man pages section 3: Basic Library
Functions

Part No: 821-1465-10

ORACI_E November 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

2 =) - L3OO 19

Basic Library Functions

E T2) LT
ADOTTE(BC) oieieieieeeieeirietete ettt sttt b ettt b sttt b b b e R ettt e b b e s eae s s s sesesesaneaes 26
ADS(BC) ittt ettt ettt ettt ae bt et ettt e ettt e bt et e as sttt eteteteanaraes 27
E o Lo =34 () IR 28
AAASEVETITY(BC) ettt et ettt ese et sseseaeeseseasesess et esensesensesesensesenseresensenenes 29
Q10 CANCEL(BC) ittt ettt ettt ettt b et b e b e b e se e s s e b ebebesasann s s sesesasasannans 31
R o Yot 11 Lo=L ¥ (1) OO 33
10 ETTOT(BC) ittt ettt b bbbt et a bbb et bt ese st s b b et et eteasasan s s enens 34
10 TSYNC(BC) tiriiiieieieteeteette ettt ettt ettt b e a s et be s e s s ae s s esebebasasean s s esesesasasaanans 36
A10 FEAU(BC) vttt a bttt b et s sttt et b st s sens 38
aioread(3C)

aio_return(3C)

Q10 SUSPENA(3C) wuiiirieieieteieieeist ettt ettt ettt s et bbb se et sesebebesesassas st esesesesesassanssesesesas 44
BLOWALT(BC) ottt ettt ettt st ettt ae st ettt et et teas st et et et et eteas sttt eseteteananans

aio waitn(3C)
aio write(3C)
ASSEIT(3C) tirreteiiuiieirietete ettt ettt ettt b ettt bRttt b bRt a bbb e s e et s sesesesesannaes

LR = e (< O LT 53
ATOMIC_ AUA(BC) ittt ettt ettt bbbt ae b s e b et ebeseseasas s s e s ebebeteanasasasesesesas 55
ALOMIC_ ANA(BC) ittt ettt ettt b e bbb e s s e b e b ebesesessas st e s ebesesesassasssesesesas 57
AEOMIC DITS(BC) wouriieirieieieteieeesietet ettt ettt b bbb s bbb sese e s s s e s ebebesesassssasesesesas 59
atomic_cas(3C)
atomic_dec(3C)

atomic_inc(3C)

atomic ops(3C)

Contents

AEOMIC O (BC) ittt ettt ettt bbbttt et e sttt seas bbb esebetetsasanesseseseseaas 67
ALOMIC SWAP(BC) ittt ettt ettt et a ettt et es ettt asas b s et et e s eteasasases s s esenean
AEEFOPEN(BC) ottt ettt ettt et ettt et e st ettt as bt ettt eteteaear s s s eseaeas
basename(3C) .o

bsdmalloc(3MALLOC)
DS SIGNAT(BC) woririeiiiiieieieteteeice ettt ettt ettt bbb bbb e sese s s s s e s esesasesnssrsesesesenas
DSEATCN(BC) ettt ettt ettt es e s es e e et et et eae st en s s eae s ete s erene s eaensereneenn 76
DSTIING(BC) ettt ettt ettt e s s e s eae e esessesese s etensesesesesensesene s enensetensenan 79
btowc(3C)
Lo] o L= - (1) OO 81
FoE=] o] o =Y 01 (1) OO 82
CTGETISPEEA(BC) vttt ettt a bbbt s bbbt tsas bbbt e s etetsananasaseseseseaas 85
CTSETISPEEA(BC) vttt ettt ettt b sttt et et e bt tsasas bbb et etessananesseseseneas 86
clearenv(3C)
CLOCK(BC) ettt ettt ettt ettt et s e b s s e s e b eaeae st s st et et eteasasas st et esessasasesaseseseneas
CLOCK NANOSTEEP(3C) wirrieiereieiiiiiieieieteteteietts et te et a b be e et st sebesesase e s ssesesesasesssnsssesesesasas 89
CLOCK _SETTIME(BC) wuiuiieieiereieeeieiiete ettt ettt b bbb s s ebebesessss st s s esesasessanssesesesenanas 91
Lo o T=T=Ye 1 ol (1) IO
closefrom(3C)
cond_init(3C)
Loo 4 3 (1) OO

crypt_genhash_ AmMPL(3C) .ottt et a bbb se s e s s s besasasennnnas 111
crypt_gensalt(3C)
crypt_gensalt_AMPL(3C) .ottt ettt s bt as s st se bbb anananas 113
CSEE(BC) ittt ettt ettt ettt et et et eae et et et et eae et ete st eas et ese s etens et eas et eneasetennnas

ctermid(3C)
Lol 5 11111 (5.1 OO

LFFEIME(3C) cuuriiiiieieieteteee ettt ettt ettt b s s st ebebebasesa s st esesesasasnanassesesesasas 130
(o T =Yl s KoY () IO 131
IFTA(BC) ottt ettt bttt s ettt s s bt esebebebeteanas et et eteseteteanan s s s esenenan 133
AIFNAME(BC) ottt ettt ettt ettt ae et ettt e s et ess et ese s et eas et ese et et eas et ese s ene st ensesennane 134

man pages section 3: Basic Library Functions « November 2011

Contents

Lo Y7 (1) T
Lo L Ts ol () TR
dlclose(3C)
ALAUMP(BC) ottt nenas
dlerror(3C)
ALINTO(3C) ortetetetieeeiirietet ettt ettt b st s e bbb esesess e as s esebebesesassasas s esesesesesansnsasnsas

AL iterate PRAT(3C) ittt a bbb bbb se s s s sebasesnas s s esesasas 155
dlopen(3C)
dlsym(3C) .ccvevverennee.

AOOT _DINA(BC) ittt b e bbb ss st s bbbt esess s b b e s b et e seanasanasesesenas
OOT CALL(BC) ittt ettt a et s bbb ss b b e b e bt ebessasas b s esesebeteanasasssesesesas
OOT _CTEATE(BC) ittt ettt ettt b bbbt ae bbb et et beaeasas b sesebebeseanasassesesetas
OOT_CTEA(BC) ittt ettt ettt b bbb a e s b s e s e bt ebessasas b s esebebeasanasasasesesesas
door getparam(3C)
OOT INTO(BC) oottt et b s s st st b s s b s s st s s s anananaetene
OO TEEUIN(BC) ittt ettt ettt et s et bbb et bebebesasesase et esesebesasanessssesesesas
OOT_ TEVOKE(3C) ittt ettt sttt s bbb st s e b e b et e s esesaas s s esesebesesnasasssesesesas
d0OTr_SEIVET CrEAtE(3C) ittt ettt eb bbb s st b asan s s sesenenas 184
door _ucred(3C)
00T XCTEATE(3C) wiiririeiereeetiietietete ettt ettt et b e bbb sa s et esebebesesessae st esesebasesnasasssesesesas 188
Lo T T Lo 1 E <1 1) OO 197
AUP2(BC) ittt ettt ettt ettt bbb s s s ab et e s e s et b e sess s s s et et e s eseseas s st esebeteaesennasnenenas 200
ECONVETT(3C) cttitiiiiiirisieie ettt sttt ettt ae ettt ebesesa s e et e s ebebebeseseas st esesebesesassasssesnsesas 201
ecvt(3C)
enable_extended FILE STAio(3C) .oiiiiiiiieieeereieteieeeeseeesese et es e sese e ssesesesesens 205
ENCTYPT(BC) ottt ettt ettt s et b et s aess s bt et eseb et eaessas st eseseteseanasseseserens 209
L= 0T [1) OO

LY (1) IO
euclen(3C)
EXIT(BC) ittt ettt et b ettt ettt b R a ettt e ke se s e R s ettt e s ebesesennas e nenas

LI 1 =Tl 11 05 1) OO 215
 TDUTSIZE(BC) ittt ettt ettt ettt ettt bt ettt s s s b s st teaeanas 217
TCLOSE(BC) ittt ettt sttt ettt b s e sttt e b e se e se s e st e b ebesasassas st esebesesannnsannnas 219
TAATASYNC(3C) cuorierieieeceeeeete ettt ettt ettt s et ese s e tese et ese s esens et essssesensesessesesensesensasenenas 221
Rie LR =1 11 (1) IO 222
TAOPEN(BC) ettt ettt ettt ettt et ea et eseae et ese s ebe st esess et esesseseaseseseasesensesessseseane 224

Contents

L a1 1) IO
LR ELETE1 111 T
LT (1) OO
TQEtAtEr(3C) v
TETC(BC) ittt ettt sttt et s et ettt b e s et et b esesese st A et et e b et esesese e e n et esebesenanea
TETPOS(BC) ittt ettt ettt ettt be e e s b et beaese s s et s et et esese e e s s bebebenenaneas
TOETWC(BC) ettt ettt ettt et s e et ese s etenseseasesesens et enseseseesesenseseasesenensesensnn
floating 10 deCimal(BC) .ottt e a bbb as s s s s b s saseananes
flockfile(3C) ...
LA ETo (1) TR
FAMATCN(BC) ottt ettt s et et et sse s esess st eneseesessssensessneesenensesenseas
Lo oT=1 1 (1) IO
FPIETIOUNA(BC) vttt ettt ettt b bbbt s s s s et ebeteasas s s esesebebessananas
fputc(3C)
FPULWE(BC) ittt ettt ettt s s s et et s st et et eseasasas s s et et et esessnssseseseseteanananes
TPULTWS (BC) ettt ettt ettt ettt ettt e te et ese s ete st et eas s eseasebeas et essesesessesess s esensesensnas
TEEAU(BC) vttt ettt ettt et ettt s e s ese e e s e se et ese s etens et eas s esens et enseseaensesenseseaeesenensereneann
=o)<Y 0T (1) OO
fseek(3C)
TSEEPOS(BC) ittt ettt ettt b ettt et et b e s st et ebebesesese s as s s et et esese e e s st esebesenannas
LISV el (5.1 OO
FEETUL(BC) vttt ettt ettt ettt s s b b ettt s bbb e b e b etessssas s st et et eaeasas s sesesesebeseananas
TEIME(BC) tiriuiiiieieieetee ettt ettt et s e st e bbb e be et s e s et et et e b esesasessas st esebesesesassssasssesesebasanannns
ftok(3C)
L (1) OO
FWLAR(3C) wrvveeerereeeseeeeeeoseseeeeeeeeseseseeeeeesessse s eeseee e e eses e seeeeeeseseessseem s esessseneeeseeseesesees
TWPFINTET(BC) oottt ettt et ese s te s et essesese s esensesesssesensesensesesensesensenn
R L =Y (1) TR
fwscanf(3C)
GETAUTNATTI(BC) ittt ettt bbbt b bbbt se s s s e s esesasasean s s sesesanas
Lo el oYU e (T) IO
GETCWA(BC) ottt ettt ettt ettt et ettt as st et e s et ebebeteas ettt et e s tetean s s st eseaean
GETAATE(BC) cutiuieiiiieieietete ettt ettt ettt b ettt b bt s Rttt be b et e nean s st eaeaenan
Lo TR e R =1 =R =1 (1) OO
GETENV(BC) ottt ettt bbbttt bbbt as sttt ettt etean sttt esebeteanan st s enetean
GETEXECATTEI(BC) ittt ettt ettt ettt ettt ettt et st ete st eas et etn et ese st eaneseneans

man pages section 3: Basic Library Functions « November 2011

Contents

getexecname(3QC)
GETGINAM(BC) ottt ettt ettt ettt bbbt ae st b et ettt eae ettt es et et etean s st enerets
GETNOSTIA(BC) ottt ettt ettt ettt ettt a e sttt ebe b et easas st et esebeteaeanasassesenets
gethostname(3C)
GEENTEIME(BC) wriuiiiieieieieeeett ettt ettt ettt et b b s e bbb e s esaseae st esesebesesasssnssssesesas
GETTANE(BC) ottt ettt a bbbttt b bbb e sese e st esebebesesaseasas et e s ebebesesensasasenenas
getloadavg(3C)
GETLOGIN(BC) ettt ettt et et ettt et e s et et et esene et eae s et eneesene et et et eneneerene e erenes
getmntent(3C)
getnetgrent(3C)

get_nprocs(3C)
GETOPT(BC) ottt ettt ettt et ettt ae bbb bbb ae st et b et ebeteteanasnesenas
getopt_long(3C)
getpagesize(3QC)

GETPAGESIZES(BC) ettt ettt ettt ettt ettt et s sttt an s s s enenean 353
GETPASS(BC) ottt ettt ettt ettt ettt ettt ettt et rs et et e st et eae et ese s et eas et esn s etenserenen 354
GETPEEIUCTEA(BC) vttt et e s st esseteseasesenseseas s esensesensesesensesensesenesesenes 355
getpriority(3C)
getprofattr(3C)
getprogname(3C)
Lo T 11 1) OO
GEEPWNAM(BC) vttt ettt ettt ae e b et ettt et ae st b e s e bt ebeaeas ettt es et et eaeanas st eseretas
GEETTUSAGE(3C) ittt ettt a ettt b bttt b et e b e s et et s b e b esena s s eaesetas
gets(3C)
GEESPNAM(BC) ottt ettt ettt ettt b bbbt ae bbbttt ae ettt et et eteanas s s s eretas

GETSUDOPT(BC) ettt ettt ettt ettt ettt et et et ess et eas s ebess et eas et ebe s esens et ese s ereaes

oL =0 a o (1O OO

GETTAMEOTAAY(BC) ittt ettt b bbbt b bbbt as st b b e st betsasasas s esenenas 386
gettxt(3C)
GETUSEIATTI(BC) ittt ettt ettt b et b bbb ese e st e s ebebasesnasasssesesesas 390
Lo TR ALY =] (1= WL 1) OO 392
GETUTENT(BC) cuttitieieeeeeteteeteeee ettt ettt s et s et ae bbb e bbb ebeaeas st esesebebeseanasasesesesetas 393
GETUEXENT(3C) ittt ettt ettt b et s b bbb esesase st esebebasasassasssesesesas 396
Lo TR A =] 11 o (.1 OO 400
GEEWC(BC) ittt ettt bbb a et b bbb bt as bbbttt aeas s bbb e b et eaeteanassenenas 402
GETWCNAT(3C) ittt ettt ettt ettt ettt et et ess et ess et et e st et ess et eseas et eas et ese s esenseseaen 403

Contents

GEETWA(BC) vttt ettt bbbttt b et et ae bbbttt ettt e st e teananes st enesetn
GEETWLATN(BC) vttt ettt ettt s sttt s bbbttt as st et et esebetsasasesesesesesenn
GEEWS(BC) ottt ettt ettt et ettt ettt ettt ettt et ettt ete e st et et e s et et ean s s s s enereas
9etzoneid(3C) .
GLOD(BC) ittt ettt ettt ettt a etttk s s a ettt b et et eRe ettt esebebenenn e st esesenas
GANTPT(BC) croriuieiiiieieetete ettt ettt ettt be e a et et bese e st et ebebebesese s sttt esesasaseanassesesesanan
NSEATCN(BC) ettt ettt et et es e et ese st e st eseasesese s et ensesess s esenseseasesenenserensenn
FCONV(BQC) ottt ettt et e s e et e s e e et ess s etens et eas s eseneesensesesensesenseseasesenensareneenan
iconv_close(3C)
7] 1177 ol X () OO
FCONV_OPEN(BC) ittt ettt a ettt b ettt ss s s s b e b et esessas s sesesebebeteananas
B0 1 1VZ=R o ol (1) IO
B D 1T (1) OO
imaxdiv(3C)
ENAEX(BC) vttt ettt ettt ettt s e st et ese e as s s et eb et eseasas et s s et et et eaeasas s s st eteteanananas
ZNEEGIOUPS(BC) ettt ettt ettt ae et et a et eseas s ese s ebeas et ess s esenseseasesenensesennenan
TNSGUE(BC) ettt ettt ettt e s ese st et e e et ese s etens et easesese s et ensesesensesenseseae s enenserensann

BT 10 Lol (1) TR

isastream(3C) ...
ESATTY(BC) ittt sttt sttt et ettt et et b e a sttt b s e se s st s et b esesene e s n et etebesennnnas
] 1T 0T (6103 IO
1S SYSTEM 1ADELEA(BC) vttt ettt ettt ettt sttt et st as s s st e st seteanananas
iswalpha(3C)
iswctype(3C)
KLITUPG(BEC) vttt ettt ettt ettt b bbbt as e bbb e b e b esesessas s s esebebesessasasasesesebetennanas
KVA MATCN(BC) ittt ettt ettt b et s e e s st et ebesesesaseannesesebasasanens
TCKPWAT(BC) ettt ettt ettt e st ese e s ese s esens et ensesesensesenseseseasesensesensesenensesensenn
TFME(BC) ettt ettt ettt s et et et e s e s e et e s e e s tens et ese s esens et eneseesensesensesssesenenseseneean
lio listio(3QC) ...
TOCATECONV(BC) vttt ettt b bbb e b et e besess e s st sesebesesesasssssssesesasasennnnas
oY1 =Y S o (1) OO
oY el G i (1) OO

T LONGTMP(BC) ittt et ettt b et et s bt esaa et st ebebesene et esesesesennnnns

LT Y el 11 651 OO
Yo VA RT=Y (1) IO
MAKECONTEXT(BC) vttt ettt ettt ettt ettt ettt ete s ebe st ess s eseasesessesesensesessesesnane

man pages section 3: Basic Library Functions « November 2011

Contents

L1 [V (1) T OO
LR Yl (1O IO
MATTOC(BMALLOQC) oottt ettt sttt s s st s et s as s s s esesesesesesensasasnenes
mapmalloc(3MALLOC)
MDTEN(3C) wouiietereteeeieiririet et e te sttt ettt et e s s esase s e et et ebesesesaseseas s esebesesesassasassesesesesasannnsasnnsas
MDTLEN(3C) wovoritereieieiesietete ettt sttt ettt a bbb ss s ae st sesebesess e as s et ebebesesassasassesesesesesansssssnnsas
MDIFEOWEC(BC) vttt ettt et et et ettt et e s eseseesese s et essesese et esensesessesessnsesensesenensesenseseaen
MDSINIT(BC) vttt ettt es et eeseseesesees et ensesensesesessesensesesesesensesenssenenserenes
mbsrtowcs(3C)
MDSTOWES(3C) wrieirireeeeieeeeeeeeteee ettt ettt es et ese s et ese et esessesenseseseesesensesensesenesstensessneseseneesenes
MDTOWC(3C) carieieetieeeeeeeeee et tes ettt ettt ettt s et et e s et es et es et et ensssese et esessetessssensasssenssseneseseneesenes
MEMDAT OPS(BC) ittt ettt ettt a bbb b st b e b e b et e teasasas bt esebebetsanasasesesesetas

memory(3C)
mkfifo(3C)
MKSTEMP(BC) ovvtitieiieeeeeteteete ettt et ettt ettt ae et eses e s e s eseasss s s s et esebeseseasas s s esesebeaeasasassesesess
MKTEMP(3C) ettt ettt ettt ettt et ettt et esese et ese s esess et ess et esessesess et essaseseasesessesesensesenen
MKTIME(3C) ettt ettt e vttt ese et et e s eseseesese s et essesese s esensesessesessnsesensesesensesenseseaen
LYot (1) OO
mlockall(3QC)
MONZTOI(BC) coteuetieiiiirieiete ettt ettt ettt be et s st ebebesesesess et e s esebesesessas st et esesesensssasssssnsesas
MO CLOSE(BC) cutititiueiieietetete ettt ettt b bbbt as bbb b b ss s s s s e b ebebebessssas s s esebebeseanasasssesesesas
MO GETATTI(BC) ittt ettt s sttt bbbt teasas st et eseseteaeanasassesesess
MO _NOTLITY(BC) toriiiieirieieteetceetet ettt ettt et sttt et b e s e bbb e s esesase st esesebesassssasssesesesas
mg_open(3C)
MO FECEIVE(BC) ittt ettt et s ettt se s s s s e b ebebetessas s bt esebebetnanasassesesesas
MG SENA(BC) wriririiieeicietete ettt ettt ettt bbb s s st e s s s s s s anssaeaeb et s s s s anansesene
MO SETATEI(BC) ittt ettt ettt b e s et eb bt ebesessas s s esebebesesnasasasssesasas
MG _UNTINK(BC) ittt ettt bbbt as b bbb b bessasas b s esebebeteanasasssesesesas
msync(3C)
MEMATLOC(BIMALLOQC) ittt ettt sa st b et ese bbb sess s s esesesesesesansssassnsas
MUEEX_ TNIT(BC) witiiieieieiereteeeetee ettt ettt b e bbb b b e bt ebessssas b s esebebessananasssesesesas
NANOSTEEP(BC) ittt ettt ettt e bbb b et sessas s s s eb et esesessssasssesetetesnanas
NADM(BC) 1vireieiiieieteete ettt tet et et ettt et bebe e s ettt eaesesass s et et ebesesasasess s esesesesasassssssesesesesesannnsassnsas
N _TANGINTO(BC) ittt as bbb e b ebese s as s s e b et esesessssanansesebesesennas
Lo ATy o N IO
OPENALT(BC) ottt ettt ettt et eae et et e e etess et ese s e b ess et ess s esessesess et essas et easeseseesesensesenn

Contents

10

[T a1l (1) IO 569
PTME(BC) ittt ettt et ettt b st as s b s ebebesessasasas st et et eseseasasaseseseseteteananas 570
PLOCK(BC) 1ottt ettt et ettt s s s et et ssas s s et et et esessasas s s et et et esessnsasseseseseteanananas 573
POPEN(BC) ottt ettt et ettt et te et ettt e e et ess s etenb et eas b ete s et eas et ese et etens et eas et enensetennnas 574
POFT_ALEIT(BC) oottt ettt sttt et et b s ae s s et e b esesa e e s aesesebasanannns 577
POt _ASSOCIATE(BC) wiuiiieieieieieieieceeetete ettt ettt a e bbb se e sebebesese s s e sesesesabasanannns 579
POTT_ CrEATE(BC) wouiuieieiiieirieieteiete ettt ettt bbb bbb s e s e s s et sebebesesess s sssesesebasennnnas 585
POTT_GET(BC) ottt et ettt b bbb et e b sesessas st seb et esesess s s sesesebesennanas 588
POIFT_SENA(3C) ittt ettt a bbbt as b b et e b sessssas st seb et essssas s sssesebebesennanas 592
POSIX_ TAAVISE(BC) wuiuiiieieierereieieeeeteetete ettt b et bbb et s s b et et essssss s sesesesebessananas 595
posix_fallocate(3C) .. 597
POSIX MAAVISE(BC) wuiriiieiirerereteteeieiiete ettt s bbb bbbt as s st s et ebetsasas s sesesesebesnananas 599
POSIX MEMATIGN(BC) wuiuiieiereretetetieieeietere ettt a ettt b bbbt as bt esesebeteasasas s s eseseseteanananas 601
POSIX_ OPENPT(BC) oottt ettt b et et b b s s s s st bbb s ssssnsssstetebesensnanas 602
POSIX_ SPAWN(BC) tviriuieiiiiririeieteieieeeeet et ettt st ettt se et et et sesesasase e s esesesesesaseenenesesesasasanens 604
POSixX_ SPAWNATEI dESTIOY(3C) wivivivieieieieieieiiiieieie ettt ae et e s s s s s sasasennnnas 610
posix_spawnattr getTlags(3C) ettt a e as s s s s s bt ssananenas 612
posix_spawnattr _getpgroup(3C) .614
posix_spawnattr getschedparam(3C) ...t s e s nnaes 615
posix_spawnattr getschedpoliCy(3C) .ttt ss e s s ananenes 617
posix_spawnattr getsigdefault(3C) ..ttt sananenes 619
posix_spawnattr getsigignore NP(BC) ..ttt es s asnenes 621
posix_spawnattr getsSigmasK(3C) .ieeeeeeeiieese e eseese st ss s s b sss s s s s s sesasssnnnanes 623
posix_spawn_file actions addcloSe(3C) ..t sesasses e ssssannnes 625
posix_spawn file actions addclosefrom np(3C) .. 627
posix_spawn_ file actions adddup2(3C) ...nneeeeeeesessesesesesessesssesesesesessssssnnnes 628
posix_spawn_file actions deStroy(3C) .t ese e ssssannnes 629
oL 2 o 1) IO

PriV_AddSET(3C) ittt ettt bbbt bbb st et b bbb a et bbb nenanaes

PIAiV_ SET(BC) oiieieiereieieeiisieteteie ittt ettt sttt b s ss st et e b e b esese s s s st es et e s esesene s s st esebesenannns

priv_str to set(3C)
pset getloadavg(3C)

PSLGNATLIBC) ittt ettt sttt ettt et e be ettt esesesaseaea et bebebesesase e e nesebebesananeas
PENrEad ATTOIK(BC) vttt ettt ettt bbb et se st ebese s ss s sesesesebaseananas
pthread attr getdetachstate(3C) ..ttt 654
pthread attr getguardSiZe(3C) ettt e et eae s b sssessesesesesesasasnnnnnns 655

man pages section 3: Basic Library Functions « November 2011

Contents

pthread attr getinheritSChed(3C) .ttt 657
pthread attr getschedparam(BC) ... oottt se bbb anananas 659
pthread attr getschedpPoliCy(3C) .ottt eae s sanens 660

pthread attr getscope(3C)
pthread attr getstack(3C)

pthread attr getstackaddr(3C) ..ttt ea et se s s s b s snnnas 664
pthread attr getsStackSIiZE(3C) .ttt eae et a bbbt sannns 665
Pthread attr ANPit(BC) ittt s bbb as s s esebesesnnnas 666
pthread barrierattr desStroy(3C) .ttt se bbb ananas 668
pthread barrierattr getpshared(3C) ..ttt 670
pthread barrier destroy(3C) ..672
pthread barrier Wait(BC) ..ttt s bbbt s s bbb teananas 674
PERrEad CANCEL(BC) vttt ettt ettt b bbbt as b s e b et eaesess s assesesebesesnanas 676
pthread cleanup POP(3C) .ttt b et b b s sttt besnssanans 678
pthread cleanup PUSN(3C) .ttt bbbt bbbt b b sasanaas 680
pthread condattr getCloCK(3C) .imiiiiririeieieieeeieeeee ettt s et ae s s s sesanens 682
pthread condattr getpshared(3C) ..ottt be e anaens 684
pthread condattr init(3C) ... 686
Pthread cond ANIt(BC) ettt bbbt bbb s s bbb esnssanens 688
pthread cond SigNal(3C) .ierieieieeeieeeeete ettt s bbb se s s s sebesesannns 690
pthread cond Wait(BC) ittt ettt s bbb as s sesebesesnanas 692
PERrEAd CrEATE(BC) wiuiiiiieeeeeeetetceeee ettt ettt b et s s s bt ese e as s s st esebesesnnnas 695
PLhread detaCh(BC) .ottt ettt ae s s s et b sesa e s e ssesesebesasanens 699
PTRrEad EQUAT(3C) ittt s bbb s b e b et esesess s s s sesebesesnnnas 700
pthread exit(3C)

pthread getconCUITENCY(3C) wiiieeietirieieietese ettt e e s s s e se e s s sesesebasasanens 703
pthread getschedparam(3C) .ottt se bbb se s s s s besesnnnas 705
pthread getsSPeCiTiC(BC) .ttt s bbbt s s s bbb seananas 707
PENTFEAA JOIN(BC) woroioiieieieeecieieieiteee ettt bbb s a st et b s b s s an s et e b s ennsnaneas 709
Pthread KeY Create(3C) .ieieeteieieeetstetetese st b ese e s bbb ese s s ssassesesesesasannns 711
pthread KeY delete(3C) .iieieereeieieeeee ettt s st s bbbt as s sebebesesnanas 714
pthread kill(3C)

pthread mutexattr getprioCeiling(3C) ..ottt se s sesnnens 716
pthread mutexattr getprotoCoL(BC) .ottt s bbb ananas 718
pthread mutexattr getpsShared(3C) ..ttt se et 721
pthread mutexattr getrobUST(3C) .ottt ae bbb sanens 723

Contents

12

pthread mutexattr gettyPE(BC) ettt ettt be et asanenes 725
pthread mutexattr iNit(BC) .ttt sttt ettt ettt asanenas 727
pthread mutex CONSIiSTENT(3C) .ttt b s naes 729
pthread mutex getprioCeiling(3C) .iiiiiiiieieeeeeesess et ese et sse et et esesesesasasnnnnnes 731
pthread MUEEX INIt(3C) ittt ettt a bbbt e e s s s sesasasannnnas 733
pthread MUTEX TOCK(3C) .imiiiiiiieieieieteteeeteet sttt et se bt e e se s s s s s sesasasannnnas 735
pthread mutex timedlOCK(3C) ..iiieeiiririeieiereteie ettt se b b ss s s s s s s sasasnananns 738
PENTEAd_ ONCE(BC) wriuiuieiiieieteteteteteett ettt ettt b bbb s st s s et et essssss s ssesesesabesesnnnas 740
pthread rwlockattr getpsShared(3C) ..ttt be s ssananenes 741
pthread rwlocKattr ZNit(3C) .ttt s bbb s bt anananes 743
pthread rwlock init(3C) .. 744
pthread rwloCK FATOCK(3C) .ottt ettt s et s st se bbb anananas 746
pthread rwlock timedrdlOCK(BC) .ottt ettt et ettt s s st se st ananenes 748
pthread rwlock timedWIrTOCK(BC) .ot st s s ssss s s s ssnaes 750
pthread rwloCK UNTOCK(3C) wiiiiriririeieieeiiirieieie e teie ettt a et esesebe e sa e s s ssesesesasasenannns 752
pthread rwloCK WILOCK(3C) wiiiiirieieieieieiiiieieie e te ettt et ese s b ss s s s s s sesasasannnnas 754
PENTEAA SELT(3C) wiuiuiuiiiieieieieieteeceet ettt ettt b bbbt s s et e s esessss s s esesesebasesnanas 756
pthread setcancelstate(3C) .. 757
pthread SetCaANCELEYPE(3C) ettt ettt s s b b a s s s s s sasasannnnas 758
pthread SetSChEdPrio(3C) .iieceeieiieieie ettt e e e s bt se s s s s sesasasennanas 760
Pthread SIigMASK(3C) .ottt ettt et as s s s bbb as s s s s s sesebesnananas 761
pthread SPin_ deSTrOY(BC) .ottt ettt et s et s et as s s st sesesetsananenas 766
Pthread SPIN_ TOCK(BC) miiiiiiiieieieteteteesteee ettt se ettt se e s s s sebesasasass s ssssesesasasannnnns 768
pthread Spin UNTOCK(BC) .iiiiiieieieiereieeeeeiete ettt ae bbb s bt ss s s s b esasasnananas 769
pthread testcancel(3C) .. 770
PEFACE(BC) ettt ettt ettt ettt ettt ese st et et eas et ete st eas et ese s ete st et eas et enensetennnas 771
PESNAME(BC) ettt ettt ettt e st ese e et ese s etenseseasesesensesensesesensesenseseasesenenserensenn 774
(ST =117 (1) IO 775
PUEPWENT(BC) ettt ettt s et ae bt ete e s s et ebebeseasas s s esesebeteseasassseseseseteanananas 776
PUTS(BC) trititiiiiieteteteteietest st et te ettt e bbbt st e bt ebe s s ssa et sebebesesassssas st sebesesesassssasssesesebesasannns 777
[TTL =] o =Y (R (1) IR 778
putws(3C)

gsort(3C)

raise(3C)

L= TaTe [T T
FANAOM(3C) ettt ettt ettt ettt ettt et e te s eaess s ese st ebessebeseasebensesessesesensesesssesenseseasanas 785

man pages section 3: Basic Library Functions « November 2011

Contents

FCEIDTK SET VATUE(BC) cuititieieiieeeereteteteeete ettt ettt sttt b bbbt tsas s s s enesenas 788
FCEL WALTK(BC) vttt ettt ettt b s es et a st st et et ebeseas st s st ebebeteasasasaseseseses 793
FEAATIT(BC) vttt ettt ettt ettt ae s bt et e s et essasss st et es et esesessassses et ebeseasassesenenes

realpath(3C)
FEDOOT(3C) wiirieieietiieiieirisiet ettt ettt ettt b e s st et e s esesasasaas st esebesesesessasesesesebesasansansnsasas
FE COMP(BC) ittt ete ettt st et et et ss et s s et et esesese e s st esesesesassssas s et esesesesesessasssesesesesasansassnsasas
FEGCMP(BC) vttt ettt et e et e st sese s et e st esesseses e s eseasesesensesensesesesesensesensesessnsesenserenen

[ar=YoTeto111T o (1) OO
remove(3C)
rewind(3C)
LN T o [« N o (1) OO 813
L eYo] () OO 814
L ot= 1A 1e B (1) OO 817
scanf(3C)
SCHEACTT ANIT(BC) toioiiiiicieieeeteeee ettt bbbt et b b b s s bbb besnsnanes 827
SChEd gEtPATAM(BC) wouiiiiieieieieieecieeert ettt sttt ettt be e s et e b e b esesaseseaesnesesebesasanens 829
sched _get priority MAX(3C) .ttt s bbb se s s s s b besesnanas 830
SChed getSCREAULET(3C) ittt ettt b bbbt as s s bbb esesnanas

sched rr_get interval(3C)

SChEd _SEEPATAM(BC) wuiuiiiieieieieteiceeetrtet ettt sttt b et bess s s s s e b e b esesessssassnsesesesesannns
SChed SEtSCNEAULET(3C) ittt ettt a bbbt se bbb esesnanas
SCREA YIETA(BC) cvirititeeeeieieeeteteteteteete ettt ettt b bt esese s as s s es et esesessasasesesesebeseananas
SEEKALT(BC) woutuiieierereteieiisist et e ettt a b be s et s st e s se s e se e et sebesesesass s s st e b ebesesassas st esesesesansasannsas
select(3C)
SEMAPNOTE(BC) ettt ettt ettt eb st e st st ese s stens st ene st esensstese e ssenseaensereneaeas
SEM _CLOSE(BC) ittt ettt a bbb bbb e s et et b b b s s an et et e b bennananas
SEM_AESTIOY(BC) criritirieeeiisieietete ettt ettt bbb st et e b ebesessasas s sebesesesessssassssesebesesnnnas
SEM_GETVATUE(3C) vttt ettt b e bbb b et a e bbbt esesess s s asbesebesesnanas
sem_init(3C)
sem_open(3C)
sem_post(3C)
SEM_ TAMEAWALIT(BC) wiritiiiiieieeetctetceeeteeete ettt et be et b bbb eaeasas s ssesesebeseananas
SEM _UNTINK(3C) tiorerereieeeiiisietetete ettt sttt sttt et et b s se s ae st ebesesesesessassssesesesasanens
SEM WALT(BC) wouiiieierereteieeiisiet ettt ettt a bbbt ssas s s e b e bebessseasassssebebesesessasasansesebesesnnnas
EY=N o TV (1) TR
SEEDUTTEI(BC) oottt ettt ettt ettt s s s s st et et esessssasassesesetesennnnas

Contents

14

LY=N o et= 11 1) IO
LY =11 17(1) IO
SEETMP(BC) ittt ettt ettt s e bt et s et ettt ae e as st et et et eaeasas s s st et eteaeananas
SETKEY(3C) cuiiteeeeeeteteeeeteetetete e
SEELADET(BC) ittt ettt sttt ettt et bese ettt sesesa e s e e s s et e b esese e e s nesesebesannnnn
SEELOCATE(3C) cirieiereiieeieiieiet ettt ettt sttt b et b et b s e se s s s sebebesesase s s s sesebesanannns
SHM_OPEN(BC) ittt ettt ettt sttt b e as st ebebebesesssss st s s et e b esesess s s netesebesennnnas
SHM_UNTINK(BC) vttt ettt a bbb bbb sessssas s s s ebebesesesssssssesesebesesnnnas
sigfpe(3C)
LR B R =L ol V] Lo (1) OO
SEIGNAL(3C) ittt ettt b bbb et as bbb bbb e se s s e bbb et et et as e s s s b ebebeteananas
STPQUEUE(BC) ettt ettt ettt b bbb et ss s s b b ebebetessasasas s esebebesessssasassesesebeteananas

SEIPSETOPS(BC) vttt ettt ettt b ettt as st et s et et ae s s st es et et ebeteananas
sigstack(3C)
SIGWALTINTO(BC) ettt ettt et ettt a ettt as et e te s et easesess s ese st esesseseseaseseannas
SLEEP(BC) ittt ettt ettt ettt et et ete et et et et eas et ete s et eas et ese s ete st et eae et enensetennnas
SME_PAUSE(3C) ittt ettt ettt a bbbt s b et e b esesessasas s sebebesesessasassesesebesesnanas
SSIGNAT(BC) ittt b et b ettt et a bbbt b et as st bbb eteaeae s st ebebeteananas
stack getbounds(3C)

CSTACK _GIOW(BC) ittt ettt et b e bbb st s b ebesesaas et s e b ebebesess e et esesesenenannas

STACK_ INDOUNAS(BC) vttt ettt ettt bbbt se bbb asas s s sesesesebeanananas
STACK_ SETDOUNAS(3C) ittt ettt ettt s sttt as s s s s eseseseteanananas
STACK VIOTATION(3C) wiiieieieieieieiiieiieie ettt ettt s ettt a bbb ese e s s s s sesasasannnnas
stdio(3C)
STI2SIG(BC) ittt ettt ettt ettt b ettt s bbb bbbt aeas s st et et ebeteananas
STEFCOLL(BC) ittt ettt ettt ettt eae et ess et ete st et eas s ese s eseas et essesesesseseasesesensesensnan
SEFEITON(BC) vttt ettt et e st es e e et ess s etens et essesesens et ensesesesesenseseasesesensesensann
Lo 1110 Y 1 (1) OO
strftime(3C)
STFING(3C) ittt ettt b et a bbb s s s s e b et e besesass s s s st e s et et esesese s s sesesebesenannns
String t0 deCIMAL(BC) ottt ettt et b s b et as s s s s sebesessasananas
STIPTAME(BC) ettt ettt a bbb s bbbt teasas s st esebebeasasas s aseseseseteanananas
STISIGNAL(3C) ittt ettt ettt ettt besesa s e s s et e b esesase s sssesesebasanannas
Lo g o (610 IO
SEFEOIMAX(BC) ettt ettt s et st e st ese e st ene st eseasssessessneesenenserenenan
STEIEOL(BC) ottt ettt ettt ettt ettt et et et et ese s e te s et eas s ese s et ens et eseesesessesess et eneasesennnan

man pages section 3: Basic Library Functions « November 2011

Contents

L g VL 1) LT
L L LT €1 O OO
STEXTIM(BC) ittt ettt ettt ettt as s b s et et esessssas s st es et esessssesasasesesetesesnnnns
SWAD(BC) vttt ettt ettt ettt ettt ettt ettt et sttt ettt ae e s s sttt tenenen
sync_instruction_memory(3C)
sysconf(3C)
SYSTLOG(BC) ettt ettt ettt ettt ettt e s ettt eat et eae et et et s eas s ete e enenseseses et enserensneneneen
SYSTEM(BC) oottt ettt ettt et e et et eseesese s et eneesese s et enseseseeseseneeseasesesesetenseresenenenea
tcdrain(3C)
Lol 17T (T) OO
tcflush(3C)
TCPETATEI(BC) ittt a bbb as bbbttt as s st s e st ebeseanasasssesesetas 976
TCHETPGIP(BC) ittt ettt s ettt eb bbbttt es et et eaean s st esetets 977
tcgetsid(3C)
TCSENADTEAK(BC) ittt ettt ettt ettt s ettt et et e st et etessas s es et eseseteasasasasesesesess 979
TCSETATEI(BC) ettt ettt ettt ettt ettt et e s ebeae et ese s et eas et ete s eseas et ese s ereans 980
R eL=Y=Rd T L o] (.13 PO 982
ST IR ER & O 0):) N 983
td log(3C_DB)
td_sync_get iNTO(BC_DB) .ottt s bbbt s bbb s s esesenas
td_ta enable stats(3C_DB)
td ta event addr(BC_DB) ...ttt ettt ettt eneaean
td ta get nthreads(3C_DB)
td ta map addr2sync(3C_DB)
td ta map 1d2thr(BC_DB) ..ottt ettt ettt s s seseaan

T 1A NEW(3C_DB) oottt ettt b ettt s bt esena e seneaenan
td_ta setconcurrenCy(3C_DB) ..ttt s e seaenas 999
td ta SYNC ATEr(BC_DB) oottt a ettt bbbttt senenas

td thr_dbsuspend(3C_DB)
td thr getgregs(3C_DB) ittt ettt se et s bbb se s s s sesesesas
td thr get inTO(BC_DB) ettt s bbb bt s s sesenan
td_thr lockowner(3C_DB)
td thr SETPrio(3C_DB) ettt ettt ese e s bbb sa s s s sesesanas
td_thr setsigpending(3C_DB) ...ttt s e s senas 1010
td thr s1eepinTO(BC_DB) .ottt b bt s s s s seaas 1011
T ThE TSA(BC_DB) ittt bbbt bbb s aetene 1012

Contents

16

td thr validate(BC_DB) ittt ettt s bt es s s s sens
R =1 R) T
=N R F A ol (1) OO
TermMioS(3C) ottt
TRE CrEATE(BC) ittt b et et eb et et e s e e s s eaebesasasasa s s esesesanas
TRE EXIT(3C) cueriuiiieieieieretete ettt ettt ettt ettt ettt e s et e s e b et esesa s s st e s ebebasesess s s esesesenas
thr getCONCUITENCY(BC) ittt ettt ae e s bbb s s s s s esesesesanas
thr_getprio(3C)
thr_join(3C)
T KEYCTEATE(BC) ottt be bbb s s esebessssasasasesesesenanas
BT KLTUBC) treeeeeeeeveeereeeeeeeeeseesseseeeseeesseeesseeesssesseessesesssseseseessesessseseessessesssessenesseesssssssessssssssssseee
TRE MAIN(3C) cuititiiiiieeeteteteeee ettt ettt bbbttt as e bbb e b et ebsasasas s s s esebeseanasansesesesenin
ThE MIN_ STACK(BC) otiritiietiieeeetete ettt ettt ettt ettt s bbb s s b esesess s as s s s esesesenn
thr_self(3C)
T SIGSETMASK(3C) curvetiuiiiirieteieteteieetrttet ettt ettt be et et besesasa e e s esesesesanan
T STKSEGMENT(3C) ciotirieiiiiieieteteteeeerttet ettt ettt s bbbt s s sasasesnss s esesesesanan
TR SUSPENA(3C) ittt ettt et e s bbb b e sess st s s e s ebesassssansssesesesanas
TRE YIELA(BC) ittt ettt bbb st bbbttt as st besebesesnasasansesesesenis
timeradd(3C)
TAMET CrEATE(BC) oottt ettt et b et b bbb s s s s s esesasassss s s sesesanas
TAMET AELETE(BC) oottt ettt et b bbbt as s bbb ebess s asan s s esesenenas
TAMET SETTAME(BC) oottt ettt ettt s st s s s et et tsanas s s s eseseseas
EMPTLTE(BC) curetieieiieieetee ettt ettt ettt s bbb se e s e b e b e b e sesa s s st sebebasasasnassssesesasas
tmpnam(3C)
R 1Yol I 1 (.1 ©) 1P

CTOLOWET(BC) ittt ettt ettt ettt ettt b e s e sttt besesese e et s ebetesannanas

TOLOWEI(BC) vttt ettt ettt et ettt et et e s et eseesese s esess et esesetensesensesesensesensesesensesensanen

CTOUPPEI(BC) ittt ettt ettt ettt bbbt et ae ettt ettt aean et b st et eteteananas

toupper(3C)
TOWCEFANS(BC) ittt ettt ettt b bbb a et esebabasesa s s s esesesasessssansesesesanas
FOWLOWET(BC) ettt ettt et ettt es e sese st esess et ese s etensesesssesenseseneesesensesensanas
TOWUPPET(BC) ottt ettt ettt ettt bbb s ettt as st et eses et eteasas st et et ebesessanasesesesesesens
TPUNCATE(3C) cutiuiiiieieieteteeet ettt ettt ettt ettt e e s e b b e b e se s e e st e s ebesasasassansssesesanas
R T=Y-Y ol 1 (1) ISR
RV 1= (1) IO
TEYSTOT(BC) ottt ettt ettt ettt et ese et eae s esess et ese s ebe st et essesese s esess et eneasesensenas

man pages section 3: Basic Library Functions « November 2011

Contents

UB STICMP(BC) ittt ettt a bbb s bbbt asas s b bbb ebesessasassesesebesesnanas 1074
US TEXTPIEP STI(BC) wouiiieieeeeeteteeeeee ettt ettt s bbbt s b s bbb asas s s s esesebeseananas 1078
U8 VALAAATE(BC) oottt ettt ettt bbb a st bbb s e e b bbb s s ananas 1082
UBLATM(BC) ittt ettt et ettt et s et s st eae s s s st et et et esessasasasesesesetesessssasesesesetesesnnens 1086
UCONY_ULBTOU32(BC) wuiuiuiiiieieieieieetietsaetesetesesesss st ss s se e s s s ese e sesssessesesesesesassssasssesesesesasanens 1087
UCTEA_GET(3C) ittt ettt ettt st b et et b b sesess s s st bebesassssssssesesesesesennns 1093
umem_alTOC(BMALLOC) ..ottt sttt s e s s bbb sa s s s ssesesesesesns 1096
umem_cache creat@(BMALLOQC) ...ttt sese s ss s s s sesesesnanas 1102

umem_debug(3MALLOC)
T gL =y o (1) OO
UNGETWE(BC) ittt ettt ettt s bbb a e bbb ebesessssasas s s ebebesessasasassesebesesnanas
UNTOCKPT(BC) caeeieeeeeeeeeet ettt ettt ettt s s e ses st ens st esensstenessssensssessesssesssennasens
T RN =101V (1) IO
usleep(3QC)
VIWD FINTT(BC) ottt ettt s et et ae s s ettt et asas s s s et eseseseasasasseseseas
VUTME(BC) ottt ettt ettt ettt et ettt ese s et ese et ese st et easesessasesessesessasetensesesssesennas
VPTME(BC) ettt ettt ettt s et es st es e s et ensesese s esenseressesesensesensesetensesenserenennas
vprintf(3C)
vsyslog(3C)
WALTB(BC) tretireteieieiie ettt ettt bttt b et b b e se s s s s s et e s et et e seas s s b ebesesesean s st et esenans
L T o (1) TR
WALEPLA(BC) vttt ettt ettt ettt s ettt as bbb es et esessasases et eseseaeaessaseseseseteseseanas
WALKCONTEXT(BC) tuiieieieieieieeiiriete e teieiett sttt s st b et e st e bbb sasessss s et esesesesasssssnsesesesesannns
watchmalloc(3MALLOC)
LT g o) 111X (<) IR
WESCOLL(BC) ittt ettt ettt et ettt as s st et et et esessasasseseseseseseasaseseseseseseaennns
WCSTEIME(BC) ettt ettt et ettt et et et s et ese et ese s et ensesesesesensesensesesensesensesesenserensesens
WESTEOMDS(BC) vttt ettt ettt s s s s e st es e et s e s esensesenssessenseseneesesensesensasens
wesstr(3C)
wcstod(3C)
WESTOIMAX(3C) rorireerieieieeeeeteeetetee ettt ettt ettt s et ese e s ese s et eseesese s esensesenessesenseseneesesesesensasens
L ZaER A L (1) OO
WESTOMDS(BC) 1ottt te ettt sttt b et e s s s e ss e et et e s esesasassssssetesesesesasssssnsesesesasanans
WESTOUL(ZC) ottt ettt ettt ettt s st eae e s ese s et esseses e s esensesenssesenseseneesesensesensarens
WESTIING(BC) 1ttt sttt bbbt et b et ebesesessasasesesesesebesessasessesesesesnanas
WESWIATN(BC) 1ttt ettt ettt et ettt s st et et eaessss s s et esesesesessasseseseseseaennns

Contents

18

T3 i 11 651 TR 1167
WEEOD(BC) 1ttt ettt ettt sttt a bbb s se e st ebebesesasesn st s et esesesesassasssesesesasasanens 1169
WCEOMD(BC) ettt ettt ettt ettt eae e s ese s et essesen et esensesenseseseasesensesensasesensetens 1170
Lo o= YA 1T €1 IO 1171
wctype(3C)
WEWLATN(BC) ettt ettt ettt ettt ese et ese st e e e ses s s esessesensssesensesenseseneasesennetens
WIMEMCRAT(BC) ettt sttt sttt b s st e s et st essssen et esessetenessesessetensasenesseressatens
WIMEMCMP(3C) oottt ettt ettt sete e e s ese s esessesessesesensesessesesensesenseseseasesensesensesensnsesens

WIMEMEPY (BC) ettt ettt ettt ettt sese et esessess s stensesensssesessesenssseseasesensesenssesensotens
WIMEMMOVE(BC) ettt ettt ettt ettt ettt ete e et ese s ebeas et ess s esensesessesessasesensesessesesenseseaseseseasetens
wmemset(3C)
oY o L3 d X (1) TR
WSPIFLINTT(BC) ittt et ettt et s et et ebesesasese st esesesasassssassesesesasasannns
WSSCANT(3C) ettt ettt ettt et e s e s aeteseesess s esensesensesenensesensesesensesensesensesenennetens
WSTFING(BC) ittt ettt ettt bbbttt ss bbb et et eseasas s st eseseseananasasesesetesesnananes

man pages section 3: Basic Library Functions « November 2011

Overview

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

The following contains a brief description of each man page section and the information it
references:

Section 1 describes, in alphabetical order, commands available with the operating system.

Section 1M describes, in alphabetical order, commands that are used chiefly for system
maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more error returns.
An error condition is indicated by an otherwise impossible returned value.

Section 3 describes functions found in various libraries, other than those functions that
directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the file
formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.

Section 7 describes various special files that refer to specific hardware peripherals and device
drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

Section 9F describes the kernel functions available for use by device drivers.

Section 9S describes the data structures used by drivers to share information between the
driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

19

Preface

20

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME

SYNOPSIS

PROTOCOL

DESCRIPTION

IOCTL

man pages section 3: Basic Library Functions «

This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename..”.

Separator. Only one of the arguments
separated by this character can be specified ata
time.

{1} Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
asaunit.

This section occurs only in subsection 3R to indicate the
protocol description file.

This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioct1 and generates its own
heading. ioct1 calls for a specific device are listed
alphabetically (on the man page for that specific device).

November 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2

Preface

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

USAGE

EXAMPLES

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(71).

This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

This section lists the command operands and describes
how they affect the actions of the command.

This section describes the output - standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or -1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mtio-7i

Preface

22

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

BUGS

man pages section 3: Basic Library Functions «

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

This section lists references to other man pages, in-house
documentation, and outside publications.

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

This section describes known bugs and, wherever possible,
suggests workarounds.

November 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

REFERENCE

Basic Library Functions

23

a641(3C)

24

Name

Synopsis

Description

Attributes

a64l, 164a — convert between long integer and base-64 ASCII string

#include <stdlib.h>

long a64l(const char *s);

char *164a(long [);

These functions maintain numbers stored in base-64 ASCII characters that define a notation
by which long integers can be represented by up to six characters. Each character represents a
“digit” in a radix-64 notation.

The characters used to represent “digits” are as follows:

Character Digit
0
/ 1
0-9 2-11
A-Z 12-37
a-2 38-63

The a641() function takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six characters,
a641() uses the first six.

The a641() function scans the character string from left to right with the least significant digit
on the left, decoding each character as a 6-bit radix-64 number.

The 164a() function takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 0, 164a () returns a pointer to a null string.

The value returned by 164a() is a pointer into a static buffer, the contents of which are
overwritten by each call. In the case of multithreaded applications, the return value is a pointer
to thread specific data.

See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Standard
MT-Level MT-Safe

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

a641(3C)

SeeAlso attributes(5), standards(5)

Basic Library Functions 25

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

abort(3C)

Name

Synopsis

Description

ReturnValues
Errors

Usage

Attributes

See Also

26

abort — terminate the process abnormally

#include <stdlib.h>

void abort(void);

The abort () function causes abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. The abnormal termination
processing includes at least the effect of fclose(3C) on all open streams and message
catalogue descriptors, and the default actions defined for SIGABRT. The SIGABRT signal is sent
to the calling process as if by means of the raise(3C) function with the argument SIGABRT.

The status made available to wait(3C) or waitpid(3C) by abort will be that of a process
terminated by the SIGABRT signal. abort will override blocking or ignoring the SIGABRT signal.

The abort () function does not return.
No errors are defined.

Catching the signal is intended to provide the application writer with a portable means to
abort processing, free from possible interference from any implementation-provided library
functions. If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump may be produced.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

exit(2),getrlimit(2), kill(2), fclose(3C), raise(3C), signal(3C),wait(3C),
waitpid(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

abs(3C)

Name

Synopsis

Description

Usage

Attributes

See Also

abs, labs, llabs - return absolute value of integer

#include <stdlib.h>

int abs(int val);
long labs(long lval);

long long llabs(long long Illval);

The abs () function returns the absolute value of its int operand.

The labs () function returns the absolute value of its Long operand.

The 1labs () function returns the absolute value of its long long operand.

In 2's-complement representation, the absolute value of the largest magnitude negative
integral value is undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

attributes(5), standards(5)

Basic Library Functions 27

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

addsev(3C)

Name addsev - define additional severities

Synopsis #include <pfmt.h>
int addsev(int int_val, const char *string) ;

Description The addsev () function defines additional severities for use in subsequent calls to pfmt(3C) or
1fmt(3C). It associates an integer value int_val in the range [5-255] with a character string,
overwriting any previous string association between int_val and string.

If int_val is OR-ed with the flags argument passed to subsequent calls to pfmt () or 1fmt (),
string will be used as severity. Passing a null string removes the severity.

ReturnValues Upon successful completion, addsev () returns 0. Otherwise it returns—1.

Usage Only the standard severities are automatically displayed for the locale in effect at runtime. An
application must provide the means for displaying locale-specific versions of add-on
severities. Add-on severities are only effective within the applications defining them.

Examples EexampLE1 Example of addsev () function.
The following example

#define Panic 5

setlabel("APPL");

setcat("my appl");

addsev(Panic, gettxt(":26", "PANIC"));

/* ... X/

1fmt(stderr, MM SOFT|MM APPL|PANIC, ":12:Cannot locate database\n");

will display the message to stderr and forward to the logging service

APPL: PANIC: Cannot locate database

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-safe

SeeAlso gettxt(3C), 1fmt(3C), pfmt(3C), attributes(5)

28 man pages section 3: Basic Library Functions - Last Revised 29 Dec 1996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

addseverity(3C)

Name

Synopsis

Description

Return Values

Examples

addseverity - build a list of severity levels for an application for use with fmtmsg

#include <fmtmsg.h>

int addseverity(int severity, const char *string);

The addseverity () function builds a list of severity levels for an application to be used with
the message formatting facility fmtmsg (). The severity argument is an integer value indicating
the seriousness of the condition. The string argument is a pointer to a string describing the
condition (string is not limited to a specific size).

Ifaddseverity () is called with an integer value that has not been previously defined, the
function adds that new severity value and print string to the existing set of standard severity
levels.

Ifaddseverity () is called with an integer value that has been previously defined, the function
redefines that value with the new print string. Previously defined severity levels may be
removed by supplying the null string. If addseverity () is called with a negative number or an
integer value of 0, 1, 2, 3, or 4, the function fails and returns —1. The values 0—4 are reserved for
the standard severity levels and cannot be modified. Identifiers for the standard levels of
severity are:

MM_HALT Indicates that the application has encountered a severe fault and is halting.
Produces the print string HALT.

MM_ERROR Indicates that the application has detected a fault. Produces the print string
ERROR.

MM_WARNING Indicates a condition that is out of the ordinary, that might be a problem, and
should be watched. Produces the print string WARNING.

MM_INFO Provides information about a condition that is not in error. Produces the
print string INFO.
MM_NOSEV Indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment variable (see
fmtmsg(3QC)).

Upon successful completion, addseverity () returns MM_OK. Otherwise it returns MM_NOTOK.

EXAMPLE1 Example of addseverity () function.

When the function call

addseverity(7,"ALERT")

is followed by the call

fmtmsg(MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to manual"
"UX:cat:001")

Basic Library Functions 29

addseverity(3C)

30

EXAMPLE 1 Example of addseverity () function. (Continued)

the resulting output is

UX:cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:001

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level Safe

SeeAlso fmtmsg(1), fmtmsg(3C), gettxt(3C), printf(3C), attributes(5)

man pages section 3: Basic Library Functions - Last Revised 29 Dec 1996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_cancel(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

aio_cancel - cancel asynchronous I/O request

#include <aio.h>
int aio_cancel(int fildes, struct aiocb *aiocbp);

The aio_cancel() function attempts to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process takes place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED and the return status is —1. For requested operations that are not successfully
canceled, the aiocbp is not modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with
which the asynchronous operation was initiated, unspecified results occur.

The aio_cancel() function returns the value AI0_CANCELED to the calling process if the
requested operation(s) were canceled. The value ATO_NOTCANCELED is returned if at least one
of the requested operation(s) cannot be canceled because it is in progress. In this case, the state
of the other operations, if any, referenced in the call to aio_cancel() is not indicated by the
return value of aio_cancel(). The application may determine the state of affairs for these
operations by using aio_error(3C). The value AT0O_ALLDONE is returned if all of the operations
have already completed. Otherwise, the function returns —1 and sets errno to indicate the
error.

The aio_cancel() function will fail if:
EBADF The fildes argument is not a valid file descriptor.

ENOSYS Theaio_cancel() function is not supported.
Theaio cancel() function has a transitional interface for 64-bit file offsets. See 1f64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

Basic Library Functions 31

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_cancel(3C)

SeeAlso aio.h(3HEAD), signal.h(3HEAD),aio_read(3C),aio_return(3C),attributes(5),
1f64(5), standards(5)

Notes Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned —1 and set errno to ENOSYS.

32 man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aiocancel(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

ajocancel — cancel an asynchronous operation

#include <sys/asynch.h>
int aiocancel(aio result t *resultp);

aiocancel() cancels the asynchronous operation associated with the result buffer pointed to
by resultp. It may not be possible to immediately cancel an operation which is in progress and
in this case, aiocancel() will not wait to cancel it.

Upon successful completion, aiocancel() returns @ and the requested operation is cancelled.
The application will not receive the SIGIO completion signal for an asynchronous operation
that is successfully cancelled.

Upon successful completion, aiocancel() returns @. Upon failure, aiocancel() returns —1
and sets errno to indicate the error.

aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to any outstanding asynchronous
operation, although there is at least one currently outstanding.

EFAULT resultp points to an address outside the address space of the requesting process.
See NOTES.

EINVAL There are not any outstanding requests to cancel.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

aioread(3C), aiowait(3C), attributes(5)

Passing an illegal address as resultp will result in setting errno to EFAULT only if it is detected
by the application process.

Basic Library Functions 33

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_error(3C)

Name

Synopsis

Description

ReturnValues

Errors

Usage

Examples

34

aio_error - retrieve errors status for an asynchronous I/O operation

#include <aio.h>
int aio_error(const struct aioch *aiocbp);

Theaio error() function returns the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the
errno value that would be set by the corresponding read(2), write(2), or fsync(3C)
operation. If the operation has not yet completed, then the error status will be equal to
EINPROGRESS.

If the asynchronous I/O operation has completed successfully, then 0 is returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for
read(2),write(2), and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, then EINPROGRESS is returned.

Theaio_error() function may fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose return
status has not yet been retrieved.

The aio_error() function has a transitional interface for 64-bit file offsets. See 1f64(5).

EXAMPLE1 The following is an example of an error handling routine using the aio_error() function.

#include <aio.h>
#include <errno.h>
#include <signal.h>

struct aiocbh my aiocb;
struct sigaction my sigaction;
void my_aio handler(int, siginfo t *, void *);

my sigaction.sa flags = SA SIGINFO;

my sigaction.sa sigaction = my aio_handler;
sigemptyset(&my sigaction.sa mask);

(void) sigaction(SIGRTMIN, &my sigaction, NULL);

my aiocb.aio sigevent.sigev notify = SIGEV SIGNAL;
my_aiocb.aio sigevent.sigev_signo = SIGRTMIN;
my aiocb.aio sigevent.sigev value.sival ptr = &myaiocb;

(void) aio_read(&my aiocb);

void

my aio _handler(int signo, siginfo t *siginfo, void *context) {
int my_errno;
struct aioch *my aiocbp;

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

aio_error(3C)

EXAMPLE 1 The following is an example of an error handling routine using the aio_error()
function. (Continued)

my aiocbp = siginfo->si value.sival ptr;
if ((my errno = aio error(my aiocb)) != EINPROGRESS) {
int my status = aio return(my aiocb);
if (my status >= 0){ /* start another operation */

} else { /* handle I/0 error */

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

SeeAlso Exit(2), close(2), fork(2), lseek(2), read(2),write(2),aio.h(3HEAD), aio_cancel(3C),
aio_fsync(3C),aio_read(3C),aio_return(3C),aio write(3C), lio_listio(3C),

signal.h(3HEAD), attributes(5), 1f64(5), standards(5)

Basic Library Functions

35

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_fsync(3C)

Name

Synopsis

Description

ReturnValues

36

aio_fsync — asynchronous file synchronization

#include <aio.h>
int aio_fsync(int op, struct aiocb *aiocbp);

Theaio_fsync() function asynchronously forces all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the
aiocbp argument and queued at the time of the call to aio_fsync() to the synchronized I/O
completion state. The function call returns when the synchronization request has been
initiated or queued to the file or device (even when the data cannot be synchronized
immediately).

If op is 0_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync(3C); that is, as defined for synchronized I/O data integrity completion. If op is
0_SYNG, all currently queued I/O operations are completed as if by a call to fsync(3C); that is,
as defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or
if the operation queued by aio_fsync() fails, then, as for fsync(3C) and fdatasync(3C),
outstanding I/O operations are not guaranteed to have been completed.

Ifaio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() thatis guaranteed to be forced to the relevant completion state. The completion
of subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be
used as an argument to aio_error(3C)and aio_return(3C) in order to determine the error
status and return status, respectively, of the asynchronous operation while it is proceeding.
When the request is queued, the error status for the operation is EINPROGRESS. When all data
has been successfully transferred, the error status will be reset to reflect the success or failure of
the operation. If the operation does not complete successfully, the error status for the
operation will be set to indicate the error. The aio_sigevent member determines the
asynchronous notification to occur when all operations have achieved synchronized I/O
completion (see signal.h(3HEAD)). All other members of the structure referenced by aiocbp
are ignored. If the control block referenced by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

Iftheaio_fsync() function fails or the aiocbp indicates an error condition, data is not
guaranteed to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon
completion of the operation.

The aio_fsync() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns —1 and sets errno to indicate the error.

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

aio_fsync(3C)

Errors Theaio fsync() function will fail if:

EAGAIN Therequested asynchronous operation was not queued due to temporary
resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp
argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

EINVAL A value of op other than 0_DSYNC or 0_SYNC was specified.

In the event that any of the queued I/O operations fail, aio_fsync() returns the error
condition defined for read(2) and write(2). The error will be returned in the error status for
the asynchronous fsync(3C) operation, which can be retrieved using aio_error(3C).

Usage Theaio fsync() function has a transitional interface for 64-bit file offsets. See 1f64(5).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso fcntl(2), open(2), read(2),write(2),aio error(3C),aio return(3C),aio.h(3HEAD),
fcntl.h(BHEAD), fdatasync(3C), fsync(3C), signal.h(3HEAD), attributes(5), 1f64(5),
standards(5)

Basic Library Functions 37

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_read(3C)

Name

Synopsis

Description

Return Values

38

aio_read - asynchronous read from a file

#include <aio.h>

int aio read(struct aiocb *aiocbp);

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file
associated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf. The
function call returns when the read request has been initiated or queued to the file or device
(even when the data cannot be delivered immediately). If _POSIX_PRIORITIZED_IO is defined
and prioritized I/O is supported for this file, then the asynchronous operation is submitted at a
priority equal to the scheduling priority of the process minus aiocbp->aio_reqprio. The
aiocbp value may be used as an argument to aio_error(3C) and aio_return(3C) in order to
determine the error status and return status, respectively, of the asynchronous operation while
itis proceeding. If an error condition is encountered during queuing, the function call returns
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if 1seek(2) were called immediately prior
to the operation with an offset equal to aio_offset and awhence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aiocbp->aio_sigevent structure defines what asynchronous notification is to occur
when the asynchronous operation completes, as specified in signal.h(3HEAD).

The aiocbp->aio_lio_opcode field isignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If POSIX_SYNCHRONIZED_IO isdefined and synchronized I/O is enabled on the file associated
with aiocbp->aio_fildes, the behavior of this function is according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp->aio_fildes.

The aio_read() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns —1 and sets errno to indicate the error.

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

aio_read(3C)

Errors Theaio read() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously,
theaio_read() function returns—1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to —1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is notavalid value, or aiocbp->aio_nbytes is an invalid
value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation
is one of the values normally returned by the read(2) function call. In addition, the error status
of the asynchronous operation will be set to one of the error statuses normally set by the

read () function call, or one of the following values:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
reading.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel(3C) request.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The fileis a regular file, aiobcp->aio_nbytes is greater than 0 and the starting
offsetin aiobcp->aio_offset is before the end-of-file and is at or beyond the
offset maximum in the open file description associated with
aiocbp->aio_fildes.

Usage For portability, the application should set aiocb->aio_reqprio to 0.
The aio_read() function has a transitional interface for 64-bit file offsets. See 1f64(5).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

Basic Library Functions 39

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_read(3C)

40

See Also

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

close(2), exec(2), exit(2), fork(2), Lseek(2), read(2),write(2),aio cancel(3C),
aio_return(3C),aio.h(3HEAD), lio listio(3C), siginfo.h(3HEAD),
signal.h(3HEAD), attributes(5), 1f64(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aioread(3C)

Name

Synopsis

Description

aioread, aiowrite — read or write asynchronous I/O operations

#include <sys/types.h>
#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

The aioread() function initiates one asynchronous read(2) and returns control to the calling
program. The read continues concurrently with other activity of the process. An attempt is
made to read bufs bytes of data from the object referenced by the descriptor fildes into the
buffer pointed to by bufp.

The aiowrite() function initiates one asynchronous write(2) and returns control to the
calling program. The write continues concurrently with other activity of the process. An
attempt is made to write bufs bytes of data from the buffer pointed to by bufp to the object
referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by whence and
offset. These parameters have the same meaning as the corresponding parameters to the
1lseek(2) function. On objects not capable of seeking the I/O operation always start from the
current position and the parameters whence and offset are ignored. The seek pointer for
objects capable of seeking is not updated by aioread() or aiowrite(). Sequential
asynchronous operations on these devices must be managed by the application using the
whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by resultp:

int aio return; /* return value of read() or write() */
int aio errno; /* value of errno for read() or write() */

Upon completion of the operation both aio_returnandaio_errno are set to reflect the result
of the operation. Since AI0_ INPROGRESS is not a value used by the system, the client can detect
a change in state by initializing aio_return to this value.

The application-supplied buffer bufp should not be referenced by the application until after
the operation has completed. While the operation is in progress, this buffer is in use by the
operating system.

Notification of the completion of an asynchronous I/O operation can be obtained
synchronously through the aiowait(3C) function, or asynchronously by installing a signal
handler for the SIGIO signal. Asynchronous notification is accomplished by sending the
process a SIGIO signal. If a signal handler is not installed for the SIGIO signal, asynchronous
notification is disabled. The delivery of this instance of the SIGIO signal is reliable in that a
signal delivered while the handler is executing is not lost. If the client ensures that aiowait ()

Basic Library Functions 41

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1llseek-2

aioread(3C)

ReturnValues

Errors

Usage

Attributes

See Also

42

returns nothing (using a polling timeout) before returning from the signal handler, no
asynchronous I/O notifications are lost. The aiowait () function is the only way to dequeue
an asynchronous notification. The SIGIO signal can have several meanings simultaneously.
For example, it can signify that a descriptor generated SIGIO and an asynchronous operation
completed. Further, issuing an asynchronous request successfully guarantees that space exists
to queue the completion notification.

The close(2), exit(2) and execve(2)) functions block until all pending asynchronous I/O
operations can be canceled by the system.

Itis an error to use the same result buffer in more than one outstanding request. These
structures can be reused only after the system has completed the operation.

Upon successful completion, aioread() and aiowrite() return 0. Upon failure, aioread()
and aiowrite() return—1and set errno to indicate the error.

The aioread() and aiowrite() functions will fail if:

EAGAIN The number of asynchronous requests that the system can handle at any one time
has been exceeded

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT Atleast one of bufp or resultp points to an address outside the address space of the
requesting process. This condition is reported only if detected by the application
process.

EINVAL The resultp argument is currently being used by an outstanding asynchronous
request.

EINVAL The offset argument is not a valid offset for this file system type.

ENOMEM Memory resources are unavailable to initiate request.

The aioread() and aiowrite() functions have transitional interfaces for 64-bit file offsets.
See 1f64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), execve(2), exit(2), Llseek(2), Lseek(2), open(2), read(2), write(2),
aiocancel(3C),aiowait(3C), attributes(5), 1f64(5)

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1llseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

aio_return(3Q)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

aio_return - retrieve return status of an asynchronous I/O operation

#include <aio.h>

ssize t aio return(struct aiocb *aiocbp);

Theaio return() function returns the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(2), write(2), or fsync(3C) function
call. If the error status for the operation is equal to EINPROGRESS, then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used
inacalltoaio_return() oraio_error(3C), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then
aio_return() may be successfully used to retrieve the return status of that operation.

If the asynchronous I/O operation has completed, then the return status, as described for
read(2),write(2),and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, the results of aio_return() are undefined.

Theaio_return() function will fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose return
status has not yet been retrieved.

ENOSYS ~ Theaio_return() function is not supported by the system.
Theaio_return() function has a transitional interface for 64-bit file offsets. See 1f64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

close(2), exec(2), exit(2), fork(2), Lseek(2), read(2), write(2), fsync(3C), aio.h(3HEAD),
signal.h(3HEAD), aio_cancel(3C),aio_fsync(3C),aio read(3C), lio listio(3C),
attributes(5), 1f64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned —1 and set errno to ENOSYS.

