeStampTZ
structure.
Declaration
Parameters
value1
A DateTime
structure.
Return Value
The returned OracleTimeStampTZ
contains the date and time from the DateTime
and the time zone from the OracleGlobalization.TimeZone
of the thread.
Remarks
The OracleGlobalization.TimeZone
of the thread is used to convert from a DateTime
to an Oracle TimeStampTZ
structure.
This static type conversion operator converts an OracleTimeStampTZ
value to a DateTime
structure and truncates the time zone information.
Declaration
Parameters
value1
An OracleTimeStampTZ
.
Return Value
A DateTime
containing the date and time in the current instance, but with the time zone information in the current instance truncated.
Exceptions
OracleNullValueException
- The OracleTimeStampTZ
structure has a null value.
Remarks
The precision of the OracleTimeStampTZ
value can be lost during the conversion, and the time zone information in the current instance is truncated
The OracleTimeStampTZ
properties are listed in Table 14-124.
Table 14-124 OracleTimeStampTZ Properties
Properties | Description |
---|---|
| Returns an array of bytes that represents an Oracle |
| Specifies the day component of an |
| Indicates whether or not the current instance has a null value |
| Specifies the hour component of an |
| Specifies the millisecond component of an |
| Specifies the minute component of an |
| Specifies the month component of an |
| Specifies the nanosecond component of an |
| Specifies the second component of an |
| Returns the time zone of the |
| Returns the date and time that is stored in the |
| Specifies the year component of an |
This property returns an array of bytes that represents an Oracle TIMESTAMP
WITH
TIME
ZONE
in Oracle internal format.
Declaration
Property Value
The provided byte array that represents an Oracle TIMESTAMP
WITH
TIME
ZONE
in Oracle internal format.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property specifies the day component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents the day. Range of Day
is (1 to 31).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property indicates whether or not the current instance has a null value.
Declaration
Property Value
Returns true
if the current instance has a null value. Otherwise, returns false
.
This property specifies the hour component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents the hour. Range of Hour
is (0 to 23).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the millisecond component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents a millisecond. Range of Millisecond
is (0 to 999.999999)
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the minute component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represent a minute. Range of Minute
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the month component of an OracleTimeStampTZ
in the current time zone
Declaration
Property Value
A number that represents a month. Range of Month
is (1 to 12).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the nanosecond component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents a nanosecond. Range of Nanosecond
is (0 to 999999999).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property gets the second component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents a second. Range of Second
is (0 to 59).
Exceptions
OracleNullValueException
- The current instance has a null value.
This property returns the time zone of the OracleTimeStampTZ
instance.
Declaration
Property Value
A string that represents the time zone.
Remarks
If no time zone is specified in the constructor, this property is set to the thread's OracleGlobalization
.TimeZone
by default
This property returns the date and time that is stored in the OracleTimeStampTZ
structure in the current time zone.
Declaration
Property Value
A DateTime
in the current time zone.
Exceptions
OracleNullValueException
- The current instance has a null value.
This property sets the year component of an OracleTimeStampTZ
in the current time zone.
Declaration
Property Value
A number that represents a year. The range of Year
is (-4712 to 9999).
Exceptions
OracleNullValueException
- The current instance has a null value.
The OracleTimeStampTZ
methods are listed in Table 14-125.
Table 14-125 OracleTimeStampTZ Methods
Methods | Description |
---|---|
| Adds the supplied number of days to the current instance |
| Adds the supplied number of hours to the current instance |
| Adds the supplied number of milliseconds to the current instance |
| Adds the supplied number of minutes to the current instance |
| Adds the supplied number of months to the current instance |
Adds the supplied number of nanoseconds to the current instance | |
Adds the supplied number of seconds to the current instance | |
| Adds the supplied number of years to the current instance |
| Compares the current |
| Determines whether or not an object has the same date and time as the current |
| Subtracts an |
| Returns a hash code for the |
| Gets the time zone information in hours and minutes of the current |
| Subtracts an |
GetType | Inherited from |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current |
| Converts the current datetime to Coordinated Universal Time (UTC) |
This method adds the supplied number of days to the current instance.
Declaration
Parameters
days
The supplied number of days. Range is (-1,000,000,000 < days
< 1,000,000,000)
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of hours to the current instance.
Declaration
Parameters
hours
The supplied number of hours. Range is (-24,000,000,000 < hours
< 24,000,000,000).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of milliseconds to the current instance.
Declaration
Parameters
milliseconds
The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds
< 8.64 * 1016).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of minutes to the current instance.
Declaration
Parameters
minutes
The supplied number of minutes. Range is (-1,440,000,000,000 < minutes
< 1,440,000,000,000).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of months to the current instance.
Declaration
Parameters
months
The supplied number of months. Range is (-12,000,000,000 < months
< 12,000,000,000).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of nanoseconds to the current instance.
Declaration
Parameters
nanoseconds
The supplied number of nanoseconds.
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This method adds the supplied number of seconds to the current instance.
Declaration
Parameters
seconds
The supplied number of seconds. Range is (-8.64 * 1013< seconds
< 8.64 * 1013).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method adds the supplied number of years to the current instance
Declaration
Parameters
years
The supplied number of years. Range is (-999,999,999 <= years
< = 999,999,999).
Return Value
An OracleTimeStampTZ
.
Exceptions
OracleNullValueException
- The current instance has a null value.
ArgumentOutofRangeException
- The argument value is out of the specified range.
This method compares the current OracleTimeStampTZ
instance to an object, and returns an integer that represents their relative values.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStampTZ
instance.
Return Value
The method returns a number that is:
Less than zero: if the current OracleTimeStampTZ
instance value is less than that of obj
.
Zero: if the current OracleTimeStampTZ
instance and obj
values are equal.
Greater than zero: if the current OracleTimeStampTZ
instance value is greater than that of obj
.
Implements
IComparable
Exceptions
ArgumentException
- The obj
is not of type OracleTimeStampTZ
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
s. For example, comparing an OracleTimeStampTZ
instance with an OracleBinary
instance is not allowed. When an OracleTimeStampTZ
is compared with a different type, an ArgumentException
is thrown. OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. Overrides Object
This method determines whether or not an object has the same date and time as the current OracleTimeStampTZ
instance.
Declaration
Parameters
obj
The object being compared to the current OracleTimeStampTZ
instance.
Return Value
Returns true
if the obj
is of type OracleTimeStampTZ
and represents the same date and time; otherwise, returns false
.
Remarks
The following rules apply to the behavior of this method.
OracleTimeStampTZ
that has a value is greater than an OracleTimeStampTZ
that has a null value. OracleTimeStampTZ
s that contain a null value are equal. This method subtracts an OracleTimeStampTZ
value from the current instance and returns an OracleIntervalDS
that represents the time interval.
Declaration
Parameters
value1
The OracleTimeStampTZ
value being subtracted.
Return Value
An OracleIntervalDS
that represents the interval between two OracleTimeStampTZ
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalDS
has a null value.
Overrides Object
This method returns a hash code for the OracleTimeStampTZ
instance.
Declaration
Return Value
A number that represents the hash code.
This method gets the time zone portion in hours and minutes of the current OracleTimeStampTZ
.
Declaration
Return Value
A TimeSpan
.
Exceptions
OracleNullValueException
- The current instance has a null value.
This method subtracts an OracleTimeStampTZ
value from the current instance and returns an OracleIntervalYM
that represents the time interval.
Declaration
Parameters
val
The OracleTimeStampTZ
value being subtracted.
Return Value
An OracleIntervalYM
that represents the interval between two OracleTimeStampTZ
values.
Remarks
If either the current instance or the parameter has a null value, the returned OracleIntervalYM
has a null value.
This method converts the current OracleTimeStampTZ
instance to local time.
Declaration
Return Value
An OracleTimeStampLTZ
that contains the date and time, which is normalized to the client local time zone, in the current instance.
Remarks
If the current instance has a null value, the returned OracleTimeStampLTZ
has a null value.
This method converts the current OracleTimeStampTZ
structure to an OracleDate
structure.
Declaration
Return Value
The returned OracleDate
contains the date and time in the current instance, but the time zone information in the current instance is truncated
Remarks
The precision of the OracleTimeStampTZ
value can be lost during the conversion, and the time zone information in the current instance is truncated.
If the current instance has a null value, the value of the returned OracleDate
structure has a null value.
This method converts the current OracleTimeStampTZ
structure to an OracleTimeStampLTZ
structure.
Declaration
Return Value
The returned OracleTimeStampLTZ
structure contains the date and time, which is normalized to the client local time zone, in the current instance.
Remarks
If the value of the current instance has a null value, the value of the returned OracleTimeStampLTZ
structure has a null value.
This method converts the current OracleTimeStampTZ
structure to an OracleTimeStamp
structure.
Declaration
Return Value
The returned OracleTimeStamp
contains the date and time in the current instance, but the time zone information is truncated.
Remarks
If the value of the current instance has a null value, the value of the returned OracleTimeStamp
structure has a null value.
Overrides Object
This method converts the current OracleTimeStampTZ
structure to a string.
Declaration
Return Value
A string
that represents the same date and time as the current OracleTimeStampTZ
structure.
Remarks
The returned value is a string representation of an OracleTimeStampTZ
in the format specified by the OracleGlobalization
.TimeStampTZFormat
property of the thread. The names and abbreviations used for months and days are in the language specified by the OracleGlobalization
.DateLanguage
and the OracleGlobalization.Calendar
properties of the thread. If any of the thread's globalization properties are set to null or an empty string, the client computer's settings are used.
Example
This method converts the current datetime to Coordinated Universal Time (UTC).
Declaration
Return Value
An OracleTimeStampTZ
structure.
Remarks
If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.
The INullable
interface is used to determine whether or not an ODP.NET type has a NULL value.
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
INullable members are listed in the following tables.
INullable Interface Properties
INullable
interface properties are listed in Table 14-126.
Table 14-126 INullable Interface Properties
Public Property | Description |
---|---|
| Indicates whether or not the ODP.NET type has a |
INullable
interface properties are listed in Table 14-126.
Table 14-127 INullable Interface Properties
Public Property | Description |
---|---|
| Indicates whether or not the ODP.NET type has a |
This property indicates whether or not the ODP.NET type has a NULL
value.
Declaration
Property Value
Returns true if the ODP.NET type has a NULL
value
; otherwise, returns false.
This section covers the ODP.NET Types exceptions.
This chapter contains these topics:
The OracleTypeException
is the base exception class for handling exceptions that occur in the ODP.NET Types classes.
Class Inheritance
System.Object
System.Exception
System.SystemException
Oracle.DataAccess.Types.OracleTypeException
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleTypeException
members are listed in the following tables.
OracleTypeException Constructors
The OracleTypeException
constructors are listed in Table 15-1.
Table 15-1 OracleTypeException Constructor
Constructor | Description |
---|---|
Creates a new instance of the |
OracleTypeException Static Methods
The OracleTypeException
static methods are listed in Table 15-2.
Table 15-2 OracleTypeException Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleTypeException Properties
The OracleTypeException
properties are listed in Table 15-3.
Table 15-3 OracleTypeException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Specifies the error messages that occur in the exception |
| Specifies the name of the data provider that generates the error |
| Inherited from |
| Inherited from |
OracleTypeException Methods
The OracleTypeException
methods are listed in Table 15-4.
Table 15-4 OracleTypeException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Returns the fully qualified name of this exception |
The OracleTypeException
constructors create new instances of the OracleTypeException
class.
Overload List:
This constructor creates a new instance of the OracleTypeException
class with the specified error message, errMessage
.
This constructor creates a new instance of the OracleTypeException
class with the specified serialization information, si
, and the specified streaming context, sc
.
This constructor creates a new instance of the OracleTypeException
class with the specified error message, errMessage
.
Declaration
Parameters
errMessage
The specified error message.
This constructor creates a new instance of the OracleTypeException
class with the specified serialization information, si
, and the specified streaming context, sc
.
Declaration
Parameters
si
The specified serialization information.
sc
The specified streaming context.
The OracleTypeException
static methods are listed in Table 15-5.
Table 15-5 OracleTypeException Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleTypeException
properties are listed in Table 15-6.
Table 15-6 OracleTypeException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Specifies the error messages that occur in the exception |
| Specifies the name of the data provider that generates the error |
| Inherited from |
| Inherited from |
Overrides Exception
This property specifies the error messages that occur in the exception.
Declaration
Property Value
An error message.
Overrides Exception
This property specifies the name of the data provider that generates the error.
Declaration
Property Value
Oracle Data Provider for .NET.
The OracleTypeException
methods are listed in Table 15-7.
Table 15-7 OracleTypeException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Returns the fully qualified name of this exception |
Overrides Exception
This method returns the fully qualified name of this exception, the error message in the Message property, the InnerException.ToString()
message, and the stack trace.
Declaration
Return Value
The fully qualified name of this exception.
The OracleNullValueException
represents an exception that is thrown when trying to access an ODP.NET Types structure that has a null value.
Class Inheritance
System.Object
System.Exception
System.SystemException
System.OracleTypeException
Oracle.DataAccess.Types.OracleNullValueException
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleNullValueException
members are listed in the following tables.
OracleNullValueException Constructors
The OracleNullValueException
constructors are listed in Table 15-8.
Table 15-8 OracleNullValueException Constructors
Constructor | Description |
---|---|
OracleNullValueException Constructors | Creates a new instance of the |
OracleNullValueException Static Methods
The OracleNullValueException
static methods are listed in Table 15-9.
Table 15-9 OracleNullValueException Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleNullValueException Properties
The OracleNullValueException
properties are listed in Table 15-10.
Table 15-10 OracleNullValueException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleNullValueException Methods
The OracleNullValueException
methods are listed in Table 15-11.
Table 15-11 OracleNullValueException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleNullValueException
constructors create new instances of the OracleNullValueException
class.
Overload List:
This constructor creates a new instance of the OracleNullValueException
class with its default properties.
This constructor creates a new instance of the OracleNullValueException
class with the specified error message, errMessage
.
This constructor creates a new instance of the OracleNullValueException
class with its default properties.
Declaration
This constructor creates a new instance of the OracleNullValueException
class with the specified error message, errMessage
.
Declaration
Parameters
errMessage
The specified error message.
The OracleNullValueException
static methods are listed in Table 15-12.
Table 15-12 OracleNullValueException Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleNullValueException
properties are listed in Table 15-13.
Table 15-13 OracleNullValueException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleNullValueException
methods are listed in Table 15-14.
Table 15-14 OracleNullValueException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleTruncateException
class represents an exception that is thrown when truncation in a ODP.NET Types class occurs.
