
man pages section 3: Basic Library
Functions

Part No: 821–1465–10
November 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

Preface ...19

Basic Library Functions ...23
a64l(3C) ... 24
abort(3C) ... 26
abs(3C) ... 27
addsev(3C) ... 28
addseverity(3C) .. 29
aio_cancel(3C) .. 31
aiocancel(3C) .. 33
aio_error(3C) .. 34
aio_fsync(3C) .. 36
aio_read(3C) ... 38
aioread(3C) ... 41
aio_return(3C) .. 43
aio_suspend(3C) .. 44
aiowait(3C) ... 46
aio_waitn(3C) .. 47
aio_write(3C) .. 49
assert(3C) ... 52
atexit(3C) ... 53
atomic_add(3C) .. 55
atomic_and(3C) .. 57
atomic_bits(3C) .. 59
atomic_cas(3C) .. 60
atomic_dec(3C) .. 62
atomic_inc(3C) .. 64
atomic_ops(3C) .. 66

3

atomic_or(3C) .. 67
atomic_swap(3C) .. 69
attropen(3C) ... 70
basename(3C) ... 71
bsdmalloc(3MALLOC) ... 72
bsd_signal(3C) .. 74
bsearch(3C) ... 76
bstring(3C) ... 79
btowc(3C) ... 80
catgets(3C) ... 81
catopen(3C) ... 82
cfgetispeed(3C) .. 85
cfsetispeed(3C) .. 86
clearenv(3C) ... 87
clock(3C) ... 88
clock_nanosleep(3C) .. 89
clock_settime(3C) .. 91
closedir(3C) ... 93
closefrom(3C) .. 94
cond_init(3C) .. 96
confstr(3C) ... 101
crypt(3C) ... 109
crypt_genhash_impl(3C) ... 111
crypt_gensalt(3C) .. 112
crypt_gensalt_impl(3C) ... 113
cset(3C) ... 114
ctermid(3C) ... 116
ctime(3C) ... 117
ctype(3C) ... 122
cuserid(3C) ... 125
daemon(3C) ... 126
decimal_to_floating(3C) ... 128
difftime(3C) ... 130
directio(3C) ... 131
dirfd(3C) ... 133
dirname(3C) ... 134

Contents

man pages section 3: Basic Library Functions • November 20114

div(3C) ... 136
dladdr(3C) ... 137
dlclose(3C) ... 139
dldump(3C) ... 141
dlerror(3C) ... 147
dlinfo(3C) ... 148
dl_iterate_phdr(3C) .. 155
dlopen(3C) ... 159
dlsym(3C) ... 164
door_bind(3C) .. 167
door_call(3C) .. 170
door_create(3C) .. 173
door_cred(3C) .. 176
door_getparam(3C) .. 177
door_info(3C) .. 180
door_return(3C) .. 182
door_revoke(3C) .. 183
door_server_create(3C) ... 184
door_ucred(3C) .. 187
door_xcreate(3C) .. 188
drand48(3C) ... 197
dup2(3C) ... 200
econvert(3C) ... 201
ecvt(3C) ... 203
enable_extended_FILE_stdio(3C) ... 205
encrypt(3C) ... 209
end(3C) ... 210
err(3C) ... 211
euclen(3C) ... 213
exit(3C) ... 214
fattach(3C) ... 215
__fbufsize(3C) .. 217
fclose(3C) ... 219
fdatasync(3C) .. 221
fdetach(3C) ... 222
fdopen(3C) ... 224

Contents

5

ferror(3C) ... 226
fflush(3C) ... 227
ffs(3C) ... 229
fgetattr(3C) ... 230
fgetc(3C) ... 234
fgetpos(3C) ... 237
fgetwc(3C) ... 238
floating_to_decimal(3C) ... 240
flockfile(3C) .. 242
fmtmsg(3C) ... 244
fnmatch(3C) ... 249
fopen(3C) ... 252
fpgetround(3C) .. 256
fputc(3C) ... 258
fputwc(3C) ... 261
fputws(3C) ... 263
fread(3C) ... 264
freopen(3C) ... 266
fseek(3C) ... 269
fsetpos(3C) ... 272
fsync(3C) ... 273
ftell(3C) ... 275
ftime(3C) ... 276
ftok(3C) ... 277
ftw(3C) ... 279
fwide(3C) ... 284
fwprintf(3C) ... 285
fwrite(3C) ... 293
fwscanf(3C) ... 294
getauthattr(3C) .. 302
getcpuid(3C) ... 305
getcwd(3C) ... 306
getdate(3C) ... 308
getdtablesize(3C) .. 315
getenv(3C) ... 316
getexecattr(3C) .. 317

Contents

man pages section 3: Basic Library Functions • November 20116

getexecname(3C) .. 320
getgrnam(3C) ... 321
gethostid(3C) .. 325
gethostname(3C) .. 326
gethrtime(3C) .. 327
getline(3C) ... 328
getloadavg(3C) .. 330
getlogin(3C) ... 331
getmntent(3C) .. 333
getnetgrent(3C) .. 335
get_nprocs(3C) .. 337
getopt(3C) ... 338
getopt_long(3C) .. 344
getpagesize(3C) .. 352
getpagesizes(3C) .. 353
getpass(3C) ... 354
getpeerucred(3C) .. 355
getpriority(3C) .. 357
getprofattr(3C) .. 360
getprogname(3C) .. 362
getpw(3C) ... 363
getpwnam(3C) ... 364
getrusage(3C) .. 369
gets(3C) ... 372
getspnam(3C) ... 373
getsubopt(3C) .. 377
gettext(3C) ... 381
gettimeofday(3C) .. 386
gettxt(3C) ... 388
getuserattr(3C) .. 390
getusershell(3C) .. 392
getutent(3C) ... 393
getutxent(3C) .. 396
getvfsent(3C) .. 400
getwc(3C) ... 402
getwchar(3C) ... 403

Contents

7

getwd(3C) ... 404
getwidth(3C) ... 405
getws(3C) ... 406
getzoneid(3C) .. 408
glob(3C) ... 410
grantpt(3C) ... 414
hsearch(3C) ... 415
iconv(3C) ... 418
iconv_close(3C) .. 424
iconvctl(C) ... 425
iconv_open(3C) .. 430
iconvstr(3C) ... 435
imaxabs(3C) ... 439
imaxdiv(3C) ... 440
index(3C) ... 441
initgroups(3C) .. 442
insque(3C) ... 443
isaexec(3C) ... 444
isastream(3C) .. 446
isatty(3C) ... 447
isnand(3C) ... 448
is_system_labeled(3C) .. 450
iswalpha(3C) ... 451
iswctype(3C) ... 454
killpg(3C) ... 456
kva_match(3C) .. 457
lckpwdf(3C) ... 458
lfmt(3C) ... 459
lio_listio(3C) .. 463
localeconv(3C) .. 466
localelist(3C) .. 472
lockf(3C) ... 476
_longjmp(3C) ... 479
lsearch(3C) ... 480
madvise(3C) ... 482
makecontext(3C) .. 485

Contents

man pages section 3: Basic Library Functions • November 20118

makedev(3C) ... 488
malloc(3C) ... 489
malloc(3MALLOC) .. 492
mapmalloc(3MALLOC) ... 495
mblen(3C) ... 497
mbrlen(3C) ... 498
mbrtowc(3C) ... 500
mbsinit(3C) ... 502
mbsrtowcs(3C) .. 503
mbstowcs(3C) ... 505
mbtowc(3C) ... 506
membar_ops(3C) .. 507
memory(3C) ... 509
mkfifo(3C) ... 511
mkstemp(3C) ... 514
mktemp(3C) ... 516
mktime(3C) ... 517
mlock(3C) ... 520
mlockall(3C) ... 522
monitor(3C) ... 524
mq_close(3C) ... 526
mq_getattr(3C) .. 527
mq_notify(3C) .. 528
mq_open(3C) ... 530
mq_receive(3C) .. 533
mq_send(3C) ... 536
mq_setattr(3C) .. 539
mq_unlink(3C) .. 540
msync(3C) ... 541
mtmalloc(3MALLOC) .. 543
mutex_init(3C) .. 546
nanosleep(3C) .. 559
ndbm(3C) ... 561
nl_langinfo(3C) .. 565
offsetof(3C) ... 566
opendir(3C) ... 567

Contents

9

perror(3C) ... 569
pfmt(3C) ... 570
plock(3C) ... 573
popen(3C) ... 574
port_alert(3C) .. 577
port_associate(3C) .. 579
port_create(3C) .. 585
port_get(3C) ... 588
port_send(3C) .. 592
posix_fadvise(3C) .. 595
posix_fallocate(3C) .. 597
posix_madvise(3C) .. 599
posix_memalign(3C) .. 601
posix_openpt(3C) .. 602
posix_spawn(3C) .. 604
posix_spawnattr_destroy(3C) ... 610
posix_spawnattr_getflags(3C) ... 612
posix_spawnattr_getpgroup(3C) ... 614
posix_spawnattr_getschedparam(3C) .. 615
posix_spawnattr_getschedpolicy(3C) .. 617
posix_spawnattr_getsigdefault(3C) .. 619
posix_spawnattr_getsigignore_np(3C) .. 621
posix_spawnattr_getsigmask(3C) ... 623
posix_spawn_file_actions_addclose(3C) .. 625
posix_spawn_file_actions_addclosefrom_np(3C) ... 627
posix_spawn_file_actions_adddup2(3C) .. 628
posix_spawn_file_actions_destroy(3C) .. 629
printf(3C) ... 630
priv_addset(3C) .. 641
priv_set(3C) ... 644
priv_str_to_set(3C) .. 646
pset_getloadavg(3C) .. 649
psignal(3C) ... 650
pthread_atfork(3C) .. 651
pthread_attr_getdetachstate(3C) .. 654
pthread_attr_getguardsize(3C) ... 655

Contents

man pages section 3: Basic Library Functions • November 201110

pthread_attr_getinheritsched(3C) .. 657
pthread_attr_getschedparam(3C) ... 659
pthread_attr_getschedpolicy(3C) .. 660
pthread_attr_getscope(3C) ... 661
pthread_attr_getstack(3C) ... 662
pthread_attr_getstackaddr(3C) ... 664
pthread_attr_getstacksize(3C) ... 665
pthread_attr_init(3C) .. 666
pthread_barrierattr_destroy(3C) .. 668
pthread_barrierattr_getpshared(3C) .. 670
pthread_barrier_destroy(3C) ... 672
pthread_barrier_wait(3C) ... 674
pthread_cancel(3C) .. 676
pthread_cleanup_pop(3C) ... 678
pthread_cleanup_push(3C) ... 680
pthread_condattr_getclock(3C) ... 682
pthread_condattr_getpshared(3C) .. 684
pthread_condattr_init(3C) ... 686
pthread_cond_init(3C) .. 688
pthread_cond_signal(3C) ... 690
pthread_cond_wait(3C) .. 692
pthread_create(3C) .. 695
pthread_detach(3C) .. 699
pthread_equal(3C) .. 700
pthread_exit(3C) .. 701
pthread_getconcurrency(3C) ... 703
pthread_getschedparam(3C) ... 705
pthread_getspecific(3C) ... 707
pthread_join(3C) .. 709
pthread_key_create(3C) ... 711
pthread_key_delete(3C) ... 714
pthread_kill(3C) .. 715
pthread_mutexattr_getprioceiling(3C) .. 716
pthread_mutexattr_getprotocol(3C) .. 718
pthread_mutexattr_getpshared(3C) .. 721
pthread_mutexattr_getrobust(3C) .. 723

Contents

11

pthread_mutexattr_gettype(3C) ... 725
pthread_mutexattr_init(3C) ... 727
pthread_mutex_consistent(3C) ... 729
pthread_mutex_getprioceiling(3C) .. 731
pthread_mutex_init(3C) ... 733
pthread_mutex_lock(3C) ... 735
pthread_mutex_timedlock(3C) ... 738
pthread_once(3C) .. 740
pthread_rwlockattr_getpshared(3C) .. 741
pthread_rwlockattr_init(3C) ... 743
pthread_rwlock_init(3C) ... 744
pthread_rwlock_rdlock(3C) ... 746
pthread_rwlock_timedrdlock(3C) ... 748
pthread_rwlock_timedwrlock(3C) ... 750
pthread_rwlock_unlock(3C) ... 752
pthread_rwlock_wrlock(3C) ... 754
pthread_self(3C) .. 756
pthread_setcancelstate(3C) ... 757
pthread_setcanceltype(3C) ... 758
pthread_setschedprio(3C) ... 760
pthread_sigmask(3C) .. 761
pthread_spin_destroy(3C) ... 766
pthread_spin_lock(3C) .. 768
pthread_spin_unlock(3C) ... 769
pthread_testcancel(3C) ... 770
ptrace(3C) ... 771
ptsname(3C) ... 774
putenv(3C) ... 775
putpwent(3C) ... 776
puts(3C) ... 777
putspent(3C) ... 778
putws(3C) ... 779
qsort(3C) ... 780
raise(3C) ... 782
rand(3C) ... 783
random(3C) ... 785

Contents

man pages section 3: Basic Library Functions • November 201112

rctlblk_set_value(3C) .. 788
rctl_walk(3C) .. 793
readdir(3C) ... 795
realpath(3C) ... 799
reboot(3C) ... 801
re_comp(3C) ... 802
regcmp(3C) ... 803
regcomp(3C) ... 805
remove(3C) ... 811
rewind(3C) ... 812
rewinddir(3C) .. 813
rwlock(3C) ... 814
scandir(3C) ... 817
scanf(3C) ... 819
schedctl_init(3C) .. 827
sched_getparam(3C) .. 829
sched_get_priority_max(3C) ... 830
sched_getscheduler(3C) ... 831
sched_rr_get_interval(3C) ... 832
sched_setparam(3C) .. 833
sched_setscheduler(3C) ... 835
sched_yield(3C) .. 837
seekdir(3C) ... 838
select(3C) ... 839
semaphore(3C) .. 844
sem_close(3C) .. 848
sem_destroy(3C) .. 849
sem_getvalue(3C) .. 850
sem_init(3C) ... 851
sem_open(3C) ... 853
sem_post(3C) ... 856
sem_timedwait(3C) .. 858
sem_unlink(3C) .. 860
sem_wait(3C) ... 861
setbuf(3C) ... 864
setbuffer(3C) .. 866