Basic Library Functions 43

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_suspend(3C)

Name

Synopsis

Description

Return Values

Errors

44

aio_suspend - wait for asynchronous I/O request

#include <aio.h>

int aio suspend(const struct aiocb * const list[], int nent,
const struct timespec *timeout);

The aio_suspend() function suspends the calling thread until at least one of the
asynchronous I/O operations referenced by the list argument has completed, until a signal
interrupts the function, or, if timeout is not NULL, until the time interval specified by timeout
has passed. If any of the aiocb structures in the list correspond to completed asynchronous
I/O operations (that is, the error status for the operation is not equal to EINPROGRESS) at the
time of the call, the function returns without suspending the calling thread. If there are no
outstanding asynchronous I/O operations, aio_suspend() returns immediately with EAGAIN.
The list argument is an array of pointers to asynchronous I/O control blocks. The nent
argument indicates the number of elements in the array and is limited to _AIO_LISTIO MAX =
4096. Each aiocb structure pointed to will have been used in initiating an asynchronous I/O
request viaaio_read(3C),aio_write(3C), or lio_listio(3C). This array may contain null
pointers, which are ignored. If this array contains pointers that refer to aiocb structures that
have not been used in submitting asynchronous I/O, the effect is undefined. If there are no
outstanding asynchronous I/O operations, aio_suspend () returns immediately with EAGAIN.

If the time interval indicated in the timespec structure pointed to by timeout passes before
any of the I/O operations referenced by list are completed, then aio_suspend() returns with
an error. If this array contains pointers that refer to aiocb structures that have not been used
in submitting asynchronous I/O, the effect is undefined.

Ifaio_suspend() returns after one or more asynchronous I/O operations have completed, it
returns 0. Otherwise, it returns —1, and sets errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the
associated error and return status using aio_error(3C) and aio_return(3C), respectively.
The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time
interval indicated by timeout.

There are no asynchronous I/O operations.

EINTR A signal interrupted the aio_suspend() function. Since each asynchronous I/O
operation might provoke a signal when it completes, this error return can be
caused by the completion of one or more of the very I/O operations being awaited.

EINVAL The nent argument is less than or equal to 0 or greater than AIO LISTIO MAX, or
the timespec structure pointed to by timeout is not properly set because tv_sec is
less than 0 or tv_nsec is either less than 0 or greater than 10°.

man pages section 3: Basic Library Functions « LastRevised 2 Aug 2011

aio_suspend(3C)

Usage

Attributes

See Also

Notes

ENOMEM Thereis currently not enough available memory; the application can try again

later.

ENOSYS ~ Theaio_suspend() function is not supported by the system.

The aio_suspend() function has a transitional interface for 64-bit file offsets. See 164(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

aio.h(3HEAD),aio fsync(3C),aio read(3C),aio return(3C),aio write(3C),
lio listio(3C),signal.h(3HEAD), attributes(5), 1f64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned —1 and set errno to ENOSYS.

Basic Library Functions

45

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aiowait(3C)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

Notes

46

aiowait — wait for completion of asynchronous I/O operation

#include <sys/asynch.h>
#include <sys/time.h>

aio result t *aiowait(const struct timeval *timeout);

The aiowait () function suspends the calling process until one of its outstanding
asynchronous I/O operations completes, providing a synchronous method of notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the completion of
an asynchronous I/O operation. If timeout is a zero pointer, aiowait () blocks indefinitely. To
effect a poll, the timeout parameter should be non-zero, pointing to a zero-valued timeval
structure.

The timeval structure is defined in <sys/time.h> and contains the following members:

long tv sec; /* seconds */
long tv_usec; /* and microseconds */

Upon successful completion, aiowait () returns a pointer to the result structure used when
the completed asynchronous I/O operation was requested. Upon failure, aiowait () returns
—1and sets errno to indicate the error. aiowait () returns 0 if the time limit expires.

The aiowait () function will fail if:

EFAULT The timeout argument points to an address outside the address space of the
requesting process. See NOTES.

EINTR The execution of aiowait () was interrupted by a signal.
EINVAL There are no outstanding asynchronous I/O requests.

EINVAL ~ The tv_secs member of the timeval structure pointed to by timeout is less than 0
or the tv_usecs member is greater than the number of seconds in a microsecond.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

aiocancel(3C), aioread(3C), attributes(5)

The aiowait() function is the only way to dequeue an asynchronous notification. It can be
used either inside a SIGIO signal handler or in the main program. One SIGIO signal can
represent several queued events.

Passing an illegal address as timeout will result in setting errno to EFAULT only if detected by
the application process.

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_waitn(3C)

Name

Synopsis

Description

Return Values

Errors

aio_waitn — wait for completion of asynchronous I/O operations

#include <aio.h>

int aio waitn(struct aiocb *[ist[], uint t nent,
uint_t *nwait, const struct timespec *timeout)

The aio_waitn() function suspends the calling thread until at least the number of requests
specified by nwait have completed, until a signal interrupts the function, or if timeout is not
NULL, until the time interval specified by timeout has passed.

To effect a poll, the timeout argument should be non-zero, pointing to a zero-valued timespec
structure.

The list argument is an array of uninitialized I/O completion block pointers to be filled in by
the system before aio_waitn() returns. The nent argument indicates the maximum number
of elements that can be placed in list[] and is limited to _AIO_LISTIO_MAX = 4096.

The nwait argument points to the minimum number of requests aio_waitn() should wait for.
Upon returning, the content of nwait is set to the actual number of requests in the aiocb list,
which can be greater than the initial value specified in nwait. The aio_waitn() function
attempts to return as many requests as possible, up to the number of outstanding
asynchronous I/Os but less than or equal to the maximum specified by the nent argument. As
soon as the number of outstanding asynchronous I/O requests becomes 0, aio_waitn()
returns with the current list of completed requests.

The aiocb structures returned will have been used in initiating an asynchronous I/O request
from any thread in the process with aio_read(3C), aio_write(3C), or lio_listio(3C).

If the time interval expires before the expected number of I/O operations specified by nwait
are completed, aio_waitn() returns the number of completed requests and the content of the
nwait pointer is updated with that number.

Ifaio_waitn() isinterrupted by a signal, nwait is set to the number of completed requests.

The application can determine the status of the completed asynchronous I/O by checking the
associated error and return status using aio_error(3C) and aio_return(3C), respectively.

Upon successful completion, aio waitn() returns 0. Otherwise, it returns -1 and sets errno
to indicate the error.

The aio waitn() function will fail if:
EAGAIN There are no outstanding asynchronous I/O requests.

EFAULT The list[], nwait, or timeout argument points to an address outside the address
space of the process. The errno variable is set to EFAULT only if this condition is
detected by the application process.

EINTR The execution of aio_waitn() was interrupted by a signal.

Basic Library Functions 47

aio_waitn(3C)

EINVAL The timeout element tv_sec or tv_nsecis < 0, nentissetto 0 or > AIO LISTIO MAX,
or nwait is either set to 0 or is > nent.

ENOMEM Thereis currently not enough available memory. The application can try again
later.

ETIME The time interval expired before nwait outstanding requests have completed.
Usage Theaio waitn() function has a transitional interface for 64-bit file offsets. See 1f64(5).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso aio.h(3HEAD),aio error(3C),aio read(3C),aio write(3C), lio listio(3C),
aio_return(3C),attributes(5), 1f64(5)

48 man pages section 3: Basic Library Functions - Last Revised 18 Dec 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

aio_write(3C)

Name

Synopsis

Description

ReturnValues

aio_write — asynchronous write to a file

#include <aio.h>
int aio write(struct aiocb *aiocbp);

The aio_write() function allows the calling process to write aiocbp—aio_nbytes to the file
associated with aiocbp—aio_fildes from the buffer pointed to by aiocbp—aio_buf. The
function call returns when the write request has been initiated or, at a minimum, queued to
the file or device. If _POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for
this file, then the asynchronous operation is submitted at a priority equal to the scheduling
priority of the process minus aiocbp—aio_reqprio. The aiocbp may be used as an argument
toaio_error(3C)andaio_return(3C) in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp—aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

If 0_APPEND is not set for the file descriptor aio_fildes, then the requested operation takes place
at the absolute position in the file as given by aio_offset, as if Lseek(2) were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
0_APPEND is set for the file descriptor, write operations append to the file in the same order as
the calls were made. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified.

The aiocbp—aio_sigevent structure defines what asynchronous notification is to occur
when the asynchronous operation completes, as specified in signal.h(3HEAD).

The aiocbp—aio_lio_opcode field isignored by aio_write().
Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IOis defined and synchronized I/O is enabled on the file associated
with aiocbp—aio_fildes, the behavior of this function shall be according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp—aio_fildes.

The aio_write() function returns @ to the calling process if the I/O operation is successfully
queued; otherwise, the function returns —1 and sets errno to indicate the error.

Basic Library Functions 49

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

aio_write(3C)

Errors Theaio write() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously,
theaio write() function returns —1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to —1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp—aio_fildes argument is nota valid file descriptor open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is not a valid value, or aiocbp—aio_nbytes is an invalid
value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation will be one of the values normally returned by the write(2) function
call. If the operation is successfully queued but is subsequently canceled or encounters an
error, the error status for the asynchronous operation contains one of the values normally set
by thewrite() function call, or one of the following:

EBADF The aiocbp—aio_fildes argument is not a valid file descriptor open for
writing.
EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel(3C) request.

The following condition may be detected synchronously or asynchronously:

EFBIG Thefileisaregular file, aiobcp—aio_nbytes is greater than 0 and the starting offset
in aiobcp—aio_offset isat or beyond the offset maximum in the open file
description associated with aiocbp—aio_fildes.

Usage Theaio write() function has a transitional interface for 64-bit file offsets. See 1f64(5).

Attributes See attributes(5) for descriptions of the following attributes:

50

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_write(3C)

SeeAlso aio cancel(3C),aio _error(3C),aio read(3C),aio_return(3C), lio listio(3C),
close(2), Exit(2), fork(2), lseek(2),write(2),aio.h(3HEAD), signal.h(3HEAD),
attributes(5), 1f64(5), standards(5)

Basic Library Functions 51

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

assert(3C)

52

Name

Synopsis

Description

Attributes

See Also

assert — verify program assertion

#include <assert.h>

void assert(int expression);

The assert () macro inserts diagnostics into applications. When executed, if expression is
FALSE (zero), assert () prints the error message

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of the source file
and nnn the source line number of the assert () statement. These are respectively the values
of the preprocessor macros __FILE__and __LINE__.

Since assert () is implemented as a macro, the expression may not contain any string literals.

Compiling with the preprocessor option -DNDEBUG or with the preprocessor control statement
#define NDEBUG ahead of the #include <assert.h> statement, will stop assertions from
being compiled into the program.

Messages printed from this function are in the native language specified by the LC_MESSAGES
locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

abort(3C), gettext(3C), setlocale(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions - Last Revised 30 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

atexit(3C)

Name atexit - register a function to run at process termination or object unloading

Synopsis #include <stdlib.h>

Description

ReturnValues

Errors

Usage

Attributes

int atexit(void (*func)(void));

The atexit() function registers the function pointed to by func to be called without
arguments on normal termination of the program or when the object defining the function is

unloaded.

Normal termination occurs by either a call to the exit(3C) function or a return from main().
Object unloading occurs when a call to dlclose(3C) results in the object becoming

unreferenced.

The number of functions that may be registered with atexit () islimited only by available
memory (refer to the _SC_ATEXIT_MAX argument of sysconf(3C)).

After a successful call to any of the exec(2) functions, any functions previously registered by

atexit() are no longer registered.

On process exit, functions are called in the reverse order of their registration. On object
unloading, any functions belonging to an unloadable object are called in the reverse order of

their registration.

Upon successful completion, the atexit () function returns 0. Otherwise, it returns a

non-zero value.

The atexit () function may fail if:

ENOMEM Insufficient storage space is available.

The functions registered by a call to atexit () must return to ensure that all registered
functions are called.

There is no way for an application to tell how many functions have already been registered

with atexit().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

Basic Library Functions

53

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

atexit(3C)

SeeAlso exec(2),dlclose(3C), exit(3C), sysconf(3C), attributes(5)

54 man pages section 3: Basic Library Functions « Last Revised 25 May 2001

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3C)

Name atomic_add, atomic_add_8, atomic_add_char, atomic_add_16, atomic_add_short,
atomic_add_32, atomic_add_int, atomic_add_long, atomic_add_64, atomic_add_ptr,
atomic_add_8 nv, atomic_add_char_nv, atomic_add_16_nv, atomic_add_short_nv,
atomic_add_32_nv, atomic_add_int_nv, atomic_add_long nv, atomic_add_64_nv,
atomic_add_ptr_nv - atomic add operations

Synopsis #include <atomic.h>

Description

ReturnValues
Errors

Attributes

void
void
void
void
void
void
void
void

void

atomic_add_8(volatile uint8_t *target, int8 t delta);
atomic_add char(volatile uchar_t *target, signed char delta);
atomic_add_16(volatile uintl6_t *target, intl6_t delta);
atomic_add_short(volatile ushort_t *target, short delta);
atomic_add_32(volatile uint32_t *target, int32_t delta);
atomic_add_int(volatile uint_t *target, int delta);
atomic_add_long(volatile ulong_t *target, long delta);
atomic_add 64 (volatile uint64_t *target, int64_t delta);

atomic_add_ptr(volatile void *target, ssize_t delta);

uint8 t atomic_add 8 nv(volatile uint8 t *target, int8_t delta);

uchar_t atomic_add_char_nv(volatile uchar_t *target, signed char delta);

uintl6_t atomic_add_16_nv(volatile uintl6_t *target, intl6_t delta);

ushort_t atomic_add_short_nv(volatile ushort_t *target, shortdelta);

uint32_t atomic_add_32_nv(volatile uint32_t *target, int32_t delta);

uint_

t atomic_add_int_nv(volatile uint_t *target, int delta);

ulong_t atomic_add_long_nv(volatile ulong_t *target, long delta);

uint64_t atomic_add 64 nv(volatile uint64 t *target, int64_t delta);

void

*atomic_add_ptr_nv(volatile void *target, ssize t delta);

These functions enable the addition of delta to the value stored in target to occur in an atomic
manner.

The *_nv () variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

Basic Library Functions

55

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3Q)

56

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SeeAlso atomic_and(3C),atomic_bits(3C),atomic_cas(3C),atomic_dec(3C),atomic_inc(3C),
atomic_or(3C),atomic_swap(3C), membar ops(3C),attributes(5),atomic_ops(9F)

Notes The* nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically
(for example, when decrementing a reference count and checking whether it went to zero).

man pages section 3: Basic Library Functions - Last Revised 13 May 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_and(3C)

Name atomic_and, atomic_and_8, atomic_and_uchar, atomic_and_16, atomic_and_ushort,
atomic_and_32, atomic_and_uint, atomic_and_ulong, atomic_and_64, atomic_and_8_nv,
atomic_and_uchar_nv, atomic_and_16_nv, atomic_and_ushort_nv, atomic_and_32_nv,

atomic_and_uint_nv, atomic_and_ulong nv, atomic_and_64_nv - atomic AND operations

Synopsis #include <atomic.h>

Description

Return Values
Errors

Attributes

void
void
void
void
void
void
void

void

atomic_and_8(volatile uint8_t *target, uint8 t bits);
atomic_and_uchar(volatile uchar_t *target, uchar_t bits);
atomic_and_16(volatile uintl6_t *target, uintl6_t bits) ;
atomic_and_ushort(volatile ushort_t *target, ushort_t bits);
atomic_and_32(volatile uint32_ t *target, uint32_t bits);
atomic_and_uint(volatile uint_t *target, uint_t bits) ;
atomic_and_ulong(volatile ulong_t *target, ulong_t bits);

atomic_and_64(volatile uint64 t *target, uint64_t bits);

uint8_ t atomic_and_8_nv(volatile uint8 t *target, uint8_t bits);

uchar_t atomic_and_uchar_nv(volatile uchar_t *target, uchar_t bits);

uintl6_t atomic_and_16_nv(volatile uintl6_t *farget, uintl6_t bits);

ushort_t atomic_and_ushort_nv(volatile ushort_t *target, ushort_t bits);

uint32_t atomic_and_32_nv(volatile uint32_t *target, uint32_t bits);

uint_

t atomic_and_uint_nv(volatile uint_t *target, uint_t bits);

ulong_t atomic_and_ulong_nv(volatile ulong_ t *target, ulong_t bits);

uint64_t atomic_and_64_nv(volatile uint64_t *target, uint64_t bits);

These functions enable the bitwise AND of bits to the value stored in target to occur in an

atomic manner.

The *_nv () variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Basic Library Functions

57

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_and(3QC)

SeeAlso atomic_add(3C),atomic_bits(3C),atomic_cas(3C),atomic_dec(3C),atomic_inc(3C),
atomic_or(3C),atomic_swap(3C), membar ops(3C),attributes(5),atomic_ops(9F)

Notes The* nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

58 man pages section 3: Basic Library Functions - Last Revised 13 May 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_bits(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

atomic_bits, atomic_set_long_excl, atomic_clear_long_excl - atomic set and clear bit
operations

#include <atomic.h>

int atomic_set_long_excl(volatile ulong_t *target, uint_t bit);

int atomic_clear_long_excl(volatile ulong_t *target, uint_t bit);

The atomic_set_long_excl() and atomic_clear_long_excl() functions perform an
exclusive atomic bit set or clear operation on target. The value of bit specifies the number of
the bit to be modified within target. Bits are numbered from zero to one less than the

maximum number of bits in a Long. If the value of bit falls outside of this range, the result of
the operation is undefined.

The atomic_set long excl() andatomic clear long excl() functions return 0 if bit was
successfully set or cleared. They return -1 if bit was already set or cleared.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

atomic_add(3C),atomic_and(3C), atomic_cas(3C), atomic_dec(3C),atomic_inc(3C),
atomic_or(3C),atomic_swap(3C), membar ops(3C), attributes(5), atomic_ops(9F)

Basic Library Functions 59

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_cas(3C)

Name

Synopsis

Description

ReturnValues
Errors

Attributes

60

atomic_cas, atomic_cas_8, atomic_cas_uchar, atomic_cas_16, atomic_cas_ushort,
atomic_cas_32, atomic_cas_uint, atomic_cas_ulong, atomic_cas_64, atomic_cas_ptr —

atomic compare and swap operations

#include <atomic.h>

uint8_t atomic_cas_8(volatile uint8_t *target, uint8 t cmp,
uint8 t newval);

uchar_t atomic_cas_uchar(volatile uchar_t *target, uchar_t cmp,
uchar_t newval);

uintl6_t atomic_cas_16(volatile uintl6_t *target, uintl6_t cmp,
uintlé t newval);

ushort_t atomic_cas_ushort(volatile ushort_t *target, ushort_t cmp,
ushort t newval) ;

uint32_t atomic_cas_32(volatile uint32_t *target, uint32_t cmp,
uint32 t newval) ;

uint_t atomic_cas_uint(volatile uint_t *tfarget, uint_t cmp,
uint t newval);

ulong_t atomic_cas_ulong(volatile ulong_t *target, ulong_t cmp,
ulong t newval);

uint64_t atomic_cas_64(volatile uint64_t *target, uint64_t cmp,
uint64 t newval);

void *atomic_cas_ptr(volatile void *farget, void *cmp,
void *newval);

These functions enable a compare and swap operation to occur atomically. The value stored in
target is compared with cmp. If these values are equal, the value stored in target is replaced
with newval. The old value stored in target is returned by the function whether or not the

replacement occurred.
These functions return the old value of *target.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

Interface Stability Committed

MT-Level MT-Safe

man pages section 3: Basic Library Functions - Last Revised 13 May 2005

ATTRIBUTETYPE ATTRIBUTE VALUE

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_cas(3C)

SeeAlso atomic_add(3C),atomic_and(3C),atomic_bits(3C),atomic_dec(3C),atomic_inc(3C),
atomic_or(3C),atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

Basic Library Functions 61

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_dec(3C)

62

Name

Synopsis

Description

ReturnValues
Errors

Attributes

atomic_dec, atomic_dec_8, atomic_dec_uchar, atomic_dec_16, atomic_dec_ushort,
atomic_dec_32, atomic_dec_uint, atomic_dec_ulong, atomic_dec_64, atomic_dec_ptr,
atomic_dec_8 nv, atomic_dec_uchar_nv, atomic_dec_16_nv, atomic_dec_ushort_nv,
atomic_dec_32_nv, atomic_dec_uint_nv, atomic_dec_ulong_nv, atomic_dec_64_nv,
atomic_dec_ptr_nv - atomic decrement operations

#include <atomic.h>

void atomic_dec_8(volatile uint8_t *farget);

void atomic_dec_uchar(volatile uchar_t *tfarget);

void atomic_dec_16(volatile uintl6_t *target);

void atomic_dec_ushort(volatile ushort_t *target);
void atomic_dec 32(volatile uint32_t *farget);

void atomic_dec_uint(volatile uint_t *target);

void atomic_dec_ulong(volatile ulong_t *tfarget);

void atomic_dec_64(volatile uint64_t *target);

void atomic_dec_ptr(volatile void *target);

uint8_t atomic_dec_8_nv(volatile uint8_t *tfarget);
uchar_t atomic_dec_uchar_nv(volatile uchar_t *target);
uintl6_t atomic_dec_16_nv(volatile uintl6_t *target);
ushort_t atomic_dec_ushort_nv(volatile ushort_t *farget);
uint32_ t atomic_dec_32 nv(volatile uint32_ t *target);
uint_t atomic_dec_uint_nv(volatile uint_t *target);
ulong_t atomic_dec_ulong_nv(volatile ulong_t *target);
uint64_t atomic_dec_64_nv(volatile uint64_t *target);

void *atomic_dec_ptr_nv(volatile void *target);

These functions enable the decrementing (by one) of the value stored in target to occur in an
atomic manner.

The*_nv() variants of these functions return the new value of target.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

man pages section 3: Basic Library Functions - Last Revised 13 May 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_dec(3C)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SeeAlso atomic_add(3C),atomic_and(3C),atomic_bits(3C),atomic_cas(3C),atomic_inc(3C),
atomic_or(3C),atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

Notes The* nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically
(for example, when decrementing a reference count and checking whether it went to zero).

Basic Library Functions

63

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_inc(3C)

64

Name

Synopsis

Description

ReturnValues
Errors

Attributes

atomic_inc, atomic_inc_8, atomic_inc_uchar, atomic_inc_16, atomic_inc_ushort,
atomic_inc_32, atomic_inc_uint, atomic_inc_ulong, atomic_inc_64, atomic_inc_ptr,
atomic_inc_8_nv, atomic_inc_uchar_nv, atomic_inc_16_nv, atomic_inc_ushort_nv,
atomic_inc_32_nv, atomic_inc_uint_nv, atomic_inc_ulong nv, atomic_inc_64_nv,
atomic_inc_ptr_nv - atomic increment operations

#include <atomic.h>

void atomic_inc_8(volatile uint8_t *farget);

void atomic_inc_uchar(volatile uchar_t *tfarget);

void atomic_inc_16(volatile uintl6_t *target);

void atomic_inc_ushort(volatile ushort_t *target);
void atomic_inc_32(volatile uint32_t *farget);

void atomic_inc_uint(volatile uint_t *target);

void atomic_inc_ulong(volatile ulong_t *tfarget);

void atomic_inc_64(volatile uint64_t *target);

void atomic_inc_ptr(volatile void *target);

uint8_t atomic_inc_8_nv(volatile uint8_t *tfarget);
uchar_t atomic_inc_uchar_nv(volatile uchar_t *target);
uintl6_t atomic_inc_16_nv(volatile uintl6_t *target);
ushort_t atomic_inc_ushort_nv(volatile ushort_t *farget);
uint32_ t atomic_inc_32 nv(volatile uint32_ t *target);
uint_t atomic_inc_uint_nv(volatile uint_t *target);
ulong_t atomic_inc_ulong_nv(volatile ulong_t *target);
uint64_t atomic_inc_64_nv(volatile uint64_t *target);
void *atomic_inc_ptr_nv(volatile void *target);

These functions enable the incrementing (by one) of the value stored in target to occur in an
atomic manner.

The*_nv() variants of these functions return the new value of target.

No errors are defined.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed

man pages section 3: Basic Library Functions - Last Revised 13 May 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_inc(3C)

See Also

Notes

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

atomic_add(3C),atomic_and(3C), atomic_bits(3C),atomic_cas(3C), atomic_dec(3C),
atomic_or(3C),atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The*_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

Basic Library Functions

65

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_ops(3C)

Name

Synopsis

Description

Attributes

See Also

Notes

66

atomic_ops — atomic operations

#include <atomic.h>

This collection of functions provides atomic memory operations. There are 8 different classes
of atomic operations:

atomic_add(3C) These functions provide an atomic addition of a signed value to a
variable.
atomic_and(3C) These functions provide an atomic logical 'and' of a value to a variable.

atomic_bits(3C) These functions provide atomic bit setting and clearing within a
variable.

atomic_cas(3C) These functions provide an atomic comparison of a value with a
variable. If the comparison is equal, then swap in a new value for the
variable, returning the old value of the variable in either case.

atomic_dec(3C) These functions provide an atomic decrement on a variable.
atomic_inc(3C) These functions provide an atomic increment on a variable.
atomic_or(3C) These functions provide an atomic logical 'or' of a value to a variable.

atomic_swap(3C) These functions provide an atomic swap of a value with a variable,
returning the old value of the variable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

atomic_add(3C),atomic_and(3C), atomic_bits(3C),atomic_cas(3C), atomic_dec(3C),
atomic_inc(3C),atomic_or(3C),atomic_swap(3C), membar ops(3C),attributes(5)

Atomic instructions ensure global visibility of atomically-modified variables on completion.
In a relaxed store order system, this does not guarantee that the visibility of other variables will
be synchronized with the completion of the atomic instruction. If such synchronization is
required, memory barrier instructions must be used. See membar_ops(3C).

Atomic instructions can be expensive since they require synchronization to occur at a
hardware level. This means they should be used with care to ensure that forcing hardware level
synchronization occurs a minimum number of times. For example, if you have several
variables that need to be incremented as a group, and each needs to be done atomically, then
do so with a mutex lock protecting all of them being incremented rather than using the
atomic_inc(3C) operation on each of them.

man pages section 3: Basic Library Functions - Last Revised 12 Aug 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_or(3C)

Name atomic_or, atomic_or_8, atomic_or_uchar, atomic_or_16, atomic_or_ushort, atomic_or_32,

atomic_or_uint, atomic_or_ulong, atomic_or_64, atomic_or_8_nv, atomic_or_uchar_nv,
atomic_or_16_nv, atomic_or_ushort_nv, atomic_or_32_nv, atomic_or_uint_nv,

atomic_or_ulong_nv, atomic_or_64_nv - atomic OR operations

Synopsis #include <atomic.h>

Description

Return Values
Errors

Attributes

void
void
void
void
void
void
void

void

atomic_or 8(volatile uint8_t *target, uint8 t bits);
atomic_or_uchar(volatile uchar_t *target, uchar_t bits);
atomic_or_16(volatile uintl6_t *target, uintl6_t bits) ;
atomic_or_ushort(volatile ushort_t *target, ushort_t bits);
atomic_or_32(volatile uint32_t *target, uint32_t bits);
atomic_or_uint(volatile uint_t *target, uint_t bits) ;
atomic_or_ulong(volatile ulong_t *target, ulong_t bits);

atomic_or_64(volatile uint64 t *target, uint64_t bits);

uint8_ t atomic_or_ 8 nv(volatile uint8_t *target, uint8 t bits);

uchar_t atomic_or_uchar_nv(volatile uchar_t *target, uchar_t bits);

uintl6_t atomic_or_16_nv(volatile uintl6_t *target, uintl6_t bits);

ushort_t atomic_or_ushort_nv(volatile ushort_t *target, ushort_t bits);

uint32_t atomic_or 32 nv(volatile uint32_t *target, uint32_t bits);

uint_

t atomic_or_uint_nv(volatile uint_t *target, uint_t bits);

ulong_t atomic_or ulong nv(volatile ulong_ t *target, ulong_t bits);

uint64_t atomic_or_64_nv(volatile uint64_t *target, uint64_t bits);

These functions enable the the bitwise OR of bits to the value stored in target to occur in an

atomic manner.

The *_nv () variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Basic Library Functions

67

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_or(3C)

SeeAlso atomic_add(3C),atomic_and(3C),atomic_bits(3C),atomic_cas(3C), atomic_dec(3C),
atomic_inc(3C), atomic_swap(3C), membar ops(3C),attributes(5),atomic_ops(9F)

Notes The* nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

68 man pages section 3: Basic Library Functions - Last Revised 13 May 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_swap(3Q)

Name atomic_swap, atomic_swap_8, atomic_swap_uchar, atomic_swap_16, atomic_swap_ushort,

atomic_swap_32, atomic_swap_uint, atomic_swap_ulong, atomic_swap_64,
atomic_swap_ptr — atomic swap operations

Synopsis #include <atomic.h>

Description

Return Values
Errors

Attributes

uint8_ t atomic_swap_8(volatile uint8_t *target, uint8_t newval);
uchar_t atomic_swap_uchar(volatile uchar_t *target, uchar_t newval);
uintl6_t atomic_swap_16(volatile uintl6_t *target, uintl6_t newval);
ushort_t atomic_swap_ushort(volatile ushort_t *target, ushort_t newval);
uint32_t atomic_swap_32(volatile uint32_ t *target, uint32_t newval);
uint_t atomic_swap_uint(volatile uint_t *target, uint_t newval);

ulong_t atomic_swap_ulong(volatile ulong_t *target, ulong_t newval);
uint64 t atomic_swap_64(volatile uint64 t *target, uint64_t newval);

void *atomic_swap_ptr(volatile void *target, void *newval) ;

These functions enable a swap operation to occur atomically. The value stored in target is

replaced with newval. The old value is returned by the function.
These functions return the old of *target.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

SeeAlso atomic_add(3C),atomic_and(3C),atomic_bits(3C),atomic_dec(3C),atomic_inc(3C),
atomic_or(3C),atomic_cas(3C), membar_ops(3C),attributes(5),atomic_ops(9F)

Basic Library Functions

69

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

attropen(3Q)

70

Name

Synopsis

Description

Return Values
Errors

Attributes

See Also

attropen — open a file

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int attropen(const char *path, const char *attrpath, int oflag,
/* mode t mode */...);

The attropen() function is similar to the open(2) function except that it takes a second path
argument, attrpath, that identifies an extended attribute file associated with the first path
argument. This function returns a file descriptor for the extended attribute rather than the file
named by the initial argument.

The 0_XATTR flag is set by default for attropen () and the attrpath argument is always
interpreted as a reference to an extended attribute. Extended attributes must be referenced
with a relative path; providing an absolute path results in a normal file reference.

Refer to open(2).
Refer to open(2).
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

open(2), attributes(5), fsattr(5)

man pages section 3: Basic Library Functions « LastRevised 1 Aug 2001

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fsattr-5

basename(3C)

Name

Synopsis

Description

ReturnValues

Usage

Examples

Attributes

See Also

basename - return the last element of a path name

#include <libgen.h>
char *basename(char *path);

The basename () function takes the pathname pointed to by path and returns a pointer to the
final component of the pathname, deleting any trailing '/’ characters.

If the string consists entirely of the '/' character, basename () returns a pointer to the string "/".

If path is a null pointer or points to an empty string, basename () returns a pointer to the string

"o

The basename () function returns a pointer to the final component of path.

The basename () function may modify the string pointed to by path, and may return a pointer
to static storage that may then be overwritten by a subsequent call to basename ().

When compiling multithreaded applications, the REENTRANT flag must be defined on the
compile line. This flag should only be used in multithreaded applications.

EXAMPLE 1 Examples for Input String and Output String

Input String Output String
"/usr/lib" "lib"
"fusr/" "usr"
e o

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

basename(1), dirname(3C), attributes(5), standards(5)

Basic Library Functions 71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1basename-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bsdmalloc(3MALLOC)

Name

Synopsis

Description

ReturnValues

Errors

Usage

72

bsdmalloc - memory allocator

cc [flag ... 1 file ... -lbsdmalloc [library ...]

char *malloc(sizeunsigned size;
int free(ptrchar *ptr;

char *realloc(ptr, sizechar *ptr;
unsigned size;

These routines provide a general-purpose memory allocation package. They maintain a table
of free blocks for efficient allocation and coalescing of free storage. When there is no suitable
space already free, the allocation routines call sbrk(2) to get more memory from the system.
Each of the allocation routines returns a pointer to space suitably aligned for storage of any
type of object. Each returns a null pointer if the request cannot be completed.

Themalloc() function returns a pointer to a block of at least size bytes, which is appropriately
aligned.

The free() function releases a previously allocated block. Its argument is a pointer to a block
previously allocated by malloc() or realloc(). The free() function does not set errno.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptris NULL, realloc() behaves
like malloc () for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

Themalloc() and realloc() functions return a null pointer if there is not enough available
memory. They return a non-null pointer if size is 0. These pointers should not be
dereferenced. When realloc() returns NULL, the block pointed to by ptr is left intact. Always
cast the value returned by malloc() and realloc().

Ifmalloc() or realloc() returns unsuccessfully, errno will be set to indicate the following:

ENOMEM size bytes of memory cannot be allocated because it exceeds the physical limits of
the system.

EAGAIN There is not enough memory available at this point in time to allocate size bytes of
memory; but the application could try again later.

Using realloc () with a block freed before the most recent call tomalloc() or realloc()
results in an error.

Comparative features of the various allocation libraries can be found in the
umem_alloc(3MALLOC) manual page.

man pages section 3: Basic Library Functions - Last Revised 21 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sbrk-2

bsdmalloc(3MALLOC)

SeeAlso brk(2),malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC), umem alloc(3MALLOC)
Warnings Use of libbsdmalloc renders an application non-SCD compliant.

The libbsdmalloc routines are incompatible with the memory allocation routines in the
standard C-library (libc): malloc(3C), alloca(3C), calloc(3C), free(3C), memalign(3C),
realloc(3C),and valloc(3C).

Basic Library Functions 73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

bsd_signal(3C)

74

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

bsd_signal - simplified signal facilities

#include <signal.h>
void (*bsd_signal(int sig, void (*fﬂnc)(int)))(int);

The bsd_signal() function provides a partially compatible interface for programs written to
historical system interfaces (see USAGE below).

The function call bsd_signal(sig, func) has an effect as if implemented as:

void (*bsd signal(int sig, void (*func) (int))) (int)

{

struct sigaction act, oact;

act.sa_handler = func;

act.sa flags = SA RESTART;

sigemptyset(&act.sa mask);

sigaddset(&act.sa mask, ng);

if (sigaction(sig, &act, &oact) == —1)
return(SIG_ERR);

return(oact.sa handler);

}
The handler function should be declared:

void handler(int sig);

where sigis the signal number. The behavior is undefined if func is a function that takes more
than one argument, or an argument of a different type.

Upon successful completion, bsd_signal() returns the previous action for sig. Otherwise,
SIG ERRisreturned and errno is set to indicate the error.

Refer to sigaction(2).

This function is a direct replacement for the BSD signal() function for simple applications
that are installing a single-argument signal handler function. Ifa BSD signal handler function
is being installed that expects more than one argument, the application has to be modified to
use sigaction(2). The bsd signal() function differs from signal() in that the SA_ RESTART
flag is set and the SA_RESETHAND will be clear when bsd_signal() is used. The state of these
flags is not specified for signal().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

bsd_signal(3C)

Standard |See standards(5).

SeeAlso sigaction(2),sigaddset(3C), sigemptyset(3C), attributes(5), standards(5)

Basic Library Functions 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bsearch(3C)

Name

Synopsis

Description

ReturnValues

Usage

Examples

76

bsearch - binary search a sorted table

#include <stdlib.h>

void *bsearch(const void *key, const void *base, size t nel, size t size,
int (*compar) (const void *,const void *));

The bsearch() function is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table (an array) indicating where a datum may be found or a null

pointer if the datum cannot be found. The table must be previously sorted in increasing order
according to a comparison function pointed to by compar.

The key argument points to a datum instance to be sought in the table. The base argument
points to the element at the base of the table. The nel argument is the number of elements in
the table. The size argument is the number of bytes in each element.

The comparison function pointed to by compar is called with two arguments that point to the
key object and to an array element, in that order. The function must return an integer less
than, equal to, or greater than 0 if the key object is considered, respectively, to be less than,
equal to, or greater than the array element.

The bsearch() function returns a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel should be
the lower number.

The bsearch() function safely allows concurrent access by multiple threads to disjoint data,
such as overlapping subtrees or tables.

EXAMPLE1 Examples for searching a table containing pointers to nodes.

The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct node { /* these are stored in the table */

man pages section 3: Basic Library Functions « Last Revised 6 Dec 2004

bsearch(3C)

EXAMPLE 1 Examples for searching a table containing pointers to nodes. (Continued)

char *string;
int length;
I
static struct node table[] = { /* table to be searched */
{ "asparagus", 10 },
{ "beans", 6 },
{ "tomato", 7 },
{ "watermelon", 11 },

+;
main()
{
struct node *node ptr, node;
/* routine to compare 2 nodes */
static int node compare(const void *, const void *);
char str _space[20]; /* space to read string into */
node.string = str space;
while (scanf("%20s", node.string) !'= EOF) {
node ptr = bsearch(&node,
table, sizeof(table)/sizeof(struct node),
sizeof(struct node), node compare);
if (node_ptr != NULL) {
(void) printf("string = %20s, length = %d\n"
node ptr—>string, node ptr—>length);
} else {
(void)printf("not found: %20s\n", node.string);
}
}
return(0);
}

/* routine to compare two nodes based on an */
/* alphabetical ordering of the string field */
static int
node compare(const void *nodel, const void *node2) {
return (strcmp(
((const struct node *)nodel)—>string,
((const struct node *)node2)—>string));

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

Basic Library Functions

77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

bsearch(3C)

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

SeeAlso hsearch(3C), lsearch(3C), gsort(3C), tsearch(3C), attributes(5), standards(5)

78 man pages section 3: Basic Library Functions « Last Revised 6 Dec 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bstring(3C)

Name

Synopsis

Description

Warnings

Attributes

See Also

bstring, bcopy, bcmp, bzero — memory operations

#include <strings.h>
void bcopy(const void *sI, void *s2, size t n);
int bcmp(const void *sI, const void *s2, size t n);

void bzero(void *s, size t n);

The bcopy (), becmp (), and bzero () functions operate as efficiently as possible on memory
areas (arrays of bytes bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area. These functions are similar to the
memcpy (), memcmp (), and memset () functions described on the memory(3C) manual page.

The bcopy () function copies n bytes from memory area s1 to s2. Copying between objects that
overlap will take place correctly.

The bemp () function compares the first 7 bytes of its arguments, returning 0 if they are
identical and 1 otherwise. The bcmp () function always returns 0 when 7 is 0.

The bzero () function sets the first n bytes in memory area s to 0.

The bcopy () function takes parameters backwards from memcmp (). See memory(3C).

See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

memory(3C), attributes(5), standards(5)

Basic Library Functions 79

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

btowc(3C)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

Notes

80

btowc - single-byte to wide-character conversion

#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

The btowc () function determines whether ¢ constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

The btowc () function returns WEOF if ¢ has the value EOF or if (unsigned char)c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it returns the
wide-character representation of that character.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

setlocale(3C),wctob(3C), attributes(5), environ(5), standards(5)

The btowc () function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

catgets(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

catgets — read a program message

#include <nl types.h>
char *catgets(nl catd catd, int set_num, int msg_num, const char *s);

The catgets() function attempts to read message msg_num, in set set_num, from the
message catalog identified by catd. The catd argument is a catalog descriptor returned from an
earlier call to catopen (). The s argument points to a default message string which will be
returned by catgets () if the identified message catalog is not currently available.

If the identified message is retrieved successfully, catgets () returns a pointer to an internal
buffer area containing the null terminated message string. If the call is unsuccessful for any
reason, catgets () returns a pointer to s and errno may be set to indicate the error.

The catgets () function may fail if:
EBADF The catd argument is not a valid message catalogue descriptor open for reading.

EBADMSG ~ The number of %n specifiers that appear in the message string specified by s does
not match the number of %n specifiers that appear in the message identified by
set_id and msg_id in the specified message catalog.

EINTR The read operation was terminated due to the receipt of a signal, and no data was
transferred.

EINVAL The message catalog identified by catd is corrupted.

ENOMSG The message identified by set_id and msg_id is not in the message catalog.

The catgets () function can be used safely in multithreaded applications as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

gencat(1), catclose(3C), catopen(3C), gettext(3C), setlocale(3C), attributes(5),
standards(5)

International Language Environments Guide

Basic Library Functions 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gencat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/817-2521

catopen(3C)

Name

Synopsis

Description

82

catopen, catclose — open/close a message catalog

#include <nl_types.h>

nl catd catopen(const char *name, int qﬂag);

int catclose(nl catd catd);

The catopen() function opens a message catalog and returns a message catalog descriptor.
name specifies the name of the message catalog to be opened. If name contains a “/”, then
name specifies a complete pathname for the message catalog; otherwise, the environment
variable NLSPATH is used and /usr/1lib/locale/locale/LC_MESSAGES must exist. If NLSPATH
does not exist in the environment, or if a message catalog cannot be opened in any of the paths
specified by NLSPATH, then the default path /usr/1ib/locale/locale/LC_MESSAGES is used. In
the “C” locale, catopen () will always succeed without checking the default search path.

The names of message catalogs and their location in the filesystem can vary from one system
to another. Individual applications can choose to name or locate message catalogs according
to their own special needs. A mechanism is therefore required to specify where the catalog
resides.

The NLSPATH variable provides both the location of message catalogs, in the form of a search
path, and the naming conventions associated with message catalog files. For example:

NLSPATH=/n1lslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current setting of
either the LANG environment variable, if the value of oflag is 0, or the LC_MESSAGES category, if
the value of oflag is NL_CAT_LOCALE, and %N substitutes the value of the name parameter passed
to catopen(). Thus, in the above example, catopen () will search in
/nlslib/$LANG/name.cat, if oflagis 0, orin /nlslib/{LC_MESSAGES}/name. cat, if oflagis
NL_CAT LOCALE.

The NLSPATH variable will normally be set up on a system wide basis (in /etc/profile) and
thus makes the location and naming conventions associated with message catalogs
transparent to both programs and users.

The full set of metacharacters is:

o°

N The value of the name parameter passed to catopen().

o°
=

The value of LANG or LC_MESSAGES.

o°
pa

The value of the language element of LANG or LC_MESSAGES.

o°
~+

The value of the territory element of LANG or LC_MESSAGES.

The value of the codeset element of LANG or LC_MESSAGES.

o°
0

o°
o°

A single %.

man pages section 3: Basic Library Functions « Last Revised 5 May 2011

catopen(3Q)

ReturnValues

The LANG environment variable provides the ability to specify the user's requirements for
native languages, local customs and character set, as an ASCII string in the form

LANG=1language territory.codeset[@modifier]

A user who speaks German as it is spoken in Austria and has a terminal which operates in
UTF-8 codeset, would want the setting of the LANG variable to be

LANG=de_AT.UTF-8

With this setting it should be possible for that user to find any relevant catalogs should they
exist.

Should the LANG variable not be set, the value of LC_MESSAGES as returned by setlocale() is
used. If this is NULL, the default path as defined in <nl_types.h> is used.

A message catalogue descriptor remains valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogues.

If a file descriptor is used to implement message catalogue descriptors, the FD_CLOEXEC flag
will be set; see <fcntl.h>.

If the value of oflag argument is 0, the LANG environment variable is used to locate the
catalogue without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalogue.

If the value of LANG or LC_MESSAGES that is used in the process of locating message catalog is a
canonical locale name to obsoleted Solaris locale names as described in locale alias(5)and
the above mentioned ordinary locations with the value do not yield a message catalog, for a
better backward compatibility, catopen () additionally looks for its message catalog using the
obsoleted Solaris locale names as the additional locale names to check on with in place of the
value.

If the value of LANG or LC_MESSAGES that is used in the process of locating message catalog is an
accepted and supported locale name alias to a canonical locale name that is supported as
described in locale_alias(5) and the above mentioned ordinary locations with the value do
not yield a message catalog, catopen () additionally looks for its message catalog using the
canonical locale name.

The catclose() function closes the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor will be closed.

Upon successful completion, catopen () returns a message catalog descriptor for use on
subsequent calls to catgets () and catclose(). Otherwise it returns (nl_catd) —1.

Basic Library Functions 83

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

catopen(3C)

Upon successful completion, catclose() returns 0. Otherwise it returns —1 and sets errno to

indicate the error.

Errors The catopen() function may fail if:

EACCES

EMFILE

ENAMETOOLONG

ENAMETOOLONG

ENFILE

ENOENT

ENOMEM

ENOTDIR

Search permission is denied for the component of the path prefix of the
message catalogue or read permission is denied for the message catalogue.

There are OPEN_MAX file descriptors currently open in the calling process.

The length of the pathname of the message catalogue exceeds PATH_MAX, or
a pathname component is longer than NAME_MAX.

Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

Too many files are currently open in the system.

The message catalogue does not exist or the name argument points to an
empty string.

Insufficient storage space is available.

A component of the path prefix of the message catalogue is not a directory.

The catclose() function may fail if:

EBADF The catalogue descriptor is not valid.

EINTR The catclose() function was interrupted by a signal.

Usage The catopen() and catclose() functions can be used safely in multithreaded applications, as
long as setlocale(3C) is not being called to change the locale.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso gencat(1), catgets(3C), gettext(3C),nl_types.h(3HEAD), setlocale(3C),
attributes(5), environ(5), locale alias(5)

84 man pages section 3: Basic Library Functions « Last Revised 5 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gencat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nl-types.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

cfgetispeed(3Q)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

cfgetispeed, cfgetospeed - get input and output baud rate

#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

speed_t cfgetospeed(const struct termios *fermios_p);

The cfgetispeed() function extracts the input baud rate from the termios structure to
which the termios_p argument points.

The cfgetospeed () function extracts the output baud rate from the termios structure to
which the termios_p argument points.

These functions returns exactly the value in the termios data structure, without
interpretation.

Upon successful completion, cfgetispeed() returns a value of type speed_t representing the
input baud rate.

Upon successful completion, cfgetospeed () returns a value of type speed_t representing the
output baud rate.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe, and Async-Signal-Safe
Standard See standards(5).

cfgetospeed(3C), tcgetattr(3C), attributes(5), standards(5), termio(71)

Basic Library Functions 85

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

cfsetispeed(3C)

86

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

cfsetispeed, cfsetospeed - set input and output baud rate

#include <termios.h>
int cfsetispeed(struct termios *fermios_p, speed_t speed);
int cfsetospeed(struct termios *termios_p, speed_t speed);

The cfsetispeed() function sets the input baud rate stored in the structure pointed to by
termios_p to speed.

The cfsetospeed () function sets the output baud rate stored in the structure pointed to by
termios_p to speed.

There is no effect on the baud rates set in the hardware until a subsequent successful call to
tcsetattr(3C) on the same termios structure.

Upon successful completion, cfsetispeed() and cfsetospeed() return 0. Otherwise —1 is
returned, and errno may be set to indicate the error.

The cfsetispeed() and cfsetospeed() functions may fail if:
EINVAL The speed value is not a valid baud rate.

EINVAL The value of speed is outside the range of possible speed values as specified in
<termios.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe, and Async-Signal-Safe
Standard See standards(5).

cfgetispeed(3C), tcsetattr(3C), attributes(5), standards(5), termio(71)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

clearenv(3Q)

Name clearenv — clear the environment

Synopsis #include <stdlib.h>
int clearenv(void);

Description The clearenv () function clears the environment of all name-value pairs and sets the value of
the external variable environ(5) to NULL.

ReturnValues Upon successful completion, the clearenv() function returns 0. Otherwise, it returns a
non-zero value.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

SeeAlso getenv(3C), setenv(3C), attributes(5), environ(5)

Basic Library Functions 87

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

clock(3C)

88

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

clock - report CPU time used

#include <time.h>
clock t clock(void);

The clock() function returns the amount of CPU time (in microseconds) used since the first
call to clock() in the calling process. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it has executed the
wait(3C) function, the pclose(3C) function, or the system(3C) function.

Dividing the value returned by clock() by the constant CLOCKS_PER_SEC, defined in the
<time.h> header, will give the time in seconds. If the process time used is not available or
cannot be represented, clock returns the value (clock_t) —1.

The value returned by clock() is defined in microseconds for compatibility with systems that
have CPU clocks with much higher resolution. Because of this, the value returned will wrap
around after accumulating only 2147 seconds of CPU time (about 36 minutes).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

times(2), popen(3C), system(3C),wait(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1times-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

clock_nanosleep(3C)

Name

Synopsis

Description

ReturnValues

clock_nanosleep - high resolution sleep with specifiable clock

#include <time.h>

int clock nanosleep(clockid_t clock_id, int flags,
const struct timespec *rgip, struct timespec *rmtp);

If the flag TIMER ABSTIME is not set in the flags argument, the clock_nanosleep() function
causes the current thread to be suspended from execution until either the time interval
specified by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its
action is to invoke a signal-catching function, or the process is terminated. The clock used to
measure the time is the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function causes
the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep () returns immediately
and the calling process is not suspended.

The suspension time caused by this function can be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) will not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep()
function (that is, with the TIMER_ABSTIME flag set) will be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function has no effect on the action or blockage of any
signal.

The clock_nanosleep() function fails if the clock_id argument refers to the CPU-time clock
of the calling thread. It is unspecified if clock_id values of other CPU-time clocks are allowed.

If the clock_nanosleep() function returns because the requested time has elapsed, its return
value is 0.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it
returns the corresponding error value. For the relative clock_nanosleep () function, if the
rmtp argument is non-null, the timespec structure referenced by it is updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp argument is NULL, the remaining time is not returned. The absolute
clock_nanosleep() function has no effect on the structure referenced by rmtp.

If clock_nanosleep () fails, it shall return the corresponding error value.

Basic Library Functions 89

clock_nanosleep(3C)

90

Errors The clock nanosleep() function will fail if:

EINTR The clock_nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or greater than or
equal to 1,000 million; or the TIMER_ABSTIME flag was specified in flags and
the rqtp argument is outside the range for the clock specified by clock_id; or the
clock_id argument does not specify a known clock, or specifies the CPU-time

clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which clock_nanosleep() is not

supported, such as a CPU-time clock.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso clock getres(3C), nanosleep(3C), pthread cond timedwait(3C), sleep(3C),

attributes(5), standards(5)

man pages section 3: Basic Library Functions «

Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

clock_settime(3C)

Name

Synopsis

Description

Return Values

Errors

clock_settime, clock_gettime, clock_getres — high-resolution clock operations

#include <time.h>

int clock settime(clockid t clock_id, const struct timespec *tp);
int clock gettime(clockid t clock_id, struct timespec *tp);

int clock getres(clockid t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock are truncated down to the smaller multiple of the resolution.

The clock_gettime() function returns the current value fp for the specified clock, clock_id.

The resolution of any clock can be obtained by calling clock_getres (). Clock resolutions are
system-dependent and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock is stored in the location pointed to by res. If res is NULL, the
clock resolution is not returned. If the time argument of clock_settime() is nota multiple of
res, then the value is truncated to a multiple of res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring time
that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the realtime clock
for the system. For this clock, the values returned by clock_gettime () and specified by
clock_settime() represent the amount of time (in seconds and nanoseconds) since the
Epoch. Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for the
system. For this clock, the value returned by clock_gettime(3C) represents the amount of
time (in seconds and nanoseconds) since some arbitrary time in the past; it is not correlated in
any way to the time of day, and thus is not subject to resetting or drifting by way of
adjtime(2),ntp_adjtime(2), settimeofday(3C), or clock settime().The time source for
this clock is the same as that for gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these clocks is
unspecified.

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

The clock_settime(), clock gettime() and clock getres() functions will fail if:
EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock gettime(),and clock getres() are not
supported by this implementation.

Basic Library Functions 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ntp-adjtime-2

clock_settime(3C)

92

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for the given clock ID;
or the tp argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.

The clock_settime() function may fail if:

EPERM Therequesting process does not have the appropriate privilege to set the specified
clock.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level clock_gettime() is Async-Signal-Safe
Standard See standards(5).

SeeAlso time(2), ctime(3C), gethrtime(3C), time.h(3HEAD), timer gettime(3C), attributes(5),
standards(5)

man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

closedir(3C)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

closedir - close a directory stream

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

The closedir () function closes the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor will be closed.

Upon successful completion, closedir() returns 0. Otherwise, —1 is returned and errno is set
to indicate the error.

The closedir() function may fail if:
EBADF The dirp argument does not refer to an open directory stream.

EINTR The closedir() function was interrupted by a signal.

See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

opendir(3C), attributes(5), standards(5)

Basic Library Functions 93

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

closefrom(3C)

Name

Synopsis

Description

94

closefrom, fdwalk - close or iterate over open file descriptors

#include <stdlib.h>

void closefrom(int lowfd);

int fdwalk(int (*func)(void *, int), void *cd);

The closefrom() function calls close(2) on all open file descriptors greater than or equal to
lowfd.

The effect of closef rom(lowfd) is the same as the code

#include <sys/resource.h>
struct rlimit ri;
int 1i;

getrlimit (RLIMIT NOFILE, &rl);
for (i = lowfd; i < rl.rlim max; i++)
(void) close(i);

except that close() is called only on file descriptors that are actually open, not on every
possible file descriptor greater than or equal to lowfd, and close() is also called on any open
file descriptors greater than or equal to rl. rliim_max (and lowfd), should any exist.

The fdwalk() function first makes a list of all currently open file descriptors. Then for each file
descriptor in the list, it calls the user-defined function, func(cd, fd), passing it the pointer to the
callback data, cd, and the value of the file descriptor from the list, fd. The list is processed in file
descriptor value order, lowest numeric value first.

If func() returns a non-zero value, the iteration over the list is terminated and fdwalk()
returns the non-zero value returned by func(). Otherwise, fdwalk() returns 0 after having
called func() for every file descriptor in the list.

The fdwalk() function can be used for fine-grained control over the closing of file descriptors.
For example, the closefrom() function can be implemented as:

static int
close func(void *lowfdp, int fd)
{

if (fd >= *(int *)lowfdp)
(void) close(fd);
return (0);

void
closefrom(int lowfd)
{
(void) fdwalk(close func, &lowfd);
}

man pages section 3: Basic Library Functions « Last Revised 27 Apr 2000

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

closefrom(3C)

ReturnValues

Errors

Files

Usage

Attributes

See Also

The fdwalk() function can then be used to count the number of open files in the process.

No return value is defined for closefrom(). If close() fails for any of the open file

descriptors, the error is ignored and the file descriptors whose close () operation failed might

remain open on return from closefrom().

The fdwalk() function returns the return value of the last call to the callback function func()
or 0 if func() is never called (no open files).

No errors are defined. The closefrom() and fdwalk() functions do not set errno buterrno
can be set by close () or by another function called by the callback function, func().

/proc/self/fd directory (list of open files)

The act of closing all open file descriptors should be performed only as the first action of a
daemon process. Closing file descriptors that are in use elsewhere in the current process
normally leads to disastrous results.

See attributes(5) for descriptions of the following attributes:

>

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Unsafe

close(2),getrlimit(2), proc(4), attributes(5)

Basic Library Functions

95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cond_init(3C)

Name

Synopsis

Description

Initialize

96

cond_init, cond_wait, cond_timedwait, cond_reltimedwait, cond_signal, cond_broadcast,
cond_destroy - condition variables

cc -mt [flag... 1 file... [library...]
#include <thread.h>
#include <synch.h>

int cond_init(cond_t *cvp, int type, void *arg);
int cond_wait(cond_t *cvp, mutex_t *mp);

int cond_timedwait(cond_t *cvp, mutex_t *mp,
timestruc_t *abstime);

int cond_reltimedwait(cond_t *cvp, mutex_t *mp,
timestruc t *reltime);

int cond_signal(cond_t *cvp);
int cond_broadcast(cond_t *cvp);

int cond_destroy(cond_t *cvp);

Condition variables and mutexes should be global. Condition variables that are allocated in
writable memory can synchronize threads among processes if they are shared by the
cooperating processes (see mmap(2)) and are initialized for this purpose.

The scope of a condition variable is either intra-process or inter-process. This is dependent
upon whether the argument is passed implicitly or explicitly to the initialization of that
condition variable. A condition variable does not need to be explicitly initialized. A condition
variable is initialized with all zeros, by default, and its scope is set to within the calling process.
For inter-process synchronization, a condition variable must be initialized once, and only
once, before use.

A condition variable must not be simultaneously initialized by multiple threads or
re-initialized while in use by other threads.

Attributes of condition variables can be set to the default or customized at initialization.

The cond_init() function initializes the condition variable pointed to by cvp. A condition
variable can have several different types of behavior, specified by type. No current type uses arg
although a future type may specify additional behavior parameters with arg. The type
argument c take one of the following values:

USYNC_THREAD The condition variable can synchronize threads only in this process. This
is the default.

USYNC_PROCESS ~ The condition variable can synchronize threads in this process and other
processes. Only one process should initialize the condition variable. The
object initialized with this attribute must be allocated in memory shared

man pages section 3: Basic Library Functions - Last Revised 5 Jun 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

cond_init(3C)

between processes, either in System V shared memory (see shmop(2)) or
in memory mapped to a file (see mmap(2)). It is illegal to initialize the
object this way and to not allocate it in such shared memory.

Initializing condition variables can also be accomplished by allocating in zeroed memory, in
which case, a type of USYNC_THREAD is assumed.

If default condition variable attributes are used, statically allocated condition variables can be
initialized by the macro DEFAULTCV.

Default condition variable initialization (intra-process):
cond t cvp;

cond init(&cvp, NULL, NULL); /*initialize condition variable
with default*/

or

cond init(&cvp, USYNC THREAD, NULL);

or

cond t cond = DEFAULTCV;

Customized condition variable initialization (inter-process):

cond init(&cvp, USYNC PROCESS, NULL); /* initialize cv with
inter-process scope */

ConditionWait The condition wait interface allows a thread to wait for a condition and atomically release the
associated mutex that it needs to hold to check the condition. The thread waits for another
thread to make the condition true and that thread's resulting call to signal and wakeup the
waiting thread.

The cond_wait () function atomically releases the mutex pointed to by mp and causes the
calling thread to block on the condition variable pointed to by cvp. The blocked thread may be
awakened by cond_signal(), cond_broadcast (), or when interrupted by delivery of a UNIX
signal ora fork().

The cond_wait(), cond_timedwait(),and cond_reltimedwait () functions always return
with the mutex locked and owned by the calling thread even when returning an error, except
when the mutex has the LOCK_ROBUST attribute and has been left irrecoverable by the mutex's
last owner. The cond wait (), cond timedwait(),and cond reltimedwait () functions
return the appropriate error value if they fail to internally reacquire the mutex.

Condition Signaling A condition signal allows a thread to unblock a single thread waiting on the condition
variable, whereas a condition broadcast allows a thread to unblock all threads waiting on the
condition variable.

Basic Library Functions 97

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

cond_init(3C)

Destroy

Return Values

Errors

98

The cond_signal() function unblocks one thread that is blocked on the condition variable
pointed to by cvp.

The cond_broadcast () function unblocks all threads that are blocked on the condition
variable pointed to by cvp.

If no threads are blocked on the condition variable, then cond _signal() and
cond _broadcast () have no effect.

The cond_signal() or cond_broadcast () functions can be called by a thread whether or not
it currently owns the mutex that threads calling cond_wait (), cond_timedwait(), or
cond_reltimedwait () have associated with the condition variable during their waits. If,
however, predictable scheduling behavior is required, then that mutex should be locked by the
thread prior to calling cond_signal() or cond_broadcast().

The condition destroy functions destroy any state, but not the space, associated with the
condition variable.

The cond_destroy () function destroys any state associated with the condition variable
pointed to by cvp. The space for storing the condition variable is not freed.

Upon successful completion, these functions return 0. Otherwise, a non-zero value is returned
to indicate the error.

The cond_timedwait () and cond_ reltimedwait () functions will fail if:

ETIME The time specified by abstime or reltime has passed.

The cond wait(),cond timedwait(),and cond reltimedwait () functions will fail if:

EINTR Interrupted. The calling thread was awakened by the delivery of a UNIX signal.
If the mutex pointed to by mp is a robust mutex (initialized with the LOCK_ROBUST attribute),
the cond wait(), cond timedwait() and cond reltimedwait () functions will, under the

specified conditions, return the following error values. For complete information, see the
description of the mutex_lock() function on the mutex_init(3C) manual page.

ENOTRECOVERABLE ~ The mutex was protecting the state that has now been left irrecoverable.
The mutex has not been acquired.

EOWNERDEAD The last owner of the mutex died while holding the mutex, possibly
leaving the state it was protecting inconsistent. The mutex is now
owned by the caller.

These functions may fail if:

EFAULT The cond, attr, cvp, arg, abstime, or mutex argument points to an illegal address.

man pages section 3: Basic Library Functions - Last Revised 5 Jun 2007

cond_init(3C)

Examples

EINVAL Invalid argument. For cond_init (), typeis not a recognized type. For
cond_timedwait (), the number of nanoseconds is greater than or equal to
1,000,000,000.

EXAMPLE 1 Use cond_wait () inaloop to test some condition.

The cond_wait () function is normally used in a loop testing some condition, as follows:

(void) mutex lock(mp);
while (cond == FALSE) {
(void) cond wait(cvp, mp);
}
(void) mutex unlock(mp);

EXAMPLE2 Use cond timedwait() ina loop to test some condition.

The cond_timedwait () function is normally used in a loop testing some condition. It uses an

absolute timeout value as follows:

timestruc t to;

(void) mutex lock(mp);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv _nsec = 0;
while (cond == FALSE) {
err = cond_timedwait(cvp, mp, &to);
if (err == ETIME) {
/* timeout, do something */
break;

}

(void) mutex unlock(mp);

EXAMPLE3 Use cond reltimedwait() ina loop to test some condition.

The cond_reltimedwait () function is normally used in a loop testing in some condition. It

uses a relative timeout value as follows:

timestruc t to;

(void) mutex lock(mp);
while (cond == FALSE) {
to.tv_sec = TIMEOUT;
to.tv_nsec = 0;
err = cond reltimedwait(cvp, mp, &to);
if (err == ETIME) {
/* timeout, do something */
break;

Basic Library Functions

99

cond_init(3C)

100

Attributes

See Also

Notes

EXAMPLE3 Use cond_reltimedwait () inaloop to test some condition. (Continued)

}

(void) mutex unlock(mp);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fork(2), mmap(2), setitimer(2), shmop(2), mutex init(3C), signal(3C), attributes(5),
condition(5), mutex(5), standards(5)

If more than one thread is blocked on a condition variable, the order in which threads are
unblocked is determined by the scheduling policy. When each thread, unblocked as a result of
acond_signal() or cond broadcast (), returns from its call to cond wait() or

cond timedwait () ,the thread owns the mutex with which it called cond wait(),
cond_timedwait(),or cond_reltimedwait (). The thread(s) thatare unblocked compete for
the mutex according to the scheduling policy and as if each had called mutex_lock(3C).

When cond wait () returns the value of the condition is indeterminate and must be
reevaluated.

The cond_timedwait() and cond reltimedwait () functions are similar to cond wait(),
except that the calling thread will not wait for the condition to become true past the absolute
time specified by abstime or the relative time specified by reltime. Note that

cond_timedwait() or cond_reltimedwait () might continue to block as it trys to reacquire
the mutex pointed to by mp, which may be locked by another thread. If either
cond_timedwait() or cond reltimedwait () returns because of a timeout, it returns the error
value ETIME.

man pages section 3: Basic Library Functions « LastRevised 5 Jun 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

confstr(3C)

Name

Synopsis

Description

confstr — get configurable variables

#include <unistd.h>

size t confstr(int name, char *buf, size_t len);

The confstr() function provides a method for applications to get configuration-defined
string values. Its use and purpose are similar to the sysconf(3C) function, but it is used where
string values rather than numeric values are returned.

The name argument represents the system variable to be queried.

If len is not 0, and if name has a configuration-defined value, confstr() copies that value into
the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null, then confstr() truncates the string to len—1 bytes and
null-terminates the result. The application can detect that the string was truncated by
comparing the value returned by confstr() with len.

If lenis @, confstr() still returns the integer value as defined below, but does not return the
string.

The confstr() function supports the following values for name, defined in <unistd. h>, for
both SPARC and x86:

_CS_LFS64 CFLAGS If LFS64 LARGEFILE isdefinedin<unistd.h>,
this value is the set of initial options to be given
to the cc and ¢89 utilities to build an application
using the Large File Summit transitional
compilation environment (see
1fcompile64(5)).

CS_LFS64 LDFLAGS If LFS64 LARGEFILE isdefinedin<unistd.h>,
this value is the set of final options to be given to
the cc and 89 utilities to build an application
using the Large File Summit transitional
compilation environment (see
1fcompile64(5)).

€S _LFS64 LIBS If LFS64 LARGEFILE isdefined in <unistd.h>,
this value is the set of libraries to be given to the
cc and c89 utilities to build an application using
the Large File Summit transitional compilation
environment (see 1fcompile64(5)).

CS_LFS64 LINTFLAGS If LFS64 LARGEFILE is defined in <unistd.h>,
this value is the set of options to be given to the
lint utility to check application source using
the Large File Summit transitional compilation
environment (see 1fcompile64(5)).

Basic Library Functions 101

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5

confstr(3C)

102

_CS_LFS_CFLAGS

CS_LFS_LDFLAGS

CS_LFS_LIBS

_CS_LFS_LINTFLAGS

CS_PATH

€S POSIX V6 ILP32 OFF32 CFLAGS

€S POSIX V6 ILP32 OFF32 LDFLAGS

If LFS LARGEFILE is defined in <unistd.h>,
this value is the set of initial options to be given
to the cc and c89 utilities to build an application
using the Large File Summit large file
compilation environment for 32-bit
applications (see Lfcompile(5)).

If LFS LARGEFILE is defined in <unistd.h>,
this value is the set of final options to be given to
the cc and ¢89 utilities to build an application
using the Large File Summit large file
compilation environment for 32-bit
applications (see 1fcompile(5)).

If LFS LARGEFILE is defined in <unistd.h>,
this value is the set of libraries to be given to the
cc and c89 utilities to build an application using
the Large File Summit large file compilation
environment for 32-bit applications (see
1fcompile(5)).

If LFS LARGEFILE isdefinedin <unistd.h>,
this value is the set of options to be given to the
lint utility to check application source using
the Large File Summit large file compilation
environment for 32-bit applications (see
1fcompile(5)).

If the ISO POSIX.2 standard is supported, this is
the value for the PATH environment variable that
finds all standard utilities. Otherwise the
meaning of this value is unspecified.

If sysconf(_SC V6 _ILP32 OFF32)returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the c99 utility to build an
application using a programming model with
32-bit int, long, pointer,and of f_t types.

If sysconf(_SC V6 ILP32 OFF32)returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with 32-bit int,
long, pointer,and off _t types.

man pages section 3: Basic Library Functions - Last Revised 15 Dec 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5

confstr(3C)

_CS_POSIX V6 ILP32 OFF32 LIBS

CS_POSIX V6 ILP32 OFFBIG CFLAGS

CS_POSIX V6 ILP32 OFFBIG LDFLAGS

€S _POSIX V6 ILP32 OFFBIG LIBS

€S POSIX V6 LP64 OFF64 CFLAGS

CS_POSIX V6 LP64 OFF64 LDFLAGS

Basic Library Functions

If sysconf(_SC V6 ILP32 OFF32)returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the 99 utility to build an application
using a programming model with 32-bit int,
long, pointer,and off_t types.

If sysconf(_SC V6 ILP32 OFFBIG) returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the c99 utility to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

If sysconf(SC V6 ILP32 OFFBIG)returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with 32-bit int,
long, and pointer types,and an off_t type
using at least 64 bits.

If sysconf(_SC_V6_ILP32 OFFBIG)returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the c99 utility to build an application
using a programming model with 32-bit int,
long, and pointer types, and an of f_t type
using at least 64 bits.

If sysconf(_SC V6 _LP64 OFF64) returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of initial options to be given
to the 99 utility to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(SC V6 LP64 OFF64)returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of final options to be given to
the c99 utility to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

103

confstr(3C)

104

man pages section 3: Basic Library Functions «

_CS_POSIX V6 LP64 OFF64 LIBS

CS_POSIX V6 LPBIG OFFBIG CFLAGS

CS_POSIX V6 LPBIG OFFBIG LDFLAGS

_CS_POSIX V6 LPBIG OFFBIG LIBS

~CS _POSIX V6 WIDTH RESTRICTED ENVS

€S XBS5 ILP32 OFF32 CFLAGS

If sysconf(_SC V6 LP64 OFF64) returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of libraries to be given to the
€99 utility to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(_ SC V6 LPBIG OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the 99 utility to build an
application using a programming model with
an int type using at least 32 bits and long,
pointer,and off_t types using at least 64 bits.

If sysconf(SC V6 LPBIG OFFBIG)returns-1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with an int type
using at least 32 bits and long, pointer, and

of f_t types using at least 64 bits.

If sysconf(_SC_V6_LPBIG OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the c99 utility to build an application
using a programming model with an int type
using at least 32 bits and long, pointer, and
of f_t types using at least 64 bits.

This value is a <newline>-separated list of
names of programming environments
supported by the implementation in which the
widths of the blksize t,cc t,mode t,nfds t,
pid t,ptrdiff t,size t,speed t,ssize t,
suseconds t,tcflag t,useconds t,wchar t,
andwint_t types are no greater than the width
of type long.

If sysconf(SC_XBS5 ILP32 OFF32) returns—1
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the cc and 89 utilities to build an
application using a programming model with
32-bit int, long, pointer,and of f_t types.

Last Revised 15 Dec 2003

confstr(3C)

_CS_XBS5_ILP32 OFF32 LDFLAGS

CS_XBS5 ILP32 OFF32 LIBS

CS_XBS5 ILP32 OFF32 LINTFLAGS

€S XBS5 ILP32 OFFBIG CFLAGS

CS_XBS5 ILP32 OFFBIG LDFLAGS

(S _XBS5 ILP32 OFFBIG LIBS

Basic Library Functions

If sysconf(_SC_XBS5 ILP32 OFF32) returns—1
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, pointer,and of f_t types.