Class Inheritance
System.Object
System.Exception
System.SystemException
System.OracleTypeException
Oracle.DataAccess.Types.OracleTruncateException
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleTruncateException
members are listed in the following tables.
OracleTruncateException Constructors
The OracleTruncateException
constructors are listed in Table 15-15.
Table 15-15 OracleTruncateException Constructors
Constructor | Description |
---|---|
OracleTruncateException Constructors | Creates a new instance of the |
OracleTruncateException Static Methods
The OracleTruncateException
static methods are listed in Table 15-16.
Table 15-16 OracleTruncateException Static Methods
Methods | Description |
---|---|
| Inherited from |
OracleTruncateException Properties
The OracleTruncateException
properties are listed in Table 15-17.
Table 15-17 OracleTruncateException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleTruncateException Methods
The OracleTruncateException
methods are listed in Table 15-18.
Table 15-18 OracleTruncateException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleTruncateException
constructors create new instances of the OracleTruncateException
class
Overload List:
This constructor creates a new instance of the OracleTruncateException
class with its default properties.
This constructor creates a new instance of the OracleTruncateException
class with the specified error message, errMessage
.
This constructor creates a new instance of the OracleTruncateException
class with its default properties.
Declaration
This constructor creates a new instance of the OracleTruncateException
class with the specified error message, errMessage
.
Declaration
Parameters
errMessage
The specified error message.
The OracleTruncateException
static methods are listed in Table 15-19.
Table 15-19 OracleTruncateException Static Methods
Methods | Description |
---|---|
| Inherited from |
The OracleTruncateException
properties are listed in Table 15-20.
Table 15-20 OracleTruncateException Properties
Properties | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleTruncateException
methods are listed in Table 15-21.
Table 15-21 OracleTruncateException Methods
Methods | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
This chapter describes the object-related classes and interfaces in the Oracle Data Provider for .NET that provide support for Oracle user-defined data types (UDT).
Samples are provided in the ORACLE_BASE
\
ORACLE_HOME
\
ODP.NET
\
Samples\UDT
directory.
The OracleCustomTypeMappingAttribute
class is used to mark a custom type factory class or struct with information that is used by ODP.NET when a custom type is used to represent an Oracle UDT.
Class Inheritance
System.Object
System.Attribute
System.OracleCustomTypeMappingAttribute
Declaration
Remarks
The OracleCustomTypeMapping
attribute must be specified on the custom type factory class to indicate the Oracle UDT that the corresponding custom type represents. The Oracle UDT may be specified in the form schema_name.type_name
.
For each Oracle UDT that the application uses, there must be a unique custom type factory, as follows:
The custom type factory must return a custom type that cannot be used to represent any other Oracle Object Type.
The custom type factory may return a custom type that can be used by other Oracle Collection Types. This is common when an array type is used to represent an Oracle Collection, that is, when an int[]
is used to represent a collection of NUMBER
s.
If the OracleCustomTypeMappingAttribute
is not specified, then custom type mappings must be specified through an XML configuration file, for example, app.config
for Windows applications or the web.config
for web applications, and the machine.config
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleCustomTypeMappingAttribute
members are listed in the following tables.
OracleCustomTypeMappingAttribute Constructors
OracleCustomTypeMappingAttribute
constructors are listed in Table 16-1.
Table 16-1 OracleCustomTypeMappingAttribute Constructors
Constructor | Description |
---|---|
OracleCustomTypeMappingAttribute Constructors | Instantiates a new instance of |
OracleCustomTypeMappingAttribute Static Methods
OracleCustomTypeMappingAttribute
static methods are listed in Table 16-2.
Table 16-2 OracleCustomTypeMappingAttribute Static Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleCustomTypeMappingAttribute Properties
OracleCustomTypeMappingAttribute
properties are listed in Table 16-3.
Table 16-3 OracleCustomTypeMappingAttribute Properties
Property | Description |
---|---|
Specifies the Oracle user-defined type name that the custom class maps to | |
| Inherited from |
OracleCustomTypeMappingAttribute Methods
OracleCustomTypeMappingAttribute
methods are listed in Table 16-4.
Table 16-4 OracleCustomTypeMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleCustomTypeMappingAttribute
constructors create new instances of the OracleCustomTypeMappingAttribute
class.
Overload List:
This constructor creates and initializes an OracleCustomTypeMappingAttribute
using the specified Oracle user-defined type name.
This constructor creates and initializes an OracleCustomTypeMappingAttribute
using the specified Oracle user-defined type name.
Declaration
Parameters
udtTypeName
The Oracle user-defined type name that the custom class maps to.
Remarks
The udtTypeName
parameter is case-sensitive. The udtTypeName
is specified in the form of schema_name.type_name
.
OracleCustomTypeMappingAttribute
static methods are listed in Table 16-5.
Table 16-5 OracleCustomTypeMappingAttribute Static Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleCustomTypeMappingAttribute
properties are listed in Table 16-6.
Table 16-6 OracleCustomTypeMappingAttribute Properties
Property | Description |
---|---|
Specifies the Oracle user-defined type name that the custom class maps to | |
| Inherited from |
This property specifies the Oracle user-defined type name that the custom class maps to.
Declaration
Property Value
A string that represents an Oracle user-defined type name.
Remarks
UdtTypeName
is case-sensitive. It is specified in the form of schema_name.type_name
.
OracleCustomTypeMappingAttribute
methods are listed in Table 16-7.
Table 16-7 OracleCustomTypeMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleObjectMappingAttribute
class marks custom class fields or properties with information that ODP.NET uses when a custom type represents an Oracle Object type.
Class Inheritance
System.Object
System.Attribute
System.OracleObjectMappingAttribute
Declaration
Remarks
The OracleObjectMappingAttribute
is specified on members of a custom type that represent an Oracle object type. This attribute must specify the name or zero-based index of the attribute in the Oracle object that the custom class field or property maps to. This also allows the custom type to declare field or property names which differ from the Oracle Object type.
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleObjectMappingAttribute
members are listed in the following tables.
OracleObjectMappingAttribute Constructors
OracleObjectMappingAttribute
constructors are listed in Table 16-8.
Table 16-8 OracleObjectMappingAttribute Constructors
Constructor | Description |
---|---|
OracleObjectMappingAttribute Constructors | Instantiates a new instance of |
OracleObjectMappingAttribute Static Methods
OracleObjectMappingAttribute
static methods are listed in Table 16-9.
Table 16-9 OracleObjectMappingAttribute Static Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleObjectMappingAttribute Properties
OracleObjectMappingAttribute
properties are listed in Table 16-10.
Table 16-10 OracleObjectMappingAttribute Properties
Property | Description |
---|---|
| Specifies the index of the Oracle Object attribute that must be retrieved |
Specifies the name of Oracle Object attribute that must be retrieved | |
| Inherited from |
OracleObjectMappingAttribute Methods
OracleObjectMappingAttribute
methods are listed in Table 16-11.
Table 16-11 OracleObjectMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleObjectMappingAttribute
constructors create new instances of the OracleObjectMappingAttribute
class.
Overload List:
This constructor creates and initializes an OracleObjectMappingAttribute
object with the specified Oracle Object attribute name.
This constructor creates and initializes an OracleObjectMappingAttribute
with the specified Oracle Object attribute index.
This constructor creates and initializes an OracleObjectMappingAttribute
object with the specified Oracle Object attribute name.
Declaration
Parameters
attrName
The name of the Oracle Object attribute to map to.
Remarks
The attrName
parameter is case-sensitive.
This constructor creates and initializes an OracleObjectMappingAttribute
object with the specified Oracle Object attribute index.
Declaration
Parameters
attrIndex
The zero-based index of the Oracle Object attribute to map to.
OracleObjectMappingAttribute
static methods are listed in Table 16-12.
Table 16-12 OracleObjectMappingAttribute Static Method
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleObjectMappingAttribute
properties are listed in Table 16-13.
Table 16-13 OracleObjectMappingAttribute Properties
Property | Description |
---|---|
| Specifies the index of the Oracle Object attribute that must be retrieved |
Specifies the name of the Oracle Object attribute that must be retrieved | |
| Inherited from |
This property specifies the index of the Oracle Object attribute that must be retrieved.
Declaration
Property Value
The zero-based index of an Oracle Object type attribute.
Remarks
The AttributeIndex
property specifies the index of the Oracle Object type attribute that the custom class field or property maps to. This allows the custom class to declare fields or property names that differ from the Oracle object.
This property specifies the name of the Oracle Object attribute that must be retrieved.
Declaration
Property Value
The name of an attribute of an Oracle Object type.
Remarks
The AttributeName
property specifies name of the attribute in the Oracle Object type that the custom class field or property maps to. This allows the custom class to declare field or property names that differ from the Oracle object.
The specified attribute name is case-sensitive.
OracleObjectMappingAttribute
methods are listed in Table 16-14.
Table 16-14 OracleObjectMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
The OracleArrayMappingAttribute
class is required to mark a custom class field or property with information that ODP.NET uses when a custom type represents an Oracle Collection type.
Class Inheritance
System.Object
System.Attribute
System.
OracleArrayMappingAttribute
Declaration
[AttributeUsageAttribute(AttributeTargets.Field|AttributeTargets.Property, AllowMultiple=false, Inherited=true)]
Remarks
An OracleArrayMappingAttribute
object must be specified when a custom type represents an Oracle Collection. This attribute is applied only to the custom class member that stores the collection elements.
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleArrayMappingAttribute
members are listed in the following tables.
OracleArrayMappingAttribute Constructors
OracleArrayMappingAttribute
constructors are listed in Table 16-15.
Table 16-15 OracleArrayMappingAttribute Constructors
Constructor | Description |
---|---|
OracleArrayMappingAttribute Constructors | Instantiates a new instance of |
OracleArrayMappingAttribute Static Methods
OracleArrayMappingAttribute
static methods are listed in Table 16-16.
Table 16-16 OracleArrayMappingAttribute Static Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleArrayMappingAttribute Properties
OracleArrayMappingAttribute
properties are listed in Table 16-17.
Table 16-17 OracleArrayMappingAttribute Properties
Property | Description |
---|---|
| Inherited from |
OracleArrayMappingAttribute Methods
OracleArrayMappingAttribute
methods are listed in Table 16-18.
Table 16-18 OracleArrayMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleArrayMappingAttribute
constructors create new instances of the OracleArrayMappingAttribute
class.
Overload List:
This constructor creates and initializes an OracleArrayMappingAttribute
object.
This constructor creates and initializes an OracleArrayMappingAttribute
object.
Declaration
Remarks
An OracleArrayMappingAttribute
object must be applied when a custom class represents an Oracle Collection type, to specify the custom class field or property that stores the collection elements.
The OracleArrayMappingAttribute
can be applied to only one field or property in the custom class.
OracleArrayMappingAttribute
static methods are listed in Table 16-19.
Table 16-19 OracleArrayMappingAttribute Static Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
OracleArrayMappingAttribute
properties are listed in Table 16-20.
Table 16-20 OracleArrayMappingAttribute Properties
Property | Description |
---|---|
| Inherited from |
OracleArrayMappingAttribute
methods are listed in Table 16-21.
Table 16-21 OracleArrayMappingAttribute Methods
Method | Description |
---|---|
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
| Inherited from |
IOracleCustomType
is an interface for converting between a Custom Type and an Oracle Object or Collection Type.
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
IOracleCustomType
members are listed in the following tables.
IOracleCustomType Interface Methods
IOracleCustomType
interface methods are listed in Table 16-22.
Table 16-22 IOracleCustomType Interface Methods
Interface Method | Description |
---|---|
| Returns the values that set the Oracle Object attributes |
| Provides the Oracle Object with the attribute values to set on the custom type |
IOracleCustomType
Interface methods are listed in Table 16-23.
Table 16-23 IOracleCustomType Interface Methods
Interface Method | Description |
---|---|
| Returns the values that set the Oracle Object attributes |
| Provides the Oracle Object with the attribute values to set on the custom type |
This interface method creates an Oracle Object or Collection by setting the attribute or element values respectively on the specified Oracle UDT.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to the Oracle Object or Collection to be created.
Remarks
The FromCustomObject
method is used to build an Oracle Object or Collection from a custom object by setting attribute or element values respectively through the OracleUdt.SetValue
method.
The OracleUdt.SetValue
method is invoked as follows:
For a custom type that represents an Oracle Object Type, the OracleUdt.SetValue
method must be invoked for each non-NULL
attribute value that needs to be set.
For a custom type that represents an Oracle Collection Type, a single call to OracleUdt.SetValue
method specifies the collection element values.
This interface initializes a custom object using the specified Oracle UDT.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to the Oracle UDT.
Remarks
The ToCustomObject
method is used to initialize a custom object from the specified Oracle Object or Collection by retrieving attribute or element values respectively through the OracleUdt.GetValue
method.
The OracleUdt.GetValue
method is invoked as follows:
For a custom type that represents an Oracle Object Type, the OracleUdt.GetValue
method must be invoked for each attribute value to be retrieved.
OracleUdt.GetValue
method retrieves the collection element values. The IOracleCustomTypeFactory
interface is used by ODP.NET to create custom objects that represent Oracle Objects or Collections.
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
IOracleCustomTypeFactory
members are listed in the following tables.
IOracleCustomTypeFactory Interface Methods
IOracleCustomTypeFactory
interface methods are listed in Table 16-24.
Table 16-24 IOracleCustomTypeFactory Interface Methods
Public Method | Description |
---|---|
| Returns a new custom object to represent an Oracle Object or Collection |
IOracleCustomTypeFactory
Interface methods are listed in Table 16-25.
Table 16-25 IOracleCustomTypeFactory Interface Methods
Public Method | Description |
---|---|
| Returns a new custom object to represent an Oracle Object or Collection |
This interface method returns a new custom object to represent an Oracle Object or Collection.
Declaration
Return Value
An IOracleCustomType
object.
Remarks
The CreateObject
method is used to create a new instance of a custom object to represent an Oracle Object or Collection.
The IOracleArrayTypeFactory
interface is used by ODP.NET to create arrays that represent Oracle Collections.
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
IOracleArrayTypeFactory
members are listed in the following tables.
IOracleArrayTypeFactory Interface Methods
IOracleArrayTypeFactory
interface methods are listed in Table 16-26.
Table 16-26 IOracleArrayTypeFactory Interface Methods
Public Method | Description |
---|---|
| Returns a new array of the specified length to store Oracle Collection elements |
| Returns a newly allocated |
IOracleArrayTypeFactory
Interface methods are listed in Table 16-27.