Contents

13

setcat(3C) ... 867
setenv(3C) ... 868
setjmp(3C) ... 869
setkey(3C) ... 872
setlabel(3C) ... 873
setlocale(3C) .. 874
shm_open(3C) ... 877
shm_unlink(3C) .. 880
sigfpe(3C) ... 881
siginterrupt(3C) .. 884
signal(3C) ... 885
sigqueue(3C) ... 887
sigsetops(3C) .. 889
sigstack(3C) ... 891
sigwaitinfo(3C) .. 893
sleep(3C) ... 895
smt_pause(3C) .. 896
ssignal(3C) ... 897
stack_getbounds(3C) .. 898
_stack_grow(3C) .. 899
stack_inbounds(3C) .. 900
stack_setbounds(3C) .. 901
stack_violation(3C) .. 902
stdio(3C) ... 904
str2sig(3C) ... 908
strcoll(3C) ... 909
strerror(3C) ... 910
strfmon(3C) ... 911
strftime(3C) ... 916
string(3C) ... 922
string_to_decimal(3C) .. 930
strptime(3C) ... 934
strsignal(3C) .. 940
strtod(3C) ... 941
strtoimax(3C) .. 946
strtol(3C) ... 947

Contents

man pages section 3: Basic Library Functions • November 201114

strtoul(3C) ... 950
strtows(3C) ... 952
strxfrm(3C) ... 953
swab(3C) ... 955
sync_instruction_memory(3C) ... 956
sysconf(3C) ... 957
syslog(3C) ... 966
system(3C) ... 970
tcdrain(3C) ... 972
tcflow(3C) ... 973
tcflush(3C) ... 975
tcgetattr(3C) .. 976
tcgetpgrp(3C) .. 977
tcgetsid(3C) ... 978
tcsendbreak(3C) .. 979
tcsetattr(3C) .. 980
tcsetpgrp(3C) .. 982
td_init(3C_DB) ... 983
td_log(3C_DB) ... 984
td_sync_get_info(3C_DB) .. 985
td_ta_enable_stats(3C_DB) ... 988
td_ta_event_addr(3C_DB) .. 990
td_ta_get_nthreads(3C_DB) ... 994
td_ta_map_addr2sync(3C_DB) ... 995
td_ta_map_id2thr(3C_DB) .. 996
td_ta_new(3C_DB) .. 997
td_ta_setconcurrency(3C_DB) ... 999
td_ta_sync_iter(3C_DB) .. 1000
td_thr_dbsuspend(3C_DB) .. 1002
td_thr_getgregs(3C_DB) .. 1003
td_thr_get_info(3C_DB) .. 1005
td_thr_lockowner(3C_DB) .. 1008
td_thr_setprio(3C_DB) .. 1009
td_thr_setsigpending(3C_DB) ... 1010
td_thr_sleepinfo(3C_DB) .. 1011
td_thr_tsd(3C_DB) .. 1012

Contents

15

td_thr_validate(3C_DB) .. 1013
tell(3C) ... 1014
telldir(3C) ... 1015
termios(3C) ... 1016
thr_create(3C) .. 1017
thr_exit(3C) ... 1023
thr_getconcurrency(3C) ... 1025
thr_getprio(3C) .. 1026
thr_join(3C) ... 1027
thr_keycreate(3C) .. 1029
thr_kill(3C) ... 1033
thr_main(3C) ... 1034
thr_min_stack(3C) .. 1035
thr_self(3C) ... 1037
thr_sigsetmask(3C) .. 1038
thr_stksegment(3C) .. 1043
thr_suspend(3C) .. 1044
thr_yield(3C) .. 1045
timeradd(3C) ... 1046
timer_create(3C) .. 1048
timer_delete(3C) .. 1050
timer_settime(3C) .. 1051
tmpfile(3C) ... 1053
tmpnam(3C) ... 1054
toascii(3C) ... 1056
_tolower(3C) ... 1057
tolower(3C) ... 1058
_toupper(3C) ... 1059
toupper(3C) ... 1060
towctrans(3C) .. 1061
towlower(3C) ... 1062
towupper(3C) ... 1063
truncate(3C) ... 1064
tsearch(3C) ... 1067
ttyname(3C) ... 1071
ttyslot(3C) ... 1073

Contents

man pages section 3: Basic Library Functions • November 201116

u8_strcmp(3C) .. 1074
u8_textprep_str(3C) .. 1078
u8_validate(3C) .. 1082
ualarm(3C) ... 1086
uconv_u16tou32(3C) .. 1087
ucred_get(3C) .. 1093
umem_alloc(3MALLOC) ... 1096
umem_cache_create(3MALLOC) ... 1102
umem_debug(3MALLOC) ... 1111
ungetc(3C) ... 1114
ungetwc(3C) ... 1115
unlockpt(3C) ... 1116
unsetenv(3C) ... 1117
usleep(3C) ... 1118
vfwprintf(3C) .. 1119
vlfmt(3C) ... 1120
vpfmt(3C) ... 1122
vprintf(3C) ... 1124
vsyslog(3C) ... 1126
wait3(3C) ... 1128
wait(3C) ... 1131
waitpid(3C) ... 1133
walkcontext(3C) .. 1135
watchmalloc(3MALLOC) ... 1138
wcrtomb(3C) ... 1141
wcscoll(3C) ... 1143
wcsftime(3C) ... 1144
wcsrtombs(3C) .. 1146
wcsstr(3C) ... 1148
wcstod(3C) ... 1149
wcstoimax(3C) .. 1152
wcstol(3C) ... 1153
wcstombs(3C) ... 1156
wcstoul(3C) ... 1157
wcstring(3C) ... 1160
wcswidth(3C) ... 1166

Contents

17

wcsxfrm(3C) ... 1167
wctob(3C) ... 1169
wctomb(3C) ... 1170
wctrans(3C) ... 1171
wctype(3C) ... 1172
wcwidth(3C) ... 1173
wmemchr(3C) ... 1174
wmemcmp(3C) ... 1175
wmemcpy(3C) ... 1176
wmemmove(3C) ... 1177
wmemset(3C) ... 1178
wordexp(3C) ... 1179
wsprintf(3C) ... 1183
wsscanf(3C) ... 1184
wstring(3C) ... 1185

Contents

man pages section 3: Basic Library Functions • November 201118

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

19

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 3: Basic Library Functions • November 201120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mtio-7i

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 3: Basic Library Functions • November 201122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Basic Library Functions

R E F E R E N C E

23

a64l, l64a – convert between long integer and base-64 ASCII string

#include <stdlib.h>

long a64l(const char *s);

char *l64a(long l);

These functions maintain numbers stored in base-64 ASCII characters that define a notation
by which long integers can be represented by up to six characters. Each character represents a
“digit” in a radix-64 notation.

The characters used to represent “digits” are as follows:

Character Digit

. 0

/ 1

0-9 2-11

A-Z 12-37

a-z 38-63

The a64l() function takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six characters,
a64l() uses the first six.

The a64l() function scans the character string from left to right with the least significant digit
on the left, decoding each character as a 6-bit radix-64 number.

The l64a() function takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 0, l64a() returns a pointer to a null string.

The value returned by l64a() is a pointer into a static buffer, the contents of which are
overwritten by each call. In the case of multithreaded applications, the return value is a pointer
to thread specific data.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Name

Synopsis

Description

Attributes

a64l(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200224

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

attributes(5), standards(5)See Also

a64l(3C)

Basic Library Functions 25

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

abort – terminate the process abnormally

#include <stdlib.h>

void abort(void);

The abort() function causes abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. The abnormal termination
processing includes at least the effect of fclose(3C) on all open streams and message
catalogue descriptors, and the default actions defined for SIGABRT. The SIGABRT signal is sent
to the calling process as if by means of the raise(3C) function with the argument SIGABRT.

The status made available to wait(3C) or waitpid(3C) by abort will be that of a process
terminated by the SIGABRT signal. abort will override blocking or ignoring the SIGABRT signal.

The abort() function does not return.

No errors are defined.

Catching the signal is intended to provide the application writer with a portable means to
abort processing, free from possible interference from any implementation-provided library
functions. If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump may be produced.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

exit(2), getrlimit(2), kill(2), fclose(3C), raise(3C), signal(3C), wait(3C),
waitpid(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

abort(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200226

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

abs, labs, llabs – return absolute value of integer

#include <stdlib.h>

int abs(int val);

long labs(long lval);

long long llabs(long long llval);

The abs() function returns the absolute value of its int operand.

The labs() function returns the absolute value of its long operand.

The llabs() function returns the absolute value of its long long operand.

In 2's-complement representation, the absolute value of the largest magnitude negative
integral value is undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Usage

Attributes

See Also

abs(3C)

Basic Library Functions 27

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

addsev – define additional severities

#include <pfmt.h>

int addsev(int int_val, const char *string);

The addsev() function defines additional severities for use in subsequent calls to pfmt(3C) or
lfmt(3C). It associates an integer value int_val in the range [5-255] with a character string,
overwriting any previous string association between int_val and string.

If int_val is OR-ed with the flags argument passed to subsequent calls to pfmt() or lfmt(),
string will be used as severity. Passing a null string removes the severity.

Upon successful completion, addsev() returns 0. Otherwise it returns−1.

Only the standard severities are automatically displayed for the locale in effect at runtime. An
application must provide the means for displaying locale-specific versions of add-on
severities. Add-on severities are only effective within the applications defining them.

EXAMPLE 1 Example of addsev() function.

The following example

#define Panic 5

setlabel("APPL");
setcat("my_appl");
addsev(Panic, gettxt(":26", "PANIC"));
/* . . . */

lfmt(stderr, MM_SOFT|MM_APPL|PANIC, ":12:Cannot locate database\n");

will display the message to stderr and forward to the logging service

APPL: PANIC: Cannot locate database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-safe

gettxt(3C), lfmt(3C), pfmt(3C), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Examples

Attributes

See Also

addsev(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 199628

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

addseverity – build a list of severity levels for an application for use with fmtmsg

#include <fmtmsg.h>

int addseverity(int severity, const char *string);

The addseverity() function builds a list of severity levels for an application to be used with
the message formatting facility fmtmsg(). The severity argument is an integer value indicating
the seriousness of the condition. The string argument is a pointer to a string describing the
condition (string is not limited to a specific size).

If addseverity() is called with an integer value that has not been previously defined, the
function adds that new severity value and print string to the existing set of standard severity
levels.

If addseverity() is called with an integer value that has been previously defined, the function
redefines that value with the new print string. Previously defined severity levels may be
removed by supplying the null string. If addseverity() is called with a negative number or an
integer value of 0, 1, 2, 3, or 4, the function fails and returns −1. The values 0−4 are reserved for
the standard severity levels and cannot be modified. Identifiers for the standard levels of
severity are:

MM_HALT Indicates that the application has encountered a severe fault and is halting.
Produces the print string HALT.

MM_ERROR Indicates that the application has detected a fault. Produces the print string
ERROR.

MM_WARNING Indicates a condition that is out of the ordinary, that might be a problem, and
should be watched. Produces the print string WARNING.

MM_INFO Provides information about a condition that is not in error. Produces the
print string INFO.

MM_NOSEV Indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment variable (see
fmtmsg(3C)).

Upon successful completion, addseverity() returns MM_OK. Otherwise it returns MM_NOTOK.

EXAMPLE 1 Example of addseverity() function.

When the function call

addseverity(7,"ALERT")

is followed by the call

fmtmsg(MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to manual",
"UX:cat:001")

Name

Synopsis

Description

Return Values

Examples

addseverity(3C)

Basic Library Functions 29

EXAMPLE 1 Example of addseverity() function. (Continued)

the resulting output is

UX:cat: ALERT: invalid syntax

TO FIX: refer to manual UX:cat:001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

fmtmsg(1), fmtmsg(3C), gettxt(3C), printf(3C), attributes(5)

Attributes

See Also

addseverity(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 199630

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_cancel – cancel asynchronous I/O request

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

The aio_cancel() function attempts to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process takes place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED and the return status is −1. For requested operations that are not successfully
canceled, the aiocbp is not modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with
which the asynchronous operation was initiated, unspecified results occur.

The aio_cancel() function returns the value AIO_CANCELED to the calling process if the
requested operation(s) were canceled. The value AIO_NOTCANCELED is returned if at least one
of the requested operation(s) cannot be canceled because it is in progress. In this case, the state
of the other operations, if any, referenced in the call to aio_cancel() is not indicated by the
return value of aio_cancel(). The application may determine the state of affairs for these
operations by using aio_error(3C). The value AIO_ALLDONE is returned if all of the operations
have already completed. Otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_cancel() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOSYS The aio_cancel() function is not supported.

The aio_cancel() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

aio_cancel(3C)

Basic Library Functions 31

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio.h(3HEAD), signal.h(3HEAD), aio_read(3C), aio_return(3C), attributes(5),
lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

aio_cancel(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200832

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aiocancel – cancel an asynchronous operation

#include <sys/asynch.h>

int aiocancel(aio_result_t *resultp);

aiocancel() cancels the asynchronous operation associated with the result buffer pointed to
by resultp. It may not be possible to immediately cancel an operation which is in progress and
in this case, aiocancel() will not wait to cancel it.

Upon successful completion, aiocancel() returns 0 and the requested operation is cancelled.
The application will not receive the SIGIO completion signal for an asynchronous operation
that is successfully cancelled.

Upon successful completion, aiocancel() returns 0. Upon failure, aiocancel() returns −1
and sets errno to indicate the error.

aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to any outstanding asynchronous
operation, although there is at least one currently outstanding.

EFAULT resultp points to an address outside the address space of the requesting process.
See NOTES.

EINVAL There are not any outstanding requests to cancel.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aioread(3C), aiowait(3C), attributes(5)

Passing an illegal address as resultp will result in setting errno to EFAULT only if it is detected
by the application process.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

aiocancel(3C)

Basic Library Functions 33

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_error – retrieve errors status for an asynchronous I/O operation

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

The aio_error() function returns the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the
errno value that would be set by the corresponding read(2), write(2), or fsync(3C)
operation. If the operation has not yet completed, then the error status will be equal to
EINPROGRESS.

If the asynchronous I/O operation has completed successfully, then 0 is returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for
read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, then EINPROGRESS is returned.

The aio_error() function may fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose return
status has not yet been retrieved.