If sysconf(_SC XBS5 ILP32 OFF32) returns—1
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, pointer,and of f_t types.

If sysconf(_SC_XBS5 ILP32 OFF32) returns—1
the meaning of this value is unspecified.
Otherwise, this value is the set of options to be
given to the lint utility to check application
source using a programming model with 32-bit
int, long, pointer,and of f_t types.

If sysconf(_SC_XBS5 ILP32 OFFBIG) returns
—1 the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

If sysconf (SC_XBS5 ILP32 OFFBIG) returns—1
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an

of f_t type using at least 64 bits.

If sysconf(SC XBS5 ILP32 OFFBIG) returns
—1 the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the cc and ¢89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

105

confstr(3C)

_CS_XBS5_ILP32 OFFBIG_LINTFLAGS

If sysconf(_SC_XBS5 ILP32 OFFBIG) returns
—1 the meaning of this value is unspecified.
Otherwise, this value is the set of options to be
given to the lint utility to check an application
using a programming model with 32-bit int,
long, and pointer types, and an off_t type
using at least 64 bits.

The confstr() function supports the following values for name, defined in <unistd. h>, for

SPARC only:

CS_XBS5 LP64 OFF64 CFLAGS

_CS_XBS5_LP64 OFF64 LDFLAGS

CS_XBS5_LP64 OFF64 LIBS

CS_XBS5_LP64 OFF64 LINTFLAGS

_CS_XBS5 LPBIG OFFBIG CFLAGS

If sysconf(_SC_XBS5 LP64 OFF64) returns—1 the
meaning of this value is unspecified. Otherwise, this
value is the set of initial options to be given to the cc
and c89 utilities to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(_SC_XBS5 LP64 OFF64) returns—1 the
meaning of this value is unspecified. Otherwise, this
value is the set of final options to be given to the cc
and c89 utilities to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(_SC_XBS5 LP64 OFF64) returns—1 the
meaning of this value is unspecified. Otherwise, this
value is the set of libraries to be given to the cc and
89 utilities to build an application using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(_SC_XBS5 LP64 OFF64) returns—1 the
meaning of this value is unspecified. Otherwise, this
value is the set of options to be given to the lint
utility to check application source using a
programming model with 64-bit int, long,
pointer,and off_t types.

If sysconf(_SC_XBS5 LPBIG_OFFBIG) returns—1
the meaning of this value is unspecified. Otherwise,
this value is the set of initial options to be given to
the cc and ¢89 utilities to build an application using
a programming model with an int type using at
least 32 bits and long, pointer,and off_t types
using at least 64 bits.

106 man pages section 3: Basic Library Functions - Last Revised 15 Dec 2003

confstr(3C)

_CS_XBS5_LPBIG_OFFBIG_LDFLAGS

(S _XBS5 LPBIG OFFBIG LIBS

CS_XBS5 LPBIG OFFBIG LINTFLAGS

If sysconf(_SC_XBS5 LPBIG OFFBIG) returns—1
the meaning of this value is unspecified. Otherwise,
this value is the set of final options to be given to the
cc and c89 utilities to build an application using a
programming model with an int type using at least
32 bitsand long, pointer, and off_t types using at
least 64 bits.

If sysconf(SC XBS5 LPBIG OFFBIG) returns—1
the meaning of this value is unspecified. Otherwise,
this value is the set of libraries to be given to the cc
and c89 utilities to build an application using a
programming model with an int type using at least
32 bitsand long, pointer,and off_t types using at
least 64 bits.

If sysconf(_SC_XBS5 LPBIG_OFFBIG) returns—1
the meaning of this value is unspecified. Otherwise,
this value is the set of options to be given to the
lint utility to check application source using a
programming model with an int type using at least
32 bitsand long, pointer,and off_t types using at
least 64 bits.

ReturnValues If name has a configuration-defined value, the confstr() function returns the size of buffer
that would be needed to hold the entire configuration-defined value. If this return value is
greater than len, the string returned in bufis truncated.

If name is invalid, confstr() returns 0 and sets errno to indicate the error.

If name does not have a configuration-defined value, confstr() returns @ and leaves errno

unchanged.

Errors The confstr() function will fail if:

EINVAL

The value of the name argument is invalid.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Mt-Safe
Standard See standards(5).

Basic Library Functions

107

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

confstr(3C)

SeeAlso pathconf(2), sysconf(3C), attributes(5), 1fcompile(5), 1fcompile64(5), standards(5)

108 man pages section 3: Basic Library Functions - Last Revised 15 Dec 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pathconf-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

crypt(3C)

Name

Synopsis

Standard conforming

Description

ReturnValues

Errors

Usage

Attributes

crypt - string encoding function

#include <crypt.h>

char *crypt(const char *key, const char *salt);

#include <unistd.h>
char *crypt(const char *key, const char *salt);

The crypt () function encodes strings suitable for secure storage as passwords. It generates the
password hash given the key and salt.

The key argument is the plain text password to be encrypted.

If the first character of salt is “$”, crypt () uses crypt.conf(4) to determine which shared
module to load for the encryption algorithm. The algorithm name crypt () uses to search in
crypt.conf is the string between the first and second “$”, or between the first “$” and first)" if

«»

a“) comes before the second “$”.
If the first character of salt is not “$”, the algorithm described on crypt_unix(5) is used.

Upon successful completion, crypt () returns a pointer to the encoded string. Otherwise it
returns a null pointer and sets errno to indicate the error.

The return value points to static data that is overwritten by each call.

The crypt () function will fail if:

EINVAL Anentryin crypt.conf is invalid.

ELIBACC Therequired shared library was not found.
ENOMEM There is insufficient memory to generate the hash.

ENOSYS The functionality is not supported on this system.

The values returned by this function might not be portable among standard-conforming
systems. See standards(5).

Applications should not use crypt () to store or verify user passwords but should use the
functions described on pam(3PAM) instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Basic Library Functions 109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt-unix-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

crypt(3C)

ATTRIBUTETYPE ATTRIBUTE VALUE

Standard See standards(5).

See Also passwd(1), crypt_genhash_impl(3C), crypt_gensalt(3C), crypt_gensalt_impl(3C),
getpassphrase(3C), pam(3PAM), passwd(4), policy.conf(4), attributes(5),
crypt_unix(5), standards(5)

110 man pages section 3: Basic Library Functions - Last Revised 28 Sep 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt-unix-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

crypt_genhash_impl(3C)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

crypt_genhash_impl - generate encrypted password

#include <crypt.h>

char *crypt_genhash_impl(char *ctbuffer, size t ctbufflen,
const char *plaintext, const char *salt, const char **params) ;

The crypt_genhash_impl() function is called by crypt(3C) to generate the encrypted
password plaintext.

The ctbuffer argument is a pointer to an MT-safe buffer of ctbufflen size that is used to return
the result.

The salt argument is the salt used in encoding.

The params argument is an argv-like null-terminated vector of type char *. The first element
of params represents the mechanism token name from crypt. conf(4). The remaining
elements of params represent strings of the form <parameter>[=<value>] to allow passing in
additional information from the crypt. conf entry, such as specifing rounds information
"rounds=4096".

The crypt_genhash_imp1l() function must not free(3C) ctbufflen on error.

Upon successful completion, crypt_genhash_imp1l() returns a pointer to the encoded
version of plaintext. Otherwise a null pointer is returned and errno is set to indicate the error.

The crypt_genhash_impl() function will fail if:
EINVAL The configuration file crypt. conf contains an invalid entry.
ELIBACC Therequired shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt _gensalt impl(3C), free(3C), getpassphrase(3C),
crypt.conf(4), passwd(4), attributes(5)

Basic Library Functions m

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

crypt_gensalt(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

112

crypt_gensalt — generate salt string for string encoding

#include <crypt.h>
char *crypt_gensalt(const char *oldsalt, const struct passwd *userinfo);
The crypt_gensalt() function generates the salt string required by crypt(3C).

If oldsalt is NULL, crypt_gensalt() uses the algorithm defined by CRYPT_DEFAULT in
/etc/security/policy.conf.Seepolicy.conf(4).

If oldsalt is non-null, crypt_gensalt () determines if the algorithm specified by oldsalt is
allowable by checking the CRYPT ALGORITHMS ALLOWand CRYPT ALGORITHMS DEPRECATE
variables in /etc/security/policy.conf.If the algorithm is allowed, crypt_gensalt()
loads the appropriate shared library and calls crypt_gensalt_impl(3C). If the algorithm is
not allowed or there is no entry foritin crypt. conf, crypt_gensalt() uses the default
algorithm.

The mechanism just described provides a means to migrate users to new password hashing
algorithms when the password is changed.

Upon successful completion, crypt gensalt() returnsa pointer to the new salt. Otherwise a
null pointer is returned and errno is set to indicate the error.

The crypt_gensalt() function will fail if:
EINVAL The configuration file crypt. conf contains an invalid entry.
ELIBACC Therequired shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

The value returned by crypt_gensalt() points to a null-terminated string. The caller of
crypt_gensalt() is responsible for calling free(3C).

Applications dealing with user authentication and password changing should not call
crypt_gensalt() directly but should instead call the appropriate pam(3PAM) functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt_impl(3C),
getpassphrase(3C), malloc(3C), pam(3PAM), crypt.conf(4), passwd(4), policy.conf(4),
attributes(5)

man pages section 3: Basic Library Functions « LastRevised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

crypt_gensalt_impl(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

crypt_gensalt_impl - generate salt for password encryption

#include <crypt.h>

char *crypt_gensalt_impl(char *gsbuffer, size t gsbufflen,
const char *oldsalt, const struct passwd *userinfo,
const char **params);

The crypt_gensalt_impl() functionis called by crypt_gensalt(3C) to generate the salt for
password encryption.

The gsbuffer argument is a pointer to an MT-safe buffer of size gsbufflen.
The oldsalt and userinfo arguments are passed unchanged from crypt_gensalt(3C).

The params argument is an argv-like null terminated vector of type char *. The first element
of params represents the mechanism token name from crypt. conf(4). The remaining
elements of params represent strings of the form <parameter>[=<value>] to allow passing in
additional information from the crypt. conf entry, such as specifying rounds information
"rounds=4096".

The value returned by crypt_gensalt_impl() points to a thread-specific buffer to be freed by
the caller of crypt_gensalt(3C) after calling crypt(3C).

Upon successful completion, crypt_gensalt impl() returnsa pointer to the new salt.
Otherwise a null pointer is returned and errno is set to indicate the error.

The crypt_gensalt_impl() function will fail if:
EINVAL The configuration file crypt. conf contains an invalid entry.
ELIBACC Therequired crypt shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C), getpassphrase(3C),
crypt.conf(4), passwd(4), attributes(5)

Basic Library Functions 113

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cset(3C)

Name

Synopsis

Description

Usage

Attributes

114

cset, csetlen, csetcol, csetno, wesetno - get information on EUC codesets

#include <euc.h>

int csetlen(int codeset);
int csetcol(int codeset);
int csetno(unsigned char c);

#include <widec.h>

int wcsetno(wchar_t pc);

Both csetlen() and csetcol() take a code set number codeset, which must be 0, 1, 2, or 3.
The csetlen() function returns the number of bytes needed to represent a character of the
given Extended Unix Code (EUC) code set, excluding the single-shift characters SS2 and SS3
for codesets 2 and 3. The csetcol() function returns the number of columns a character in
the given EUC code set would take on the display.

The csetno() function is implemented as a macro that returns a codeset number (0, 1, 2, or 3)
for the EUC character whose first byte is c. For example,

#include<euc.h>

x+=csetcol(csetno(c));

«_»

increments a counter “x” (such as the cursor position) by the width of the character whose first

byteisc.

Thewcsetno () function is implemented as a macro that returns a codeset number (0, 1, 2, or
3) for the given process code character pc. For example,
#include<euc.h>

#include<widec.h>

x+=csetcol(wcsetno(pc));

«_»

increments a counter “x” (such as the cursor position) by the width of the Process Code
character pc.

These functions work only for the EUC locales.

The cset(), csetlen(), csetcol(), csetno(),andwecsetno() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

man pages section 3: Basic Library Functions - Last Revised 16 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cset(30)

SeeAlso setlocale(3C)euclen(3C),attributes(5)

Basic Library Functions 115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ctermid(3C)

Name

Synopsis

Description

ctermid()

ctermid_r()

Usage

Attributes

See Also

116

ctermid, ctermid_r — generate path name for controlling terminal

#include <stdio.h>

char *ctermid(char *s);

char *ctermid r(char *s);

The ctermid() function generates the path name of the controlling terminal for the current
process and stores it in a string.

If sis a null pointer, the string is stored in an internal static area whose address is returned and
whose contents are overwritten at the next call to ctermid (). Otherwise, s is assumed to point
to a character array of atleast L_ctermid elements. The path name is placed in this array and
the value of s is returned. The constant L_ctermid is defined in the header <stdio.h>.

The ctermid_r() function behaves as ctermid () except that if s is a null pointer, the function
returns NULL.

The difference between ctermid() and ttyname(3C) is that ttyname () must be passed a file
descriptor and returns the actual name of the terminal associated with that file descriptor,
while ctermid () returns a string (/dev/tty) that will refer to the terminal if used as a file
name. The ttyname () function is useful only if the process already has at least one file open to
a terminal.

The ctermid() function is unsafe in multithreaded applications. The ctermid_r() function is
MT-Safe and should be used instead.

When compiling multithreaded applications, the "REENTRANT flag must be defined on the
compile line. This flag should be used only with multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability ctermid() is Standard
MT-Level ctermid() is Unsafe; ctermid r() is MT-Safe

ttyname(3C), attributes(5)

man pages section 3: Basic Library Functions - Last Revised 25 Jul 2000

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ctime(3Q)

Name

Synopsis

Standard conforming

Description

ctime, ctime_r, localtime, localtime_r, gmtime, gmtime_r, asctime, asctime_r, tzset — convert
date and time to string

#include <time.h>

char *ctime(const time t *clock);

struct tm *localtime(const time t *clock);
struct tm *gmtime(const time t *clock);
char *asctime(const struct tm *tm);

extern time t timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset(void);

char *ctime_r(const time t *clock, char *buf, int buflen);

struct tm *localtime r(const time t *restrict clock,
struct tm *restrict res);

struct tm *gmtime r(const time t *restrict clock,
struct tm *restrict res);

char *asctime r(const struct tm *restrict tm, char *restrict bqﬁ
int buflen);

cc [flag... 1 file... -D_POSIX PTHREAD_SEMANTICS [library...]

char *ctime_r(const time_t *clock, char *buf);

char *asctime_r(const struct tm *tm, char *buf);

The ctime() function converts the time pointed to by clock, representing the time in seconds
since the Epoch (00:00:00 UTC, January 1, 1970), to local time in the form of a 26-character
string, as shown below. Time zone and daylight savings corrections are made before string
generation. The fields are in constant width:

Fri Sep 13 00:00:00 1986\n\0
The ctime() function is equivalent to:
asctime(localtime(clock))

The ctime(),asctime(), gmtime(), and localtime() functions return values in one of two
thread-specific data objects: a broken-down time structure and an array of char. Execution of
any of the functions can overwrite the information returned in either of these objects by any of
the other functions executed by the same thread.

Basic Library Functions 17

ctime(3Q)

118

The ctime_r() function has the same functionality as ctime () except that the caller must
supply a buffer buf with length buflen to store the result; buf must be at least 26 bytes. The
standard-conforming ctime_r() function does not take a buflen parameter.

The localtime() and gmtime () functions return pointers to tm structures (see below). The
localtime() function corrects for the main time zone and possible alternate (“daylight
savings”) time zone; the gmtime () function converts directly to Coordinated Universal Time
(UTC), which is what the UNIX system uses internally.

The localtime_r() and gmtime_r() functions have the same functionality as localtime()
and gmtime () respectively, except that the caller must supply a buffer res to store the result.

The asctime() function converts a tm structure to a 26-character string, as shown in the
previous example, and returns a pointer to the string.

The asctime_r() function has the same functionality as asctime () except that the caller must
supply a buffer buf with length buflen for the result to be stored. The bufargument must be at
least 26 bytes. The standard-conforming asctime_r() function does not take a buflen
parameter. The asctime_r() function returns a pointer to bufupon success. In case of failure,
NULL is returned and errno is set.

Declarations of all the functions and externals, and the tm structure, are in the <time.h>
header. The members of the tm structure are:

int tm_sec; /* seconds after the minute — [0, 60] */
/* for leap seconds */

int tm min; /* minutes after the hour — [0, 59] */

int tm_hour; /* hour since midnight - [0, 23] */

int tm mday; /* day of the month — [1, 31] */

int tm _mon; /* months since January — [0, 11] */

int tm_year; /* years since 1900 */

int tm wday; /* days since Sunday — [0, 6] */
int tm_yday; /* days since January 1 — [0, 365] */
int tm isdst; /* flag for alternate daylight savings time */

The value of tm_isdst is positive if daylight savings time is in effect, zero if daylight savings
time is not in effect, and negative if the information is not available. Previously, the value of
tm_isdst was defined as non-zero if daylight savings was in effect.

The external time t variable altzone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable timezone
contains the difference, in seconds, between UTC and local standard time. The external
variable daylight indicates whether time should reflect daylight savings time. Both timezone
and altzone default to 0 (UTC). The external variable daylight is non-zero if an alternate
time zone exists. The time zone names are contained in the external variable tzname, which by
default is set to:

Char *thame[z] — { “GMT”, « »};

man pages section 3: Basic Library Functions LastRevised 5Jul 2011

ctime(3Q)

Return Values

Errors

Usage

Examples

These functions know about the peculiarities of this conversion for various time periods for
the U.S. (specifically, the years 1974, 1975, and 1987). They start handling the new daylight
savings time starting with the first Sunday in April, 1987.

The tzset () function uses the contents of the environment variable TZ to override the value
of the different external variables. It is called by asctime() and can also be called by the user. If
TZis not specified or has an invalid setting, tzset () uses GMT@. See environ(5) fora
description of the TZ environment variable.

Starting and ending times are relative to the current local time zone. If the alternate time zone
start and end dates and the time are not provided, the days for the United States that year will
be used and the time will be 2 AM. If the start and end dates are provided but the time is not
provided, the time will be 2 AM. The effects of tzset () change the values of the external
variables timezone, altzone, daylight, and tzname.

Note that in most installations, TZ is set to the correct value by default when the user logs on,
using the local /etc/default/init file (see TIMEZONE(4)).

Upon successful completion, the gntime () and localtime () functions return a pointer to a
struct tm. Ifan error is detected, gntime () and localtime() return a null pointer.

Upon successful completion, the gntime_r() and localtime_r() functions return the
address of the structure pointed to by the res argument. If an error is detected, gmtime_r()
and localtime_r() return a null pointer and set errno to indicate the error.

The ctime r() and asctime r() functions will fail if:

ERANGE Thelength of the buffer supplied by the caller is not large enough to store the
result.

The gmtime (), gmtime r(), localtime(),and localtime r() functions will fail if:

EOVERFLOW The result cannot be represented.

These functions do not support localized date and time formats. The strftime(3C) function
can be used when localization is required.

The localtime(), localtime r(),gmtime(),gmtime r(),ctime(),and ctime r()
functions assume Gregorian dates. Times before the adoption of the Gregorian calendar will
not match historical records.

EXAMPLE 1 Examples of the tzset () function.

The tzset () function scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New Jersey in 1986
could be:

EST5EDT4,116/2:00:00,298/2:00:00

Basic Library Functions 119

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4

ctime(3Q)

120

Attributes

See Also

EXAMPLE 1 Examples of the tzset () function. (Continued)

or simply

EST5EDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[0] is EST, timezone is set to
5*60*60, tzname[1] is EDT, altzone is set to 4*60*60, the starting date of the alternate time
zone is the 117th day at 2 AM, the ending date of the alternate time zone is the 299th day at 2
AM (using zero-based Julian days), and daylight is set positive. Starting and ending times are
relative to the current local time zone. If the alternate time zone start and end dates and the
time are not provided, the days for the United States that year will be used and the time will be
2 AM. If the start and end dates are provided but the time is not provided, the time will be 2
AM. The effects of tzset () are thus to change the values of the external variables timezone,
altzone, daylight, and tzname. The ctime(), localtime(), mktime(),and strftime()
functions also update these external variables as if they had called tzset () at the time
specified by the time_t or struct tmvalue that they are converting.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
CSI Enabled
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

The asctime(), ctime(), gmtime(),and localtime() functions are safe to use in multithread
applications because they employ thread-specific data. However, their use is discouraged
because standards do not require them to be thread-safe. The asctime r() and gmtime r()
functions are MT-Safe. The ctime r(), localtime r(),and tzset() functionsare MT-Safe
in multithread applications, as long as no user-defined function directly modifies one of the
following variables: timezone, altzone, daylight, and tzname. These four variables are not
MT-Safe to access. They are modified by the tzset () function in an MT-Safe manner. The
mktime(), localtime r(),and ctime r() functions call tzset().

time(2), Intro(3), getenv(3C), mktime(3C), printf(3C), putenv(3C), setlocale(3C),
strftime(3C), TIMEZONE(4), attributes(5), environ(5), standards(5)

man pages section 3: Basic Library Functions LastRevised 5Jul 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctime(3Q)

Notes When compiling multithreaded programs, see Intro(3).

The return values for asctime(), ctime(), gmtime(), and localtime() point to
thread-specific data whose content is overwritten by each call by the same thread.

Setting the time during the interval of change from timezone to altzone or vice versa can
produce unpredictable results. The system administrator must change the Julian start and end
days annually.

If tzset () has previously evaluated the timezone identified by the value of the TZ
environment variable, tzset () can reuse the previous settings of the external variables
altzone, daylight, timezone, and tzname[] associated with that timezone.

Solaris 2.4 and earlier releases provided definitions of the ctime r(), localtime r(),
gmtime r(),andasctime_r() functions as specified in POSIX.1¢ Draft 6. The final POSIX.1c
standard changed the interface for ctime_r() and asctime_r(). Support for the Draft 6
interface is provided for compatibility only and might not be supported in future releases.
New applications and libraries should use the standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and REENTRANT
flags are automatically turned on by defining the POSIX_C_SOURCE flag with a value >=
199506L.

In Solaris 10, gmtime (), gmtime r(), localtime(),and localtime_r() were updated to
return a null pointer if an error is detected. This change was based on the SUSv3 specification.
See standards(5).

Basic Library Functions 121

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctype(3C)

122

Name

Synopsis

Description

Default

ctype, isalpha, isalnum, isascii, isblank, iscntrl, isdigit, islower, isprint, isspace, isupper,
ispunct, isgraph, isxdigit — character handling

#include <ctype.h>

int isalpha(int ¢);

int isalnum(int ¢);

int isascii(int ¢);

int isblank(int c);

int iscntrl(int ¢);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c¢)

int isspace(int c);

int isupper(int c)

int isxdigit(int c¢);

These macros classify character-coded integer values. Each is a predicate returning non-zero
for true, 0 for false. The behavior of these macros, except isascii(), is affected by the current
locale (see setlocale(3C)). To modify the behavior, change the LC_TYPE category in
setlocale(), thatis, setlocale(LC CTYPE, newlocale). In the “C” locale, or in a locale where

character type information is not defined, characters are classified according to the rules of the
US-ASCII 7-bit coded character set.

The isascii() macro is defined on all integer values. The rest are defined only where the
argument is an int, the value of which is representable as an unsigned char, or EOF, which is
defined by the <stdio.h> header and represents end-of-file.

Functions exist for all the macros defined below. To get the function form, the macro name
must be undefined (for example, #undef isdigit).

For macros described with Default and Standard conforming versions,
standard-conforming behavior is provided for standard-conforming applications (see
standards(5)) and for applications that define __XPG4_CHAR_CLASS__ before including
<ctype.h>.

isalpha() Tests for any character for which isupper() or islower() is true.

man pages section 3: Basic Library Functions - Last Revised 28 Jan 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctype(3C)

Standard conforming

Default

Standard conforming

Default

Standard conforming

isalpha()

isalnum()

isascii()

isblank()

iscntrl()
isdigit()

isgraph()

isgraph()

islower()

isprint()

isprint()

ispunct()

isspace()

isupper()

Tests for any character for which isupper () or islower() istrue, or any
character that is one of the current locale-defined set of characters for which
noneofiscntrl(),isdigit(), ispunct(),orisspace() istrue.In “C”locale,
isalpha() returns true only for the characters for which isupper() or
islower () istrue.

Tests for any character for which isalpha() or isdigit() istrue (letter or
digit).

Tests for any ASCII character, code between @ and 0177 inclusive.

Tests whether cis a character of class blank in the current locale. This
macro/function is not available to applications conforming to standards prior
to SUSv3. See standards(5)

Tests for any “control character" as defined by the character set.
Tests for any decimal-digit character.

Tests for any character for which ispunct(), isupper(), islower(), and
isdigit() istrue.

Tests for any character for which isalnum() and ispunct() are true, or any
character in the current locale-defined “graph” class which is neither a space
(“”) nor a character for which iscntrl() is true.

Tests for any character that is a lower-case letter or is one of the current
locale-defined set of characters for which none of iscntrl(), isdigit(),
ispunct(),isspace(), or isupper() is true. In the “C” locale, islower()
returns true only for the characters defined as lower-case ASCII characters.

Tests for any character for which ispunct(), isupper(), islower(),
isdigit(),and the space character (“”) is true.

Tests for any character for which iscntri() is false, and isalnum(),
isgraph(), ispunct(), the space character (“”), and the characters in the
current locale-defined “print” class are true.

« »

Tests for any printing character which is neither a space (“ ”) nor a character

for which isalnum() or iscntrl() is true.

Tests for any space, tab, carriage-return, newline, vertical-tab or form-feed
(standard white-space characters) or for one of the current locale-defined set
of characters for which isalnum() is false. In the “C” locale, isspace() returns
true only for the standard white-space characters.

Tests for any character that is an upper-case letter or is one of the current
locale-defined set of characters for which none of iscntrl(), isdigit(),
ispunct(), isspace(), or islower () is true. In the “C” locale, isupper()
returns true only for the characters defined as upper-case ASCII characters.

Basic Library Functions 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctype(3C)

Default isxdigit() Tests for any hexadecimal-digit character ([0—91, [A—F], or [a—f]).

Standard conforming isxdigit() Tests for any hexadecimal-digit character ([0—91, [A—F], or [a—f] or the
current locale-defined sets of characters representing the hexadecimal digits
10 to 15 inclusive). In the “C” locale, only

0123456789ABCDEFabcdef

are included.

ReturnValues Ifthe argument to any of the character handling macros is not in the domain of the function,
the result is undefined. Otherwise, the macro or function returns non-zero if the classification
is TRUE and 0 if the classification is FALSE.

Usage These macros or functions can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
CSI Enabled
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

SeeAlso setlocale(3C),stdio(3C),ascii(5), environ(5), standards(5)

124 man pages section 3: Basic Library Functions - Last Revised 28 Jan 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ascii-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

cuserid(3C)

Name

Synopsis

Description

Return Values

Attributes

See Also

cuserid - get character login name of the user

#include <stdio.h>
char *cuserid(char *s);

The cuserid() function generates a character-string representation of the login name under
which the owner of the current process is logged in. If s is a null pointer, this representation is
generated in an internal static area whose address is returned. Otherwise, s is assumed to point
toanarray of atleast L_cuserid characters; the representation is left in this array. The
constant L_cuserid is defined in the <stdio.h> header.

In multithreaded applications, the caller must always supply an array s for the return value.

If the login name cannot be found, cuserid () returns a null pointer. If s is not a null pointer,
the null character \@"’ will be placed at s[0].

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getlogin(3C), getpwnam(3C), attributes(5)

Basic Library Functions 125

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

daemon(3Q)

Name

Synopsis

Description

Return Values

Examples

Attributes

126

daemon - basic daemonization function

#include <stdlib.h>
int daemon(int nochdir, int noclose)
The daemon () function provides a means for applications to run in the background.

This function ensures that the process calling this function:

= runs in the background

= detaches from the controlling terminal
= forms a new process group

= jsnotasession group leader.

The arguments to this function are treated as boolean variables and are evaluated using
negative logic.

If the nochdir argument is zero the working directory will be changed to the root directory (/);
otherwise it will not be.

If the noclose argument is zero the descriptors 0, 1, and 2 (normally corresponding to standard
input, output and error output, depending on the application) will be redirected to
/dev/null; otherwise they will not be.

Upon successful completion, daemon () returns 0. Otherwise it returns -1 and sets errno to the
values specified for fork(2), setsid(2), open(2), and dup(2).

If daemon () is called with noclose set to 0 and fails to redirect descriptors 0, 1, and 2 to
/dev/null, those descriptors are not guaranteed to be the same as before the call.

EXAMPLE 1 Using daemon to run a process in the background.
The main () function of a network server could look like this:
int background; /* background flag */
/* Load and verify the configuration. */
/* Go into background. */
if (background && daemon(@, 0) < 0)
err(1, "daemon");

/* Process requests here. */

See attributes(5) for descriptions of the following attributes:

man pages section 3: Basic Library Functions - Last Revised 15 Sep 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setsid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

daemon(3C)

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

Async-Signal-Safe

SeeAlso Intro(2),dup(2), fork(2),open(2),setsid(2),attributes(5)

Basic Library Functions

127

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setsid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

decimal_to_floating(3C)

Name

Synopsis

Description

Attributes

128

decimal_to_floating, decimal_to_single, decimal_to_double, decimal_to_extended,
decimal_to_quadruple - convert decimal record to floating-point value

#include <floatingpoint.h>

void decimal_to single(single *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_double(double *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_extended(extended *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_quadruple(quadruple *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

These functions convert the decimal record *pd to a floating-point value *px observing the
rounding direction specified in *pm and setting *ps to reflect any floating-point exceptions
that occur.

When pd->fpclassis fp_zero, fp_infinity, fp_quiet, or fp_signaling, *px is set to zero,
infinity, a quiet NaN, or a signaling NaN, respectively, with the sign indicated by pd->sign. All
other fields in *pd are ignored.

When pd->fpclassis fp_normalor fp_subnormal, pd->ds must contain a null-terminated
string of one or more ASCII digits representing a non-zero integer m, and pd->ndigits must
be equal to the length of this string. Then *px is set to a correctly rounded approximation to

—1**(pd->sign) * m * 10**(pd->exponent)
pd->more can be set to a non-zero value to indicate that insignificant trailing digits were

omitted from pd->ds. In this case, m is replaced by m + delta in the expression above, where
delta is some tiny positive fraction.

The converted value is rounded according to the rounding direction specified in pm->rd.
pm->df and pm->ndigits are not used.

On exit, *ps contains a bitwise OR of flags corresponding to any floating-point exceptions that
occurred. The only possible exceptions are underflow, overflow, and inexact. If no
floating-point exceptions occurred, *ps is set to zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

man pages section 3: Basic Library Functions - Last Revised 1 Oct 2001

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

decimal_to_floating(3C)

SeeAlso scanf(3C),string to_decimal(3C), strtod(3C),attributes(5)

Basic Library Functions 129

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

difftime(3C)

Name difftime - computes the difference between two calendar times

Synopsis #include <time.h>
double difftime(time t timel, time t time0);
Description The difftime() function computes the difference between two calendar times.

ReturnValues Thedifftime() functions returns the difference (timel-time0) expressed in seconds as a
double.

Usage Thedifftime() function is provided because there are no general arithmetic properties
defined for type time_t.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso ctime(3C), attributes(5), standards(5)

130 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

directio(3C)

Name directio — provide advice to file system

Synopsis #include <sys/types.h>
#include <sys/fcntl.h>

Description

int directio(int fildes, int advice);

The directio() function provides advice to the system about the expected behavior of the
application when accessing the data in the file associated with the open file descriptor fildes.
The system uses this information to help optimize accesses to the file's data. The directio()
function has no effect on the semantics of the other operations on the data, though it may
affect the performance of other operations.

The advice argument is kept per file; the last caller of directio() sets the advice for all
applications using the file associated with fildes.

Values for advice are defined in <sys/fcntl.h>.

DIRECTIO_OFF

DIRECTIO ON

Basic Library Functions

Applications get the default system behavior when accessing file data.

When an application reads data from a file, the data is first cached in
system memory and then copied into the application's buffer (see read(2)).
If the system detects that the application is reading sequentially from a file,
the system will asynchronously "read ahead" from the file into system
memory so the data is immediately available for the next read(2)
operation.

When an application writes data into a file, the data is first cached in
system memory and is written to the device at a later time (see write(2)).
When possible, the system increases the performance of write(2)
operations by cacheing the data in memory pages. The data is copied into
system memory and the write(2) operation returns immediately to the
application. The data is later written asynchronously to the device. When
possible, the cached data is "clustered" into large chunks and written to the
device in a single write operation.

The system behavior for DIRECTIO_OFF can change without notice.

The system behaves as though the application is not going to reuse the file
data in the near future. In other words, the file data is not cached in the
system's memory pages.

When possible, data is read or written directly between the application's
memory and the device when the data is accessed with read(2) and
write(2) operations. When such transfers are not possible, the system
switches back to the default behavior, but just for that operation. In
general, the transfer is possible when the application's buffer is aligned on a

131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

directio(3C)

Return Values

Errors

Usage

Attributes

See Also

Warnings

132

two-byte (short) boundary, the offset into the file is on a device sector
boundary, and the size of the operation is a multiple of device sectors.

This advisory is ignored while the file associated with fildes is mapped (see
mmap(2)).

The system behavior for DIRECTIO_ON can change without notice.

Upon successful completion, directio() returns 0. Otherwise, it returns —1 and sets errno to
indicate the error.

The directio() function will fail if:
EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a file system that accepts advisory
functions.

EINVAL The value in advice is invalid.
Small sequential I/O generally performs best with DIRECTIO_OFF.

Large sequential I/O generally performs best with DIRECTIO_ON, except when a file is sparse or
is being extended and is opened with 0_SYNC or 0_DSYNC (see open(2)).

The directio() function is supported for the NFS and UFS file system types (see fstyp(1M)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fstyp(1M), mmap(2), open(2), read(2), write(2), fcntl.h(3HEAD), attributes(5)

Switching between DIRECTIO_OFF and DIRECTIO_ON can slow the system because each switch
to DIRECTIO_ON might entail flushing the file's data from the system's memory.

man pages section 3: Basic Library Functions - Last Revised 9 Apr2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dirfd(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

dirfd - get directory stream file descriptor

#include <dirent.h>
int dirfd(DIR *dir);
The dirfd() function returns the file descriptor associated with the directory stream dir.

This file descriptor is the one used internally by the directory stream operations. See
opendir(3C), closedir(3C), readdir(3C), rewinddir(3C), seekdir(3C), telldir(3C). The
file descriptor is automatically closed when closedir() is called for the directory stream dir
or when one of the exec functions is called. See exec(2).

The file descriptor can safely be used only by functions that do not depend on or alter the file
position, such as fstat(2) and fchdir(2). Closing the file descriptor with close(2) or
modifying the file position by means other than the directory stream operations listed above
causes undefined behavior to occur when one of the directory stream operations is
subsequently called with the directory stream dir.

Upon successful completion, the dirfd() function returns an open file descriptor for the
directory associated with the directory stream dir.

There are no defined error returns. Passing an invalid directory stream as an argument to the
dirfd() function results in undefined behavior.

The dirfd() function is intended to be used to obtain a file descriptor for use with the
fchdir() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

close(2), exec(2), fchdir(2), fstat(2), closedir(3C), opendir(3C), readdir(3C),
rewinddir(3C), seekdir(3C), telldir(3C), attributes(5)

Basic Library Functions 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fchdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fchdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dirname(3C)

Name

Synopsis

Description

Return Values

Errors

Examples

134

dirname - report the parent directory name of a file path name

#include <libgen.h>

char *dirname(char *path);

The dirname() function takes a pointer to a character string that contains a pathname, and
returns a pointer to a string that is a pathname of the parent directory of that file. Trailing /'
characters in the path are not counted as part of the path.

"on

If path does not contain a /', then dirname () returns a pointer to the string "." . If path is a null

"o

pointer or points to an empty string, dirname () returns a pointer to the string "." .

The dirname() function returns a pointer to a string that is the parent directory of path. If
pathis anull pointer or points to an empty string, a pointer to a string "." is returned.

No errors are defined.

EXAMPLE 1 Changing the Current Directory to the Parent Directory.

The following code fragment reads a pathname, changes the current working directory to the
parent directory of the named file (see chdir(2)), and opens the file.

char path[[MAXPATHLEN], *pathcopy;
int fd;

fgets(path, MAXPATHLEN, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));

fd = open(basename(path), O RDONLY);

EXAMPLE2 Sample Input and Output Strings for dirname ().

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the dirname () function.

Input String Output String
“/usr/lib"” “lusr”
“lusr/” “r
“usr” “r
«p «p
« «
“ “

man pages section 3: Basic Library Functions « Last Revised 18 Mar 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2

dirname(3C)

Usage Thedirname() function modifies the string pointed to by path.

The dirname() and basename(3C) functions together yield a complete pathname. The
expression dirname(path) obtains the pathname of the directory where basename (path) is

found.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso basename(1), chdir(2), basename(3C), attributes(5), standards(5)

Basic Library Functions

135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1basename-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

div(3C)

Name div, ldiv, lldiv - compute the quotient and remainder

Synopsis #include <stdlib.h>

div_t div(int numer, int denom) ;
1div_t ldiv(long int numer, long int denom);

1ldiv_t 1ldiv(long long numer, long long denom);

Description Thediv () function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. It provides a well-defined semantics for the signed integral
division and remainder operations, unlike the implementation-defined semantics of the
built-in operations. The sign of the resulting quotient is that of the algebraic quotient, and if
the division is inexact, the magnitude of the resulting quotient is the largest integer less than
the magnitude of the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quotient * denom + remainder will equal numer.

The ldiv () and 1ldiv() functions are similar to div (), except that the arguments and the
members of the returned structure are different. The 1div () function returns a structure of
type ldiv_t and has type long int. The 11div () function returns a structure of type 11div_t
and has type long long.

ReturnValues Thediv() function returns a structure of type div_t, comprising both the quotient and
remainder:

int quot; /*quotient*/
int rem; /*remainder*/

The 1div () function returns a structure of type ldiv_t and 1ldiv () returns a structure of
type 1ldiv_t, comprising both the quotient and remainder:

long int quot; /*quotient*/
long int rem; /*remainder*/

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso attributes(5), standards(5)

136 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

dladdr(3C

Name

Synopsis

Description

dladdr, dladdr1 - translate address to symbolic information

#include <dlfcn.h>

int dladdr(void *address, D1_info_t *dlip);

int dladdrl(void *address, D1_info_t *dlip, void **info, int flags)

The dladdr() and dladdrl() functions determine if the specified address is located within
one of the mapped objects that make up the current applications address space. An address is
deemed to fall within a mapped object when it is between the base address, and the _end
address of that object. See NOTES. If a mapped object fits this criteria, the symbol table made
available to the runtime linker is searched to locate the nearest symbol to the specified address.
The nearest symbol is one that has a value less than or equal to the required address.

TheD1_info_t structure must be preallocated by the user. The structure members are filled in
by dladdr(), based on the specified address. The D1_info_t structure includes the following
members:

const char *dli_ fname;
void *dli_ fbase;
const char *dli_sname;
void *dli saddr;

TheD1_info_t members provide the following information.
dli_fname Contains a pointer to the filename of the containing object.
dli_fbase Contains the base address of the containing object.

dli_sname Contains a pointer to the symbol name that is nearest to the specified address.
This symbol either represents the exact address that was specified, or is the
nearest symbol with a lower address.

dli_saddr Contains the actual address of the symbol pointed to by d1i_sname.

The dladdri1() function provides for addition information to be returned as specified by the
flags argument:

RTLD_DL_SYMENT Obtain the ELF symbol table entry for the matched symbol. The info
argument points to a symbol pointer as defined in <sys/elf.h>
(E1f32_Sym **info or ELT64_Sym **info). Most of the information
found in an ELF symbol can only be properly interpreted by the
runtime linker. However, there are two fields that contain information
useful to the caller of dladdr1(): The st_size field contains the size of
the referenced item. The st_info field provides symbol type and
binding attributes. See the Linker and Libraries Guild for more
information.

Basic Library Functions 137

dladdr(3C)

RTLD_DL_LINKMAP Obtain the Link_map for the matched file. The info argument points to
a Link_map pointer as defined in <sys/link.h> (Link_map **info).

ReturnValues If the specified address cannot be matched to a mapped object, a @ is returned. Otherwise, a
non-zero return is made and the associated D1_info_t elements are filled.

Usage Thedladdr() anddladdrl() functions are one of a family of functions that give the user
direct access to the dynamic linking facilities. These facilities are available to
dynamically-linked processes only. See Linker and Libraries Guide.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso 1d(1),dlclose(3C), dldump(3C), dlerror(3C), dlopen(3C), dlsym(3C), attributes(5)
Linker and Libraries Guide

Notes TheD1_info_t pointer elements point to addresses within the mapped objects. These
pointers can become invalid if objects are removed prior to these elements use. See
dlclose(3C).

If no symbol is found to describe the specified address, both the dli_sname and d1i_saddr
members are set to 0.

If the address specified exists within a mapped object in the range between the base address
and the address of the first global symbol in the object, the reserved local symbol _START _ is
returned. This symbol acts as a label representing the start of the mapped object. As alabel,
this symbol has no size. The d1i_saddr member is set to the base address of the associated
object. The dl1i_sname member is set to the symbol name _START _. If the flag argument is set
to RTLD_DL_SYMENT, symbol information for START_ is returned.

If an object is acting as a filter, care should be taken when interpreting the address of any
symbol obtained using a handle to this object. For example, using d1sym(3C) to obtain the
symbol _end for this object, results in returning the address of the symbol _end within the
filtee, not the filter. For more information on filters see the Linker and Libraries Guide.

138 man pages section 3: Basic Library Functions « Last Revised 4 Feb 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlclose(3C)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

Notes

dlclose - close a shared object

#include <dlfcn.h>

int dlclose(void *handle);

The dlclose() function decrements the reference count of the supplied handle. This handle
represents an executable object file and its dependencies, acquired from a previous call to
dlopen(). A handle that is no longer referenced is processed in an attempt to unload any
objects that are associated with the handle from the current process. An unreferenced handle
is no longer available to dlsym().

Any finalization code within an object is executed prior to that object being unloaded. Any
routines registered by an object using atexit(3C) are called prior to that object being
unloaded. See NOTES.

If the handle was successfully unreferenced, dlclose () returns 0. If the handle is invalid, or an
error occurred as a result of unloading an object, dlclose () returns a non-zero value.
Additional diagnostic information is available through dlerror().

The dlclose() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

1d(1), 1d.so.1(1), atexit(3C), dladdr(3C), d1dump(3C), dlerror(3C), dlopen(3C),
dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

A successful invocation of dlclose() does not guarantee that the objects associated with the
handle are removed from the address space of the current process. Objects can be referenced
by multiple handles, or by other objects. An object is not removed from the address space of

the current process until all references to that object are removed.

Once an object has been closed by dlclose (), referencing symbols contained in that object
can cause undefined behavior.

As part of unloading an object, finalization code within the object is called before the
dlclose() returns. This finalization is user code, and as such, can produce errors that can not
be caught by dlclose (). For example, an object loaded using RTLD_LAZY that attempts to call a

Basic Library Functions 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

diclose(3C)

function that can not be located, results in process termination. Erroneous programming
practices within the finalization code can also result in process termination. The runtime
linkers debugging facility can offer help identifying these types of error. See the LD_DEBUG
environment variable of 1d.so.1(1).

140 man pages section 3: Basic Library Functions - Last Revised 1 March 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

didump(3Q)

Name

Synopsis

Description

dldump - create a new file from a dynamic object component of the calling process

#include <dlfcn.h>

int dldump(const char * ipath, const char * opath, int flags);

The dldump () function creates a new dynamic object opath from an existing dynamic object
ipath that is bound to the current process. An ipath value of @ is interpreted as the dynamic
object that started the process. The new object is constructed from the existing objects' disc
file. Relocations can be applied to the new object to pre-bind it to other dynamic objects, or fix
the object to a specific memory location. In addition, data elements within the new object can
be obtained from the objects' memory image as this data exists in the calling process.

These techniques allow the new object to be executed with a lower startup cost. This reduction
can be because of less relocations being required to load the object, or because of a reduction
in the data processing requirements of the object. However, limitations can exist in using these
techniques. The application of relocations to the new dynamic object opath can restrict its
flexibility within a dynamically changing environment. In addition, limitations in regards to
data usage can make dumping a memory image impractical. See EXAMPLES.

The runtime linker verifies that the dynamic object ipath is mapped as part of the current
process. Thus, the object must either be the dynamic object that started the process, one of the
process's dependencies, or an object that has been preloaded. See exec(2),and 1d.so.1(1).

As part of the runtime processing of a dynamic object, relocation records within the object are
interpreted and applied to offsets within the object. These offsets are said to be relocated.
Relocations can be categorized into two basic types: non-symbolic and symbolic.

The non-symbolic relocation is a simple relative relocation that requires the base address at
which the object is mapped to perform the relocation. The symbolic relocation requires the
address of an associated symbol, and results in a binding to the dynamic object that defines
this symbol. The symbol definition can originate from any of the dynamic objects that make
up the process, that is, the object that started the process, one of the process's dependencies, an
object that has been preloaded, or the dynamic object being relocated.

The flags parameter controls the relocation processing and other attributes of producing the
new dynamic object opath. Without any flags, the new object is constructed solely from the
contents of the ipath disc file without any relocations applied.

Various relocation flags can be or'ed into the flags parameter to affect the relocations that are
applied to the new object. Non-symbolic relocations can be applied using the following:

RTLD_REL_RELATIVE Relocation records from the object ipath, that define relative
relocations, are applied to the object opath.

A variety of symbolic relocations can be applied using the following flags (each of these flags
also implies RTLD_REL_RELATIVE is in effect):

Basic Library Functions 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

didump(3C)

142

RTLD_REL_EXEC Symbolic relocations that result in binding ipath to the dynamic
object that started the process, commonly a dynamic executable, are
applied to the object opath.

RTLD_REL_DEPENDS Symbolic relocations that result in binding ipath to any of the
dynamic dependencies of the process are applied to the object opath.

RTLD_REL_PRELOAD Symbolic relocations that result in binding ipath to any objects
preloaded with the process are applied to the object opath. See
LD_PRELOAD in 1d.so.1(1).

RTLD_REL_SELF Symbolic relocations that result in binding ipath to itself, are applied
to the object opath.

RTLD_REL_WEAK Weak relocations that remain unresolved are applied to the object
opath as 0.

RTLD REL_ALL All relocation records defined in the object ipath are applied to the

new object opath. This is basically a concatenation of all the above
relocation flags.

Note that for dynamic executables, RTLD_REL_RELATIVE,RTLD REL EXEC,and RTLD REL SELF
have no effect. See EXAMPLES.

If relocations, knowledgeable of the base address of the mapped object, are applied to the new
object opath, then the new object becomes fixed to the location that the ipath image is mapped
within the current process.

Any relocations applied to the new object opath will have the original relocation record
removed so that the relocation will not be applied more than once. Otherwise, the new object
opath will retain the relocation records as they exist in the ipath disc file.

The following additional attributes for creating the new dynamic object opath can be specified
using the flags parameter:

RTLD_MEMORY The new object opath is constructed from the current memory contents of
the ipath image as it exists in the calling process. This option allows data
modified by the calling process to be captured in the new object. Note that
not all data modifications may be applicable for capture; significant
restrictions exist in using this technique. See EXAMPLES. By default, when
processing a dynamic executable, any allocated memory that follows the end
of the data segment is captured in the new object (see malloc(3C) and
brk(2)). This data, which represents the process heap, is saved as a new
.SUNW_heap section in the object opath. The objects' program headers and
symbol entries, such as _end, are adjusted accordingly. See also
RTLD_NOHEAP. When using this attribute, any relocations that have been
applied to the ipath memory image that do not fall into one of the requested

man pages section 3: Basic Library Functions « LastRevised 1 Mar 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

didump(3Q)

ReturnValues

Examples

relocation categories are undone, that is, the relocated element is returned
to the value as it existed in the ipath disc file.

RTLD_STRIP Only collect allocatable sections within the object opath. Sections that are
not part of the dynamic objects' memory image are removed. RTLD_STRIP
reduces the size of the opath disc file and is comparable to having run the
new object through strip(1).

RTLD_NOHEAP Do not save any heap to the new object. This option is only meaningful
when processing a dynamic executable with the RTLD_MEMORY attribute and
allows for reducing the size of the opath disc file. The executable must
confine its data initialization to data elements within its data segment, and
must not use any allocated data elements that comprise the heap.

It should be emphasized, that an object created by dldump () is simply an updated ELF object
file. No additional state regarding the process at the time dldump () is called is maintained in
the new object. dldump () does not provide a panacea for checkpoint and resume. A new
dynamic executable, for example, will not start where the original executable called dldump ().
It will gain control at the executable's normal entry point. See EXAMPLES.

On successful creation of the new object, dldump () returns @. Otherwise, a non-zero value is
returned and more detailed diagnostic information is available through dlerror().

EXAMPLE 1 Sample code using dldump ().

The following code fragment, which can be part of a dynamic executable a. out, can be used to
create a new shared object from one of the dynamic executables' dependencies 1ibfoo.so.1:

const char * ipath = "libfoo.s0.1";
const char * opath = "./tmp/libfoo.s0.1";
if (dldump(ipath, opath, RTLD REL RELATIVE) != 0)

(void) printf("dldump failed: %s\n", dlerror());

The new shared object opath is fixed to the address of the mapped ipath bound to the dynamic
executable a.out. All relative relocations are applied to this new shared object, which will
reduce its relocation overhead when it is used as part of another process.

By performing only relative relocations, any symbolic relocation records remain defined
within the new object, and thus the dynamic binding to external symbols will be preserved
when the new object is used.

Use of the other relocation flags can fix specific relocations in the new object and thus can
reduce even more the runtime relocation startup cost of the new object. However, this will also
restrict the flexibility of using the new object within a dynamically changing environment, as it
will bind the new object to some or all of the dynamic objects presently mapped as part of the
process.

Basic Library Functions 143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strip-1

didump(3C)

144

EXAMPLE1 Sample code using dldump (). (Continued)

For example, the use of RTLD_REL_SELF will cause any references to symbols from ipath to be
bound to definitions within itself if no other preceding object defined the same symbol. In
other words, a call to foo(') within ipath will bind to the definition foo within the same object.
Therefore, opath will have one less binding that must be computed at runtime. This reduces
the startup cost of using opath by other applications; however, interposition of the symbol foo
will no longer be possible.

Using a dumped shared object with applied relocations as an applications dependency
normally requires that the application have the same dependencies as the application that
produced the dumped image. Dumping shared objects, and the various flags associated with
relocation processing, have some specialized uses. However, the technique is intended as a
building block for future technology.

The following code fragment, which is part of the dynamic executable a. out, can be used to
create a new version of the dynamic executable:

static char * dumped = 0;
const char * opath = "./a.out.new"

if (dumped == 0) {

char buffer[100];
int size;
time t seconds;

/* Perform data initialization */

seconds = time((time t *)0);

size = cftime(buffer, (char *)0@, &seconds);

if ((dumped = (char *)malloc(size + 1)) == 0) {
(void) printf("malloc failed: %s\n", strerror(errno));
return (1);

}

(void) strcpy(dumped, buffer);

/*
* Tear down any undesirable data initializations and
* dump the dynamic executables memory image.
*/

_exithandle();

_exit(dldump(0@, opath, RTLD MEMORY));

}
(void) printf("Dumped: %s\n", dumped);

Any modifications made to the dynamic executable, up to the point the dldump () call is made,
are saved in the new object a. out . new. This mechanism allows the executable to update parts
of its data segment and heap prior to creating the new object. In this case, the date the

man pages section 3: Basic Library Functions « LastRevised 1 Mar 2004

didump(3Q)

EXAMPLE 1 Sample code using dldump (). (Continued)

executable is dumped is saved in the new object. The new object can then be executed without
having to carry out the same (presumably expensive) initialization.

For greatest flexibility, this example does not save any relocated information. The elements of
the dynamic executable ipath that have been modified by relocations at process startup, that is,
references to external functions, are returned to the values of these elements as they existed in
the ipath disc file. This preservation of relocation records allows the new dynamic executable
to be flexible, and correctly bind and initialize to its dependencies when executed on the same
or newer upgrades of the OS.

Fixing relocations by applying some of the relocation flags would bind the new object to the
dependencies presently mapped as part of the process calling dldump (). It may also remove
necessary copy relocation processing required for the correct initialization of its shared object
dependencies. Therefore, if the new dynamic executables' dependencies have no specialized
initialization requirements, the executable may still only interact correctly with the
dependencies to which it binds if they were mapped to the same locations as they were when
dldump () was called.

Note that for dynamic executables, RTLD_REL_RELATIVE, RTLD REL EXEC, and
RTLD_REL_SELF have no effect, as relocations within the dynamic executable will have been
fixed when it was created by 1d(1).

When RTLD_MEMORY is used, care should be taken to insure that dumped data sections that
reference external objects are not reused without appropriate re-initialization. For example, if
a data item contains a file descriptor, a variable returned from a shared object, or some other
external data, and this data item has been initialized prior to the dldump () call, its value will
have no meaning in the new dumped image.

When RTLD_MEMORY is used, any modification to a data item that is initialized via a relocation
whose relocation record will be retained in the new image will effectively be lost or invalidated
within the new image. For example, if a pointer to an external object is incremented prior to
the dldump () call, this data item will be reset to its disc file contents so that it can be relocated
when the new image is used; hence, the previous increment is lost.

Non-idempotent data initializations may prevent the use of RTLD_MEMORY. For example, the
addition of elements to a linked-list via init sections can result in the linked-list data being
captured in the new image. Running this new image may result in init sections continuing to
add new elements to the list without the prerequisite initialization of the list head. It is
recommended that _exithandle(3C) be called before dldump () to tear down any data
initializations established via initialization code. Note that this may invalidate the calling
image; thus, following the call to dldump (), only a call to _Exit(2) should be made.

Basic Library Functions 145

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2

didump(3C)

Usage

Attributes

See Also

Notes

146

The dldump() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See Linker and Libraries Guide).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

MT-Level MT-Safe

1d(1),1d.so0.1(1),strip(1), Exit(2),brk(2),exec(2), exithandle(3C),dladdr(3C),
dlclose(3C),dlerror(3C), dlopen(3C), dlsym(3C), end(3C), malloc(3C), attributes(5)

Linker and Libraries Guide
These functions are available to dynamically-linked processes only.

Any NOBITS sections within the ipath are expanded to PROGBITS sections within the opath.
NOBITS sections occupy no space within an ELF file image. NOBITS sections declare memory
that must be created and zero-filled when the object is mapped into the runtime environment.
.bss is a typical example of this section type. PROGBITS sections, on the other hand, hold
information defined by the object within the ELF file image. This section conversion reduces
the runtime initialization cost of the new dumped object but increases the objects' disc space
requirement.

When a shared object is dumped, and relocations are applied which are knowledgeable of the
base address of the mapped object, the new object is fixed to this new base address. The
dumped object has its ELF type reclassified to be a dynamic executable. The dumped object
can be processed by the runtime linker, but is not valid as input to the link-editor.

If relocations are applied to the new object, any remaining relocation records are reorganized
for better locality of reference. The relocation sections are renamed to . SUNW_reloc and the
association with the section to relocate, is lost. Only the offset of the relocation record is
meaningful. . SUNW_reloc relocations do not make the new object invalid to either the
runtime linker or link-editor, but can reduce the objects analysis with some ELF readers.

man pages section 3: Basic Library Functions « LastRevised 1 Mar 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strip-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlerror(3C)

Name dlerror - get diagnostic information

Synopsis #include <dlfcn.h>
char *dlerror(void);

Description Thedlerror() function returns a null-terminated character string that describes the last
error that occurred during dynamic linking processing. The returned string contains no
trailing newline. If no dynamic linking errors have occurred since the last invocation of
dlerror(),dlerror() returns NULL. Thus, invoking dlerror() a second time, immediately
following a prior invocation, results in NULL being returned.

Usage Thedlerror() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See Linker and Libraries Guide.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso 1d(1),dladdr(3C),dlclose(3C), dldump(3C), dlopen(3C),dlsym(3C), attributes(5),
standards(5)

Linker and Libraries Guide

Notes The messages returned by dlerror() canreside in a static buffer that is overwritten on each
calltodlerror(). Application code should not write to this buffer. Programs wanting to
preserve an error message should make their own copies of that message.

Basic Library Functions 147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlinfo(3C)

148

Name dlinfo - dynamicload information

Synopsis #include <dlfcn.h>

Description

#include <link.h>
#include <limits.h>
#include <sys/mman.h>

int dlinfo(void *handle, int request, void *p);

The dlinfo() function sets or extracts information from the runtime linker 1d.so.1(1). This
function is loosely modeled after the ioct1(2) function. The request argument and a third
argument of varying type are passed to dlinfo(). The action taken by dlinfo() depends on
the value of the request that is provided.

The handle argument is either the value that is returned from a dlopen(3C) or dlmopen () call,
or the special handle RTLD_SELF. A handle argument is required for all requests except

RTLD DI CONFIGADDR,RTLD DI GETSIGNAL,andRTLD DI SETSIGNAL.If handle is the value
that is returned from a dlopen() or dlmopen () call, the information returned by the dlinfo()
call pertains to the specified object. If handle is the special handle RTLD_SELF, the information
returned by the dlinfo() call pertains to the caller.

The request argument can take the following values:

RTLD DI ARGSINFO
Obtain process argument information. The p argument is a pointer (D1_argsinfo_t *p).
The following elements from this structure are initialized:

dla_argc Thenumber of arguments passed to the process.
dla_argv Theargument array passed to the process.

dla_envp Theactive environment variable array that is available to the process. This
element initially points to the environment variable array that is made
available to exec(2). This element can be updated should an alternative
environment be established by the process. See putenv(3C).

dla_auxv Theauxiliary vector array passed to the process.

A process can be established from executing the runtime linker directly from the command
line. See 1d.s0.1(1). The D1 _argsinfo_t information reflects the information that is made
available to the application regardless of how the runtime linker has been invoked.

RTLD DI CONFIGADDR
Obtain the configuration file information. The p argumentisaDl_info_t pointer
(D1_info_t *p). The following elements from this structure are initialized:

dli_fname The full name of the configuration file.

dli_fbase Thebase address of the configuration file loaded into memory.

man pages section 3: Basic Library Functions « LastRevised 28 Oct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

dlinfo(3C

RTLD_DI_LINKMAP

Obtain the Link_map for the handle that is specified. The p argument points toa Link_map
pointer (Link_map **p). The actual storage for the Link_map structure is maintained by

1d.so.1.

The Link_map structure includes the following members:

unsigned long 1 addr; /* base address */

char *1_name; /* object name */

E1f32 Dyn *1 1d; /* .dynamic section */

Link map *1 _next; /* next link object */
Link_map *1_prev; /* previous link object */
char *1_refname; /* filter reference name */

1 addr The base address of the object loaded into memory.

1_name The full name of the loaded object. This full name is the filename of the
object as referenced by 1d. so. 1.

1 Points to the SHT DYNAMIC structure.

1 next The next Link_map on the link-map list. Other objects on the same
link-map list as the current object can be examined by following the 1_next
and 1_prev members.

1 prev The previous Link_map on the link-map list.

1_refname Ifthe object that is referenced is a filter, this member points to the name of

RTLD DI LMID

the object being filtered. If the object is not a filter, this member is 0. See the
Linker and Libraries Guide.

Obtain the ID for the link-map list upon which the handle is loaded. The p argument is a
Lmid_t pointer (Lmid_t *p).

RTLD_DI_MMAPCNT

Determine the number of segment mappings for the handle that is specified, for use in a
RTLD_DI_MMAPS request. The p argumentisauint_t pointer (uint_t *p). On return from
aRTLD_DI_MMAPCNT request, the uint_t value that is pointed to by p contains the number
of segment mappings that the associated object uses.

To obtain the complete mapping information for an object, ammapobj_result_t array for
RTLD_DI_MMAPCNT entries must be provided. This array is assigned to the dlm_maps
member, and the number of entries available in the array are assigned to the dlm_acnt
member. This initialized structure is then passed to aRTLD DI MMAPS request. See

EXAMPLES.

Basic Library Functions

149

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlinfo(3C)

150

RTLD DI MMAPS

Obtain segment mapping information for the handle that is specified. The p argumentis a
Dl_mapinfo_t pointer (D1_mapinfo_t *p). This structure can be initialized from the
mapping count obtained from a previous RTLD_DI_MMAPCNT request.

Segment mapping information is provided in an array of mmapobj_result_t structures
that originate from the mmapobj(2) of the associated object. The dlm_acnt member,
typically initialized from a previous RTLD_DI_MMAPCNT request, indicates the number of
entries in ammapobj_result_t array. This array is assigned to the dlm_maps member. This
initialized structure is then passed to aRTLD_DI_MMAPS request, where the segment
mapping information is copied to the mmapobj_result_t array. The dlm_rcnt member
indicates the number of mmapobj result_t element entries that are returned. See
EXAMPLES.

RTLD DI SERINFO

Obtain the library search paths for the handle that is specified. The p argumentis a
Dl_serinfo_t pointer (D1_serinfo_t *p). A user must first initialize the D1_serinfo_t
structure with aRTLD_DI_SERINFOSIZE request. See EXAMPLES.

The returned D1_serinfo_t structure containsdls_cnt Dl serpath_t entries. Each
entry's dlp_name member points to the search path. The corresponding dlp_info member
contains one of more flags indicating the origin of the path. See the LA_SER_* flags that are
defined in <link.h>.

RTLD_DI_SERINFOSIZE

InitializeaD1 serinfo_t structure for the handle that is specified, for use in a

RTLD_ DI SERINFOrequest. Boththedls cntanddls_size members are returned. The
dls_cnt member indicates the number of search paths that are applicable to the handle.
The dls_size member indicates the total size of aD1_serinfo_t buffer required to hold
dls_cntD1l_serpath_t entries and the associated search path strings. The p argumentis a
Dl_serinfo_t pointer (D1_serinfo_t *p).

To obtain the complete path information, anewD1_serinfo_t buffer of size dls_size
should be allocated. This new buffer should be initialized with the d1s_cntand dls_size
entries. The initialized buffer is then passed to aRTLD DI SERINFO request. See EXAMPLES.

RTLD DI ORIGIN

Obtain the origin of the dynamic object that is associated with the handle. The p argument
is a char pointer (char *p). The dirname(3C) of the associated object's realpath(3C),
which can be no larger than {PATH_MAX}, is copied to the pointer p.

RTLD_DI GETSIGNAL

Obtain the numeric signal number used by the runtime linker to kill the process in the
event of a fatal runtime error. The p argument is an int pointer (int *p). The signal
number is copied to the pointer p.

man pages section 3: Basic Library Functions « LastRevised 28 Oct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmapobj-2

dlinfo(3C)

By default, the signal used by the runtime linker to terminate a process is SIGKILL. See
thr_kill(3C). This default can be changed by calling dlinfo () with RTLD_DI_SETSIGNAL
or by setting the environment variable LD_SIGNAL. See 1d.so.1(1).

RTLD DI SETSIGNAL
Provide a numeric signal number used by the runtime linker to kill the process in the event
of a fatal runtime error. The p argument is an int pointer (int *p). The value pointed to by
p is established as the terminating signal value.

The current signal number used by the runtime linker to terminate a process can be
obtained from dlinfo() using RTLD_DI_GETSIGNAL. Use of the RTLD_DI_SETSIGNAL
option is equivalent to setting the environment variable LD_SIGNAL. See 1d.so.1(1).

RTLD_DI DEFERRED
Assign a new dependency name to an existing deferred dependency. The p argument is a
Dl_definfo_t pointer (D1_definfo *p). The dlv_refname field defines an existing
dependency name. The dlv_depname field defines the new dependency name.

Dependency names are defined by DT_NEEDED dynamic entries, which can be displayed
using the -d option of el fdump(1). Individual dependencies can be tagged as deferred. See
the -z deferred option of 1d(1). Deferred dependencies are only loaded during process
execution, when the first binding to a deferred reference is made. Prior to a deferred
dependency being loaded, the dependency name can be changed with RTLD_DI_DEFERRED.
See also RTLD DI DEFERRED SYM.

Once a deferred dependency is loaded, any attempt to change the dependency name with
dlinfo() resultsin an error return of —1.

RTLD DI DEFERRED SYM
Assign a new dependency name to an existing deferred symbol, using a symbol reference
that exists to the dependency. The p argument isa Dl_definfo_t pointer (D1_definfo *p).
The dlv_refname field defines a symbol reference to the deferred dependency. The
dlv_depnanme field defines the new dependency name.

RTLD_DI_DEFERRED_SYM provides an alternative means of modifying a deferred
dependency to using RTLD_DI_DEFERRED. One, or more symbol references can be
associated with a deferred dependency. RTLD_DI_DEFERRED_SYM allows one of these
deferred symbol references to be used to select the associated deferred dependency. Prior to
a deferred dependency being loaded, the dependency name can be changed with

RTLD DI DEFERRED SYM.See EXAMPLES.

Once a deferred dependency is loaded, any attempt to change the dependency name with
dlinfo() resultsin an error return of —1.

ReturnValues Thedlinfo() function returns—1 if the request is invalid, the parameter p is NULL, or the
Dl_serinfo_t structure is uninitialized for a RTLD_DI_SERINFO request. dlinfo() also

Basic Library Functions 151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1

dlinfo(3C)

152

Examples

returns —1 if the handle argument does not refer to a valid object opened by dlopen(), or is
not the special handle RTLD_SELF. Detailed diagnostic information is available with
dlerror(3C).

EXAMPLE1 Usedlinfo() to obtain library search paths.

The following example demonstrates how a dynamic object can inspect the library search
paths that would be used to locate a simple filename with dlopen (). For simplicity, error
checking has been omitted.

Dl serinfo t info, *info = & info;
Dl serpath t *path;
uint_t cnt;

/* determine search path count and required buffer size */
dlinfo(RTLD SELF, RTLD DI SERINFOSIZE, info);

/* allocate new buffer and initialize */
info = malloc(info.dls size);

info->dls size = info.dls size;
info->dls_cnt = _info.dls_cnt;

/* obtain search path information */
dlinfo(RTLD SELF, RTLD DI SERINFO, info);

path = &info->dls serpath[0];

for (cnt = 1; cnt <= info->dls_cnt; cnt++, path++) {
(void) printf("s2d: %s\n", cnt, path->dls name);

EXAMPLE2 Usedlinfo() to obtain segment information.

The following example demonstrates how a dynamic object can inspect its segment mapping
information. For simplicity, error checking has been omitted

Dl mapinfo t mi;
uint t cnt;

/* determine the number of segment mappings */
dlinfo(RTLD_SELF, RTLD DI _MMAPCNT, &mi.dlm_acnt);

/* allocate the appropriate mapping array */
mi.dlm maps = malloc(mi.dlm acnt *
sizeof (mmapobj result t));

/* obtain the mapping information */
dlinfo(RTLD SELF, RTLD DI MMAPS, &mi);

man pages section 3: Basic Library Functions « LastRevised 28 Oct 2010

dlinfo(3C

EXAMPLE2 Usedlinfo() to obtain segment information. (Continued)

for (cnt = 0; cnt < mi.dlm rcnt; cnt++) {
(void) printf("addr=%x - memory size=%x\n"
mi.dlm _maps[cnt].mr_addr,
mi.dlm_maps[cnt].mr _msize);

EXAMPLE3 Usedlinfo() to change a deferred dependency.

The following program defines a deferred dependency, foo. so, and an associated deferred
symbol reference, foo().

$ elfdump -d main | egrep "NEEDED|POSFLAG

[0] POSFLAG 1 0x5 [LAZY DEFERRED]
[1]1 NEEDED 0x17e foo.so0

$ elfdump -y main | fgrep foo
[12] DBLP [1] foo.so foo

The program probes the existence of the symbol foo () to verify that an associated deferred
dependency exists. If the dependency does not exist, and hence the symbol can not be found,
the program exchanges the deferred dependency associated with the symbol for a new
dependency named bar. so. Following this exchange, the program once more probes for the
existence of the symbol foo () to verify that the new dependency can be loaded, and the symbol
can be found.

if (dlsym(RTLD PROBE, "foo") == NULL) {
Dl definfo_t info;

"f00":
n n
bar.so

info.dld_refname
info.dld depname

if (dlinfo(RTLD SELF, RTLD DI DEFERRED SYM,

&info) == -1)
return (1);
if (dlsym(RTLD PROBE, "foo") == NULL)
return (1);
}
foo();

A deferred dependency can only be exchanged before the dependency is loaded. If the
dependency exists, then any probe would cause the dependency to be loaded, and any
following exchange attempts would fail. To successfully exchange a deferred dependency that
is expected to exist, a program must not probe for the symbol before making the exchange.

Dl definfo_t info;

info.dld refname = "foo"

Basic Library Functions 153

dlinfo(3C)

info.dld depname = "bar.so";

if (dlinfo(RTLD_ SELF, RTLD DI DEFERRED SYM, &info) == -1)
(void) printf("Using original dependency\n");

else
(void) printf("Using new dependency: bar.so\n");

Usage Thedlinfo() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

SeeAlso elfdump(1l),1d(1),1d.so.1(1), exec(2), ioct1(2), mmapobj(2),dirname(3C),dlclose(3C),
dldump(3C), dlerror(3C), dlopen(3C), dlsym(3C), putenv(3C), realpath(3C),
thr_kill(3C), attributes(5).

Linker and Libraries Guide

154 man pages section 3: Basic Library Functions « LastRevised 28 Oct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmapobj-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dI_iterate_phdr(3C)

Name

Synopsis

Description

dl_iterate_phdr - walk through a list of objects
#include <link.h>

int dl_iterate_phdr(int (*callback) (struct dl_phdr_info *info,
size t size, void *data), void *data);

Thedl_iterate_phdr() function returns information regarding each ELF object currently
resident in the process address space.