Table 16-27 IOracleArrayTypeFactory Interface Methods
Public Method | Description |
---|---|
| Returns a new array of the specified length to store Oracle Collection elements |
| Returns a newly allocated |
This interface method returns a new array of the specified length to store Oracle Collection elements.
Declaration
Parameters
numElems
The number of collection elements to be returned.
Return Value
A System.Array
object.
Remarks
An Oracle Collection Type may be represented in either of the following ways:
In both cases, the CreateArray
method creates an array of the specified length to store the collection elements.
This method returns a newly allocated OracleUdtStatus
array of the specified length that will be used to store the null status of the collection elements.
Declaration
Parameters
numElems
The number of collection elements to be returned.
Return Value
A multi-dimensional OracleUdtStatus
array as a System.Array
.
Remarks
An Oracle Collection Type can be represented in the following ways:
In both cases, the CreateStatusArray
method creates an OracleUdtStatus
array of the specified length that stores the null status of the collection elements.
The OracleUdt
class defines static methods that are used when converting between Custom Types and Oracle UDTs and vice-versa.
Class Inheritance
System.Object
System.OracleUdt
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleUdt
static methods are listed in Table 16-28.
Table 16-28 OracleUdt Static Methods
Static Method | Description |
---|---|
Equals | Inherited from |
| Gets the attributes or elements from the specified Oracle UDT (Overloaded) |
| Indicates whether or not the specified attribute being retrieved is |
| Sets the attributes or elements on the specified Oracle UDT (Overloaded) |
OracleUDT
methods are listed in Table 16-29.
Table 16-29 OracleUdt Static Methods
Static Method | Description |
---|---|
Equals | Inherited from |
| Gets the attributes or elements from the specified Oracle UDT (Overloaded) |
| Indicates whether or not the specified attribute being retrieved is |
| Sets the attributes or elements on the specified Oracle UDT (Overloaded) |
GetValue
methods get the attributes or elements from the specified Oracle UDT.
Overload List:
This method gets the attributes or elements from the specified Oracle UDT, using the specified attribute name.
This method gets the attribute or elements from the specified Oracle UDT, using the specified index.
This method returns either the elements of the specified collection attribute of the specified Oracle Object or the elements of the specified Oracle Collection.
This method returns either the elements of the specified collection attribute of the specified Oracle Object or the elements of the specified Oracle Collection.
This method gets the attributes or elements from the specified Oracle UDT, using the specified attribute name.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
A pointer to an Oracle UDT.
attrName
The case-sensitive name of the attribute to be retrieved. Null is specified for retrieving collection elements from a Custom Type that represents an Oracle Collection.
Return Value
An object representing the returned attribute or collection elements.
Exceptions
ArgumentException
- The specified name is not a valid attribute name.
Remarks
The IOracleCustomType.ToCustomObject
method invokes OracleUdt.GetValue
method passing it the con
and pUdt
parameters. The OracleUdt.GetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type returned for a specified attribute name is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type returned is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
In the case of NULL
attribute values, the appropriate null representation of the type is returned. For example, for attributes that are represented as Custom Types and Provider Specific Types, the static Null
property of the type is returned. For attributes that are represented as Nullable types, for example, System.String
and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32
and DateTime
DBNull.Value
is returned.
This method gets the attribute or elements from the specified Oracle UDT, using the specified index.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
A pointer to an Oracle UDT.
attrIndex
The zero-based index of the attribute to be retrieved. For retrieving collection elements from a Custom Type that represents an Oracle Collection, zero must be specified.
Return Value
An object representing the returned attribute or collection elements.
Exceptions
ArgumentOutOfRangeException
- The specified index is not a valid attribute index.
Remarks
The IOracleCustomType.ToCustomObject
method invokes OracleUdt.GetValue
method passing it the con
and pUdt
parameters. The OracleUdt.GetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type returned for a specified attribute index is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type returned is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
In the case of NULL
attribute values, the appropriate null representation of the type is returned. For example, for attributes that are represented as Custom Types and Provider Specific Types, the static Null
property of the type is returned. For attributes that are represented as Nullable types, for example, System.String
and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32
and DateTime
DBNull.Value
is returned.
This method returns either the elements of the specified collection attribute of the specified Oracle Object or the elements of the specified Oracle Collection.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrName
The case-sensitive name of the attribute to be retrieved. Null must specified for retrieving collection elements from a Custom Type that represents an Oracle Collection.
statusArray
- The OracleUdtStatus
array which returns the null status for the retrieved collection elements. Return Value
An object representing the returned attribute or collection elements.
Exceptions
ArgumentException
- The specified name is not a valid attribute name.
Remarks
The IOracleCustomType.ToCustomObject
method invokes OracleUdt.GetValue
method passing it the con
and pUdt
parameters. The OracleUdt.GetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type returned for a specified attribute name is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type returned is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
In the case of NULL
attribute values, the appropriate null representation of the type is returned. For example, for attributes that are represented as Custom Types and Provider Specific Types, the static Null
property of the type is returned. For attributes that are represented as Nullable types, for example, System.String
and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32
and DateTime
DBNull.Value
is returned.
If the collection being returned is not NULL
, the output statusArray
parameter is populated with the null status for each of the collection elements.
This method returns either the elements of the specified collection attribute of the specified Oracle Object or the elements of the specified Oracle Collection.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrIndex
The zero-based index of the attribute to be retrieved. For retrieving collection elements from a Custom Type that represents an Oracle Collection, 0
is specified.
statusArray
The OracleUdtStatus
array which returns the null status for the retrieved collection elements.
Return Value
An object representing the returned attribute or collection elements.
Exceptions
ArgumentOutOfRangeException
- The specified index is not a valid attribute index.
Remarks
The IOracleCustomType.ToCustomObject
method invokes OracleUdt.GetValue
method passing it the con
and pUdt
parameters. The OracleUdt.GetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type returned for a specified attribute index is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type returned is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
In the case of NULL
attribute values, the appropriate null representation of the type is returned. For example, for attributes that are represented as Custom Types and Provider Specific Types, the static Null
property of the type is returned. For attributes that are represented as Nullable types, for example, System.String
and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32
and DateTime
DBNull.Value
is returned.
If the collection being returned is not NULL, the output statusArray
parameter is populated with the null status for each of the collection elements.
IsDBNull
methods indicate whether or not the specified attribute being retrieved is NULL
.
Overload List:
This method indicates whether or not the attribute being retrieved, specified by OracleConnection
, pointer, and attribute name, is NULL
.
This method indicates whether or not the attribute being retrieved, specified by OracleConnection
, pointer, and attribute index, is NULL
.
This method indicates whether or not the attribute being retrieved, specified by OracleConnection
, pointer, and attribute name, is NULL
.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
A pointer to an Oracle UDT.
attrName
The case-sensitive name of the attribute.
Return Value
True
if the specified attribute is NULL
; otherwise, false
.
Exceptions
ArgumentException
- The specified name is not a valid attribute name.
Remarks
This method is invoked from the IOracleCustomType.ToCustomObject
method. The con
and pUdt
parameter is passed from the IOracleCustomType.ToCustomObject
method to the OracleUdt.IsDBNull
method. The attrName
parameter is case-sensitive.
This method indicates whether or not the attribute being retrieved, specified by OracleConnection
, pointer, and attribute index, is NULL
.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrIndex
The zero-based index of the attribute.
Return Value
True
if the specified attribute is NULL
; otherwise, false
.
Exceptions
ArgumentOutOfRangeException
- The specified index is not a valid attribute index
Remarks
This method is invoked from the IOracleCustomType.ToCustomObject
method. The con
and pUdt
parameter is passed from the IOracleCustomType.ToCustomObject
method to the OracleUdt.IsDBNull
method.
SetValue
methods set the attributes or elements on the specified Oracle UDT.
Overload List:
This method sets the attribute or elements on the specified Oracle UDT, using the specified attribute name and value.
This method sets the attribute or elements on the specified Oracle UDT, using the specified index and value.
This method sets either the specified collection attribute of the specified Oracle Object or elements of the specified Oracle Collection, to the specified value using the supplied null status of the collection elements.
This method sets either the specified collection attribute of the specified Oracle Object or elements of the specified Oracle Collection, to the specified value using the supplied null status of the collection elements.
This method sets the attribute or elements on the specified Oracle UDT, using the specified attribute name and value.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrName
The name of the attribute to be set. Specify null for setting collection elements from a Custom Type that represents an Oracle Collection.
value
The attribute or collection value to be set.
Exceptions
ArgumentException
- The specified value is not of the appropriate type.
Remarks
The IOracleCustomType.FromCustomObject
method invokes OracleUdt.SetValue
method passing it the con
and pUdt
parameters. The OracleUdt.SetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type accepted for a specified attribute name is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type accepted is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
This method sets the attribute or elements on the specified Oracle UDT, using the specified index and value.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrIndex
The index of the attribute to be set. Specify 0 for setting collection elements from a Custom Type that represents an Oracle Collection.
value
The attribute or collection value to be set.
Exceptions
ArgumentException
- The specified value is not of the appropriate type.
Remarks
The IOracleCustomType.FromCustomObject
method invokes OracleUdt.SetValue
method passing it the con
and pUdt
parameters. The OracleUdt.SetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type accepted for a specified attribute index is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type accepted is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
This method sets either the specified collection attribute of the specified Oracle Object or elements of the specified Oracle Collection, to the specified value using the supplied null status of the collection elements.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrName
The name of the attribute to be set. Specify null for setting collection elements from a Custom Type that represents an Oracle Collection.
value
The attribute or collection value to be set.
statusArray
The null status for the collection elements.
Exceptions
ArgumentException
- The specified value is not of the appropriate type.
Remarks
The IOracleCustomType.FromCustomObject
method invokes OracleUdt.SetValue
method passing it the con
and pUdt
parameters. The OracleUdt.SetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type accepted for a specified attribute name is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type accepted is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
This method sets either the specified collection attribute of the specified Oracle Object or elements of the specified Oracle Collection, to the specified value using the supplied null status of the collection elements.
Declaration
Parameters
con
An OracleConnection
instance.
pUdt
An opaque pointer to an Oracle UDT.
attrIndex
The index of the attribute to be set. Specify 0 for setting collection elements from a Custom Type that represents an Oracle Collection.
value
The attribute or collection value to be set.
statusArray
The null status for the collection elements.
Exceptions
ArgumentException
- The specified value is not of the appropriate type.
Remarks
The IOracleCustomType.FromCustomObject
method invokes OracleUdt.SetValue
method passing it the con
and pUdt
parameters. The OracleUdt.SetValue
method returns these types of object:
For a Custom Type that represents an Oracle Object Type, the type accepted for a specified attribute index is the type of the member in the custom class or struct that is mapped to the attribute using the OracleObjectMappingAttribute
object.
For a Custom Type that represents an Oracle Collection Type, the type accepted is the type of the member in the custom class or struct to which the OracleArrayMappingAttribute
object is applied.
An OracleRef
instance represents an Oracle REF
, which references a persistent, standalone, referenceable object that resides in the database. The OracleRef
object provides methods to insert, update, and delete the Oracle REF
.
Class Inheritance
System.Object
System.MarshalByRefObject
Oracle.DataAccess.Types.OracleRef
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
If two or more OracleRef
objects that refer to the same Oracle object in the database are retrieved through the same OracleConnection
, then their operations on the referenced object must be synchronized.
Requirements
Namespace: Oracle.DataAccess.Types
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleRef
members are listed in the following tables.
OracleRef Constructors
OracleRef
constructors are listed in Table 16-30.
Table 16-30 OracleRef Constructors
Constructor | Description |
---|---|
Instantiates a new instance of |
OracleRef Static Fields
OracleRef static methods are listed in Table 16-31
Table 16-31 OracleRef Static Fields
Static Field | Description |
---|---|
| Represents a null value that can be assigned to an |
OracleRef Static Methods
OracleRef
static methods are listed in Table 16-32.
Table 16-32 OracleRef Static Methods
Method | Description |
---|---|
| Inherited from |
OracleRef Instance Properties
OracleRef
instance properties are listed in Table 16-33.
Table 16-33 OracleRef Instance Properties
Property | Description |
---|---|
| References the connection used by the |
| References the connection used by the |
| Indicates whether or not the |
| Indicates whether or not the Oracle |
| Returns the fully qualified object table name that is associated with the |
| Returns a .NET representation of this Oracle |
OracleRef Instance Methods
OracleRef
instance methods are listed in Table 16-34.
Table 16-34 OracleRef Instance Methods
Method | Description |
---|---|
| Clones the |
| Deletes the referenced object from the database |
| Releases resources allocated for the |
| Inherited from |
| Flushes changes made on the |
| Returns the object that the specified REF references as a custom type (Overloaded) |
| Returns the object that the specified REF references as a custom type (Overloaded) |
| Inherited from |
| Inherited from |
| Compares two |
| Locks the |
| Inherited from |
| Updates the object referenced by the specified |
OracleRef
constructors instantiate new instances of OracleRef
class.
Overload List:
This constructor creates an instance of the OracleRef
class with a connection and a HEX string that represents an REF
instance in the database.
This constructor creates an instance of the OracleRef
class using the specified OracleConnection
object, user-defined type name, and an object table name
This constructor creates an instance of the OracleRef
class with a connection and a HEX string that represents an REF
instance in the database.
Declaration
Parameters
con
An OracleConnection
instance.
hexStr
A HEX string that represents an REF
instance in the database.
Exceptions
ArgumentException
- The HEX string does not represent a valid REF
in the database.
ArgumentNullException
- The connection or HEX string is null.
InvalidOperationException
- The OracleConnection
object is not open.
Remarks
When an OracleRef
instance is created, it is referenced to a specific table in the database.
The connection must be opened explicitly by the application. OracleRef
does not open the connection implicitly.
This constructor creates an instance of the OracleRef
class using the specified OracleConnection
object, user-defined type name, and an object table name.
Declaration
Parameters
con
An OracleConnection
instance.
udtTypeName
A user-defined type name.
objTabName
An object table name.
Exceptions
ArgumentException
- The object type name or the object table name is not valid.
ArgumentNullException
- The object type name or the table name is null.
InvalidOperationException
- The OracleConnection
object is not open.
Remarks
When an OracleRef
instance is created, this OracleRef
instance is associated with the specific table in the database. In other words, it represents a persistent REF
.
This constructor creates a reference to the object table. However, it does not cause any entries to be made in database tables until the object is flushed to the database, that is, until the OracleRef.Flush
or the OracleConnection.FlushCache
method is called on the OracleRef
Connection. Therefore, any operation that attempts to operate on the database copy of the object before flushing the object, such as, lock the object or fetch the latest copy of the object from the database, results in an OracleException
.