The aio_error() function has a transitional interface for 64-bit file offsets. See lf64(5).

EXAMPLE 1 The following is an example of an error handling routine using the aio_error() function.

#include <aio.h>

#include <errno.h>

#include <signal.h>

struct aiocb my_aiocb;

struct sigaction my_sigaction;

void my_aio_handler(int, siginfo_t *, void *);

. . .

my_sigaction.sa_flags = SA_SIGINFO;

my_sigaction.sa_sigaction = my_aio_handler;

sigemptyset(&my_sigaction.sa_mask);

(void) sigaction(SIGRTMIN, &my_sigaction, NULL);

. . .

my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;

my_aiocb.aio_sigevent.sigev_signo = SIGRTMIN;

my_aiocb.aio_sigevent.sigev_value.sival_ptr = &myaiocb;

. . .

(void) aio_read(&my_aiocb);

. . .

void

my_aio_handler(int signo, siginfo_t *siginfo, void *context) {

int my_errno;

struct aiocb *my_aiocbp;

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

aio_error(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200834

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

EXAMPLE 1 The following is an example of an error handling routine using the aio_error()
function. (Continued)

my_aiocbp = siginfo->si_value.sival_ptr;

if ((my_errno = aio_error(my_aiocb)) != EINPROGRESS) {

int my_status = aio_return(my_aiocb);

if (my_status >= 0){ /* start another operation */

. . .

} else { /* handle I/O error */

. . .

}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

_Exit(2), close(2), fork(2), lseek(2), read(2), write(2), aio.h(3HEAD), aio_cancel(3C),
aio_fsync(3C), aio_read(3C), aio_return(3C), aio_write(3C), lio_listio(3C),
signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Attributes

See Also

aio_error(3C)

Basic Library Functions 35

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_fsync – asynchronous file synchronization

#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

The aio_fsync() function asynchronously forces all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the
aiocbp argument and queued at the time of the call to aio_fsync() to the synchronized I/O
completion state. The function call returns when the synchronization request has been
initiated or queued to the file or device (even when the data cannot be synchronized
immediately).

If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync(3C); that is, as defined for synchronized I/O data integrity completion. If op is
O_SYNC, all currently queued I/O operations are completed as if by a call to fsync(3C); that is,
as defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or
if the operation queued by aio_fsync() fails, then, as for fsync(3C) and fdatasync(3C),
outstanding I/O operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion
of subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be
used as an argument to aio_error(3C) and aio_return(3C) in order to determine the error
status and return status, respectively, of the asynchronous operation while it is proceeding.
When the request is queued, the error status for the operation is EINPROGRESS. When all data
has been successfully transferred, the error status will be reset to reflect the success or failure of
the operation. If the operation does not complete successfully, the error status for the
operation will be set to indicate the error. The aio_sigevent member determines the
asynchronous notification to occur when all operations have achieved synchronized I/O
completion (see signal.h(3HEAD)). All other members of the structure referenced by aiocbp
are ignored. If the control block referenced by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

If the aio_fsync() function fails or the aiocbp indicates an error condition, data is not
guaranteed to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon
completion of the operation.

The aio_fsync() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

Name

Synopsis

Description

Return Values

aio_fsync(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200836

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

The aio_fsync() function will fail if:

EAGAIN The requested asynchronous operation was not queued due to temporary
resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp
argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

EINVAL A value of op other than O_DSYNC or O_SYNC was specified.

In the event that any of the queued I/O operations fail, aio_fsync() returns the error
condition defined for read(2) and write(2). The error will be returned in the error status for
the asynchronous fsync(3C) operation, which can be retrieved using aio_error(3C).

The aio_fsync() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fcntl(2), open(2), read(2), write(2), aio_error(3C), aio_return(3C), aio.h(3HEAD),
fcntl.h(3HEAD), fdatasync(3C), fsync(3C), signal.h(3HEAD), attributes(5), lf64(5),
standards(5)

Errors

Usage

Attributes

See Also

aio_fsync(3C)

Basic Library Functions 37

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_read – asynchronous read from a file

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file
associated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf. The
function call returns when the read request has been initiated or queued to the file or device
(even when the data cannot be delivered immediately). If _POSIX_PRIORITIZED_IO is defined
and prioritized I/O is supported for this file, then the asynchronous operation is submitted at a
priority equal to the scheduling priority of the process minus aiocbp->aio_reqprio. The
aiocbp value may be used as an argument to aio_error(3C) and aio_return(3C) in order to
determine the error status and return status, respectively, of the asynchronous operation while
it is proceeding. If an error condition is encountered during queuing, the function call returns
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if lseek(2) were called immediately prior
to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aiocbp->aio_sigevent structure defines what asynchronous notification is to occur
when the asynchronous operation completes, as specified in signal.h(3HEAD).

The aiocbp->aio_lio_opcode field is ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file associated
with aiocbp->aio_fildes, the behavior of this function is according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp->aio_fildes.

The aio_read() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

Name

Synopsis

Description

Return Values

aio_read(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200838

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

The aio_read() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously,
the aio_read() function returns –1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to −1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid
value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation
is one of the values normally returned by the read(2) function call. In addition, the error status
of the asynchronous operation will be set to one of the error statuses normally set by the
read() function call, or one of the following values:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
reading.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel(3C) request.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aiobcp->aio_nbytes is greater than 0 and the starting
offset in aiobcp->aio_offset is before the end-of-file and is at or beyond the
offset maximum in the open file description associated with
aiocbp->aio_fildes.

For portability, the application should set aiocb->aio_reqprio to 0.

The aio_read() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Errors

Usage

Attributes

aio_read(3C)

Basic Library Functions 39

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), aio_cancel(3C),
aio_return(3C), aio.h(3HEAD), lio_listio(3C), siginfo.h(3HEAD),
signal.h(3HEAD), attributes(5), lf64(5), standards(5)

See Also

aio_read(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200840

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aioread, aiowrite – read or write asynchronous I/O operations

#include <sys/types.h>

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

The aioread() function initiates one asynchronous read(2) and returns control to the calling
program. The read continues concurrently with other activity of the process. An attempt is
made to read bufs bytes of data from the object referenced by the descriptor fildes into the
buffer pointed to by bufp.

The aiowrite() function initiates one asynchronous write(2) and returns control to the
calling program. The write continues concurrently with other activity of the process. An
attempt is made to write bufs bytes of data from the buffer pointed to by bufp to the object
referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by whence and
offset. These parameters have the same meaning as the corresponding parameters to the
llseek(2) function. On objects not capable of seeking the I/O operation always start from the
current position and the parameters whence and offset are ignored. The seek pointer for
objects capable of seeking is not updated by aioread() or aiowrite(). Sequential
asynchronous operations on these devices must be managed by the application using the
whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by resultp:

int aio_return; /* return value of read() or write() */

int aio_errno; /* value of errno for read() or write() */

Upon completion of the operation both aio_return and aio_errno are set to reflect the result
of the operation. Since AIO_INPROGRESS is not a value used by the system, the client can detect
a change in state by initializing aio_return to this value.

The application-supplied buffer bufp should not be referenced by the application until after
the operation has completed. While the operation is in progress, this buffer is in use by the
operating system.

Notification of the completion of an asynchronous I/O operation can be obtained
synchronously through the aiowait(3C) function, or asynchronously by installing a signal
handler for the SIGIO signal. Asynchronous notification is accomplished by sending the
process a SIGIO signal. If a signal handler is not installed for the SIGIO signal, asynchronous
notification is disabled. The delivery of this instance of the SIGIO signal is reliable in that a
signal delivered while the handler is executing is not lost. If the client ensures that aiowait()

Name

Synopsis

Description

aioread(3C)

Basic Library Functions 41

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1llseek-2

returns nothing (using a polling timeout) before returning from the signal handler, no
asynchronous I/O notifications are lost. The aiowait() function is the only way to dequeue
an asynchronous notification. The SIGIO signal can have several meanings simultaneously.
For example, it can signify that a descriptor generated SIGIO and an asynchronous operation
completed. Further, issuing an asynchronous request successfully guarantees that space exists
to queue the completion notification.

The close(2), exit(2) and execve(2)) functions block until all pending asynchronous I/O
operations can be canceled by the system.

It is an error to use the same result buffer in more than one outstanding request. These
structures can be reused only after the system has completed the operation.

Upon successful completion, aioread() and aiowrite() return 0. Upon failure, aioread()
and aiowrite() return −1 and set errno to indicate the error.

The aioread() and aiowrite() functions will fail if:

EAGAIN The number of asynchronous requests that the system can handle at any one time
has been exceeded

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT At least one of bufp or resultp points to an address outside the address space of the
requesting process. This condition is reported only if detected by the application
process.

EINVAL The resultp argument is currently being used by an outstanding asynchronous
request.

EINVAL The offset argument is not a valid offset for this file system type.

ENOMEM Memory resources are unavailable to initiate request.

The aioread() and aiowrite() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), execve(2), exit(2), llseek(2), lseek(2), open(2), read(2), write(2),
aiocancel(3C), aiowait(3C), attributes(5), lf64(5)

Return Values

Errors

Usage

Attributes

See Also

aioread(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200842

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1llseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

aio_return – retrieve return status of an asynchronous I/O operation

#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

The aio_return() function returns the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(2), write(2), or fsync(3C) function
call. If the error status for the operation is equal to EINPROGRESS, then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used
in a call to aio_return() or aio_error(3C), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then
aio_return() may be successfully used to retrieve the return status of that operation.

If the asynchronous I/O operation has completed, then the return status, as described for
read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, the results of aio_return() are undefined.

The aio_return() function will fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose return
status has not yet been retrieved.

ENOSYS The aio_return() function is not supported by the system.

The aio_return() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), fsync(3C), aio.h(3HEAD),
signal.h(3HEAD), aio_cancel(3C), aio_fsync(3C), aio_read(3C), lio_listio(3C),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

aio_return(3C)

Basic Library Functions 43

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_suspend – wait for asynchronous I/O request

#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent,
const struct timespec *timeout);

The aio_suspend() function suspends the calling thread until at least one of the
asynchronous I/O operations referenced by the list argument has completed, until a signal
interrupts the function, or, if timeout is not NULL, until the time interval specified by timeout
has passed. If any of the aiocb structures in the list correspond to completed asynchronous
I/O operations (that is, the error status for the operation is not equal to EINPROGRESS) at the
time of the call, the function returns without suspending the calling thread. If there are no
outstanding asynchronous I/O operations, aio_suspend() returns immediately with EAGAIN.
The list argument is an array of pointers to asynchronous I/O control blocks. The nent
argument indicates the number of elements in the array and is limited to _AIO_LISTIO_MAX =
4096. Each aiocb structure pointed to will have been used in initiating an asynchronous I/O
request via aio_read(3C), aio_write(3C), or lio_listio(3C). This array may contain null
pointers, which are ignored. If this array contains pointers that refer to aiocb structures that
have not been used in submitting asynchronous I/O, the effect is undefined. If there are no
outstanding asynchronous I/O operations, aio_suspend() returns immediately with EAGAIN.

If the time interval indicated in the timespec structure pointed to by timeout passes before
any of the I/O operations referenced by list are completed, then aio_suspend() returns with
an error. If this array contains pointers that refer to aiocb structures that have not been used
in submitting asynchronous I/O, the effect is undefined.

If aio_suspend() returns after one or more asynchronous I/O operations have completed, it
returns 0. Otherwise, it returns −1, and sets errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the
associated error and return status using aio_error(3C) and aio_return(3C), respectively.

The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time
interval indicated by timeout.

There are no asynchronous I/O operations.

EINTR A signal interrupted the aio_suspend() function. Since each asynchronous I/O
operation might provoke a signal when it completes, this error return can be
caused by the completion of one or more of the very I/O operations being awaited.

EINVAL The nent argument is less than or equal to 0 or greater than _AIO_LISTIO_MAX, or
the timespec structure pointed to by timeout is not properly set because tv_sec is
less than 0 or tv_nsec is either less than 0 or greater than 109.

Name

Synopsis

Description

Return Values

Errors

aio_suspend(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Aug 201144

ENOMEM There is currently not enough available memory; the application can try again
later.

ENOSYS The aio_suspend() function is not supported by the system.

The aio_suspend() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

aio.h(3HEAD), aio_fsync(3C), aio_read(3C), aio_return(3C), aio_write(3C),
lio_listio(3C), signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Usage

Attributes

See Also

Notes

aio_suspend(3C)

Basic Library Functions 45

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aiowait – wait for completion of asynchronous I/O operation

#include <sys/asynch.h>

#include <sys/time.h>

aio_result_t *aiowait(const struct timeval *timeout);

The aiowait() function suspends the calling process until one of its outstanding
asynchronous I/O operations completes, providing a synchronous method of notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the completion of
an asynchronous I/O operation. If timeout is a zero pointer, aiowait() blocks indefinitely. To
effect a poll, the timeout parameter should be non-zero, pointing to a zero-valued timeval
structure.

The timeval structure is defined in <sys/time.h> and contains the following members:

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

Upon successful completion, aiowait() returns a pointer to the result structure used when
the completed asynchronous I/O operation was requested. Upon failure, aiowait() returns
−1 and sets errno to indicate the error. aiowait() returns 0 if the time limit expires.

The aiowait() function will fail if:

EFAULT The timeout argument points to an address outside the address space of the
requesting process. See NOTES.

EINTR The execution of aiowait() was interrupted by a signal.

EINVAL There are no outstanding asynchronous I/O requests.

EINVAL The tv_secs member of the timeval structure pointed to by timeout is less than 0
or the tv_usecs member is greater than the number of seconds in a microsecond.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aiocancel(3C), aioread(3C), attributes(5)

The aiowait() function is the only way to dequeue an asynchronous notification. It can be
used either inside a SIGIO signal handler or in the main program. One SIGIO signal can
represent several queued events.

Passing an illegal address as timeout will result in setting errno to EFAULT only if detected by
the application process.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

aiowait(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200846

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

aio_waitn – wait for completion of asynchronous I/O operations

#include <aio.h>

int aio_waitn(struct aiocb *list[], uint_t nent,
uint_t *nwait, const struct timespec *timeout);

The aio_waitn() function suspends the calling thread until at least the number of requests
specified by nwait have completed, until a signal interrupts the function, or if timeout is not
NULL, until the time interval specified by timeout has passed.