The dl_iterate_phdr() function calls the function callback once for each object, until either
all objects have been processed or callback returns a non-zero value.

Each call to callback receives three arguments: info, which is a pointer to a structure
containing information about the object; size, which is the size of the structure pointed to by
info; and the data argument passed to d1_iterate_phdr() by the caller.

The info argument is a pointer to a structure of the following type:

struct dl phdr_info {
/* Fields present in all implementations */

ELfW(Addr) dlpi addr;
const char *dlpi name;
const ELfW(Phdr) *dlpi phdr;
ELfW(Half) dlpi_phnum;

/* Additional fields present in this implementation */
u_longlong t dlpi_adds;
u longlong t dlpi subs;

}

The ELfW() macro definition turns its argument into the name of an ELF data type suitable for
the hardware architecture, by adding the ELf32_ prefix for 32-bit code, or ELf64_ for 64-bit
code.

The first four fields (dlpi_addr, dlpi_name, dlpi_phdr,dlpi_phnum) are present in all
implementations of d1_iterate_phdr(), and can be accessed on any system that provides
this function. The callback function must use the size argument to determine if the remaining
fields (dlpi_adds, dlpi_subs) are present. See EXAMPLES.

The dlpi_addr field is 0 for executable objects (ET_EXEC), and is the base address at which the
object is mapped otherwise. Therefore, the address of any loadable segment in the program
header array can be calculated as:

addr == info->dlpi_addr + info->dlpi phdr[x].p_vaddr
dlpi_name gives the pathname of the object.

dlpi_phdr provides a pointer to the program header array for the object, and dlpi_phnum
specifies the number of program headers found in the array.

Basic Library Functions 155

dI_iterate_phdr(3C)

dlpi_adds provides the number of objects that have been mapped into the current process
since it started, and dlpi_subs provides the number of objects that have been unmapped. See
NOTES.

See the Linker and Libraries Guide for more information about ELF objects, and the
information contained in program headers.

Examples EexampLe1 Displayall currently mapped object

The following program displays the pathnames of currently mapped objects. For each object,
the virtual address of each loadable segment is shown.

#include <link.h>
#include <stdlib.h>
#include <stdio.h>

static int
callback(struct dl phdr_info *info, size t size, void *data)

{

int j;

printf("name=%s (%d program headers)\n", info->dlpi name,
info->dlpi phnum);
for (j = 0; j < info->dlpi phnum; j++) {
if (info->dlpi_phdr[j].p_type == PT_LOAD)
printf("\t[%d] 0Ox%p\n", j,
(void *) (info->dlpi addr +
info->dlpi phdr[j].p _vaddr));

}
return 0;
}
int
main(int argc, char *argv[])
{
dl iterate phdr(callback, NULL);
return(0);
}

EXAMPLE2 Testing for optional dl_phdr_info fields

Every implementation of dl_iterate_phdr is required to supply the first four fields in struct
dl_phdr_info described above. The callback is allowed to assume that they are present and to
access them without first testing for their presence. Additional fields may be present. The
callback must use the size argument to test for their presence before accessing them. This
example demonstrates how a callback function can detect the presence of the dlpi_adds and
dlpi_subs fields described above:

static int
callback(struct dl phdr _info *info, size t size, void *data)

156 man pages section 3: Basic Library Functions « Last Revised 22 Feb 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dI_iterate_phdr(3C)

EXAMPLE2 Testing for optional d1_phdr_info fields (Continued)

}

* This must match the definition of dl phdr info, as

* defined in <link.h>. It is used to determine whether
* the info structure contains optional fields.

*/

struct dl phdr _info test {

ELfW(Addr) dlpi addr;
const char *dlpi name;
const ELfW(Phdr) *dlpi phdr;
ElLfW(Half) dlpi phnum;
u longlong t dlpi adds;
u longlong t dlpi subs;
+
printf("object: %s\n", info->dlpi name);
printf(" addr: 0x%p\n", (u longlong t) info->dlpi addr);
printf(" phdr: @x%p\n", (u_longlong t) info->dlpi phdr);
printf(" phnum: %d\n", (int) info->dlpi_phnum);
if (size >= sizeof (struct dl phdr info test)) {
printf(" adds: %llu\n", info->dlpi adds);
printf(" subs: %llu\n", info->dlpi subs);
}
return (0);

ReturnValues Thedl_iterate_phdr() function returns whatever value was returned by the last call to

callback.

Usage Thedl_iterate_phdr() function isa member of a family of functions that give the user direct
access to the dynamic linking facilities. This family of functions is available only to
dynamically-linked processes. See the Linker and Libraries Guide.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

MT-Safe

SeeAlso 1d(1),1d.so0.1(1),dladdr(3C),dlclose(3C),dldump(3C),dlerror(3C),dlinfo(3C),
dlopen(3C),dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

Basic Library Functions

157

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dI_iterate_phdr(3C)

Notes dl_iterate phdr() was originally defined by the Linux operating system, and is contained in

158

the Linux Standard Base (LSB).

The behavior of d1_iterate_phdr()when a callback function causes a new object to be
loaded, either via lazy loading or a call to dlopen (), is undefined. The call to
dl_iterate_phdr() that triggers the load may or may not issue a callback for the new object.
This depends on the current position of d1_iterate_phdr() in the list of known objects when
the new object is added. The caller must make no assumptions about this case.

dl_iterate_phdr() callbacks must not unload objects. Ifa call to dlclose()is detected from
within the callback function, d1_iterate_phdr() immediately terminates the iteration
operation and returns a value of - 1.

If two separate calls to d1_iterate_phdr() provide the same two values for dlpi_adds and
dlpi_subs, the caller may safely assume that the process object state has not changed between
the two calls. An application can use this information to cache object data, and avoid
unnecessary iteration. In such a scenario, the first call to the callback function would check to
see if a cache exists, and that dlpi_adds and dlpi_subs have not changed since the last call to
dl_iterate phdr(),and if so, return a non-zero value to terminate the iteration operation
immediately.

man pages section 3: Basic Library Functions « LastRevised 22 Feb 2010

dlopen(3C)

Name

Synopsis

Description

dlopen, dlmopen - gain access to an executable object file

#include <dlfcn.h>
#include <link.h>

void * dlopen(const char *pathname, int mode);

void * dlmopen(Lmid_t Imid, const char *pathname, int mode);

The dlopen() function makes an executable object file available to a running process.

dlopen () returns to the process a handle that the process can use on subsequent calls to
dlsym(3C), dladdr(3C),dlinfo(3C), and dlclose(3C). The value of this handle should not be
interpreted in any way by the process. The pathname argument is the path name of the object
to be opened. A path name containing an embedded '/’ is interpreted as an absolute path or
relative to the current directory. Otherwise, the set of search paths currently in effect by the
runtime linker are used to locate the specified file. See NOTES.

If the object file referenced by dlopen () is not already loaded as part of the process, then the
object file is added to the process address space. A handle for this object is created and
returned to the caller. If the object file is already part of the process, a handle is also returned to
the caller. Multiple references to the same object result in returning the same handle. A
reference count within the handle maintains the number of callers. The dlclose () of a handle
results in decrementing the handles reference count. When the reference count reaches 0 the
object file is a candidate for unloading. Any init section within an object is called once when
the object is loaded. Any fini section within an object is called once when the object is
unloaded.

When dlopen () causes an object to be loaded, it also loads any non-lazy dependencies that are
recorded within the object given by pathname. These dependencies are searched in the order
in which the dependencies were loaded to locate any additional dependencies. This process
continues until all the dependencies of pathname are loaded. This dependency tree is referred
toasagroup.

If the value of pathname is 0, dlopen () provides a handle on a set of global symbol objects.
These objects consist of the original program image file, any dependencies loaded at program
startup, and any objects loaded using dlopen () with the RTLD_GLOBAL flag. Because the latter
set of objects can change during process execution, the set identified by handle can also change
dynamically.

The mode argument describes how dlopen () operates on pathname with respect to the
processing of reference relocations. The mode also affects the scope of visibility of the symbols
provided by pathname and its dependencies. This visibility can affect how the resulting handle
is used.

When an object is loaded, the object can contain references to symbols whose addresses are
not known until the object is loaded. These references must be relocated before the symbols
can be accessed. References are categorized as either immediate or lazy. Inmediate references

Basic Library Functions 159

dlopen(3C)

160

are typically references to data items used by the object code. Immediate references include
pointers to functions and calls to functions made from position-dependent shared objects.
Lazy references are typically calls to global functions that are made from
position-independent shared objects.

Lazy references can also be identified as deferred. See the -z deferred option of 1d(1).
Deferred dependencies are only loaded during process execution, when the first binding to a
deferred reference is made. These references are unaftected by the mode.

The mode argument governs when non-deferred references take place. The mode argument
can be one of the following values.

RTLD_LAZY Only immediate symbol references are relocated when the object is first
loaded. Lazy references are not relocated until a given function is called for the
first time. This value for mode should improve performance, since a process
might not require all lazy references in any given object. This behavior mimics
the normal loading of dependencies during process initialization. See NOTES.

RTLD_NOW All non-deferred relocations are performed when the object is first loaded.
This process might waste some processing if relocations are performed for lazy
references that are never used. However, this mode ensures that when an
object is loaded, all non-deferred symbols that are referenced during execution
are available. This behavior mimics the loading of dependencies when the
environment variable LD BIND NOW is in effect.

See the Linker and Libraries Guide for more information about symbol references.

The visibility of symbols that are available for relocation can be affected by mode. To specify
the scope of visibility for symbols that are loaded with a dlopen () call, mode should be a
bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL The object's global symbols are made available for the relocation processing
of any other object. In addition, symbol lookup using dlopen (@, mode) and
an associated dlsym() allows objects that are loaded with RTLD_GLOBAL to be
searched.

RTLD_LOCAL The object's globals symbols are only available for the relocation processing
of other objects that include the same group.

The program image file and any objects loaded at program startup have the mode
RTLD_GLOBAL. The mode RTLD_LOCAL is the default mode for any objects that are acquired with
dlopen(). A local object can be a dependency of more then one group. Any object of mode
RTLD_LOCAL that is referenced as a dependency of an object of mode RTLD_GLOBAL is promoted
to RTLD_GLOBAL. In other words, the RTLD_LOCAL mode is ignored.

Any objectloaded by dlopen () that requires relocations against global symbols can reference
the symbols in any RTLD_GLOBAL object. Objects of this mode are at least the program image

man pages section 3: Basic Library Functions « LastRevised 17 May 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlopen(3C)

file and any objects loaded at program startup. A loaded object can also reference symbols
from itself, and from any dependencies the object references. However, the mode parameter
can also be a bitwise—inclusive OR with one of the following values to affect the scope of symbol
availability:

RTLD_GROUP Only symbols from the associated group are made available for relocation. A
group is established from the defined object and all the dependencies of that
object. A group must be completely self-contained. All dependency
relationships between the members of the group must be sufficient to satisty
the relocation requirements of each object that defines the group.

RTLD_PARENT The symbols of the object initiating the dlopen () call are made available to
the objects obtained by dlopen (). This option is useful when hierarchical
dlopen() families are created. Although the parent object can supply
symbols for the relocation of this object, the parent object is not available to
dlsym() through the returned handle.

RTLD_WORLD Only symbols from RTLD_GLOBAL objects are made available for relocation.

The default modes for dlopen () are both RTLD_WORLD and RTLD_GROUP. If an object is requires
additional modes, the mode parameter can be the bitwise-inclusive OR of the required modes
together with the default modes.

The following modes provide additional capabilities outside of relocation processing:

RTLD_NODELETE The specified object is tagged to prevent its deletion from the address
space as partofadlclose().

RTLD_NOLOAD The specified object is not loaded as part of the dlopen (). However, a
valid handle is returned if the object already exists as part of the process
address space. Additional modes can be specified as a bitwise-inclusive
OR with the present mode of the object and its dependencies. The
RTLD_NOLOAD mode provides a means of querying the presence or
promoting the modes of an existing dependency.

The default use of a handle with d1sym() allows a symbol search to inspect all objects that are
associated with the group of objects that are loaded from dlopen (). The mode parameter can
also be a bitwise—inclusive OR with the following value to restrict this symbol search:

RTLD_FIRST Use of this handle with dlsym(), restricts the symbol search to the first object
associated with the handle.

An object can be accessed from a process both with and without RTLD_FIRST. Although the
object will only be loaded once, two different handles are created to provide for the different
dlsym() requirements.

Basic Library Functions 161

dlopen(3C)

Return Values

Usage

Attributes

See Also

Notes

162

The dlmopen () function is identical to dlopen (), except that an identifying link-map ID
(Imid) is provided. This link-map ID informs the dynamic linking facilities upon which
link-map list to load the object. See the Linker and Libraries Guide for details about link-maps.

The Imid passed to dlmopen () identifies the link-map list on which the object is loaded. This
parameter can be any valid Lmid_t returned by dlinfo() or one of the following special
values:

LM _ID BASE Load the object on the applications link-map list.
LM ID LDSO Load the object on the dynamic linkers (1d. so. 1) link-map list.

LM_ID_NEWLM Cause the object to create a new link-map list as part of loading. Objects that
are opened on a new link-map list must express all of their dependencies.

The dlopen() function returns NULL if pathname cannot be found, cannot be opened for
reading, or is not a shared object or a relocatable object. dlopen () also returns NULL if an error
occurs during the process of loading pathname or relocating its symbolic references. See
NOTES. Additional diagnostic information is available through dlerror().

The dlopen() and dlmopen () functions are members of a family of functions that give the
user direct access to the dynamic linking facilities. This family of functions is available only to
dynamically-linked processes. See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

1d(1), 1d.so0.1(1), dladdr(3C),dlclose(3C), dldump(3C), dlerror(3C), dlinfo(3C),
dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

If pathname has dependencies on other objects, these objects are automatically loaded by
dlopen(). The directory search path used to find pathname and any dependencies can be
affected by setting the environment variable LD_LIBRARY_PATH. Any LD_LIBRARY_PATH
variable is analyzed once at process startup. The search path can also be affected from a
runpath setting within the object from which the call to dlopen () originates. These search
rules will only be applied to path names that do not contain an embedded ’/’. Objects whose
names resolve to the same absolute path name or relative path name can be opened any
number of times using dlopen (). However, the object that is referenced will only be loaded
once into the address space of the current process.

man pages section 3: Basic Library Functions « LastRevised 17 May 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlopen(3C)

When loading shared objects, the application should open a specific version of the shared
object. Do not rely on the version of the shared object pointed to by the symbolic link.

When building objects to be loaded on a new link-map list, some precautions need to be taken.
In general, all dependencies must be included when building an object. Also, include
/usr/lib/libmapmalloc.so.1before /lib/libc.so.1 when building an object.

When an object is loaded on a new link-map list, the object is isolated from the main running
program. Certain global resources are only usable from one link-map list. A few examples are
the sbrk() based malloc(), libthread(), and the signal vectors. Care must be taken not to
use any of these resources other than from the primary link-map list. These issues are
discussed in further detail in the Linker and Libraries Guide.

Some symbols defined in dynamic executables or shared objects can not be available to the
runtime linker. The symbol table created by 1d for use by the runtime linker might contain
only a subset of the symbols that are defined in the object.

As part of loading a new object, initialization code within the object is called before the

dlopen () returns. This initialization is user code, and as such, can produce errors that can not
be caught by dlopen (). For example, an object loaded using RTLD_LAZY that attempts to call a
function that can not be located results in process termination. Erroneous programming
practices within the initialization code can also result in process termination. The runtime
linkers debugging facility can offer help identifying these types of error. See the LD_DEBUG
environment variable of 1d.so.1(1).

Loading relocatable objects is an expensive operation that requires converting the relocatable
object into a shared object memory image. This capability may be useful in a debugging
environment, but is not recommended for production software.

Basic Library Functions 163

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

disym(3C)

Name

Synopsis

Description

164

dlsym - get the address of a symbol in a shared object or executable

#include <dlfcn.h>
void *dlsym(void *restrict handle, const char *restrict name);

The dlsym() function allows a process to obtain the address of a symbol that is defined within
a shared object or executable. The handle argument is either the value returned from a call to
dlopen() or one of a family of special handles. The name argument is the symbol's name asa
character string.

If handle is returned from dlopen (), the associated shared object must not have been closed
using dlclose(). A handle can be obtained from dlopen () using the RTLD_FIRST mode. With
this mode, the dlsym() function searches for the named symbol in the initial object referenced
by handle. Without this mode, the dlsym() function searches for the named symbol in the
group of shared objects loaded automatically as a result of loading the object referenced by
handle. See dlopen(3C) and NOTES.

The following special handles are supported.

RTLD_DEFAULT Instructsdlsym() to search for the named symbol starting with the first
object loaded, typically the dynamic executable. The search continues
through the list of initial dependencies that are loaded with the process,
followed by any objects obtained with dlopen(3C). This search follows the
default model that is used to relocate all objects within the process.

This model also provides for transitioning into a lazy loading
environment. If a symbol can not be found in the presently loaded objects,
any pending lazy loaded objects are processed in an attempt to locate the
symbol. This loading compensates for objects that have not fully defined
their dependencies. However, this compensation can undermine the
advantages of lazy loading.

RTLD PROBE Instructs dlsym() to search for the named symbol in the same manner as
occurs with a handle of RTLD_DEFAULT. However, RTLD_PROBE only
searches for symbol definitions in the presently loaded objects, together
with any lazy loadable objects specifically identified by the caller to provide
the named symbol. This handle does not trigger an exhaustive load of any
lazy loadable symbols in an attempt to find the named symbol. This handle
can provide a more optimal search than would occur using RTLD_DEFAULT.

RTLD_NEXT Instructs dlsym() to search for the named symbol in the objects that were
loaded following the object from which the dlsym() call is being made.

RTLD_SELF Instructs dlsym() to search for the named symbol in the objects that were
loaded starting with the object from which the dlsym() call is being made.

man pages section 3: Basic Library Functions « LastRevised 17 May 2010

disym(3C)

ReturnValues

Examples

Usage

When used with a special handle, dlsym() is selective in searching objects that have been
loaded using dlopen (). These objects are searched for symbols if one of the following
conditions are true.

= The object is part of the same local dlopen () dependency hierarchy as the calling object.
See the Linker and Libraries Guide for a description of dlopen () dependency hierarchies.

= The object has global search access. See dlopen(3C) for a discussion of the RTLD_GLOBAL
mode.

The dlsym() function returns NULL if handle does not refer to a valid object opened by
dlopen() oris not one of the special handles. The function also returns NULL if the named
symbol cannot be found within any of the objects associated with handle. Additional
diagnostic information is available through dlerror(3C).

EXAMPLE1 Use dlopen() and dlsym() to access a function or data objects.

The following code fragment demonstrates how to use dlopen() and dlsym() to access either
function or data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/home/me/libfoo.so0.1", RTLD LAZY);

/* find the address of function and data objects */
fptr = (int (*)(int))dlsym(handle, "my function")
iptr = (int *)dlsym(handle, "my object");

/* invoke function, passing value of integer as a parameter */
(*fptr) (*iptr);

EXAMPLE2 Use dlsym() to verify thata particular function is defined.

The following code fragment shows how to use dlsym() to verify that a function is defined. If
the function exists, the function is called.

int (*fptr)();

if ((fptr = (int (*)())dlsym(RTLD DEFAULT,
"my function")) != NULL) {
(*fptr) ();
}

The dlsym() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

Basic Library Functions 165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

disym(3C)

166

Attributes

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso 1d(1),1d.so0.1(1),dladdr(3C),dlclose(3C), dldump(3C),dlerror(3C), dlinfo(3C),

Notes

dlopen(3C), attributes(5), standards(5)

Linker and Libraries Guide

If an object is acting as a filter, care should be taken when interpreting the address of any
symbol obtained using a handle to this object. For example, using dlsym(3C) to obtain the
symbol _end for this object, results in returning the address of the symbol _end within the
filtee, not the filter. For more information on filters see the Linker and Libraries Guide.

man pages section 3: Basic Library Functions « LastRevised 17 May 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

door_bind(3C)

Name door_bind, door_unbind - bind or unbind the current thread with the door server pool

Synopsis cc -mt [flag... 1 file... [library...]
#include <door.h>

int door bind(int did);

int door_unbind(void);

Description The door_bind() function associates the current thread with a door server pool. A door
server pool is a private pool of server threads that is available to serve door invocations
associated with the door did.

The door_unbind () function breaks the association of door_bind() by removing any private
door pool binding that is associated with the current thread.

Normally, door server threads are placed in a global pool of available threads that invocations
on any door can use to dispatch a door invocation. A door that has been created with
DOOR_PRIVATE only uses server threads that have been associated with the door by
door_bind().Itis therefore necessary to bind at least one server thread to doors created with
DOOR_PRIVATE.

The server thread create function, door_server_create(), is initially called by the system
during a door_create() operation. See door_server_create(3C) and door_create(3C).

The current thread is added to the private pool of server threads associated with a door during
the next door_return() (that has been issued by the current thread after an associated
door_bind()). See door_return(3C). A server thread performinga door_bind() onadoor
that is already bound to a different door performs an implicit door_unbind() of the previous
door.

If a process containing threads that have been bound to a door calls fork(2), the threads in the
child process will be bound to an invalid door, and any calls to door_return(3C) will result in
an error.

ReturnValues Upon successful completion, a 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

Errors Thedoor bind() and door unbind() functions fail if:
EBADF The did argument is not a valid door.
EBADF The door_unbind() function was called by a thread that is currently not bound.
EINVAL did was not created with the DOOR_PRIVATE attribute.

Basic Library Functions 167

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

door_bind(3C)

Examples ExampLE1 Usedoor bind() to create private server pools for two doors.

The following example shows the use of door_bind() to create private server pools for two
doors, d1and d2. Functionmy create() is called when a new server thread is needed; it
creates a thread running function, my_server_create(), which binds itself to one of the two
doors.

#include <door.h>
#include <thread.h>
#include <pthread.h>
thread key t door key;

int dl1 = -1;
int d2 = -1;
cond t cv; /* statically initialized to zero */
mutex t lock; /* statically initialized to zero */

extern void foo(void *, char *, size t, door desc t *, uint t);
extern void bar(void *, char *, size t, door desc t *, uint t);

static void *
my server create(void *arg)

{
/* wait for dl1 & d2 to be initialized */
mutex lock(&lock);
while (dl == -1 || d2 == -1)
cond wait(&cv, &lock);
mutex unlock(&lock);
if (arg == (void *)foo){
/* bind thread with pool associated with dl1 */
thr setspecific(door key, (void *)foo);
if (door bind(dl) < 0) {
perror("door bind"); exit (-1);
}
} else if (arg == (void *)bar) {
/* bind thread with pool associated with d2 */
thr_setspecific(door_key, (void *)bar);
if (door bind(d2) < 0) {
/* bind thread to d2 thread pool */
perror("door_bind"); exit (-1);
}
}
pthread setcancelstate(PTHREAD CANCEL DISABLE, NULL);
door return(NULL, @, NULL, @); /* Wait for door invocation */
}

static void
my create(door info t *dip)

168 man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

door_bind(3C)

EXAMPLE 1 Use door_bind() to create private server pools for two doors. (Continued)

/* Pass the door identity information to create function */
thr_create(NULL, @, my server create, (void *)dip->di proc,
THR BOUND | THR DETACHED, NULL);

}
main()
{
(void) door server create(my create);
if (thr_keycreate(&door key, NULL) != 0) {
perror("thr keycreate");
exit(1l);
}
mutex lock(&lock);
dl = door _create(foo, NULL, DOOR _PRIVATE); /* Private pool */
d2 = door create(bar, NULL, DOOR PRIVATE); /* Private pool */
cond signal(&cv);
mutex_unlock(&lock) ;
while (1)
pause();
}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

SeeAlso fork(2),door create(3C),door_return(3C),door_server create(3C),attributes(5)

Basic Library Functions

169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_call(3C)

Name

Synopsis

Description

170

door_call - invoke the function associated with a door descriptor

cc -mt [flag... 1 file... [library...]
#include <door.h>

int door call(int d, door_arg_t *params);

The door_call() function invokes the function associated with the door descriptor d, and
passes the arguments (if any) specified in params. All of the params members are treated as
in/out parameters during a door invocation and may be updated upon returning from a door
call. Passing NULL for params indicates there are no arguments to be passed and no results
expected.

Arguments are specified using the data_ptrand desc_ptr members of params. The size of
the argument data in bytes is passed in data_size and the number of argument descriptors is
passed in desc_num.

Results from the door invocation are placed in the buffer, rbuf. See door return(3C). The
data_ptranddesc_ptr members of params are updated to reflect the location of the results
within the rbuf buffer. The size of the data results and number of descriptors returned are
updated in the data_size and desc_num members. It is acceptable to use the same buffer for
input argument data and results, so door_call() may be called with data_ptrand desc_ptr
pointing to the buffer rbuf.

If the results of a door invocation exceed the size of the buffer specified by rsize, the system
automatically allocates a new buffer in the caller's address space and updates the rbuf and
rsize members to reflect this location. In this case, the caller is responsible for reclaiming this
area using munmap (rbuf, rsize) when the buffer is no longer required. See munmap(2).

Descriptors passed in a door_desc_t structure are identified by the d_attributes member.
The client marks the d_attributes member with the type of object being passed by logically
OR-ing the value of object type. Currently, the only object type that can be passed or returned
is a file descriptor, denoted by the DOOR_DESCRIPTOR attribute. Additionally, the
DOOR_RELEASE attribute can be set, causing the descriptor to be closed in the caller's address
space after it is passed to the target. The descriptor will be closed even if door_call() returns
an error, unless that error is EFAULT or EBADF.

The door_desc_t structure includes the following members:

typedef struct {
door attr t d attributes; /* Describes the parameter */

union {
struct {
int d descriptor; /* Descriptor */
door_id t d id; /* Unique door id */
} d_desc;
} d_data;

} door desc t;

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2

door_call(3C)

ReturnValues

Errors

When file descriptors are passed or returned, a new descriptor is created in the target address
space and the d_descriptor member in the target argument is updated to reflect the new
descriptor. In addition, the system passes a system-wide unique number associated with each
door in the door_id member and marks the d attributes member with other attributes
associated with a door including the following:

DOOR_LOCAL The door received was created by this process using door_create().
See door create(3C).

DOOR_PRIVATE The door received has a private pool of server threads associated with
the door.

DOOR_UNREF The door received is expecting an unreferenced notification.

DOOR UNREF MULTI Similar to DOOR_UNREF, except multiple unreferenced notifications
may be delivered for the same door.

DOOR_REFUSE_DESC This door does not accept argument descriptors.
DOOR NO CANCEL This door does not cancel the server thread upon client abort.

DOOR_REVOKED The door received has been revoked by the server.

The door_call() function is not a restartable system call. It returns EINTR if a signal was
caught and handled by this thread. If the door invocation is not idempotent the caller should
mask any signals that may be generated during a door_call() operation. If the client aborts in
the middle ofa door_call() and the door was not created with the DOOR_NO_CANCEL flag, the
server thread is notified using the POSIX (see standards(5)) thread cancellation mechanism.
See cancellation(5).

The descriptor returned from door_create() is marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info (). Applications
concerned with security should not place secure information in door data that is accessible by
door_info().In particular, secure data should not be stored in the data item cookie. See
door_info(3C).

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

The door_call() function will fail if:

E2BIG Arguments were too big for server thread stack.

EAGAIN Server was out of available resources.

EBADF Invalid door descriptor was passed.

EFAULT Argument pointers pointed outside the allocated address space.

EINTR A signal was caught in the client, the client called fork(2), or the server exited
during invocation.

Basic Library Functions 171

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

door_call(3C)

EINVAL Bad arguments were passed.
EMFILE The client or server has too many open descriptors.
ENFILE The desc_num argument is larger than the door's DOOR_PARAM_DESC_MAX

parameter (see door _getparam(3C)), and the door does not have the
DOOR_REFUSE_DESC set.

ENOBUFS The data_size argument is larger than the door's DOOR_PARAM_DATA_MAX
parameter, or smaller than the door's DOOR_PARAM_DATA_MIN parameter (see
door_getparam(3C)).

ENOTSUP The desc_num argument is non-zero and the door has the DOOR_REFUSE_DESC
flag set.

EOVERFLOW System could not create overflow area in caller for results.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

See Also munmap(2), door_create(3C),door_getparam(3C),door_info(3C),door_return(3C),
libdoor(3LIB), attributes(5), cancellation(5), standards(5)

172 man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

door_create(3C)

Name

Synopsis

Description

door_create — create a door descriptor

cc -mt [flag... 1 file... [library...]
#include <door.h>

int door create(void (*server_procedure) (void *cookie, char *argp,
size t arg size, door_desc_t *dp, uint_t n_desc), void *cookie,
uint_t attributes) ;

The door_create() function creates a door descriptor that describes the procedure specified
by the function server_procedure. The data item, cookie, is associated with the door descriptor,
and is passed as an argument to the invoked function server_procedure during door_call(3C)
invocations. Other arguments passed to server_procedure from an associated door_call() are
placed on the stack and include argp and dp. The argp argument points to arg_size bytes of
data and the dp argument points to n_desc door_desc_t structures. The attributes argument
specifies attributes associated with the newly created door. Valid values for attributes are
constructed by OR-ing one or more of the following values:

DOOR_UNREF
Delivers a special invocation on the door when the number of descriptors that refer to this
door drops to one. In order to trigger this condition, more than one descriptor must have
referred to this door at some time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to server_procedure. In the case of an unreferenced
invocation, the values for arg_size, dp and n_did are 0. Only one unreferenced invocation is
delivered on behalf of a door.

DOOR UNREF MULTI
Similar to DOOR_UNREF, except multiple unreferenced invocations can be delivered on the
same door if the number of descriptors referring to the door drops to one more than once.
Since an additional reference may have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute returned by the door_info(3C) call can be
used to determine if the door is still unreferenced.

DOOR_PRIVATE
Maintains a separate pool of server threads on behalf of the door. Server threads are
associated with a door's private server pool using door_bind(3C).

DOOR_REFUSE_DESC
Any attempt to call door_call(3C) on this door with argument descriptors will fail with
ENOTSUP. When this flag is set, the door's server procedure will always be invoked with an
n_desc argument of 0.

DOOR NO_ CANCEL
Clients which abort calls to door call() on this door will not cause the cancellation of the
server thread handling the request. See cancellation(5).

The descriptor returned from door_create () will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(). Applications

Basic Library Functions 173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_create(3C)

ReturnValues

Errors

Examples

174

concerned with security should not place secure information in door data that is accessible by
door_info().In particular, secure data should not be stored in the data item cookie.

By default, additional threads are created as needed to handle concurrent door_call()
invocations. See door_server_create(3C) for information on how to change this behavior.

A process can advertise a door in the file system name space using fattach(3C).

After creation, door_setparam(3C) can be used to set limits on the amount of data and
descriptors clients can send over the door.

Upon successful completion, door_create() returns a non-negative value. Otherwise,
door_create returns —1 and sets errno to indicate the error.

The door create() function will fail if:
EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

EXAMPLE1 Create a door and use fattach () to advertise the door in the file system namespace.

The following example creates a door and uses fattach () to advertise the door in the file
system namespace.

void
server(void *cookie, char *argp, size t arg size, door desc t *dp,
uint t n_desc)

{
door return(NULL, @, NULL, 0);
/* NOTREACHED */

}

int

main(int argc, char *argv[])

{

int did;
struct stat buf;

if ((did = door_create(server, 0, 0)) < 0) {
perror("door create");
exit(1);

/* make sure file system location exists */
if (stat("/tmp/door", &buf) < 0) {
int newfd;
if ((newfd = creat("/tmp/door", 0444)) < 0) {
perror("creat");
exit(1);

man pages section 3: Basic Library Functions - Last Revised 22 Jan 2008

door_create(3C)

EXAMPLE1 Create a door and use fattach() to advertise the door in the file system namespace.
(Continued)

}

(void) close(newfd);

/* make sure nothing else is attached */
(void) fdetach("/tmp/door");

/* attach to file system */
if (fattach(did, "/tmp/door") < 0) {

perror("fattach");
exit(2);

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

SeeAlso door_bind(3C), door_call(3C),door_info(3C), door_revoke(3C),door_setparam(3C),
door_server create(3C), fattach(3C), libdoor(3LIB), attributes(5), cancellation(5)

Basic Library Functions 175

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_cred(3C)

Name door_cred - return credential information associated with the client

Synopsis cc -mt [flag... 1 file... [library...]
#include <door.h>

int door_cred(door_cred_t *info);

Description The door_cred() function returns credential information associated with the client (if any) of
the current door invocation.

The contents of the info argument include the following fields:

uid t dc_euid; /* Effective uid of client */
gid t dc_egid; /* Effective gid of client */
uid t dc ruid; /* Real uid of client */

gid t dc_rgid; /* Real gid of client */
pid t dc_pid; /* pid of client */

The credential information associated with the client refers to the information from the
immediate caller; not necessarily from the first thread in a chain of door calls.

ReturnValues Upon successful completion, door_cred() returns 0. Otherwise, door_cred() returns—1 and
sets errno to indicate the error.

Errors The door cred() function will fail if:
EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

Usage Thedoor cred() function is obsolete. Applications should use the door _ucred(3C) function
in place of door_cred().

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-os
Interface Stability Obsolete
MT-Level Safe

SeeAlso door_call(3C),door_create(3C),door_ucred(3C), attributes(5)

176 man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_getparam(3C)

Name door_getparam, door_setparam - retrieve and set door parameters

Synopsis cc -mt [flag...] file...

#include <door.h>

[library... 1

int door getparam(int d, int param, size_ t *out);

int door_setparam(int d, int param, size t val);

Description The door_getparam() function retrieves the value of param for the door descriptor d and
writes it through the pointer out. The door_setparam() function sets the value of param for
the door descriptor d to val. The param argument names the parameter to view or change and
can be one of the following values:

DOOR_PARAM DATA_MAX

DOOR_PARAM DATA MIN

DOOR_PARAM DESC_MAX

This parameter represents the maximum amount of data that can
be passed to the door routine. Any attempt to call door_call(3C)
on a door with a data_size value larger than the door's
DOOR_PARAM DATA MAX parameter will fail with ENOBUFS. At door
creation time, this parameter is initialized to SIZE_MAX and can be
set to any value from 0 to SIZE_MAX, inclusive. This parameter
must be greater than or equal to the DOOR_PARAM_DATA_MIN
parameter.

This parameter represents the the minimum amount of data that
can be passed to the door routine. Any attempt to call
door_call(3C) on adoor with a data_size value smaller than the
door's DOOR_PARAM DATA_MIN parameter will fail with ENOBUFS. At
door creation time, this parameter is initialized to 0, and can be set
to any value from 0 to SIZE_MAX, inclusive. This parameter must
be less than or equal to the DOOR_PARAM_DATA MAX parameter.

This parameter represents the the maximum number of argument
descriptors that can be passed to the door routine. Any attempt to
calldoor_call(3C) on a door with a desc_num value larger than
the door's DOOR PARAM DESC MAX parameter will fail with ENFILE.
If the door was created with the DOOR_REFUSE_DESC flag, this
parameter is initialized to 0 and cannot be changed to any other
value. Otherwise, it is initialized to INT_MAX and can be set to any
value from 0 to INT MAX, inclusive.

The door_setparam() function can only affect doors that were created by the current process.

ReturnValues Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to

indicate the error.

Errors Thedoor getparam() function will fail if:

EBADF The d argument is not a door descriptor.

Basic Library Functions

177

door_getparam(3C)

178

Examples

EFAULT The out argument is not a valid address.
EINVAL The param argument is not a recognized parameter.

EOVERFLOW The value of the parameter is larger than the SIZE_MAX. This condition can
occur only if the calling process is 32-bit and the door targets a 64-bit process
or the kernel.

The door_setparam() function will fail if:
EBADF The d argument is not a door descriptor or has been revoked.

EINVAL The param argument is not a recognized parameter, or the requested change
would make DOOR_PARAM_DATA_MIN greater than DOOR_PARAM_DATA_MAX.

ENOTSUP The param argument is DOOR_PARAM_DESC_MAX, d was created with the
DOOR_REFUSE_DESC flag, and val is not zero.

EPERM The d argument was not created by this process.

ERANGE The val argument is not in supported range of param.

EXAMPLE 1 Set up a door with a fixed request size.

typedef struct my_ request {
int request;

ar buffer[4096];

} my request t;

fd = door create(my handler, DOOR REFUSE DESC);
if (fd < 0)
/* handle error */

if (door setparam(fd, DOOR PARAM DATA MIN,
sizeof (my request t)) <0 ||
door_setparam(fd, DOOR PARAM DATA MAX,
sizeof (my request t)) < 0)
/* handle error */

/*
* the door will only accept door call(3DOOR)s with a
* data size which is exactly sizeof (my request t).
*/

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_getparam(3C)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SeeAlso door call(3C),door create(3C),attributes(5)

Notes The parameters that can be manipulated by door_setparam() are not the only limitation on
the size of requests. If the door server thread's stack size is not large enough to hold all of the
data requested plus room for processing the request, the door call will fail with E2BIG.

The DOOR PARAM DATA MIN parameter will not prevent DOOR UNREF DATA notifications from

being sent to the door.

Basic Library Functions

179

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_info(3C)

Name

Synopsis

Description

180

door_info - return information associated with a door descriptor

cc -mt [flag... 1 file... [library...]
#include <door.h>

int door_info(int d, struct door_info *info);

The door_info() function returns information associated with a door descriptor. It obtains
information about the door descriptor d and places the information that is relevant to the
door in the structure pointed to by the info argument.

The door_info structure pointed to by the info argument contains the following members:

pid t di target; /* door server pid */
door ptr_ t di proc; /* server function */
door ptr t di data; /* data cookie for invocation */
door attr t di attributes; /* door attributes */
door_id_t di_uniquifier; /* unique id among all doors */

The di_target member is the process ID of the door server, or —1 if the door server process
has exited.

The values for di_attributes may be composed of the following:

DOOR_LOCAL The door descriptor refers to a service procedure in this process.
DOOR_UNREF The door has requested notification when all but the last reference has
gone away.

DOOR UNREF MULTI Similar to DOOR_UNREF, except multiple unreferenced notifications
may be delivered for this door.

DOOR_IS_UNREF There is currently only one descriptor referring to the door.

DOOR REFUSE_DESC The door refuses any attempt to door_call(3C) it with argument
descriptors.

DOOR_NO_CANCEL Clients who abort a door call(3C) call on this door will not cause the
cancellation(5) of the server thread handling the request.

DOOR_REVOKED The door descriptor refers to a door that has been revoked.

DOOR_PRIVATE The door has a separate pool of server threads associated with it.

Thedi_procanddi_datamembers are returned as door_ptr_t objects rather than void *
pointers to allow clients and servers to interoperate in environments where the pointer sizes
may vary in size (for example, 32-bit clients and 64-bit servers). Each door has a system-wide
unique number associated with it that is set when the door is created by door_create(). This
number is returned in di_uniquifier.

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_info(3C)

ReturnValues Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

Errors Thedoor info() function will fail if:
EFAULT Theaddress of argument info is an invalid address.

EBADF dis nota door descriptor.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

SeeAlso door bind(3C),door call(3C),door create(3C),door server create(3C),
attributes(5), cancellation(5)

Basic Library Functions 181

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_return(3C)

182

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_return - return from a door invocation
cc -mt [flag... 1 file... [library...]

#include <door.h>

int door_return(char *data_ptr, size t data_size, door_desc_t *desc_ptr,
uint t num_desc);

The door return() function returns from a door invocation. It returns control to the thread
that issued the associated door_call() and blocks waiting for the next door invocation. See
door_call(3C). Results, if any, from the door invocation are passed back to the client in the
buffers pointed to by data_ptr and desc_ptr. If there is not a client associated with the
door_return(), the calling thread discards the results, releases any passed descriptors with
the DOOR_RELEASE attribute, and blocks waiting for the next door invocation.

Upon successful completion, door_return() does not return to the calling process.
Otherwise, door_return() returns —1 to the calling process and sets errno to indicate the
error.

The door_return() function fails and returns to the calling process if:
E2BIG Arguments were too big for client.
EFAULT The address of data_ptr or desc_ptr is invalid.

EINVAL Invalid door_return() arguments were passed or a thread is bound to a door that
no longer exists.

EMFILE The client has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-o0s
Interface Stability Committed
MT-Level Safe

door_call(3C),attributes(5)

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_revoke(3C)

Name door_revoke - revoke access to a door descriptor

Synopsis cc -mt [flag... 1 file... [library...]
#include <door.h>

int door_revoke(int d);

Description The door_revoke() function revokes access to a door descriptor. Door descriptors are created
with door_create(3C). The door_revoke () function performs an implicit call to close(2),
marking the door descriptor d as invalid.

A door descriptor can be revoked only by the process that created it. Door invocations that are
in progress duringa door_revoke () invocation are allowed to complete normally.

ReturnValues Upon successful completion, door_revoke () returns 0. Otherwise, door_revoke () returns —1
and sets errno to indicate the error.

Errors Thedoor revoke() function will fail if:
EBADF Aninvalid door descriptor was passed.

EPERM The door descriptor was not created by this process (with door_create(3C)).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

SeeAlso close(2),door create(3C),attributes(5)

Basic Library Functions 183

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_server_create(3C)

Name

Synopsis

Description

184

door_server_create - specify an alternative door server thread creation function

cc -mt [flag... 1 file... [library...]
#include <door.h>

void (*) () door_server create(void (*create_proc)(door_info t*));

Normally, the doors library creates new door server threads in response to incoming
concurrent door invocations automatically. There is no pre-defined upper limit on the
number of server threads that the system creates in response to incoming invocations (1 server
thread for each active door invocation). These threads are created with the default thread stack
size and POSIX (see standards(5)) threads cancellation disabled. The created threads also
have the THR_BOUND | THR_DETACHED attributes for Solaris threads and the

PTHREAD SCOPE SYSTEM | PTHREAD CREATE DETACHED attributes for POSIX threads. The
signal disposition, and scheduling class of the newly created thread are inherited from the
calling thread (initially from the thread calling door_create(), and subsequently from the
current active door server thread).

The door server create() function allows control over the creation of server threads
needed for door invocations. The procedure create_proc is called every time the available
server thread pool is depleted. In the case of private server pools associated with a door (see the
DOOR_PRIVATE attribute in door_create()), information on which pool is depleted is passed
to the create function in the form of a door_info_t structure. Thedi procand di data
members of the door info t structure can be used as a door identifier associated with the
depleted pool. The create_proc procedure may limit the number of server threads created and
may also create server threads with appropriate attributes (stack size, thread-specific data,
POSIX thread cancellation, signal mask, scheduling attributes, and so forth) for use with door
invocations.

The overall amount of data and argument descriptors that can be sent through a door is
limited by both the server thread's stack size and by the parameters of the door itself. See
door_setparam(3C).

The specified server creation function should create user level threads using thr_create()
with the THR_BOUND flag, or in the case of POSIX threads, pthread_create() with the
PTHREAD_SCOPE_SYSTEM attribute. The server threads make themselves available for incoming
door invocations on this process by issuing a door_return(NULL, @, NULL, 0). In this case,
the door_return() arguments are ignored. See door_return(3C) and thr_create(3C).

The server threads created by default are enabled for POSIX thread cancellations which may
lead to unexpected thread terminations while holding resources (such as locks) if the client
aborts the associated door_call(). See door_call(3C). Unless the server code is truly
interested in notifications of client aborts during a door invocation and is prepared to handle
such notifications using cancellation handlers, POSIX thread cancellation should be disabled
for server threads using pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL). Ifall
doors are created with the DOOR_NO_CANCEL flag (see door_create(3C)), the threads will never
be cancelled by an aborted door_call() call

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

door_server_create(3C)

Return Values

Examples

Attributes

The create_proc procedure need not create any additional server threads if there is at least one
server thread currently active in the process (perhaps handling another door invocation) or it
may create as many as seen fit each time it is called. If there are no available server threads
during an incoming door invocation, the associated door_call() blocks until a server thread
becomes available. The create_proc procedure must be MT-Safe.

Upon successful completion, door_server create() returns a pointer to the previous server
creation function. This function has no failure mode (it cannot fail).

EXAMPLE1 Creating door server threads.

The following example creates door server threads with cancellation disabled and an 8k stack
instead of the default stack size:

#include <door.h>
#include <pthread.h>
#include <thread.h>

void *
my thread(void *arg)
{
pthread setcancelstate(PTHREAD CANCEL DISABLE, NULL);
door return(NULL, @, NULL, 0);
}
void
my create(door info t *dip)
{
thr _create(NULL, 8192, my thread, NULL,
THR_BOUND | THR DETACHED, NULL);
}
main()
{
(void)door server create(my create);
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

Basic Library Functions 185

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_server_create(3C)

SeeAlso door bind(3C),door call(3C),door create(3C),door return(3C),pthread create(3C),
pthread setcancelstate(3C), thr create(3C),attributes(5), cancellation(5),
standards(5)

186 man pages section 3: Basic Library Functions - Last Revised 22 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

door_ucred(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_ucred - return credential information associated with the client
cc -mt [flag... 1 file... [library...]
#include <door.h>

int door_ucred(ucred_t **info);

The door_ucred() function returns credential information associated with the client, if any,
of the current door invocation.

When successful, door_ucred () writes a pointer to a user credential to the location pointed to
by info if that location was previously NULL. If that location was non-null, door_ucred()
assumes that info points to a previously allocated ucred_t which is then reused. The location
pointed to by info can be used multiple times before being freed. The value returned in info
must be freed using ucred_free(3C).

The resulting user credential includes information about the effective user and group ID, the
real user and group ID, all privilege sets and the calling PID.

The credential information associated with the client refers to the information from the
immediate caller, not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_ucred() returns 0. Otherwise, -1 is returned and errno is
set to indicate the error, in which case the memory location pointed to by the info argument is
unchanged.

The door_ucred() function will fail if:

EAGAIN Thelocation pointed to by info was NULL and allocating memory sufficient to hold
aucred failed.

EFAULT The address of the info argument is invalid.
EINVAL Thereis no associated door client.

ENOMEM Thelocation pointed to by info was NULL and allocating memory sufficient to hold
aucred failed.

See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

door call(3C),door create(3C),ucred get(3C),attributes(5)

Basic Library Functions 187

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_xcreate(3C)

Name

Synopsis

Description

Creating private doors
using door create()

188

door_xcreate — create a door descriptor for a private door with per-door control over thread
creation

#include <door.h>

typedef void door server procedure t(void *, char *, size t,
door desc t *, uint t);

typedef int door xcreate server func_t(door_info t *,
void *(*)(void *), void *, void *);

typedef void door xcreate thrsetup func t(void *);

int door_xcreate(door_server_procedure_t *server_procedure,
void *cookie, uint t attributes,
door_xcreate_server_func_t *thr_create_func,
door_xcreate_thrsetup_func_t *thr_setup_func, void *crcookie,
int nthread);

The door_xcreate () function creates a private door to the given server_procedure, with
per-door control over the creation of threads that will service invocations of that door. A
private door is a door that has a private pool of threads that service calls to that door alone;
non-private doors share a pool of service threads (see door_create(3C)).

Prior to the introduction of door_xcreate(), a private door was created using door_create()
specifying attributes including DOOR_PRIVATE after installing a suitable door server thread
creation function using door_server_create().During such a callto door_create(), the
first server thread for that door is created by calling the door server function; you must
therefore already have installed a custom door server creation function using

door server_ create(). The custom server creation function is called at initial creation of a
private door, and again whenever a new invocation uses the last available thread for that door.
The function must decide whether it wants to increase the level of concurrency by creating an
additional thread - if it decides not to then further invocations may have to wait for an existing
active invocation to complete before they can proceed. Additional threads may be created
using whatever thread attributes are desired in the application, and the application must
specify a thread start function (to thr_create(3C) or pthread_create(3C)) which will
performadoor_bind() to the newly-created door before calling door_return(NULL, 0, NULL,
0) to enter service. See door_server_create(3C)and door_bind(3C) for more information
and for an example.

man pages section 3: Basic Library Functions - Last Revised 17 Nov 2009

door_xcreate(3C)

Creating private doors
with door xcreate()

This “legacy” private door API is adequate for many uses, but has some limitations:

= The server thread creation function appointed via the door_server_create() is shared by
all doors in the process. Private doors are distinguished from non-private in that the
door_info_t pointer argument to the thread creation function is non-null for private
doors; from the door_info_t the associated door server procedure is available via the
di_proc member.

= Ifalibrary wishes to create a private door of which the application is essentially unaware it
has no option but to inherit any function appointed with door_server_create() which
may render the library door inoperable.

= Newly-created server threads must bind to the door they will service, but the door file
descriptor to quote in door_bind () is not available in the door_info_t structure we
receive a pointer to. The door file descriptor is returned as the result of door_create(),
but the initial service thread is created during the call to door_create(). This leads to
complexity in the startup of the service thread, and tends to force the use of global
variables for the door file descriptors as per the example in door_bind().

The door_xcreate() function is purpose-designed for the creation of private doors and
simplifies their use by moving responsibility for binding the new server thread and
synchronizing with it into a library-provided thread startup function:

= The first three arguments to door_xcreate() are as you would use in door_create(): the
door server_procedure, a private cookie to pass to that procedure whenever it is invoked for
this door, and desired door attributes. The DOOR_PRIVATE attribute is implicit, and an
additional attribute of DOOR NO DEPLETION CBisavailable.

= Four additional arguments specify a server thread creation function to use for this door
(must not be NULL), a thread setup function for new server threads (can be NULL), a cookie
to pass to those functions, and the initial number of threads to create for this door.

= Thedoor_xcreate_server_func_t() for creating server threads has differing semantics
to those ofadoor_server func_t() usedindoor server create().Inadditiontoa
door_info_t pointer it also receives as arguments a library-provided thread start function
and thread start argument that it must use, and the private cookie registered in the call to
door xcreate().The nominated door xcreate server func_t() must:

m Return 0 if no additional thread is to be created, for example if it decides the current
level of concurrency is sufficient. When the server thread creation function is invoked
as part of a depletion callback (as opposed to during initial door_xcreate()) the
door_info tdi attributes memberincludes DOOR DEPLETION CB.

= Otherwise attempt to create exactly one new thread using thr_create() or
pthread create(), with whatever thread attributes (stack size) are desired and
quoting the implementation-provided thread start function and opaque data cookie. If
the callto thr create() orpthread create() is successful then return 1, otherwise
return -1.

= Donotcalldoor_bind() or request to enter service via door_return(NULL, 0, NULL, 0).

Basic Library Functions 189

door_xcreate(3C)

190

Asindoor_server create() new server threads must be created PTHREAD SCOPE_SYSTEM
and PTHREAD CREATE DETACHED for POSIX threads, and THR BOUND and THR DETACHED for
Solaris threads. The signal disposition and scheduling class of newly-created threads are
inherited from the calling thread, initially from the thread calling door_xcreate() and
subsequently from the current active door server thread.

The library-provided thread start function performs the following operations in the order
presented:

= Callsthedoor_xcreate_thrsetup_func_t() ifitis not NULL, passing the crcookie. You
can use this setup function to perform custom service thread configuration that must
be done from the context of the new thread. Typically this is to configure cancellation
preferences, and possibly to associate application thread-specific-data with the
newly-created server thread.

If thr_setup_func() was NULL then a default is applied which will configure the new
thread with pthread setcancelstate(PTHREAD CANCEL DISABLE,NULL)and
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL). If the server code is truly
interested in notifications of client aborts during a door invocation then you will need
to providea thr_setup_func() that does not disable cancellations, and use
pthread_cleanup_push(3C)and pthread cleanup pop(3C)as appropriate.

= Binds the new thread to the door file descriptor using door_bind().

= Synchronizes with door_xcreate() so that the new server thread is known to have
successfully completed door_bind () before door_xcreate() returns.

The number of service threads to create at initial door creation time can be controlled
through the nthread argument to door_xcreate (). The nominated

door xcreate server func_t() will be called nthread times. All nthread new server
threads must be created successfully (thr_create_func() returns 1 for each) and all must
succeed in binding to the new door; if fewer than nthread threads are created, or fewer
than nthread succeed in binding, then door_xcreate() fails and any threads that were
created are made to exit.

No artificial maximum value is imposed on the nthread argument: it may be as high as
system resources and available virtual memory permit. There is a small amount of
additional stack usage in the door_xcreate() stack frame for each thread - up to 16 bytes
in a 64-bit application. If there is unsufficient room to extend the stack for this purpose
then door xcreate() fails with E2BIG.

The door attributes that can be selected in the call to door_xcreate() are the same as in
door_create(), with DOOR_PRIVATE implied and DOOR_NO_DEPLETION_ CB added:

DOOR_PRIVATE
It is not necessary to include this attribute. The door_xcreate() interfaces only creates
private doors.

man pages section 3: Basic Library Functions - Last Revised 17 Nov 2009

door_xcreate(3C)

Return Values

Errors

DOOR_NO DEPLETION CB
Create the initial pool of nthread service threads, but do not perform further callbacks
tothe thr_create func() for this door when the thread pool appears to be depleted at
the start of a new door invocation. This allows you to select a fixed level of concurrency.

Another di_attribute is defined during thread depletion callbacks:

DOOR_DEPLETION_CB
This call to the server thread creation function is the result of a depletion callback. This
attribute is not set when the function is called during initial door_xcreate().

The descriptor returned from door_xcreate () will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(3C).
Applications concerned with security should not place secure information in door data that is
accessible by door_info (). In particular, secure data should not be stored in the data item
cookie.

A process can advertise a door in the file system name space using fattach(3C).

After creation, door_setparam(3C)can be used to set limits on the amount of data and
descriptors clients can send over the door.

A door created with door_xcreate () may be revoked using door_revoke(3C). This closes the
associated file descriptor, and acts as a barrier to further door invocations, but existing active
invocations are not guaranteed to have completed before door_revoke() returns. Server
threads bound to a revoked door do not wakeup or exit automatically when the door is
revoked.

Upon successful completion, door_xcreate() returns a non-negative value. Otherwise,
door_xcreate() returns -1 and sets errno to indicate the error.

The door xcreate() function will fail if:

E2BIG The requested nthread is too large. A small amount of stack space is required for
each thread we must start and synchronize with. If extending the
door_xcreate() stack by the required amount will exceed the stack bounds then

E2BIG is returned.

EBADF The attempt to door_bind() within the library-provided thread start function
failed.

EINVAL Invalid attributes are passed, nthread is less than 1, or thr_create_func() is

NULL. This is also returned if thr create func() returns0 (no thread creation
attempted) during door_xcreate().

EMFILE The process has too many open descriptors.
ENOMEM Insufficient memory condition while creating the door.

ENOTSUP A door_xcreate() call was attempted from a fork handler.

Basic Library Functions 191

door_xcreate(3C)

EPIPE A call to the nominated thr_create_func() returned -1 indicating that
pthread create() orthr _create() failed.

Examples EexampLE1 Create a private door with an initial pool of 10 server threads

Create a private door with an initial pool of 10 server threads. Threads are created with the
minimum required attributes and there is no thread setup function. Use fattach() to
advertise the door in the filesystem namespace.

static pthread attr t tattr;

* Simplest possible door xcreate server func_t. Always attempt to
* create a thread, using the previously initialized attributes for
* all threads. We must use the start function and argument provided,
* and make no use of our private mycookie argument.
*/

int

thrcreatefunc(door_info t *dip, void *(*startf)(void *),

void *startfarg, void *mycookie)

{
if (pthread create(NULL, &tattr, startf, startfarg) != 0) {
perror("thrcreatefunc: pthread create");
return (-1);
}
return (1);
}
/*
* Dummy door server procedure - does no processing.
*/
void
door proc(void *cookie, char *argp, size t argsz, door desc t *descp,
uint_t n)
{
door return (NULL, @, NULL, 0);
}
int
main(int argc, char *argv[])
{
struct stat buf;
int did;
/*
* Setup thread attributes - minimum required.
*/

192 man pages section 3: Basic Library Functions - Last Revised 17 Nov 2009

door_xcreate(3C)

EXAMPLE1 Create a private door with an initial pool of 10 server threads (Continued)

(void) pthread attr init(&tattr);
(void) pthread attr setdetachstate(&tattr, PTHREAD CREATE DETACHED);
(void) pthread attr setscope(&tattr, PTHREAD SCOPE_SYSTEM);

/*
* Create a private door with an initial pool of 10 server threads.
*/

did = door xcreate(door proc, NULL, @, thrcreatefunc, NULL, NULL,

10);

if (did == -1) {
perror("door xcreate")
exit(1l);

if (stat(DOORPATH, &buf) < 0) {
int newfd;

if ((newfd = creat(DOORPATH, 0644)) < 0) {
perror("creat");
exit(1l);

}

(void) close(newfd);

(void) fdetach(DOORPATH);

(void) fdetach(DOORPATH) ;

if (fattach(did, DOORPATH) < 0) {
perror("fattach");
exit(1l);

(void) fprintf(stderr, "Pausing in main\n")
(void) pause();

EXAMPLE2 Create a private door with exactly one server thread and no callbacks for additional threads

Create a private door with exactly one server thread and no callbacks for additional threads.
Use a server thread stacksize of 32K, and specify a thread setup function.

#define DOORPATH "/tmp/grmdoor"

static pthread attr t tattr;

Basic Library Functions

193

door_xcreate(3C)

EXAMPLE2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

/*
* Thread setup function - configuration that must be performed from
* the conext of the new thread. The mycookie argument is the
* second-to-last argument from door xcreate.
*/
void
thrsetupfunc(void *mycookie)
{
/*
* If a thread setup function is specified it must do the
* following at minimum.
*/
(void) pthread setcanceltype(PTHREAD CANCEL DEFERRED, NULL);

/*

* The default thread setup functions also performs the following
* to disable thread cancellation notifications, so that server

* threads are not cancelled when a client aborts a door call.

* This is not a requirement.

*/

(void) pthread setcancelstate(PTHREAD CANCEL DISABLE, NULL);

/*
* Now we can go on to perform other thread initialization,
* for example to allocate and initialize some thread-specific data
* for this thread; for thread-specific data you can use a
destructor function in pthread key create if you want to perform
any actions if/when a door server thread exits.
*/

/*
* The door xcreate server func t we will use for server thread
* creation. The mycookie argument is the second-to-last argument
* from door xcreate.
*/
int
thrcreatefunc(door_info t *dip, void *(*startf)(void *),
void *startfarg, void *mycookie)

if (pthread create(NULL, &tattr, startf, startfarg) != 0) {

perror("thrcreatefunc: pthread create");
return (-1);

194 man pages section 3: Basic Library Functions - Last Revised 17 Nov 2009

door_xcreate(3C)

EXAMPLE2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

return (1);

/*
* Door procedure. The cookie received here is the second arg to
* door xcreate.

*/
void
door_proc(void *cookie, char *argp, size t argsz, door desc t *descp,
uint t n)
{
(void) door return(NULL, @, NULL, 0);
}
int
main(int argc, char *argv[])
{
struct stat buf;
int did;
/*

* Configure thread attributes we will use in thrcreatefunc.

* The PTHREAD CREATE_DETACHED and PTHREAD SCOPE_SYSTEM are

* required.

*/

(void) pthread attr init(&tattr);

(void) pthread attr setdetachstate(&tattr, PTHREAD CREATE DETACHED);
(void) pthread attr setscope(&tattr, PTHREAD SCOPE SYSTEM);

(void) pthread attr setstacksize(&tattr, 16 * 1024);

/*
* Create a private door with just one server thread and asking for
* no further callbacks on thread pool depletion during an
* invocation.
*/
did = door xcreate(door proc, NULL, DOOR NO DEPLETION CB,
thrcreatefunc, thrsetupfunc, NULL, 1);

if (did == -1) {

perror("door xcreate");
exit(1l);

Basic Library Functions 195

door_xcreate(3C)

EXAMPLE2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

if (stat(DOORPATH, &buf) < 0) {
int newfd;

if ((newfd = creat(DOORPATH, 0644)) < 0) {
perror("creat");
exit(1l);

}

(void) close(newfd);

(void) fdetach(DOORPATH) ;

if (fattach(did, DOORPATH) < 0) {
perror("fattach");
exit(1);

}

(void) fprintf(stderr, "Pausing in main\n");
(void) pause();

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Architecture all
Availability system/core-os
Interface Stability Committed
MT-Level Safe

SeeAlso door bind(3C),door call(3C),door create(3C),door info(3C),door revoke(3C),
door_server create(3C),door_setparam(3C), fattach(3C), libdoor(3LIB),
pthread create(3C), pthread cleanup pop(3C), pthread cleanup push(3C),
thr_create(3C), attributes(5), cancellation(5)

196 man pages section 3: Basic Library Functions - Last Revised 17 Nov 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2cancellation-5

drand48(3C)

Name

Synopsis

Description

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 — generate
uniformly distributed pseudo-random numbers

#include <stdlib.h>

double drand48(void)

double erand48(unsigned short x;[3]);

long lrand48(void)

long nrand48(unsigned short x;[3]);

long mrand48(void)

long jrand48(unsigned short x;[3]);

void srand48(long seedval);

unsigned short *seed48(unsigned short seed16v[3]);

void lcong48(unsigned short param[7]);

This family of functions generates pseudo-random numbers using the well-known linear
congruential algorithm and 48-bit integer arithmetic.

Functions drand48() and erand48() return non-negative double-precision floating-point
values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers uniformly distributed
over the interval [0,2 3!].

Functions mrand48() and j rand48() return signed long integers uniformly distributed over
the interval [-23!,2°1].

Functions srand48(), seed48(), and lcong48() are initialization entry points, one of which
should be invoked before either drand48(), Lrand48(), or mrand48() is called. (Although it is
not recommended practice, constant default initializer values will be supplied automatically if
drand48(), Lrand48(), or mrand48() is called without a prior call to an initialization entry
point.) Functions erand48(), nrand48(), and jrand48() do not require an initialization
entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X; , according to the
linear congruential formula

X, 1= (@X 40) mod m 1>=0.

mod m

The parameter m = 2*% hence 48-bit integer arithmetic is performed. Unless Lcong48 () has
been invoked, the multiplier value aand the addend value care given by

a=5DEECE66D,=2736731631554

Basic Library Functions 197

drand48(3C)

Usage

c=Bs=134

The value returned by any of the functions drand48(), erand48(), Lrand48(), nrand48(),
mrand48(), or jrand48() is computed by first generating the next 48-bit X in the sequence.
Then the appropriate number of bits, according to the type of data item to be returned, are
copied from the high-order (leftmost) bits of X; and transformed into the returned value.

The functions drand48(), Lrand48(), and mrand48 () store the last 48-bit X; generated in an
internal buffer. X; must be initialized prior to being invoked. The functions erand48 (),
nrand48(),and jrand48() require the calling program to provide storage for the successive
X, values in the array specified as an argument when the functions are invoked. These routines
do not have to be initialized; the calling program must place the desired initial value of X; into
the array and pass it as an argument. By using different arguments, functions erand48(),
nrand48(),and jrand48() allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, that is, the sequence of numbers in each
stream will not depend upon how many times the routines have been called to generate
numbers for the other streams.

The initializer function srand48 () sets the high-order 32 bits of X; to the 32 bits contained in
its argument. The low-order 16 bits of X; are set to the arbitrary value 330E 4 .

The initializer function seed48() sets the value of X to the 48-bit value specified in the
argument array. In addition, the previous value of X is copied into a 48-bit internal buftfer,
used only by seed48(), and a pointer to this buffer is the value returned by seed48(). This
returned pointer, which can just be ignored if not needed, is useful if a program is to be
restarted from a given point at some future time — use the pointer to get at and store the last
X, value, and then use this value to reinitialize using seed48 () when the program is restarted.

The initialization function 1cong48 () allows the user to specify the initial X, the multiplier
value g, and the addend value c. Argument array elements param[0-2] specity X;, param/[3-5]
specify the multiplier a, and param|[6] specifies the 16-bit addend c. After 1cong48 () has been
called, a subsequent call to either srand48() or seed48() will restore the “standard"
multiplier and addend values, a and ¢, specified above.

Programmers should use /dev/urandom or /dev/random for most random-number
generation, especially for cryptographic purposes. See random(7D).

Attributes See attributes(5) for descriptions of the following attributes:

198

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

man pages section 3: Basic Library Functions « Last Revised 24 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

drand48(3C)

SeeAlso rand(3C),attributes(5), standards(5), random(7D)

Basic Library Functions 199

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d

dup2(30)

Name dup2 - duplicate an open file descriptor

Synopsis #include <unistd.h>
int dup2(int fildes, int fildes2);

Description The dup2() function causes the file descriptor fildes2 to refer to the same file as fildes. The
fildes argument is a file descriptor referring to an open file, and fildes2 is a non-negative integer
less than the current value for the maximum number of open file descriptors allowed the
calling process. See getrlimit(2). If fildes2 already refers to an open file, not fildes, it is closed
first. If fildes2 refers to fildes, or if fildes is not a valid open file descriptor, fildes2 will not be
closed first.

The dup2() function is equivalent to fcnt1(fildes, F_DUP2FD, fildes2).

ReturnValues Upon successful completion a non-negative integer representing the file descriptor is
returned. Otherwise, —1 is returned and errno is set to indicate the error.

Errors The dup2() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.
EBADF The fildes2 argument is negative or is not less than the current resource limit
returned by getrlimit (RLIMIT_NOFILE, . . .).

EINTR A signal was caught during the dup2 () call.

EMFILE The process has too many open files. See fcnt1(2).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

SeeAlso close(2), creat(2), exec(2), fent1(2), getrlimit(2), open(2), pipe(2), attributes(5),
standards(5)

200 man pages section 3: Basic Library Functions - Last Revised 19 Dec 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

econvert(3C)

Name

Synopsis

Description

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, qeconvert, qfconvert, qgconvert
- output conversion

#include <floatingpoint.h>

char *econvert(double value, int ndigit, int *decpt, int *sign,
char *buf);

char *fconvert(double value, int ndigit, int *decpt, int *sign,
char *buf);

char *gconvert(double value, int ndigit, int trailing, char *buf);

char *seconvert(single *value, int ndigit, int *decpt, int *sign,
char *buf);

char *sfconvert(single *value, int ndigit, int *decpt, int *sign,
char *buf);

char *sgconvert(single *value, int ndigit, int trailing, char *buf);

char *geconvert(quadruple *value, int ndigit, int *decpt, int *sign,
char *buf);

char *qfconvert(quadruple *value, int ndigit, int *decpt, int *sign
char *buf);

char *qgconvert(quadruple *value, int ndigit, int trailing, char *buf);

The econvert () function converts the value to a null-terminated string of ndigit ASCII digits
in bufand returns a pointer to buf. buf should contain at least ndigit+1 characters. The
position of the decimal point relative to the beginning of the string is stored indirectly through
decpt. Thus buf=="314" and *decpt == 1 corresponds to the numerical value 3.14, while buf
=="314" and *decpt == —1 corresponds to the numerical value .0314. If the sign of the result is
negative, the word pointed to by sign is nonzero; otherwise it is zero. The least significant digit
is rounded.

The fconvert () function works much like econvert (), except that the correct digit has been
rounded as if for sprintf (%sw.nf) output with n=ndigit digits to the right of the decimal point.
ndigit can be negative to indicate rounding to the left of the decimal point. The return value is
a pointer to buf. buf should contain at least 310+max(0,ndigit) characters to accomodate any
double-precision value.

The gconvert () function converts the value to a null-terminated ASCII string in bufand
returns a pointer to buf. It produces ndigit significant digits in fixed-decimal format, like
sprintf(%sw.nf), if possible, and otherwise in floating-decimal format, like sprintf (%w.ne);
in either case bufis ready for printing, with sign and exponent. The result corresponds to that
obtained by

(void) sprintf(buf,“sw.ng’’,value) ;

Basic Library Functions 201

econvert(3C)

Usage

If trailing = 0, trailing zeros and a trailing point are suppressed, as in sprintf(%g). If trailing
1= 0, trailing zeros and a trailing point are retained, asin sprintf (%#g).

The seconvert(), sfconvert(),and sgconvert () functions are single-precision versions of
these functions, and are more efficient than the corresponding double-precision versions. A
pointer rather than the value itself is passed to avoid C's usual conversion of single-precision
arguments to double.

The geconvert(), gfconvert (), and qgconvert () functions are quadruple-precision
versions of these functions. The qfconvert () function can overflow the decimal_record field
ds if value is too large. In that case, buf]0] is set to zero.

The ecvt(), fevt() and gevt () functions are versions of econvert (), fconvert (), and
gconvert (), respectively, that are documented on the ecvt(3C) manual page. They constitute
the default implementation of these functions and conform to the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2.

IEEE Infinities and NaNs are treated similarly by these functions. “NaN" is returned for NaN,
and “Inf" or “Infinity" for Infinity. The longer form is produced when ndigit >= 8.

Attributes See attributes(5) for descriptions of the following attributes:

202

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso ecvt(3C),sprintf(3C), attributes(5)

man pages section 3: Basic Library Functions - Last Revised 3 May 1999

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ecvt(3Q)

Name

Synopsis

Description

ecvt()

fevt()

gevt()

ReturnValues

Errors

Usage

ecvt, fevt, gevt — convert floating-point number to string

#include <stdlib.h>

char *ecvt(double value, int ndigit, int *restrict decpt, int *restrict sign);
char *fcvt(double value, int ndigit, int *restrict decpt, int *restrict sign);

char *gcvt(double value, int ndigit, char *buf);

The ecvt(), fevt() and gevt () functions convert floating-point numbers to null-terminated
strings.

The ecvt () function converts value to a null-terminated string of ndigit digits (where ndigit is
reduced to an unspecified limit determined by the precision of a double) and returns a pointer
to the string. The high-order digit is non-zero, unless the value is 0. The low-order digit is
rounded. The position of the radix character relative to the beginning of the string is stored in
the integer pointed to by decpt (negative means to the left of the returned digits). The radix
character is not included in the returned string. If the sign of the result is negative, the integer
pointed to by sign is non-zero, otherwise it is 0.

If the converted value is out of range or is not representable, the contents of the returned string
are unspecified.

The fcvt () function is identical to ecvt () except that ndigit specifies the number of digits
desired after the radix point. The total number of digits in the result string is restricted to an
unspecified limit as determined by the precision of a double.