The connection must be opened explicitly by the application. OracleRef
does not open the connection implicitly.
OracleRef
static fields are listed in Table 16-35.
Table 16-35 OracleRef Static Fields
Static Field | Description |
---|---|
| Represents a null value that can be assigned to an |
This static field represents a null value that can be assigned to an OracleRef
instance.
Declaration
OracleRef
static methods are listed in Table 16-36.
Table 16-36 OracleRef Static Methods
Method | Description |
---|---|
| Inherited from |
OracleRef
instance properties are listed in Table 16-37.
Table 16-37 OracleRef Instance Properties
Property | Description |
---|---|
| References the connection used by the |
| References the connection used by the |
| Indicates whether or not the |
| Indicates whether or not the Oracle |
| Returns the fully qualified object table name that is associated with the |
| Returns a .NET representation of this Oracle |
This instance property references the connection used by the OracleRef
.
Declaration
Property Value
An OracleConnection
object associated with the REF
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
Once the Dispose
method is invoked, this property is set to null
.
This instance property indicates whether or not the object referenced by the Oracle REF
in the object cache has any changes that can be flushed to the database.
Declaration
Property Value
Returns true
if the object referenced by the Oracle REF
in the object cache has any changes that can be flushed to the database; otherwise, returns false
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This property returns true
if a copy of the referenced object in the object cache is updated or deleted.
If there is no copy of the referenced object in the object cache, the latest copy of the referenced object in the database is cached in the object cache and false
is returned.
This instance property indicates whether or not the REF
is locked.
Declaration
Property Value
Returns true
if the REF
is locked; otherwise returns false
.
Exceptions
ObjectDisposedException
- The object is already disposed.
This instance property indicates whether or not the Oracle REF
is NULL
.
Declaration
Property Value
Returns true if the REF
is NULL
; otherwise, returns false.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
If the Oracle REF
is NULL
, this property returns true. Otherwise, it returns false.
This instance property returns the fully-qualified object table name that is associated with the REF
.
Declaration
Property Value
A fully-qualified object table name that is associated with the REF
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
The object table name is in the form schema_Name.Table_Name
.
This instance property returns a .NET representation of this Oracle REF
.
Declaration
Property Value
A .NET representation of the Oracle REF
.
Exceptions
ObjectDisposedException
- The object is already disposed.
Remarks
This property returns a HEX string that represents the REF
.
The returned string can be used to create a new OracleRef
instance by using the OracleRef(OracleConnection,
string)
constructor.
OracleRef
instance methods are listed in Table 16-38.
Table 16-38 OracleRef Instance Methods
Method | Description |
---|---|
| Clones the |
| Deletes the referenced object from the database |
| Releases resources allocated for the |
| Inherited from |
| Flushes changes made on the |
| Returns the object that the specified REF references as a custom type (Overloaded) |
| Returns the object that the specified REF references as a custom type (Overloaded) |
| Inherited from |
| Inherited from |
| Compares two |
| Locks the |
| Inherited from |
| Updates the object referenced by the specified |
This instance method clones the REF
.
Declaration
Return Value
A clone of the current instance.
Implements
ICloneable
Exceptions
InvalidOperationException
- The associated connection is not open.
This method deletes the referenced object from the database.
Declaration
Parameters
bFlush
A bool
that specifies whether or not the REF
is flushed immediately.
Remarks
This method marks the specified REF
for deletion.
Depending on whether the value of bFlush
is set to true
or false
, the following occurs:
True
The object referenced by the specified REF
is deleted immediately from the database.
Before flushing objects, it is required that the application has explicitly started a transaction by executing the BeginTransaction
method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the application, an exclusive lock is obtained implicitly for the object. The lock is only released when the transaction commits or rollbacks.
False
The object referenced by the REF
is not deleted immediately from the database, but only when a subsequent Flush
method is invoked for the specified REF
or the FlushCache
method is invoked on the OracleRef
or the FlushCache
method is invoked on the OracleRef
connection.
See Also:
|
This instance method releases resources allocated for the OracleRef
instance.
Declaration
Implements
IDisposable
Remarks
The object cannot be reused after it is disposed. Although some properties can still be accessed, their values may not be up-to-date.
This instance method flushes changes made on the REF
object to the database, such as updates or deletes.
Declaration
Exceptions
InvalidOperationException
- The associated connection is not open.
Remarks
Before flushing objects, it is required that the application has explicitly started a transaction by executing the BeginTransaction
method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the application, an exclusive lock is obtained implicitly for the object. The lock is only released when the transaction commits or rollbacks.
GetCustomObject
methods return the object that the specified REF references as a custom type.
Overload List
This method returns the object that the specified REF references as a custom type using the specified fetch option.
This method returns the object that the specified REF
references as a custom type using the specified fetch option and depth level.
This method returns the object that the specified REF
references, as a custom type, using the specified fetch option.
Declaration
Parameters
fetchOption
An OracleUdtFetchOption
value.
Return Value
A custom object that represents the object that the specified REF
references.
Exceptions
InvalidOperationException
- The specified connection is not open, or a valid custom type has not been registered for the type of the referenced object.
Remarks
This method returns a custom type determined by the UDT mappings on the specified connection.
The connection must be opened explicitly by the application. This method does not open the connection implicitly.
The application can use the OracleUdtFetchOption
method to control the copy of the Object that is returned according to the specified option:
OracleUdtFetchOption.Cache
option If this option is specified, and there is a copy of the referenced object in the object cache, it is returned immediately. If no cached copy exists, the latest copy of the referenced object in the database is cached in the object cache and returned.
OracleUdtFetchOption.Server
option If this option is specified, the latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one.
OracleUdtFetchOption.TransactionCache
option If this option is specified, and a copy of the referenced object is cached in the current transaction, the copy is returned. Otherwise, the latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one.
Note that if a cached copy of the referenced object was modified before the current transaction began, that is, if the OracleRef.HasChanges
property returns true
, then the Recent
option returns the cached copy of the referenced object. Outside of a transaction, the Recent
option behaves like the Any
option.
This method returns the object that the specified REF
references, as a custom type, using the specified fetch option and depth level.
Declaration
Parameters
fetchOption
An OracleUdtFetchOption
value.
depthLevel
The number of levels to be fetched for nested REF
attributes.
Return Value
A custom object that represents the object that the specified REF
references.
Exceptions
InvalidOperationException
- The specified connection is not open, or a valid custom type has not been registered for the type of the referenced object.
Remarks
This method returns a custom type determined by the UDT mappings on the specified connection.
If the object that the REF
references contains nested REF
attributes, the depthLevel
can be specified to optimize the subsequent object retrieval. The value of depthLevel
determines the number of levels that are optimized.
For example, if the depthLevel
is specified as two, the optimization is applied to all top-level nested REF
attributes in the object being fetched and also to all nested REF attributes within the objects referenced by the top-level nested REF
attributes.
The connection must be opened explicitly by the application. This method does not open the connection implicitly.
The application can use the OracleUdtFetchOption
method to control the copy of the Object that is returned according to the specified option:
OracleUdtFetchOption.Cache
option If this option is specified, and there is a copy of the referenced object in the object cache, it is returned immediately. If no cached copy exists, the latest copy of the referenced object in the database is cached in the object cache and returned.
OracleUdtFetchOption.Server
option If this option is specified, the latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one.
OracleUdtFetchOption.TransactionCache
option If this option is specified, and a copy of the referenced object is cached in the current transaction, the copy is returned. Otherwise, the latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one.
Note that if a cached copy of the referenced object was modified before the current transaction began, that is, if the OracleRef.HasChanges
property returns true
, then the Recent
option returns the cached copy of the referenced object. Outside of a transaction, the Recent
option behaves like the Any
option.
GetCustomObjectForUpdate
methods return the object that the specified REF references as a custom type.
This method locks the specified REF
in the database and returns the object that the specified REF
references as a custom type using the specified wait option.
This method locks the specified REF
in the database and returns the object that the specified REF
references as a custom type using the specified wait option and depth level.
This method locks the specified REF
in the database and returns the object that the specified REF
references, as a custom type, using the specified wait option.
Declaration
Parameters
bWait
Specifies if the REF
is to be locked with the no-wait option. If wait is set to true
, this method invocation does not return until the REF
is locked.
Return Value
A custom object that represents the object that the specified REF
references.
Exceptions
InvalidOperationException
- The specified connection is not open, or a valid custom type has not been registered for type of the referenced object.
OracleException
- bWait
is set to false
, and the lock cannot be acquired.
Remarks
This method returns the latest copy of the referenced object, as a custom type, determined by the custom types registered on the OracleRef
connection.
To be able to release the lock on the REF
appropriately after flushing the REF
using the Flush
method on the OracleRef
or FlushCache
method on the OracleConnection
, the application must commit or rollback the transaction. Therefore, it is required that, before invoking this method, a transaction is explicitly started by executing the BeginTransaction
method on the OracleConnection
object.
This method makes a network round-trip to lock the REF
in the database. After this call, programmers can modify the associated row object exclusively. Then a call to the Flush
method on the OracleRef
or FlushCache
method on the OracleConnection
flushes the changes to the database.
If true
is passed, this method blocks until the lock can be acquired. If false
is passed, this method immediately returns. If the lock cannot be acquired, an OracleException
is thrown.
The connection must be opened explicitly by the application. This method does not open the connection implicitly.
This method locks the specified REF
in the database and returns the object that the specified REF
references, as a custom type, using the specified wait option and depth level
Declaration
Parameters
bWait
A boolean value that specifies if the REF
is to be locked with the no-wait option. If wait is set to true
, this method invocation does not return until the REF
is locked.
depthLevel
The number of levels to be fetched for nested REF
attributes.
Return Value
A custom object that represents the object that the specified REF
references.
Exceptions
InvalidOperationException
- The specified connection is not open, or a valid custom type has not been registered for type of the referenced object.
OracleException
- bWait
is set to false
, and the lock cannot be acquired.
Remarks
This method returns the latest copy of the referenced object, as a custom type, determined by the custom types registered on the OracleRef
connection.
To be able to release the lock on the REF
appropriately after flushing the REF
using the Flush
method on the OracleRef
or FlushCache
method on the OracleConnection
, the application must commit or rollback the transaction. Therefore, it is required that, before invoking this method, a transaction is explicitly started by executing the BeginTransaction
method on the OracleConnection
object.
This method makes a network round-trip to lock the REF
in the database. After this call, programmers can modify the associated row object exclusively. Then a call to the Flush
method on the OracleRef
or FlushCache
method on the OracleConnection
flushes the changes to the database.
If true
is passed, this method blocks until the lock can be acquired. If false
is passed, this method immediately returns. If the lock cannot be acquired, an OracleException
is thrown.
If the object that the REF
references contains nested REF
attributes, the depthLevel
can be specified to optimize the subsequent object retrieval. The value of depthLevel
determines the number of levels that are optimized.
For example, if the depthLevel
is specified as 2
, the optimization is applied to all top-level nested REF
attributes in the object being fetched and also to all nested REF
attributes within the objects referenced by the top-level nested REF
attributes.
The connection must be opened explicitly by the application. This method does not open the connection implicitly.
This instance method compares two OracleREF
objects.
Declaration
Parameters
oraRef
The provided OracleRef
object.
Return Value
bool
Remarks
This instance method returns true
if the OracleRef
instance and the OracleRef
parameter both reference the same object. Otherwise, it returns false
.
This instance method locks the REF
in the database.
Declaration
Parameters
bWait
Specifies if the lock is set to the no-wait option. If bWait
is set to true
, the method invocation does not return until the REF
is locked.
Return Value
A boolean value that indicates whether or not the lock has been acquired.
Exceptions
InvalidOperationException
- The associated connection is not open.
ObjectDisposedException
- The object is already disposed.
Remarks
In order for the application to release the lock on the REF
appropriately after the Flush
invocation on the OracleRef
or FlushCache
methods, the application must commit or rollback the transaction. Therefore, it is required that, before invoking a lock on an OracleRef
object, a transaction is explicitly started by executing the BeginTransaction
method on the OracleConnection
object.
This instance method makes a network round-trip to lock the REF
in the database. After this call, programmers can modify the attribute values of the associated row object exclusively. Then a call to the Flush
instance method on the OracleRef
or FlushCache
method on the OracleConnection
flushes the changes to the database.
If true
is passed, this method blocks, that is, does not return, until the lock is acquired. Consequently, the return value is always true
.
If false
is passed, this method immediately returns. The return value indicates true
if the lock is acquired, and false
if it is not.
This method updates the object referenced by the specified REF
in the database using the specified custom object.
Declaration
Parameters
customObject
The custom object used to update the referenced object.
bFlush
A boolean that specifies if the changes must be flushed immediately. If bFlush
is set to true, this method invocation flushes the changes immediately.
Exceptions
InvalidOperationException
- The specified connection is not open or the custom object does not map to the type of referenced object.
Remarks
This method marks the specified REF
for update. Depending on whether the value of bFlush
is set to true or false, the following occurs:
The object referenced by the specified REF
is updated immediately in the database.
Before flushing objects, it is required that the application has explicitly started a transaction by executing the BeginTransaction
method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the application, an exclusive lock is obtained implicitly for the object. The lock is only released when the transaction commits or rollbacks.
The object referenced by the REF
is not updated immediately in the database, but only when a subsequent Flush
method is invoked for the specified REF
or the FlushCache
method is invoked for the specified connection.
The connection must be opened explicitly by the application. This method does not open the connection implicitly.
OracleUdtFetchOption
enumeration values specify how to retrieve a copy of the referenceable object.
Table 16-39 lists all the OracleUdtFetchOption
enumeration values with a description of each enumerated value.
Table 16-39 OracleUdtFetchOption Enumeration Values
Member Name | Description |
---|---|
| If there is a copy of the referenced object in the object cache, it is returned immediately. If no cached copy exists, the latest copy of the referenced object in the database is cached in the object cache and returned. |
| The latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one. |
| If a copy of the referenced object is cached in the current transaction, the copy is returned. Otherwise, the latest copy of the referenced object from the database is cached in the object cache and returned. If a copy of the referenced object already exists in the cache, the latest copy overwrites the existing one. Note that if a cached copy of the referenced object was modified before the current transaction began, that is, if the |
OracleUdtStatus
enumeration values specify the status of an object attribute or collection element. An object attribute or a collection element can be a valid value or a null value.
Table 16-40 lists all the OracleUdtStatus
enumeration values with a description of each enumerated value:
This chapter describes Oracle Data Provider for .NET support for Bulk Copy operations.