To effect a poll, the timeout argument should be non-zero, pointing to a zero-valued timespec

structure.

The list argument is an array of uninitialized I/O completion block pointers to be filled in by
the system before aio_waitn() returns. The nent argument indicates the maximum number
of elements that can be placed in list[] and is limited to _AIO_LISTIO_MAX = 4096.

The nwait argument points to the minimum number of requests aio_waitn() should wait for.
Upon returning, the content of nwait is set to the actual number of requests in the aiocb list,
which can be greater than the initial value specified in nwait. The aio_waitn() function
attempts to return as many requests as possible, up to the number of outstanding
asynchronous I/Os but less than or equal to the maximum specified by the nent argument. As
soon as the number of outstanding asynchronous I/O requests becomes 0, aio_waitn()
returns with the current list of completed requests.

The aiocb structures returned will have been used in initiating an asynchronous I/O request
from any thread in the process with aio_read(3C), aio_write(3C), or lio_listio(3C).

If the time interval expires before the expected number of I/O operations specified by nwait
are completed, aio_waitn() returns the number of completed requests and the content of the
nwait pointer is updated with that number.

If aio_waitn() is interrupted by a signal, nwait is set to the number of completed requests.

The application can determine the status of the completed asynchronous I/O by checking the
associated error and return status using aio_error(3C) and aio_return(3C), respectively.

Upon successful completion, aio_waitn() returns 0. Otherwise, it returns -1 and sets errno
to indicate the error.

The aio_waitn() function will fail if:

EAGAIN There are no outstanding asynchronous I/O requests.

EFAULT The list[], nwait, or timeout argument points to an address outside the address
space of the process. The errno variable is set to EFAULT only if this condition is
detected by the application process.

EINTR The execution of aio_waitn() was interrupted by a signal.

Name

Synopsis

Description

Return Values

Errors

aio_waitn(3C)

Basic Library Functions 47

EINVAL The timeout element tv_sec or tv_nsec is < 0, nent is set to 0 or > _AIO_LISTIO_MAX,
or nwait is either set to 0 or is > nent.

ENOMEM There is currently not enough available memory. The application can try again
later.

ETIME The time interval expired before nwait outstanding requests have completed.

The aio_waitn() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

aio.h(3HEAD), aio_error(3C), aio_read(3C), aio_write(3C), lio_listio(3C),
aio_return(3C), attributes(5), lf64(5)

Usage

Attributes

See Also

aio_waitn(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Dec 200848

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

aio_write – asynchronous write to a file

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

The aio_write() function allows the calling process to write aiocbp→aio_nbytes to the file
associated with aiocbp→aio_fildes from the buffer pointed to by aiocbp→aio_buf. The
function call returns when the write request has been initiated or, at a minimum, queued to
the file or device. If _POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for
this file, then the asynchronous operation is submitted at a priority equal to the scheduling
priority of the process minus aiocbp→aio_reqprio. The aiocbp may be used as an argument
to aio_error(3C) and aio_return(3C) in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp→aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation takes place
at the absolute position in the file as given by aio_offset, as if lseek(2) were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as
the calls were made. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified.

The aiocbp→aio_sigevent structure defines what asynchronous notification is to occur
when the asynchronous operation completes, as specified in signal.h(3HEAD).

The aiocbp→aio_lio_opcode field is ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file associated
with aiocbp→aio_fildes, the behavior of this function shall be according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp→aio_fildes.

The aio_write() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

Name

Synopsis

Description

Return Values

aio_write(3C)

Basic Library Functions 49

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

The aio_write() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously,
the aio_write() function returns −1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to −1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp→aio_fildes argument is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is not a valid value, or aiocbp→aio_nbytes is an invalid
value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation will be one of the values normally returned by the write(2) function
call. If the operation is successfully queued but is subsequently canceled or encounters an
error, the error status for the asynchronous operation contains one of the values normally set
by the write() function call, or one of the following:

EBADF The aiocbp→aio_fildes argument is not a valid file descriptor open for
writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel(3C) request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aiobcp→aio_nbytes is greater than 0 and the starting offset
in aiobcp→aio_offset is at or beyond the offset maximum in the open file
description associated with aiocbp→aio_fildes.

The aio_write() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Errors

Usage

Attributes

aio_write(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200850

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

aio_cancel(3C), aio_error(3C), aio_read(3C), aio_return(3C), lio_listio(3C),
close(2), _Exit(2), fork(2), lseek(2), write(2), aio.h(3HEAD), signal.h(3HEAD),
attributes(5), lf64(5), standards(5)

See Also

aio_write(3C)

Basic Library Functions 51

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

assert – verify program assertion

#include <assert.h>

void assert(int expression);

The assert() macro inserts diagnostics into applications. When executed, if expression is
FALSE (zero), assert() prints the error message

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of the source file
and nnn the source line number of the assert() statement. These are respectively the values
of the preprocessor macros __FILE__ and __LINE__.

Since assert() is implemented as a macro, the expression may not contain any string literals.

Compiling with the preprocessor option -DNDEBUG or with the preprocessor control statement
#define NDEBUG ahead of the #include <assert.h> statement, will stop assertions from
being compiled into the program.

Messages printed from this function are in the native language specified by the LC_MESSAGES
locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

abort(3C), gettext(3C), setlocale(3C), attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

assert(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Mar 200552

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

atexit – register a function to run at process termination or object unloading

#include <stdlib.h>

int atexit(void (*func)(void));

The atexit() function registers the function pointed to by func to be called without
arguments on normal termination of the program or when the object defining the function is
unloaded.

Normal termination occurs by either a call to the exit(3C) function or a return from main().
Object unloading occurs when a call to dlclose(3C) results in the object becoming
unreferenced.

The number of functions that may be registered with atexit() is limited only by available
memory (refer to the _SC_ATEXIT_MAX argument of sysconf(3C)).

After a successful call to any of the exec(2) functions, any functions previously registered by
atexit() are no longer registered.

On process exit, functions are called in the reverse order of their registration. On object
unloading, any functions belonging to an unloadable object are called in the reverse order of
their registration.

Upon successful completion, the atexit() function returns 0. Otherwise, it returns a
non-zero value.

The atexit() function may fail if:

ENOMEM Insufficient storage space is available.

The functions registered by a call to atexit() must return to ensure that all registered
functions are called.

There is no way for an application to tell how many functions have already been registered
with atexit().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

atexit(3C)

Basic Library Functions 53

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

exec(2), dlclose(3C), exit(3C), sysconf(3C), attributes(5)See Also

atexit(3C)

man pages section 3: Basic Library Functions • Last Revised 25 May 200154

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add, atomic_add_8, atomic_add_char, atomic_add_16, atomic_add_short,
atomic_add_32, atomic_add_int, atomic_add_long, atomic_add_64, atomic_add_ptr,
atomic_add_8_nv, atomic_add_char_nv, atomic_add_16_nv, atomic_add_short_nv,
atomic_add_32_nv, atomic_add_int_nv, atomic_add_long_nv, atomic_add_64_nv,
atomic_add_ptr_nv – atomic add operations

#include <atomic.h>

void atomic_add_8(volatile uint8_t *target, int8_t delta);

void atomic_add_char(volatile uchar_t *target, signed char delta);

void atomic_add_16(volatile uint16_t *target, int16_t delta);

void atomic_add_short(volatile ushort_t *target, short delta);

void atomic_add_32(volatile uint32_t *target, int32_t delta);

void atomic_add_int(volatile uint_t *target, int delta);

void atomic_add_long(volatile ulong_t *target, long delta);

void atomic_add_64(volatile uint64_t *target, int64_t delta);

void atomic_add_ptr(volatile void *target, ssize_t delta);

uint8_t atomic_add_8_nv(volatile uint8_t *target, int8_t delta);

uchar_t atomic_add_char_nv(volatile uchar_t *target, signed char delta);

uint16_t atomic_add_16_nv(volatile uint16_t *target, int16_t delta);

ushort_t atomic_add_short_nv(volatile ushort_t *target, shortdelta);

uint32_t atomic_add_32_nv(volatile uint32_t *target, int32_t delta);

uint_t atomic_add_int_nv(volatile uint_t *target, int delta);

ulong_t atomic_add_long_nv(volatile ulong_t *target, long delta);

uint64_t atomic_add_64_nv(volatile uint64_t *target, int64_t delta);

void *atomic_add_ptr_nv(volatile void *target, ssize_t delta);

These functions enable the addition of delta to the value stored in target to occur in an atomic
manner.

The *_nv() variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_add(3C)

Basic Library Functions 55

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C), atomic_inc(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The *_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically
(for example, when decrementing a reference count and checking whether it went to zero).

See Also

Notes

atomic_add(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200556

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_and, atomic_and_8, atomic_and_uchar, atomic_and_16, atomic_and_ushort,
atomic_and_32, atomic_and_uint, atomic_and_ulong, atomic_and_64, atomic_and_8_nv,
atomic_and_uchar_nv, atomic_and_16_nv, atomic_and_ushort_nv, atomic_and_32_nv,
atomic_and_uint_nv, atomic_and_ulong_nv, atomic_and_64_nv – atomic AND operations

#include <atomic.h>

void atomic_and_8(volatile uint8_t *target, uint8_t bits);

void atomic_and_uchar(volatile uchar_t *target, uchar_t bits);

void atomic_and_16(volatile uint16_t *target, uint16_t bits);

void atomic_and_ushort(volatile ushort_t *target, ushort_t bits);

void atomic_and_32(volatile uint32_t *target, uint32_t bits);

void atomic_and_uint(volatile uint_t *target, uint_t bits);

void atomic_and_ulong(volatile ulong_t *target, ulong_t bits);

void atomic_and_64(volatile uint64_t *target, uint64_t bits);

uint8_t atomic_and_8_nv(volatile uint8_t *target, uint8_t bits);

uchar_t atomic_and_uchar_nv(volatile uchar_t *target, uchar_t bits);

uint16_t atomic_and_16_nv(volatile uint16_t *target, uint16_t bits);

ushort_t atomic_and_ushort_nv(volatile ushort_t *target, ushort_t bits);

uint32_t atomic_and_32_nv(volatile uint32_t *target, uint32_t bits);

uint_t atomic_and_uint_nv(volatile uint_t *target, uint_t bits);

ulong_t atomic_and_ulong_nv(volatile ulong_t *target, ulong_t bits);

uint64_t atomic_and_64_nv(volatile uint64_t *target, uint64_t bits);

These functions enable the bitwise AND of bits to the value stored in target to occur in an
atomic manner.

The *_nv() variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_and(3C)

Basic Library Functions 57

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C), atomic_inc(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The *_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

See Also

Notes

atomic_and(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200558

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_bits, atomic_set_long_excl, atomic_clear_long_excl – atomic set and clear bit
operations

#include <atomic.h>

int atomic_set_long_excl(volatile ulong_t *target, uint_t bit);

int atomic_clear_long_excl(volatile ulong_t *target, uint_t bit);

The atomic_set_long_excl() and atomic_clear_long_excl() functions perform an
exclusive atomic bit set or clear operation on target. The value of bit specifies the number of
the bit to be modified within target. Bits are numbered from zero to one less than the
maximum number of bits in a long. If the value of bit falls outside of this range, the result of
the operation is undefined.

The atomic_set_long_excl() and atomic_clear_long_excl() functions return 0 if bit was
successfully set or cleared. They return -1 if bit was already set or cleared.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

atomic_add(3C), atomic_and(3C), atomic_cas(3C), atomic_dec(3C), atomic_inc(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

atomic_bits(3C)

Basic Library Functions 59

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_cas, atomic_cas_8, atomic_cas_uchar, atomic_cas_16, atomic_cas_ushort,
atomic_cas_32, atomic_cas_uint, atomic_cas_ulong, atomic_cas_64, atomic_cas_ptr –
atomic compare and swap operations

#include <atomic.h>

uint8_t atomic_cas_8(volatile uint8_t *target, uint8_t cmp,
uint8_t newval);

uchar_t atomic_cas_uchar(volatile uchar_t *target, uchar_t cmp,
uchar_t newval);

uint16_t atomic_cas_16(volatile uint16_t *target, uint16_t cmp,
uint16_t newval);

ushort_t atomic_cas_ushort(volatile ushort_t *target, ushort_t cmp,
ushort_t newval);

uint32_t atomic_cas_32(volatile uint32_t *target, uint32_t cmp,
uint32_t newval);

uint_t atomic_cas_uint(volatile uint_t *target, uint_t cmp,
uint_t newval);

ulong_t atomic_cas_ulong(volatile ulong_t *target, ulong_t cmp,
ulong_t newval);

uint64_t atomic_cas_64(volatile uint64_t *target, uint64_t cmp,
uint64_t newval);

void *atomic_cas_ptr(volatile void *target, void *cmp,
void *newval);

These functions enable a compare and swap operation to occur atomically. The value stored in
target is compared with cmp. If these values are equal, the value stored in target is replaced
with newval. The old value stored in target is returned by the function whether or not the
replacement occurred.

These functions return the old value of *target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_cas(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200560

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_dec(3C), atomic_inc(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

See Also

atomic_cas(3C)

Basic Library Functions 61

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_dec, atomic_dec_8, atomic_dec_uchar, atomic_dec_16, atomic_dec_ushort,
atomic_dec_32, atomic_dec_uint, atomic_dec_ulong, atomic_dec_64, atomic_dec_ptr,
atomic_dec_8_nv, atomic_dec_uchar_nv, atomic_dec_16_nv, atomic_dec_ushort_nv,
atomic_dec_32_nv, atomic_dec_uint_nv, atomic_dec_ulong_nv, atomic_dec_64_nv,
atomic_dec_ptr_nv – atomic decrement operations

#include <atomic.h>

void atomic_dec_8(volatile uint8_t *target);

void atomic_dec_uchar(volatile uchar_t *target);

void atomic_dec_16(volatile uint16_t *target);

void atomic_dec_ushort(volatile ushort_t *target);

void atomic_dec_32(volatile uint32_t *target);

void atomic_dec_uint(volatile uint_t *target);

void atomic_dec_ulong(volatile ulong_t *target);

void atomic_dec_64(volatile uint64_t *target);

void atomic_dec_ptr(volatile void *target);

uint8_t atomic_dec_8_nv(volatile uint8_t *target);

uchar_t atomic_dec_uchar_nv(volatile uchar_t *target);

uint16_t atomic_dec_16_nv(volatile uint16_t *target);

ushort_t atomic_dec_ushort_nv(volatile ushort_t *target);

uint32_t atomic_dec_32_nv(volatile uint32_t *target);

uint_t atomic_dec_uint_nv(volatile uint_t *target);

ulong_t atomic_dec_ulong_nv(volatile ulong_t *target);

uint64_t atomic_dec_64_nv(volatile uint64_t *target);

void *atomic_dec_ptr_nv(volatile void *target);

These functions enable the decrementing (by one) of the value stored in target to occur in an
atomic manner.