The gevt () function converts value to a null-terminated string (similar to that of the %g
format of printf(3C)) in the array pointed to by bufand returns buf. It produces ndigit
significant digits (limited to an unspecified value determined by the precision of a double) in
st if possible, or %e (scientific notation) otherwise. A minus sign is included in the returned
string if value is less than 0. A radix character is included in the returned string if value is not a
whole number. Trailing zeros are suppressed where value is not a whole number. The radix
character is determined by the currentlocale. If setlocale(3C) has not been called
successfully, the default locale, POSIX, is used. The default locale specifies a period (.) as the
radix character. The LC_NUMERIC category determines the value of the radix character within
the currentlocale.

The ecvt() and fcvt () functions return a pointer to a null-terminated string of digits.
The gcvt () function returns buf.
No errors are defined.

The return values from ecvt () and fcvt () might point to thread-specific data that can be
overwritten by subsequent calls to these functions by the same thread.

For portability to implementations conforming to earlier versions of Solaris, sprintf(3C) is
preferred over this function.

Basic Library Functions 203

ecvt(3Q)

204

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

SeeAlso printf(3C), setlocale(3C), sprintf(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions - Last Revised 18 May 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

enable_extended_FILE_stdio(3C)

Name

Synopsis

Description

enable_extended_FILE_stdio — enable extended FILE facility within standard I/O

#include <stdio.h>
#include <stdio ext.h>
#include <signal.h>

int enable_extended FILE_stdio(int low_fd, int signal_action);

The enable_extended_FILE_stdio() function enables the use of the extended FILE facility
(see NOTES) and determines which, if any, signal will be sent when an application uses
FILE->_file inappropriately.

The low_fd argument specifies the lowest file descriptor in the range 3 through 255 that the
application wants to be selected as the unallocatable file descriptor. File descriptors 0, 1, and 2
cannot be used because they are reserved for use as the default file descriptors underlying the
stdin, stdout, and stderr standard I/O streams. The low_fd argument can also be set to —1 to
request that enable_extended FILE stdio() selecta “reasonable” unallocatable file
descriptor. In this case, enable_extended FILE_stdio() will firstattempt to reserve a
relatively large file descriptor, but will keep trying to find an unallocatable file descriptor until
itis known that no file descriptor can be reserved.

The signal_action argument specifies the signal that will be sent to the process when the
unallocatable file descriptor is used as a file descriptor argument to any system call except
close(2). If signal_action is —1, the default signal (SIGABRT) will be sent. If signal_action is 0,
no signal will be sent. Otherwise, the signal specified by signal_action will be sent.

The enable extended FILE stdio() function calls

unallocatablefd = fcntl(low fd, F BADFD, action);

to reserve the unallocatable file descriptor and set the signal to be sent if the unallocatable file
descriptor is used in a system call. If the fcnt1(2) call succeeds, the extended FILE facility is
enabled and the unallocatable file descriptor is saved for later use by the standard I/O
functions. When an attempt is made to open a standard I/O stream (see fdopen(3C),
fopen(3C), and popen(3C)) with an underlying file descriptor greater than 255, the file
descriptor is stored in an auxiliary location and the field formerly known as FILE->_file is set
to the unallocatable file descriptor.

If the file descriptor limit for the process is less than or equal to 256 (the system default), the
application needs to raise the limit (see getrlimit(2)) for the extended FILE facility to be
useful. The enable_extended_FILE_stdio() function does not attempt to change the file
descriptor limit.

This function is used by the extendedFILE(5) preloadable library to enable the extended FILE
facility.

Basic Library Functions 205

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

enable_extended_FILE_stdio(3C)

ReturnValues

Errors

Usage

Examples

206

Upon successful completion, enable_extended_FILE_stdio() returns0. Otherwise, —1is
returned and errno is set to indicate the error.

The enable extended FILE stdio() function will fail if:

EAGAIN Allfile descriptors in the inclusive range 3 through 255 refer to files that are
currently open in the process.

EBADF The low_fd argument is greater than 255, or is less than 3 and not equal to -1.
EEXIST A file descriptor has already been marked by an earlier call to fent1().

EINVAL The signal_action argument is not—1, is not 0, and is not a valid signal number.

The enable_extended_FILE_stdio() function is available only in the 32-bit compilation
environment.

The fdopen(3C), fopen(3C), and popen(3C) functions all enable the use of the extended FILE
facility. For source changes, a trailing F character in the mode argument can be used with any
of these functions if the FILE *fptr is used only within the context of a single function or group
of functions and not meant to be returned to a caller. All of the source code to the application
must then be recompiled, thereby exposing any improper usage of the FILE structure fields.

The F character must not be used if the FILE *fptr is to be returned to a caller. The calling
application might not understand how to process it. Alternatively, the
enable_extended_FILE_stdio() function can be used at a higher level in the code.

Use extendedFILE(5) for binary relief.

EXAMPLE1 Increase the file limit and enable the extended FILE facility.

The following example demonstrates how to programmatically increase the file limit and
enable extended FILE facility.

(void) getrlimit(RLIMIT NOFILE, &rlp);
rlp.rlim cur = 1000; /* set the desired number of file descriptors */
retval = setrlimit (RLIMIT NOFILE, &lrp);
if (retval == -1) {
/* error */

/* enable extended FILE facility */
retval = enable extended FILE stdio(-1, SIGABRT);
if (retval == -1) {

/* error */

man pages section 3: Basic Library Functions « Last Revised 18 Apr2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

enable_extended_FILE_stdio(3C)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Availability system/library (32-bit)
Interface Stability Committed
MT-Level Safe

SeeAlso close(2), fentl(2), getrlimit(2), fdopen(3C), fopen(3C), popen(3C), signal.h(3HEAD),
stdio(3C), attributes(5), extendedFILE(5)

Notes Historically, 32-bit Solaris applications have been limited to using only the file descriptors 0
through 255 with the standard I/O functions (see stdio(3C)) in the Clibrary. The extended
FILE facility allows well-behaved 32-bit applications to use any valid file descriptor with the
standard I/O functions.

For the purposes of the extended FILE facility, a well-behaved application is one that:

= does not directly access any fields in the FILE structure pointed to by the FILE pointer
associated with any standard I/O stream,

= checks all return values from standard I/O functions for error conditions, and

= behaves appropriately when an error condition is reported.

The extended FILE facility generates EBADF error returns and optionally delivers a signal to the
calling process on most attempts to use the file descriptor formerly stored in FILE->_file asan
argument to a system call when a file descriptor value greater than 255 is being used to access
the file underlying the corresponding FILE pointer. The only exception is that calls to the
close() system call will return an EBADF error in this case, but will not deliver the signal. The
FILE->_file has been renamed to help applications quickly detect code that needs to be
updated.

The extended FILE facility should only be used by well-behaved applications. Although the
extended FILE facility reports errors, applications that directly reference FILE->_file should
be updated to use public interfaces rather than rely on implementation details that no longer
work as the application expects (see __fbufsize(3C) and fileno(3C).

This facility takes great care to avoid problems in well-behaved applications while
maintaining maximum compatibility. It also attempts to catch dangerous behavior in
applications that are not well-behaved as soon as possible and to notify those applications as
soon as bad behavior is detected.

There are, however, limitations. For example, if an application enables this facility and is
linked with an object file that had a standard I/O stream using an extended FILE pointer, and
then used the sequence

Basic Library Functions 207

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

enable_extended_FILE_stdio(3C)

208

(void) close(FILE-> file);
FILE-> file = myfd;

to attempt to change the file descriptor associated with the stream, undesired results can
occur. The close() function will fail, but since this usage ignores the return status, the
application proceeds to perform low level I/O on FILE->_file while calls to standard I/O
functions would continue to use the original, extended FILE pointer. If the application
continues using standard I/O functions after changing FILE->_file, silent data corruption
could occur because the application thinks it has changed file descriptors with the above
assignment but the actual standard I/O file descriptor is stored in the auxiliary location. The
chances for corruption are even higher if myfd has a value greater than 255 and is truncated by
the assignment to the 8-bit _file field.

Since the_file field has been renamed, attempts to recompile this code will fail. The application
should be changed not to use this field in the FILE structure.

The application should not use this facility if it uses _file directly, including using the
fileno() macro that was provided in stdio.h(3HEAD) in Solaris 2.0 through 2.7.

man pages section 3: Basic Library Functions « Last Revised 18 Apr2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdio.h-3head

encrypt(3C)

Name

Synopsis

Standard conforming

Description

Return Values

Errors

Usage

Attributes

See Also

encrypt — encoding function

#include <crypt.h>

void encrypt(char block[64], int edflag);

#include <unistd.h>
void encrypt(char block[64], int edflag);

The encrypt () function provides (rather primitive) access to the hashing algorithm
employed by the crypt(3C) function. The key generated by setkey(3C) is used to encrypt the
string block with encrypt ().

The block argument to encrypt () is an array of length 64 bytes containing only the bytes with
numerical value of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(3C). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be
decoded (see the USAGE section below); if the argument is not decoded, errno will be set to
ENOSYS.

The encrypt () function returns no value.
The encrypt () function will fail if:
ENOSYS The functionality is not supported on this implementation.

In some environments, decoding may not be implemented. This is related to U.S.
Government restrictions on encryption and decryption routines: the DES decryption
algorithm cannot be exported outside the U.S.A. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt () does encoding but not decoding.

Because encrypt () does not return a value, applications wishing to check for errors should set
errnoto 0, call encrypt (), then test errno and, if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

crypt(3C), setkey(3C), attributes(5)

Basic Library Functions 209

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

end(3C)

210

Name

Synopsis

Description

Usage

See Also

end, _end, etext, _etext, edata, _edata —last locations in program
extern int _efext;
extern int _edata;

extern int _end;

These names refer neither to routines nor to locations with interesting contents; only their
addresses are meaningful.

_etext The address of _etext is the first location after the last read-only loadable
segment.

_edata The address of _edata is the first location after the last read-write loadable
segment.

_end If the address of _edata is greater than the address of _etext, the address of _end
is same as the address of edata.

If the address of _etext is greater than the address of _edata, the address of _end
is set to the page boundary after the address pointed to by _etext.

When execution begins, the program break (the first location beyond the data) coincides with
_end, but the program break can be reset by the brk(2), malloc(3C), and the standard
input/output library (see stdio(3C)), functions by the profile (-p) option of cc, and so on.
Thus, the current value of the program break should be determined by sbrk ((char *)0).

References to end, etext, and edata, without a preceding underscore will be aliased to the
associated symbol that begins with the underscore.

brk(2),malloc(3C), stdio(3C)

man pages section 3: Basic Library Functions - Last Revised 31 Mar 2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

err(3C)

Name

Synopsis

Description

Examples

€rr, Verr, €rrx, verrx, warn, vwarn, warnx, vwarnx — formatted error messages

#include <err.h>

void err(int eval, const char *fmt, ...);

void verr(int eval, const char *fmt, va_list args);
void errx(int eval, const char fﬁnt, R

void verrx(int eval, const char fﬁnt, va_list args);
void warn(const char *fmt, ...);

void vwarn(const char *fmt, va_list args);

void warnx(const char fﬁﬂt, o)

void vwarnx(const char fﬁwt, va_list args);

Theerr() andwarn() family of functions display a formatted error message on the standard
error output. In all cases, the last component of the program name, followed by a colon
character and a space, are output. If the fmt argument is not NULL, the formatted error message
is output. In the case of theerr (), verr(),warn(), and vwarn() functions, the error message
string affiliated with the current value of the global variable errno is output next, preceded by
a colon character and a space if fimt is not NULL. In all cases, the output is followed by a newline
character. The errx(), verrx(),warnx(), and vwarnx () functions will not output this error
message string.

Theerr(),verr(),errx(),and verrx() functions do not return, but instead cause the
program to terminate with the status value given by the argument status.

EXAMPLE 1 Display the current errno information string and terminate with status indicating failure.
if ((p = malloc(size)) == NULL)

err(EXIT_FAILURE, NULL);
if ((fd = open(file name, O RDONLY, 0)) == -1)

err(EXIT FAILURE, "ss", file name);

EXAMPLE2 Display an error message and terminate with status indicating failure.

if (tm.tm _hour < START TIME)
errx(EXIT FAILURE, "too early, wait until %s", start time string);

EXAMPLE3 Warn of an error.
if ((fd = open(raw_device, O _RDONLY, 0)) == -1)
warnx("%ss: %s: trying the block device",
raw _device, strerror(errno));
if ((fd = open(block device, O RDONLY, 0)) == -1)
warn("%s", block device);

Basic Library Functions 211

err(3C)

Warnings Itis important never to pass a string with user-supplied data as a format without using ‘%s'. An
attacker can put format specifiers in the string to mangle the stack, leading to a possible
security hole. This holds true even if the string has been built “by hand" using a function like
snprintf(3C), as the resulting string can still contain user-supplied conversion specifiers for
later interpolation by the err() andwarn() functions.

Always be sure to use the proper secure idiom:

err(1, "ss", string);

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe with Exceptions

These functions are safe to use in multithreaded applications as long as setlocale(3C) is not
being called to change the locale.

SeeAlso exit(3C), getexecname(3C), setlocale(3C), strerror(3C), attributes(5)

212 man pages section 3: Basic Library Functions - Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

euclen(3Q)

Name

Synopsis

Description

Usage

Attributes

See Also

euclen, euccol, eucscol - get byte length and display width of EUC characters

#include <euc.h>

int euclen(const unsigned char *s);
int euccol(const unsigned char *s);

int eucscol(const unsigned char *str);

The euclen() function returns the length in bytes of the Extended Unix Code (EUC)
character pointed to by s, including single-shift characters, if present.

The euccol() function returns the screen column width of the EUC character pointed to by s.
The eucscol() function returns the screen column width of the EUC string pointed to by str.

For the euclen() and euccol(), functions, s points to the first byte of the character. This byte
is examined to determine its codeset. The character type table for the current locale is used for
codeset byte length and display width information.

These functions will work only with EUC locales.

These functions can be used safely in multithreaded applications, as long as setlocale(3C) is
not called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

getwidth(3C), setlocale(3C), attributes(5)

Basic Library Functions 213

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

exit(3C)

214

Name

Synopsis

Description

Attributes

See Also

exit, _exithandle - terminate process

#include <stdlib.h>

void exit(int status);

void _exithandle(void);

The exit () function terminates a process by calling first _exithandle() and then _exit()
(see exit(2)).

The _exithandle() function calls any functions registered through the atexit(3C) function
in the reverse order of their registration. This action includes executing all finalization code
from the .fini sections of all objects that are part of the process.

The _exithandle() function is intended for use only with _exit (), and allows for specialized
processing such as d1dump(3C) to be performed. Normal process execution should not be
continued after a call to _exithandle() has occurred, as internal data structures may have
been torn down due to atexit () or.fini processing.

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in the header <stdlib.h>and
may be used as the value of status to indicate successful or unsuccessful termination,
respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

exit(2), atexit(3C), dldump(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « LastRevised 1 Mar 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fattach(3C)

Name

Synopsis

Description

Return Values

Errors

fattach — attach a STREAMS- or doors-based file descriptor to an object in the file system
name space

#include <stropts.h>
int fattach(int fildes, const char *path);

The fattach() function attaches a STREAMS- or doors-based file descriptor to an object in
the file system name space, effectively associating a name with fildes. The fildes argument must
be a valid open file descriptor representing a STREAMS or doors file. The path argumentis a
path name of an existing object and the user must have appropriate privileges or be the owner
of the file and have write permissions. All subsequent operations on path will operate on the
STREAMS or doors file until the STREAMS or doors file is detached from the node. The fildes
argument can be attached to more than one path, that is, a stream or door can have several
names associated with it.

The attributes of the named stream or door (see stat(2)), are initialized as follows: the
permissions, user ID, group ID, and times are set to those of path, the number of links is set to
1, and the size and device identifier are set to those of the streams or doors device associated
with fildes. If any attributes of the named stream or door are subsequently changed (for
example, chmod(2)), the attributes of the underlying object are not affected.

Upon successful completion, fattach () returns 0. Otherwise it returns —1 and sets errno to
indicate an error.

The fattach() function will fail if:

EACCES The user is the owner of path but does not have write permissions on path
or fildes is locked.

EBADF The fildes argument is not a valid open file descriptor.

EBUSY The path argument is currently a mount point or has a STREAMS or doors
file descriptor attached to it.

EINVAL The path argument is a file in a remotely mounted directory.

EINVAL The fildes argument does not represent a STREAMS or doors file.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or the component of a path name is
longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

ENOENT The path argument does not exist.

ENOTDIR A component of a path prefix is not a directory.

EPERM The effective user ID is not the owner of path or a user with the appropriate
privileges.

Basic Library Functions 215

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2

fattach(3C)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso fdetach(1M), chmod(2), mount(2), stat(2),door_ create(3C), fdetach(3C), isastream(3C),
attributes(5), standards(5), streamio(71)

STREAMS Programming Guide

216 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fdetach-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

__fbufsize(3C)

Name _ fbufsize, flbf, fpending, fpurge, freadable, freading, fsetlocking, fwritable,

__fwriting, _flushlbf - interfaces to stdio FILE structure

Synopsis #include <stdio.h>

Description

#include <stdio_ext.h>

size t fbufsiz(FILE *stream);

int flbf(FILE *stream);

size t fpending(FILE *stream);

void _ fpurge(FILE *stream);

int _ freadable(FILE *stream);

int _ freading(FILE *stream);

int __fsetlocking(FILE *stream, int type);
int fwritable(FILE *stream);

int fwriting(FILE *stream);

void _flushlbf(void);
These functions provide portable access to the members of the stdio(3C) FILE structure.

The __fbufsize() function returns in bytes the size of the buffer currently in use by the given
stream.

The flbf() function returns non-zero if the stream is line-buffered.

The __fpending function returns in bytes the amount of output pending on a stream.
The __fpurge() function discards any pending buffered I/O on the stream.

The freadable() function returns non-zero if it is possible to read from a stream.

The __freading() function returns non-zero if the file is open readonly, or if the last
operation on the stream was a read operation such as fread(3C) or fgetc(3C). Otherwise it
returns 0.

The __fsetlocking() function allows the type oflocking performed by stdio on a given

stream to be controlled by the programmer.

If type is FSETLOCKING_INTERNAL, stdio performs implicit locking around every operation on
the given stream. This is the default system behavior on that stream.

If type is FSETLOCKING_BYCALLER, stdio assumes that the caller is responsible for maintaining
the integrity of the stream in the face of access by multiple threads. If there is only one thread
accessing the stream, nothing further needs to be done. If multiple threads are accessing the
stream, then the caller can use the flockfile(), funlockfile(),and ftrylockfile()

Basic Library Functions 217

__fbufsize(3C)

Usage

functions described on the flockfile(3C) manual page to provide the appropriate locking. In
both this and the case where type is FSETLOCKING_INTERNAL, _fsetlocking() returns the
previous state of the stream.

If type is FSETLOCKING_QUERY, __fsetlocking() returns the current state of the stream
without changing it.

The __fwritable() function returns non-zero if it is possible to write on a stream.

The __fwriting() function returns non-zero if the file is open write-only or append-only, or
if the last operation on the stream was a write operation such as fwrite(3C) or fputc(3C).
Otherwise it returns 0.

The _flushlbf() function flushes all line-buffered files. It is used when reading from a
line-buffered file.

Although the contents of the stdio FILE structure have always been private to the stdio
implementation, some applications have needed to obtain information about a stdio stream
that was not accessible through a supported interface. These applications have resorted to
accessing fields of the FILE structure directly, rendering them possibly non-portable to new
implementations of stdio, or more likely, preventing enhancements to stdio that would
cause those applications to break.

In the 64-bit environment, the FILE structure is opaque. The functions described here are
provided as a means of obtaining the information that up to now has been retrieved directly
from the FILE structure. Because they are based on the needs of existing applications (such as
mh and emacs), they may be extended as other programs are ported. Although they may still be
non-portable to other operating systems, they will be compatible from each Solaris release to
the next. Interfaces that are more portable are under development.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level __fsetlocking() is Unsafe; all others are MT-Safe

Interface Stability Committed

SeeAlso fgetc(3C), flockfile(3C), fputc(3C), fread(3C), fwrite(3C), stdio(3C), attributes(5)

218

man pages section 3: Basic Library Functions « Last Revised 5 Feb 1998

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fclose(3C)

Name fclose, fcloseall — close a stream

Synopsis #include <stdio.h>

int fclose(FILE *stream);

int fcloseall(void);

Description The fclose() function causes the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream is written to the file; any unread
buffered data is discarded. The stream is disassociated from the file. If the associated buffer
was automatically allocated, it is deallocated.

The fclose() function marks for update the st_ctime and st_mtime fields of the underlying
file if the stream is writable and if buffered data has not yet been written to the file. It will
perform a close(2) operation on the file descriptor that is associated with the stream pointed
to by stream.

After the call to fclose(), any use of stream causes undefined behavior.
The fclose() function is performed automatically for all open files upon calling exit(2).
The fcloseall() function calls fclose() on all open streams.

ReturnValues Upon successful completion, 0 is returned. Otherwise, EOF is returned and errno is set to
indicate the error.

Errors The fclose() function will fail if:

EAGAIN TheO_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The fclose() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fclose() function may fail if:

Basic Library Functions 219

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

fclose(3C)

ENXIO A request was made of a non-existent device, or the request was beyond the limits
of the device.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso close(2),exit(2),getrlimit(2), ulimit(2), fopen(3C), stdio(3C), attributes(5),
standards(5)

220 man pages section 3: Basic Library Functions « LastRevised 11 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fdatasync(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tdatasync - synchronize a file's data

#include <unistd.h>
int fdatasync(int fildes);

The fdatasync() function forces all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality is as described for fsync(3C) (with the symbol XOPEN_REALTIME defined),
with the exception that all I/O operations are completed as defined for synchronised I/O data
integrity completion.

If successful, the fdatasync () function returns 0. Otherwise, the function returns —1 and sets
errno to indicate the error. If the fdatasync() function fails, outstanding I/O operations are
not guaranteed to have been completed.

The fdatasync() function will fail if:
EBADF The fildes argument is not a valid file descriptor open for writing.
EINVAL The system does not support synchronized I/O for this file.

ENOSYS The function fdatasync() is not supported by the system.

In the event that any of the queued I/O operations fail, fdatasync () returns the error
conditions defined for read(2) and write(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

fcnt1(2), open(2), read(2), write(2), fsync(3C),aio_fsync(3C), fcntl.h(3HEAD),
attributes(5), standards(5)

Basic Library Functions 221

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fdetach(3C)

Name fdetach - detach a name from a STREAMS-based file descriptor

Synopsis #include <stropts.h>
int fdetach(const char *path);

Description The fdetach() function detaches a STREAMS-based file from the file to which it was attached
by a previous call to fattach(3C). The path argument points to the pathname of the attached
STREAMS file. The process must have appropriate privileges or be the owner of the file. A
successful call to fdetach () causes all pathnames that named the attached STREAMS file to
again name the file to which the STREAMS file was attached. All subsequent operations on
path will operate on the underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file
referenced by path, will still refer to the STREAMS file after the fdetach () has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach() has the same effect as performing the last close(2) on the attached file.

ReturnValues Upon successful completion, fdetach() returns 0. Otherwise, it returns —1 and sets errno to
indicate the error.

Errors The fdetach() function will fail if:
EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does not have
appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path does not name an existing file or path is an empty
string.

EINVAL The path argument names a file that is not currently attached.

ENAMETOOLONG ~ The size of a pathname exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while POSIX_NO_TRUNC is in effect.

ELOOP Too many symbolic links were encountered in resolving path.

The fdetach() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

222 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fdetach(3C)

Interface Stability Standard
| | |

SeeAlso fdetach(1M), close(2), fattach(3C), attributes(5), standards(5), streamio(71)

STREAMS Programming Guide

Basic Library Functions 223

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fdetach-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

fdopen(3C)

Name fdopen - associate a stream with a file descriptor
Synopsis #include <stdio.h>
FILE *fdopen(int fildes, const char *mode);
Description The fdopen () function associates a stream with a file descriptor fildes.

The mode argument is a character string having one of the following values:

rorrb Open a file for reading.

w or wb Open a file for writing.

aorab Open a file for writing at end of file.

r+, rb+or r+b Open a file for update (reading and writing).

w+, Wb+ Or w+b Open a file for update (reading and writing).

a+, ab+ or a+b Open a file for update (reading and writing) at end of file.

The meaning of these flags is exactly as specified for the fopen(3C) function, except that
modes beginning with w do not cause truncation of the file. A trailing F character can also be
included in the mode argument as described in fopen(3C) to enable extended FILE facility.

The mode of the stream must be allowed by the file access mode of the open file. The file
position indicator associated with the new stream is set to the position indicated by the file
offset associated with the file descriptor.

The fdopen () function preserves the offset maximum previously set for the open file
description corresponding to fildes.

The error and end-of-file indicators for the stream are cleared. The fdopen () function may
cause the st_atime field of the underlying file to be marked for update.

If fildes refers to a shared memory object, the result of the fdopen () function is unspecified.

ReturnValues Upon successful completion, fdopen () returns a pointer to a stream. Otherwise, a null pointer
is returned and errno is set to indicate the error.

The fdopen () function may fail and not set errno if there are no free stdio streams.
Errors The fdopen () function may fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The mode argument is not a valid mode.

EMFILE {FOPEN_MAX} streams are currently open in the calling process.

{STREAM_MAX} streams are currently open in the calling process.

224 man pages section 3: Basic Library Functions « Last Revised 18 Apr2006

fdopen(3C)

ENOMEM There is insufficient space to allocate a buffer.

Usage A processis allowed to have at least {FOPEN_MAX} stdio streams open at a time. For 32-bit
applications, however, the underlying ABIs formerly required that no file descriptor used to
access the file underlying a stdio stream have a value greater than 255. To maintain binary
compatibility with earlier Solaris releases, this limit still constrains 32-bit applications.

File descriptors are obtained from calls like open(2), dup(2), creat(2) or pipe(2), which open
files but do not return streams. Streams are necessary input for almost all of the standard I/O
library functions.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See below.

For all aspects of this function except the F character in the mode argument, see standards(5)

SeeAlso creat(2),dup(2), open(2), pipe(2), fclose(3C), fopen(3C), attributes(5), standards(5)

Basic Library Functions 225

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ferror(3C)

226

Name

Synopsis

Description

Attributes

See Also

ferror, feof, clearerr, fileno - stream status inquiries

#include <stdio.h>

int ferror(FILE *stream);
int feof(FILE *stream);
void clearerr(FILE *stream);

int fileno(FILE *stream);

The ferror() function returns a non-zero value when an error has previously occurred
reading from or writing to the named stream (see Intro(3)). It returns @ otherwise.

The feof () function returns a non-zero value when EOF has previously been detected reading
the named input stream. It returns @ otherwise.

The clearerr() function resets the error indicator and EOF indicator to 0 on the named
stream.

The fileno() function returns the integer file descriptor associated with the named stream;
see open(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

open(2), Intro(3), fopen(3C), stdio(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 17 Feb 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fflush(3C)

Name

Synopsis

Description

Return Values

Errors

fllush — flush a stream

#include <stdio.h>

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation
was not input, fflush() causes any unwritten data for that stream to be written to the file, and
the st_ctime and st_mtime fields of the underlying file are marked for update.

If stream points to an input stream or an update stream into which the most recent operation
was input, that stream is flushed if it is seekable and is not already at end-of-file. Flushing an
input stream discards any buffered input and adjusts the file pointer such that the next input
operation accesses the byte after the last one read. A stream is seekable if the underlying file is
not a pipe, FIFO, socket, or TTY device.

If stream is a null pointer, fflush () performs this flushing action on all streams for which the
behavior is defined above.

An input stream, seekable or non-seekable, can be flushed by explicitly calling fflush () with
anon-null argument specifying that stream.

Upon successful completion, fflush() returns 0. Otherwise, it returns EOF and sets errno to
indicate the error.

The fflush () function will fail if:

EAGAIN The O _NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The fflush() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU, and the process group of the process is orphaned.

ENOSPC ~ There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling process.

The fflush() function may fail if:

ENXIO A request was made of a non-existent device, or the request was beyond the limits
of the device.

Basic Library Functions 227

fflush(3C)

228

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso getrlimit(2),ulimit(2),attributes(5), standards(5)

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ffs(3C)

Name

Synopsis

Description

Return Values
Errors

Attributes

See Also

ffs, ffsl, ffsll, fls, flsl, flsll - find first or last bit set in a bit string

#include <strings.h>

int ffs(int value);

int ffsl(long value);

int ffsll(long long value);
int fls(int value);

int flsl(long value);

flsll(long long value);

The ffs(), ffsl(),and ffsl1() functions find the first bit set in value and return the position
of that bit.

The fls (), fss1(),and flsl1() functions find the last bit set in value and return the position
of that bit.

Bits are numbered starting at one (the least significant bit).

These functions return the position of the first bit set, or 0 if no bits are set in value.

No errors are defined.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

attributes(5), standards(5)

Basic Library Functions 229

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetattr(3C)

Name

Synopsis

Description

230

fgetattr, fsetattr, getattrat, setattrat — get and set system attributes

#include <fcntl.h>
#include <sys/types.h>
#include <attr.h>
#include <sys/nvpair.h>

int fgetattr(int fildes, xattr view t view,nvlist t **response);
int fsetattr(int fildes, xattr view t view,nvlist t *request)

int getattrat(int fildes, xattr view t view, const char *filename,
nvlist t **response);

int setattrat(int fildes, xattr_view t view, const char *filename,
nvlist t *request);

The fgetattr() function obtains an nvlist of system attribute information about an open file
object specified by the file descriptor fildes, obtained from a successful open(2), creat(2),
dup(2), fent1(2), or pipe(2) function.

The getattrat() function first opens the extended attribute file specified by filename in the
already opened file directory object specified by fildes. It then retrieves an nvlist of system
attributes and their values from filename.

The response argument is allocated by either fgetattr() or getattrat(). The application
must call nvlist_free(3NVPAIR) to deallocate the memory.

Upon successful completion, the nvlist will contain one nvpair for each of the system
attributes associated with view. The list of views and the attributes associated with each view
are listed below. Not all underlying file systems support all views and all attributes. The nvlist
will not contain an nvpair for any attribute not supported by the underlying filesystem.

The fsetattr() function uses the nvlist pointed to by request to update one or more of the
system attribute's information about an open file object specified by the file descriptor fildes,
obtained from a successful open (), creat(),dup(), fentl(), or pipe() function. The
setattrat() function first opens the extended attribute file specified by filename in the
already opened file directory object specified by fildes. It then uses the nvlist pointed to by
request to update one or more of the system attributes of filename.

If completion is not successful then no system attribute information is updated.

The following chart lists the supported views, attributes, and data types for each view:

View Attribute Data type
XATTR_VIEW READONLY A _FSID uint64 value
A OPAQUE boolean value

man pages section 3: Basic Library Functions - Last Revised 4 Aug 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2nvlist-free-3nvpair

fgetattr(3C)

View Attribute Data type
A AV _SCANSTAMP uint8 arrayl[]
XATTR_VIEW READWRITE A READONLY boolean value
A _HIDDEN boolean_value
A SYSTEM boolean_value
A ARCHIVE boolean value
A CRTIME uint64 array[2]
A_NOUNLINK boolean_value
A_IMMUTABLE boolean_value
A_APPENDONLY boolean value
A NODUMP boolean value
A AV _QUARANTINED boolean value
A_AV_MODIFIED boolean_value
A_OWNERSID nvlist composed of uint32_value
and string
A GROUPSID nvlist composed of uint32_value
and string

ReturnValues Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

Errors The fgetattr(),getattrat(), fsetattr(),and setattrat(), functions will fail if:
EBADF The fildes argument is not a valid open file descriptor.
EINVAL The underlying file system does not support extended file attributes.

EIO An error occurred while reading from the file system.

The getattrat() and setattrat() functions will fail if:
EACCES Search permission or write permission for filename is denied.

ENOENT The filename argument does not name an existing file in the extended attribute
directory represented by fildes.

EPERM There are insufficient privileges to manipulate attributes.

Examples ExampLE1 Obtain an nvlist of readonly system attributes for an open file object.

Use fgetattr() to obtain an nvlist of the readonly system attributes for the open file object
represented by file descriptor fildes.

Basic Library Functions 231

fgetattr(3C)

232

EXAMPLE1 Obtain an nvlist of readonly system attributes for an open file object. (Continued)

#include <fcntl.h>
#include <sys/types.h>
#include <attr.h>
#include <sys/nvpair.h>

nvlist t *response;
nvpair t *pair = NULL;

if (fgetattr(fildes, XATTR VIEW READONLY, &response)) {
exit(1);
}

while (pair = nvlist next nvpair(response, pair)) {

}
nvlist free(response);
EXAMPLE2 Setthe A_READONLY system attribute on an open file object.

Use fsetattr() to set the A_OPAQUE system attribute on the open file object represented by file
descriptor fildes.

nvlist t *request;
nvpair t *pair = NULL;

if (nvlist alloc(&request, NV _UNIQUE NAME, 0) !'= 0) {

exit(1);

}

if (nvlist add boolean value(request, A READONLY, 1) != 0) {
exit(1);

}

if (fsetattr(fildes, XATTR VIEW READWRITE, request)) {
exit(1);

}

EXAMPLE 3 Obtain an nvlist of the read/write system attributes for a file.

Use getattrat() to obtain an nvlist of the read/write system attributes for the file named
xattrfile in the extended attribute directory of the open file represented by file descriptor
fildes.

nvlist t *response;
nvpair_ t *pair = NULL;

if (getattrat(fildes, XATTR VIEW READWRITE, "file", &response)) {
exit(1);

man pages section 3: Basic Library Functions - Last Revised 4 Aug 2008

fgetattr(3C)

EXAMPLE3 Obtain an nvlist of the read/write system attributes for a file. (Continued)

}

while (pair = nvlist next nvpair(response, pair)) {

}
nvlist free(response);
EXAMPLE4 Setthe A_APPENDONLY system attribute on a file.

Use setattrat() toset the A APPENDONLY system attribute on the file named file in the
extended attribute directory of the open file represented by file descriptor fildes.

nvlist t *request;
nvpair t *pair = NULL;

if (nvlist alloc(&request, NV_UNIQUE NAME, 0) !'= 0) {

exit(1l);

}

if (nvlist add boolean value(request, A APPENDONLY, 1) != 0) {
exit(1l);

}

if (setattrat(fildes, XATTR VIEW READWRITE, "file", request)) {
exit(1l);

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso creat(2),dup(2), fcntl(2), fstat(2), fstatat(2), open(2), pipe(2), libnvpair(3LIB),
attributes(5), fsattr(5)

Basic Library Functions 233

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstatat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fsattr-5

fgetc(3Q)

234

Name

Synopsis

Description

fgetc, getc, getc_unlocked, getchar, getchar_unlocked, getw — get a byte from a stream

#include <stdio.h>

int fgetc(FILE *stream);

int getc(FILE *stream);

int getc unlocked(FILE *stream);
int getchar(void);

int getchar_unlocked(void);

int getw(FILE *stream);

The fgetc() function obtains the next byte (if present) as an unsigned char converted to an
int, from the input stream pointed to by stream, and advances the associated file position
indicator for the stream (if defined).

For standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetc () returns EOF whether or not a next byte is present.

The fgetc() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(), fgets(3C), fread(3C), fscanf(3C), getc(), getchar(), getdelim(3C),
getline(3C), gets(3C) or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

The getc() function is functionally identical to fgetc (), except that it is implemented as a
macro. It runs faster than fgetc (), but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

The getchar () routine is equivalent to getc(stdin). It is implemented as a macro.

The getc_unlocked() and getchar_unlocked() routines are variants of getc() and
getchar(), respectively, that do not lock the stream. It is the caller's responsibility to acquire
the stream lock before calling these routines and releasing the lock afterwards; see
flockfile(3C) and stdio(3C). These routines are implemented as macros.

The getw() function reads the next word from the stream. The size of a word is the size of an
int and may vary from environment to environment. The getw() function presumes no
special alignment in the file.

The getw() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(), fgets(3C), fread(3C), getc(), getchar(), gets(3C), fscanf(3C) or scanf(3C)
using stream that returns data not supplied by a prior call to ungetc(3C).

man pages section 3: Basic Library Functions « LastRevised 15 Oct 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetc(30)

ReturnValues

Errors

Usage

Upon successful completion, fgetc(), getc(),getc_unlocked(),getchar(),
getchar_unlocked(), and getw() return the next byte from the input stream pointed to by
stream. If the stream is at end-of-file, the end-of-file indicator for the stream is set and these
functions return EOF. For standard-conforming (see standards(5)) applications, if the
end-of-file indicator for the stream is set, these functions return EOF whether or not the stream
is at end-of-file. If a read error occurs, the error indicator for the stream is set, EOF is returned,
and errno is set to indicate the error.

The fgetc(),getc(),getc_unlocked(),getchar(),getchar _unlocked(),and getw()
functions will fail if data needs to be read and:

EAGAIN The 0_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no data

was transferred.

EIO A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-dependent reasons.

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset
maximum associated with the corresponding stream.

The fgetc(),getc(),getc unlocked(), getchar(),getchar unlocked(),and getw()
functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

If the integer value returned by fgetc(), getc(), getc_unlocked(), getchar(),
getchar_unlocked(), and getw() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension
of a variable of type char on widening to integer is implementation-dependent.

The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

Functions exist for the getc (), getc_unlocked(), getchar(), and getchar_unlocked()
macros. To get the function form, the macro name must be undefined (for example, #undef
getc).

Basic Library Functions 235

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetc(3Q)

236

Attributes

See Also

Notes

When the macro forms are used, getc() and getc_unlocked () evaluate the stream argument
more than once. In particular, getc (*f++) ; does not work sensibly. The fgetc() function
should be used instead when evaluating the stream argument has side effects.

Because of possible differences in word length and byte ordering, files written using getw()
are machine-dependent, and may not be read using getw() on a different processor.

The getw() function is inherently byte stream-oriented and is not tenable in the context of
either multibyte character streams or wide-character streams. Application programmers are
recommended to use one of the character-based input functions instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability fgetc(),getc(),getc_unlocked(),getchar(),and
getchar_unlocked() are Standard.

MT-Level See NOTES below.

Intro(3), fsetlocking(3C), fclose(3C), feof(3C), fgets(3C), fgetwc(3C), fgetws(3C),
flockfile(3C), fopen(3C), fread(3C), fscanf(3C), getdelim(3C), getline(3C), gets(3C),
putc(3C), scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C), attributes(5), standards(5)

The fgetc(), getc(),getchar(),and getw() routines are MT-Safe in multithreaded
applications. The getc_unlocked() and getchar_unlocked () routines are unsafe in
multithreaded applications.

man pages section 3: Basic Library Functions « LastRevised 15 Oct 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetpos(3C)

Name fgetpos — get current file position information

Synopsis #include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description The fgetpos () function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by fsetpos(3C) for repositioning the stream to its position at the time of
the call to fgetpos().

Return Values Upon successful completion, fgetpos () returns 0. Otherwise, it returns a non-zero value and
sets errno to indicate the error.

Errors The fgetpos () function may fail if:

EBADF The file descriptor underlying stream is not valid.
ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a
socket.

EOVERFLOW The current value of the file position cannot be represented correctly in an
object of type fpos_t.

Usage The fgetpos () function has a transitional interface for 64-bit file offsets. See 164(5).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

SeeAlso fopen(3C), fsetpos(3C), ftell(3C), rewind(3C), ungetc(3C), attributes(5), 1f64(5),
standards(5)

Basic Library Functions 237

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetwc(3C)

Name fgetwc - get a wide-character code from a stream

Synopsis #include <stdio.h>
#include <wchar.h>

wint t fgetwc(FILE*stream);

Description The fgetwc () function obtains the next character (if present) from the input stream pointed
to by stream, converts that to the corresponding wide-character code and advances the
associated file position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetwc () function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetwc (), fgetc(3C), fgets(3C), fgetws(3C), fread(3C), fscanf(3C), getc(3C),
getchar(3C), gets(3C), or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

ReturnValues Upon successful completion the fgetwc () function returns the wide-character code of the
character read from the input stream pointed to by stream converted to a typewint_t.

For standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetwc () returns WEOF whether or not the stream is at end-of-file.

If a read error occurs, the error indicator for the stream is set, fgetwc () returns WEOF and sets
errno to indicate the error.

If an encoding error occurs, the error indicator for the stream is set, fgetwc () returns WEOF,
and errno is set to indicate the error.

Errors The fgetwc () function will fail if data needs to be read and:

EAGAIN The 0_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetwc () operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no data

was transferred.

EIO A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetwc () function may fail if:

238 man pages section 3: Basic Library Functions « LastRevised 15 Oct 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetwc(30)

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EILSEQ The data obtained from the input stream does not form a valid character.

Usage The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
CSI Enabled
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

SeeAlso feof(3C), ferror(3C), fgetc(3C), fgets(3C), fgetws(3C), fopen(3C), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(3C), scanf(3C), setlocale(3C), ungetc(3C),
ungetwc(3C), attributes(5), standards(5)

Basic Library Functions

239

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

floating_to_decimal(3C)

Name

Synopsis

Description

240

floating_to_decimal, single_to_decimal, double_to_decimal, extended_to_decimal,
quadruple_to_decimal - convert floating-point value to decimal record

#include <floatingpoint.h>

void single_to_decimal(single *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void double_to_decimal(double *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void extended_to_decimal(extended *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void quadruple_to_decimal(quadruple *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

The floating_to_decimal functions convert the floating-point value at *px into a decimal
record at *pd, observing the modes specified in *pm and setting exceptions in *ps. If there are
no IEEE exceptions, *ps will be zero.

If *px is zero, infinity, or NaN, then only pd—sign and pd—fpclass are set. Otherwise
pd—exponent and pd—ds are also set so that

(sig)*(pd->ds)*10**(pd->exponent)

is a correctly rounded approximation to *px, where sigis +1 or —1, depending upon whether
pd—>signis 0 or —1. pd—ds has atleast one and no more than DECIMAL_STRING_LENGTH-1
significant digits because one character is used to terminate the string with a null.

pd—>ds is correctly rounded according to the IEEE rounding modes in pm—rd. *ps has
fp_inexact set if the result was inexact, and has fp_overflow set if the string result does not fit in
pd—ds because of the limitation DECIMAL_STRING_LENGTH.

If pm—df == floating form, then pd—ds always contains pm—ndigits significant digits. Thus
if *px ==12.34 and pm—ndigits == 8, then pd—ds will contain 12340000 and pd—exponent
will contain —6.

If pm—df == fixed_form and pm—ndigits >= 0, then the decimal value is rounded at
pm—>ndigits digits to the right of the decimal point. For example, if *px == 12.34 and
pm—ndigits == 1, then pd—ds will contain 123 and pd—exponent will be set to —1.

If pm—df == fixed_form and pm—ndigits< 0, then the decimal value is rounded at
—pm—sndigits digits to the left of the decimal point, and pd—ds is padded with trailing zeros
up to the decimal point. For example, if *px == 12.34 and pm—n digits == -1, then pd—ds will
contain 10 and pd—exponent will be set to 0.

When pm—df==fixed_form and the value to be converted is large enough that the resulting
string would contain more than DECIMAL_STRING_LENGTH-1 digits, then the string placed in

man pages section 3: Basic Library Functions - Last Revised 7 Jun 2005

floating_to_decimal(3C)

pd—ds is limited to exactly DECIMAL_STRING_LENGTH-1 digits (by moving the place at which
the value is rounded further left if need be), pd—exponent is adjusted accordingly and the
overflow flag is set in *ps.

pd->moreis not used.

The econvert(3C), fconvert(3C), gconvert(3C), printf(3C), and sprintf(3C) functions all
use double to decimal().

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso econvert(3C), fconvert(3C), gconvert(3C), printf(3C), sprintf(3C), attributes(5)

Basic Library Functions 241

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

flockfile(3C)

242

Name

Synopsis

Description

Return Values

Examples

Attributes

flockfile, funlockfile, ftrylockfile — acquire and release stream lock

#include <stdio.h>

void flockfile(FILE *stream);
void funlockfile(FILE *stream);

int ftrylockfile(FILE *stream);

The flockfile() function acquires an internal lock of a stream stream. If the lock is already
acquired by another thread, the thread calling flockfile() is suspended until it can acquire
the lock. In the case that the stream lock is available, flockfile() not only acquires the lock,
but keeps track of the number of times it is being called by the current thread. This implies
that the stream lock can be acquired more than once by the same thread.

The funlockfile() function releases the lock being held by the current thread. In the case of
recursive locking, this function must be called the same number of times flockfile() was
called. After the number of funlockfile() calls is equal to the number of flockfile() calls,
the stream lock is available for other threads to acquire.

The ftrylockfile() function acquires an internal lock of a stream stream, only if that object
is available. In essence ftrylockfile() is a non-blocking version of flockfile().

The ftrylockfile() function returns @ on success and non-zero to indicate a lock cannot be
acquired.

EXAMPLE1 A sample program of flockfile().

The following example prints everything out together, blocking other threads that might want
to write to the same file between calls to fprintf(3C):

FILE iop;
flockfile(iop);
fprintf(iop, "hello ");
fprintf(iop, "world);
fputc(iop, 'a’);
funlockfile(iop);

An unlocked interface is available in case performance is an issue. For example:

flockfile(iop);
while (!feof(iop)) {
*c++ = getc unlocked(iop);
}
funlockfile(iop);

See attributes(5) for descriptions of the following attributes:

man pages section 3: Basic Library Functions « LastRevised 10 Sep 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

flockfile(3C)

See Also

Notes

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

Intro(3), fsetlocking(3C), ferror(3C), fprintf(3C), getc(3C), putc(3C), stdio(3C),
ungetc(3C), attributes(5), standards(5)

The interfaces on this page are as specified in IEEE Std 1003.1:2001. See standards(5).

Basic Library Functions

243

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fmtmsg(3Q)

Name

Synopsis

Description

244

fmtmsg - display a message on stderr or system console

#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

The fmtmsg () function writes a formatted message to stderr, to the console, or to both, on a
message's classification component. It can be used instead of the traditional printf(3C)
interface to display messages to stderr, and in conjunction with gettxt(3C), provides a
simple interface for producing language-independent applications.

A formatted message consists of up to five standard components (label, severity, text, action,
and tag) as described below. The classification component is not part of the standard message
displayed to the user, but rather defines the source of the message and directs the display of the
formatted message.

classification ~ Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in
combination by ORing the values together with a single identifier from a
different subclass. Two or more identifiers from the same subclass should
not be used together, with the exception of identifiers from the display
subclass. (Both display subclass identifiers may be used so that messages can
be displayed to both stderr and the system console).

= “Major classifications” identify the source of the condition. Identifiers
are: MM_HARD (hardware), MM_SOFT (software), and MM_FIRM (firmware).

= “Message source subclassifications” identify the type of software in which
the problem is spotted. Identifiers are: MM_APPL (application), MM_UTIL
(utility), and MM_OPSYS (operating system).

= “Display subclassifications” indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on the
standard error stream, MM_CONSOLE to display the message on the system
console. Neither, either, or both identifiers may be used.

= “Status subclassifications” indicate whether the application will recover
from the condition. Identifiers are: MM_RECOVER (recoverable) and
MM_NRECOV (non-recoverable).

= Anadditional identifier, MM _NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or
application name. For example, the label UX: cat indicates the UNIX System
V package and the cat(1) utility.

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cat-1

fmtmsg(3Q)

Environment Variables

severity Indicates the seriousness of the condition. Identifiers for the standard levels
of severity are:

= MM_HALT indicates that the application has encountered a severe fault and
is halting. Produces the print string HALT.

= MM_ERROR indicates that the application has detected a fault. Produces the
print string ERROR.

= MM_WARNING indicates a condition out of the ordinary that might be a
problem and should be watched. Produces the print string WARNING.

= MM_INFO provides information about a condition that is not in error.
Produces the print string INFO.

= MM_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity () routine.

text Describes the condition that produced the message. The text string is not
limited to a specific size.

action Describes the first step to be taken in the error recovery process. fmtmsg ()
precedes each action string with the prefix: TOFIX: . The action string is not
limited to a specific size.

tag An identifier which references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying
number. A sample tagis UX: cat: 146.

The MSGVERB and SEV_LEVEL environment variables control the behavior of fmtmsg() as
follows:

MSGVERB This variable determines which message components fmtmsg () selects when
writing messages to stderr. Its value is a colon-separated list of optional
keywords and can be set as follows:

MSGVERB=[keyword[:keyword[: . . .11]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. fMSGVERB
contains a keyword for a component and the component's value is not the
component's null value, fmtmsg () includes that component in the message
when writing the message to stderr. If MSGVERB does not include a keyword
for a message component, that component is not included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if
its value is the null string, if its value is not of the correct format, or if it
contains keywords other than the valid ones listed above, fmtmsg () selects all
components.

Basic Library Functions 245

fmtmsg(3Q)

The first time fmtmsg () is called, it examines MSGVERB to determine which
message components are to be selected when generating a message to write to
the standard error stream, stderr. The values accepted on the initial call are
saved for future calls.

The MSGVERB environment variable affects only those components that are
selected for display to the standard error stream. All message components are
included in console messages.

SEV_LEVEL This variable defines severity levels and associates print strings with them for
use by fmtmsg (). The standard severity levels listed below cannot be modified.
Additional severity levels can also be defined, redefined, and removed using
addseverity() (see addseverity(3C)). If the same severity level is defined by
both SEV_LEVEL and addseverity(), the definition by addseverity() takes
precedence.

0 (noseverity is used)
1 HALT

2 ERROR
3 WARNING
4 INFO

The SEV LEVEL variable can be set as follows:

SEV_LEVEL=[description[: description[: . . .111]
export SEV_LEVEL

where description is a comma-separated list containing three fields:
description=severity_keyword,level,printstring

The severity_keyword field is a character string that is used as the keyword on
the - s severity option to the fmtmsg(1) utility. (This field is not used by the
fmtmsg () function.)

The level field is a character string that evaluates to a positive integer (other
than 0, 1, 2, 3, or 4, which are reserved for the standard severity levels). If the
keyword severity_keyword is used, level is the severity value passed on to the
fmtmsg () function.

The printstring field is the character string used by fmtmsg () in the standard
message format whenever the severity value level is used.

246 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1

fmtmsg(3Q)

Use in Applications

Return Values

Examples

If a description in the colon list is not a three-field comma list, or if the second
field of a comma list does not evaluate to a positive integer, that description in
the colon list is ignored.

The first time fmtmsg () is called, it examines the SEV_LEVEL environment
variable, if defined, to determine whether the environment expands the levels
of severity beyond the five standard levels and those defined using
addseverity(). The values accepted on the initial call are saved for future
calls.

One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

The table below indicates the null values and identifiers for fmtmsg () arguments.

Argument Type Null-Value Identifier
label char* (char*) NULL MM NULLLBL
severity int 0 MM_NULLSEV
class long oL MM_NULLMC
text char* (char*) NULL MM_NULLTXT
action char* (char*) NULL MM NULLACT
tag char* (char*) NULL MM_NULLTAG

Another means of systematically omitting a component is by omitting the component
keyword(s) when defining the MSGVERB environment variable (see the Environment
Variables section above).

The fmtmsg () returns the following values:

MM _OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on the standard error stream,
but otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise

succeeded.

EXAMPLE 1 The following example of fmtmsg ():

fmtmsg(MM_PRINT, "UX:cat", MM ERROR, "invalid syntax",
"refer to manual", "UX:cat:001")

Basic Library Functions 247

fmtmsg(3Q)

EXAMPLE1 The following example of fmtmsg(): (Continued)

produces a complete message in the standard message format:
UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:001

EXAMPLE2 When the environment variable MSGVERB is set as follows:
MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg () produces:

ERROR: invalid syntax

TO FIX: refer to manual

EXAMPLE3 When the environment variable SEV_LEVEL is set as follows:
SEV_LEVEL=note,5,NOTE
the following call to fmtmsg ()

fmtmsg(MM_UTIL | MM _PRINT, "UX:cat", 5, "invalid syntax"
"refer to manual", "UX:cat:001")

produces

UX:cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:001

Attributes See attributes(5) for descriptions of the following attributes:

248

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

SeeAlso ftmtmsg(1), addseverity(3C),gettxt(3C), printf(3C),attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fnmatch(3Q)

Name fnmatch — match filename or path name

Synopsis #include <fnmatch.h>

Description

int fnmatch(const char *pattern, const char *string, int ﬂags);

The fnmatch () function matches patterns as described on the fnmatch(5) manual page. It
checks the string argument to see if it matches the pattern argument.

The flags argument modifies the interpretation of pattern and string. It is the bitwise inclusive
OR of zero or more of the following flags defined in the header <fnmatch.h>.

FNM_PATHNAME

FNM_FILE NAME

FNM_NOESCAPE

FNM_PERIOD

FNM_IGNORECASE

FNM_CASEFOLD

FNM_LEADING DIR

If set, a slash (/) character in string will be explicitly matched by a slash
in pattern; it will not be matched by either the asterisk (*) or
question-mark (?) special characters, nor by a bracket ([1)
expression.

If not set, the slash character is treated as an ordinary character.

An alias of FNM_PATHNAME provided for a better compatibility with
other operating systems.

If not set, a backslash character (\) in pattern followed by any other
character will match that second character in string. In particular, “\\”
will match a backslash in string.

If set, a backslash character will be treated as an ordinary character.

If set, a leading period in string will match a period in pattern; where
the location of “leading” is indicated by the value of FNM_PATHNAME:

= IfFNM_PATHNAME is set, a period is “leading” if it is the first character
in string or if it immediately follows a slash.

= Jf FNM_PATHNAME is not set, a period is “leading” only if it is the first
character of string.

If set, during matching, case is ignored yielding case-insensitive
matching on characters based on the case folding defined for the
current locale or, if that does not exist, tolower case conversions of the
current locale.

An alias of FNM_IGNORECASE provided for a better compatibility with
other operating systems.

If set, matching is done with string only until all pattern expressions in
pattern argument are consumed. Any remaining characters at string
starting with slash character (/) are simply ignored and do not affect the
matching result.

If not set, no special restrictions are placed on matching a period.

Basic Library Functions

249

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fnmatch-5

fnmatch(3C)

ReturnValues

Usage

Examples

250

If string matches the pattern specified by pattern, then fnmatch () returns 0. If there is no
match, fnmatch () returns FNM_NOMATCH, which is defined in the header <fnmatch.h>. Ifan
error occurs, fnmatch () returns another non-zero value.

The fnmatch () function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find(1) utility is an
example of this. It can also be used by the pax(1) utility to process its pattern operands, or by
applications that need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filenames, rather than path names, since it gives no
special significance to the slash character. With the FNM_PATHNAME flag, fnmatch () does match
path names, but without tilde expansion, parameter expansion, or special treatment for period
at the beginning of a filename.

The fnmatch () function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

While the FNM_CASEFOLD, FNM_FILE_NAME, FNM_IGNORECASE, and FNM_LEADING_DIR flagsare
provided and supported for a better compatibility with some other operating systems, use of
them may make your program source code slightly less portable and portable only to the
operating systems that support the mentioned flags.

EXAMPLE1 A path name matching
The following example matches all file names under /opt/MyApp1.0/ that end with data:

result = fnmatch("/opt/MyAppl.0/*.data", pname, FNM PATHNAME);

EXAMPLE2 A case-insensitive file name matching

The following example matches file names pointed to by fname that has myfile as prefix in any
case combination:

result = fnmatch("myfile*", fname, FNM IGNORECASE);

EXAMPLE3 Match all path names with a common set of parent names

The following example matches path names pointed to by pname that has a common set of
parent path names of /opt/1*/MyApps and, in doing so, also ensures slash characters are
explicitly matched:

result = fnmatch("/opt/1*/MyApps", pname, (FNM PATHNAME | FNM LEADING DIR));

For instance, the above will match /opt/1ib/MyApps/test/test.txt and
/opt/local/MyApps/config but not /opt/lib/locale/MyApps.

man pages section 3: Basic Library Functions « Last Revised 21 Dec 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1find-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pax-1

fnmatch(3Q)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
CSI Enabled
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

SeeAlso find(1), pax(1),glob(3C), setlocale(3C),wordexp(3C), attributes(5), fnmatch(5),

standards(5)

Basic Library Functions

251

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1find-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pax-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fnmatch-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fopen(3Q)

252

Name

Synopsis

Description

fopen — open a stream

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

The fopen () function opens the file whose pathname is the string pointed to by filename, and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

rorrb Open file for reading.
w or wh Truncate to zero length or create file for writing.
aorab Append; open or create file for writing at end-of-file.

r+or rb+orr+b Open file for update (reading and writing).
w+orwb+orw+b Truncate to zero length or create file for update.

a+orab+ora+b Append;open or create file for update, writing at end-of-file.

The character b has no effect, but is allowed for ISO C standard conformance (see
standards(5)). Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of
intervening calls to fseek(3C). If two separate processes open the same file for append, each
process may write freely to the file without fear of destroying output being written by the
other. The output from the two processes will be intermixed in the file in the order in which it
is written.

When a file is opened with update mode (+ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However,
output must not be directly followed by input without an intervening call to fflush(3C) or to
a file positioning function (fseek(3C), fsetpos(3C) or rewind(3C)), and input must not be
directly followed by output without an intervening call to a file positioning function, unless
the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

If mode begins with w or a and the file did not previously exist, upon successful completion,
fopen () function will mark for update the st_atime, st_ctime and st_mtime fields of the file
and the st_ctime and st_mtime fields of the parent directory.

man pages section 3: Basic Library Functions « Last Revised 18 Apr2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fopen(3Q)

Return Values

Errors

If mode begins with w and the file did previously exist, upon successful completion, fopen ()
will mark for update the st _ctime and st _mtime fields of the file. The fopen () function will
allocate a file descriptor as open(2) does.

Normally, 32-bit applications return an EMFILE error when attempting to associate a stream
with a file accessed by a file descriptor with a value greater than 255. If the last character of
mode is F, 32-bit applications will be allowed to associate a stream with a file accessed by a file
descriptor with a value greater than 255. A FILE pointer obtained in this way must never be
used by any code that might directly access fields in the FILE structure. If the fields in the FILE
structure are used directly by 32-bit applications when the last character of mode is F, data
corruption could occur. See the USAGE section of this manual page and the
enable_extended FILE_stdio(3C) manual page for other options for enabling the extended
FILE facility.

In 64-bit applications, the last character of mode is silently ignored if it is F. 64-bit applications
are always allowed to associate a stream with a file accessed by a file descriptor with any value.

The largest value that can be represented correctly in an object of type of f_t will be
established as the offset maximum in the open file description.

Upon successful completion, fopen () returns a pointer to the object controlling the stream.
Otherwise, a null pointer is returned and errno is set to indicate the error.

The fopen () function may fail and not set errno if there are no free stdio streams.

The fopen () function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be

created.
EINTR A signal was caught during the execution of fopen().
EISDIR The named file is a directory and mode requires write access.
ELOOP Too many symbolic links were encountered in resolving path.
EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENAMETOOLONG ~ The length of the filename exceeds PATH_MAX or a pathname component is
longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently open in the system.
ENOENT A component of filename does not name an existing file or filename is an
empty string.

Basic Library Functions 253

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2

fopen(3Q)

254

Usage

ENOSPC The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the device

associated with this special file does not exist.

EOVERFLOW The current value of the file position cannot be represented correctly in an
object of type fpos_t.

EROFS The named file resides on a read-only file system and mode requires write
access.

The fopen () function may fail if:
EINVAL The value of the mode argument is not valid.

EMFILE {FOPEN_MAX} streams are currently open in the calling process.

{STREAM_MAX} streams are currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM Insufficient storage space is available.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and
mode requires write access.

A process is allowed to have at least {FOPEN_MAX} stdio streams open at a time. For 32-bit
applications, however, the underlying ABIs formerly required that no file descriptor used to
access the file underlying a stdio stream have a value greater than 255. To maintain binary
compatibility with earlier Solaris releases, this limit still constrains 32-bit applications.
However, when a 32-bit application is aware that no code that has access to the FILE pointer
returned by fopen () will use the FILE pointer to directly access any fields in the FILE
structure, the F character can be used as the last character in the mode argument to circumvent
this limit. Because it could lead to data corruption, the F character in mode must never be used
when the FILE pointer might later be used by binary code unknown to the user. The F
character in mode is intended to be used by library functions that need a FILE pointer to access
data to process a user request, but do not need to pass the FILE pointer back to the user. 32-bit
applications that have been inspected can use the extended FILE facility to circumvent this
limit if the inspection shows that no FILE pointers will be used to directly access FILE
structure contents.

The fopen () function has a transitional interface for 64-bit file offsets. See 1f64(5).

Attributes See attributes(5) for descriptions of the following attributes:

man pages section 3: Basic Library Functions « Last Revised 18 Apr2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fopen(3Q)

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See below.

For all aspects of this function except the F character in the mode argument, see standards(5)

SeeAlso enable extended FILE stdio(3C), fclose(3C), fdopen(3C), fflush(3C), freopen(3C),
fsetpos(3C), rewind(3C), attributes(5), 1f64(5), standards(5)

Basic Library Functions

255

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fpgetround(3C)

Name fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky — IEEE floating-point
environment control

Synopsis #include <ieeefp.h>

fp_rnd fpgetround(void);

fp_rnd fpsetround(fp_rnd rnd_dir);
fp_except fpgetmask(void);

fp_except fpsetmask(fp except mask);
fp_except fpgetsticky(void);

fp_except fpsetsticky(fp_except sticky);

Description There are five floating-point exceptions:

divide-by-zero,

overflow,

underflow,

imprecise (inexact) result, and
invalid operation.

When a floating-point exception occurs, the corresponding sticky bit is set (1), and if the mask
bit is enabled (1), the trap takes place. These routines let the user change the behavior on
occurrence of any of these exceptions, as well as change the rounding mode for floating-point
operations.

The mask argument is formed by the logical OR operation of the following floating-point
exception masks:

FP_X_INV /* invalid operation exception */
FP_X OFL /* overflow exception */

FP_X UFL /* underflow exception */

FP X DZ /* divide-by-zero exception */

FP_X IMP /* imprecise (loss of precision) */

The following floating-point rounding modes are passed to fpsetround and returned by

fpgetround().

FP_RN /* round to nearest representative number */
FP_RP /* round to plus infinity */

FP_RM /* round to minus infinity */

FP_RZ /* round to zero (truncate) */

The default environment is rounding mode set to nearest (FP_RN) and all traps disabled.

The fpsetsticky () function modifies all sticky flags. The fpsetmask () function changes all
mask bits. The fpsetmask () function clears the sticky bit corresponding to any exception
being enabled.

256 man pages section 3: Basic Library Functions - Last Revised 29 Dec 1996

fpgetround(3C)

ReturnValues

Usage

Attributes

See Also

The fpgetround() function returns the current rounding mode.

The fpsetround() function sets the rounding mode and returns the previous rounding mode.
The fpgetmask () function returns the current exception masks.

The fpsetmask() function sets the exception masks and returns the previous setting.

The fpgetsticky () function returns the current exception sticky flags.

The fpsetsticky () function sets (clears) the exception sticky flags and returns the previous
setting.

The C programming language requires truncation (round to zero) for floating point to
integral conversions. The current rounding mode has no effect on these conversions.

The sticky bit must be cleared to recover from the trap and proceed. If the sticky bit is not
cleared before the next trap occurs, a wrong exception type may be signaled.

Individual bits may be examined using the constants defined in <ieeefp.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnand(3C), attributes(5)

Basic Library Functions 257

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fputc(3C)

258

Name

Synopsis

Description

fputc, putc, putc_unlocked, putchar, putchar_unlocked, putw - put a byte on a stream

#include <stdio.h>

int fputc(int ¢, FILE *stream);

int putc(int ¢, FILE *stream);

int putc unlocked(int ¢, FILE *stream);
int putchar(int c);

int putchar_unlocked(int c);

int putw(int w, FILE *stream);

The fputc() function writes the byte specified by ¢ (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the byte
is appended to the output stream.

The st_ctime and st _mtime fields of the file will be marked for update between the successful
execution of fputc () and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

The putc() routine behaves like fputc (), except that it is implemented as a macro. It runs
faster than fputc(), but it takes up more space per invocation and its name cannot be passed
asan argument to a function call.

The call putchar(c) is equivalent to putc(c, stdout) . The putchar() routine is implemented
as a macro.

The putc_unlocked() and putchar_unlocked () routines are variants of putc() and
putchar (), respectively, that do not lock the stream. It is the caller's responsibility to acquire
the stream lock before calling these routines and releasing the lock afterwards; see
flockfile(3C) and stdio(3C). These routines are implemented as macros.

The putw() function writes the word (that is, type int) w to the output stream (at the position
at which the file offset, if defined, is pointing). The size of a word is the size of a type int and
varies from machine to machine. The putw() function neither assumes nor causes special
alignment in the file.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of putw() and the next successful completion of a call to fflush(3C) or fclose(3C)
on the same stream or a call to exit(3C) or abort(3C).

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

fputc(3C)

ReturnValues

Errors

Usage

Upon successful completion, fputc(), putc(), putc_unlocked(), putchar(),and
putchar_unlocked () return the value that was written. Otherwise, these functions return
EOF, the error indicator for the stream is set, and errno is set to indicate the error.

Upon successful completion, putw() returns 0. Otherwise, it returns a non-zero value, sets the
error indicator for the associated stream, and sets errno to indicate the error.

An unsuccessful completion will occur, for example, if the file associated with stream is not
open for writing or if the output file cannot grow.

The fputc(), putc(), putc_unlocked(), putchar(),putchar_unlocked(),and putw()
functions will fail if either the stream is unbuffered or the stream's buffer needs to be flushed,
and:

EAGAIN TheO_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size or the
process' file size limit.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset
maximum.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EIO A physical I/O error has occurred, or the process is a member of a background

process group attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU and the process group of the
process is orphaned. This error may also be returned under
implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fputc(), putc(), putc_unlocked(), putchar(),putchar_unlocked(),and putw()
functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

Functions exist for the putc (), putc_unlocked(), putchar(),and putchar_unlocked()
macros. To get the function form, the macro name must be undefined (for example, #undef
putc).

Basic Library Functions 259

fputc(3C)

260

Attributes

See Also

Notes

When the macro forms are used, putc() and putc_unlocked () evaluate the stream argument
more than once. In particular, putc(c, *f++); does not work sensibly. The fputc() function
should be used instead when evaluating the strearm argument has side effects.

Because of possible differences in word length and byte ordering, files written using putw()
are implementation-dependent, and possibly cannot be read using getw(3C) by a different
application or by the same application running in a different environment.

The putw() function is inherently byte stream oriented and is not tenable in the context of
either multibyte character streams or wide-character streams. Application programmers are
encouraged to use one of the character-based output functions instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability fputc(), putc(), putc unlocked(), putchar(),and
putchar_unlocked() are Standard.

MT-Level See NOTES below.

getrlimit(2), ulimit(2) write(2), Intro(3), abort(3C), exit(3C), fclose(3C), ferror(3C),
fflush(3C), flockfile(3C), printf(3C), putc(3C), puts(3C), setbuf(3C), stdio(3C),
attributes(5), standards(5)

The fputc(), putc(), putchar(),and putw() routines are MT-Safe in multithreaded
applications. The putc_unlocked() and putchar unlocked() routines are unsafe in
multithreaded applications.

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fputwc(3C)

Name fputwc, putwc, putwchar — put wide-character code on a stream
Synopsis #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t wc, FILE*stream);
wint t putwc(wchar t wc, FILE*stream);

#include <wchar.h>

wint_t putwchar(wchar t wc);

Description The fputwc() function writes the character corresponding to the wide-character code wc to
the output stream pointed to by stream, at the position indicated by the associated
file-position indicator for the stream (if defined), and advances the indicator appropriately. If
the file cannot support positioning requests, or if the stream was opened with append mode,
the character is appended to the output stream. If an error occurs while writing the character,
the shift state of the output file is left in an undefined state.

The st ctime and st _mtime fields of the file will be marked for update between the successful
execution of fputwc () and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The putwc () function is equivalent to fputwc (), except that it is implemented as a macro.

The call putwchar (wc) is equivalent to putwc (wc, stdout). The putwchar() routine is
implemented as a macro.

ReturnValues Upon successful completion, fputwc(), putwc (), and putwchar() return we. Otherwise, they
return WEOF, the error indicator for the stream is set, and errno is set to indicate the error.

Errors The fputwc(), putwc (), and putwchar() functions will fail if either the stream is unbuffered
or data in the stream's buffer needs to be written, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.
EIO A physical I/O error has occurred, or the process is a member of a background

process group attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU, and the process group of the
process is orphaned.

Basic Library Functions 261

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

fputwc(3C)

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fputwc (), putwc (), and putwchar () functions may fail if:
ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EILSEQ The wide-character code we does not correspond to a valid character.

Usage Functions exist for the putwc () and putwchar() macros. To get the function form, the macro
name must be undefined (for example, #undef putc).

When the macro form is used, putwc () evaluates the stream argument more than once. In
particular, putwc (wc, *f++) does not work sensibly. The fputwc () function should be used
instead when evaluating the stream argument has side effects.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso exit(2),ulimit(2),abort(3C), fclose(3C), ferror(3C), fflush(3C), fopen(3C),
setbuf(3C), attributes(5), standards(5)

262 man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fputws(3C)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

fputws - put wide character string on a stream
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict s, FILE *restrict stream);

The fputws () function writes a character string corresponding to the (null-terminated) wide
character string pointed to by ws to the stream pointed to by stream. No character
corresponding to the terminating null wide-character code is written, nor isa NEWLINE
character appended.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputws () and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

Upon successful completion, fputws () returns a non-negative value. Otherwise, it returns —1,
sets an error indicator for the stream, and sets errno to indicate the error.

Refer to fputwc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

exit(2), abort(3C), fclose(3C), fflush(3C), fopen(3C), fputwc(3C), attributes(5),
standards(5)

Basic Library Functions 263

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fread(3C)

Name

Synopsis

Description

ReturnValues

Errors

Examples

Usage

264

fread - binary input

#include <stdio.h>
size_t fread(void *ptr, size t size, size_t nitems, FILE *stream);

The fread() function reads into the array pointed to by ptr up to nitems elements whose size
is specified by size in bytes, from the stream pointed to by stream. For each object, size calls are
made to the fgetc(3C) function and the results stored, in the order read, in an array of
unsigned char exactly overlaying the object. The file-position indicator for the stream (if
defined) is advanced by the number of bytes successfully read. If an error occurs, the resulting
value of the file-position indicator for the stream is unspecified. If a partial element is read, its
value is unspecified.