Note: Oracle Data Provider for .NET bulk copy operations do not support loading of UDT type columns. |
This chapter includes the following topics:
An OracleBulkCopy
object efficiently bulk loads or copies data into an Oracle table from another data source.
Class Inheritance
System.Object
System.OracleBulkCopy
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
The OracleBulkCopy
class can be used to write data to Oracle database tables only. However, the data source is not limited to Oracle databases; any data source can be used, as long as the data can be loaded to a DataTable
instance or read with an IDataReader
instance.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBulkCopy
members are listed in the following tables.
OracleBulkCopy Constructors
OracleBulkCopy
constructors are listed in Table 17-1.
Table 17-1 OracleBulkCopy Constructors
Constructor | Description |
---|---|
|
|
OracleBulkCopy Properties
OracleBulkCopy
properties are listed in Table 17-2.
Table 17-2 OracleBulkCopy Properties
Property | Description |
---|---|
| Specifies the number of rows to be sent as a batch to the database |
| Specifies the |
| Specifies the number of seconds allowed for the bulk copy operation to complete before it is aborted |
| Specifies the column mappings between the data source and destination table |
| Specifies the |
| Specifies the database table that the data is loaded in |
| Defines the number of rows to be processed before a notification event is generated |
OracleBulkCopy Public Methods
OracleBulkCopy
public methods are listed in Table 17-3.
Table 17-3 OracleBulkCopy Public Methods
Method | Description |
---|---|
| Closes the |
| Releases any resources or memory allocated by the object |
| Copies rows to a destination table |
OracleBulkCopy Events
OracleBulkCopy
events are listed in Table 17-4.
Table 17-4 OracleBulkCopy Events
Event | Description |
---|---|
| Triggered every time the number of rows specified by the |
OracleBulkCopy
constructors create new instances of the OracleBulkCopy
class.
Overload List:
This constructor instantiates a new instance of OracleBulkCopy
class using the specified connection and default value for OracleBulkCopyOptions
.
This constructor instantiates a new instance of OracleBulkCopy
based on the supplied connectionString
and default value for OracleBulkCopyOptions
.
This constructor instantiates a new instance of OracleBulkCopy
using the specified connection object and OracleBulkCopyOptions
value.
This constructor instantiates a new instance of OracleConnection
based on the supplied connectionString
and OracleBulkCopyOptions
value.
This constructor instantiates a new instance of OracleBulkCopy
class using the specified connection and default OracleBulkCopyOptions
enumeration values.
Declaration
Parameters
connection
The open instance of OracleConnection
that performs the bulk copy operation.
Exceptions
ArgumentNullException
- The connection parameter is null.
InvalidOperationException
- The connection is not in the open state.
Remarks
The connection object passed to this constructor must be open. It remains open after the OracleBulkCopy
instance is closed.
This constructor uses the default enumeration value OracleBulkCopyOptions.Default
.
The Connection
property is set to the supplied connection.
This constructor instantiates a new instance of the OracleBulkCopy
class by first creating an OracleConnection
object based on the supplied connectionString
, then initializing the new OracleBulkCopy
object with the OracleConnection
object and OracleBulkCopyOptions
default value.
Declaration
Parameters
connectionString
The connection information used to connect to the Oracle database and perform the bulk copy operation.
Exception
ArgumentNullException
- The connectionString
parameter is null.
ArgumentException
- The connectionString
parameter is empty.
Remarks
The WriteToServer
method opens the connection, if it is not already opened. The connection is automatically closed when the OracleBulkCopy
instance is closed.
This constructor uses the default enumeration value OracleBulkCopyOptions.Default
.
The Connection
property is set to the OracleConnection
object initialized using the supplied connectionString
.
This constructor instantiates a new instance of OracleBulkCopy
using the specified connection object and OracleBulkCopyOptions
value.
Declaration
Parameters
connection
The open instance of an OracleConnection
object that performs the bulk copy operation.
copyOptions
The combination of OracleBulkCopyOptions
enumeration values that determine the behavior of the OracleBulkCopy
object.
Exceptions
ArgumentNullException
- The connection
parameter is null.
InvalidOperationException
- The connection is not in the open state.
Remarks
The connection passed to this constructor must be open. It remains open after the OracleBulkCopy
instance is closed.
The Connection
property is set to the supplied connection.
This constructor instantiates a new instance of the OracleBulkCopy
class by first creating an OracleConnection
object based on the supplied connectionString
, then initializing the new OracleBulkCopy
object with the OracleConnection
object and the supplied OracleBulkCopyOptions
enumeration values.
Declaration
Parameters
connectionString
The connection information used to connect to the Oracle database to perform the bulk copy operation.
copyOptions
The combination of OracleBulkCopyOptions
enumeration values that determine the behavior of the bulk copy operation.
Exceptions
ArgumentNullException
- The connectionString
is null.
ArgumentException
- The connectionString
parameter is empty.
Remarks
The constructor uses the new instance of the OracleConnection
class to initialize a new instance of the OracleBulkCopy
class. The OracleBulkCopy
instance behaves according to options supplied in the copyOptions
parameter.
The connection is automatically closed when the OracleBulkCopy
instance is closed.
The Connection
property is set to an OracleConnection
object initialized using the supplied connectionString
.
OracleBulkCopy
properties are listed in Table 17-5.
Table 17-5 OracleBulkCopy Properties
Property | Description |
---|---|
| Specifies the number of rows to be sent as a batch to the database |
| Specifies the |
| Specifies the number of seconds allowed for the bulk copy operation to complete before it is aborted |
| Specifies the column mappings between the data source and destination table |
| Specifies the |
| Specifies the database table that the data is loaded in |
| Defines the number of rows to be processed before a notification event is generated |
This property specifies the number of rows to be sent as a batch to the database.
Declaration
Property Value
An integer value for the number of rows to be sent to the database as a batch.
Exceptions
ArgumentOutOfRangeException
- The batch size is less than zero.
Remarks
The default value is zero, indicating that the rows are not sent to the database in batches. The entire set of rows are sent in one single batch.
A batch is complete when BatchSize
number of rows have been processed or there are no more rows to send to the database.
BatchSize
>
0
and the UseInternalTransaction
bulk copy option is specified, each batch of the bulk copy operation occurs within a transaction. If the connection used to perform the bulk copy operation is already part of a transaction, an InvalidOperationException
exception is raised. BatchSize
>
0
and the UseInternalTransaction
option is not specified, rows are sent to the database in batches of size BatchSize
, but no transaction-related action is taken. The BatchSize
property can be set at any time. If a bulk copy is already in progress, the current batch size is determined by the previous batch size. Subsequent batches use the new batch size.
If the BatchSize
property is initially zero and changes while a WriteToServer
operation is in progress, that operation loads the data as a single batch. Any subsequent WriteToServer
operations on the same OracleBulkCopy
instance use the new BatchSize
.
This property specifies the OracleBulkCopyOptions
enumeration value that determines the behavior of the bulk copy option.
Declaration
Property Value
The OracleBulkCopyOptions
enumeration object that defines the behavior of the bulk copy operation.
Exceptions
ArgumentNullException
- The bulk copy options set is null.
Remarks
The default value of this property is OracleBulkCopyOptions.Default
value. This property can be used to change the bulk copy options between the batches of a bulk copy operation.
This property specifies the number of seconds allowed for the bulk copy operation to complete before it is aborted.
Declaration
Property Value
An integer value for the number of seconds after which the bulk copy operation times out.
Exceptions
ArgumentOutOfRangeException
- The timeout value is set to less than zero.
Remarks
The default value is 30 seconds.
If BatchSize
>0
, rows that were sent to the database in the previous batches remain committed. The rows that are processed in the current batch are not sent to the database. If BatchSize=0
, no rows are sent to the database.
This property specifies the column mappings between the data source and destination table.
Declaration
Property Value
The OracleBulkCopyColumnMappingCollection
object that defines the column mapping between the source and destination table.
Remarks
The ColumnMappings
collection is unnecessary if the data source and the destination table have the same number of columns, and the ordinal position of each source column matches the ordinal position of the corresponding destination column. However, if the column counts differ, or the ordinal positions are not consistent, the ColumnMappings
collection must be used to ensure that data is copied into the correct columns.
During the execution of a bulk copy operation, this collection can be accessed, but it cannot be changed.
By default, this property specifies an empty collection of column mappings.
This property specifies the OracleConnection
object that the Oracle database uses to perform the bulk copy operation.
Declaration
Property Value
The OracleConnection
object used for the bulk copy operations.
Remarks
This property gets the connection constructed by the OracleBulkCopy
, if the OracleBulkCopy
object is initialized using a connection string.
This property specifies the database table that the data is loaded into.
Declaration
Property Value
A string value that identifies the destination table name.
Exceptions
ArgumentNullException
- The destination table name set is null.
ArgumentException
- The destination table name is empty.
Remarks
If DestinationTableName
is modified while a WriteToServer
operation is running, the change does not affect the current operation. The new DestinationTableName
value is used the next time a WriteToServer
method is called.
This property defines the number of rows to be processed before a notification event is generated.
Declaration
Property Value
An integer value that specifies the number of rows to be processed before the notification event is raised.
Exceptions
ArgumentOutOfRangeException
- The property value is set to a number less than zero.
Remarks
The default value for this property is zero, to specify that no notifications events are to be generated.
This property can be retrieved in user interface components to display the progress of a bulk copy operation. The NotifyAfter
property can be set at anytime, even during a bulk copy operation. The changes take effect for the next notification and any subsequent operations on the same instance.
OracleBulkCopy
methods are listed in Table 17-6.
Table 17-6 OracleBulkCopy Public Methods
Method | Description |
---|---|
| Closes the |
| Releases any resources or memory allocated by the object |
| Copies rows to a destination table |
This method closes the OracleBulkCopy
instance.
Declaration
Exceptions
InvalidOperationException
- The Close
method was called from a OracleRowsCopied
event.
Remarks
After the Close
method is called on a OracleBulkCopy
object, no other operation can succeed. Calls to the WriteToServer
method throw an InvalidOperationException
. The Close
method closes the connection if the connection was opened by the OracleBulkCopy
object, that is, if the OracleBulkCopy
object was created by a constructor that takes a connection string.
This method releases any resources or memory allocated by the object.
Declaration
Implements
IDisposable
Remarks
After the Dispose
method is called on the OracleBulkCopy
object, no other operation can succeed. The connection is closed if the connection was opened by the OracleBulkCopy
object, that is, if a constructor that takes a connection string created the OracleBulkCopy
object.
WriteToServer
copies rows to a destination table.
Overload List:
This method copies all rows from the supplied DataRow
array to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
This method copies all rows in the supplied DataTable
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
This method copies all rows in the supplied IDataReader
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
This method copies rows that match the supplied row state in the supplied DataTable
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
This method copies all rows from the specified OracleRefCursor
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
This method copies all rows from the supplied DataRow
array to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
Declaration
Parameters
rows
An array of DataRow
objects to be copied to the destination table.
Exceptions
ArgumentNullException
- The rows
parameter is null.
InvalidOperationException
- The connection is not in an open state.
Remarks
The ColumnMappings
collection maps from the DataRow
columns to the destination database table.
This method copies all rows in the supplied DataTable
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
Declaration
Parameters
table
The source DataTable
containing rows to be copied to the destination table.
Exceptions
ArgumentNullException
- The table
parameter is null.
InvalidOperationException
- The connection is not in an open state.
Remarks
All rows in the DataTable
are copied to the destination table except those that have been deleted.
The ColumnMappings
collection maps from the DataTable
columns to the destination database table.
This method copies all rows in the supplied IDataReader
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
Declaration
Parameters
reader
A IDataReader
instance containing rows to be copied to the destination table.
Exceptions
ArgumentNullException
- The reader
parameter is null.
InvalidOperationException
- The connection is not in an open state.
Remarks
The bulk copy operation starts with the next available row of the data reader. Typically, the reader
returned by a call to the ExecuteReader
method is passed to the WriteToServer
method so that the next row becomes the first row. To copy multiple result sets, the application must call NextResult
on the reader
and then call the WriteToServer
method again.
This WriteToServer
method changes the state of the reader as it calls reader.Read
internally to get the source rows. Thus, at the end of the WriteToServer
operation, the reader
is at the end of the result set.
The ColumnMappings
collection maps from the data reader columns to the destination database table.
This method copies rows that match the supplied row state in the supplied DataTable
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
Declaration
Parameters
table
A DataTable
containing rows to be copied to the destination table.
rowState
The DataRowState
enumeration value. Only rows matching the row state are copied to the destination.
Exceptions
ArgumentNullException
- The table
or rowState
parameter is null.
InvalidOperationException
- The connection is not in an open state.
Remarks
Only rows in the DataTable
that are in the state indicated in the rowState
argument and have not been deleted are copied to the destination table.
The ColumnMappings
collection maps from the DataTable
columns to the destination database table.
This method copies all rows from the specified OracleRefCursor
to a destination table specified by the DestinationTableName
property of the OracleBulkCopy
object.
Declaration
Parameters
refCursor
An OracleRefCursor
object containing rows to be copied to the destination table.
Exceptions
ArgumentNullException
- The refCursor
parameter is null
InvalidOperationException
- The connection is not in an open state.
Remarks
The ColumnMappings
collection maps from the OracleRefCursor
columns to the destination database table.
OracleBulkCopy
events are listed in Table 17-7.
Table 17-7 OracleBulkCopy Events
Event | Description |
---|---|
| Triggered every time the number of rows specified by the |
This event is triggered every time the number of rows specified by the OracleBulkCopy.NotifyAfter
property has been processed.
Declaration
Exceptions
InvalidOperationException
- The Close
method is called inside this event.
Remarks
This event is raised when the number of rows specified by the NotifyAfter
property has been processed. It does not imply that the rows have been sent to the database or committed.
To cancel the operation from this event, use the Abort
property of OracleRowsCopiedEventArgs
class.
The OracleBulkCopyColumnMapping
class defines the mapping between a column in the data source and a column in the destination database table.
Class Inheritance
System.Object
System.OracleBulkCopyColumnMapping
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
Column mappings define the mapping between data source and the target table.
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round-trips to the database to determine the column name if the mapping is specified by ordinal position. To avoid this performance overhead, specify the mapping by column name. |
Example
// C#
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBulkCopyColumnMapping
members are listed in the following tables.
OracleBulkCopyColumnMapping Constructors
The OracleBulkCopyColumnMapping
constructors are listed in Table 17-8.