The *_nv() variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_dec(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200562

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_inc(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The *_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically
(for example, when decrementing a reference count and checking whether it went to zero).

See Also

Notes

atomic_dec(3C)

Basic Library Functions 63

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_inc, atomic_inc_8, atomic_inc_uchar, atomic_inc_16, atomic_inc_ushort,
atomic_inc_32, atomic_inc_uint, atomic_inc_ulong, atomic_inc_64, atomic_inc_ptr,
atomic_inc_8_nv, atomic_inc_uchar_nv, atomic_inc_16_nv, atomic_inc_ushort_nv,
atomic_inc_32_nv, atomic_inc_uint_nv, atomic_inc_ulong_nv, atomic_inc_64_nv,
atomic_inc_ptr_nv – atomic increment operations

#include <atomic.h>

void atomic_inc_8(volatile uint8_t *target);

void atomic_inc_uchar(volatile uchar_t *target);

void atomic_inc_16(volatile uint16_t *target);

void atomic_inc_ushort(volatile ushort_t *target);

void atomic_inc_32(volatile uint32_t *target);

void atomic_inc_uint(volatile uint_t *target);

void atomic_inc_ulong(volatile ulong_t *target);

void atomic_inc_64(volatile uint64_t *target);

void atomic_inc_ptr(volatile void *target);

uint8_t atomic_inc_8_nv(volatile uint8_t *target);

uchar_t atomic_inc_uchar_nv(volatile uchar_t *target);

uint16_t atomic_inc_16_nv(volatile uint16_t *target);

ushort_t atomic_inc_ushort_nv(volatile ushort_t *target);

uint32_t atomic_inc_32_nv(volatile uint32_t *target);

uint_t atomic_inc_uint_nv(volatile uint_t *target);

ulong_t atomic_inc_ulong_nv(volatile ulong_t *target);

uint64_t atomic_inc_64_nv(volatile uint64_t *target);

void *atomic_inc_ptr_nv(volatile void *target);

These functions enable the incrementing (by one) of the value stored in target to occur in an
atomic manner.

The *_nv() variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_inc(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200564

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C),
atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The *_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

See Also

Notes

atomic_inc(3C)

Basic Library Functions 65

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_ops – atomic operations

#include <atomic.h>

This collection of functions provides atomic memory operations. There are 8 different classes
of atomic operations:

atomic_add(3C) These functions provide an atomic addition of a signed value to a
variable.

atomic_and(3C) These functions provide an atomic logical 'and' of a value to a variable.

atomic_bits(3C) These functions provide atomic bit setting and clearing within a
variable.

atomic_cas(3C) These functions provide an atomic comparison of a value with a
variable. If the comparison is equal, then swap in a new value for the
variable, returning the old value of the variable in either case.

atomic_dec(3C) These functions provide an atomic decrement on a variable.

atomic_inc(3C) These functions provide an atomic increment on a variable.

atomic_or(3C) These functions provide an atomic logical 'or' of a value to a variable.

atomic_swap(3C) These functions provide an atomic swap of a value with a variable,
returning the old value of the variable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C),
atomic_inc(3C), atomic_or(3C), atomic_swap(3C), membar_ops(3C), attributes(5)

Atomic instructions ensure global visibility of atomically-modified variables on completion.
In a relaxed store order system, this does not guarantee that the visibility of other variables will
be synchronized with the completion of the atomic instruction. If such synchronization is
required, memory barrier instructions must be used. See membar_ops(3C).

Atomic instructions can be expensive since they require synchronization to occur at a
hardware level. This means they should be used with care to ensure that forcing hardware level
synchronization occurs a minimum number of times. For example, if you have several
variables that need to be incremented as a group, and each needs to be done atomically, then
do so with a mutex lock protecting all of them being incremented rather than using the
atomic_inc(3C) operation on each of them.

Name

Synopsis

Description

Attributes

See Also

Notes

atomic_ops(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Aug 200466

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_or, atomic_or_8, atomic_or_uchar, atomic_or_16, atomic_or_ushort, atomic_or_32,
atomic_or_uint, atomic_or_ulong, atomic_or_64, atomic_or_8_nv, atomic_or_uchar_nv,
atomic_or_16_nv, atomic_or_ushort_nv, atomic_or_32_nv, atomic_or_uint_nv,
atomic_or_ulong_nv, atomic_or_64_nv – atomic OR operations

#include <atomic.h>

void atomic_or_8(volatile uint8_t *target, uint8_t bits);

void atomic_or_uchar(volatile uchar_t *target, uchar_t bits);

void atomic_or_16(volatile uint16_t *target, uint16_t bits);

void atomic_or_ushort(volatile ushort_t *target, ushort_t bits);

void atomic_or_32(volatile uint32_t *target, uint32_t bits);

void atomic_or_uint(volatile uint_t *target, uint_t bits);

void atomic_or_ulong(volatile ulong_t *target, ulong_t bits);

void atomic_or_64(volatile uint64_t *target, uint64_t bits);

uint8_t atomic_or_8_nv(volatile uint8_t *target, uint8_t bits);

uchar_t atomic_or_uchar_nv(volatile uchar_t *target, uchar_t bits);

uint16_t atomic_or_16_nv(volatile uint16_t *target, uint16_t bits);

ushort_t atomic_or_ushort_nv(volatile ushort_t *target, ushort_t bits);

uint32_t atomic_or_32_nv(volatile uint32_t *target, uint32_t bits);

uint_t atomic_or_uint_nv(volatile uint_t *target, uint_t bits);

ulong_t atomic_or_ulong_nv(volatile ulong_t *target, ulong_t bits);

uint64_t atomic_or_64_nv(volatile uint64_t *target, uint64_t bits);

These functions enable the the bitwise OR of bits to the value stored in target to occur in an
atomic manner.

The *_nv() variants of these functions return the new value of target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

atomic_or(3C)

Basic Library Functions 67

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C),
atomic_inc(3C), atomic_swap(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

The *_nv() variants are substantially more expensive on some platforms than the versions
that do not return values. Do not use them unless you need to know the new value atomically.

See Also

Notes

atomic_or(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 200568

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

atomic_swap, atomic_swap_8, atomic_swap_uchar, atomic_swap_16, atomic_swap_ushort,
atomic_swap_32, atomic_swap_uint, atomic_swap_ulong, atomic_swap_64,
atomic_swap_ptr – atomic swap operations

#include <atomic.h>

uint8_t atomic_swap_8(volatile uint8_t *target, uint8_t newval);

uchar_t atomic_swap_uchar(volatile uchar_t *target, uchar_t newval);

uint16_t atomic_swap_16(volatile uint16_t *target, uint16_t newval);

ushort_t atomic_swap_ushort(volatile ushort_t *target, ushort_t newval);

uint32_t atomic_swap_32(volatile uint32_t *target, uint32_t newval);

uint_t atomic_swap_uint(volatile uint_t *target, uint_t newval);

ulong_t atomic_swap_ulong(volatile ulong_t *target, ulong_t newval);

uint64_t atomic_swap_64(volatile uint64_t *target, uint64_t newval);

void *atomic_swap_ptr(volatile void *target, void *newval);

These functions enable a swap operation to occur atomically. The value stored in target is
replaced with newval. The old value is returned by the function.

These functions return the old of *target.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_dec(3C), atomic_inc(3C),
atomic_or(3C), atomic_cas(3C), membar_ops(3C), attributes(5), atomic_ops(9F)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

atomic_swap(3C)

Basic Library Functions 69

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

attropen – open a file

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int attropen(const char *path, const char *attrpath, int oflag,
/* mode_t mode */...);

The attropen() function is similar to the open(2) function except that it takes a second path
argument, attrpath, that identifies an extended attribute file associated with the first path
argument. This function returns a file descriptor for the extended attribute rather than the file
named by the initial argument.

The O_XATTR flag is set by default for attropen() and the attrpath argument is always
interpreted as a reference to an extended attribute. Extended attributes must be referenced
with a relative path; providing an absolute path results in a normal file reference.

Refer to open(2).

Refer to open(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

open(2), attributes(5), fsattr(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

attropen(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Aug 200170

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fsattr-5

basename – return the last element of a path name

#include <libgen.h>

char *basename(char *path);

The basename() function takes the pathname pointed to by path and returns a pointer to the
final component of the pathname, deleting any trailing '/' characters.

If the string consists entirely of the '/' character, basename() returns a pointer to the string "/" .

If path is a null pointer or points to an empty string, basename() returns a pointer to the string
"." .

The basename() function returns a pointer to the final component of path.

The basename() function may modify the string pointed to by path, and may return a pointer
to static storage that may then be overwritten by a subsequent call to basename().

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should only be used in multithreaded applications.

EXAMPLE 1 Examples for Input String and Output String

Input String Output String

"/usr/lib" "lib"

"/usr/" "usr"

"/" "/"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

basename(1), dirname(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Usage

Examples

Attributes

See Also

basename(3C)

Basic Library Functions 71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1basename-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bsdmalloc – memory allocator

cc [flag ...] file ... -lbsdmalloc [library ...]

char *malloc(sizeunsigned size;

int free(ptrchar *ptr;

char *realloc(ptr, sizechar *ptr;
unsigned size;

These routines provide a general-purpose memory allocation package. They maintain a table
of free blocks for efficient allocation and coalescing of free storage. When there is no suitable
space already free, the allocation routines call sbrk(2) to get more memory from the system.
Each of the allocation routines returns a pointer to space suitably aligned for storage of any
type of object. Each returns a null pointer if the request cannot be completed.

The malloc() function returns a pointer to a block of at least size bytes, which is appropriately
aligned.

The free() function releases a previously allocated block. Its argument is a pointer to a block
previously allocated by malloc() or realloc(). The free() function does not set errno.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptr is NULL, realloc() behaves
like malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

The malloc() and realloc() functions return a null pointer if there is not enough available
memory. They return a non-null pointer if size is 0. These pointers should not be
dereferenced. When realloc() returns NULL, the block pointed to by ptr is left intact. Always
cast the value returned by malloc() and realloc().

If malloc() or realloc() returns unsuccessfully, errno will be set to indicate the following:

ENOMEM size bytes of memory cannot be allocated because it exceeds the physical limits of
the system.

EAGAIN There is not enough memory available at this point in time to allocate size bytes of
memory; but the application could try again later.

Using realloc() with a block freed before the most recent call to malloc() or realloc()
results in an error.

Comparative features of the various allocation libraries can be found in the
umem_alloc(3MALLOC) manual page.

Name

Synopsis

Description

Return Values

Errors

Usage

bsdmalloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 21 Mar 200572

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sbrk-2

brk(2), malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC), umem_alloc(3MALLOC)

Use of libbsdmalloc renders an application non-SCD compliant.

The libbsdmalloc routines are incompatible with the memory allocation routines in the
standard C-library (libc): malloc(3C), alloca(3C), calloc(3C), free(3C), memalign(3C),
realloc(3C), and valloc(3C).

See Also

Warnings

bsdmalloc(3MALLOC)

Basic Library Functions 73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

bsd_signal – simplified signal facilities

#include <signal.h>

void (*bsd_signal(int sig, void (*func)(int)))(int);

The bsd_signal() function provides a partially compatible interface for programs written to
historical system interfaces (see USAGE below).

The function call bsd_signal(sig, func) has an effect as if implemented as:

void (*bsd_signal(int sig, void (*func) (int))) (int)

{

struct sigaction act, oact;

act.sa_handler = func;
act.sa_flags = SA_RESTART;

sigemptyset(&act.sa_mask);

sigaddset(&act.sa_mask, sig);
if (sigaction(sig, &act, &oact) == −1)

return(SIG_ERR);

return(oact.sa_handler);

}

The handler function should be declared:

void handler(int sig);

where sig is the signal number. The behavior is undefined if func is a function that takes more
than one argument, or an argument of a different type.

Upon successful completion, bsd_signal() returns the previous action for sig. Otherwise,
SIG_ERR is returned and errno is set to indicate the error.

Refer to sigaction(2).

This function is a direct replacement for the BSD signal() function for simple applications
that are installing a single-argument signal handler function. If a BSD signal handler function
is being installed that expects more than one argument, the application has to be modified to
use sigaction(2). The bsd_signal() function differs from signal() in that the SA_RESTART
flag is set and the SA_RESETHAND will be clear when bsd_signal() is used. The state of these
flags is not specified for signal().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

bsd_signal(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200274

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Standard See standards(5).

sigaction(2), sigaddset(3C), sigemptyset(3C), attributes(5), standards(5)See Also

bsd_signal(3C)

Basic Library Functions 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bsearch – binary search a sorted table

#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel, size_t size,
int (*compar)(const void *,const void *));

The bsearch() function is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table (an array) indicating where a datum may be found or a null
pointer if the datum cannot be found. The table must be previously sorted in increasing order
according to a comparison function pointed to by compar.

The key argument points to a datum instance to be sought in the table. The base argument
points to the element at the base of the table. The nel argument is the number of elements in
the table. The size argument is the number of bytes in each element.

The comparison function pointed to by compar is called with two arguments that point to the
key object and to an array element, in that order. The function must return an integer less
than, equal to, or greater than 0 if the key object is considered, respectively, to be less than,
equal to, or greater than the array element.

The bsearch() function returns a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel should be
the lower number.

The bsearch() function safely allows concurrent access by multiple threads to disjoint data,
such as overlapping subtrees or tables.

EXAMPLE 1 Examples for searching a table containing pointers to nodes.