The fread() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(), fscanf(3C), getc(3C),
getchar(3C), getdelim(3C), getline(3C), gets(3C), or scanf(3C) using stream that returns
data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

Upon successful completion, fread() returns the number of elements successfully read,
which is less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0,
fread() returns 0 and the contents of the array and the state of the stream remain unchanged.
Otherwise, if a read error occurs, the error indicator for the stream is set and errno is set to
indicate the error.

Refer to fgetc(3C).

EXAMPLE1 Reading froma Stream

The following example reads a single element from the fp stream into the array pointed to by
buf.

#include <stdio.h>

size t bytes read;

char buf[100];
FILE *fp;

bytes read = fread(buf, sizeof(buf), 1, fp);
The ferror() or feof () functions must be used to distinguish between an error condition
and end-of-file condition. See ferror(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite(3C) are application-dependent, and possibly cannot be read using fread() by a
different application or by the same application on a different processor.

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

fread(3C)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

read(2), fclose(3C), ferror(3C), fopen(3C), getc(3C), getdelim(3C), getline(3C),

See Also
gets(3C), printf(3C), putc(3C), puts(3C), attributes(5), standards(5)

265

Basic Library Functions

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

freopen(3C)

Name

Synopsis

Description

ReturnValues

Errors

266

freopen — open a stream

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

The freopen () function first attempts to flush the stream and close any file descriptor
associated with stream. Failure to flush or close the file successfully is ignored. The error and
end-of-file indicators for the stream are cleared.

The freopen() function opens the file whose pathname is the string pointed to by filename
and associates the stream pointed to by stream with it. The mode argument is used just as in
fopen(3C).

If filename is a null pointer and the application conforms to SUSv3 (see standards(5)), the
freopen() function attempts to change the mode of the stream to that specified by mode, as
though the name of the file currently associated with the stream had been used. The following
changes of mode are permitted, depending upon the access mode of the file descriptor
underlying the stream:

= When + is specified, the file descriptor mode must be 0_RDWR.
= When ris specified, the file descriptor mode must be 0 RDONLY or O RDWR.
= When a or wis specified, the file descriptor mode must be 0_WRONLY or O_RDWR.

If the filename is a null pointer and the application does not conform to SUSv3, freopen ()
returns a null pointer.

The original stream is closed regardless of whether the subsequent open succeeds.

After a successful call to the freopen () function, the orientation of the stream is cleared, the
encoding rule is cleared, and the associated mbstate_t object is set to describe an initial
conversion state.

The largest value that can be represented correctly in an object of type of f_t will be
established as the offset maximum in the open file description.

Upon successful completion, freopen () returns the value of stream. Otherwise, a null pointer
is returned and errno is set to indicate the error.

The freopen () function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

EBADF The application conforms to SUSv3, the filename argument is a null
pointer, and either the underlying file descriptor is not valid or the mode
specified when the underlying file descriptor was opened does not support
the file access modes requested by the mode argument.

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

freopen(3Q)

Usage

EFAULT

EINTR

EISDIR

ELOOP

EMFILE
ENAMETOOLONG

ENFILE

ENOENT

ENOSPC

ENOTDIR

ENXIO

EOVERFLOW

EROFS

The application does not conform to SUSv3 and the filename argument is a
null pointer.

A signal was caught during freopen().

The named file is a directory and mode requires write access.

Too many symbolic links were encountered in resolving path.

There are {OPEN_MAX} file descriptors currently open in the calling process.

The length of the filename exceeds {PATH_MAX} or a pathname component
is longer than {NAME_MAX}.

The maximum allowable number of files is currently open in the system.

A component of filename does not name an existing file or filename is an
empty string.

The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the device
associated with this special file does not exist.

The current value of the file position cannot be represented correctly in an
object of type of f_t.

The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

EINVAL
ENAMETOOLONG

ENOMEM

ENXIO

ETXTBSY

The value of the mode argument is not valid.

Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

Insufficient storage space is available.

A request was made of a non-existent device, or the request was outside the
capabilities of the device.

The file is a pure procedure (shared text) file that is being executed and
mode requires write access.

The freopen() function is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files. By default stderr is unbuffered, but the use of
freopen () will cause it to become buffered or line-buffered.

The freopen() function has a transitional interface for 64-bit file offsets. See 1f64(5).

Basic Library Functions

267

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

freopen(3C)

268

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso fclose(3C), fdopen(3C), fopen(3C), stdio(3C), attributes(5), 1f64(5), standards(5)

man pages section 3: Basic Library Functions «

Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fseek(3C)

Name

Synopsis

Description

ReturnValues

Errors

fseek, fseeko — reposition a file-position indicator in a stream

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence)

int fseeko(FILE *stream, off_t offset, int whence);

The fseek() function sets the file-position indicator for the stream pointed to by stream. The
fseeko () function is identical to fseek () except for the type of offset.

The new position, measured in bytes from the beginning of the file, is obtained by adding
offset to the position specified by whence, whose values are defined in <stdio. h> as follows:

SEEK SET Set position equal to offset bytes.
SEEK_CUR Setposition to current location plus offset.
SEEK_END Set position to EOF plus offset.

If the stream is to be used with wide character input/output functions, offset must either be 0
or a value returned by an earlier call to ftel1(3C) on the same stream and whence must be
SEEK_SET.

A successful call to fseek () clears the end-of-file indicator for the stream and undoes any
effects of ungetc(3C) and ungetwc(3C) on the same stream. After an fseek () call, the next
operation on an update stream may be either input or output.

If the most recent operation, other than ftel1(3C), on a given stream is fflush(3C), the file
offset in the underlying open file description will be adjusted to reflect the location specified by
fseek().

The fseek() function allows the file-position indicator to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the gap will
return bytes with the value 0 until data is actually written into the gap.

The value of the file offset returned by fseek () on devices which are incapable of seeking is
undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek()
will cause the unwritten data to be written to the file and mark the st ctime and st mtime
fields of the file for update.

The fseek() and fseeko () functions return @ on success; otherwise, they returned —1 and set
errno to indicate the error.

The fseek() and fseeko () functions will fail if, either the stream is unbuffered or the stream's
buffer needed to be flushed, and the call to fseek () or fseeko () causes an underlying
1seek(2) orwrite(2) to be invoked:

Basic Library Functions 269

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

fseek(3C)

270

Usage

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the process would be delayed
in the write operation.

EBADF The file descriptor underlying the stream file is not open for writing or the stream's
buffer needed to be flushed and the file is not open.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit, or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EINVAL The whence argument is invalid. The resulting file-position indicator would be set
to a negative value.

EIO A physical I/O error has occurred; or the process is a member of a background
process group attempting to perform a write(2) operation to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and
the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EPIPE The file descriptor underlying stream is associated with a pipe or FIFO.

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fseek() function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be represented correctly
in an object of type long.

The fseeko () function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be represented correctly
in an object of type of f_t.

Although on the UNIX system an offset returned by ftell() or ftello() (see ftell(3C))is
measured in bytes, and it is permissible to seek to positions relative to that offset, portability to
non-UNIX systems requires that an offset be used by fseek () directly. Arithmetic may not
meaningfully be performed on such an offset, which is not necessarily measured in bytes.

The fseeko () function has a transitional interface for 64-bit file offsets. See 164(5).

Attributes See attributes(5) for descriptions of the following attributes:

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fseek(3C)

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso getrlimit(2),ulimit(2), ftell(3C), rewind(3C), ungetc(3C), ungetwc(3C), attributes(5),
1f64(5), standards(5)

Basic Library Functions

271

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fsetpos(3C)

Name fsetpos - reposition a file pointer in a stream

Synopsis #include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description The fsetpos () function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which must be a value obtained from an
earlier call to fgetpos(3C) on the same stream.

A successful call to fsetpos () function clears the end-of-file indicator for the stream and
undoes any effects of ungetc(3C) on the same stream. After an fsetpos () call, the next
operation on an update stream may be either input or output.

ReturnValues The fsetpos () function returns 0 if it succeeds; otherwise it returns a non-zero value and sets
errno to indicate the error.

Errors The fsetpos () function may fail if:
EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a socket.
Usage The fsetpos() function has a transitional interface for 64-bit file offsets. See 164(5).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso 1seek(2), fgetpos(3C), fopen(3C), fseek(3C), ftell(3C), rewind(3C), ungetc(3C),
attributes(5), 1f64(5), standards(5)

272 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fsync(3C)

Name

Synopsis

Description

ReturnValues

Errors

Usage

Attributes

fsync - synchronize changes to a file

#include <unistd.h>
int fsync(int fildes);

The fsync() function moves all modified data and attributes of the file descriptor fildes to a
storage device. When fsync() returns, all in-memory modified copies of buffers associated
with fildes have been written to the physical medium. The fsync() function is different from
sync (), which schedules disk I/O for all files but returns before the I/O completes. The
fsync() function forces all outstanding data operations to synchronized file integrity
completion (see fcntl. h(3HEAD) definition of 0_SYNC.)

The fsync() function forces all currently queued I/O operations associated with the file
indicated by the file descriptor fildes to the synchronized I/O completion state. All1/O
operations are completed as defined for synchronized I/O file integrity completion.

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error. If the fsync () function fails, outstanding I/O operations are not guaranteed
to have been completed.

The fsync () function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal was caught during execution of the fsync () function.

EIO An1/O error occurred while reading from or writing to the file system.
ENOSPC There was no free space remaining on the device containing the file.

ETIMEDOUT Remote connection timed out. This occurs when the file is on an NFS file
system mounted with the soft option. See mount_nfs(1M).

In the event that any of the queued I/O operations fail, fsync () returns the error conditions
defined for read(2) and write(2).

The fsync() function should be used by applications that require that a file be in a known
state. For example, an application that contains a simple transaction facility might use
fsync() to ensure that all changes to a file or files caused by a given transaction were recorded
on a storage medium.

The manner in which the data reach the physical medium depends on both implementation
and hardware. The fsync () function returns when notified by the device driver that the write
has taken place.

See attributes(5) for descriptions of the following attributes:

Basic Library Functions 273

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-nfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fsync(3C)

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Async-Signal-Safe
Standard See standards(5).

SeeAlso mount nfs(1M), read(2), sync(2),write(2), fcntl.h(3HEAD), fdatasync(3C),
attributes(5), standards(5)

274 man pages section 3: Basic Library Functions « Last Revised 5 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-nfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sync-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftell(3C)

Name

Synopsis

Description

ReturnValues

Errors

Usage

Attributes

See Also

ftell, ftello — return a file offset in a stream

#include <stdio.h>

long ftell(FILE *stream);

off t ftello(FILE *stream);

The ftell() function obtains the current value of the file-position indicator for the stream
pointed to by stream. The ftello() function is identical to ftell() except for the return type.

Upon successful completion, the ftell() and ftello() functions return the current value of
the file-position indicator for the stream measured in bytes from the beginning of the file.
Otherwise, they return —1 and sets errno to indicate the error.

The ftell() and ftello() functions will fail if:
EBADF The file descriptor underlying stream is not an open file descriptor.

ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a socket.

The ftell() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object of type
long.

The ftello() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object of type
off t.

The ftello() function has a transitional interface for 64-bit file offsets. See 1f64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

1seek(2), fopen(3C), fseek(3C), attributes(5),, standards(5), Lf64(5)

Basic Library Functions 275

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

ftime(3C)

Name ftime - get date and time

Synopsis #include <sys/timeb.h>
int ftime(struct timeb *fp);

Description The ftime() function sets the time and millitm members of the timeb structure pointed to
by tp. The structure is defined in <sys/timeb.h>and contains the following members:

time t time;

unsigned short millitm;
short timezone;
short dstflag;

The time and millitm members contain the seconds and milliseconds portions, respectively,
of the current time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970.

The timezone member contains the local time zone. The dstflag member contains a flag
that, if non-zero, indicates that Daylight Saving time applies locally during the appropriate
part of the year.

The contents of the timezone and dstflag members of tp after a call to ftime() are
unspecified.

ReturnValues Upon successful completion, the ftime () function returns 0. Otherwise —1 is returned.
Errors No errors are defined.

Usage For portability to implementations conforming to earlier versions of this document, time(2) is
preferred over this function.

The millisecond value usually has a granularity greater than one due to the resolution of the
system clock. Depending on any granularity (particularly a granularity of one) renders code
non-portable.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

SeeAlso date(1), time(2), ctime(3C), gettimeofday(3C), timezone(4), attributes(5), standards(5)

276 man pages section 3: Basic Library Functions - Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1date-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftok(3C)

Name

Synopsis

Description

ReturnValues

Errors

Usage

ftok — generate an IPC key

#include <sys/ipc.h>
key_t ftok(const char *path, int id);

The ftok() function returns a key based on path and id that is usable in subsequent calls to
msgget(2), semget(2) and shmget(2). The path argument must be the pathname of an existing
file that the process is able to stat(2).

The ftok() function will return the same key value for all paths that name the same file, when
called with the same id value, and will return different key values when called with different id
values.

If the file named by path is removed while still referred to by a key, a call to ftok() with the
same path and id returns an error. If the same file is recreated, then a call to ftok () with the
same path and id is likely to return a different key.

Only the low order 8-bits of id are significant. The behavior of ftok () is unspecified if these
bitsare 0.

Upon successful completion, ftok() returns a key. Otherwise, ftok () returns (key_t)—1and
sets errno to indicate the error.

The ftok() function will fail if:
EACCES Search permission is denied for a component of the path prefix.
ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.
ENOTDIR A component of the path prefix is not a directory.

The ftok() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX} .

For maximum portability, id should be a single-byte character.

Another way to compose keys is to include the project ID in the most significant byte and to
use the remaining portion as a sequence number. There are many other ways to form keys, but
itis necessary for each system to define standards for forming them. If some standard is not
adhered to, it will be possible for unrelated processes to unintentionally interfere with each

Basic Library Functions 277

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

ftok(3C)

278

other's operation. It is still possible to interfere intentionally. Therefore, it is strongly
suggested that the most significant byte of a key in some sense refer to a project so that keys do
not conflict across a given system.

Notes Since the ftok() function returns a value based on the id given and the file serial number of
the file named by path in a type that is no longer large enough to hold all file serial numbers, it
may return the same key for paths naming different files on large filesystems.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso msgget(2), semget(2), shmget(2), stat(2), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftw(3C)

Name

Synopsis

Description

ftw, nftw — walk a file tree

#include <ftw.h>

int ftw(const char *path, int (*fn) (const char *,
const struct stat *, int), int depth);

int nftw(const char *path, int (*fn) (const char *,
const struct stat *, int, struct FTW *), int depth,
int flags);

The ftw() function recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw() calls the user-defined function fn, passing it a pointer to a
null-terminated character string containing the name of the object, a pointer to a stat
structure (see stat(2)) containing information about the object, and an integer. Possible
values of the integer, defined in the <ftw.h>header, are:

FTW_F The objectis afile.
FTW_D The object is a directory.

FTW_DNR The objectis a directory that cannot be read. Descendants of the directory are not
processed.

FTW_NS The stat () function failed on the object because of lack of appropriate
permission or the object is a symbolic link that points to a non-existent file. The
stat buffer passed to fn is undefined.

The ftw() function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a non-zero
value, or some error is detected within ftw() (such as an I/O error). If the tree is exhausted,
ftw() returns 0. If fn returns a non-zero value, ftw() stops its tree traversal and returns
whatever value was returned by fn.

The nftw() function is similar to ftw() except that it takes the additional argument flags,
which is a bitwise-inclusive OR of zero or more of the following flags:

FTW_CHDIR Ifset,nftw() changes the current working directory to each directory as it
reports files in that directory. If clear, nftw() does not change the current
working directory.

FTW_DEPTH Ifset,nftw() reportsall files in a directory before reporting the directory itself.
If clear, nftw() reports any directory before reporting the files in that
directory.

FTW_MOUNT Ifset,nftw() reports only files in the same file system as path. If clear, nftw()
reports all files encountered during the walk.

FTW_PHYS If set, nftw() performs a physical walk and does not follow symbolic links.

Basic Library Functions 279

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

ftw(3C)

280

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() follows links instead of reporting them, but
does not report any directory that would be a descendant of itself. If FTW_PHYS is clear and
FTW_DEPTH is clear, nftw() follows links instead of reporting them, but does not report the
contents of any directory that would be a descendant of itself.

At each file it encounters, nftw() calls the user-supplied function fn with four arguments:

The first argument is the pathname of the object.
The second argument is a pointer to the stat buffer containing information on the object.

The third argument is an integer giving additional information. Its value is one of the
following:

FTW_F The objectis a file.
FTw_D The object is a directory.
FTW_DP The object is a directory and subdirectories have been visited. (This condition

only occurs if the FTW_DEPTH flag is included in flags.)

FTW_SL The object is a symbolic link. (This condition only occurs if the FTW_PHYS
flagis included in flags.)

FTW_SLN The object is a symbolic link that points to a non-existent file. (This condition
only occurs if the FTW_PHYS flag is not included in flags.)

FTW_DNR The object is a directory that cannot be read. The user-defined function fn
will not be called for any of its descendants.

FTW_NS The stat () function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn is undefined. Failure of stat () for
any other reason is considered an error and nftw() returns —1.

The fourth argument is a pointer to an FTW structure that contains the following members:

int base;
int level;

The base member is the offset of the object's filename in the pathname passed as the first
argument to fn(). The value of level indicates the depth relative to the root of the walk,
where the root level is 0.

The results are unspecified if the application-supplied fn() function does not preserve the
current working directory.

Both ftw() and nftw() use one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors used. If depth is zero or negative, the effect is the same as if
it were 1. It must not be greater than the number of file descriptors currently available for use.
The ftw() function runs faster if depth is at least as large as the number of levels in the tree.
Both ftw() and nftw() are able to descend to arbitrary depths in a file hierarchy and do not

man pages section 3: Basic Library Functions - Last Revised 30 Jan 2007

ftw(3C)

Return Values

Errors

fail due to path length limitations unless either the length of the path name pointed to by the
path argument exceeds {PATH_MAX} requirements, or for ftw(), the specified depth is less than
2, or for nftw(), the specified depth is less than 2 and FTW_CHDIRis not set. When ftw() and
nftw() return, they close any file descriptors they have opened; they do not close any file
descriptors that might have been opened by fn.

If the tree is exhausted, ftw() and nftw() return 0. If the function pointed to by fn returns a
non-zero value, ftw() and nftw() stop their tree traversal and return whatever value was
returned by the function pointed to by fn. If ftw() and nftw() detect an error, they return —1
and set errno to indicate the error.

If ftw() and nftw() encounter an error other than EACCES (see FTW_DNR and FTW_NS above),
they return —1 and set errno to indicate the error. The external variable errno can contain any
error value that is possible when a directory is opened or when one of the stat functions is
executed on a directory or file.

The ftw() and nftw() functions will fail if:

ELOOP A loop exists in symbolic links encountered during resolution of the path
argument

ENAMETOOLONG ~ The length of the path name pointed to by the path argument exceeds
{PATH_MAX]}, or a path name component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of path is not a directory.

EOVERFLOW A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file
hierarchy.

The ftw() function will fail if:

EACCES Search permission is denied for any component of path or read permission
is denied for path.

ENAMETOOLONG The ftw() function has descended to a path that exceeds {PATH_MAX} and
the depth argument specified by the application is less than 2 and
FTW CHDIRis not set.

The nftw() function will fail if:

EACCES Search permission is denied for any component of path or read permission is
denied for path, or fn() returns —1 and does not reset errno.

The nftw() and ftw() functions may fail if:

Basic Library Functions 281

ftw(3C)

282

Examples

ELOOP Too many symbolic links were encountered during resolution of the path
argument.

ENAMETOOLONG Pathname resolution of a symbolic link in the path name pointed to by the
path argument produced an intermediate result whose length exceeds
{PATH_MAX]}.

The ftw() function may fail if:

EINVAL The value of the depth argument is invalid.

The nftw() function may fail if:
EMFILE Thereare {OPEN_MAX]} file descriptors currently open in the calling process.

ENFILE Too many files are currently open in the system.

If the function pointed to by fn encounters system errors, errno may be set accordingly.

EXAMPLE1 Walk a directory structure using ftw().

The following example walks the current directory structure, calling the fn() function for
every directory entry, using at most 10 file descriptors:

#include <ftw.h>

if (ftw(".", fn, 10) '= 0) {
perror("ftw"); exit(2);

EXAMPLE2 Walk a directory structure using nftw().

The following example walks the /tmp directory and its subdirectories, calling the nftw()
function for every directory entry, to a maximum of 5 levels deep.

#include <ftw.h>

int nftwfunc(const char *, const struct stat *, int, struct FTW *);
int nftwfunc(const char *filename, const struct stat *statptr,
int fileflags, struct FTW *pfwt)

return 0;

}

char *startpath = "/tmp"

int depth = 5;

int flags = FTW CHDIR | FTW DEPTH | FTW_MOUNT;
int ret;

ret = nftw(startpath, nftwfunc, depth, flags);

man pages section 3: Basic Library Functions - Last Revised 30 Jan 2007

ftw(3C)

Usage Because ftw() and nftw() are recursive, they can terminate with a memory fault when
applied by a thread with a small stack to very deep file structures.

The ftw() and nftw() functions allocate resources (memory, file descriptors) during their
operation. If ftw() they are forcibly terminated, such as by Llongjmp(3C) being executed by fn
or an interrupt routine, they will not have a chance to free those resources, so they remain
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred and arrange to have fn return a non-zero value at its next invocation.

The ftw() and nftw() functions have transitional interfaces for 64-bit file offsets. See 1f64(5).

The ftw() function is safe in multithreaded applications. The nftw() function is safe in
multithreaded applications when the FTW_CHDIR flag is not set.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

SeeAlso stat(2), longjmp(3C), attributes(5), 1f64(5), standards(5)

Basic Library Functions 283

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwide(3C)

284

Name fwide - set stream orientation

Synopsis #include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

Description The fwide() function determines the orientation of the stream pointed to by stream. If mode
is greater than 0, the function first attempts to make the stream wide-orientated. If mode is less
than 0, the function first attempts to make the stream byte-orientated. Otherwise, mode is 0
and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide () does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for
error situations should set errno to 0, then call fwide (), then check errno and if it is
non-zero, assume an error has occurred.

ReturnValues The fwide () function returns a value greater than 0 if, after the call, the stream has
wide-orientation, a value less than 0 if the stream has byte-orientation, or 0 if the stream has
no orientation.

Errors The fwide() function may fail if:

EBADF The stream argument is not a valid stream.

Usage A callto fwide() with mode set to 0 can be used to determine the current orientation of a
stream.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwprintf(3C)

Name

Synopsis

Description

fwprintf, wprintf, swprintf - print formatted wide-character output

#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream, const wchar t *restrict jbmnuL
)

int wprintf(const wchar t *restrict jbrn1at,.“);

int swprintf(wchar t *restrict s, size t n, const wchar t *restrict fbnnat,
)

The fwprintf() function places output on the named output stream. The wprintf () function
places output on the standard output stream stdout. The swprintf () function places output
followed by the null wide-character in consecutive wide-characters starting at *s; no more
than n wide-characters are written, including a terminating null wide-character, which is
always added (unless 7 is zero).

Each of these functions converts, formats and prints its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary
wide-characters, which are simply copied to the output stream and conversion specifications,
each of which results in the fetching of zero or more arguments. The results are undefined if
there are insufficient arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX], giving
the position of the argument in the argument list. This feature provides for the definition of
format wide-character strings that select arguments in an order appropriate to specific
languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specifications, each
argument in the argument list is used exactly once.

All forms of the fwprintf () functions allow for the insertion of a language-dependent radix
character in the output string, output as a wide-character value. The radix character is defined
in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

Each conversion specification is introduced by the % wide-character or by the wide-character
sequence %n$, after which the following appear in sequence:

= Zero or more flags (in any order), which modify the meaning of the conversion
specification.

Basic Library Functions 285

fwprintf(3C)

286

= Anoptional minimum field width. If the converted value has fewer wide-characters than
the field width, it will be padded with spaces by default on the left; it will be padded on the
right, if the left-adjustment flag (—), described below, is given to the field width. The field
width takes the form of an asterisk (*), described below, or a decimal integer.

= Anoptional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions; the number of digits to appear after the radix character for the a, A, e,
E, f, and F conversions; the maximum number of significant digits for the g and 6
conversions; or the maximum number of wide-characters to be printed from a string in s
conversions. The precision takes the form of a period (.) followed by either an asterisk (*),
described below, or an optional decimal digit string, where a null digit string is treated as 0.
If a precision appears with any other conversion wide-character, the behavior is undefined.

= Anoptional length modifier that specifies the size of the argument.

= A conversion specifier wide character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted. A
negative field width is taken as a — flag followed by a positive field width. A negative precision
is taken as if the precision were omitted. In format wide-character strings containing the %n$
form of a conversion specification, a field width or precision may be indicated by the sequence
*m$, where m is a decimal integer in the range [1, NL_ARGMAX] giving the position in the
argument list (after the format argument) of an integer argument containing the field width or
precision, for example:

wprintf(L"s1$d:%2$.*3%$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$) , or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined.
When numbered argument specifications are used, specifying the Nth argument requires that
all the leading arguments, from the first to the (N—1I)th, are specified in the format
wide-character string.

The flag wide-characters and their meanings are:

The integer portion of the result of a decimal conversion (%1, %d, %u, %f, %F, %g, or
%G) will be formatted with thousands' grouping wide-characters. For other
conversions the behavior is undefined. The non-monetary grouping wide-character
is used.

- The result of the conversion will be left-justified within the field. The conversion
will be right-justified if this flag is not specified.

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

fwprintf(3C)

+ The result of a signed conversion will always begin with a sign (+ or —). The
conversion will begin with a sign only when a negative value is converted if this flag
is not specified.

space Ifthe first wide-character of a signed conversion is not a sign or if a signed
conversion results in no wide-characters, a space will be prefixed to the result. This
means that if the space and + flags both appear, the space flag will be ignored.

This flag specifies that the value is to be converted to an alternative form. For o
conversion, it increases the precision (if necessary) to force the first digit of the
result to be 0. For x or X conversions, a non-zero result will have 0x (or 0X) prefixed
toit. For a, A, e, E, f, F, g, or G conversions, the result will always contain a radix
character, even if no digits follow it. Without this flag, a radix character appears in
the result of these conversions only if a digit follows it. For g and G conversions,
trailing zeros will not be removed from the result as they normally are. For other
conversions, the behavior is undefined.

0 Ford, i,0,u,x, X, a,A, e,E, f, F,g,and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and — flags both appear, the 0 flag will be ignored. For d, i, o, u, X,
and X conversions, if a precision is specified, the 0 flag will be ignored. If the @ and ’
flags both appear, the grouping wide-characters are inserted before zero padding.
For other conversions, the behavior is undefined.

The length modifiers and their meanings:

hh Specifies that a following d, i, o, u, X, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been
promoted according to the integer promotions, but its value shall be converted
to signed char or unsigned char before printing); or that a following n
conversion specifier applies to a pointer to a signed char argument.

h Specifies that a following d, 1, o, u, X, or X conversion specifier applies to a short
or unsigned short argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to short
or unsigned short before printing); or that a following n conversion specifier
applies to a pointer to a short argument.

1 (ell) Specifies that a following d, i, o, u, X, or X conversion specifier applies to a long
or unsigned long argument; that a following n conversion specifier applies to a
pointer to a Long argument; that a following c conversion specifier applies to a
wint_targument; that a following s conversion specifier applies to a pointer to
awchar_t argument; or has no effect on a following a, A, e, E, f, F, g, 0r G
conversion specifier.

Basic Library Functions 287

fwprintf(3C)

288

11 (ell-ell) Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a long
long or unsigned long long argument; or that a following n conversion
specifier applies to a pointer to a long long argument.

j Specifies that a following d, i, o, u, X, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier
applies to a pointer to an intmax_t argument.

z Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a following
n conversion specifier applies to a pointer to a signed integer type
corresponding to size targument.

t Specifies that a following d, i, o, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned type argument; or that a following n
conversion specifier applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion wide-characters and their meanings are:

d,i Theintargumentis converted to a signed decimal in the style [-]1dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no wide-characters.

0 The unsigned int argument is converted to unsigned octal format in the style dddd.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style
dddd. The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit precision
of 0 is no wide-characters.

X The unsigned int argument is converted to unsigned hexadecimal format in the style
dddd,; the letters abcdef are used. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The result of converting 0
with an explicit precision of 0 is no wide-characters.

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

fwprintf(3C)

X Behaves the same as the x conversion wide-character except that letters “ABCDEF” are
used instead of “abcdef”.

f,F The double argument is converted to decimal notation in the style [-]ddd . ddd, where
the number of digits after the radix character (see setlocale(3C)) is equal to the
precision specification. If the precision is missing it is taken as 6; if the precision is
explicitly 0 and the # flag is not specified, no radix character appears. If a radix
character appears, at least 1 digit appears before it. The converted value is rounded to
fit the specified output format according to the prevailing floating point rounding
direction mode. If the conversion is not exact, an inexact exception is raised.

For the f specifier, a double argument representing an infinity or NaN is converted in
the style of the e conversion specifier, except that for an infinite argument, “infinity”
or “Infinity” is printed when the precision is at least 8 and “inf” or “Inf” is printed
otherwise.

For the F specifier, a double argument representing an infinity or NaN is converted in
the SUSV3 style of the E conversion specifier, except that for an infinite argument,
“INFINITY” is printed when the precision is at least 8 and or “INF” is printed
otherwise.

e,E Thedouble argument is converted in the style [-]d.ddde + dd, where there is one
digit before the radix character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is 0 and no # flag is present, no radix character appears. The
converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised. The E conversion wide-character will produce a number
with E instead of e introducing the exponent. The exponent always contains at least
two digits. If the value is 0, the exponent is 0.

Infinity and NaN values are handled in one of the following ways:

SUSv3 For the e specifier, a double argument representing an infinity is printed
as “[-]infinity”, when the precision for the conversion is at least 7 and
as “[-]inf” otherwise. A double argument representing a NaN is printed
as “[-]nan”. For the E specifier, “INF, “INFINITY”, and “NAN”are printed

instead of “inf”, “infinity”, and “nan”, respectively. Printing of the sign
follows the rules described above.

Default A double argument representing an infinity is printed as “[—]Infinity”,
when the precision for the conversion is at least 7 and as “[-]Inf”
otherwise. A double argument representing a NaN is printed as “[~]NaN”.
Printing of the sign follows the rules described above.

9,6 Thedouble argument is converted in the style f or e (or in the style E in the case ofa G
conversion wide-character), with the precision specifying the number of significant

Basic Library Functions 289

fwprintf(3C)

290

a, A

digits. If an explicit precision is 0, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than —4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a radix character appears only if it is
followed by a digit.

A double argument representing an infinity or NaN is converted in the style of the e
or E conversion specifier, except that for an infinite argument, “infinity”, “INFINITY?,
or “Infinity” is printed when the precision is at least 8 and “inf”, “INF”, or “Inf” is
printed otherwise.

A double argument representing a floating-point number is converted in the style
“[-]oxh.hhhhp+d”, where the single hexadecimal digit preceding the radix point is 0 if
the value converted is zero and 1 otherwise and the number of hexadecimal digits after
itare equal to the precision; if the precision is missing, the number of digits printed
after the radix point is 13 for the conversion of a double value, 16 for the conversion of
along double value on x86, and 28 for the conversion of along double value on
SPARGC; if the precision is zero and the '#' flag is not specified, no decimal-point wide
character appears. The letters “abcdef” are used for a conversion and the letters
“ABCDEF” for A conversion. The A conversion specifier produces a number with X'
and 'P'instead of 'x'and 'p'. The exponent always contains at least one digit, and only
as many more digits as necessary to represent the decimal exponent of 2. If the value is
zero, the exponent is zero.

The converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised.

A double argument representing an infinity or NaN is converted in the SUSv3 style of
an e or E conversion specifier.

If no 1 (ell) qualifier is present, the int argument is converted to a wide-character as if
by calling the btowc(3C) function and the resulting wide-character is written.
Otherwise the wint_t argument is converted to wchar_t, and written.

Ifno 1 (ell) qualifier is present, the argument must be a pointer to a character array
containing a character sequence beginning in the initial shift state. Characters from
the array are converted as if by repeated calls to the mbrtowc(3C) function, with the
conversion state described by an mbstate_t object initialized to zero before the first
character is converted, and written up to (but not including) the terminating null
wide-character. If the precision is specified, no more than that many wide-characters
are written. If the precision is not specified or is greater than the size of the array, the
array must contain a null wide-character.

Ifan 1 (ell) qualifier is present, the argument must be a pointer to an array of type
wchar_t. Wide characters from the array are written up to (but not including) a

man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

fwprintf(3C)

terminating null wide-character. If no precision is specified or is greater than the size
of the array, the array must contain a null wide-character. If a precision is specified, no
more than that many wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a
sequence of printable wide-characters.

n The argument must be a pointer to an integer into which is written the number of
wide-characters written to the output so far by this call to one of the fwprintf()
functions. No argument is converted.

C Sameas lc.
S Same as 1s.
% Output a % wide-character; no argument is converted. The entire conversion

specification must be %%.
If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by fwprintf() andwprintf () are printed as if
fputwc(3C) had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fwprintf () orwprintf () and the next successful completion of a call
to fflush(3C) or fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

ReturnValues Upon successful completion, these functions return the number of wide-characters
transmitted excluding the terminating null wide-character in the case of swprintf() ora
negative value if an output error was encountered.

If n or more wide characters were requested to be written, swprintf () returns a negative
value.

Errors For the conditions under which fwprintf() and wprintf() will fail and may fail, refer to
fputwc(3C).

In addition, all forms of fwprintf () may fail if:

EILSEQ A wide-character code that does not correspond to a valid character has been
detected.

EINVAL Thereare insufficient arguments.

In addition, wprintf() and fwprintf () may fail if:

ENOMEM Insufficient storage space is available.

Basic Library Functions 291

fwprintf(3C)

Examples ExampLE1 Print Language-dependent Date and Time Format.

To print the language-independent date and time format, the following statement could be
used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%s1$s, %3%$d. %2$s, %4$d:%5%.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe with exceptions
Standard See standards(5).

SeeAlso btowc(3C), fputwc(3C), fwscanf(3C), mbrtowc(3C), setlocale(3C), attributes(5),
standards(5)

Notes The fwprintf(),wprintf(),and swprintf() functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not being called to change the locale.

If the j length modifier is used, 32-bit applications that were compiled using c89 on releases
prior to Solaris 10 will experience undefined behavior.

292 man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwrite(3C)

Name

Synopsis

Description

ReturnValues

Errors

Usage

Attributes

See Also

fwrite - binary output

#include <stdio.h>
size_t fwrite(const void *ptr, size t size, size t nitems, FILE *stream);

The fwrite() function writes, from the array pointed to by ptr, up to nitems elements whose
size is specified by size, to the stream pointed to by stream. For each object, size calls are made
to the fputc(3C) function, taking the values (in order) from an array of unsigned char
exactly overlaying the object. The file-position indicator for the stream (if defined) is advanced
by the number of bytes successfully written. If an error occurs, the resulting value of the
file-position indicator for the stream is unspecified.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fwrite () and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The fwrite() function returns the number of elements successfully written, which might be
less than nitems if a write error is encountered. If size or nitems is 0, fwrite () returns 0 and
the state of the stream remains unchanged. Otherwise, if a write error occurs, the error
indicator for the stream is set and errno is set to indicate the error.

Refer to fputc(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite() are application-dependent, and possibly cannot be read using fread(3C) by a
different application or by the same application on a different processor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

write(2), fclose(3C), ferror(3C), fopen(3C), fread(3C), getc(3C), gets(3C), printf(3C),
putc(3C), puts(3C), attributes(5), standards(5)

Basic Library Functions 293

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwscanf(3C)

294

Name

Synopsis

Description

fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf — convert formatted wide-character
input

#include <stdio.h>

#include <wchar.h>

int fwscanf(FILE *restrict stream, const wchar t *restrict fbnnah ..)
int wscanf(const wchar t *restrict jbmnat,,“);

int swscanf(const wchar_t *restrict s, const wchar_t *restrict format,
)

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream, const wchar t *restrict fbmnah
va_list arg);

int vswcanf(const wchar t *restrict ws, const wchar t *restrict fbﬁnan
va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

The fwscanf () function reads from the named input stream.
Thewscanf () function reads from the standard input stream stdin.
The swscanf () function reads from the wide-character string s.

The vfwscanf (), vswscanf (), and vwscanf () functions are equivalent to the fwscanf (),
swscanf (), andwscanf () functions, respectively, except that instead of being called with a
variable number of arguments, they are called with an argument list as defined by the
<stdarg.h> header . These functions do not invoke the va_end () macro. Applications using
these functions should call va_end(ap) afterwards to clean up.

Each function reads wide-characters, interprets them according to a format, and stores the
results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should
be stored. The result is undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX]. This
feature provides for the definition of format wide-character strings that select arguments in an
order appropriate to specific languages. In format wide-character strings containing the %n$
form of conversion specifications, it is unspecified whether numbered arguments in the
argument list can be referenced from the format wide-character string more than once.

man pages section 3: Basic Library Functions - Last Revised 10 Jul 2008

fwscanf(3C)

The format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf () function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide-characters (space, tab,
newline, vertical-tab or form-feed characters); an ordinary wide-character (neither % nor a
white-space character); or a conversion specification. Each conversion specification is
introduced by a % or the sequence %n$ after which the following appear in sequence:

= Anoptional assignment-suppressing character *.
= Anoptional non-zero decimal integer that specifies the maximum field width.
= Anoption length modifier that specifies the size of the receiving object.

= A conversion specifier wide-character that specifies the type of conversion to be applied.
The valid conversion wide-characters are described below.

The fwscanf () functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading
input until no more valid input can be read, or up to the first wide-character which is nota
white-space wide-character, which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character
is read from the input and compared with the wide-character that comprises the directive; if
the comparison shows that they are not equivalent, the directive fails, and the differing and
subsequent wide-characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide-character. A conversion specification is executed in
the following steps:

Input white-space wide-characters (as specified by iswspace(3C)) are skipped, unless the
conversion specification includes a [, ¢, or n conversion character.

An item is read from the input unless the conversion specification includes an n conversion
wide-character. The length of the item read is limited to any specified maximum field width.
In Solaris default mode, the input item is defined as the longest sequence of input
wide-characters that forms a matching sequence. In some cases, fwscanf () might need to
read several extra wide-characters beyond the end of the input item to find the end of a

Basic Library Functions 295

fwscanf(3C)

296

matching sequence. In C99/SUSv3 mode, the input item is defined as the longest sequence of
input wide-characters that is, or is a prefix of, a matching sequence. With this definition,
fwscanf () need only read at most one wide-character beyond the end of the input item.
Therefore, in C99/SUSv3 mode, some sequences that are acceptable to wcstod(3C),
westol(3C), and similar functions are unacceptable to fwscanf (). In either mode, fwscanf ()
attempts to push back any excess bytes read using ungetc(3C). Assuming all such attempts
succeed, the first wide-character, if any, after the input item remains unread. If the length of
the input item is 0, the conversion fails. This condition is a matching failure unless end-of-file,
an encoding error, or a read error prevented input from the stream, in which case it is an input
failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n
conversion specification, the count of input wide-characters) is converted to a type
appropriate to the conversion wide-character. If the input item is not a matching sequence,
the execution of the conversion specification fails; this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already
received a conversion result if the conversion specification is introduced by %, or in the nth
argument if introduced by the wide-character sequence %n$. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in the space
provided, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, 0, u, X, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

1 (ell) Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e,
E, f, F, g, or G conversion specifier applies to an argument with type pointer to
double; or that a following c, s, or [conversion specifier applies to an
argument with type pointer towchar_t.

11 (ell-ell) Specifies that a following d, 1, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer
type.

t Specifies that a following d, 1, 0, u, X, X, or n conversion specifier applies to an

argument with type pointer to ptrdiff_t or the corresponding unsigned type.

man pages section 3: Basic Library Functions - Last Revised 10 Jul 2008

fwscanf(3C)

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If alength modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion wide-characters are valid:

d

a,e,f,g

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of westol1(3C) with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to int.

Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of westo1(3C) with 0 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to int.

Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of westoul(3C) with the value 8 for the base argument. In
the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of westoul(3C) with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of westoul(3C) with the value 16 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

Matches an optionally signed floating-point number, whose format is the same as
expected for the subject sequence of westod(3C). In the absence of a size modifier,
the corresponding argument must be a pointer to float. The e, f, and g specifiers
match hexadecimal floating point values only in C99/SUSv3 (see standards(5))
mode, but the a specifier always matches hexadecimal floating point values.

These conversion specifiers match any subject sequence accepted by strtod(3C),
including the INFE, INFINITY, NAN, and NAN(n-char-sequence) forms. The result
of the conversion is the same as that of calling strtod() (or strtof() or
strtold()) with the matching sequence, including the raising of floating point
exceptions and the setting of errno to ERANGE, if applicable.

Matches a sequence of non white-space wide-characters. If no 1 (ell) qualifier is
present, characters from the input field are converted as if by repeated calls to the
wcrtomb(3C) function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide-character is converted. The corresponding

Basic Library Functions 297

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwscanf(3C)

298

argument must be a pointer to a character array large enough to accept the
sequence and the terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide-character,
which will be added automatically.

Matches a non-empty sequence of wide-characters from a set of expected
wide-characters (the scanset). If no 1 (ell) qualifier is present, wide-characters from
the input field are converted as if by repeated calls to the wcrtomb () function, with
the conversion state described by an mbstate_t object initialized to zero before the
first wide-character is converted. The corresponding argument must be a pointer
to a character array large enough to accept the sequence and the terminating null
character, which will be added automatically.

Ifan 1 (ell) qualifier is present, the corresponding argument must be a pointer to an
array of wchar_t large enough to accept the sequence and the terminating null
wide-character, which will be added automatically.

The conversion specification includes all subsequent widw characters in the format
string up to and including the matching right square bracket (1). The
wide-characters between the square brackets (the scanlist) comprise the scanset,
unless the wide-character after the left square bracket is a circumflex (*), in which
case the scanset contains all wide-characters that do not appear in the scanlist
between the circumflex and the right square bracket. If the conversion specification
begins with [] or [*], the right square bracket is included in the scanlist and the
next right square bracket is the matching right square bracket that ends the
conversion specification; otherwise the first right square bracket is the one that
ends the conversion specification. If a minus-sign () is in the scanlist and is not
the first wide-character, nor the second where the first wide-character is a ~, nor
the last wide-character, it indicates a range of characters to be matched.

Matches a sequence of wide-characters of the number specified by the field width
(L ifno field width is present in the conversion specification). If no 1 (ell) qualifier
is present, wide-characters from the input field are converted as if by repeated calls
to thewcrtomb () function, with the conversion state described by an mbstate t
object initialized to zero before the first wide-character is converted. The
corresponding argument must be a pointer to a character array large enough to
accept the sequence. No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence. No null wide-character is added.

Matches the set of sequences that is the same as the set of sequences that is
produced by the %p conversion of the corresponding fwprintf(3C) functions. The
corresponding argument must be a pointer to a pointer to void. If the input item is

man pages section 3: Basic Library Functions - Last Revised 10 Jul 2008

fwscanf(3C)

ReturnValues

avalue converted earlier during the same program execution, the pointer that
results will compare equal to that value; otherwise the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the
integer into which is to be written the number of wide-characters read from the
input so far by this call to the fwscanf () functions. Execution of a %n conversion
specification does not increment the assignment count returned at the completion
of execution of the function.

C Sameas lc.
S Same as 1s.
% Matches a single %; no conversion or assignment occurs. The complete conversion

specification must be %%.
If a conversion specification is invalid, the behavior is undefined.

The conversion characters A, E, F, G, and X are also valid and behave the same as, respectively,
a, e, f,g,and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide-characters matching the current conversion specification (except for %n) have
been read (other than leading white-space, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in swscanf () is equivalent to encountering end-of-file for
fwscanf ().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline) is left unread unless matched by a conversion
specification. The success of literal matches and suppressed assignments is only directly
determinable via the %n conversion specification.

The fwscanf() and wscanf () functions may mark the st_atime field of the file associated
with stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgetwc(3C), fgets(3C), fgetws(3C), fread(3C), getc(3C),
getwc(3C), getchar(3C), getwchar(3C), gets(3C), fscanf(3C) or fwscanf () using stream
that returns data not supplied by a prior call to ungetc(3C).

Upon successful completion, these functions return the number of successfully matched and
assigned input items; this number can be 0 in the event of an early matching failure. If the

Basic Library Functions 299

fwscanf(3C)

Errors

Usage

Examples

input ends before the first matching failure or conversion, EOF is returned. If a read error
occurs the error indicator for the stream is set, EOF is returned, and errno is set to indicate the
error.

For the conditions under which the fwscanf () functions will fail and may fail, refer to
fgetwc(3C).

In addition, fwscanf () may fail if:

EILSEQ Inputbyte sequence does not form a valid character.

EINVAL Thereare insufficient arguments.

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

EXAMPLE1 wscanf () example
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E—-1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the
string Hamster.

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789], &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar(3C) will return the character a.

Attributes See attributes(5) for descriptions of the following attributes:

300

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

man pages section 3: Basic Library Functions - Last Revised 10 Jul 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fwscanf(3C)

See Also

Notes

ATTRIBUTETYPE ATTRIBUTE VALUE

Standard See standards(5).

fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(3C), fscanf(3C), fwprintf(3C),
getc(3C), getchar(3C), gets(3C), getwc(3C), getwchar(3C), setlocale(3C), strtod(3C),
wcrtomb(3C), westod(3C), westol(3C), westoul(3C), attributes(5), standards(5)

The behavior of the conversion specifier “%%” has changed for all of the functions described
on this manual page. Previously the “%%” specifier accepted a “%” character from input only if
there were no preceding whitespace characters. The new behavior accepts “%” even if there are
preceding whitespace characters. This new behavior now aligns with the description on this
manual page and in various standards. If the old behavior is desired, the conversion
specification “%*[%]” can be used.

Basic Library Functions 301

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getauthattr(3C)

Name

Synopsis

Description

302

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr — get
authorization entry

authattr t *getauthattr(void);

authattr t *getauthnam(const char *name);
void free authattr(authattr_t *quth) ;
void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4) entry. Entries
can come from any of the sources specified in the nsswitch. conf(4) file.

The getauthattr() function enumerates auth_attr entries. The getauthnam() function
searches for an auth_attr entry with a given authorization name name. Successive calls to
these functions return either successive auth attr entries or NULL.

Th internal representation of an auth_attr entryisan authattr_t structure defined in
<auth_attr.h> with the following members:

char *name; /* name of the authorization */

char *resl; /* reserved for future use */

char *res2; /* reserved for future use */

char *short desc; /* short description */

char *long desc; /* long description */

kva t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of auth_attr
entries. Calls to getauthnam() can leave the enumeration in an indeterminate state.
Therefore, setauthattr() should be called before the first call to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing is complete;
the system may then close any open auth_attr file, deallocate storage, and so forth.

The chkauthattr() function verifies whether or not a user has a given authorization. It first
reads the user_attr(4) database and returns 1 if it finds a match for the given authorization. If
itdoes not find a match in user_attr, chkauthattr() reads the prof_attr(4) database using
the list of profiles assigned to the user and checks if any of the profiles assigned to the user has
the given authorization. When chkauthattr() finds a profile called “Stop”, further profiles
are ignored, the authorizations and profiles mentioned in /etc/security/policy.conf are
ignored and it returns 0. If it does not find a match in the user's profiles, chkauthattr() reads
the AUTHS_GRANTED key in the /etc/security/policy.conf file and returns 1 ifit findsa
match for the given authorization. If chkauthattr() does not find a match and the username
is the name of the “console user”, defined as the owner of /dev/console, it first reads the
CONSOLE_USERkeyin /etc/security/policy.conf and returns 1 if the given authorization is

man pages section 3: Basic Library Functions « LastRevised 10 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

getauthattr(3C)

in any of the profiles specified in the CONSOLE_USER keyword, then reads the PROFS_GRANTED
keyin /etc/security/policy.conf and returns 1 if the given authorization is in any profiles
specified with the PROFS_GRANTED keyword. The chkauthattr() function returns 0 if it does
not find a match in any of the three sources or if the user does not exist.

Authorization names consist of a hierarchical set of dot (.)-separated words, called the
predicate, and an optional object qualifier preceded by a slash character (/). Authorizations
listed in user_attrand prof_attr may contain an asterisk (*) following the final dot in the
predicate to indicate a wildcard. The reserved word grant, used for delegating authorizations,
is not matched by *.

A user is considered to have been assigned an authorization if all of the following are true:

= The authorization name matches exactly any authorization assigned in the user_attr or
prof_ attr databases (authorization names are case-sensitive).

= The predicate of authname matches the predicate of an authorization completely, or the
predicate does not end in grant and matches up to the * if present.

= The authorization name suffix is not the key word grant and the authorization name
matches any authorization up to the asterisk (*) character assigned in the user_attror
prof_attr databases.

= Ifthe authorization includes an object qualifier, then authname must include the same

object qualifier.
The examples in the following table illustrate the conditions under which a user is assigned an
authorization.
/etc/security/policy.confor Is user
Authorization name user_attrorprof_attrentry authorized?
solaris.printer.postscript solaris.printer.postscript Yes
solaris.printer.postscript solaris.printer.* Yes
solaris.printer.grant solaris.printer.* No
solaris.zone.login/z1 solaris.zone.* Yes
solaris.zone.login solaris.zone.*/z1 No

The free_authattr() function releases memory allocated by the getauthnam() and
getauthattr() functions.

ReturnValues The getauthattr() function returns a pointer to an authattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Basic Library Functions 303

getauthattr(3C)

304

Usage

Warnings

Files

Attributes

See Also

The chkauthattr() function returns 1 if the user is authorized and 0 if the user does not exist
or is not authorized.

The getauthattr() and getauthnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_authattr() call.

Individual attributes in the attr structure can be referred to by calling the kva_match(3C)
function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown

key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for the name server
switch

/etc/user attr extended user attributes

/etc/security/auth attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3C), getprofattr(3C), getuserattr(3C), auth attr(4), nsswitch.conf(4),
prof attr(4),user_attr(4),attributes(5), rbac(5)

man pages section 3: Basic Library Functions « LastRevised 10 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rbac-5

getcpuid(30)

Name

Synopsis

Description

ReturnValues
Errors
Usage

Attributes

See Also

Notes

getcpuid, gethomelgroup - obtain information on scheduling decisions

#include <sys/processor.h>

processorid t getcpuid(void);

ushort t gethomelgroup(void);

The getcpuid() function returns the processor ID on which the calling thread is currently
executing.

The gethomelgroup () function returns the home locality group ID of the calling thread.
See DESCRIPTION.

No errors are defined.

Both the current CPU and the home locality group can change at any time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The getcpuid() function is Committed. The gethomelgroup () function is Obsolete.

psradm(1M), psrinfo(1M), psrset(1M), p_online(2), processor bind(2),
processor_info(2), pset assign(2), pset bind(2), pset info(2), meminfo(2),
1grp_home(3LGRP), sysconf(3C), attributes(5)

The gethomelgroup () function is obsolete and might be removed in a future release. It has
been replaced by lgrp_home(3LGRP).

Basic Library Functions 305

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1p-online-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1processor-info-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-info-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1meminfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lgrp-home-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lgrp-home-3lgrp

getcwd(3C)

Name getcwd - get pathname of current working directory

Synopsis #include <unistd.h>

char *getcwd(char *buf, size t size)

Description The getcwd () function places an absolute pathname of the current working directory in the
array pointed to by buf, and returns buf. The pathname copied to the array contains no
components that are symbolic links. The size argument is the size in bytes of the character
array pointed to by bufand must be at least one greater than the length of the pathname to be
returned.

If bufis not a null pointer, the pathname is stored in the space pointed to by buf.

If bufis a null pointer, getcwd () obtains size bytes of space using malloc(3C). The pointer
returned by getcwd () can be used as the argument in a subsequent call to free().

ReturnValues Upon successful completion, getcwd () returns the bufargument. If bufis an invalid
destination buffer address, NULL is returned and errno is set to EFAULT. Otherwise, a null
pointer is returned and errno is set to indicate the error.

Errors The getcwd () function will fail if:
EFAULT The bufargument is an invalid destination buffer address.
EINVAL The size argument is equal to 0.
ERANGE The size argument is greater than 0 and less than the length of the pathname plus
1.
The getcwd () function may fail if:
EACCES A parent directory cannot be read to get its name.

ENOMEM Insufficient storage space is available.

Examples ExampLE1 Determine the absolute pathname of the current working directory.

The following example returns a pointer to an array that holds the absolute pathname of the
current working directory. The pointer is returned in the ptr variable, which points to the buf
array where the pathname is stored.

#include <stdlib.h>
#include <unistd.h>

long size;

char *buf;

char *ptr;

size = pathconf(".", PC PATH MAX);

if ((buf = (char *)malloc((size t)size)) != NULL)
ptr = getcwd(buf, (size t)size);

306 man pages section 3: Basic Library Functions « Last Revised 18 Oct 2004

getcwd(3C)

EXAMPLE1 Determine the absolute pathname of the current working directory.

EXAMPLE2 Print the current working directory.

The following example prints the current working directory.

#include <unistd.h>
#include <stdio.h>

main()

{

char *cwd;

if ((cwd = getcwd(NULL, 64)) == NULL) {

perror("pwd")

exit(2);

}

(void)printf("ss\n", cwd);

free(cwd); /* free memory allocated by getcwd() */

return(0);

}

(Continued)

Usage Applications should exercise care when using chdir(2) in conjunction with getcwd (). The
current working directory is global to all threads within a process. If more than one thread
calls chdir() to change the working directory, a subsequent call to getcwd () could produce
unexpected results.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso chdir(2),malloc(3C),attributes(5), standards(5)

Basic Library Functions

307

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdate(3C)

Name getdate — convert user format date and time

Synopsis #include <time.h>

struct tm *getdate(const char *string);
extern int getdate err;

Description The getdate() function converts user-definable date and/or time specifications pointed to by
string to a tm structure. The tm structure is defined in the <time.h> header.

User-supplied templates are used to parse and interpret the input string. The templates are
text files created by the user and identified via the environment variable DATEMSK. Each line in
the template represents an acceptable date and/or time specification using conversion
specifications similar to those used by strftime(3C) and strptime(3C). Dates before 1902
and after 2037 are illegal. The first line in the template that matches the input specification is
used for interpretation and conversion into the internal time format.

Conversion The following conversion specifications are supported:
Specifications
% Same as %.

o°

a°
Q

Locale's abbreviated weekday name.

o°
=

Locale's full weekday name.

Locale's abbreviated month name.

o°
o

Locale's full month name.

o°
w

o°
0

Locale's appropriate date and time representation.

o°
(@]

Century number (the year divided by 100 and truncated to an integer as a decimal
number [1,99]); single digits are preceded by 0; see standards(5). If used without the
%y specifier, this format specifier will assume the current year offset in whichever
century is specified. The only valid years are between 1902-2037.

o°
o

day of month [01,31]; leading zero is permitted but not required.

o°
o

Date as %m/%d/%y.

Same as %d.

o°
®

o°
S

Equivalent to %Y-%m-%d (the ISO 8601:2004 standard date in extended format).

o°
(=]

Week-based year within century [00,99]; leading zero is permitted but not required.

o°
D

Week-based year, including the century [0000,9999]; leading zero is permitted but not
required.

Locale's abbreviated month name.

o°
=0

o°
=y

Hour (24-hour clock) [0,23]; leading zero is permitted but not required.

o°
—

Hour (12-hour clock) [1,12]; leading zero is permitted but not required.

308 man pages section 3: Basic Library Functions « Last Revised 21 Dec 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdate(3C)

o o ¥ L P R o
S T O =] = = —~ X

o°

R

SUSv3

%S

Day number of the year [1,366]; leading zeros are permitted but not required.
Same as %H.

Same as %I.

Month number [1,12]; leading zero is permitted but not required.

Minute [0,59]; leading zero is permitted but not required.

Any white space.

Locale's equivalent of either a.m. or p.m.

Locale's equivalent of either a.m. or p.m. in case-insensitive manner.
Appropriate time representation in the 12-hour clock format with %p.

Time as %H:%M.

Seconds [0,60]; leading zero is permitted but not required. The range of values is
[00,60] rather than [00,59] to allow for the occasional leap second.

Default and other standards

%S

of o° o°
c — ~+

o°
c

o°
<

o°
=

o°
=

o°
x

o°
>

Seconds [0,61]; leading zero is permitted but not required. The range of values is
[00,61] rather than [00,59] to allow for the occasional leap second and even more
occasional double leap second.

Any white space.
Time as %H:%M:%S.
Weekday as a decimal number [1,7], with 1 representing Monday.

Week number of the year as a decimal number [0,53], with Sunday as the first day of
the week; leading zero is permitted but not required.

The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601 week-based

system, weeks begin on a Monday and week 1 of the year is the week that includes both
January 4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

Weekday as a decimal number [0,6], with 0 representing Sunday.

Week number of the year as a decimal number [0,53], with Monday as the first day of
the week; leading zero is permitted but not required.

Locale's appropriate date representation.

Locale's appropriate time representation.

Basic Library Functions 309

getdate(3C)

Year within century. When a century is not otherwise specified, values in the range
69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the
range 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive).

o°
<

o°
=<

Year, including the century (for example, 1993).

o°
N

Offset from UTC in ISO 8601:2004 standard basic format (+hhmm or -hhmm), or no
characters if no time zone is determinable.

z Time zone name or no characters if no time zone exists.

o°

Modified Conversion Some conversion specifications can be modified by the E and 0 modifier characters to indicate
specifications that an alternative format or specification should be used rather than the one normally used by
the unmodified specification. If the alternative format or specification does not exist in the
current locale, the behavior be as if the unmodified conversion specification were used.

%Ec Locale's alternative appropriate date and time representation.

%SEC Name of the base year (period) in the locale's alternative representation.
%Ex Locale's alternative date representation.

%SEX Locale's alternative time representation.

%Ey Offset from %EC (year only) in the locale's alternative representation.
%EY Full alternative year representation.

%0d Day of the month using the locale's alternative numeric symbols; leading zeros are
permitted but not required.

%0e Same as %0d.

%0H Hour (24-hour clock) using the locale's alternative numeric symbols.
%0I Hour (12-hour clock) using the locale's alternative numeric symbols.
%0m Month using the locale's alternative numeric symbols.

%0M Minutes using the locale's alternative numeric symbols.

%0S Seconds using the locale's alternative numeric symbols.

%0U Week number of the year (Sunday as the first day of the week) using the locale's
alternative numeric symbols.

%0w Number of the weekday (Sunday=0) using the locale's alternative numeric symbols.

%0W Week number of the year (Monday as the first day of the week) using the locale's
alternative numeric symbols.

%0y Year (offset from %C) in the locale's alternative representation and using the locale's
alternative numeric symbols.

310 man pages section 3: Basic Library Functions - Last Revised 21 Dec 2010

getdate(3C)

Internal Format - The following rules are applied for converting the input specification into the internal format:
Conversion

= If only the weekday is given, today is assumed if the given day is equal to the current day
and next week if it is less.

= Ifonly the month is given, the current month is assumed if the given month is equal to the
current month and next year if it is less and no year is given. (The first day of month is
assumed if no day is given.)

= TIfonly the year is given, the values of the tm_mon, tm_mday, tm_yday, tm_wday, and
tm_isdst members of the returned tm structure are not specified.

= Ifthe century is given, but the year within the century is not given, the current year within
the century is assumed.

= Ifno hour, minute, and second are given, the current hour, minute, and second are
assumed.

= Ifno dateis given, today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less.

General Specifications A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the conversion specification, the specification fails, and the differing and
subsequent characters remain unscanned.

A series of conversion specifications composed of %n, %t, white space characters, or any
combination is executed by scanning up to the first character that is not white space (which
remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character
matching the next conversion specification is scanned, or until no more characters can be
scanned. These characters, except the one matching the next conversion specification, are
then compared to the locale values associated with the conversion specifier. If a match is
found, values for the appropriate tm structure members are set to values corresponding to the
locale information. If no match is found, getdate () fails and no more characters are scanned.

The month names, weekday names, era names, and alternative numeric symbols can consist
of any combination of upper and lower case letters. The user can request that the input date or
time specification be in a specific language by setting the LC_TIME category using
setlocale(3QC).

ReturnValues If successful, getdate() returns a pointer to a tm structure; otherwise, it returns NULL and sets
the global variable getdate_err to indicate the error. Subsequent calls to getdate() alter the
contents of getdate_err.

The following is a complete list of the getdate_err settings and their meanings:

1 The DATEMSK environment variable is null or undefined.

Basic Library Functions 311

getdate(3C)

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 Anerror is encountered while reading the template file.
Themalloc() function failed (not enough memory is available).

There is no line in the template that matches the input.

o N o

The input specification is invalid (for example, February 31).

Usage The getdate() function makes explicit use of macros described on the ctype(3C) manual
page.

Examples EXAMPLE1 Examples of the getdate () function.

The following example shows the possible contents of a template:

%m/%d/%y %I %p

%d, %m, %Y %H:%M

at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("10/1/87 4 PM")

getdate("Friday")

getdate("Friday September 19 1987, 10:30:30")
getdate("24,9,1986 10:30")

getdate("at monday the 1st of december in 1986")
getdate("run job at 3 PM, december 2nd")

If the LANG environment variable is set to de (German), the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show how local
date and time specification can be defined in the template.

Invocation Line in Template

getdate("11/27/86") %m/%d/%y

312 man pages section 3: Basic Library Functions - Last Revised 21 Dec 2010

getdate(3C)

EXAMPLE1 Examples of the getdate () function.

(Continued)

getdate("27.11.86")
getdate("86-11-27")

getdate("Friday 12:00:00")

9%d.%m. %y
%y-%m-%d

%A %H:%M:%S

The following examples illustrate the Internal Format Conversion rules. Assume that the
current date is Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable is not set.

Input Template Line Date
Mon %a Mon Sep 22 12:19:48 EDT 1986
Sun %a Sun Sep 28 12:19:49 EDT 1986
Fri %a Fri Sep 26 12:19:49 EDT 1986
September %B Mon Sep 1 12:19:49 EDT 1986
January %B ThuJan112:19:49 EST 1987
December %B Mon Dec 1 12:19:49 EDT 1986
Sep Mon %b %a Mon Sep 1 12:19:50 EDT 1986
Jan Fri %b %a FriJan 2 12:19:50 EST 1987
Dec Mon %b %a Mon Dec 1 12:19:50 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:51 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
10:30 %H : %M Tue Sep 23 10:30:00 EDT 1986
13:30 SH : %M Mon Sep 22 13:30:00 EDT 1986

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
CSI Enabled
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

Basic Library Functions

313

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdate(3C)

SeeAlso ctype(3C), mktime(3C), setlocale(3C), strftime(3C), strptime(3C), attributes(5),
environ(5), standards(5)

314 man pages section 3: Basic Library Functions - Last Revised 21 Dec 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdtablesize(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

getdtablesize — get the file descriptor table size

#include <unistd.h>

int getdtablesize(void);

The getdtablesize() function is equivalent to getrlimit(2) with the RLIMIT_NOFILE
option.

The getdtablesize () function returns the current soft limit as if obtained from a call to
getrlimit() with the RLIMIT_NOFILE option.

No errors are defined.

There is no direct relationship between the value returned by getdtablesize() and OPEN_MAX
defined in <limits.h>.

Each process has a file descriptor table which is guaranteed to have at least 20 slots. The entries
in the descriptor table are numbered with small integers starting at 0. The getdtablesize()
function returns the current maximum size of this table by calling the getrlimit () function.

close(2),getrlimit(2), open(2), setrlimit(2), select(3C)

Basic Library Functions 315

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrlimit-2

getenv(3Q)

316

Name

Synopsis

Description

ReturnValues

Usage

Attributes

See Also

getenv — return value for environment name

#include <stdlib.h>
char *getenv(const char *name);

The getenv () function searches the environment list (see environ(5)) for a string of the form
name=value and, if the string is present, returns a pointer to the value in the current
environment.

If successful, getenv () returns a pointer to the value in the current environment; otherwise, it
returns a null pointer.

The getenv () function can be safely called from a multithreaded application. Care must be
exercised when using both getenv () and putenv(3C) in a multithreaded application. These
functions examine and modify the environment list, which is shared by all threads in an
application. The system prevents the list from being accessed simultaneously by two different
threads. It does not, however, prevent two threads from successively accessing the
environment list using getenv () or putenv(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

exec(2), putenv(3C), attributes(5), environ(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getexecattr(3C)

Name

Synopsis

Description

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof, match_execattr -
get execution profile entry

execattr t *getexecattr(void);
void free_execattr(execattr_t *ep);
void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *fype,
const char *id, int search_flag);

execattr t *getexecprof(const char *prqﬂunne, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname,
char *type, char *id);

The getexecattr() function returns a single exec_attr(4) entry. Entries can come from any
of the sources specified in the nsswitch. conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or NULL. Because
getexecattr() always returns a single entry, the next pointer in the execattr_t data
structure points to NULL.

The internal representation of an exec_attr entryis an execattr_t structure defined in
<exec_attr.h> with the following members:

char *name; /* name of the profile */

char *policy; /* policy under which the attributes are */
/* relevant*/

char *type; /* type of profile */

char *resl; /* reserved for future use */

char *res2; /* reserved for future use */

char *id; /* unique identifier */

kva_t *attr; /* attributes */

struct execattr s *next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of exec_attr
entries. Calls to getexecuser () can leave the enumeration in an indeterminate state.
Therefore, setexecattr() should be called before the first call to getexecattr().

The endexecattr() function can be called to indicate that exec_attr processing is complete;
the library can then close any open exec_attr file, deallocate any internal storage, and so
forth.

Basic Library Functions 317

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getexecattr(3C)

318

ReturnValues

Usage

Examples

The getexecuser () function returns a linked list of entries that match the type and id
arguments and have a profile that has been assigned to the user specified by username, as
described in passwd(4). Profiles for the user are obtained from the list of default profiles in
/etc/security/policy.conf (see policy.conf(4)) and the user_attr(4) database. Only
entries in the name service scope for which the corresponding profile entry is found in the
prof attr(4) database are returned.

The getexecprof () function returns a linked list of entries that match the type and id
arguments and have the profile specified by the profname argument. Only entries in the name
service scope for which the corresponding profile entry is found in the prof_attr database are
returned.

Using getexecuser() and getexecprof (), programmers can search for any type argument,
such as the manifest constant KV_COMMAND. The arguments are logically AND-ed together so
that only entries exactly matching all of the arguments are returned. Wildcard matching
applies if there is no exact match for an ID. Any argument can be assigned the NULL value to
indicate that it is not used as part of the matching criteria. The search_flag controls whether
the function returns the first match (GET_ONE), setting the next pointer to NULL or all matching
entries (GET_ALL), using the next pointer to create a linked list of all entries that meet the
search criteria. See EXAMPLES.

If GET_ALL is specified, the entire database is searched, resulting in a much slower operation.
Use GET_ONE when searching for the attributes for one particular application.

Once alist of entries is returned by getexecuser() or getexecprof (), the convenience
function match_execattr() canbe used to identify an individual entry. It returns a pointer to
the individual element with the same profile name (profname), type name (type), and id.
Function parameters set to NULL are not used as part of the matching criteria. In the event that
multiple entries meet the matching criteria, only a pointer to the first entry is returned. The
kva_match(3C) function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully enumerates an
entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof () functions all allocate memory for
the pointers they return. This memory should be deallocated with the free_execattr() call.
Thematch_execattr()(function does not allocate any memory. Therefore, pointers returned
by this function should not be deallocated.

Individual attributes may be referenced in the attr structure by calling the kva_match(3C)
function.

EXAMPLE 1 Find all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV COMMAND, "/usr/sbin/ping",
GET_ALL)) == NULL) {
/* do error */

man pages section 3: Basic Library Functions « Last Revised 10 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

getexecattr(3C)

Files

Attributes

See Also

EXAMPLE 1 Find all profiles that have the ping command. (Continued)

EXAMPLE 2 Find the entry for the ping command in the Network Administration Profile.

if ((execprof=getexecprof("Network Administration", KV COMMAND,
"/usr/sbin/ping", GET ONE))==NULL) {
/* do error */

EXAMPLE 3 Tell everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV _NULL, NULL,
GET ALL))==NULL)) {
/* do error */

EXAMPLE 4 Tell if the tar utility is in a profile assigned to user wetmore. If there is no exact profile entry,
the wildcard (*), if defined, is returned.

The following tells if the tar utility is in a profile assigned to user wetmore. If there is no exact
profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV _COMMAND, "/usr/bin/tar"
GET ONE))==NULL) {
/* do error */

}

/etc/nsswitch. conf configuration file lookup information for the name server
switch

/etc/user attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3C), getuserattr(3C), kva_match(3C), exec_attr(4), passwd(4),
policy.conf(4),prof attr(4),user attr(4),attributes(5)

Basic Library Functions 319

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getexecname(3C)

320

Name

Synopsis

Description

ReturnValues

Usage

Attributes

See Also

getexecname — return pathname of executable

#include <stdlib.h>
const char *getexecname(void);

The getexecname () function returns the pathname (the first argument of one of the exec
family of functions; see exec(2)) of the executable that started the process.

Normally this is an absolute pathname, as the majority of commands are executed by the shells
that append the command name to the user's PATH components. If this is not an absolute path,
the output of getcwd(3C) can be prepended to it to create an absolute path, unless the process
or one of its ancestors has changed its root directory or current working directory since the
last successful call to one of the exec family of functions.

If successful, getexecname () returns a pointer to the executables pathname; otherwise, it
returns 0.

The getexecname () function obtains the executable pathname from the AT SUN_EXECNAME
aux vector. These vectors are made available to dynamically linked processes only.