Table 17-8 OracleBulkCopyColumnMapping Constructors
Constructor | Description |
---|---|
OracleBulkCopyColumnMapping Constructors | Instantiates new instances of the |
OracleBulkCopyColumnMapping Properties
The OracleBulkCopyColumnMapping
properties are listed in Table 17-9.
Table 17-9 OracleBulkCopyColumnMapping Properties
Property | Description |
---|---|
| Specifies the column name of the destination table that is being mapped |
| Specifies the column ordinal value of the destination table that is being mapped |
| Specifies the column name of the data source that is being mapped |
| Specifies the column ordinal value of the data source that is being mapped |
OracleBulkCopyColumnMapping
constructors instantiates new instances of the OracleBulkCopyColumnMapping
class.
Overload List:
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column ordinal.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column name.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column name and destination column ordinal.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column name and destination column name.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class.
Declaration
Remarks
Applications that use this constructor must define the source for the mapping using the SourceColumn
or SourceOrdinal
property, and must define the destination for the mapping using the DestinationColumn
or DestinationOrdinal
property.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source and destination column ordinal positions.
Declaration
Parameters
sourceColumnOrdinal
The ordinal position of the source column within the data source.
destinationOrdinal
The ordinal position of the destination column within the destination table.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column name.
Declaration
Parameters
sourceColumnOrdinal
The ordinal position of the source column within the data source.
destinationColumn
The name of the destination column within the destination table.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column name and destination column ordinal.
Declaration
Parameters
sourceColumn
The name of the source column within the data source.
destinationOrdinal
The ordinal position of the destination column within the destination table.
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source and destination column names.
Declaration
Parameters
sourceColumn
The name of the source column within the data source.
destinationColumn
The name of the destination column within the destination table.
The OracleBulkCopyColumnMapping
properties are listed in Table 17-10.
Table 17-10 OracleBulkCopyColumnMapping Properties
Property | Description |
---|---|
| Specifies the column name of the destination table that is being mapped |
| Specifies the column ordinal value of the destination table that is being mapped |
| Specifies the column name of the data source that is being mapped |
| Specifies the column ordinal value of the data source that is being mapped |
This property specifies the column name of the destination table that is being mapped.
Declaration
Property Value
A string value that represents the destination column name of the mapping.
Remarks
The DestinationColumn
and DestinationOrdinal
properties are mutually exclusive. The last value set takes precedence.
This property specifies the column ordinal value of the destination table that is being mapped.
Declaration
Property Value
An integer value that represents the destination column ordinal of the mapping.
Exceptions
IndexOutOfRangeException
- The destination ordinal is invalid.
Remarks
The DestinationOrdinal
and DestinationColumn
properties are mutually exclusive. The last value set takes precedence.
This property specifies the column name of the data source that is being mapped.
Declaration
Property Value
A string value that represents the source column name of the mapping.
Remarks
The SourceColumn
and SourceOrdinal
properties are mutually exclusive. The last value set takes precedence.
This property specifies the column ordinal value of the data source that is being mapped.
Declaration
Property Value
An integer value that represents the source column ordinal of the mapping.
Exceptions
IndexOutOfRangeException
- The source ordinal is invalid.
Remarks
The SourceOrdinal
and SourceColumn
properties are mutually exclusive. The last value set takes precedence.
The OracleBulkCopyColumnMappingCollection
class represents a collection of OracleBulkCopyColumnMapping
objects that are used to map columns in the data source to columns in a destination table.
Class Inheritance
System.Object
System.CollectionBase
System.OracleBulkCopyColumnMappingCollection
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
Column mappings define the mapping between data source and the target table.
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round-trips to the database to determine the column name if the mapping is specified by ordinal position. To avoid this performance overhead, specify the mapping by column name. |
Example
// C#
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
OracleBulkCopyColumnMappingCollection
members are listed in the following tables.
OracleBulkCopyColumnMappingCollection Properties
The OracleBulkCopyColumnMappingCollection
properties are listed in Table 17-11.
Table 17-11 OracleBulkCopyColumnMappingCollection Properties
Property | Description |
---|---|
| Gets or sets the |
OracleBulkCopyColumnMappingCollection Public Methods
The OracleBulkCopyColumnMappingCollection
public methods are listed in Table 17-12.
Table 17-12 OracleBulkCopyColumnMappingCollection Public Methods
Public Method | Description |
---|---|
| Adds objects to the collection |
| Clears the contents of the collection |
| Returns a value indicating whether or not a specified |
| Copies the elements of the |
| Returns the index of the specified |
| Inserts a new |
| Removes the specified |
| Removes the mapping from the collection at the specified index. |
The OracleBulkCopyColumnMappingCollection
properties are listed in Table 17-13.
Table 17-13 OracleBulkCopyColumnMappingCollection Properties
Property | Description |
---|---|
| Gets or sets the |
This property gets or sets the OracleBulkCopyColumnMapping
object at the specified index.
Declaration
Parameters
index
The zero-based index of the OracleBulkCopyColumnMapping
being set or retrieved.
Property Value
An OracleBulkCopyColumnMapping
object at the specified index.
Exceptions
IndexOutOfRangeException
- The specified index does not exist.
The OracleBulkCopyColumnMappingCollection
public methods are listed in Table 17-14.
Table 17-14 OracleBulkCopyColumnMappingCollection Public Methods
Public Method | Description |
---|---|
| Adds objects to the collection |
| Clears the contents of the collection |
| Returns a value indicating whether or not a specified |
| Copies the elements of the |
| Returns the index of the specified |
| Inserts a new |
| Removes the specified |
| Removes the mapping from the collection at the specified index. |
Add methods add objects to the collection.
Overload List:
This method adds the supplied OracleBulkCopyColumnMapping
object to the collection.
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source and destination column ordinal positions.
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source column ordinal and destination column name.
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source column name and destination column ordinal.
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source and destination column names.
This method adds the supplied OracleBulkCopyColumnMapping
object to the collection.
Declaration
Parameters
bulkCopyColumnMapping
The OracleBulkCopyColumnMapping
object that describes the mapping to be added to the collection.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source and destination column ordinal positions.
Declaration
Parameters
sourceColumnIndex
The ordinal position of the source column within the data source.
destinationColumnIndex
The ordinal position of the destination column within the destination table.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Return Value
The newly created OracleBulkCopyColumnMapping
object that was added to the collection.
Remarks
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round-trips to the database to determine the column name if the mapping is specified by ordinal position. To avoid this performance overhead, specify the mapping by column name. |
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source column ordinal and destination column name.
Declaration
Parameters
sourceColumnIndex
The ordinal position of the source column within the data source.
destinationColumn
The name of the destination column within the destination table.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Return Value
The newly created OracleBulkCopyColumnMapping
object that was added to the collection.
Remarks
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round trips to the database to determine the column names if the mapping is specified by ordinal resulting in a performance overhead. Therefore, it is recommended to specify the mapping by column names. |
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source column name and destination column ordinal.
Declaration
Parameters
sourceColumn
The name of the source column within the data source.
destinationColumnIndex
The ordinal position of the destination column within the destination table.
Return Value
The newly created OracleBulkCopyColumnMapping
object that was added to the collection.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Remarks
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round trips to the database to determine the column names if the mapping is specified by ordinal resulting in a performance overhead. Therefore, it is recommended to specify the mapping by column names. |
This method creates and adds an OracleBulkCopyColumnMapping
object to the collection using the supplied source and destination column names.
Declaration
Parameters
sourceColumn
The name of the source column within the data source.
destinationColumn
The name of the destination column within the destination table.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Return Value
The newly created OracleBulkCopyColumnMapping
object that was added to the collection.
Remarks
It is not necessary to specify column mappings for all the columns in the data source. If a ColumnMapping
is not specified, then, by default, columns are mapped based on the ordinal position. This succeeds only if the source and destination table schema match. If there is a mismatch, an InvalidOperationException
is thrown.
All the mappings in a mapping collection must be by name or ordinal position.
Note: Oracle Data Provider for .NET makes one or more round-trips to the database to determine the column name if the mapping is specified by ordinal position. To avoid this performance overhead, specify the mapping by column name. |
This method clears the contents of the collection.
Declaration
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Remarks
The Clear
method is most commonly used when an application uses a single OracleBulkCopy
instance to process more than one bulk copy operation. If column mappings are created for one bulk copy operation, the OracleBulkCopyColumnMappingCollection
must be cleared after the WriteToServer
method invocation and before the next bulk copy is processed.
It is usually more efficient to perform several bulk copies using the same OracleBulkCopy
instance than to use a separate OracleBulkCopy
for each operation.
This method returns a value indicating whether or not a specified OracleBulkCopyColumnMapping
object exists in the collection.
Declaration
Parameters
value
A valid OracleBulkCopyColumnMapping
object.
Return Value
Returns true
if the specified mapping exists in the collection; otherwise, returns false
.
This method copies the elements of the OracleBulkCopyColumnMappingCollection
to an array of OracleBulkCopyColumnMapping
items, starting at a specified index.
Declaration
Parameters
array
The one-dimensional OracleBulkCopyColumnMapping
array that is the destination for the elements copied from the OracleBulkCopyColumnMappingCollection
object. The array must have zero-based indexing.
index
The zero-based array index at which copying begins.
This method returns the index of the specified OracleBulkCopyColumnMapping
object.
Declaration
Parameters
value
The OracleBulkCopyColumnMapping
object that is being returned.
Return Value
The zero-based index of the column mapping or -1 if the column mapping is not found in the collection.
This method inserts a new OracleBulkCopyColumnMapping
object in the collection, at the index specified.
Declaration
Parameters
index
The integer value of the location within the OracleBulkCopyColumnMappingCollection
at which the new OracleBulkCopyColumnMapping
is inserted.
value
The OracleBulkCopyColumnMapping
object to be inserted in the collection.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
This method removes the specified OracleBulkCopyColumnMapping
element from the OracleBulkCopyColumnMappingCollection
.
Declaration
Parameters
value
The OracleBulkCopyColumnMapping
object to be removed from the collection.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Remarks
The Remove
method is most commonly used when a single OracleBulkCopy
instance processes more than one bulk copy operation. If column mappings are created for one bulk copy operation, mappings that no longer apply must be removed after the WriteToServer
method invocation and before mappings are defined for the next bulk copy. The Clear
method can clear the entire collection, and the Remove
and the RemoveAt
methods can remove mappings individually.
It is usually more efficient to perform several bulk copies using the same OracleBulkCopy
instance than to use a separate OracleBulkCopy
for each operation.
This method removes the mapping from the collection at the specified index.
Declaration
Parameters
index
The zero-based index of the OracleBulkCopyColumnMapping
object to be removed from the collection.
Exceptions
InvalidOperationException
- The bulk copy operation is in progress.
Remarks
The RemoveAt
method is most commonly used when a single OracleBulkCopy
instance is used to process more than one bulk copy operation. If column mappings are created for one bulk copy operation, mappings that no longer apply must be removed after the WriteToServer
method invocation and before the mappings for the next bulk copy are defined. The Clear
method can clear the entire collection, and the Remove
and the RemoveAt
methods can remove mappings individually.
It is usually more efficient to perform several bulk copies using the same OracleBulkCopy
instance than to use a separate OracleBulkCopy
for each operation.
The OracleBulkCopyOptions
enumeration specifies the values that can be combined with an instance of the OracleBulkCopy
class and used as options to determine its behavior and the behavior of the WriteToServer
methods for that instance.
Table 17-15 lists all the OracleBulkCopyOptions
enumeration values with a description of each enumerated value.
Table 17-15 OracleBulkCopyOptions Enumeration Members
Member Name | Description |
---|---|
| Indicates that the default value for all options are to be used |
| Indicates that each batch of the bulk copy operation occurs within a transaction. If the connection used to perform the bulk copy operation is already part of a transaction, an If this member is not specified, |
Note: All bulk copy operations are agnostic of any local or distributed transaction created by the application. |
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleRowsCopiedEventHandler
delegate represents the method that handles the OracleRowsCopied
event of an OracleBulkCopy
object.
Declaration
Parameters
sender
The source of the event.
eventArgs
The OracleRowsCopiedEventArgs
object that contains the event data.
Remarks
Event callbacks can be registered through this event delegate for applications that wish to be notified every time the number of rows specified by the OracleBulkCopy.NotifyAfter
property has been processed.
If the event handler calls the OracleBulkCopy.Close
method, an exception is generated, and the OracleBulkCopy
object state does not change.
The event handler can also set the OracleRowsCopiedEventArgs.Abort
property to true
to indicate that the bulk copy operation must be aborted. If the bulk copy operation is part of an external transaction, an exception is generated and the transaction is not rolled back. The application is responsible for either committing or rolling back the external transaction.
If there is no external transaction, the internal transaction for the current batch of rows is automatically rolled back. However the previous batches of imported rows are unaffected, as their transactions have already been committed.
Requirements
Namespace: Oracle.DataAccess.Client
Assembly: Oracle.DataAccess.dll
ODP.NET Version: ODP.NET for .NET Framework 2.0 or ODP.NET for .NET Framework 4
The OracleRowsCopiedEventArgs
class represents the set of arguments passed as part of event data for the OracleRowsCopied
event.
Class Inheritance
System.Object
System.EventArgs
System.OracleRowsCopiedEventArgs
Declaration
Thread Safety
All public static methods are thread-safe, although instance methods do not guarantee thread safety.
Remarks
Each time the number of rows represented by the OracleBulkCopy.NotifyAfter
property is processed, the OracleBulkCopy.OracleRowsCopied
event is raised, providing an OracleRowsCopiedEventArgs
object that stores the event data.
OracleRowsCopiedEventArgs
members are listed in the following tables.
OracleRowsCopiedEventArgs Constructors
OracleRowsCopiedEventArgs
constructors are listed in Table 17-16.
Table 17-16 OracleRowsCopiedEventArgs Constructors
Constructor | Description |
---|---|
|
OracleRowsCopiedEventArgs Properties
OracleRowsCopiedEventArgs
properties are listed in Table 17-17.
Table 17-17 OracleRowsCopiedEventArgs Properties
Property | Description |
---|---|
| Retrieves or sets a value that indicates whether or not the bulk copy operation is aborted |
| Retrieves a value that represents the number of rows copied during the current bulk copy operation |
OracleRowsCopiedEventArgs
creates new instances of the OracleRowsCopiedEventArgs
class.
Overload List:
This constructor creates a new instance of the OracleRowsCopiedEventArgs
object.
This constructor creates a new instance of the OracleRowsCopiedEventArgs
object.
Declaration
Parameters
rowsCopied
An Int64
value that indicates the number of rows copied during the current bulk copy operation.
Remarks
The value in the rowsCopied
parameter is reset by each call to a WriteToServer
method.