The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct node { /* these are stored in the table */

Name

Synopsis

Description

Return Values

Usage

Examples

bsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 200476

EXAMPLE 1 Examples for searching a table containing pointers to nodes. (Continued)

char *string;

int length;

};

static struct node table[] = { /* table to be searched */

{ "asparagus", 10 },

{ "beans", 6 },

{ "tomato", 7 },

{ "watermelon", 11 },

};

main()

{

struct node *node_ptr, node;

/* routine to compare 2 nodes */

static int node_compare(const void *, const void *);

char str_space[20]; /* space to read string into */

node.string = str_space;

while (scanf("%20s", node.string) != EOF) {

node_ptr = bsearch(&node,

table, sizeof(table)/sizeof(struct node),

sizeof(struct node), node_compare);

if (node_ptr != NULL) {

(void) printf("string = %20s, length = %d\n",
node_ptr−>string, node_ptr−>length);

} else {

(void)printf("not found: %20s\n", node.string);

}

}

return(0);

}

/* routine to compare two nodes based on an */

/* alphabetical ordering of the string field */

static int

node_compare(const void *node1, const void *node2) {

return (strcmp(

((const struct node *)node1)−>string,
((const struct node *)node2)−>string));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Attributes

bsearch(3C)

Basic Library Functions 77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C), attributes(5), standards(5)See Also

bsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 200478

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bstring, bcopy, bcmp, bzero – memory operations

#include <strings.h>

void bcopy(const void *s1, void *s2, size_t n);

int bcmp(const void *s1, const void *s2, size_t n);

void bzero(void *s, size_t n);

The bcopy(), bcmp(), and bzero() functions operate as efficiently as possible on memory
areas (arrays of bytes bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area. These functions are similar to the
memcpy(), memcmp(), and memset() functions described on the memory(3C) manual page.

The bcopy() function copies n bytes from memory area s1 to s2. Copying between objects that
overlap will take place correctly.

The bcmp() function compares the first n bytes of its arguments, returning 0 if they are
identical and 1 otherwise. The bcmp() function always returns 0 when n is 0.

The bzero() function sets the first n bytes in memory area s to 0.

The bcopy() function takes parameters backwards from memcmp(). See memory(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

memory(3C), attributes(5), standards(5)

Name

Synopsis

Description

Warnings

Attributes

See Also

bstring(3C)

Basic Library Functions 79

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

btowc – single-byte to wide-character conversion

#include <stdio.h>

#include <wchar.h>

wint_t btowc(int c);

The btowc() function determines whether c constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

The btowc() function returns WEOF if c has the value EOF or if (unsigned char)c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it returns the
wide-character representation of that character.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), wctob(3C), attributes(5), environ(5), standards(5)

The btowc() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

btowc(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200280

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

catgets – read a program message

#include <nl_types.h>

char *catgets(nl_catd catd, int set_num, int msg_num, const char *s);

The catgets() function attempts to read message msg_num, in set set_num, from the
message catalog identified by catd. The catd argument is a catalog descriptor returned from an
earlier call to catopen(). The s argument points to a default message string which will be
returned by catgets() if the identified message catalog is not currently available.

If the identified message is retrieved successfully, catgets() returns a pointer to an internal
buffer area containing the null terminated message string. If the call is unsuccessful for any
reason, catgets() returns a pointer to s and errno may be set to indicate the error.

The catgets() function may fail if:

EBADF The catd argument is not a valid message catalogue descriptor open for reading.

EBADMSG The number of %n specifiers that appear in the message string specified by s does
not match the number of %n specifiers that appear in the message identified by
set_id and msg_id in the specified message catalog.

EINTR The read operation was terminated due to the receipt of a signal, and no data was
transferred.

EINVAL The message catalog identified by catd is corrupted.

ENOMSG The message identified by set_id and msg_id is not in the message catalog.

The catgets() function can be used safely in multithreaded applications as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

gencat(1), catclose(3C), catopen(3C), gettext(3C), setlocale(3C), attributes(5),
standards(5)

International Language Environments Guide

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

catgets(3C)

Basic Library Functions 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gencat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/817-2521

catopen, catclose – open/close a message catalog

#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

int catclose(nl_catd catd);

The catopen() function opens a message catalog and returns a message catalog descriptor.
name specifies the name of the message catalog to be opened. If name contains a “/”, then
name specifies a complete pathname for the message catalog; otherwise, the environment
variable NLSPATH is used and /usr/lib/locale/locale/LC_MESSAGES must exist. If NLSPATH
does not exist in the environment, or if a message catalog cannot be opened in any of the paths
specified by NLSPATH, then the default path /usr/lib/locale/locale/LC_MESSAGES is used. In
the “C” locale, catopen() will always succeed without checking the default search path.

The names of message catalogs and their location in the filesystem can vary from one system
to another. Individual applications can choose to name or locate message catalogs according
to their own special needs. A mechanism is therefore required to specify where the catalog
resides.

The NLSPATH variable provides both the location of message catalogs, in the form of a search
path, and the naming conventions associated with message catalog files. For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current setting of
either the LANG environment variable, if the value of oflag is 0, or the LC_MESSAGES category, if
the value of oflag is NL_CAT_LOCALE, and %N substitutes the value of the name parameter passed
to catopen(). Thus, in the above example, catopen() will search in
/nlslib/$LANG/name.cat, if oflag is 0, or in /nlslib/{LC_MESSAGES}/name.cat, if oflag is
NL_CAT_LOCALE.

The NLSPATH variable will normally be set up on a system wide basis (in /etc/profile) and
thus makes the location and naming conventions associated with message catalogs
transparent to both programs and users.

The full set of metacharacters is:

%N The value of the name parameter passed to catopen().

%L The value of LANG or LC_MESSAGES.

%l The value of the language element of LANG or LC_MESSAGES.

%t The value of the territory element of LANG or LC_MESSAGES.

%c The value of the codeset element of LANG or LC_MESSAGES.

%% A single %.

Name

Synopsis

Description

catopen(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 201182

The LANG environment variable provides the ability to specify the user's requirements for
native languages, local customs and character set, as an ASCII string in the form

LANG=language_territory.codeset[@modifier]

A user who speaks German as it is spoken in Austria and has a terminal which operates in
UTF-8 codeset, would want the setting of the LANG variable to be

LANG=de_AT.UTF-8

With this setting it should be possible for that user to find any relevant catalogs should they
exist.

Should the LANG variable not be set, the value of LC_MESSAGES as returned by setlocale() is
used. If this is NULL, the default path as defined in <nl_types.h> is used.

A message catalogue descriptor remains valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogues.

If a file descriptor is used to implement message catalogue descriptors, the FD_CLOEXEC flag
will be set; see <fcntl.h>.

If the value of oflag argument is 0, the LANG environment variable is used to locate the
catalogue without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalogue.

If the value of LANG or LC_MESSAGES that is used in the process of locating message catalog is a
canonical locale name to obsoleted Solaris locale names as described in locale_alias(5) and
the above mentioned ordinary locations with the value do not yield a message catalog, for a
better backward compatibility, catopen() additionally looks for its message catalog using the
obsoleted Solaris locale names as the additional locale names to check on with in place of the
value.

If the value of LANG or LC_MESSAGES that is used in the process of locating message catalog is an
accepted and supported locale name alias to a canonical locale name that is supported as
described in locale_alias(5) and the above mentioned ordinary locations with the value do
not yield a message catalog, catopen() additionally looks for its message catalog using the
canonical locale name.

The catclose() function closes the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor will be closed.

Upon successful completion, catopen() returns a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise it returns (nl_catd) −1.

Return Values

catopen(3C)

Basic Library Functions 83

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

Upon successful completion, catclose() returns 0. Otherwise it returns −1 and sets errno to
indicate the error.

The catopen() function may fail if:

EACCES Search permission is denied for the component of the path prefix of the
message catalogue or read permission is denied for the message catalogue.

EMFILE There are OPEN_MAX file descriptors currently open in the calling process.

ENAMETOOLONG The length of the pathname of the message catalogue exceeds PATH_MAX, or
a pathname component is longer than NAME_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENFILE Too many files are currently open in the system.

ENOENT The message catalogue does not exist or the name argument points to an
empty string.

ENOMEM Insufficient storage space is available.

ENOTDIR A component of the path prefix of the message catalogue is not a directory.

The catclose() function may fail if:

EBADF The catalogue descriptor is not valid.

EINTR The catclose() function was interrupted by a signal.

The catopen() and catclose() functions can be used safely in multithreaded applications, as
long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

gencat(1), catgets(3C), gettext(3C), nl_types.h(3HEAD), setlocale(3C),
attributes(5), environ(5), locale_alias(5)

Errors

Usage

Attributes

See Also

catopen(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 201184

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gencat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nl-types.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

cfgetispeed, cfgetospeed – get input and output baud rate

#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

speed_t cfgetospeed(const struct termios *termios_p);

The cfgetispeed() function extracts the input baud rate from the termios structure to
which the termios_p argument points.

The cfgetospeed() function extracts the output baud rate from the termios structure to
which the termios_p argument points.

These functions returns exactly the value in the termios data structure, without
interpretation.

Upon successful completion, cfgetispeed() returns a value of type speed_t representing the
input baud rate.

Upon successful completion, cfgetospeed() returns a value of type speed_t representing the
output baud rate.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

cfgetospeed(3C), tcgetattr(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

cfgetispeed(3C)

Basic Library Functions 85

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

cfsetispeed, cfsetospeed – set input and output baud rate

#include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

int cfsetospeed(struct termios *termios_p, speed_t speed);

The cfsetispeed() function sets the input baud rate stored in the structure pointed to by
termios_p to speed.

The cfsetospeed() function sets the output baud rate stored in the structure pointed to by
termios_p to speed.

There is no effect on the baud rates set in the hardware until a subsequent successful call to
tcsetattr(3C) on the same termios structure.

Upon successful completion, cfsetispeed() and cfsetospeed() return 0. Otherwise −1 is
returned, and errno may be set to indicate the error.

The cfsetispeed() and cfsetospeed() functions may fail if:

EINVAL The speed value is not a valid baud rate.

EINVAL The value of speed is outside the range of possible speed values as specified in
<termios.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

cfgetispeed(3C), tcsetattr(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

cfsetispeed(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200286

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

clearenv – clear the environment

#include <stdlib.h>

int clearenv(void);

The clearenv() function clears the environment of all name-value pairs and sets the value of
the external variable environ(5) to NULL.

Upon successful completion, the clearenv() function returns 0. Otherwise, it returns a
non-zero value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

getenv(3C), setenv(3C), attributes(5), environ(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

clearenv(3C)

Basic Library Functions 87

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

clock – report CPU time used

#include <time.h>

clock_t clock(void);

The clock() function returns the amount of CPU time (in microseconds) used since the first
call to clock() in the calling process. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it has executed the
wait(3C) function, the pclose(3C) function, or the system(3C) function.

Dividing the value returned by clock() by the constant CLOCKS_PER_SEC, defined in the
<time.h> header, will give the time in seconds. If the process time used is not available or
cannot be represented, clock returns the value (clock_t) −1.

The value returned by clock() is defined in microseconds for compatibility with systems that
have CPU clocks with much higher resolution. Because of this, the value returned will wrap
around after accumulating only 2147 seconds of CPU time (about 36 minutes).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

times(2), popen(3C), system(3C), wait(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

clock(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 200288

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1times-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

clock_nanosleep – high resolution sleep with specifiable clock

#include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function
causes the current thread to be suspended from execution until either the time interval
specified by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its
action is to invoke a signal-catching function, or the process is terminated. The clock used to
measure the time is the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function causes
the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep() returns immediately
and the calling process is not suspended.

The suspension time caused by this function can be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) will not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep()
function (that is, with the TIMER_ABSTIME flag set) will be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function has no effect on the action or blockage of any
signal.

The clock_nanosleep() function fails if the clock_id argument refers to the CPU-time clock
of the calling thread. It is unspecified if clock_id values of other CPU-time clocks are allowed.

If the clock_nanosleep() function returns because the requested time has elapsed, its return
value is 0.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it
returns the corresponding error value. For the relative clock_nanosleep() function, if the
rmtp argument is non-null, the timespec structure referenced by it is updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp argument is NULL, the remaining time is not returned. The absolute
clock_nanosleep() function has no effect on the structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

Name

Synopsis

Description

Return Values

clock_nanosleep(3C)

Basic Library Functions 89

The clock_nanosleep() function will fail if:

EINTR The clock_nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or greater than or
equal to 1,000 million; or the TIMER_ABSTIME flag was specified in flags and
the rqtp argument is outside the range for the clock specified by clock_id; or the
clock_id argument does not specify a known clock, or specifies the CPU-time
clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which clock_nanosleep() is not
supported, such as a CPU-time clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

clock_getres(3C), nanosleep(3C), pthread_cond_timedwait(3C), sleep(3C),
attributes(5), standards(5)

Errors

Attributes

See Also

clock_nanosleep(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200890

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

clock_settime, clock_gettime, clock_getres – high-resolution clock operations

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock are truncated down to the smaller multiple of the resolution.

The clock_gettime() function returns the current value tp for the specified clock, clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are
system-dependent and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock is stored in the location pointed to by res. If res is NULL, the
clock resolution is not returned. If the time argument of clock_settime() is not a multiple of
res, then the value is truncated to a multiple of res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring time
that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the realtime clock
for the system. For this clock, the values returned by clock_gettime() and specified by
clock_settime() represent the amount of time (in seconds and nanoseconds) since the
Epoch. Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for the
system. For this clock, the value returned by clock_gettime(3C) represents the amount of
time (in seconds and nanoseconds) since some arbitrary time in the past; it is not correlated in
any way to the time of day, and thus is not subject to resetting or drifting by way of
adjtime(2), ntp_adjtime(2), settimeofday(3C), or clock_settime(). The time source for
this clock is the same as that for gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these clocks is
unspecified.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The clock_settime(), clock_gettime() and clock_getres() functions will fail if:

EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and clock_getres() are not
supported by this implementation.

Name

Synopsis

Description

Return Values

Errors

clock_settime(3C)

Basic Library Functions 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ntp-adjtime-2

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for the given clock ID;
or the tp argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to set the specified
clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level clock_gettime() is Async-Signal-Safe

Standard See standards(5).

time(2), ctime(3C), gethrtime(3C), time.h(3HEAD), timer_gettime(3C), attributes(5),
standards(5)

Attributes

See Also

clock_settime(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 200892

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

closedir – close a directory stream

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

The closedir() function closes the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor will be closed.

Upon successful completion, closedir() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

The closedir() function may fail if:

EBADF The dirp argument does not refer to an open directory stream.