A successful call to one of the exec family of functions will always have AT_SUN_EXECNAME in
the aux vector. The associated pathname is guaranteed to be less than or equal to PATH_MAX,
not counting the trailing null byte that is always present.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

exec(2),getcwd(3C), attributes(5)

man pages section 3: Basic Library Functions « LastRevised 17 Dec 1997

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getgrnam(3Q)

Name getgrnam, getgrnam_r, getgrent, getgrent_r, getgrgid, getgrgid_r, setgrent, endgrent,

fgetgrent, fgetgrent_r — group database entry functions

Synopsis #include <grp.h>

Standard conforming

Description

struct group *getgrnam(const char *name);

struct group *getgrnam r(const char *name, struct group *grp,
char *buffer, int bufsize);

struct group *getgrent(void);
struct group *getgrent_r(struct group *grp, char *buffer, int bufsize);
struct group *getgrgid(gid_t gid);

struct group *getgrgid r(gid t gid, struct group *grp, char *buffer,
int bufsize) ;

void setgrent(void);
void endgrent(void);
struct group *fgetgrent(FILE *f);

struct group *fgetgrent_r(FILE *f, struct group *grp, char *buffer,
int bufsize) ;

cc [flag... 1 file... -D_POSIX PTHREAD_SEMANTICS [library...]

int getgrnam_r(const char *name, struct group *grp, char *buffer,
size t bufsize, struct group **result);

int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

These functions are used to obtain entries describing user groups. Entries can come from any
of the sources for group specified in the /etc/nsswitch. conf file (see nsswitch.conf(4)).

The getgrnam() function searches the group database for an entry with the group name
specified by the character string parameter name.

The getgrgid() function searches the group database for an entry with the (numeric) group
id specified by gid.

The setgrent(), getgrent(),and endgrent () functions are used to enumerate group entries
from the database.

The setgrent () function effectively rewinds the group database to allow repeated searches. It
sets (or resets) the enumeration to the beginning of the set of group entries. This function
should be called before the first call to getgrent ().

Basic Library Functions 321

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getgrnam(3Q)

Reentrant Interfaces

group Structure

322

The getgrent () function returns a pointer to a structure containing the broken-out fields of
an entry in the group database. When first called, getgrent () returns a pointer to a group
structure containing the next group structure in the group database. Successive calls can be
used to search the entire database.

The endgrent () function can be called to close the group database and deallocate resources
when processing is complete. It is permissible, though possibly less efficient, for the process to
call more group functions after calling endgrent ().

The fgetgrent () function, unlike the other functions above, does not use nsswitch.conf. It
reads and parses the next line from the stream f, which is assumed to have the format of the
group file (see group(4)).

The getgrnam(), getgrgid(), getgrent (), and fgetgrent () functions use thread-specific
storage that is reused in each call to one of these functions by the same thread, making them
safe to use but not recommended for multithreaded applications.

The parallel functions getgrnam r(),getgrgid r(),getgrent r(),and fgetgrent r()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results instead of using thread-specific data that can be overwritten
by each call. They are safe for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same arguments as its non-reentrant counterpart, as well as
the following additional parameters. The grp argument must be a pointer to a struct group
structure allocated by the caller. On successful completion, the function returns the group
entry in this structure. Storage referenced by the group structure is allocated from the memory
provided with the buffer argument that is bufsize characters in size. The maximum size needed
for this buffer can be determined with the SC GETGR R SIZE MAX sysconf(3C) parameter.
The standard-conforming versions place a pointer to the modified grp structure in the result
parameter, instead of returning a pointer to this structure. A null pointer is returned at the
location pointed to by result on error or if the requested entry is not found.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setgrent () function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getgrent_r(), the threads will enumerate disjoint subsets of the
group database. Like their non-reentrant counterparts, getgrnam_r() and getgrgid_r()
leave the enumeration position in an indeterminate state.

Group entries are represented by the struct group structure defined in <grp.h>:

struct group {
char *gr_name; /* the name of the group */
char *gr passwd; /* the encrypted group password */

man pages section 3: Basic Library Functions « LastRevised 19 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1group-4

getgrnam(3Q)

ReturnValues

Errors

gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member
names */

+

The getgrnam(), getgrnam r(),getgrgid(),and getgrgid r() functions each return a
pointer to a struct group if they successfully locate the requested entry. They return a null
pointer if either the requested entry was not found or an error occurred. On error, errno is set
to indicate the error. The standard-conforming functions getgrnam_r() and getgrgid_r()
return @ upon success or an error number in case of failure.

The getgrent (), getgrent r(), fgetgrent(),and fgetgrent r() functions each returna
pointer to a struct group if they successfully enumerate an entry; otherwise they return a null
pointer on end-of-file or error. On error, errno is set to indicate the error.

The getgrnam(), getgrgid(), getgrent(), and fgetgrent () functions use thread-specific
data storage, so returned data must be copied before a subsequent call to any of these
functions if the data are to be saved.

When the pointer returned by the reentrant functions getgrnam_r(), getgrgid_r(),
getgrent_r(),and fgetgrent_r() is non-null, it is always equal to the grp pointer that was
supplied by the caller.

Applications wishing to check for error situations should set errno to 0 before calling
getgrnam(),getgrnam r(),getgrent(),getgrent r(),getgrgid(),getgrgid r(),
fgetgrent(),and fgetgrent_r().If these functions return a null pointer and errno is
non-zero, an error occurred.

The getgrent_r(), fgetgrent(),and fgetgrent_r() functions will fail if:
EIO An /O error has occurred.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting group structure.

The getgrent_r() function will fail if:
EMFILE There are {OPEN_MAX]} file descriptors currently open in the calling process.

ENFILE = The maximum allowable number of files is currently open in the system.

The getgrnam(), getgrnam_r(),getgrgid(), getgrgid r(),and getgrent() functions may
fail if:

EINTR A signal was caught during the operation.
EIO AnT/O error has occurred.

EMFILE Thereare {OPEN_MAX]} file descriptors currently open in the calling process.

Basic Library Functions 323

getgrnam(3Q)

ENFILE The maximum allowable number of files is currently open in the system.

The getgrnam_r() and getgrgid_r() functions may fail if:

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting group structure.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level See Reentrant Interfaces in DESCRIPTION.

The endgrent (), getgrent (), getgrgid(), getgrgid r(),getgrnam(),getgrnam r(),and
setgrent () functions are Standard.

SeeAlso Intro(3),getpwnam(3C), group(4), nsswitch.conf(4), passwd(4),attributes(5),
standards(5)

Notes When compiling multithreaded programs, see Intro(3).

Use of the enumeration interfaces getgrent () and getgrent_r() is discouraged;
enumeration is supported for the group file and NIS, but in general is not efficient and might
not be supported for all database sources. The semantics of enumeration are discussed further
innsswitch.conf(4).

«w on

Previous releases allowed the use of “+" and “-" entries in /etc/group to selectively include
and exclude entries from NIS. The primary usage of these entries is superseded by the name
service switch, so the “+/-" form might not be supported in future releases.

If required, the “+/-" functionality can still be obtained for NIS by specifying compat as the
source for group.

Solaris 2.4 and earlier releases provided definitions of the getgrnam_r() and getgrgid r()
functions as specified in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface
for these functions. Support for the Draft 6 interface is provided for compatibility only and
might not be supported in future releases. New applications and libraries should use the
standard-conforming interface.

For POSIX.1c-conforming applications, the POSIX_PTHREAD_SEMANTICS and _REENTRANT
flags are automatically turned on by defining the POSIX_C_SOURCE flag with a value
>199506L.

324 man pages section 3: Basic Library Functions « LastRevised 19 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1group-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

gethostid(3C)

Name gethostid - get an identifier for the current host

Synopsis #include <unistd.h>

long gethostid(void);

Description The gethostid() function returns the 32-bit identifier for the current host. If the hardware
capability exists, this identifier is taken from platform-dependent stable storage; otherwise it is

arandomly generated number. It is not guaranteed to be unique.

If the calling thread's process is executing within a non-global zone that emulates a host
identifier, then the zone's emulated 32-bit host identifier is returned.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso hostid(1), sysinfo(2), attributes(5), standards(5), zones(5)

Basic Library Functions

325

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hostid-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

gethostname(3C)

326

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

gethostname, sethostname - get or set name of current host

#include <unistd.h>

int gethostname(char *name, size t namelen) ;

int sethostname(char *name, size t namelen);

The gethostname () function returns the standard host name for the current processor, as
previously set by sethostname (). The namelen argument specifies the size of the array
pointed to by name. The returned name is null-terminated unless insufficient space is
provided.

The sethostname () function sets the name of the host machine to be name, which has length
namelen. This call is restricted to the superuser and is normally used only when the system is
bootstrapped.

Host names are limited to MAXHOSTNAMELEN characters, currently 256, defined in the
<netdb.h>header.

Upon successful completion, gethostname () and sethostname () return 0. Otherwise, they
return —1 and set errno to indicate the error.

The gethostname() and sethostname () functions will fail if:
EFAULT The name argument is an invalid address.

The sethostname () function will fail if:

EPERM The {PRIV_SYS_ADMIN} privilege was not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

sysinfo(2), uname(2), gethostid(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « LastRevised 24 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uname-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gethrtime(3C)

Name

Synopsis

Description

Examples

Attributes

See Also

Notes

gethrtime, gethrvtime - get high resolution time

#include <sys/time.h>

hrtime t gethrtime(void);

hrtime t gethrvtime(void);

The gethrtime() function returns the current high-resolution real time. Time is expressed as
nanoseconds since some arbitrary time in the past; it is not correlated in any way to the time of
day, and thus is not subject to resetting or drifting by way of adj time(2) or
settimeofday(3C). The hi-res timer is ideally suited to performance measurement tasks,
where cheap, accurate interval timing is required.

The gethrvtime() function returns the current high-resolution LWP virtual time, expressed
as total nanoseconds of execution time.

The gethrtime() and gethrvtime() functions both return an hrtime t, which is a 64-bit
(long long) signed integer.

The following code fragment measures the average cost of getpid(2):
hrtime t start, end;

int i, iters = 100;

start = gethrtime();

for (i = 0; i < iters; i++)
getpid();

end = gethrtime();

printf("Avg getpid() time = %l1d nsec\n", (end — start) / iters);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

MT-Level MT-Safe

proc(1l),adjtime(2), gettimeofday(3C), settimeofday(3C), attributes(5)

Although the units of hi-res time are always the same (nanoseconds), the actual resolution is
hardware dependent. Hi-res time is guaranteed to be monotonic (it won't go backward, it
won't periodically wrap) and linear (it won't occasionally speed up or slow down for
adjustment, like the time of day can), but not necessarily unique: two sufficiently proximate
calls may return the same value.

Basic Library Functions 327

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getline(3C)

Name getline, getdelim - delimited string input
Synopsis #include <stdio.h>
ssize t getline(char **restrict anphq size t *restrict n,
FILE *restrict stream);
ssize t getdelim(char **restrict Hneptr, size t *restrict n,

int delimiter, FILE *restrict stream);

Description The getline() function reads an entire line from stream, storing the address of the buffer
containing the line in *lineptr. The buffer is null-terminated and includes the NEWLINE
character if one was found.

If *lineptr is a null pointer, getline () allocates a buffer for storing the line. Alternatively,
before the call to getline(), *lineptr can contain a pointer to a buffer allocated by malloc(3C)
whose size is *n bytes. If the buffer is not large enough to store the line, getline() resizes the
buffer with realloc(3C). In either case, a successful call to getline () updates *lineptr and *n
to reflect the buffer address and size, respectively. The buffer should be freed with a call to
free(3C).

The getdelim() function is identical to getline(), except a line delimiter other than
NEWLINE can be specified as the delimiter argument. As with getline(), a delimiter
character is not added if one was not present in stream before end-of-file was reached.

ReturnValues Upon successful completion, the getline() and getdelim() functions return the number of
characters written into the buffer, including the delimiter character but excluding the
terminating null character. Upon failure to read a line (including end of file condition), these
function return —1 and set errno to indicate the error.

Errors Thegetline() and getdelim() functions will fail if:
EINVAL Either lineptr or nis a null pointer.

ENOMEM Insufficient memory is available.

The getline() and getdelim() functions may fail if:

EOVERFLOW More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

See fgetc(3C) for other conditions under which these functions will and may fail.

Examples ExampLE1 Retrievealinelength.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

328 man pages section 3: Basic Library Functions « LastRevised 11 0ct 2010

getline(3C)

EXAMPLE1 Retrieve aline length. (Continued)

FILE *fp;

char *line = NULL;

size t len = 0;

ssize t read;

fp = fopen("/etc/motd"

if (fp == NULL)
exit(1l);

r);

while ((read = getline(&line, &len, fp))
printf("Retrieved line of length %zu

, read);

printf("ss", line);
}
if (ferror(fp)) {

/* handle error */
}
free(line);
fclose(fp);
return 0;

}

Attributes See attributes(5) for descriptions of the following attributes:

I=-1) {
A\

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

MT-Safe

SeeAlso fgetc(3C), fgets(3C), free(3C), malloc(3C), realloc(3C), attributes(5)

Basic Library Functions

329

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getloadavg(3C)

330

Name

Synopsis

Description

ReturnValues

Errors

Usage

Attributes

See Also

getloadavg — get system load averages

#include <sys/loadavg.h>
int getloadavg(double loadavgl 1, int nelem);

The getloadavg() function returns the number of processes in the system run queue
averaged over various periods of time. Up to nelem samples are retrieved and assigned to
successive elements of loadavg|]. The system imposes a maximum of 3 samples, representing
averages over the last 1, 5, and 15 minutes, respectively. The LOADAVG_1MIN, LOADAVG_5MIN,
and LOADAVG_15MIN indices, defined in <sys/loadavg.h>, can be used to extract the data
from the appropriate element of the loadavg[] array.

Upon successful completion, the number of samples actually retrieved is returned. If the load
average was unobtainable, —1 is returned and errno is set to indicate the error.

The getloadavg() function will fail if:

EINVAL The number of elements specified is less than 0.

If the caller is in a non-global zone and the pools facility is active, the behavior of
getloadavg() is equivalent to that of pset_getloadavg(3C) called with psetid set to PS_MYID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

uptime(1),w(1), pooladm(1M), Kstat(3PERL), pset getloadavg(3C), standards(5)

man pages section 3: Basic Library Functions « Last Revised 28 Jun 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uptime-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1w-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-3perl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getlogin(3Q)

Name

Synopsis

Standard conforming

Description

Return Values

Errors

getlogin, getlogin_r — get login name

#include <unistd.h>

char *getlogin(void);
char *getlogin r(char *name, int namelen);

cc [flag... 1 file... -D_POSIX_PTHREAD SEMANTICS [library ... 1]
int getlogin r(char *name, size t namesize);

The getlogin() function returns a pointer to the login name as found in /var/adm/utmpx. It
can be used in conjunction with getpwnam(3C) to locate the correct password file entry when
the same user ID is shared by several login names.

If getlogin() is called within a process that is not attached to a terminal, it returns a null
pointer. The correct procedure for determining the login name is to call cuserid(3C), or to
call getlogin() and ifit fails to call getpwuid(3C).

The getlogin_r() function has the same functionality as getlogin () except that the caller
must supply a buffer name with length namelen to store the result. The name buffer must be at
least POSIX_ LOGIN_NAME_MAX bytes in size (defined in <limits.h>). The POSIX version (see
standards(5)) of getlogin_r() takes a namesize parameter of type size_t.

Upon successful completion, getlogin () returns a pointer to the login name or a null pointer
if the user's login name cannot be found. Otherwise it returns a null pointer and sets errno to
indicate the error.

The standard-conforming getlogin_r() returns @ if successful, or the error number upon
failure.

The getlogin_r() function will fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

EINVAL And entry for the current user was not found in the /var/adm/utmpx file.
The getlogin() and getlogin_r() functions may fail if:

EMFILE There are {OPEN_MAX]} file descriptors currently open in the calling process.
ENFILE ~ The maximum allowable number of files is currently open in the system.
ENXIO The calling process has no controlling terminal.

The getlogin_r() function may fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

Basic Library Functions 331

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getlogin(3C)

332

Usage

Files

Attributes

See Also

Notes

The return value of getlogin() points to thread-specific data whose content is overwritten on
each call by the same thread.

Three names associated with the current process can be determined: getpwuid (geteuid())
returns the name associated with the effective user ID of the process; getlogin() returns the
name associated with the current login activity; and getpwuid (getuid()) returns the name
associated with the real user ID of the process.

/var/adm/utmpx user access and administration information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level See below.
Standard See standards(5).

geteuid(2), getuid(2), cuserid(3C), getgrnam(3C), getpwnam(3C), getpwuid(3C), utmpx(4),
attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3).

The getlogin() function is safe to use in multithreaded applications, but is discouraged. The
getlogin_r() function should be used instead.

Solaris 2.4 and earlier releases provided a getlogin_r() as specified in POSIX.1c Draft 6. The
final POSIX.1c standard changed the interface as described above. Support for the Draft 6
interface is provided for compatibility only and may not be supported in future releases. New
applications and libraries should use the standard-conforming interface.

man pages section 3: Basic Library Functions - Last Revised 18 May 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1geteuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

getmntent(3C)

Name

Synopsis

Description

getmntent () and
getmntany()

getextmntent()

getmntent, getmntany, getextmntent, hasmntopt, putmntent, resetmnttab — get mounted
device information

#include <stdio.h>

#include <sys/mnttab.h>

int getmntent(FILE fﬁn struct mnttab *mp);

int getmntany(FILE *jp, struct mnttab *mp, struct mnttab *n@pnﬂ3;
int getextmntent(FILE *fp, struct extmnttab *mp, int len);

char *hasmntopt(struct mnttab *mnt, char *opt);

int putmntent(FILE *iop, struct mnttab *mp);

void resetmnttab(FILE *fp);

The getmntent () and getmntany () functions each fill in the structure pointed to by mp with
the broken-out fields of a line in the mnttab file. Each line read from the file contains a mnttab
structure, which is defined in the <sys/mnttab.h> header. The structure contains the
following members, which correspond to the broken-out fields from a line in /etc/mnttab
(seemnttab(4)).

char *mnt_special; /* name of mounted resource */
char *mnt_mountp; /* mount point */

char *mnt_fstype; /* type of file system mounted */
char *mnt_mntopts; /* options for this mount */

char *mnt_time; /* time file system mounted */

» »

Fields with no actual content in /etc/mnttab are represented in the file as ”-”. To clearly
distinguish empty fields, getmntent () set the corresponding field in mp to NULL.

Each getmntent () call causes a new line to be read from the mnttab file. Successive calls can be
used to search the entire list. The getmntany () function searches the file referenced by fp until
amatch is found between a line in the file and mpref. A match occurs if all non-null entries in
mpref match the corresponding fields in the file. These functions do not open, close, or rewind
the file.

The getextmntent () function is an extended version of the getmntent () function that
returns, in addition to the information that getmntent () returns, the major and minor
number of the mounted resource to which the line in mnttab corresponds. The

getextmntent () function also fills in the extmntent structure defined in the <sys/mnttab.h>
header. For getextmntent () to function properly, it must be notified when the mnttab file has
been reopened or rewound since a previous getextmntent () call. This notification is
accomplished by calling resetmnttab (). Otherwise, it behaves exactly as getmntent ()
described above

Basic Library Functions 333

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4

getmntent(3C)

334

The data pointed to by the mnttab structure members are stored in a static area and must be
copied to be saved between successive calls.

hasmntopt() The hasmntopt () function scans themnt mntopts member of the mnttab structure mnt for a
substring that matches opt. It returns the address of the substring if a match is found;
otherwise it returns 0. Substrings are delimited by commas and the end of themnt_mntopts
string.

putmntent() The putmntent() function is obsolete and no longer has any effect. Entries appear in mnttab
as a side effect of a mount(2) call. The function name is still defined for transition purposes.

resetmnttab() The resetmnttab() function notifies getextmntent () to reload from the kernel the device
information that corresponds to the new snapshot of the mnttab information (see mnttab(4)).
Subsequent getextmntent () calls then return correct extmnttab information. This function
should be called whenever the mnttab file is either rewound or closed and reopened before any
calls are made to getextmntent ().

ReturnValues

getmntent() and If the next entry is successfully read by getmntent () or a match is found with getmntany(), 0
getmntany() js returned. If an EOF is encountered on reading, these functions return —1. If an error is
encountered, a value greater than 0 is returned. The following error values are defined in
<sys/mnttab.h>:

MNT_TOOLONG A line in the file exceeded the internal buffer size of MNT_LINE_MAX.
MNT_TOOMANY A line in the file contains too many fields.

MNT TOOFEW A line in the file contains too few fields.

hasmntopt () Upon successful completion, hasmntopt () returns the address of the substring if a match is
found. Otherwise, it returns 0.

putmntent() The putmntent() is obsolete and always returns —1.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso mount(2), mnttab(4), attributes(5)

man pages section 3: Basic Library Functions - Last Revised 22 Mar 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getnetgrent(3C)

Name

Synopsis

Description

getnetgrent, getnetgrent_r, setnetgrent, endnetgrent, innetgr — get network group entry

#include <netdb.h>

int getnetgrent(char **rnachingp, char **yserp, char **donuﬁnp);

int getnetgrent_r(char **machinep, char **userp, char **domainp,
char *buffer, intbuflen);

int setnetgrent(const char *netgroup);
int endnetgrent(void);

int innetgr(const char *netgroup, const char *machine,
const char *user, const char *domain);

These functions are used to test membership in and enumerate members of “netgroup”
network groups defined in a system database. Netgroups are sets of (machine,user,domain)
triples (see netgroup(4)).

These functions consult the source specified for netgroup in the /etc/nsswitch. conf file (see
nsswitch.conf(4)).

The function innetgr() returns 1 if there is a netgroup netgroup that contains the specified
machine, user, domain triple as a member; otherwise it returns 0. Any of the supplied pointers
machine, user, and domain may be NULL, signifying a "wild card" that matches all values in
that position of the triple.

The innetgr() function is safe for use in single-threaded and multithreaded applications.

The functions setnetgrent (), getnetgrent(), and endnetgrent () are used to enumerate
the members of a given network group.

The function setnetgrent () establishes the network group specified in the parameter
netgroup as the current group whose members are to be enumerated.

Successive calls to the function getnetgrent () will enumerate the members of the group
established by calling setnetgrent (); each call returns 1 if it succeeds in obtaining another
member of the network group, or 0 if there are no further members of the group.

When calling either getnetgrent () or getnetgrent_r(), addresses of the three character
pointers are used as arguments, for example:

char *mp, *up, *dp;
getnetgrent(e&mp, &up, &dp);

Upon successful return from getnetgrent (), the pointer mp points to a string containing the
name of the machine part of the member triple, up points to a string containing the user name
and dp points to a string containing the domain name. If the pointer returned for mp, up, or dp
is NULL, it signifies that the element of the netgroup contains wild card specifier in that
position of the triple.

Basic Library Functions 335

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netgroup-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getnetgrent(3C)

The pointers returned by getnetgrent () point into a buffer allocated by setnetgrent () that
is reused by each call. This space is released when an endnetgrent () call is made, and should
not be released by the caller. This implementation is not safe for use in multi-threaded
applications.

The function getnetgrent_r() is similar to getnetgrent () function, but it uses a buffer
supplied by the caller for the space needed to store the results. The parameter buffer should be
a pointer to a buffer allocated by the caller and the length of this buffer should be specified by
the parameter buflen. The buffer must be large enough to hold the data associated with the
triple. The getnetgrent_r() function is safe for use both in single-threaded and
multi-threaded applications.

The function endnetgrent () frees the space allocated by the previous setnetgrent () call.
The equivalent of an endnetgrent () implicitly performed whenever a setnetgrent () callis
made to a new network group.

Note that while setnetgrent () and endnetgrent () are safe for use in multi-threaded
applications, the effect of each is process-wide. Calling setnetgrent () resets the enumeration
position for all threads. If multiple threads interleave calls to getnetgrent_r() each will
enumerate a disjoint subset of the netgroup. Thus the effective use of these functions in
multi-threaded applications may require coordination by the caller.

Errors The function getnetgrent_r() will return @ and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See Intro(2) for the proper usage and
interpretation of errno in multi-threaded applications.

The functions setnetgrent () and endnetgrent () return @ upon success.

Files /etc/nsswitch.conf

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level See DESCRIPTION section.

SeeAlso 1Intro(2),Intro(3),netgroup(4), nsswitch.conf(4),attributes(5)

Warnings The function getnetgrent_r() is included in this release on an uncommitted basis only, and
is subject to change or removal in future minor releases.

Notes Only the Network Information Services, NIS and NIS+, are supported as sources for the
netgroup database.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

336 man pages section 3: Basic Library Functions « Last Revised 5 Apr 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netgroup-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

get_nprocs(3C)

Name

Synopsis

Description

ReturnValues

Attributes

See Also

Notes

get_nprocs, get_nprocs_conf — get number of processors

#include <unistd.h>

int get nprocs(void);

int get nprocs_conf(void);

The get_nprocs() and get_nprocs_conf () functions are, respectively, equivalent to:
sysconf(_SC_NPROCESSORS ONLN);

sysconf(_SC_NPROCESSORS CONF);

The get_nprocs () function returns the number of available processors. The
get_nprocs_conf () function returns the number of processors the operating system
configured.

See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe

sysconf(3C), attributes(5)

The get_nprocs() and get_nprocs_conf() functions are provided only as GNU/Linux
compatibility interfaces.

Basic Library Functions

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getopt(3C)

338

Name

Synopsis

SVID3, XPG3

POSIX.2, XPG4, SUS,
SUSv2, SUSv3

Description

getopt — command option parsing

#include <stdio.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;

extern int optind, opterr, optopt;

The getopt () function is a command line parser that can be used by applications that follow
Basic Utility Syntax Guidelines 3, 4, 5, 6, 7, 9, and 10 which parallel those defined by
application portability standards (see intro(1)). It can also be used by applications which
additionally follow the Command Line Interface Paradigm (CLIP) syntax extension
guidelines 15, 16, and 17. It partially enforces guideline 18 by requiring that every option has a
short-name, but it allows multiple long-names to be associated with an option. The remaining
guidelines are not addressed by getopt () and are the responsibility of the application.

The argc and argv arguments are the argument count and argument array as passed to main
(see exec(2)). The optstring argument specifies the acceptable options. For utilities wanting to
conform to the Basic Utility Syntax Guidelines, optstring is a string of recognized option
characters. All option characters allowed by Utility Syntax Guideline 3 are allowed in
optstring. If a character is followed by a colon (:), the option is expected to have an
option-argument, which can be separated from it by white space. Utilities wanting to conform
to the extended CLIP guidelines can specify long-option equivalents to short options by
following the short-option character (and optional colon) with a sequence of strings, each
enclosed in parentheses, that specify the long-option aliases.

The getopt () function returns the short-option character in optstring that corresponds to the
next option found in argv.

The getopt () function places in optind the argv index of the next argument to be processed.
The optind variable is external and is initialized to 1 before the first call to getopt (). The
getopt () function sets the variable optarg to point to the start of the option-argument as
follows:

= Ifthe option is a short option and that character is the last character in the argument, then
optarg contains the next element of argv, and optind is incremented by 2.

man pages section 3: Basic Library Functions - LastRevised 24 Feb 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

getopt(3C)

Return Values

Errors

Examples

= Ifthe option is a short option and that character is not the last character in the argument,
then optarg points to the string following the option character in that argument, and
optind is incremented by 1.

= Ifthe option is along option and the character equals is not found in the argument, then
optarg contains the next element of argv, and optind is incremented by 2.

= Ifthe option is along option and the character equals is found in the argument, then optarg
points to the string following the equals character in that argument and optind is
incremented by 1.

In all cases, if the resulting value of optind is not less than argc, this indicates a missing
option-argument and getopt () returns an error indication.

When all options have been processed (that is, up to the first operand), getopt () returns -1.
The special option “--”(two hyphens) can be used to delimit the end of the options; when it is
encountered, -1 is returned and “--” is skipped. This is useful in delimiting non-option
arguments that begin with “-” (hyphen).

If getopt () encounters a short-option character or a long-option string not described in the
opstring argument, it returns the question-mark (?) character. If it detects a missing
option-argument, it also returns the question-mark (?) character, unless the first character of
the optstring argument was a colon (:), in which case getopt () returns the colon (:) character.
For short options, getopt () sets the variable optopt to the option character that caused the
error. For long options, optopt is set to the hyphen (-) character and the failing long option can
be identified through argv[optind-1]. If the application has not set the variable opterr to 0 and
the first character of optstringis not a colon (:), getopt () also prints a diagnostic message to
stderr.

The getopt () function returns the short-option character associated with the option
recognized.

A colon (:) is returned if getopt () detects a missing argument and the first character of
optstringwas a colon (:).

A question mark (?) is returned if getopt () encounters an option not specified in optstring or
detects a missing argument and the first character of optstring was not a colon (:).

Otherwise, getopt () returns -1 when all command line options are parsed.

No errors are defined.

EXAMPLE 1 Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that
can take the mutually-exclusive options a and b and the options f and o, both of which require
arguments:

Basic Library Functions 339

getopt(3C)

340

EXAMPLE1 Parsing Command Line Options (Continued)

#include <unistd.h>

int
main(int argc, char *argv[1)
{
int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;

while ((c = getopt(argc, argv, ":abf:0:")) != -1) {
switch(c) {
case '’

L

a’:
if (bflg)
errflg++;
else
aflg++;
break;
case 'b’":
if (aflg)
errflg++;
else {
bflg++;
bproc();
}
break;
case 'f’:
ifile = optarg;
break;

[

o':
ofile = optarg;
break;

LA

case

case /* -f or -o without operand */
fprintf(stderr,
"Option -%c requires an operand\n", optopt);
errflg++;
break;
case '?':
fprintf(stderr,
"Unrecognized option: -%c\n", optopt);
errflg++;

}

if (errflg) {
fprintf(stderr, "usage: . . . ");
exit(2);

man pages section 3: Basic Library Functions - LastRevised 24 Feb 2011

getopt(3C)

EXAMPLE1 Parsing Command Line Options (Continued)

}
for (; optind < argc; optind++) {
if (access(argv[optind], R OK)) {

}
This code accepts any of the following as equivalent:

cmd -ao arg path path

cmd -a -0 arg path path
cmd -0 arg -a path path
cmd -a -0 arg -- path path
cmd -a -oarg path path

cmd -aoarg path path

EXAMPLE2 Check Options and Arguments.

The following example parses a set of command line options and prints messages to standard
output for each option and argument that it encounters.

#include <unistd.h>
#include <stdio.h>
int c;

char *filename;

extern char *optarg;
extern int optind, optopt, opterr;

while ((c = getopt(argc, argv, ":abf:")) !'= -1) {
switch(c) {
case '

’

a':
printf("a is set\n")
break;
case 'b’:
printf("b is set\n")
break;
case 'f’:
filename = optarg;
printf("filename is %s\n", filename);
break;
case ":':
printf("-%c without filename\n", optopt);
break;
case '?":
printf("unknown arg %c\n", optopt);
break;

Basic Library Functions 341

getopt(3C)

EXAMPLE2 Check Options and Arguments. (Continued)

This example can be expanded to be CLIP-compliant by substituting the following string for
the optstring argument:

ra(ascii)b(binary)f:(in-file)o: (out-file)V(version)?(help)

and by replacing the '?' case processing with:

case 'V':
fprintf(stdout, "cmd 1.1\n")
exit(0);
case '?':
if (optopt == '?") {
print_help();
exit(0);
}
if (optopt == '-")
fprintf(stderr,
"unrecognized option: %s\n", argv[optind-11);
else
fprintf(stderr,
"unrecognized option: -%c\n", optopt);
errflg++;
break;

and by replacing the ' case processing with:

case ":': /* -f or -o without operand */
if (optopt == '-")
fprintf(stderr,
"Option %s requires an operand\n", argv[optind-1]);
else
fprintf(stderr,
"Option -%c requires an operand\n", optopt);
errflg++;
break;

While not encouraged by the CLIP specification, multiple long-option aliases can also be
assigned as shown in the following example:

ra(ascii)b(binary): (in-file) (input)o: (outfile) (output)V(version)?(help)

Environment See environ(5) for descriptions of the following environment variables that affect the
Variables execution of getopt (): LANG, LC_ALL, and LC_MESSAGES.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes as characters in
optstring.

342 man pages section 3: Basic Library Functions - LastRevised 24 Feb 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getopt(3C)

Usage Thegetopt () function does not fully check for mandatory arguments because there is no
unambiguous algorithm to do so. Given an option string a:b and the input -a -b, getopt ()
assumes that -b is the mandatory argument to the -a option and not that -a is missing a
mandatory argument. Indeed, the only time a missing option-argument can be reliably
detected is when the option is the final option on the command line and is not followed by any
command arguments.

It is a violation of the Basic Utility Command syntax standard (see Intro(1)) for options with
arguments to be grouped with other options, as in cmd -abo filename , where a and b are
options, o is an option that requires an argument, and filename is the argument to o. Although
this syntax is permitted in the current implementation, it should not be used because it may
not be supported in future releases. The correct syntax to use is:

cmd —ab —o filename

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Unsafe
Standard See below.

For the Basic Utility Command syntax is Standard, see standards(5).

SeeAlso Intro(l),getopt(l),getopts(l),getsubopt(3C),gettext(3C), setlocale(3C),
attributes(5), environ(5), standards(5)

Basic Library Functions 343

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopts-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getopt_long(3Q)

Name

Synopsis

Description

344

getopt_long, getopt_long_only, getopt_clip — parse long command options

#include <getopt.h>

int getopt_long(int argc, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptr);

int getopt_long_only(int argc, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptr);

int getopt_clip(int arge, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptrextern char *optarg;
extern int optind, opterr, optopt;

These functions are provided as a porting aid for GNU/Freeware/OpenBSD utilities. The
getopt_long() function is intended to be as closely compatible with the GNU and OpenBSD
implementations as possible, but since these public implementations differ in some corner
cases, it is not possible to be fully compatible with both. The differences are enumerated in the
NOTES section.

The getopt_long() function is an aid for implementing the GNU command line argument
conventions. See the GNU documentation for the details of these conventions (glibc 2.2.3).
Note that the GNU conventions are not POSIX-conforming. Most notably, the GNU
conventions allow for optional option-arguments and do not enforce that operands must
follow options on the command line.

The getopt_clip() function provides an interface similar to getopt_long() except that it
implements the Sun CLIP convention, which is slightly more restrictive than the
GNU/Freeware conventions. CLIP is modeled after the GNU/Freeware conventions but
removes POSIX violations and syntactic ambiguities (see Intro(1)). Specifically,
getopt_clip() isa command line parser that can be used by applications that follow the
Command Line Interface Paradigm or CLIP syntax guidelines 3, 4, 5, 6,7, 9, 10, 15, and 16.
The remaining guidelines are not addressed by getopt_clip() and are the responsibility of
the application.

The getopt_long() function is similar to getopt(3C) except that it accepts options in two
forms: words and characters, also referred to as long options and short options.

The getopt_long() function can be used in two ways. In the first way, every long option
understood by the program is mapped to a single character that is usually a corresponding
short option. The option structure is used only to translate from long options to short
options. In the second way, a long option sets a flag specified in the option structure, or
stores a pointer to the command line argument in the address passed to it for options that take
arguments. These two methods apply individually to each long option. Both methods can be
used in the same application.

The getopt_long() function accepts command lines that interleave options and operands.
The getopt_long() function reorders the elements of the argv argument such that when all
command line arguments have been processed, all operands follow options (and their

man pages section 3: Basic Library Functions - Last Revised 10 May 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1

getopt_long(3Q)

option-arguments) in the argv array and optind points to the first operand. The order of
options relative to other options and operands relative to other operands is maintained. The
argument “--” is accepted as a delimiter indicating the end of options. No argument reorder
occurs past this delimiter. Argument reordering can not be unambiguously performed in all
cases. The getopt_long() function depends on a number of internal heuristics to perform the
reordering. The argc and argv arguments are the argument count and argument array as
passed tomain() (see exec(2)).

The shortopts argument contains the short-option characters recognized by the command
using these functions. If a letter is followed by a colon (:), the option is expected to have an
option-argument that should be separated from it by white space. If a character is followed by
two colons (::), the option takes an optional option-argument. Any text after the option name
itis returned in optarg; otherwise, optarg is set to 0. A whitespace character can never be used
to separate an optional option-argument from its associated option. If shortopts contains the
character “W” followed by a semicolon (;), then -W foo is treated as the long option --foo.

If the first character of the shortopts argument is the plus sign (+), getopt_long() enforces the
POSIX requirement that operands follow options on the command line by returning -1 and
stopping argument processing upon encountering the first operand (or “--”). This behavior
can also be specified by setting the environment variable POSIXLY_CORRECT.

A hyphen (-) as the first character of the shortopts argument specifies that options and
operands can be intermixed in argv but no argument reordering is performed. Operands are
returned as arguments to option ‘\1', and option processing does not stop until “--” or the end
of argv is found.

If the first character of the shortopts argument (after a potential plus or minus character) isa
colon (:), a colon is returned by getopt_long() in response to a missing argument; otherwise,
a question mark (?) is returned for this condition.

The longopts argument describes the long options to accept. It is an array of struct option
structures, one for each long option. The array is terminated with an element containing all
Zeros.

The struct option structure contains the following members:
const char *name Contains a pointer to the name of the option.

int has_arg Specifies whether the option takes an argument. The possible values,
defined in <getopt.h>,are no_argument, optional argument, and
required argument.

int *flag Contains the address of an int variable that is the flag for this option.
The value contained in val is stored in this location to indicate that the
option was seen. If flag is a null pointer, then the value contained in
valis returned when this option is encountered, otherwise zero is
returned.

Basic Library Functions 345

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

getopt_long(3Q)

346

int val Contains the value to be stored at the variable pointed to by flag or
returned by getopt_long() if flag is a null pointer.

For any long option, getopt_long() returns the index in the array longopts of the options
definition by storing it in indexptr. The name of the option can be retrieved with
longopts[(*indexptr)].name. Long options can be distinguished either by the values in their val
members or by their indices. The indexptr variable can also distinguish long options that set
flags. The value of indexptr after encountering a short option is undefined.

If an option has an argument, the optarg global variable is set to point to the start of the option
argument on return from getopt_long(); otherwise it is set to null. A long option can take an
argument in one of two forms: --option=arg or --option arg. If the long option argument is
optional, only the “- -option=arg” form can be used to specify the option argument. No
argument is specified by the simple form “- -option”. The form “- -option=" specifies an
empty string as the option argument.

Long-option names can be abbreviated if the abbreviation is unique or an exact match for
some defined option. An exact match takes precedence over an abbreviated match. Thus, if
foo and foobar are acceptable long-option names, then specifying --foo on the command line
always matches the former. Specifying --f or --fo would not be accepted as a match for either.

The getopt_long() function places in optind the argv index of the next argument to be
processed. The optind global variable is external and is initialized to 1 before the first call to
getopt_long(). When all options have been processed (that is, up to the first non-option
argument), getopt_long() returns -1. The special option “--” (two hyphens) can be used to
delimit the end of the options; when it is encountered, -1 is returned and “—” is skipped. This

»

ooption is useful in delimiting non-option arguments that begin with “-” (hyphen).

If getopt_long() encounters a short option character shortopts string or a long option not
described in the longopts array, it returns the question mark (?) character. It also returns a
question mark (?) character in response to a missing option argument unless the first
character of shortopts is a colon (:) (or the second character, if the first character is either a plus
(+) or aminus (-)), in which case it returns a colon (:). In either case, if the application has not
set opterr to 0 and the first character of shortopts is nota colon (:), getopt_long() printsa
diagnostic message to stderr.

The getopt_long_only () function is equivalent to the getopt_long() function except that it
allows the user of the application to pass long options with only a single hyphen (-) instead of
“--7.The “--” prefix is still recognized. However, when a single hyphen (-) is encountered,
getopt_long_only() attempts to match this argument to a long option, including
abbreviations of the long option. If a long option starts with the same character as a short
option, a single hyphen followed by that character (and no other characters) will be
recognized as a short option. Use of getopt_long_only() is strongly discouraged by Sun and
GNU for new applications.

man pages section 3: Basic Library Functions - Last Revised 10 May 2004

getopt_long(3Q)

Return Values

The behavior of getopt_clip() differs from that of getopt_long() in the following ways:

= Thegetopt_clip() function does not perform argument reordering. The getopt_clip()
function always enforces the POSIX behavior that all options should precede operands on
the command line. Specifically, getopt_clip() does not reorder arguments but returns -1
and stops processing upon encountering the first operand argument.

= The environment variable POSIXLY_ CORRECT is ignored (the getopt_clip() function
behaves as though it were set.)

= The plus and minus characters do not have a special meaning as the first character of the
shortopts argument. They are treated as any other character (other than the colon) would
be treated.

= Optional option-arguments are not allowed. The behavior of getopt_clip() when
optional_argument is specified as the value of has_arg in the longopts argument or
double colons are included in the shortopts argument is unspecified.

= Long-option abbreviations are not recognized.

= Short options are required to have at least one long-option equivalent. That is, each
character in shortopts must appear as the val member in one or more option structures.
Similarly, each long option must have a short option equivalent, meaning that the val
member of each option structure must appear in the shortopts string. If these
requirements are not met, getopt_clip() returns -1 and sets errno to EINVAL.

For short options (other than -Wwhen W; is in shortopts), these functions return the next
option character specified on the command line. For long options, the value returned by these
functions depends upon the value of the flag structure element for the identified option. If
flag is NULL, the value contained in the val structure element for the long option encountered
on the command line is returned. Otherwise, these functions return 0 (and the value specified
in the val member for the long option is stored into the location pointed to by flag). When w;
is in shortopts and -Wis encountered in the command line and the option argument to -W
matches along-option name, the return state from these functions is as if the long option had
been encountered. However, if no argument is specified to the long option, optargis set to the
option argument of -W (the long-option name or unique prefix). If the option argument of -W
does not match along option (or unique prefix), the return state is as for any other short
option.

A colon (:) is returned if getopt_long() detects a missing argument and the first character of

« » « »

shortopts (other than a possible initial “+” or “-”) was a colon (*:').

A question mark (?) is returned if getopt_long() encounters an option letter not included in
shortopts or detects a missing argument and the first character of shortopts (other than a

« » «

possible initial “+” or “-”) was not a colon (:).

Basic Library Functions 347

getopt_long(3Q)

The getopt_clip() function expects all short options to have one or more long-option
equivalent and all long options to have one short option equivalent (see NOTES for details). If
proper equivalents are not found, getopt clip() returns -1 and sets errno to EINVAL.

Errors The getopt clip() function will fail if:

EINVAL A shortoption does not have at least one long-option equivalent, or a long option
does not have at least one short-option equivalent.

Examples ExampLE1 Example using getopt ().

#include <unistd.h>
#include <getopt.h>

/* Flag set by ‘--verbose’. */
static int verbose flag;

int
main (int argc, char **argv)
{

int c;

while (1) {
static struct option long options[] = {
/* These options set a flag. */
{"verbose", no argument, &verbose flag, 1},

{"brief", no argument, &verbose flag, 0},
/* The following options don’t set a flag. */
{"add", no_argument, NULL, 'a’},

{"append", no argument, NULL, 'b’},
{"delete", required argument, NULL, ’'d’},
{"create", required argument, NULL, 'c'},
{"file", required argument, NULL, ’'f’},
{0, 0, 0, 0}
+
/* getopt long stores the option index here. */
int option_index = 0;

c = getopt long (argc, argv, "abc:d:f:",
long options, &option index);

/* Detect the end of the options. */
if (c == -1)
break;

switch (c) {

case 0:
/* (In this example) only options which set */

348 man pages section 3: Basic Library Functions « LastRevised 10 May 2004

getopt_long(3Q)

EXAMPLE 1 Example using getopt (). (Continued)

/* a flag return zero, so do nothing. */
break;

1o

case 'a’:
puts ("option --add (-a)\n");
break;

case 'b’:
puts ("option --append (-b)\n");
break;

v

case 'c’:
printf ("option --create (-c) with value ‘%s’\n", optarg);
break;

case 'd’:
printf ("option --delete (-d) with value ‘%s’\n", optarg);
break;

case 'f':
printf ("option --file (-f) with value ‘ss’\n", optarg);
break;

case '?":
/* getopt long already printed an error message. */
break;

default:
abort ();

/* Instead of reporting ‘--verbose’

and ‘--brief’ as they are encountered,

we report the final status resulting from them. */
if (verbose flag)

puts ("verbose flag is set");

/* Print any remaining command line arguments (not options). */
if (optind < argc) {
printf ("non-option ARGV-elements: ");
while (optind < argc)
printf ("ss ", argv[optind++]);
putchar ('\n’);

Basic Library Functions 349

getopt_long(3Q)

Environment
Variables

Usage

Attributes

See Also

Notes

350

EXAMPLE1 Example using getopt (). (Continued)

exit (0);
}

See environ(5) for descriptions of the following environment variables that affect the
execution of getopt_long(): LANG, LC_ALL,and LC_MESSAGES.

POSIXLY_CORRECT When set (and the first character of the shortopts argument is neither a
plus or minus sign), the POSIX rule that all operands must follow all
options is enforced. Option processing terminates when the first
operand is encountered. The getopt_clip() function ignores the
setting of POSIXLY_CORRECT and always behaves as if it were set.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes as
characters in shortopts and the longopts[].name structure members.

The getopt_long() function does not fully check for mandatory arguments because there is
no unambiguous algorithm to do so. Given an option string a: b and the input -a -b,
getopt_long() assumes that -b is the mandatory argument to the -a option and not that -ais
missing a mandatory argument. Indeed, the only time a missing option argument can be
reliably detected is when the option is the final option on the command line and is not
followed by any command arguments.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Intro(l),getopts(l),getopt(3C), getsubopt(3C), gettext(3C), setlocale(3C),
attributes(5), environ(5), standards(5)

Use of getopt_long() is discouraged for applications targeted strictly for Solaris. It should be
used only for applications targeted at Solaris and platforms that adhere to the GNU command
line conventions. The getopt_long_only() function is provided by Solaris and GNU for
legacy applications and its use is discouraged by both current conventions.

The differences between the Solaris/ GNU and OpenBSD versions of these functions are as
follows:

= The handling of the hyphen (-) as the first character of the option string in presence of the
environment variable POSIXLY CORRECT:

man pages section 3: Basic Library Functions - Last Revised 10 May 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopts-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getopt_long(3Q)

Solaris/fGNU Operands are returned as arguments to option "\\1', and option
processing does not stop until “--” or the end of argv is found.
OpenBSD obeys POSIXLY_CORRECT and stops at the first non-option.
= The handling of the hyphen (-) within the shortopts parameter string when not the first
character.

Solaris/GNU treats a single hyphen (-) on the command line as an operand.

OpenBSD treats a single hyphen (-) on the command line as an option. BSD
recognizes this behavior as incorrect, but maintains it for compatibility.

« » « »

= The return value in the event of a missing argument if the first character after “+” or
the option string is not a colon (:)

Solaris/GNU returns “?”.

in

OpenBSD returns “:” (since OpenBSD's getopt does).
= The setting optopt for long options with flag != NULL:

Solaris/GNU sets optopt to val.

OpenBSD sets optopt to 0 (since val would never be returned).

= The setting of optarg for long options without an argument that are invoked with -w (W; in
option string):
Solaris/GNU sets optarg to the option name (the argument of -W).

OpenBSD sets optarg to NULL (the argument of the long option).

= The handling of -W with an argument that is not (a prefix to) a known long option (W; in
option string):
Solaris/GNU returns W with optarg set to the unknown option.

OpenBSD treats as an error (unknown option) and returns “?” with optopt set to 0
and optarg set to NULL.

= The error messages are different (all).

= The implementations do not permute the argument vector at the same points in the calling
sequence. The aspects normally used by the caller (ordering after -1 is returned, value of
optind relative to current positions) are the same. Applications should not depend upon
the ordering of the argument vector before -1 is returned.

Basic Library Functions 351

getpagesize(3C)

352

Name

Synopsis

Description

ReturnValues
Errors

Usage

Attributes

See Also

getpagesize — get system page size
#include <unistd.h>
int getpagesize(void);

The getpagesize() function returns the number of bytes in a page. Page granularity is the
granularity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying hardware page
size.

The getpagesize() function is equivalent to sysconf(_SC PAGE_SIZE) and
sysconf(_SC_PAGESIZE). See sysconf(3C).

The getpagesize() function returns the current page size.
No errors are defined.

The value returned by getpagesize () need not be the minimum value that malloc(3C) can
allocate. Moreover, the application cannot assume that an object of this size can be allocated
with malloc().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pagesize(l), brk(2), getrlimit(2), mmap(2), mprotect(2), munmap(2), malloc(3C),
msync(3C), sysconf(3C), attributes(5)

man pages section 3: Basic Library Functions « Last Revised 27 Jun 2000

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pagesize-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mprotect-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpagesizes(3C)

Name getpagesizes — get system supported page sizes

Synopsis #include <sys/mman.h>
int getpagesizes(size_t pagesize[1, int nelem) ;

Description The getpagesizes() function returns either the number of different page sizes supported by
the system or the actual sizes themselves. When called with nelem as 0 and pagesize as NULL,
getpagesizes () returns the number of supported page sizes. Otherwise, up to nelem page
sizes are retrieved and assigned to successive elements of pagesize|]. The return value is the
number of page sizes retrieved and set in pagesize|].

ReturnValues Upon successful completion, the number of pagesizes supported or actually retrieved is
returned. Otherwise, —1 is returned and errno is set to indicate the error.

Errors The getpagesizes () function will fail if:

EINVAL The nelem argument is less than 0 or pagesize is NULL but nelem is non-zero.
Usage The getpagesizes() function returns all the page sizes for which the hardware and system
software provide support for the memcnt1(2) command MC_HAT_ADVISE. Not all processors

support all page sizes or combinations of page sizes with equal efficiency. Applications
programmers should take this into consideration when using getpagesizes ().

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso memcntl(2), mmap(2), getpagesize(3C), attributes(5)

Basic Library Functions 353

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpass(3C)

Name

Synopsis

XPG4, SUS, SUSv2

Description

ReturnValues

Errors

Usage

Attributes

See Also

354

getpass, getpassphrase — read a string of characters without echo

#include <stdlib.h>

char *getpass(const char *prompt);
char *getpassphrase(const char *prompt);

#include <unistd.h>
char *getpass(const char *prompt);

The getpass () function opens the process's controlling terminal, writes to that device the
null-terminated string prompt, disables echoing, reads a string of characters up to the next
newline character or EOF, restores the terminal state and closes the terminal.

The getpassphrase() function is identical to getpass (), except that it reads and returns a
string of up to 257 characters in length.

Upon successful completion, getpass () returns a pointer to a null-terminated string of at
most 9 bytes that were read from the terminal device. If an error is encountered, the terminal
state is restored and a null pointer is returned.

The getpass () and getpassphrase() functions may fail if:
EINTR The function was interrupted by a signal.

EIO The process is a member of a background process attempting to read from its
controlling terminal, the process is ignoring or blocking the SIGTTIN signal or the
process group is orphaned.

EMFILE OPEN_MAX file descriptors are currently open in the calling process.
ENFILE The maximum allowable number of files is currently open in the system.
ENXIO The process does not have a controlling terminal.

The return value points to static data whose content may be overwritten by each call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

Interface Stability getpass() is Standard.

MT-Level Unsafe

attributes(5), standards(5)

man pages section 3: Basic Library Functions - Last Revised 2 Sep 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getpeerucred(3C)

Name

Synopsis

Description

Return Values

Errors

Attributes

getpeerucred — get connected socket or stream peer's credentials

#include <ucred.h>
int getpeerucred(int fd, ucred_t **ucred);

The getpeerucred() function returns the credentials of the peer endpoint of a
connection-oriented socket (SOCK_STREAM) or stream fd at the time the endpoint was created
or the connection was established. A process that initiates a connection retrieves the
credentials of its peer at the time the peer's endpoint was created. A process that listens for
connections retrieves the credentials of the peer at the time the peer initiated the connection.

When successful, getpeerucred() stores the pointer to a freshly allocated ucred_t in the
memory location pointed to by the ucred argument if that memory location contains the null
pointer. If the memory location is non-null, it will reuse the existing ucred_t.

When ucred is no longer needed, a credential allocated by getpeerucred() should be freed
with ucred_free(3C).

It is possible that all fields of the ucred_t are not available to all peer endpoints and all callers.

Upon successful completion, getpeerucred() returns 0. Otherwise, it returns —1 and errno is
set to indicate the error.

The getpeerucred() function will fail if:

EAGAIN There is not enough memory available to allocate sufficient memory to hold the
user credential. The application can try again later.

EBADF The fd argument is not a valid file descriptor.

EFAULT The pointer location pointed to by the ucred_t ** argument points to an
invalid, non-null address.

EINVAL The socket is connected but the peer credentials are unknown.

ENOMEM The physical limits of the system are exceeded by the memory allocation needed

to hold the user credential.
ENOTCONN The socket or stream is not connected or the stream's peer is unknown.

ENOTSUP This operation is not supported on this file descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Basic Library Functions 355

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpeerucred(3C)

SeeAlso door ucred(3C),ucred get(3C),attributes(5), connld(7M)

Notes The system currently supports both sides of connection endpoints for local AF_UNIX, AF_INET,
and AF_INET6 sockets, /dev/tcp, /dev/ticots,and /dev/ticotsord XTI/TLI connections,
and pipe file descriptors sent using I_SENDFD as a result of the open of a named pipe with the
"connld" module pushed.

356 man pages section 3: Basic Library Functions « Last Revised 26 May 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1connld-7m

getpriority(3C)

Name

Synopsis

Description

getpriority, setpriority — get and set the nice value

#include <sys/resource.h>

int getpriority(int which, id_t who);

int setpriority(int which, id_t who, int value);

The getpriority() function obtains the nice value of a process, thread, or set of processes.
The setpriority() function sets the nice value of a process, thread, or set of processes to
value+NZERO, where NZERO is defined to be 20.

Target entities are specified by the values of the which and who arguments. The which
argument can be one of the following values: PRIO_PROCESS, PRIO_PGRP, PRIO_USER,

PRIO_ GROUP, PRIO SESSION, PRIO LWP, PRIO TASK, PRIO PROJECT, PRIO ZONE, or
PRIO_CONTRACT, indicating that the who argument is to be interpreted as a process ID, a
process group ID, an effective user ID, an effective group ID, a session ID, a thread (Iwp) ID, a
task ID, a project ID, a zone ID, or a process contract ID, respectively. A 0 value for the who
argument specifies the current process, process group, or user. A 0 value for the who argument
is treated as valid group ID, session ID, thread (lwp) ID, task ID, project ID, zone ID, or
process contract ID. A P_MYID value for the who argument can be used to specify the current
group, session, thread, task, project, zone, or process contract, respectively.

If a specified process is multi-threaded, the nice value set with setpriority() affectsall
threads in the process.

If more than one process is specified, getpriority() returns NZERO less than the lowest nice
value pertaining to any of the specified entities, and setpriority() sets the nice values of all
of the specified processes to value+NZERO.

The default nice value is NZERO. Lower nice values cause more favorable scheduling. The range
of valid nice values is 0 to NZERO*2-1. If value+NZERO is less than the system's lowest supported
nice value, setpriority() sets the nice value to the lowest supported value. If value+NZERO is
greater than the system's highest supported nice value, setpriority() sets the nice value to
the highest supported value.

Only a process with appropriate privileges can lower the nice value.

Any process or thread using SCHED_FIFO or SCHED_RR is unaffected by a call to
setpriority(). Thisis not considered an error. A process or thread that subsequently reverts
to SCHED_OTHER will not have its priority affected by such a setpriority() call.

The effect of changing the nice value varies depending on the scheduling policy in effect.

Since getpriority() can return the value -1 on successful completion, it is necessary to set
errnoto 0 prior to acall to getpriority().Ifgetpriority() returns the value -1, then errno
can be checked to see if an error occurred or if the value is a legitimate nice value.

Basic Library Functions 357

getpriority(3C)

ReturnValues Upon successful completion, getpriority() returns an integer in the range from -NZERO to
NZERO-1. Otherwise, —1 is returned and errno is set to indicate the error.

Upon successful completion, setpriority () returns 0. Otherwise, —1 is returned and errno
is set to indicate the error.
Errors Thegetpriority() and setpriority() functions will fail if:

ESRCH No process or thread could be located using the which and who argument values
specified.

EINVAL The value of the which argument was not recognized, or the value of the who
argument is not a valid process ID, process group ID, user ID, group ID, session
ID, thread (Iwp) ID, task ID, project ID, or zone ID.

In addition, setpriority() may fail if:

EPERM A process was located, but neither the real nor effective user ID of the executing
process match the effective user ID of the process whose nice value is being
changed.

EACCES A request was made to change the nice value to a lower numeric value and the

current process does not have appropriate privileges.

Examples ExampLE1 Example using getpriority()

The following example returns the current scheduling priority for the process ID returned by
the call to getpid(2).

#include <sys/resource.h>

int which = PRIO_PROCESS;

id_t pid;

int ret;

pid = getpid();

ret = getpriority(which, pid);

EXAMPLE2 Example using setpriority()

The following example sets the nice value for the current process to 0.

#include <sys/resource.h>

int which

= PRIO PROCESS;
id t pid;
int value = -20;
int ret;

pid = getpid();

358 man pages section 3: Basic Library Functions « LastRevised 1 Apr 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpid-2

getpriority(3C)

EXAMPLE2 Example using setpriority() (Continued)

ret = setpriority(which, pid, value);

Usage Thegetpriority() andsetpriority() functions work with an offset nice value
(value-NZERO). The nice value is in the range 0 to 2*NZERO-1, while the return value for
getpriority() and the third parameter for setpriority() are in the range -NZERO to
NZERO-1.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

SeeAlso nice(l), renice(1),sched get priority max(3C), sched setscheduler(3C),
attributes(5), standards(5)

Basic Library Functions 359

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1renice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getprofattr(3C)

Name

Synopsis

Description

360

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist — get
profile description and attributes

profattr t *getprofattr(void);

profattr t *getprofnam(const char *name);

void free profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt)
void free proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each returna prof_attr entry. Entries can
come from any of the sources specified in the nsswitch. conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam() function
searches fora prof_attr entry with a given name. Successive calls to these functions return
either successive prof attr entries or NULL.

The internal representation of a prof_attrentryisaprofattr_t structure defined in
<prof_attr.h> with the following members:

char *name; /* Name of the profile */

char *resl; /* Reserved for future use */

char *res2; /* Reserved for future use */

char *desc; /* Description/Purpose of the profile */

kva_t *attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr() and
getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of prof_attr
entries. Calls to getprofnam() can leave the enumeration in an indeterminate state.
Therefore, setprofattr() should be called before the first call to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing is complete;
the system may then close any open prof_attr file, deallocate storage, and so forth.

The getproflist () function searches for the list of sub-profiles found in the given profname
and allocates memory to store this list in proflist. The given profname will be included in the
list of sub-profiles. The profcnt argument indicates the number of items currently valid in
proflist. Memory allocated by getproflist () should be freed using the free_proflist()
function.

The free_proflist() function frees memory allocated by the getproflist() function. The
profent argument specifies the number of items to free from the proflist argument.

man pages section 3: Basic Library Functions - Last Revised 31 Mar 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getprofattr(3C)

ReturnValues The getprofattr() function returnsa pointer to aprofattr_t ifit successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Usage Individualattributesin the prof_attr_t structure can be referred to by calling the
kva_match(3C) function.

Because the list of legal keys is likely to expand, any code must be written to ignore unknown
key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_profattr() function.

Files /etc/security/prof_attr profiles and their descriptions

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso auths(1),profiles(1),getexecattr(3C),getauthattr(3C), prof_attr(4)

Basic Library Functions 361

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auths-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1profiles-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

getprogname(3C)

362

Name

Synopsis

Description

Attributes

See Also

getprogname, setprogname — get or set the program name

#include <stdlib.h>

const char *getprogname(void);

void setprogname(const char *progname) ;

The getprogname () function returns the name of the program. If the name has not yet been
set, it returns NULL.

The setprogname () function sets the name of the program to be the last component of the
progname argument. Since a pointer to the given string is kept as the program name, it should
not be modified for the duration of the program.

These functions are used by error-reporting routines to produce consistent output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

err(3C), attributes(5)

man pages section 3: Basic Library Functions « LastRevised 11 Oct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpw(3C)

Name

Synopsis

Description

Usage

Return Values

Attributes

See Also

getpw — get passwd entry from UID

#include <stdlib.h>
int getpw(uid_t wid, char *buf);

The getpw() function searches the user data base for a user id number that equals uid, copies
the line of the password file in which uid was found into the array pointed to by buf, and
returns 0. getpw() returns non-zero if uid cannot be found.

This function is included only for compatibility with prior systems and should not be used; the
functions described on the getpwnam(3C) manual page should be used instead.

If the /etc/passwd and the /etc/group files have a plus sign (+) for the NIS entry, then
getpwent () and getgrent () will not return NULL when the end of file is reached. See
getpwnam(3C).

The getpw() function returns non-zero on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

getpwnam(3C), passwd(4), attributes(5)

Basic Library Functions 363

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpwnam(3C)

Name

Synopsis

Standard conforming

Description

364

getpwnam, getpwnam_r, getpwent, getpwent_r, getpwuid, getpwuid_r, setpwent, endpwent,
fgetpwent, fgetpwent_r — get password entry

#include <pwd.h>

struct passwd *getpwnam(const char *name);

struct passwd *getpwnam_r(const char *name, struct passwd *pwd,
char *buffer, int buflen);

struct passwd *getpwent(void);

struct passwd *getpwent_r(struct passwd *pwd, char *buffer,
int buflen);

struct passwd *getpwuid(uid t uid);

struct passwd *getpwuid r(uid_t wuid, struct passwd *pwd,
char *buffer, int buflen);

void setpwent(void);
void endpwent(void);
struct passwd *fgetpwent(FILE fﬂ;

struct passwd *fgetpwent r(FILE *f struct passwd *pwd,
char *buffer, int buflen);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int getpwnam_r(const char *uname, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

int getpwuid r(uid_t wid, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

These functions are used to obtain password entries. Entries can come from any of the sources
for passwd specified in the /etc/nsswitch. conf file (see nsswitch.conf(4)).

The getpwnam() function searches for a password entry with the login name specified by the
character string parameter name.

The getpwuid() function searches for a password entry with the (numeric) user ID specified
by the uid parameter.

The setpwent (), getpwent (), and endpwent () functions are used to enumerate password
entries from the database. The setpwent () function sets (or resets) the enumeration to the
beginning of the set of password entries. This function should be called before the first call to
getpwent (). Calls to getpwnam() and getpwuid () leave the enumeration position in an
indeterminate state. Successive calls to getpwent () return either successive entries or a null
pointer, indicating the end of the enumeration.

man pages section 3: Basic Library Functions « LastRevised 19 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getpwnam(3C)

Reentrant Interfaces

The endpwent () function may be called to indicate that the caller expects to do no further
password retrieval operations; the system may then close the password file, deallocate
resources it was using, and so forth. It is still allowed, but possibly less efficient, for the process
to call more password functions after calling endpwent ().

The fgetpwent () function, unlike the other functions above, does not use nsswitch.conf but
reads and parses the next line from the stream f, which is assumed to have the format of the
passwd file. See passwd(4).

The getpwnam(), getpwuid(), getpwent (), and fgetpwent () functions use thread—specific
data storage that is reused in each call to one of these functions by the same thread, making
them safe to use but not recommended for multithreaded applications.

The parallel functions getpwnam_r(), getpwuid_r(),getpwent_r(), and fgetpwent_r()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “ _r ” suffix. The reentrant interfaces, however, use buffers supplied
by the caller to store returned results instead of using thread-specific data that can be
overwritten by each call. They are safe for use in both single-threaded and multithreaded
applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The pwd parameter must be a pointer toa struct

passwd structure allocated by the caller. On successful completion, the function returns the
password entry in this structure. The parameter buffer is a pointer to a buffer supplied by the
caller, used as storage space for the password data. All pointers within the returned struct
passwd pwd point to data stored within this buffer; see passwd Structure below. The buffer
must be large enough to hold all the data associated with the password entry. The parameter
buflen (or bufsize for the standard-conforming versions; see standards(5)) should give the
size in bytes of buffer. The maximum size needed for this buffer can be determined with the
{_SC_GETPW_R_SIZE_MAX} sysconf(3C) parameter. The standard-conforming versions place a
pointer to the modified pwd structure in the result parameter, instead of returning a pointer to
this structure. A null pointer is returned at the location pointed to by result on error or if the
requested entry is not found.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setpwent () function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getpwent_r(), the threads will enumerate disjoint subsets of the
password database.

Like their non-reentrant counterparts, getpwnam_r() and getpwuid_r() leave the
enumeration position in an indeterminate state.

Basic Library Functions 365

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getpwnam(3C)

passwd Structure

Return Values

366

Password entries are represented by the struct passwd structure defined in <pwd. h>:

struct passwd {

char *pw name; /* user’s login name */

char *pw_passwd; /* no longer used */

uid_t pw_uid; /* user’s uid */

gid_t pw_gid; /* user's gid */

char *pw_age; /* not used */

char *pw_comment; /* not used */

char *pw_gecos; /* typically user’s full name */
char *pw dir; /* user’s home dir */

char *pw shell; /* user’s login shell */

+;

The pw_passwd member should not be used as the encrypted password for the user; use
getspnam() or getspnam_r() instead. See getspnam(3C).

The getpwnam(), getpwnam_r(), getpwuid(), and getpwuid r() functions each returna
pointer to a struct passwd if they successfully locate the requested entry. A null pointer is
returned if the requested entry is not found, or an error occurs. On error, errno is set to
indicate the error.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(), getpwnam r(),getpwuid(),getpwuid r(),getpwent(),getpwent r(),
fgetpwent (), and fgetpwent_r().If these functions return a null pointer and errno is
non-zero, an error occurred.

The standard-conforming functions getpwnam_r() and getpwuid_r() canreturn @ even on
an error, particularly in the case where the requested entry is not found. The application needs
to check the return value and that the pwd pointer is non-null. Otherwise, an error value is
returned to indicate the error.

The getpwent (), getpwent r(), fgetpwent(), and fgetpwent r() functions each returna
pointer to a struct passwd if they successfully enumerate an entry; otherwise they return a
null pointer on end-of-file or error. On error, errno is set to indicate the error.

See Intro(2) for the proper usage and interpretation of errno in multithreaded applications.

The getpwnam(), getpwuid(), getpwent (), and fgetpwent () functions use thread-specific
data storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getpwnam_r(), getpwuid_r(),
getpwent_r(),and fgetpwent_r() is non-null, it is always equal to the pwd pointer that was
supplied by the caller.

man pages section 3: Basic Library Functions « LastRevised 19 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

getpwnam(3C)

Errors The getpwent r(), fgetpwent(),and fgetpwent r() functions will fail if:
EIO An /O error has occurred.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

The getpwent r() function will fail if:
EMFILE Thereare {OPEN_MAX]} file descriptors currently open in the calling process.

ENFILE ~ The maximum allowable number of files is currently open in the system.

The getpwnam(), getpwnam r(), getpwuid(),getpwuid r(), getpwent(), setpwent(),and
endpwent () functions may fail if:

EIO An1/O error has occurred.

The getpwnam(), getpwnam r(),getpwuid(), getpwuid r(), getpwent(),and setpwent()
functions may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE ~ The maximum allowable number of files is currently open in the system.

The getpwnam(), getpwnam_r (), getpwuid(), and getpwuid_r() functions may fail if:

EINTR A signal was caught during the execution of the function call.

The getpwnam_r () and getpwuid_r() functions may fail if:

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

Usage Three names associated with the current process can be determined: getpwuid(geteuid())
returns the name associated with the effective user ID of the process; getlogin () returns the
name associated with the current login activity; and getpwuid(getuid()) returns the name
associated with the real user ID of the process.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level See Reentrant Interfaces in DESCRIPTION.
Standard See below.

Basic Library Functions 367

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpwnam(3C)

See Also

Notes

368

For endpwent (), getpwent (), getpwnam(), getpwnam r(),getpwuid(),getpwuid r(),and
setpwent (), see standards(5).

passwd(1), yppasswd(1), Intro(2), Intro(3), cuserid(3C), getgrnam(3C), getlogin(3C),
getspnam(3C), nsswitch.conf(4), passwd(4), shadow(4), attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3).

Use of the enumeration interfaces getpwent () and getpwent_r () is discouraged;
enumeration is supported for the passwd file and NIS, but in general is not efficient and might
not be supported for all database sources. The semantics of enumeration are discussed further
innsswitch.conf(4).

Previous releases allowed the use of ‘+'and ‘-' entries in /etc/passwd to selectively include and
exclude NIS entries. The primary usage of these ‘+/-' entries is superseded by the name service
switch, so the ‘+/-' form might not be supported in future releases.

If required, the ‘+/-' functionality can still be obtained for NIS by specifying compat as the
source for passwd.

If the “+/-'is used, both /etc/shadow and /etc/passwd should have the same ‘+'and ‘-' entries
to ensure consistency between the password and shadow databases.

If a password entry from any of the sources contains an empty uid or gid field, that entry will
be ignored by the files and NIS name service switch backends, causing the user to appear
unknown to the system.

If a password entry contains an empty gecos, home directory, or shell field, getpwnam() and
getpwnam_r() return a pointer to a null string in the respective field of the passwd structure.

If the shell field is empty, login(1) automatically assigns the default shell. See Login(1).

Solaris 2.4 and earlier releases provided definitions of the getpwnam_r() and getpwuid r()
functions as specified in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface
for these functions. Support for the Draft 6 interface is provided for compatibility only and
might not be supported in future releases. New applications and libraries should use the
standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and _REENTRANT
flags are automatically turned on by defining the _POSIX_C_SOURCE flag with a value
>199506L.

man pages section 3: Basic Library Functions « LastRevised 19 0ct 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1yppasswd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1

getrusage(3C)

Name

Synopsis

Description

getrusage — get information about resource utilization

#include <sys/resource.h>
int getrusage(int who, struct rusage *r_usage) ;

The getrusage () function provides measures of the resources used by the current process, its
terminated and waited-for child processes, or the current light weight process (LWP). If the
value of the who argument is RUSAGE_SELF, information is returned about resources used by
the current process. If the value of the who argument is RUSAGE_CHILDREN, information is
returned about resources used by the terminated and waited-for children of the current
process. If the child is never waited for (for instance, if the parent has SA_ NOCLDWAIT set or sets
SIGCHLD to SIG_IGN), the resource information for the child process is discarded and not
included in the resource information provided by getrusage (). If the value of the who
argument is RUSAGE_LWP, information is returned about resources used by the current LWP.