OracleRowsCopiedEventArgs
properties are listed in Table 17-18.
Table 17-18 OracleRowsCopiedEventArgs Properties
Property | Description |
---|---|
| Retrieves or sets a value that indicates whether or not the bulk copy operation is aborted |
| Retrieves a value that represents the number of rows copied during the current bulk copy operation |
This property retrieves or sets a value that indicates whether or not the bulk copy operation is aborted.
Declaration
Property Value
Returns true
if the bulk copy operation is to be aborted; otherwise, returns false
.
Remarks
Set the Abort
property to true
to cancel the bulk copy operation.
If the Close
method is called from OracleRowsCopied
, an exception is generated, and the OracleBulkCopy
object state does not change.
If the application does not create a transaction, the internal transaction corresponding to the current batch is automatically rolled back. However, changes related to previous batches within the bulk copy operation are retained, because the transactions in those batches are committed. This case is applicable only when UseInternalTransaction
bulk copy option is chosen.
This property retrieves a value that represents the number of rows copied during the current bulk copy operation.
Declaration
Property Value
An Int64
value that returns the number of rows copied.
Remarks
The value in the RowsCopied
property is reset by each call to a WriteToServer
method.
ODP.NET provides standard metadata collections as well as various Oracle database-specific metadata collections that can be retrieved through the OracleConnection.GetSchema
API.
This appendix contains the following topics:
The common schema collections are available for all .NET Framework managed providers. ODP.NET supports the same common schema collections.
See Also: "Understanding the Common Schema Collections" in the MSDN Library |
Table A-1 is a list of metadata collections that is available from the data source, such as tables, columns, indexes, and stored procedures.
Table A-1 MetaDataCollections
Column Name | Data Type | Description |
---|---|---|
|
| The name of the collection passed to the |
|
| Number of restrictions specified for the named collection. |
|
| Number of parts in the composite identifier/database object name. |
Table A-2 lists DataSourceInformation
information which may include these columns and possibly others.
Table A-2 DataSource nformation
Columns | Data Type | Description |
---|---|---|
|
| Separator for multipart names: |
|
| Database name: Oracle |
|
| Database version. Note that this is the version of the database instance currently being accessed by |
|
| A normalized DataSource version for easier comparison between different versions. For example: DataSource Version: 10.2.0.1.0 Normalized DataSource Version: 10.02.00.01.00 |
|
| An enumeration that indicates the relationship between the columns in a |
|
| Format for a valid identifier. |
|
| An enumeration that specifies whether or not to treat non-quoted identifiers as case sensitive. |
|
| A boolean that indicates whether or not the select list must contain the columns in an |
|
| A string indicating whether or not parameter markers begin with a special character. |
|
| The format of a parameter marker. |
|
| Maximum length of a parameter. |
|
| The format for a valid parameter name. |
|
| The format of a quoted identifier. |
|
| An enumeration that specifies whether or not to treat quote identifiers as case sensitive. |
|
| The format for a string literal. |
|
| An enumeration indicating the types of SQL join statements supported by the data source. |
Table A-3 lists DataTypes Collection information which may include these columns and possibly others.
Note: As an example, the description column includes complete information for theTIMESTAMP WITH LOCAL TIME ZONE data type. |
Table A-3 DataTypes
ColumnName | Data Type | Description |
---|---|---|
|
| The provider-specific data type name. Example: |
|
| The provider-specific type value. Example: |
|
| The length of a non-numeric column or parameter. Example: |
|
| A format string that indicates how to add this column to a DDL statement. Example: |
|
| The parameters specified to create a column of this data type. Example: 8 |
|
| The .NET type for the data type. Example: |
|
| A boolean value that indicates whether or not this data type can be auto-incremented. Example: |
|
| A boolean value that indicates whether or not this data type is the best match to values in the Example: |
|
| A boolean value that indicates whether or not this data type is case-sensitive. Example: |
|
| A boolean value that indicates whether or not this data type has a fixed length. Example: |
|
| A boolean value that indicates whether or not this data type has a fixed precision and scale. Example: |
|
| A boolean value that indicates whether or not this data type contains very long data. Example: |
|
| A boolean value that indicates whether or not this data type is nullable. Example: |
|
| A boolean value that indicates whether or not the data type can be used in a Example: |
|
| A boolean value that indicates whether or not this data type can be used with the Example: |
|
| A boolean value that indicates whether or not the data type is unsigned. |
|
| The maximum number of digits allowed to the right of the decimal point. |
|
| The minimum number of digits allowed to the right of the decimal point. |
|
| A boolean value that indicates whether or not the database updates the data type every time the row is changed and the value of the column differs from all previous values. Example: |
|
| The earliest version of the database that can be used. Example: |
|
| A boolean value that indicates whether or not the data type can be expressed as a literal. Example: |
|
| The prefix of a specified literal. Example: |
|
| The suffix of a specified literal. Example: |
The ReservedWords
collection exposes information about the words that are reserved by the database currently connected to ODP.NET.
Table A-5 lists the ReservedWords Collection.
Oracle Data Provider for .NET supports both the common schema collections described previously and the following Oracle-specific schema collections:
Table A-6 lists the column name, data type, and description of the Tables Schema Schema Collection.
Table A-7 lists the column name, data type, and description of the Columns Schema Collection .
Table A-7 Columns
ColumnName | Data Type | Description |
---|---|---|
|
| Owner of the table or view. |
|
| Name of the table or view. |
|
| Name of the column. |
|
| Sequence number of the column as created. |
|
| Data type of the column. |
|
| Length of the column in bytes. |
|
| Decimal precision for |
|
| Digits to right of decimal point in a number. |
|
| Specifies whether or not a column allows |
|
| Indicates whether the column uses |
|
| Length of the column in characters. This value only applies to |
Table A-8 lists the column name, data type, and description of the Views Schema Collection.
Table A-8 Views
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the view. |
|
| Name of the view. |
|
| Length of the view text. |
|
| View text. |
|
| Length of the type clause of the typed view. |
|
| Type clause of the typed view. |
|
| Length of the |
|
|
|
|
| Owner of the view type if the view is a typed view. |
|
| Type of the view if the view is a typed view. |
|
| Name of the superview. (Oracle9i or later) |
Table A-9 lists the column name, data type and description of the XMLSchema Schema Collection.
Note: This collection is only available with Oracle Database 10g and later. |
Table A-9 XMLSchema
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the XML schema. |
|
| Schema URL of the XML schema. |
|
| Indicates whether the XML schema is local (|
|
| XML schema document. |
|
| Internal database object name for the schema. |
|
| Fully qualified schema URL. |
|
| Hierarchy type for the schema. |
Table A-11 lists the column name, data type and description of the Synonyms Schema Collection.
Table A-11 Synonyms
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the synonym. |
|
| Name of the synonym. |
|
| Owner of the object referenced by the synonym. Although the column is called |
|
| Name of the object referenced by the synonym. Although the column is called |
|
| Name of the database link referenced, if any. |
Table A-12 lists the column name, data type, and description of the Sequences Schema Collection.
Table A-12 Sequences
Column Name | Data Type | Description |
---|---|---|
|
| Name of the owner of the sequence. |
|
| Sequence name. |
|
| Minimum value of the sequence. |
|
| Maximum value of the sequence. |
|
| Value by which sequence is incremented. |
|
| Indicates if sequence wraps around on reaching limit. |
|
| Indicates if sequence numbers are generated in order. |
|
| Number of sequence numbers to cache. |
|
| Last sequence number written to disk. If a sequence uses caching, the number written to disk is the last number placed in the sequence cache. This number is likely to be greater than the last sequence number that was used. |
Table A-13 lists the column name, data type, and description of the Functions Schema Collection.
Table A-13 Functions
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the function. |
|
| Name of the function. |
|
| Name of the subobject (for example, partition). |
|
| Dictionary object number of the function. |
|
| Dictionary object number of the segment that contains the function. |
|
| Timestamp for the creation of the function. |
|
| Timestamp for the last modification of the function resulting from a DDL statement (including grants and revokes). |
|
| Timestamp for the specification of the function (character data). |
|
| Status of the function (|
|
| Whether or not the function is temporary (the current session can see only data that it placed in this object itself). |
|
| Indicates whether the name of this function is system generated (|
|
| Whether or not this is a secondary object created by the |
Table A-14 lists the column name, data type, and description of the Procedures Schema Collection.
Table A-14 Procedures
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the procedure. |
|
| Name of the procedure. |
|
| Name of the subobject (for example, partition). |
|
| Dictionary object number of the procedure. |
|
| Dictionary object number of the segment that contains the procedure. |
|
| Timestamp for the creation of the procedure. |
|
| Timestamp for the last modification of the procedure resulting from a DDL statement (including grants and revokes). |
|
| Timestamp for the specification of the procedure (character data). |
|
| Status of the procedure (|
|
| Whether or not the procedure is temporary (the current session can see only data that it placed in this object itself). |
|
| Indicates whether the name of this procedure is system generated (|
|
| Whether or not this is a secondary object created by the |
Table A-15 lists the column name, data type and description of the ProcedureParameters Schema Collection.
Table A-15 ProcedureParameters
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the object. |
|
| Name of the procedure or function. |
|
| Name of the package. |
|
| Object number of the object. |
|
| Indicates the nth overloading ordered by its appearance in the source; otherwise, it is |
|
| Subprogram id for the procedure or function |
|
| If the argument is a scalar type, then the argument name is the name of the argument. A null argument name is used to denote a function return value. |
|
| If |
|
| Defines the sequential order of the argument. Argument sequence starts from |
|
| Nesting depth of the argument for composite types. |
|
| Data type of the argument. |
|
| Default value for the argument. |
|
| Length of the default value for the argument. |
|
| Direction of the argument: [|
|
| Length of the column (in bytes). |
|
| Length in decimal digits (|
|
| Digits to the right of the decimal point in a number. |
|
| Argument radix for a number. |
|
| Character set name for the argument. |
|
| Owner of the type of the argument. |
|
| Name of the type of the argument. If the type is a package local type (that is, it is declared in a package specification), then this column displays the name of the package. |
|
| Displays the name of the type declared in the package identified in the Relevant only for package local types. |
|
| Displays the database link that refers to the remote package. Relevant only for package local types when the package identified in the |
|
| For numeric arguments, the name of the PL/SQL type of the argument. Otherwise, |
|
| Character limit for string data types. |
|
| Indicates whether the byte limit (|
Table A-16 lists the column name, data type, and description of the Arguments Schema Collection.
Table A-16 Arguments
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the object. |
|
| Name of the package. |
|
| Name of the procedure or function. |
|
| If the argument is a scalar type, then the argument name is the name of the argument. A null argument name is used to denote a function return value. |
|
| If |
|
| Defines the sequential order of the argument. Argument sequence starts from |
|
| Default value for the argument. |
|
| Length of the default value for the argument. |
|
| Direction of the argument: [|
|
| Length of the column (in bytes). |
|
| Length in decimal digits (|
|
| Digits to the right of the decimal point in a number. |
|
| Data type of the argument. |
|
| Indicates whether the column uses |
Table A-17 lists the column name, data type, and description of the Packages Schema Collection.
Table A-17 Packages
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the package. |
|
| Name of the package. |
|
| Name of the subobject (for example, partition). |
|
| Dictionary object number of the package. |
|
| Dictionary object number of the segment that contains the package. |
|
| Timestamp for the creation of the package. |
|
| Timestamp for the last modification of the package resulting from a DDL statement (including grants and revokes). |
|
| Timestamp for the specification of the package (character data). |
|
| Status of the package (|
|
| Whether or not the package is temporary (the current session can see only data that it placed in this object itself). |
|
| Indicates whether the name of this package was system generated (|
|
| Whether or not this is a secondary object created by the |
Table A-18 lists the column name, data type, and description of the PackageBodies Schema Collection.
Table A-18 PackageBodies
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the package body. |
|
| Name of the package body. |
|
| Name of the subobject (for example, partition). |
|
| Dictionary object number of the package body. |
|
| Dictionary object number of the segment that contains the package body. |
|
| Timestamp for the creation of the package body. |
|
| Timestamp for the last modification of the package body resulting from a DDL statement (including grants and revokes). |
|
| Timestamp for the specification of the package body (character data). |
|
| Status of the package body (|
|
| Whether the package body is temporary (the current session can see only data that it placed in this object itself). |
|
| Indicates whether the name of this package body is system generated (|
|
| Whether or not this is a secondary object created by the |
Table A-19 lists the column name, data type, and description of the JavaClasses Schema Collection.
Table A-19 JavaClasses
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the Java class. |
|
| Name of the Java class. |
|
| Major version number of the Java class, as defined in the JVM specification. |
|
| Minor version number of the Java class, as defined in the JVM specification. |
|
| Indicates whether the stored object is a Java class (|
|
| Accessibility of the Java class. |
|
| Indicates whether this Java class is an inner class (|
|
| Indicates whether this Java class is an abstract class (|
|
| Indicates whether this Java class is a final class (|
|
| Indicates whether this Java class contains debug information (|
|
| Source designation of the Java class. |
|
| Super class of this Java class. |
|
| Outer class of this Java class if this Java class is an inner class. |
Table A-20 lists the column name, data type, and description of the Indexes Schema Collection.