EINTR The closedir() function was interrupted by a signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

opendir(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

closedir(3C)

Basic Library Functions 93

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

closefrom, fdwalk – close or iterate over open file descriptors

#include <stdlib.h>

void closefrom(int lowfd);

int fdwalk(int (*func)(void *, int), void *cd);

The closefrom() function calls close(2) on all open file descriptors greater than or equal to
lowfd.

The effect of closefrom(lowfd) is the same as the code

#include <sys/resource.h>

struct rlimit rl;

int i;

getrlimit(RLIMIT_NOFILE, &rl);

for (i = lowfd; i < rl.rlim_max; i++)

(void) close(i);

except that close() is called only on file descriptors that are actually open, not on every
possible file descriptor greater than or equal to lowfd, and close() is also called on any open
file descriptors greater than or equal to rl.rlim_max (and lowfd), should any exist.

The fdwalk() function first makes a list of all currently open file descriptors. Then for each file
descriptor in the list, it calls the user-defined function, func(cd, fd), passing it the pointer to the
callback data, cd, and the value of the file descriptor from the list, fd. The list is processed in file
descriptor value order, lowest numeric value first.

If func() returns a non-zero value, the iteration over the list is terminated and fdwalk()

returns the non-zero value returned by func(). Otherwise, fdwalk() returns 0 after having
called func() for every file descriptor in the list.

The fdwalk() function can be used for fine-grained control over the closing of file descriptors.
For example, the closefrom() function can be implemented as:

static int

close_func(void *lowfdp, int fd)

{

if (fd >= *(int *)lowfdp)

(void) close(fd);

return (0);

}

void

closefrom(int lowfd)

{

(void) fdwalk(close_func, &lowfd);

}

Name

Synopsis

Description

closefrom(3C)

man pages section 3: Basic Library Functions • Last Revised 27 Apr 200094

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

The fdwalk() function can then be used to count the number of open files in the process.

No return value is defined for closefrom(). If close() fails for any of the open file
descriptors, the error is ignored and the file descriptors whose close() operation failed might
remain open on return from closefrom().

The fdwalk() function returns the return value of the last call to the callback function func(),
or 0 if func() is never called (no open files).

No errors are defined. The closefrom() and fdwalk() functions do not set errno but errno
can be set by close() or by another function called by the callback function, func().

/proc/self/fd directory (list of open files)

The act of closing all open file descriptors should be performed only as the first action of a
daemon process. Closing file descriptors that are in use elsewhere in the current process
normally leads to disastrous results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

close(2), getrlimit(2), proc(4), attributes(5)

Return Values

Errors

Files

Usage

Attributes

See Also

closefrom(3C)

Basic Library Functions 95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cond_init, cond_wait, cond_timedwait, cond_reltimedwait, cond_signal, cond_broadcast,
cond_destroy – condition variables

cc –mt [flag...] file... [library...]

#include <thread.h>

#include <synch.h>

int cond_init(cond_t *cvp, int type, void *arg);

int cond_wait(cond_t *cvp, mutex_t *mp);

int cond_timedwait(cond_t *cvp, mutex_t *mp,
timestruc_t *abstime);

int cond_reltimedwait(cond_t *cvp, mutex_t *mp,
timestruc_t *reltime);

int cond_signal(cond_t *cvp);

int cond_broadcast(cond_t *cvp);

int cond_destroy(cond_t *cvp);

Condition variables and mutexes should be global. Condition variables that are allocated in
writable memory can synchronize threads among processes if they are shared by the
cooperating processes (see mmap(2)) and are initialized for this purpose.

The scope of a condition variable is either intra-process or inter-process. This is dependent
upon whether the argument is passed implicitly or explicitly to the initialization of that
condition variable. A condition variable does not need to be explicitly initialized. A condition
variable is initialized with all zeros, by default, and its scope is set to within the calling process.
For inter-process synchronization, a condition variable must be initialized once, and only
once, before use.

A condition variable must not be simultaneously initialized by multiple threads or
re-initialized while in use by other threads.

Attributes of condition variables can be set to the default or customized at initialization.

The cond_init() function initializes the condition variable pointed to by cvp. A condition
variable can have several different types of behavior, specified by type. No current type uses arg
although a future type may specify additional behavior parameters with arg. The type
argument c take one of the following values:

USYNC_THREAD The condition variable can synchronize threads only in this process. This
is the default.

USYNC_PROCESS The condition variable can synchronize threads in this process and other
processes. Only one process should initialize the condition variable. The
object initialized with this attribute must be allocated in memory shared

Name

Synopsis

Description

Initialize

cond_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 200796

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

between processes, either in System V shared memory (see shmop(2)) or
in memory mapped to a file (see mmap(2)). It is illegal to initialize the
object this way and to not allocate it in such shared memory.

Initializing condition variables can also be accomplished by allocating in zeroed memory, in
which case, a type of USYNC_THREAD is assumed.

If default condition variable attributes are used, statically allocated condition variables can be
initialized by the macro DEFAULTCV.

Default condition variable initialization (intra-process):

cond_t cvp;

cond_init(&cvp, NULL, NULL); /*initialize condition variable

with default*/

or

cond_init(&cvp, USYNC_THREAD, NULL);

or

cond_t cond = DEFAULTCV;

Customized condition variable initialization (inter-process):

cond_init(&cvp, USYNC_PROCESS, NULL); /* initialize cv with

inter-process scope */

The condition wait interface allows a thread to wait for a condition and atomically release the
associated mutex that it needs to hold to check the condition. The thread waits for another
thread to make the condition true and that thread's resulting call to signal and wakeup the
waiting thread.

The cond_wait() function atomically releases the mutex pointed to by mp and causes the
calling thread to block on the condition variable pointed to by cvp. The blocked thread may be
awakened by cond_signal(), cond_broadcast(), or when interrupted by delivery of a UNIX
signal or a fork().

The cond_wait(), cond_timedwait(), and cond_reltimedwait() functions always return
with the mutex locked and owned by the calling thread even when returning an error, except
when the mutex has the LOCK_ROBUST attribute and has been left irrecoverable by the mutex's
last owner. The cond_wait(), cond_timedwait(), and cond_reltimedwait() functions
return the appropriate error value if they fail to internally reacquire the mutex.

A condition signal allows a thread to unblock a single thread waiting on the condition
variable, whereas a condition broadcast allows a thread to unblock all threads waiting on the
condition variable.

Condition Wait

Condition Signaling

cond_init(3C)

Basic Library Functions 97

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

The cond_signal() function unblocks one thread that is blocked on the condition variable
pointed to by cvp.

The cond_broadcast() function unblocks all threads that are blocked on the condition
variable pointed to by cvp.

If no threads are blocked on the condition variable, then cond_signal() and
cond_broadcast() have no effect.

The cond_signal() or cond_broadcast() functions can be called by a thread whether or not
it currently owns the mutex that threads calling cond_wait(), cond_timedwait(), or
cond_reltimedwait() have associated with the condition variable during their waits. If,
however, predictable scheduling behavior is required, then that mutex should be locked by the
thread prior to calling cond_signal() or cond_broadcast().

The condition destroy functions destroy any state, but not the space, associated with the
condition variable.

The cond_destroy() function destroys any state associated with the condition variable
pointed to by cvp. The space for storing the condition variable is not freed.

Upon successful completion, these functions return 0. Otherwise, a non-zero value is returned
to indicate the error.

The cond_timedwait() and cond_reltimedwait() functions will fail if:

ETIME The time specified by abstime or reltime has passed.

The cond_wait(), cond_timedwait(), and cond_reltimedwait() functions will fail if:

EINTR Interrupted. The calling thread was awakened by the delivery of a UNIX signal.

If the mutex pointed to by mp is a robust mutex (initialized with the LOCK_ROBUST attribute),
the cond_wait(), cond_timedwait() and cond_reltimedwait() functions will, under the
specified conditions, return the following error values. For complete information, see the
description of the mutex_lock() function on the mutex_init(3C) manual page.

ENOTRECOVERABLE The mutex was protecting the state that has now been left irrecoverable.
The mutex has not been acquired.

EOWNERDEAD The last owner of the mutex died while holding the mutex, possibly
leaving the state it was protecting inconsistent. The mutex is now
owned by the caller.

These functions may fail if:

EFAULT The cond, attr, cvp, arg, abstime, or mutex argument points to an illegal address.

Destroy

Return Values

Errors

cond_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 200798

EINVAL Invalid argument. For cond_init(), type is not a recognized type. For
cond_timedwait(), the number of nanoseconds is greater than or equal to
1,000,000,000.

EXAMPLE 1 Use cond_wait() in a loop to test some condition.

The cond_wait() function is normally used in a loop testing some condition, as follows:

(void) mutex_lock(mp);

while (cond == FALSE) {

(void) cond_wait(cvp, mp);

}

(void) mutex_unlock(mp);

EXAMPLE 2 Use cond_timedwait() in a loop to test some condition.

The cond_timedwait() function is normally used in a loop testing some condition. It uses an
absolute timeout value as follows:

timestruc_t to;

...

(void) mutex_lock(mp);

to.tv_sec = time(NULL) + TIMEOUT;

to.tv_nsec = 0;

while (cond == FALSE) {

err = cond_timedwait(cvp, mp, &to);

if (err == ETIME) {

/* timeout, do something */

break;

}

}

(void) mutex_unlock(mp);

EXAMPLE 3 Use cond_reltimedwait() in a loop to test some condition.

The cond_reltimedwait() function is normally used in a loop testing in some condition. It
uses a relative timeout value as follows:

timestruc_t to;

...

(void) mutex_lock(mp);

while (cond == FALSE) {

to.tv_sec = TIMEOUT;

to.tv_nsec = 0;

err = cond_reltimedwait(cvp, mp, &to);

if (err == ETIME) {

/* timeout, do something */

break;

}

Examples

cond_init(3C)

Basic Library Functions 99

EXAMPLE 3 Use cond_reltimedwait() in a loop to test some condition. (Continued)

}

(void) mutex_unlock(mp);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fork(2), mmap(2), setitimer(2), shmop(2), mutex_init(3C), signal(3C), attributes(5),
condition(5), mutex(5), standards(5)

If more than one thread is blocked on a condition variable, the order in which threads are
unblocked is determined by the scheduling policy. When each thread, unblocked as a result of
a cond_signal() or cond_broadcast(), returns from its call to cond_wait() or
cond_timedwait() , the thread owns the mutex with which it called cond_wait(),
cond_timedwait(), or cond_reltimedwait(). The thread(s) that are unblocked compete for
the mutex according to the scheduling policy and as if each had called mutex_lock(3C).

When cond_wait() returns the value of the condition is indeterminate and must be
reevaluated.

The cond_timedwait() and cond_reltimedwait() functions are similar to cond_wait(),
except that the calling thread will not wait for the condition to become true past the absolute
time specified by abstime or the relative time specified by reltime. Note that
cond_timedwait() or cond_reltimedwait() might continue to block as it trys to reacquire
the mutex pointed to by mp, which may be locked by another thread. If either
cond_timedwait() or cond_reltimedwait() returns because of a timeout, it returns the error
value ETIME.

Attributes

See Also

Notes

cond_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007100

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

confstr – get configurable variables

#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

The confstr() function provides a method for applications to get configuration-defined
string values. Its use and purpose are similar to the sysconf(3C) function, but it is used where
string values rather than numeric values are returned.

The name argument represents the system variable to be queried.

If len is not 0, and if name has a configuration-defined value, confstr() copies that value into
the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null, then confstr() truncates the string to len−1 bytes and
null-terminates the result. The application can detect that the string was truncated by
comparing the value returned by confstr() with len.

If len is 0, confstr() still returns the integer value as defined below, but does not return the
string.

The confstr() function supports the following values for name, defined in <unistd.h>, for
both SPARC and x86:

_CS_LFS64_CFLAGS If _LFS64_LARGEFILE is defined in <unistd.h>,
this value is the set of initial options to be given
to the cc and c89 utilities to build an application
using the Large File Summit transitional
compilation environment (see
lfcompile64(5)).

_CS_LFS64_LDFLAGS If _LFS64_LARGEFILE is defined in <unistd.h>,
this value is the set of final options to be given to
the cc and c89 utilities to build an application
using the Large File Summit transitional
compilation environment (see
lfcompile64(5)).

_CS_LFS64_LIBS If _LFS64_LARGEFILE is defined in <unistd.h>,
this value is the set of libraries to be given to the
cc and c89 utilities to build an application using
the Large File Summit transitional compilation
environment (see lfcompile64(5)).

_CS_LFS64_LINTFLAGS If _LFS64_LARGEFILE is defined in <unistd.h>,
this value is the set of options to be given to the
lint utility to check application source using
the Large File Summit transitional compilation
environment (see lfcompile64(5)).

Name

Synopsis

Description

confstr(3C)

Basic Library Functions 101

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5

_CS_LFS_CFLAGS If _LFS_LARGEFILE is defined in <unistd.h>,
this value is the set of initial options to be given
to the cc and c89 utilities to build an application
using the Large File Summit large file
compilation environment for 32-bit
applications (see lfcompile(5)).

_CS_LFS_LDFLAGS If _LFS_LARGEFILE is defined in <unistd.h>,
this value is the set of final options to be given to
the cc and c89 utilities to build an application
using the Large File Summit large file
compilation environment for 32-bit
applications (see lfcompile(5)).

_CS_LFS_LIBS If _LFS_LARGEFILE is defined in <unistd.h>,
this value is the set of libraries to be given to the
cc and c89 utilities to build an application using
the Large File Summit large file compilation
environment for 32-bit applications (see
lfcompile(5)).

_CS_LFS_LINTFLAGS If _LFS_LARGEFILE is defined in <unistd.h>,
this value is the set of options to be given to the
lint utility to check application source using
the Large File Summit large file compilation
environment for 32-bit applications (see
lfcompile(5)).

_CS_PATH If the ISO POSIX.2 standard is supported, this is
the value for the PATH environment variable that
finds all standard utilities. Otherwise the
meaning of this value is unspecified.

_CS_POSIX_V6_ILP32_OFF32_CFLAGS If sysconf(_SC_V6_ILP32_OFF32) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the c99 utility to build an
application using a programming model with
32-bit int, long, pointer, and off_t types.