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored. The members of rusage are as follows:

struct timeval ru utime; /* user time used */

struct timeval ru stime; /* system time used */

long ru_maxrss; /* maximum resident set size */

long ru_idrss; /* integral resident set size */

long ru_minflt; /* page faults not requiring physical
I/0 */

long ru_majflt; /* page faults requiring physical I/0 */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

The structure members are interpreted as follows:

ru_utime The total amount of time spent executing in user mode. Time is given in
seconds and microseconds.

ru_stime The total amount of time spent executing in system mode. Time is given in
seconds and microseconds.

ru_maxrss The maximum resident set size. Size is given in pages (the size of a page, in
bytes, is given by the getpagesize(3C) function). See the NOTES section of
this page.

ru_idrss An “integral” value indicating the amount of memory in use by a process

while the process is running. This value is the sum of the resident set sizes of

Basic Library Functions 369

getrusage(3C)

370

ru_minflt

ru majflt

ru_nswap

ru_inblock

ru_oublock

ru_msgsnd
ru_msgrcv
ru_nsignals

ru_nvcsw

ru_nivcsw

the process running when a clock tick occurs. The value is given in pages
times clock ticks. It does not take sharing into account. See the NOTES section
of this page.

The number of page faults serviced which did not require any physical I/O
activity. See the NOTES section of this page.

The number of page faults serviced which required physical I/O activity.
This could include page ahead operations by the kernel. See the NOTES
section of this page.

The number of times a process was swapped out of main memory.

The number of times the file system had to perform input in servicing a
read(2) request.

The number of times the file system had to perform output in servicing a
write(2) request.

The number of messages sent over sockets.
The number of messages received from sockets.
The number of signals delivered.

The number of times a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

The number of times a context switch resulted due to a higher priority
process becoming runnable or because the current process exceeded its time
slice.

ReturnValues Upon successful completion, getrusage() returns 0. Otherwise, —1 is returned and errno is
set to indicate the error.

Errors The getrusage() function will fail if:

EFAULT The address specified by the r_usage argument is not in a valid portion of the
process' address space.

EINVAL Thewho parameter is not a valid value.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability

Committed

Standard

See standards(5).

man pages section 3: Basic Library Functions « Last Revised 2 Jul 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getrusage(3C)

See Also

Notes

sar(1M), read(2), times(2),write(2), getpagesize(3C), gettimeofday(3C),wait(3C),
attributes(5), standards(5)

The ru_maxrss, ru_ixrss, ru_idrss,and ru_isrss members of the rusage structure are set
to 0 in this implementation.

The numbers ru_inblock and ru_oublock account only for real I/O, and are approximate
measures at best. Data supplied by the cache mechanism is charged only to the first process to
read and the last process to write the data.

The way resident set size is calculated is an approximation, and could misrepresent the true
resident set size.

Page faults can be generated from a variety of sources and for a variety of reasons. The
customary cause for a page fault is a direct reference by the program to a page which is not in
memory. Now, however, the kernel can generate page faults on behalf of the user, for example,
servicing read(2) and write(2) functions. Also, a page fault can be caused by an absent
hardware translation to a page, even though the page is in physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page faults in order
to perform some housekeeping. For example, the kernel may generate page faults, even if the
pages exist in physical memory, in order to lock down pages involved in a raw I/O request.

By definition, major page faults require physical I/O, while minor page faults do not require
physical I/O. For example, reclaiming the page from the free list would avoid I/O and generate
a minor page fault. More commonly, minor page faults occur during process startup as
references to pages which are already in memory. For example, if an address space faults on
some “hot” executable or shared library, this results in a minor page fault for the address
space. Also, any one doing a read(2) or write(2) to something that is in the page cache will get
aminor page fault(s) as well.

There is no way to obtain information about a child process which has not yet terminated.

Basic Library Functions 371

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sar-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1times-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

gets(3Q)

372

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

gets, fgets — get a string from a stream

#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

The gets () function reads bytes from the standard input stream (see Intro(3)), stdin, into
the array pointed to by s, until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded and the string is terminated with a null byte.

If the length of an input line exceeds the size of s, indeterminate behavior may result. For this
reason, it is strongly recommended that gets () be avoided in favor of fgets ().

The fgets () function reads bytes from the stream into the array pointed to by s, until n—1
bytes are read, or a newline character is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null byte.

The fgets() and gets () functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgets (), fread(3C), fscanf(3C), getc(3C), getchar(3C),
getdelim(3C), getline(3C), gets (), or scanf(3C) using stream that returns data not
supplied by a prior call to ungetc(3C) or ungetwc(3C).

If end-of-file is encountered and no bytes have been read, no bytes are transferred to sand a
null pointer is returned. For standard-conforming (see standards(5)) applications, if the
end-of-file indicator for the stream is set, no bytes are transferred to s and a null pointer is
returned whether or not the stream is at end-of-file. If a read error occurs, such as trying to use
these functions on a file that has not been opened for reading, a null pointer is returned and
the error indicator for the stream is set. If end-of-file is encountered, the EOF indicator for the
stream is set. Otherwise s is returned.

Refer to fgetc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

lseek(2), read(2), ferror(3C), fgetc(3C), fgetwc(3C), fopen(3C), fread(3C), getchar(3C),
getdelim(3C), getline(3C), scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C),
attributes(5), standards(5)

man pages section 3: Basic Library Functions « LastRevised 15 Oct 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getspnam(3Q)

Name

Synopsis

Description

getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r — get
password entry

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspnam r(const char *name, struct spwd *result,
char *buffer, int buflen);

struct spwd *getspent(void);

struct spwd *getspent_r(struct spwd *result, char *buffer,
int buflen);

void setspent(void);

void endspent(void);

struct spwd *fgetspent(FILE *fp);

struct spwd *fgetspent_r(FILE *fp, struct spwd *result,

char *buffer, int buflen);

These functions are used to obtain shadow password entries. An entry may come from any of
the sources for shadow specified in the /etc/nsswitch. conf file (see nsswitch.conf(4)).

The getspnam() function searches for a shadow password entry with the login name specified
by the character string argument name.

The setspent(), getspent(),and endspent () functions are used to enumerate shadow
password entries from the database.

The setspent () function sets (or resets) the enumeration to the beginning of the set of
shadow password entries. This function should be called before the first call to getspent ().
Calls to getspnam() leave the enumeration position in an indeterminate state.

Successive calls to getspent () return either successive entries or NULL, indicating the end of
the enumeration.

The endspent () function may be called to indicate that the caller expects to do no further
shadow password retrieval operations; the system may then close the shadow password file,
deallocate resources it was using, and so forth. It is still allowed, but possibly less efficient, for
the process to call more shadow password functions after calling endspent ().

The fgetspent () function, unlike the other functions above, does not use nsswitch. conf; it
reads and parses the next line from the stream fp, which is assumed to have the format of the
shadow file (see shadow(4)).

Basic Library Functions 373

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4

getspnam(3C)

Reentrant Interfaces

ReturnValues

374

The getspnam(), getspent (), and fgetspent () functions use thread-specific data storage
that is reused in each call to one of these functions by the same thread, making them safe to use
but not recommended for multithreaded applications.

The getspnam_r(), getspent_r(),and fgetspent_r() functions provide reentrant
interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same argument as its non-reentrant counterpart, as well as
the following additional arguments. The result argument must be a pointer to a struct spwd
structure allocated by the caller. On successful completion, the function returns the shadow
password entry in this structure. The buffer argument must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the shadow password data. All of the pointers
within the returned struct spwd result point to data stored within this buffer (see RETURN
VALUES). The buffer must be large enough to hold all of the data associated with the shadow
password entry. The buflen argument should give the size in bytes of the buffer indicated by
buffer.

For enumeration in multithreaded applications, the position within the enumeration isa
process-wide property shared by all threads. The setspent () function may be usedina
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getspent_r(), the threads will enumerate disjoint subsets of the
shadow password database.

Like its non-reentrant counterpart, getspnam_r() leaves the enumeration position in an
indeterminate state.

Password entries are represented by the struct spwd structure defined in <shadow. h>:

struct spwd{

char *sp namp; /* login name */

char *sp pwdp; /* encrypted passwd */

int sp_lstchg; /* date of last change */

int sp_min; /* min days to passwd change */
int sp_max; /* max days to passwd change*/
int sp_warn; /* warning period */

int sp_inact; /* max days inactive */

int sp_expire; /* account expiry date */
unsigned int sp_flag; /* not used */

}i
See shadow(4) for more information on the interpretation of this data.

The getspnam()and getspnam_r () functions each return a pointer to a struct spwd if they
successfully locate the requested entry; otherwise they return NULL.

man pages section 3: Basic Library Functions - Last Revised 10 Dec 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4

getspnam(3Q)

Errors

Attributes

See Also

Warnings

Notes

The getspent (), getspent r(), fgetspent(),and fgetspent() functions each return a
pointer to a struct spwd if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

The getspnam(), getspent (), and fgetspent () functions use thread-specific data storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getspnam_r(), getspent_r(), and
fgetspent_r() is non-null, it is always equal to the result pointer that was supplied by the
caller.

The reentrant functions getspnam_r(), getspent_r(),and fgetspent r() will return NULL
and set errno to ERANGE if the length of the buffer supplied by caller is not large enough to
store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

passwd(1), yppasswd(1), Intro(3), getlogin(3C), getpwnam(3C), nsswitch.conf(4),
passwd(4), shadow(4), attributes(5)

The reentrant interfaces getspnam_r(), getspent r(),and fgetspent r() areincluded in
this release on an uncommitted basis only, and are subject to change or removal in future
minor releases.

When compiling multithreaded applications, see Intro(3),
Notes On Multithreaded Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getspent () and getspent_r() is not recommended;
enumeration is supported for the shadow file and NIS, but in general is not efficient and may
not be supported for all database sources. The semantics of enumeration are discussed further
innsswitch.conf(4).

Access to shadow password information may be restricted in a manner depending on the
database source being used. Access to the /etc/shadow file is generally restricted to processes
running with the effective uid of the file owner or the {PRIV_FILE_DAC_READ} privilege. Other
database sources may impose stronger or less stringent restrictions.

Empty fields in the database source return -1 values for all fields except sp_pwdp and sp_flag,
where the value returned is 0.

Basic Library Functions 375

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1yppasswd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getspnam(3C)

When NIS is used as the database source, the information for the shadow password entries is
obtained from the “passwd.byname" map. This map stores only the information for the
sp_namp and sp_pwdp fields of the struct spwd structure. Shadow password entries obtained
from NIS will contain the value -1 in the remainder of the fields.

376 man pages section 3: Basic Library Functions - Last Revised 10 Dec 2009

getsubopt(3C

Name

Synopsis

Description

Return Values

Errors

getsubopt — parse suboption arguments from a string

#include <stdlib.h>
int getsubopt(char **optionp, char * const *keylistp, char **valuep);

The getsubopt () function parses suboption arguments in a flag argument. Such options
often result from the use of getopt(3C).

The getsubopt () argument optionp is a pointer to a pointer to the option argument string.
The suboption arguments are separated by commas and each can consist of either a single
token or a token-value pair separated by an equal sign.

The keylistp argument is a pointer to a vector of strings. The end of the vector is identified by a
null pointer. Each entry in the vector is one of the possible tokens that might be found in
*optionp. Since commas delimit suboption arguments in optionp, they should not appear in
any of the strings pointed to by keylistp. Similarly, because an equal sign separates a token
from its value, the application should not include an equal sign in any of the strings pointed to
by keylistp.

The valuep argument is the address of a value string pointer.

If a comma appears in optionp, it is interpreted as a suboption separator. After commas have
been processed, if there are one or more equal signs in a suboption string, the first equal sign in
any suboption string is interpreted as a separator between a token and a value. Subsequent
equal signs in a suboption string are interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no commas),
getsubopt () updates *optionp to point to the null character at the end of the string.
Otherwise, it isolates the suboption argument by replacing the comma separator with a null
character and updates *optionp to point to the start of the next suboption argument. If the
suboption argument has an associated value (equivalently, contains an equal sign),
getsubopt () updates *valuep to point to the value's first character. Otherwise, it sets *valuep
to a null pointer. The calling application can use this information to determine whether the
presence or absence of a value for the suboption is an error.

Additionally, when getsubopt () fails to match the suboption with a token in the keylistp
array, the calling application should decide if this is an error or if the unrecognized option
should be processed in another way.

The getsubopt () function returns the index of the matched token string or -1 if no token
strings were matched.

No errors are defined.

Basic Library Functions 377

getsubopt(3C)

Examples EXAMPLE1 Use getsubopt() to process options.

The following example demonstrates the processing of options to the mount(1M) utility using
getsubopt().

#include <stdlib.h>

char *myopts[] = {

#define READONLY 0
"ro",

#define READWRITE 1

#define WRITESIZE 2
"wsize",

#define READSIZE 3
"rsize",
NULL};

main(argc, argv)
int argc;
char **argv;

int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;

while((c = getopt(argc, argv, "abf:o:")) != -1) {

switch (c) {
case 'a’: /* process a option */
break;
case 'b’: /* process b option */
break;
case 'f':
ofile = optarg;
break;
case '?':
errflag++;
break;
case 'o0':
options = optarg;
while (*options != "\0") {

switch(getsubopt(&options,myopts,&value)){

case READONLY : /* process ro option */
break;

case READWRITE : /* process rw option */
break;

378 man pages section 3: Basic Library Functions « Last Revised 29 Sep 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-1m

getsubopt(3C

EXAMPLE 1 Use getsubopt () to process options. (Continued)

case WRITESIZE : /* process wsize option */
if (value == NULL) {
error _no _arg();
errflag++;
} else
write size = atoi(value);
break;
case READSIZE : /* process rsize option */
if (value == NULL) {
error no arg();
errflag++;
} else
read size = atoi(value);
break;
default :
/* process unknown token */
error_bad token(value);
errflag++;
break;
}
}

break;

}
if (errflag) {
/* print usage instructions etc. */

}
for (; optind<argc; optind++) {
/* process remaining arguments */

EXAMPLE2 Parse suboptions.

The following example uses the getsubopt () function to parse a value argument in the optarg
external variable returned by a call to getopt(3C).

#include <stdlib.h>

char *tokens[] = {"HOME", "PATH", "LOGNAME", (char *) NULL };
char *value;
int opt, index;
while ((opt = getopt(argc, argv, "e:")) != -1) {
switch(opt) {

Basic Library Functions 379

getsubopt(3C)

EXAMPLE2 Parse suboptions. (Continued)
case ‘e’
while ((index = getsubopt(&optarg, tokens, &value)) !'= -1) {

switch(index) {

break;

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso mount(1M), getopt(3C), attributes(5), standards(5)

380 man pages section 3: Basic Library Functions « LastRevised 29 Sep 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gettext(3C)

Name

Synopsis

Solaris and
GNU-compatible

GNU-compatible

Description

gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext, textdomain, bindtextdomain,
bind_textdomain_codeset — message handling functions

#include <libintl.h>

char *gettext(const char *rngyd);

char *dgettext(const char *domainname, const char *msgid);

char *textdomain(const char *domainname);

char *bindtextdomain(const char *domainname, const char *dirname);

#include <libintl.h>
#include <locale.h>

char *dcgettext(const char *domainname, const char *msgid,
int category);

#include <libintl.h>

char *ngettext(const char *msgidl, const char *msgid2,
unsigned long int n);

char *dngettext(const char *domainname, const char *msgidl,
const char *rnqde, unsigned long int n);

char *bind textdomain codeset(const char *domainname,
const char *codeset);

extern int nl msg cat cntr;
extern int * nl domain bindings;

#include <libintl.h>
#include <locale.h>

char *dcngettext(const char *domainname, const char *rnggdl,
const char *msgid2, unsigned long int n, int category);

The gettext(), dgettext(),and dcgettext () functions attempt to retrieve a target string
based on the specified msgid argument within the context of a specific domain and the current
locale. The length of strings returned by gettext (), dgettext (), and dcgettext() is
undetermined until the function is called. The msgid argument is a null-terminated string.

The ngettext (), dngettext(),and dcngettext () functions are equivalent to gettext(),
dgettext (), and dcgettext (), respectively, except for the handling of plural forms. These
functions work only with GNU-compatible message catalogues. The ngettext(),
dngettext(),and dengettext() functions search for the message string using the msgidl
argument as the key and the n argument to determine the plural form. If no message
catalogues are found, msgidI is returned if n == 1, otherwise msgid2 is returned.

Basic Library Functions 381

gettext(3C)

The NLSPATH environment variable (see environ(5)) is searched in its entirety first for the
location of the LC_MESSAGES catalogue. The setting of the LC_MESSAGES category of the current
locale determines the locale used by gettext () and dgettext () for string retrieval. If
NLSPATH contains %L and the current value of it is a canonical locale name to an obsoleted
Solaris locale name as described in locale_alias(5) and there is no message catalog for the
canonical locale name, for a better backward compatibility, gettext () and dgettext() use
the obsoleted Solaris locale names in place for %L as aliases for the canonical locale name and
try to locate the desired message catalogue. If that still does not yield a message catalogue and
the value of %L is an accepted and supported locale name alias as described in
locale_alias(5), the matching canonical locale name is used in place for %L to locate the
desired message catalogue. The category argument determines the locale used by
dcgettext(). IfNLSPATHis not defined and the current locale is “C”, gettext (),
dgettext(),and dcgettext () simply return the message string that was passed. In a locale
other than “C”, if NLSPATH is not defined or if a message catalogue is not found in any of the
components specified by NLSPATH, the routines search for the message catalogue using the
scheme described in the following paragraph.

The LANGUAGE environment variable is examined in its entirety to determine the
GNU-compatible message catalogues to be used. The value of LANGUAGE is a list of locale
names separated by a colon (") character. If LANGUAGE is defined, each locale name is tried in
the specified order and if a GNU-compatible message catalogue is found, it is used to return
target strings. If no GNU-compatible message catalogue is found for all locales specified in the
LANGUAGE and if there are accepted and supported locale name aliases for any of the locale
names in the LANGUAGE, as specified in locale_alias(5) and in the same manner as described
in the NLSPATH description at the above for %L and the current locale name, the locale name
aliases are used once again to search corresponding GNU-compatible message catalogues. If a
GNU-compatible message catalogue is found but failed to find a corresponding msgid, the
msgid string is returned. If LANGUAGE is not defined or if a Solaris message catalogue is found or
no GNU-compatible message catalogue is found in processing LANGUAGE, the pathname used
to locate the message catalogue is dirname/locale/ category/ domainname.mo, where dirname is
the directory specified by bindtextdomain (), locale is alocale name, and category is either
LC_MESSAGES if gettext (), dgettext(), ngettext(), or dngettext() is called, or LC_XXX
where the name is the same as the locale category name specified by the category argument to
dcgettext() ordcngettext (). In thislast stage of search of message catalogue, if there is no
message catalogue found with the locale name and if the locale name has aliases as described
in locale_alias(5), the locale name aliases are used in place of the locale name to locate the
message catalogue in the same manner as described in the above for the processing of the
locale name aliases of the locales defined at the LANGUAGE.

For gettext () and ngettext (), the domain used is set by the last valid call to textdomain().
If a valid call to textdomain () has not been made, the default domain (called messages) is
used.

For dgettext(), dcgettext(), dngettext(),and dcngettext (), the domain used is specified
by the domainname argument. The domainname argument is equivalent in syntax and

382 man pages section 3: Basic Library Functions « Last Revised 5 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

gettext(3C)

meaning to the domainname argument to textdomain (), except that the selection of the
domain is valid only for the duration of the dgettext (), dcgettext(), dngettext(), or
dcngettext () function call.

The textdomain () function sets or queries the name of the current domain of the active
LC_MESSAGES locale category. The domainname argument is a null-terminated string that can
contain only the characters allowed in legal filenames.

The domainname argument is the unique name of a domain on the system. If there are
multiple versions of the same domain on one system, namespace collisions can be avoided by
using bindtextdomain (). If textdomain () is not called, a default domain is selected. The
setting of domain made by the last valid call to textdomain () remains valid across subsequent
calls to setlocale(3C), and gettext().

The domainname argument is applied to the currently active LC_MESSAGES locale.

The current setting of the domain can be queried without affecting the current state of the
domain by calling textdomain () with domainname set to the null pointer. Calling
textdomain () with a domainname argument of a null string sets the domain to the default
domain (messages).

The bindtextdomain () function binds the path predicate for a message domain domainname
to the value contained in dirname. If domainname is a non-empty string and has not been
bound previously, bindtextdomain() binds domainname with dirname.

If domainname is a non-empty string and has been bound previously, bindtextdomain ()
replaces the old binding with dirname. The dirname argument can be an absolute or relative
pathname being resolved when gettext (), dgettext (), or dcgettext() are called. If
domainname is a null pointer or an empty string, bindtextdomain() returns NULL. User
defined domain names cannot begin with the string SYS_. Domain names beginning with this
string are reserved for system use.

The bind_textdomain_codeset () function can be used to specify the output codeset for
message catalogues for domain domainname. The codeset argument must be a valid codeset
name that can be used for the iconv_open(3C) function, or a null pointer. If the codeset
argument is the null pointer, bind_textdomain_codeset () returns the currently selected
codeset for the domain with the name domainname. It returns a null pointer if a codeset has
not yet been selected. The bind_textdomain_codeset () function can be used multiple times.
If used multiple times with the same domainname argument, the later call overrides the
settings made by the earlier one. The bind_textdomain_codeset () function returns a pointer
to a string containing the name of the selected codeset. The string is allocated internally in the
function and must not be changed by the user.

The external variables_nl_msg_cat_cntrand _nl_domain_bindings are provided for the
compatibility with the GNU gettext () implementation.

Basic Library Functions 383

gettext(3C)

384

ReturnValues

Usage

Files

The gettext(), dgettext(),and dcgettext () functions return the message string if the
search succeeds. Otherwise they return the msgid string.

The ngettext (), dngettext (), and dcngettext () functions return the message string if the
search succeeds. If the search fails, msgid1 is returned if n == 1. Otherwise msgid2 is returned.

The individual bytes of the string returned by gettext (), dgettext(), dcgettext(),
ngettext(),dngettext(), ordcngettext() can contain any value other than NULL. If msgid
is a null pointer, the return value is undefined. The string returned must not be modified by
the program and can be invalidated by a subsequent call to bind_textdomain_codeset() or
setlocale(3C). If the domainname argument to dgettext(),dcgettext(), dngettext(), or
dcngettext () isanull pointer, the the domain currently bound by textdomain() is used.

The normal return value from textdomain () is a pointer to a string containing the current
setting of the domain. If domainname is a null pointer, textdomain () returns a pointer to the
string containing the current domain. If textdomain () was not previously called and
domainname is a null string, the name of the default domain is returned. The name of the
default domain is messages. If textdomain () fails, a null pointer is returned.

The return value from bindtextdomain () is a null-terminated string containing dirname or
the directory binding associated with domainname if dirname is NULL. If no binding is found,
the default return value is /usr/lib/locale. If domainname is a null pointer or an empty
string, bindtextdomain() takes no action and returns a null pointer. The string returned
must not be modified by the caller. If bindtextdomain () fails, a null pointer is returned.

These functions impose no limit on message length. However, a text domainname is limited to
TEXTDOMAINMAX (256) bytes.

The gettext (), dgettext(),dcgettext(), ngettext(),dngettext(),dcngettext(),
textdomain(),and bindtextdomain () functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not being called to change the locale.

The gettext (), dgettext(),dcgettext(), textdomain(), and bindtextdomain() functions
work with both Solaris message catalogues and GNU-compatible message catalogues. The
ngettext(),dngettext(),dcngettext(),andbind textdomain codeset () functions work
only with GNU-compatible message catalogues. See msgfmt(1) for information about Solaris
message catalogues and GNU-compatible message catalogues.

/usr/lib/locale
default path predicate for message domain files

/usr/lib/locale/locale/LC_MESSAGES/domainname.mo
system default location for file containing messages for language locale and domainname

/usr/lib/locale/locale/LC_XXX/domainname.mo
system default location for file containing messages for language locale and domainname
for dcgettext () calls where LC_XXXis LC_CTYPE, LC_NUMERIC,LC TIME,LC COLLATE,
LC_MONETARY, or LC_MESSAGES

man pages section 3: Basic Library Functions « Last Revised 5 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgfmt-1

gettext(3C)

dirname/locale/L.C_MESSAGES/domainname.mo
location for file containing messages for domain domainname and path predicate dirname
after a successful call to bindtextdomain ()

dirname/locale/LC_XXX/domainname.mo
location for files containing messages for domain domainname, language locale, and path
predicate dirname after a successful call to bindtextdomain () for dcgettext () calls where
LC XXXisoneofLC CTYPE,LC NUMERIC,LC TIME,LC COLLATE,LC MONETARY,or
LC_MESSAGES

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level Safe with exceptions

The external variables nl msg cat cntrand nl domain bindings are Uncommitted.
Otherwise, the interface is Committed.

SeeAlso msgfmt(1), xgettext(1l),iconv_open(3C), libintl.h(3HEAD), setlocale(3C),
attributes(5), environ(5), locale alias(5)

Basic Library Functions 385

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgfmt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1xgettext-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libintl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

gettimeofday(3C)

386

Name

Synopsis

Description

ReturnValues

Errors

Usage

Attributes

gettimeofday, settimeofday — get or set the date and time

#include <sys/time.h>

int gettimeofday(struct timeval *ip, void *izp);

int settimeofday(struct timeval *ip, void *izp);

The gettimeofday () function gets and the settimeofday () function sets the system's notion
of the current time. The current time is expressed in elapsed seconds and microseconds since
00:00 Universal Coordinated Time, January 1, 1970. The resolution of the system clock is
hardware dependent; the time may be updated continuously or in clock ticks.

The tp argument points to a timeval structure, which includes the following members:

long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

If tp is a null pointer, the current time information is not returned or set.
The TZ environment variable holds time zone information. See TIMEZONE(4).
The tzp argument to gettimeofday () and settimeofday () isignored.
Only privileged processes can set the time of day.

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

The settimeofday () function will fail if:
EINVAL The structure pointed to by tp specifies an invalid time.

EPERM The {PRIV_SYS_TIME} privilege was not asserted in the effective set of the calling
process.

The gettimeofday () function will fail for 32-bit interfaces if:

EOVERFLOW The system time has progressed beyond 2038, thus the size of the tv_sec
member of the timeval structure pointed to by #p is insufficient to hold the
current time in seconds.

Ifthe tv_usec member of #p is > 500000, settimeofday () rounds the seconds upward. If the
time needs to be set with better than one second accuracy, call settimeofday () for the
seconds and then adjtime(2) for finer accuracy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability gettimeofday() is Standard.

man pages section 3: Basic Library Functions - Last Revised 1 Aug 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gettimeofday(3C)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SeeAlso adjtime(2), ctime(3C), gethrtime(3C), TIMEZONE(4), attributes(5), privileges(5),

standards(5)

Basic Library Functions

387

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gettxt(3C)

Name gettxt - retrieve a text string

Synopsis #include <nl_types.h>

char *gettxt(const char *msgid, const char *dflt_str);

Description The gettxt() function retrieves a text string from a message file. The arguments to the

Return Values

388

function are a message identification msgid and a default string dflt_str to be used if the
retrieval fails.

The text strings are in files created by the mkmsgs utility (see mkmsgs(1)) and installed in
directories in /usr/lib/locale/locale/LC_MESSAGES.

The directory locale can be viewed as the language in which the text strings are written. The
user can request that messages be displayed in a specific language by setting the environment
variable LC MESSAGES. If LC MESSAGES is not set, the environment variable LANG will be used. If

LANG is not set, the files containing the strings are in /usr/1ib/locale/C/LC_MESSAGES/*.

The user can also change the language in which the messages are displayed by invoking the
setlocale(3C) function with the appropriate arguments.

If gettxt () fails to retrieve a message in a specific language it will try to retrieve the same
message in U.S. English. On failure, the processing depends on what the second argument

dflt_str points to. A pointer to the second argument is returned if the second argument is not

the null string. If dflt_str points to the null string, a pointer to the U.S. English text string
"Message not found!!\n" is returned.

The following depicts the acceptable syntax of msgid for a call to gettxt ().

<msgid> = <msgfilename>: <msgnumber>

The first field is used to indicate the file that contains the text strings and must be limited to 14
characters. These characters must be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash) and : (colon). The names of message files must be the

same as the names of files created by mkmsgs and installed in

/usr/lib/locale/locale/LC_MESSAGES/*. The numeric field indicates the sequence number
of the string in the file. The strings are numbered from 1 to n where # is the number of strings

in the file.

to the text string "Message not found! !\n" is returned.

Usage Itisrecommended that gettext(3C) be used in place of this function.

Examples EexampLE1 Example of gettxt () function.

In the following example,

gettxt("UX:10", "hello world\n")
gettxt("Ux:10", ")

man pages section 3: Basic Library Functions - Last Revised 29 Dec 1996

Upon failure to pass either the correct msgid or a valid message number to gettxt (), a pointer

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkmsgs-1

gettxt(3C)

EXAMPLE 1 Example of gettxt () function. (Continued)

UX is the name of the file that contains the messages and 10 is the message number.

Files /usr/lib/locale/C/LC_MESSAGES/* contains default message files created by
mkmsgs

/usr/lib/locale/locale/LC_MESSAGES/* contains message files for different languages
created by mkmsgs

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions

SeeAlso exstr(1),mkmsgs(1), srchtxt(1l),gettext(3C), fmtmsg(3C), setlocale(3C), attributes(5),
environ(5)

Basic Library Functions 389

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exstr-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkmsgs-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1srchtxt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getuserattr(3C)

Name getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr, fgetuserattr — get
user_attr entry

Synopsis userattr_t *getuserattr(void);
userattr t *getusernam(const char *name);
userattr t *getuseruid(uid t wid);
void free userattr(userattr t *userattr);
void setuserattr(void);
void enduserattr(void);

userattr_t *fgetuserattr(FILE *f);

Description The getuserattr(),getusernam(),and getuseruid() functions each returnauser_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4) file. The
getuserattr() function enumerates user_attr entries. The getusernam() function searches
forauser_attr entry with a given user name name. The getuseruid () function searches for
auser_attr entry with a given user ID uid. Successive calls to these functions return either
successive user_attr entries or NULL.

The fgetuserattr() function does not use nsswitch. conf but reads and parses the next line
from the stream f. This stream is assumed to have the format of the user_attr files.

The free_userattr() function releases memory allocated by the getusernam(),
getuserattr(),and fgetuserattr() functions.

The internal representation of a user_attrentryisauserattr_t structure defined in
<user_attr.h> with the following members:

char *name; /* name of the user */

char *qualifier; /* reserved for future use */
char *resl; /* reserved for future use */
char *res2; /* reserved for future use */
kva t *attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of user_attr
entries. Calls to getusernam() may leave the enumeration in an indeterminate state, so
setuserattr() should be called before the first call to getuserattr().

The enduserattr() function may be called to indicate that user_attr processing is complete;

the library may then close any open user_attr file, deallocate any internal storage, and so
forth.

ReturnValues The getuserattr() function returnsa pointer to auserattr_t ifit successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

390 man pages section 3: Basic Library Functions « LastRevised 10 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getuserattr(3C)

Usage

Warnings

Files

Attributes

See Also

The getuserattr() and getusernam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_userattr() function.

Individual attributes can be referenced in the attr structure by calling the kva_match(3C)
function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown
key-value pairs without error.

/etc/user attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3C), getexecattr(3C), getprofattr(3C),user_attr(4),attributes(5)

Basic Library Functions 391

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getusershell(3C)

Name getusershell, setusershell, endusershell - get legal user shells

Synopsis #include <unistd.h>

char *getusershell(void);
void setusershell(void);
void endusershell(void);
Description The getusershell() function returns a pointer to a legal user shell as defined by the system

manager in the file /etc/shells. If /etc/shells does not exist, the following locations of the
standard system shells are used in its place:

/bin/bash /bin/csh
/bin/jsh /bin/ksh
/bin/ksh93 /bin/pfcsh
/bin/pfksh /bin/pfsh
/bin/sh /bin/tcsh
/bin/zsh /usr/sbin/jsh
/usr/sbin/pfsh /usr/sbin/sh
/usr/bin/bash /usr/bin/csh
/usr/bin/jsh /usr/bin/ksh
/usr/bin/ksh93 /usr/bin/pfcsh
/usr/bin/pfksh /usr/bin/pfsh
/usr/bin/sh /usr/bin/tcsh
/usr/bin/zsh /usr/sfw/bin/zsh
/usr/xpg4/bin/sh

The getusershell() function opens the file /etc/shells, if it exists, and returns the next
entry in the list of shells.

The setusershell() function rewinds the file or the list.

The endusershell() function closes the file, frees any memory used by getusershell() and
setusershell(), and rewinds the file /etc/shells.

ReturnValues The getusershell() function returnsa null pointer on EOE

Bugs Allinformation is contained in memory that may be freed with a call to endusershell(), so it
must be copied if it is to be saved.

Notes Restricted shells should not be listed in /etc/shells.

392 man pages section 3: Basic Library Functions « LastRevised 24 Mar 2011

getutent(3C)

Name getutent, getutid, getutline, pututline, setutent, endutent, utmpname - user accounting
database functions

Synopsis #include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);
struct utmp *getutline(const struct utmp *line);
struct utmp *pututline(const struct utmp *utmp);
void setutent(void);

void endutent(void);

int utmpname(const char *file)

Description These functions provide access to the user accounting database, utmp. Entries in the database
are described by the definitions and data structures in <utmp. h>.

The utmp structure contains the following members:

char ut user[8]; /* user login name */
char ut id[4]; /* /etc/inittab id */
/* (usually line #) */
char ut line[12]; /* device name (console, lnxx) */
short ut pid; /* process id */
short ut_type; /* type of entry */
struct exit status ut exit; /* exit status of a process */
/* marked as DEAD PROCESS */
time t ut time; /* time entry was made */

The structure exit_status includes the following members:

short e termination; /* termination status */
short e exit; /* exit status */

getutent() Thegetutent() function reads in the next entry from a utmp database. If the database is not
already open, it opens it. If it reaches the end of the database, it fails.

getutid() Thegetutid() function searches forward from the current point in the utmp database until it
finds an entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME,DOWN_TIME,OLD_TIME,OrNEW_TIME.IfthetypespeciﬁedinidiSINIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutid() will return a pointer to the
first entry whose type is one of these four and whose ut_id member matches id->ut_id. If the
end of database is reached without a match, it fails.

Basic Library Functions 393

getutent(3C)

getutline() Thegetutline() function searches forward from the current point in the utmp database until
it finds an entry of the type LOGIN_PROCESS or ut_line string matching the line->ut_line
string. If the end of database is reached without a match, it fails.

pututline() Thepututline() function writes the supplied utmp structure into the utmp database. It uses
getutid() to search forward for the proper place if it finds that it is not already at the proper
place. It is expected that normally the user of pututline () will have searched for the proper
entry using one of the these functions. If so, pututline () will not search. If pututline() does
not find a matching slot for the new entry, it will add a new entry to the end of the database. It
returns a pointer to the utmp structure. When called by a non-root user, pututline() invokes
asetuid() root program to verify and write the entry, since the utmp database is normally
writable only by root. In this event, the ut_name member must correspond to the actual user
name associated with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be writable by the
user.

setutent() The setutent() function resets the input stream to the beginning. This reset should be done
before each search for a new entry if it is desired that the entire database be examined.

endutent() Theendutent() function closes the currently open database.

utmpname() The utmpname () function allows the user to change the name of the database file examined to
another file. If the file does not exist, this will not be apparent until the first attempt to
reference the file is made. The utmpname () function does not open the file but closes the old
file if it is currently open and saves the new file name.

ReturnValues A null pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write. If the file name given is longer than 79 characters,
utmpname () returns 0. Otherwise, it returns 1.

Usage These functions use buffered standard I/O for input, but pututline() uses an unbuffered
non-standard write to avoid race conditions between processes trying to modify the utmp and
wtmp databases.

Applications should not access the utmp and wtmp databases directly, but should use these
functions to ensure that these databases are maintained consistently. Using these functions,
however, may cause applications to fail if user accounting data cannot be represented properly
in the utmp structure (for example, on a system where PIDs can exceed 32767). Use the
functions described on the getutxent(3C) manual page instead.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Unsafe

394 man pages section 3: Basic Library Functions « LastRevised 24 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getutent(3C)

SeeAlso getutxent(3C), ttyslot(3C), utmpx(4), attributes(5)

Notes The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. On each call to either getutid() or getutline(), the
function examines the static structure before performing more I/O. If the contents of the static
structure match what it is searching for, it looks no further. For this reason, to use
getutline() to search for multiple occurrences, it would be necessary to zero out the static
area after each success, or getutline () would just return the same structure over and over
again. There is one exception to the rule about emptying the structure before further reads are
done. The implicit read done by pututline() (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static structure returned by the getutent(),
getutid() orgetutline() functions, if the user has just modified those contents and passed
the pointer back to pututline().

Basic Library Functions 395

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getutxent(3C)

Name getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname, getutmp,
getutmpx, updwtmp, updwtmpx - user accounting database functions

Synopsis #include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);
void getutmpx(struct utmp *utmp, struct utmpx *utmpx);
void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

Description These functions provide access to the user accounting database, utmpx (see utmpx(4)). Entries
in the database are described by the definitions and data structures in <utmpx. h>.

The utmpx structure contains the following members:

char ut user([32]; /* user login name */
char ut_id[4]; /* /etc/inittab id */
/* (usually line #) */
char ut line[32]; /* device name */
/* (console, lnxx) */
pid t ut pid; /* process id */
short ut_type; /* type of entry */
struct exit status ut exit; /* exit status of a process */
/* marked as DEAD PROCESS */
struct timeval ut tv; /* time entry was made */
int ut_session; /* session ID, used for */
/* windowing */
short ut_syslen; /* significant length of */

/* ut_host */
/* including terminating null */
char ut host[257]; /* host name, if remote */

The exit_status structure includes the following members:

short e termination; /* termination status */
short e_exit; /* exit status */

396 man pages section 3: Basic Library Functions - LastRevised 27 Jul 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4

getutxent(3C)

getutxent()

getutxid()

getutxline()

pututxline()

setutxent()

endutxent ()

utmpxname ()

getutmp()

The getutxent () function reads in the next entry from a utmpx database. If the database is not
already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx database until
itfinds an entry with a ut_type matching id—>ut_type, if the type specified is RUN_LVL,
BOOT_TIME,DOWN TIME,OLD TIME, or NEW TIME. Ifthe type speciﬁed inidis INIT_PROCESS,
LOGIN PROCESS, USER PROCESS, or DEAD PROCESS, then getutxid() will return a pointer to
the first entry whose type is one of these four and whose ut_id member matches id->ut_id.If
the end of database is reached without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx database
until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line
string matching the line->ut_1line string. If the end of the database is reached without a
match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx database. It
uses getutxid() to search forward for the proper place if it finds that it is not already at the
proper place. It is expected that normally the user of pututxline() will have searched for the
proper entry using one of the getutx () routines. If so, pututxline () will not search. If
pututxline() does not find a matching slot for the new entry, it will add a new entry to the
end of the database. It returns a pointer to the utmpx structure. When called by a non-root
user, pututxline() invokes a setuid() root program to verify and write the entry, since the
utmpx database is normally writable only by root. In this event, the ut_name member must
correspond to the actual user name associated with the process; the ut_type member must be
either USER PROCESS or DEAD PROCESS; and the ut line member must be a device special file
and be writable by the user.

The setutxent () function resets the input stream to the beginning. This should be done
before each search for a new entry if it is desired that the entire database be examined.

The endutxent () function closes the currently open database.

The utmpxname () function allows the user to change the name of the database file examined
from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If the file does not exist,
this will not be apparent until the first attempt to reference the file is made. The utmpxname ()
function does not open the file, but closes the old file if it is currently open and saves the new
file name. The new file name must end with the “x” character to allow the name of the
corresponding utmp file to be easily obtainable.; otherwise, an error value of 0 is returned. The

function returns 1 on success.

The getutmp () function copies the information stored in the members of the utmpx structure
to the corresponding members of the utmp structure. If the information in any member of
utmpx does not fit in the corresponding utmp member, the data is silently truncated. (See
getutent(3C) for utmp structure)

Basic Library Functions 397

getutxent(3C)

getutmpx() The getutmpx() function copies the information stored in the members of the utmp structure
to the corresponding members of the utmpx structure. (See getutent(3C) for utmp structure)

updwtmp() The updwtmp () function can be used in two ways.

If wfileis /var/adm/wtmp, the utmp format record supplied by the caller is converted to a utmpx
format record and the /var/adm/wtmpx file is updated (because the /var/adm/wtmp file no
longer exists, operations on wtmp are converted to operations on wtmpx by the library
functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp format and is
updated directly with the utmp format record supplied by the caller.

updwtmpx() The updwtmpx () function writes the contents of the utmpx structure pointed to by utmpx to
the database.

utmpx structure The values of the e_termination and e_exit members of the ut_exit structure are valid only
for records of type DEAD_PROCESS. For utmpx entries created by init(1M), these values are set
according to the result of thewait () call that init performs on the process when the process
exits. See the wait(3C), manual page for the values init uses. Applications creating utmpx
entries can set ut_exit values using the following code example:

u->ut exit.e termination = WTERMSIG(process->p exit)
u->ut exit.e exit = WEXITSTATUS(process->p exit)

Seewait.h(3HEAD) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by applications
interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser () and nonuserx () macros use the value of the
ut_exit.e_exit member to mark utmpx entries as real logins (as opposed to multiple xterms
started by the same user on a window system). This allows the system utilities that display
users to obtain an accurate indication of the number of actual users, while still permitting each
pty to have a utmpx record (as most applications expect.). The NONROOT _USER macro defines
the value that login placesin the ut_exit.e_exit member.

ReturnValues Upon successful completion, getutxent (), getutxid(),and getutxline() eachreturna
pointer to a utmpx structure containing a copy of the requested entry in the user accounting
database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure containing
a copy of the entry added to the user accounting database. Otherwise a null pointer is
returned.

The endutxent () and setutxent () functions return no value.

398 man pages section 3: Basic Library Functions - LastRevised 27 Jul 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1init-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head

getutxent(3C)

Usage

Files

Attributes

See Also

Notes

A null pointer is returned upon failure to read, whether for permissions or having reached the

end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an unbuffered

write to avoid race conditions between processes trying to modify the utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should use these
functions to ensure that these databases are maintained consistently.

/var/adm/utmpx user access and accounting information

/var/adm/wtmpx history of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

See below.

MT-Level

Unsafe

The endutxent (), getutxent(), getutxid(), getutxline(), pututxline(), and

setutxent () functions are Standard.

getutent(3C), ttyslot(3C),wait(3C),wait.h(3HEAD), utmpx(4), attributes(5),

standards(5)

The most current entry is saved in a static structure. Multiple accesses require that it be copied

before further accesses are made. On each call to either getutxid() or getutxline(), the

routine examines the static structure before performing more I/O. If the contents of the static

structure match what it is searching for, it looks no further. For this reason, to use

getutxline() to search for multiple occurrences it would be necessary to zero out the static

after each success, or getutxline () would just return the same structure over and over again.
There is one exception to the rule about emptying the structure before further reads are done.
The implicit read done by pututxline() (if it finds that it is not already at the correct place in

the file) will not hurt the contents of the static structure returned by the getutxent (),
getutxid(), or getutxline() routines, if the user has just modified those contents and
passed the pointer back to pututxline().

Basic Library Functions

399

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getvfsent(3C)

Name

Synopsis

Description

ReturnValues

400

getvfsent, getvfsfile, getvfsspec, getvfsany — get vfstab file entry
#include <stdio.h>

#include <sys/vfstab.h>

int getvfsent(FILE *fp, struct vfstab *vp);

int getvfsfile(FILE *fp, struct vfstab *vp, char *file);
int getvfsspec(FILE *, struct vfstab *vp, char *spec);

int getvfsany(FILE *, struct vfstab *vp, struct vfstab *vrqﬂ;

The getvfsent(),getvfsfile(), getvfsspec(),and getvfsany() functions each fill in the
structure pointed to by vp with the broken-out fields of a line in the /etc/vfstab file. Each
line in the file contains a vfstab structure, declared in the <sys/vfstab.h> header, whose
following members are described on the vfstab(4) manual page:

char *vfs special;
char *vfs fsckdev;
char *vfs mountp;

char *vfs fstype;

char *vfs fsckpass;
char *vfs automnt;
char *vfs mntopts;

The getvfsent () function returns a pointer to the next vfstab structure in the file; so
successive calls can be used to search the entire file.

The getvfsfile() function searches the file referenced by fp until a mount point matching
file is found and fills vp with the fields from the line in the file.

The getvfsspec() function searches the file referenced by fp until a special device matching
specis found and fills vp with the fields from the line in the file. The spec argument will try to

match on device type (block or character special) and major and minor device numbers. If it
cannot match in this manner, then it compares the strings.

The getvfsany () function searches the file referenced by fp until a match is found between a
line in the file and vref. A match occurs if all non-null entries in vref match the corresponding
fields in the file.

Note that these functions do not open, close, or rewind the file.

If the next entry is successfully read by getvfsent () or a match is found with getvfsfile(),
getvfsspec(),orgetvfsany(), @ isreturned. If an end-of-file is encountered on reading,
these functions return —1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

VFS_TOOLONG A line in the file exceeded the internal buffer size of VFS_LINE_MAX.

VFS_TOOMANY A line in the file contains too many fields.

man pages section 3: Basic Library Functions « Last Revised 12 Mar 1997

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1vfstab-4

getvfsent(3C)

Files

Attributes

See Also

Notes

VFS_TOOFEW A line in the file contains too few fields.

/etc/vfstab
See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
MT-Level Safe

vfstab(4), attributes(5)

The members of the vfstab structure point to information contained in a static area, so it
must be copied if it is to be saved.

Basic Library Functions 401

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1vfstab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getwc(3Q)

Name

Synopsis

Description

ReturnValues
Errors

Usage

Attributes

See Also

402

getwc — get wide character from a stream

#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE *stream);

The getwc () function is equivalent to fgetwc(3C), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression with
side effects.

Refer to fgetwc(3C).
Refer to fgetwc(3C).

This interface is provided to align with some current implementations and with possible
future ISO standards.

Because it may be implemented as a macro, getwc () may treat incorrectly a stream argument
with side effects. In particular, getwc(*f ++) may not work as expected. Therefore, use of this
function is not recommended; fgetwc(3C) should be used instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fgetwc(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwchar(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getwchar — get wide character from stdin stream

#include <wchar.h>

wint t getwchar(void)

The getwchar () function is equivalent to getwc (stdin).
Refer to fgetwc(3C).

Refer to fgetwc(3C).

If thewint_t value returned by getwchar () is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the comparison may never succeed because
wchar_t is defined as unsigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fgetwc(3C), getwc(3C), attributes(5), standards(5)

Basic Library Functions 403

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwd(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

404

getwd - get current working directory pathname

#include <unistd.h>
char *getwd(char *path_name) ;

The getwd () function determines an absolute pathname of the current working directory of
the calling process, and copies that pathname into the array pointed to by the path_name
argument.

If the length of the pathname of the current working directory is greater than (PATH_MAX + 1)
including the null byte, getwd () fails and returns a null pointer.

Upon successful completion, a pointer to the string containing the absolute pathname of the
current working directory is returned. Otherwise, getwd () returns a null pointer and the
contents of the array pointed to by path_name are undefined.

No errors are defined.

For portability to implementations conforming to versions of the X/Open Portability Guide
prior to SUS, getcwd(3C) is preferred over this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

getcwd(3C), attributes(5), standards(5)

man pages section 3: Basic Library Functions « Last Revised 24 Jul 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwidth(3Q)

Name

Synopsis

Description

Attributes

See Also

Notes

getwidth — get codeset information
#include <euc.h>
#include <getwidth.h>

void getwidth(eucwidth_t *ptr);

The getwidth () function reads the character class table for the current locale to get
information on the supplementary codesets. getwidth () sets this information into the struct
eucwidth_t. This struct is defined in <euc. h>and has the following members:

short int eucwl, eucw2, eucw3;
short int _scrwl, scrw2, scrw3;
short int _pcw;

char _multibyte;

Codeset width values for supplementary codesets 1, 2, and 3 are setin _eucwl, _eucw2, and
_eucw3, respectively. Screen width values for supplementary codesets 1, 2, and 3 are set in
_scrwl,_scrw2,and _scrw3, respectively.

The width of Extended Unix Code (EUC) Process Code is setin _pcw. The _multibyte entry
is set to 1 if multibyte characters are used, and set to @ if only single-byte characters are used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

euclen(3C), setlocale(3C), attributes(5)

The getwidth() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

The getwidth() function will only work with EUC locales.

Basic Library Functions 405

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getws(3C)

406

Name getws, fgetws — get a wide-character string from a stream

Synopsis #include <stdio.h>

Description

ReturnValues

Errors

Attributes

include <widec.h>

wchar t *getws(wchar t *ws);

#include <stdio.h>
include <wchar.h>

wchar_t *fgetws(wchar t *restrict ws, int n, FILE *restrict stream);

The getws () function reads a string of characters from the standard input stream, stdin,
converts these characters to the corresponding wide-character codes, and writes them to the
array pointed to by ws, until a newline character is read, converted and transferred to ws or an
end-of-file condition is encountered. The wide-character string, ws, is then terminated with a
null wide-character code.

The fgetws () function reads characters from the stream, converts them to the corresponding
wide-character codes, and places them in the wchar_t array pointed to by ws until n—1
characters are read, or until a newline character is read, converted and transferred to ws, or an
end-of-file condition is encountered. The wide-character string, ws, is then terminated with a
null wide-character code.

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetws () function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(3C), fgets(3C), fgetwc(3C), fgetws (), fread(3C), fscanf(3C), getc(3C),
getchar(3C), gets(3C), or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

Upon successful completion, getws () and fgetws () return ws. If the stream is at end-of-file,
the end-of-file indicator for the stream is set and fgetws () returns a null pointer. For
standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetws () returns a null pointer whether or not the stream is at end-of-file. If a
read error occurs, the error indicator for the stream is set and fgetws () returns a null pointer
and sets errno to indicate the error.

See fgetwc(3C) for the conditions that will cause fgetws () to fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability fgetws () is Standard.

man pages section 3: Basic Library Functions « LastRevised 15 Oct 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getws(3C)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SeeAlso ferror(3C), fgetwc(3C), fread(3C), getwc(3C), putws(3C), scanf(3C), ungetc(3C),
ungetwc(3C), attributes(5), standards(5)

Basic Library Functions

407

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getzoneid(3C)

408

Name

Synopsis

Description

ReturnValues

Errors

Attributes

getzoneid, getzoneidbyname, getzonenamebyid — map between zone id and name

#include <zone.h>

zoneid t getzoneid(void);
zoneid t getzoneidbyname(const char *name);
ssize_t getzonenamebyid(zoneid t id, char *buf, size_t buflen);

The getzoneid() function returns the zone ID of the calling process.

The getzoneidbyname () function returns the zone ID corresponding to the named zone, if
that zone is currently active. If name is NULL, the function returns the zone ID of the calling
process.

The getzonenamebyid() function stores the name of the zone with ID specified by id in the
location specified by buf. The bufsize argument specifies the size in bytes of the bufter. If the
buffer is too small to hold the complete null-terminated name, the first bufsize bytes of the
name are stored in the buffer. A buffer of size {ZONENAME_MAX]} is sufficient to hold any zone
name. If bufis NULL or bufsize is 0, the name is not copied into the buffer.

On successful completion, getzoneid() and getzoneidbyname () return a non-negative zone
ID. Otherwise, getzoneidbyname () returns —1 and sets errno to indicate the error.

On successful completion, the getzonenamebyid () function returns the buffer size required
to hold the full null-terminated name. Otherwise, it returns —1 and sets errno to indicate the
error.

The getzoneidbyname () function will fail if:
EFAULT The name argument is non-null and points to an illegal address.
EINVAL A zone with the indicated name is not active.

ENAMETOOLONG The length of the name argument exceeds {ZONENAME_MAX}.

The getzonenamebyid () function will fail if:
EINVAL A zone with the specified ID is not active.

EFAULT The bufargument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

man pages section 3: Basic Library Functions - Last Revised 1 Nov 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getzoneid(3C)

SeeAlso Intro(2),chroot(2),malloc(3C),attributes(5), zones(5)

Basic Library Functions 409

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chroot-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

glob(3C)

Name glob, globfree — generate path names matching a pattern
Synopsis #include <glob.h>
int glob(const char *restrict pattern, int’ﬂags,

int (*errfunc) (const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);
Description The glob() function is a path name generator.
The globfree() function frees any memory allocated by glob () associated with pglob.

pattern Argument The argument pattern is a pointer to a path name pattern to be expanded. The glob()
function matches all accessible path names against this pattern and develops a list of all path
names that match. In order to have access to a path name, glob () requires search permission
on every component of a path except the last, and read permission on each directory of any
filename component of pattern that contains any of the following special characters:

pglobArgument The structure type glob_t is defined in the header <glob. h> and includes at least the

following members:
size t gl pathc; /* count of paths matched by */
/* pattern */
char **gl pathv; /* pointer to list of matched */
/* path names */
size t gl offs; /* slots to reserve at beginning */

/* of gl pathv */

The glob() function stores the number of matched path names into pglob—>g1_pathcanda
pointer to a list of pointers to path names into pglob—>g1_pathv. The path names are in sort
order as defined by the current setting of the LC_COLLATE category. The first pointer after the
last path name is a NULL pointer. If the pattern does not match any path names, the returned
number of matched paths is set to 0, and the contents of pglob—>g1_pathv are
implementation-dependent.

It is the caller's responsibility to create the structure pointed to by pglob. The glob () function
allocates other space as needed, including the memory pointed to by g1_pathv. The
globfree() function frees any space associated with pglob from a previous call to glob ().

flags Argument The flags argument is used to control the behavior of glob (). The value of flags is a bitwise
inclusive OR of zero or more of the following constants, which are defined in the header
<glob.h>:

GLOB_APPEND Append path names generated to the ones from a previous call to glob ().

410 man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

glob(3C)

GLOB_DOOFFS Make use of pglob—>g1_offs. If this flag is set, pglob—>g1l_offs is used to

specify how many NULL pointers to add to the beginning of
pglob—>g1_pathv. In other words, pglob—>g1_pathv will point to
pglob—>g1_offs NULL pointers, followed by pglob—>g1_pathc path name
pointers, followed by a NULL pointer.

GLOB_ERR Causes glob () to return when it encounters a directory that it cannot

open or read. Ordinarily, glob () continues to find matches.

GLOB_MARK Each path name that is a directory that matches pattern has a slash
appended.
GLOB_NOCHECK If pattern does not match any path name, then glob () returnsa list

consisting of only pattern, and the number of matched path namesis 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob () sorts the matching path names according to the

current setting of the LC_COLLATE category. When this flag is used the
order of path names returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of path names to those found in a
previous call to glob (). The following rules apply when two or more calls to glob () are made
with the same value of pglob and without intervening calls to globfree():

1.
2.
3.

The first such call must not set GLOB_APPEND. All subsequent calls must set it.

All the calls must set GLOB_DOOFFS, or all must not set it.

After the second call, pglob—>g1_pathv points to a list containing the following:

a. Zero or more NULL pointers, as specified by GLOB_DOOFFS and pglob—>gl_offs.

b. Pointers to the path names that were in the pglob—>g1_pathv list before the call, in the
same order as before.

c. Pointers to the new path names generated by the second call, in the specified order.

The count returned in pglob—>g1_pathc will be the total number of path names from the
two calls.

The application can change any of the fields after a call to glob (). If it does, it must reset
them to the original value before a subsequent call, using the same pglob value, to
globfree() orglob() with the GLOB_APPEND flag.

errfuncand epath If, during the search, a directory is encountered that cannot be opened or read and errfunc is
not a NULL pointer, glob() calls (*errfunc) with two arguments:

Arguments

1.
2.

The epath argument is a pointer to the path that failed.

The eerrno argument is the value of errno from the failure, as set by the opendir(3C),
readdir(3C) or stat(2) functions. (Other values may be used to report other errors not
explicitly documented for those functions.)

Basic Library Functions 411

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

glob(3C)

The following constants are defined as error return values for glob ():

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc) returned
non-zero.

GLOB_NOMATCH The pattern does not match any existing path name, and GLOB_NOCHECK
was not set in flags.

GLOG_NOSPACE An attempt to allocate memory failed.

If (*errfunc) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob () stops
the scan and returns GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect the
paths already scanned. If GLOB_ERR is not set and either errfunc is a NULL pointer or (*errfunc)
returns 0, the error is ignored.

ReturnValues The following values are returned by glob():

0 Successful completion. The argument pglob—>g1_pathc returns the number of
matched path names and the argument pglob—>g1l_pathv contains a pointer to
anull-terminated list of matched and sorted path names. However, if
pglob—>g1_pathcis 0, the content of pglob—>g1_pathv is undefined.

non-zero An error has occurred. Non-zero constants are defined in <glob.h>. The
arguments pglob—>g1_pathc and pglob—>gl_pathv are still set as defined
above.

The globfree() function returns no value.

Usage This function is not provided for the purpose of enabling utilities to perform path name
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do path
name expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a path name matches a given pattern, it can use fnmatch(3C).

Note that g1_pathc and gl_pathv have meaning even if glob () fails. This allows glob () to
report partial results in the event of an error. However, if gl_pathcis 0, gl_pathv is
unspecified even if glob () did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a path name if
wildcards are specified, but wants to treat the pattern as just a string otherwise.

The new path names generated by a subsequent call with GLOB_APPEND are not sorted together
with the previous path names. This mirrors the way that the shell handles path name
expansion when multiple expansions are done on a command line.

412 man pages section 3: Basic Library Functions « LastRevised 1 Nov 2003

glob(3C)

Applications that need tilde and parameter expansion should use the wordexp(3C) function.

Examples EexampLE1 Exampleofglob doofs function.

One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with the
execv (), execve(), or execvp () functions (see exec(2)). Suppose, for example, that an
application wants to do the equivalent of:

1s -1 *.c

but for some reason:

system("ls -1 *.c")

is not acceptable. The application could obtain approximately the same result using the
sequence:

globbuf.gl offs = 2;

glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl pathv[@] = "ls";

globbuf.gl pathv[1] = "-1";

execvp ("ls", &globbuf.gl pathv[0]);

Using the same example:
1s -1 *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl offs = 2;
glob ("*.c", GLOB DOOFFS, NULL, &globbuf);
glob ("*.h", GLOB DOOFFS|GLOB APPEND, NULL, &globbuf);

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso execv(2),stat(2), fnmatch(3C), opendir(3C), readdir(3C),wordexp(3C), attributes(5),
standards(5)

Basic Library Functions 413

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

grantpt(3C)

44

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

grantpt — grant access to the slave pseudo-terminal device

#include <stdlib.h>
int grantpt(int fildes);

The grantpt() function changes the mode and ownership of the slave pseudo-terminal
device associated with its master pseudo-terminal counterpart. fildes is the file descriptor
returned from a successful open of the master pseudo-terminal device. The user ID of the
slave is set to the real UID of the calling process and the group ID is set to a reserved group.
The permission mode of the slave pseudo-terminal is set to readable and writable by the owner
and writable by the group.

Upon successful completion, grantpt () returns 0. Otherwise, it returns —1 and sets errno to
indicate the error.

The grantpt () function may fail if:
EBADF The fildes argument is not a valid open file descriptor.
EINVAL The fildes argument is not associated with a master pseudo-terminal device.

EACCES The corresponding slave pseudo-terminal device could not be accessed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

open(2), ptsname(3C), unlockpt(3C), attributes(5), standards(5)

STREAMS Programming Guide

man pages section 3: Basic Library Functions - Last Revised 14 Aug 2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

hsearch(3C)

Name

Synopsis

Description

ReturnValues

Usage

Examples

hsearch, hcreate, hdestroy — manage hash search tables

#include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);
int hcreate(size t mekments);

void hdestroy(void);

The hsearch() function is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at which an entry
can be found. The comparison function used by hsearch() is strcmp() (see string(3C)). The
item argument is a structure of type ENTRY (defined in the <search. h> header) containing two
pointers: item.key points to the comparison key, and item.data points to any other data to
be associated with that key. (Pointers to types other than void should be cast to
pointer-to-void.) The action argument is a member of an enumeration type ACTION (defined
in <search.h>) indicating the disposition of the entry if it cannot be found in the table. ENTER
indicates that the item should be inserted in the table at an appropriate point. Given a
duplicate of an existing item, the new item is not entered and hsearch () returns a pointer to
the existing item. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

The hcreate() function allocates sufficient space for the table, and must be called before
hsearch() is used. The nel argument is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algorithm in order to
obtain certain mathematically favorable circumstances.

The hdestroy () function destroys the search table, and may be followed by another call to
hcreate().

The hsearch() function returns a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

The hcreate() function returns 0 if it cannot allocate sufficient space for the table.
The hsearch() and hcreate () functions use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

EXAMPLE 1 Example to read in strings.

The following example will read in strings followed by two numbers and store them in a hash
table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it.

#include <stdio.h>
#include <search.h>
#include <string.h>

Basic Library Functions 415

hsearch(3C)

EXAMPLE1 Example to read in strings. (Continued)

#include <stdlib.h>

struct info { /* this is the info stored in table */
int age, room; /* other than the key */

+i

#define NUM EMPL 5000 /* # of elements in search table */

main()

{

/* space to store strings */
char string space[NUM EMPL*20];

/* space to store employee info */
struct info info_space[NUM EMPL];

/* next avail space in string space */
char *str ptr = string space;

/* next avail space in info_space */
struct info *info ptr = info space;
ENTRY item, *found item;

/* name to look for in table */
char name to find[30];
int i = 0;

/* create table */
(void) hcreate(NUM EMPL);
while (scanf("%s%d%d", str ptr, &info ptr—>age,
&info ptr—>room) != EOF && i++ < NUM EMPL) {
/* put info in structure, and structure in item */
item.key = str ptr;
item.data = (void *)info_ptr;
str ptr += strlen(str ptr) + 1;
info ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key = name to find;
while (scanf("%s", item.key) != EOF) {
if ((found item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n"
found item—>key,
((struct info *)found item—>data)—>age,
((struct info *)found item—>data)—>room);
} else {
(void)printf("no such employee %s\n"
name_to find)

416 man pages section 3: Basic Library Functions - Last Revised 29 Dec 1996

hsearch(3C)

EXAMPLE1 Example to read in strings. (Continued)

}
¥

return 0;

}
Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

SeeAlso bsearch(3C), lsearch(3C), malloc(3C), string(3C), tsearch(3C), malloc(3MALLOC),
attributes(5), standards(5)

The Art of Computer Programming, Volume 3, Sorting and Searching by Donald E. Knuth,
published by Addison-Wesley Publishing Company, 1973.

417

Basic Library Functions

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

iconv(3C)

418

Name

Synopsis

Description

iconv — code conversion function

#include <iconv.h>

size_t iconv(iconv_t cd, char **restrict inbuf,
size_t *restrict inbytesleft, char **restrict outbuf,
size_t *restrict outbytesleft);

The iconv () function converts the sequence of characters from one code set, in the array
specified by inbuf, into a sequence of corresponding characters in another code set, in the
array specified by outbuf. The code sets are those specified in the iconv_open() call that
returned the conversion descriptor, cd. The inbufargument points to a variable that points to
the first character in the input buffer and inbytesleft indicates the number of bytes to the end of
the buffer to be converted. The outbufargument points to a variable that points to the first
available byte in the output buffer and outbytesleft indicates the number of the available bytes
to the end of the buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state
by a call for which inbufis a null pointer, or for which inbuf points to a null pointer. When
iconv () is called in this way, and if outbufis not a null pointer or a pointer to a null pointer,
and outbytesleft points to a positive value, iconv () will place, into the output buffer, the byte
sequence to change the output buffer to its initial shift state. If the output buffer is not large
enough to hold the entire reset sequence, iconv () will fail and set errno to E2BIG. Subsequent
calls with inbufas other than a null pointer or a pointer to a null pointer cause the conversion
to take place from the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified code set,
conversion stops after the previous successfully converted character. If the input buffer ends
with an incomplete character or shift sequence, conversion stops after the previous
successfully converted bytes. If the output buffer is not large enough to hold the entire
converted input, conversion stops just prior to the input bytes that would cause the output
buffer to overflow. The variable pointed to by inbufis updated to point to the byte following
the last byte successfully used in the conversion. The value pointed to by inbytesleft is
decremented to reflect the number of bytes still not converted in the input bufter. The variable
pointed to by outbufis updated to point to the byte following the last byte of converted output
data. The value pointed to by outbytesleft is decremented to reflect the number of bytes still
available in the output buffer. For state-dependent encodings, the conversion descriptor is
updated to reflect the shift state in effect at the end of the last successfully converted byte
sequence.

If iconv() encounters a character in the input buffer that is legal, but for which an identical
character does not exist in the target code set, iconv () performs an implementation-defined
conversion on this character.

The default conversion behavior mentioned above can be modified if one or more of the
conversion behavior modification indicators is specified and such conversion behavior

man pages section 3: Basic Library Functions « LastRevised 24 Mar 2011

iconv(3C)

modifications are supported by the implementation of the corresponding iconv code
conversion. See iconv_open(3C) and iconvct1(C).

ReturnValues The iconv () function updates the variables pointed to by the arguments to reflect the extent
of the conversion and returns the number of non-identical conversions performed. If the
entire string in the input buffer is converted, the value pointed to by inbytesleft will be 0. If the
input conversion is stopped due to any conditions mentioned above, the value pointed to by
inbytesleft will be non-zero and errno is set to indicate the condition. If an error occurs
iconv () returns (size t) —1and sets errno to indicate the error.

Errors The iconv () function will fail if:

EILSEQ Input conversion stopped due to an input byte that does not belong to the input
code set.

E2BIG Input conversion stopped due to lack of space in the output buffer.

EINVAL Input conversion stopped due to an incomplete character or shift sequence at the
end of the input buffer.

The iconv() function may fail if:

EBADF The cd argument is not a valid open conversion descriptor.

Examples ExampLe1 Using the iconv () Functions
The following example uses the iconv () functions:

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <iconv.h>
#include <stdlib.h>

/*
* For state-dependent encodings, changes the state of the
* conversion descriptor to initial shift state. Also, outputs
* the byte sequence to change the state to initial state.
* This code is assuming the iconv call for initializing the
* state will not fail due to lack of space in the output buffer.
*/
#define INIT SHIFT STATE(cd, fptr, ileft, tptr, oleft) \
{\
fptr = NULL; \
ileft = 0; \
tptr = to; \
oleft = BUFSIZ; \
(void) iconv(cd, &fptr, &ileft, &tptr, &oleft); \
(void) fwrite(to, 1, BUFSIZ - oleft, stdout); \
}

Basic Library Functions 419

iconv(3C)

EXAMPLE 1 Using the iconv () Functions (Continued)

int

main(int argc, char **argv)

{
iconv t cd;
char from[BUFSIZ], to[BUFSIZ];
char *from_code, *to code;
char *tptr;
char *fptr;
size t ileft, oleft, num, ret;

if (argc !'= 3) {
(void) fprintf(stderr,
"Usage: %s from codeset to codeset\\n", argv[0]);
return (1);

from code = argv[1l];
to_code = argv[2];

cd = iconv_open((const char *)to _code, (const char *)from_code);
if (cd == (iconv t)-1) {

/*

* iconv_open failed

*/

(void) fprintf(stderr,

"iconv_open(%s, %s) failed\\n", to code, from code);
return (1);

ileft = 0;
while ((ileft +=
(num = fread(from + ileft, 1, BUFSIZ - ileft, stdin))) > 0) {
if (num == 0) {
/*
* Input buffer still contains incomplete character
* or sequence. However, no more input character.
*/

/*

* Initializes the conversion descriptor and outputs
* the sequence to change the state to initial state.
*/

INIT SHIFT STATE(cd, fptr, ileft, tptr, oleft);

420 man pages section 3: Basic Library Functions « LastRevised 24 Mar 2011

iconv(3C)

EXAMPLE 1 Using the iconv () Functions (Continued)

(void) iconv_close(cd);

(void) fprintf(stderr, "Conversion error\\n")

return (1);
}
fptr = from;
for (;;) {
tptr = to;

oleft = BUFSIZ;

ret = iconv(cd, &fptr, &ileft, &tptr, &oleft);

if (ret !'= (size t)-1) {
/*
* iconv succeeded
*/
/*
* Qutputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
break;
}
/*
* iconv failed
*/
if (errno == EINVAL) {
/*
* Incomplete character or shift sequence
*/
/*
* Qutputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*

* Copies remaining characters in input buffer
* to the top of the input buffer.

*/

(void) memmove(from, fptr, ileft);
/*

* Tries to fill input buffer from stdin

*/

break;

Basic Library Functions 421

iconv(3C)

EXAMPLE 1 Using the iconv () Functions (Continued)

} else if (errno == E2BIG) {
/*
* Lack of space in output buffer
*/

/*

* Qutputs converted characters

*/

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*

* Tries to convert remaining characters in
* input buffer with emptied output buffer

*/
continue;
} else if (errno == EILSEQ) {
/*
* Illegal character or shift sequence
*/
/*
* Qutputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*

* Initializes the conversion descriptor and

* outputs the sequence to change the state to
* initial state.

*/

INIT SHIFT STATE(cd, fptr, ileft, tptr, oleft);
(void) iconv_close(cd);

(void) fprintf(stderr,
"Illegal character or sequence\\n");

return (1);
} else if (errno == EBADF) {
/*

* Invalid conversion descriptor.

* Actually, this shouldn’t happen here.

*/

(void) fprintf(stderr, "Conversion error\\n")
return (1);

} else {

/*

* This errno is not defined

*/

422 man pages section 3: Basic Libra