Table A-20 Indexes
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the index. |
|
| Name of the index. |
|
| Type of the index:
|
|
| Owner of the indexed object. |
|
| Name of the indexed object. |
|
| Type of the indexed object (for example, |
|
| Indicates whether the index is |
|
| Indicates whether index compression is enabled (|
|
| Number of columns in the prefix of the compression key. |
|
| Name of the tablespace containing the index. |
|
| Initial number of transactions. |
|
| Maximum number of transactions. |
|
| Size of the initial extent. |
|
| Size of secondary extents. |
|
| Minimum number of extents allowed in the segment. |
|
| Maximum number of extents allowed in the segment. |
|
| Percentage increase in extent size. |
|
| Threshold percentage of block space allowed per index entry. |
|
| Column ID of the last column to be included in index-organized table primary key (non-overflow) index. This column maps to the |
|
| Number of process freelists allocated to this segment. |
|
| Number of freelist groups allocated to this segment. |
|
| Minimum percentage of free space in a block. |
|
| Logging information. |
|
| B*-Tree level: depth of the index from its root block to its leaf blocks. A depth of |
|
| Number of leaf blocks in the index. |
|
| Number of distinct indexed values. For indexes that enforce |
|
| Average number of leaf blocks in which each distinct value in the index appears, rounded to the nearest integer. For indexes that enforce |
|
| Average number of data blocks in the table that are pointed to by a distinct value in the index, rounded to the nearest integer. This statistic is the average number of data blocks that contain rows that contain a given value for the indexed columns. |
|
| Indicates the amount of order of the rows in the table based on the values of the index. |
|
| Indicates whether a nonpartitioned index is |
|
| Number of rows in the index. |
|
| Size of the sample used to analyze the index. |
|
| Date on which this index was most recently analyzed. |
|
| Number of threads per instance for scanning the index. |
|
| Number of instances across which the indexes to be scanned. |
|
| Indicates whether the index is partitioned (|
|
| Indicates whether or not the index is on a temporary table. |
|
| Indicates whether the name of the index is system generated (|
|
| Indicates whether the index is a secondary object created by the |
|
| Name of the default buffer pool to be used for the index blocks. |
|
| Indicates whether statistics were entered directly by the user (|
|
| Indicates the duration of a temporary table. |
|
| For a secondary index on an index-organized table, the percentage of rows with |
|
| For a domain index, the owner of the index type. |
|
| For a domain index, the name of the index type. |
|
| For a domain index, the parameter string. |
|
| For partitioned indexes, indicates whether statistics are collected by analyzing the index as a whole (|
|
| Status of the domain index:
|
|
| Status of the operation on the domain index:
|
|
| Status of a function-based index:
|
|
| Indicates whether the index is a join index (|
|
| Indicates whether redundant primary key columns are eliminated from secondary indexes on index-organized tables (|
|
| Indicates whether the index has been dropped and is in the recycle bin (|
Table A-21 lists the column name, data type, and description of the IndexColumns Schema Collection.
Table A-21 IndexColumns
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the index. |
| String | Name of the index. |
| String | Owner of the table or cluster. |
| String | Name of the table or cluster. |
| String | Column name or attribute of object type column. |
|
| Position of column or attribute within the index. |
|
| Indexed length of the column. |
| String | Whether the column is sorted in descending order (|
|
| Maximum codepoint length of the column. (Oracle9i or later) |
Table A-22 lists the column name, data type, and description of the PrimaryKeys Schema Collection.
Table A-22 PrimaryKeys
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the constraint definition. |
|
| Name of the constraint definition. |
|
| Name associated with the table (or view) with constraint definition. |
|
| Text of search condition for a check constraint. |
|
| Owner of table referred to in a referential constraint. |
|
| Name of the unique constraint definition for referenced table. |
|
| Delete rule for a referential constraint (|
|
| Enforcement status of constraint (|
|
| Whether or not the constraint is deferrable. |
|
| Whether all data obeys the constraint (|
|
| Whether the name of the constraint is user or system generated. |
|
| Indicates that this constraint specifies a century in an ambiguous manner. (To avoid errors resulting from this ambiguity, rewrite the constraint using the |
|
| Whether an enabled constraint is enforced or unenforced. |
|
| When the constraint was last enabled or disabled. |
|
| Name of the user owning the index. (Oracle9i or later) |
|
| Name of the index (only shown for unique and primary-key constraints). (Oracle9i or later) |
Table A-23 lists the column name, data type, and description of the ForeignKeys Schema Collection.
Table A-23 ForeignKeys
Column Name | Data Type | Description |
---|---|---|
|
| Name of the constraint definition. |
|
| Owner of the constraint definition. |
|
| Name associated with the table (or view) with constraint definition. |
|
| Owner of the constraint definition. |
|
| Name of the constraint definition. |
|
| Name associated with the table (or view) with constraint definition. |
|
| Text of search condition for a check constraint |
|
| Owner of table referred to, in a referential constraint. |
|
| Name of the unique constraint definition for referenced table. |
|
| Delete rule for a referential constraint (|
|
| Enforcement status of constraint (|
|
| Whether or not all data obeys the constraint (|
|
| Whether the name of the constraint is user or system generated. |
|
| Whether an enabled constraint is enforced or unenforced. |
|
| When the constraint was last enabled or disabled. |
|
| Name of the user owning the index. (Oracle9i or later) |
|
| Name of the index. (Oracle9i or later) |
Table A-24 lists the column name, data type, and description of the ForeignKeyColumns Schema Collection.
Table A-24 ForeignKeyColumns
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the constraint definition. |
|
| Name of the constraint definition. |
|
| Name of the table with constraint definition. |
|
| Name of the column or attribute of the object type column specified in the constraint definition. |
|
| Original position of column or attribute in the definition of the object. |
Table A-25 lists the column name, data type, and description of the UniqueKeys Schema Collection.
Table A-25 UniqueKeys
Column Name | Data Type | Description |
---|---|---|
|
| Owner of the constraint definition. |
|
| Name of the constraint definition. |
|
| Name associated with the table (or view) with constraint definition. |
|
| Text of search condition for a check constraint. |
|
| Owner of table referred to in a referential constraint. |
|
| Name of the unique constraint definition for referenced table. |
|
| Delete rule for a referential constraint (|
|
| Enforcement status of constraint (|
|
| Whether or not the constraint is deferrable. |
|
| Whether all data obeys the constraint (|
|
| Whether the name of the constraint is user or system generated. |
|
| Indicates that this constraint specifies a century in an ambiguous manner. (To avoid errors resulting from this ambiguity, rewrite the constraint using the |
|
| Whether an enabled constraint is enforced or not. |
|
| When the constraint was last enabled or disabled. |
|
| Name of the user owning the index. (Oracle9i or later) |
|
| Name of the index (only shown for unique and primary-key constraints). (Oracle9i or later) |
This appendix lists the Entity Framework canonical functions and the corresponding ODP.NET provider functions to which they map.
Aggregate Canonical Functions
Canonical Function | Oracle Function |
---|---|
Avg (expression) | AVG(expression) |
BigCount (expression) | COUNT(expression) |
Count (expression) | COUNT(expression) |
Max (expression) | MAX(expression) |
Min (expression) | MIN(expression) |
StDev (expression) | STDDEV(expression) |
StDevP(expression) | STDEVP(expression) |
Sum (expression) | SUM (expression) |
Var(expression) | VAR(expression) |
VarP(expression) | VARP(expression) |
Math Canonical Functions
Canonical Function | Oracle Function |
---|---|
Abs (value) | ABS (value) |
Ceiling (value) | CEIL(value) |
Floor (value) | FLOOR(value) |
Power(value , exponent) | POWER(value , exponent) |
Round (value) | ROUND(value) |
Round (value , digits) | ROUND(value , digits) |
Truncate(value , digits) | TRUNC(value , digits) |
String Canonical Functions
Canonical Function | Oracle Function |
---|---|
Concat (string1 , string2) | CONCAT(string1 , string2) or
|
Contains(string , target) | INSTR(string , target) |
EndsWith(string , target) | INSTR(REVERSE(string), REVERSE(target)) |
Comparison operators
| Comparison operators
|
IndexOf(target , string) | INSTR(string2 , target) |
Left (string1 , length) | SUBSTR(string1 , length) |
Length (string) | LENGTH(string) |
LTrim(string) | LTRIM(string) |
Replace (string1 , string2 , string3) | REPLACE(string1 , string2 , string3) |
Reverse (string) | REVERSE(string) |
Right (string , length) | (CASE WHEN LENGTH(string) >= (length) THEN SUBSTR (string) ,-(length), length) ELSE string END) |
RTrim(string) | RTRIM(string) |
Substring (string , start , length) | SUBSTR((string , start , length) |
StartsWith(string , target) | INSTR(string, target) |
ToLower (string) | LOWER(string) |
ToUpper(string) | UPPER |
Trim (string) | LTRIM(RTRIM(string)) |
Date And Time Canonical Functions
Canonical Function | Oracle Function |
---|---|
AddNanoseconds(expression , number) | (expression) + INTERVAL |
AddMicroseconds(expression , number) | (expression) + INTERVAL |
AddMilliseconds(expression , number) | (expression) + INTERVAL |
AddSeconds(expression , number) | (expression) + INTERVAL |
AddMinutes(expression , number) | (expression) + INTERVAL |
AddHours(expression , number) | (expression) + INTERVAL |
AddDays(expression , number) | (expression) + INTERVAL |
AddMonths(expression , number) | (expression) + INTERVAL |
AddYears(expression , number) | (expression) + INTERVAL |
CreateDateTime(year , month , day , hour , minute , second) | TO_TIMESTAMP |
CreateDateTimeOffset(year , month , day , hour , minute , second , tzoffset) | TO_TIMESTAMP_TZ |
CreateTime(hour , minute , second) | Time literals are not supported in Oracle |
CurrentDateTime() | LOCALTIMESTAMP |
CurrentDateTimeOffset() | SYSTIMESTAMP |
CurrentUtcDateTime() | SYS_EXTRACT_UTC
|
Day(expression) | EXTRACT(DAY FROM expression) |
DayOfYear(expression) | TO_NUMBER(TO_CHAR(CAST(expression AS TIMESTAMP), 'DDD')) |
DiffNanoseconds(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffMilliseconds(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffMicroseconds(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffSeconds(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffMinutes(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffHours(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffDays(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffMonths(startExpression , endExpression) | EXTRACT and arithmetic operations |
DiffYears(startExpression , endExpression
| EXTRACT and arithmetic operations |
Comparison operators
| <, <=, >, >=, <>, != operators |
GetTotalOffsetMinutes (datetimeoffset) | (EXTRACT(TIMEZONE_HOUR FROM (expression))) * 60 + EXTRACT (TIMEZONE_MINUTE FROM(expression)) (Require multiple operations.) |
Hour (expression) | EXTRACT(HOUR FROM expression) |
Millisecond(expression) | NVL(TO_NUMBER(SUBSTR(TO_CHAR(CAST(expression AS TIMESTAMP), 'DD-
|
Minute(expression) | EXTRACT(MINUTE FROM expression) |
Month (expression) | EXTRACT(MONTH FROM expression) |
Second(expression) | EXTRACT (SECOND FROM expression) |
TruncateDate(expression) | TRUNC(expression) |
Year(expression) | EXTRACT(YEAR FROM expression) |
Bitwise Canonical Functions
Canonical Function | Oracle Function |
---|---|
BitWiseAnd (value1 , value2) | BITAND(value1 , value2) |
BitWiseNot (value) | (0 - value) - 1 |
BitWiseOr (value1 , value2) | Value1 - BITAND(value1 , value2) + value2 |
BitWiseXor (value1 , value2) | Value1 - 2 * BITAND(value1 , value2) + value2 |
Other Canonical Functions
Canonical Function | Oracle Function |
---|---|
NewGuid() | SYS_GUID |
assembly
Assembly is Microsoft's term for the module that is created when a DLL or .EXE is complied by a .NET compiler.
BFILES
External binary files that exist outside the database tablespaces residing in the operating system. BFILES are referenced from the database semantics, and are also known as external LOBs.
Binary Large Object (BLOB)
A large object data type whose content consists of binary data. Additionally, this data is considered raw as its structure is not recognized by the database.
Character Large Object (CLOB)
The LOB data type whose value is composed of character data corresponding to the database character set. A CLOB
may be indexed and searched by the Oracle Text search engine.
data provider
As the term is used with Oracle Data Provider for .NET, a data provider is the connected component in the ADO.NET model and transfers data between a data source and the DataSet
.
DataSet
A DataSet
is an in-memory copy of database data. The DataSet exists in memory without an active connection to the database.
dirty writes
Dirty writes means writing uncommitted or dirty data.
DDL
DDL refers to data definition language, which includes statements defining or changing data structure.
DOM
Document Object Model (DOM) is an application program interface (API) for HTML and XML documents. It defines the logical structure of documents and the way that a document is accessed and manipulated.
Extensible Stylesheet Language Transformation (XSLT)
The XSL W3C standard specification that defines a transformation language to convert one XML document into another.
flush
Flush or flushing refers to recording changes (that is, sending modified data) to the database.
Global Assembly Cache (GAC)
A cache for .NET assemblies.
goodness
The degree of load in the Oracle database. The lighter load is better and vice versa.
implicit database connection
The connection that is implicitly available from the context of the .NET stored procedure execution.
instantiate
A term used in object-based languages such as C# to refer to the creation of an object of a specific class.
invalidation message
The content of a change notification which indicates that the cache is now invalid
Large Object (LOB)
The class of SQL data type that is further divided into internal LOBs and external LOBs. Internal LOBs include BLOB
s, CLOB
s, and NCLOB
s while external LOBs include BFILE
s.
Microsoft .NET Framework Class Library
The Microsoft .NET Framework Class Library provides the classes for the .NET framework model.
namespace
A namespace is naming device for grouping related types. More than one namespace can be contained in an assembly.
A namespace describes a set of related element names or attributes within an XML document.
National Character Large Object (NCLOB)
The LOB data type whose value is composed of character data corresponding to the database national character set.
Oracle Net Services
The Oracle client/server communication software that offers transparent operation to Oracle tools or databases over any type of network protocol and operating system.
OracleDataReader
An OracleDataReader
is a read-only, forward-only result set.
Oracle XML DB
Oracle XML DB is the name for a distinct group of technologies related to high-performance XML storage and retrieval that are available within the Oracle database. Oracle XML DB is not a separate server.
Oracle XML DB is based on the W3C XML data model.
PL/SQL
The Oracle procedural language extension to SQL.
primary key
The column or set of columns included in the definition of a table's PRIMARY KEY constraint.
reference semantics
Reference semantics indicates that assignment is to a reference (an address such as a pointer) rather than to a value. See value semantics.
REF
A data type that encapsulates references to row objects of a specified object type.
result set
The output of a SQL query, consisting of one or more rows of data.
Safe Type Mapping
Safe Type Mapping allows the OracleDataAdapter
to populate a DataSet
with .NET type representations of Oracle data without any data or precision loss.
savepoint
A point in the workspace to which operations can be rolled back.
stored procedure
A stored procedure is a PL/SQL block that Oracle stores in the database and can be executed from an application.
Transparent Application Failover (TAF)
Transparent Application Failover is a runtime failover for high-availability environments. It enables client applications to automatically reconnect to the database if the connection fails. This reconnect happens automatically from within the Oracle Call Interface (OCI) library.
Unicode
Unicode is a universal encoded character set that enables information from any language to be stored using a single character set.
URL
URL (Universal Resource Locator).
value semantics
Value semantics indicates that assignment copies the value, not the reference or address (such as a pointer). See reference semantics.
XPath
XML Path Language (XPath), based on a W3C recommendation, is a language for addressing parts of an XML document. It is designed to be used by both XSLT and XPointer. It can be used as a searching or query language as well as in hypertext linking.
 Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved. |