_CS_POSIX_V6_ILP32_OFF32_LDFLAGS If sysconf(_SC_V6_ILP32_OFF32) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with 32-bit int,
long, pointer, and off_t types.

confstr(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Dec 2003102

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5

_CS_POSIX_V6_ILP32_OFF32_LIBS If sysconf(_SC_V6_ILP32_OFF32) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the c99 utility to build an application
using a programming model with 32-bit int,
long, pointer, and off_t types.

_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS If sysconf(_SC_V6_ILP32_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the c99 utility to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS If sysconf(_SC_V6_ILP32_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with 32-bit int,
long, and pointer types, and an off_t type
using at least 64 bits.

_CS_POSIX_V6_ILP32_OFFBIG_LIBS If sysconf(_SC_V6_ILP32_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the c99 utility to build an application
using a programming model with 32-bit int,
long, and pointer types, and an off_t type
using at least 64 bits.

_CS_POSIX_V6_LP64_OFF64_CFLAGS If sysconf(_SC_V6_LP64_OFF64) returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of initial options to be given
to the c99 utility to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_POSIX_V6_LP64_OFF64_LDFLAGS If sysconf(_SC_V6_LP64_OFF64) returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of final options to be given to
the c99 utility to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

confstr(3C)

Basic Library Functions 103

_CS_POSIX_V6_LP64_OFF64_LIBS If sysconf(_SC_V6_LP64_OFF64) returns -1, the
meaning of this value is unspecified. Otherwise,
this value is the set of libraries to be given to the
c99 utility to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS If sysconf(_SC_V6_LPBIG_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the c99 utility to build an
application using a programming model with
an int type using at least 32 bits and long,
pointer, and off_t types using at least 64 bits.

_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS If sysconf(_SC_V6_LPBIG_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the c99 utility to build an application
using a programming model with an int type
using at least 32 bits and long, pointer, and
off_t types using at least 64 bits.

_CS_POSIX_V6_LPBIG_OFFBIG_LIBS If sysconf(_SC_V6_LPBIG_OFFBIG) returns -1,
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the c99 utility to build an application
using a programming model with an int type
using at least 32 bits and long, pointer, and
off_t types using at least 64 bits.

_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS This value is a <newline>-separated list of
names of programming environments
supported by the implementation in which the
widths of the blksize_t, cc_t, mode_t, nfds_t,
pid_t, ptrdiff_t, size_t, speed_t, ssize_t,
suseconds_t, tcflag_t, useconds_t, wchar_t,
and wint_t types are no greater than the width
of type long.

_CS_XBS5_ILP32_OFF32_CFLAGS If sysconf(_SC_XBS5_ILP32_OFF32) returns −1
the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, pointer, and off_t types.

confstr(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Dec 2003104

_CS_XBS5_ILP32_OFF32_LDFLAGS If sysconf(_SC_XBS5_ILP32_OFF32) returns −1
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LIBS If sysconf(_SC_XBS5_ILP32_OFF32) returns −1
the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LINTFLAGS If sysconf(_SC_XBS5_ILP32_OFF32) returns −1
the meaning of this value is unspecified.
Otherwise, this value is the set of options to be
given to the lint utility to check application
source using a programming model with 32-bit
int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFFBIG_CFLAGS If sysconf(_SC_XBS5_ILP32_OFFBIG) returns
−1 the meaning of this value is unspecified.
Otherwise, this value is the set of initial options
to be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LDFLAGS If sysconf(SC_XBS5_ILP32_OFFBIG) returns −1
the meaning of this value is unspecified.
Otherwise, this value is the set of final options to
be given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LIBS If sysconf(_SC_XBS5_ILP32_OFFBIG) returns
−1 the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be
given to the cc and c89 utilities to build an
application using a programming model with
32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

confstr(3C)

Basic Library Functions 105

_CS_XBS5_ILP32_OFFBIG_LINTFLAGS If sysconf(_SC_XBS5_ILP32_OFFBIG) returns
−1 the meaning of this value is unspecified.
Otherwise, this value is the set of options to be
given to the lint utility to check an application
using a programming model with 32-bit int,
long, and pointer types, and an off_t type
using at least 64 bits.

The confstr() function supports the following values for name, defined in <unistd.h>, for
SPARC only:

_CS_XBS5_LP64_OFF64_CFLAGS If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the
meaning of this value is unspecified. Otherwise, this
value is the set of initial options to be given to the cc
and c89 utilities to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LDFLAGS If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the
meaning of this value is unspecified. Otherwise, this
value is the set of final options to be given to the cc
and c89 utilities to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LIBS If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the
meaning of this value is unspecified. Otherwise, this
value is the set of libraries to be given to the cc and
c89 utilities to build an application using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LINTFLAGS If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the
meaning of this value is unspecified. Otherwise, this
value is the set of options to be given to the lint
utility to check application source using a
programming model with 64-bit int, long,
pointer, and off_t types.

_CS_XBS5_LPBIG_OFFBIG_CFLAGS If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1
the meaning of this value is unspecified. Otherwise,
this value is the set of initial options to be given to
the cc and c89 utilities to build an application using
a programming model with an int type using at
least 32 bits and long, pointer, and off_t types
using at least 64 bits.

confstr(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Dec 2003106

_CS_XBS5_LPBIG_OFFBIG_LDFLAGS If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1
the meaning of this value is unspecified. Otherwise,
this value is the set of final options to be given to the
cc and c89 utilities to build an application using a
programming model with an int type using at least
32 bits and long, pointer, and off_t types using at
least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LIBS If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1
the meaning of this value is unspecified. Otherwise,
this value is the set of libraries to be given to the cc
and c89 utilities to build an application using a
programming model with an int type using at least
32 bits and long, pointer, and off_t types using at
least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1
the meaning of this value is unspecified. Otherwise,
this value is the set of options to be given to the
lint utility to check application source using a
programming model with an int type using at least
32 bits and long, pointer, and off_t types using at
least 64 bits.

If name has a configuration-defined value, the confstr() function returns the size of buffer
that would be needed to hold the entire configuration-defined value. If this return value is
greater than len, the string returned in buf is truncated.

If name is invalid, confstr() returns 0 and sets errno to indicate the error.

If name does not have a configuration-defined value, confstr() returns 0 and leaves errno
unchanged.

The confstr() function will fail if:

EINVAL The value of the name argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Mt-Safe

Standard See standards(5).

Return Values

Errors

Attributes

confstr(3C)

Basic Library Functions 107

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pathconf(2), sysconf(3C), attributes(5), lfcompile(5), lfcompile64(5), standards(5)See Also

confstr(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Dec 2003108

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pathconf-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lfcompile64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

crypt – string encoding function

#include <crypt.h>

char *crypt(const char *key, const char *salt);

#include <unistd.h>

char *crypt(const char *key, const char *salt);

The crypt() function encodes strings suitable for secure storage as passwords. It generates the
password hash given the key and salt.

The key argument is the plain text password to be encrypted.

If the first character of salt is “$”, crypt() uses crypt.conf(4) to determine which shared
module to load for the encryption algorithm. The algorithm name crypt() uses to search in
crypt.conf is the string between the first and second “$”, or between the first “$” and first “,” if
a “,” comes before the second “$”.

If the first character of salt is not “$”, the algorithm described on crypt_unix(5) is used.

Upon successful completion, crypt() returns a pointer to the encoded string. Otherwise it
returns a null pointer and sets errno to indicate the error.

The return value points to static data that is overwritten by each call.

The crypt() function will fail if:

EINVAL An entry in crypt.conf is invalid.

ELIBACC The required shared library was not found.

ENOMEM There is insufficient memory to generate the hash.

ENOSYS The functionality is not supported on this system.

The values returned by this function might not be portable among standard-conforming
systems. See standards(5).

Applications should not use crypt() to store or verify user passwords but should use the
functions described on pam(3PAM) instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Standard conforming

Description

Return Values

Errors

Usage

Attributes

crypt(3C)

Basic Library Functions 109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt-unix-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

passwd(1), crypt_genhash_impl(3C), crypt_gensalt(3C), crypt_gensalt_impl(3C),
getpassphrase(3C), pam(3PAM), passwd(4), policy.conf(4), attributes(5),
crypt_unix(5), standards(5)

See Also

crypt(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Sep 2004110

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt-unix-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

crypt_genhash_impl – generate encrypted password

#include <crypt.h>

char *crypt_genhash_impl(char *ctbuffer, size_t ctbufflen,
const char *plaintext, const char *salt, const char **params);

The crypt_genhash_impl() function is called by crypt(3C) to generate the encrypted
password plaintext.

The ctbuffer argument is a pointer to an MT-safe buffer of ctbufflen size that is used to return
the result.

The salt argument is the salt used in encoding.

The params argument is an argv-like null-terminated vector of type char *. The first element
of params represents the mechanism token name from crypt.conf(4). The remaining
elements of params represent strings of the form <parameter>[=<value>] to allow passing in
additional information from the crypt.conf entry, such as specifing rounds information
"rounds=4096".

The crypt_genhash_impl() function must not free(3C) ctbufflen on error.

Upon successful completion, crypt_genhash_impl() returns a pointer to the encoded
version of plaintext. Otherwise a null pointer is returned and errno is set to indicate the error.

The crypt_genhash_impl() function will fail if:

EINVAL The configuration file crypt.conf contains an invalid entry.

ELIBACC The required shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt_gensalt_impl(3C), free(3C), getpassphrase(3C),
crypt.conf(4), passwd(4), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

crypt_genhash_impl(3C)

Basic Library Functions 111

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

crypt_gensalt – generate salt string for string encoding

#include <crypt.h>

char *crypt_gensalt(const char *oldsalt, const struct passwd *userinfo);

The crypt_gensalt() function generates the salt string required by crypt(3C).

If oldsalt is NULL, crypt_gensalt() uses the algorithm defined by CRYPT_DEFAULT in
/etc/security/policy.conf. See policy.conf(4).

If oldsalt is non-null, crypt_gensalt() determines if the algorithm specified by oldsalt is
allowable by checking the CRYPT_ALGORITHMS_ALLOW and CRYPT_ALGORITHMS_DEPRECATE

variables in /etc/security/policy.conf. If the algorithm is allowed, crypt_gensalt()
loads the appropriate shared library and calls crypt_gensalt_impl(3C). If the algorithm is
not allowed or there is no entry for it in crypt.conf, crypt_gensalt() uses the default
algorithm.

The mechanism just described provides a means to migrate users to new password hashing
algorithms when the password is changed.

Upon successful completion, crypt_gensalt() returns a pointer to the new salt. Otherwise a
null pointer is returned and errno is set to indicate the error.

The crypt_gensalt() function will fail if:

EINVAL The configuration file crypt.conf contains an invalid entry.

ELIBACC The required shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

The value returned by crypt_gensalt() points to a null-terminated string. The caller of
crypt_gensalt() is responsible for calling free(3C).

Applications dealing with user authentication and password changing should not call
crypt_gensalt() directly but should instead call the appropriate pam(3PAM) functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt_impl(3C),
getpassphrase(3C), malloc(3C), pam(3PAM), crypt.conf(4), passwd(4), policy.conf(4),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

crypt_gensalt(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jun 2002112

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pam-3pam
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

crypt_gensalt_impl – generate salt for password encryption

#include <crypt.h>

char *crypt_gensalt_impl(char *gsbuffer, size_t gsbufflen,
const char *oldsalt, const struct passwd *userinfo,
const char **params);

The crypt_gensalt_impl() function is called by crypt_gensalt(3C) to generate the salt for
password encryption.

The gsbuffer argument is a pointer to an MT-safe buffer of size gsbufflen.

The oldsalt and userinfo arguments are passed unchanged from crypt_gensalt(3C).

The params argument is an argv-like null terminated vector of type char *. The first element
of params represents the mechanism token name from crypt.conf(4). The remaining
elements of params represent strings of the form <parameter>[=<value>] to allow passing in
additional information from the crypt.conf entry, such as specifying rounds information
"rounds=4096".

The value returned by crypt_gensalt_impl() points to a thread-specific buffer to be freed by
the caller of crypt_gensalt(3C) after calling crypt(3C).

Upon successful completion, crypt_gensalt_impl() returns a pointer to the new salt.
Otherwise a null pointer is returned and errno is set to indicate the error.

The crypt_gensalt_impl() function will fail if:

EINVAL The configuration file crypt.conf contains an invalid entry.

ELIBACC The required crypt shared library was not found.

ENOMEM There is insufficient memory to perform hashing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C), getpassphrase(3C),
crypt.conf(4), passwd(4), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

crypt_gensalt_impl(3C)

Basic Library Functions 113

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crypt.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cset, csetlen, csetcol, csetno, wcsetno – get information on EUC codesets

#include <euc.h>

int csetlen(int codeset);

int csetcol(int codeset);

int csetno(unsigned char c);

#include <widec.h>

int wcsetno(wchar_t pc);

Both csetlen() and csetcol() take a code set number codeset, which must be 0, 1, 2, or 3.
The csetlen() function returns the number of bytes needed to represent a character of the
given Extended Unix Code (EUC) code set, excluding the single-shift characters SS2 and SS3
for codesets 2 and 3. The csetcol() function returns the number of columns a character in
the given EUC code set would take on the display.

The csetno() function is implemented as a macro that returns a codeset number (0, 1, 2, or 3)
for the EUC character whose first byte is c. For example,

#include<euc.h>

. . .

x+=csetcol(csetno(c));

increments a counter “x” (such as the cursor position) by the width of the character whose first
byte is c.

The wcsetno() function is implemented as a macro that returns a codeset number (0, 1, 2, or
3) for the given process code character pc. For example,

#include<euc.h>

#include<widec.h>

. . .

x+=csetcol(wcsetno(pc));

increments a counter “x” (such as the cursor position) by the width of the Process Code
character pc.

These functions work only for the EUC locales.

The cset(), csetlen(), csetcol(), csetno(), and wcsetno() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

Name

Synopsis

Description

Usage

Attributes

cset(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Nov 2003114

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

setlocale(3C) euclen(3C), attributes(5)See Also

cset(3C)

Basic Library Functions 115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ctermid, ctermid_r – generate path name for controlling terminal

#include <stdio.h>

char *ctermid(char *s);

char *ctermid_r(char *s);

The ctermid() function generates the path name of the controlling terminal for the current
process and stores it in a string.

If s is a null pointer, the string is stored in an internal static area whose address is returned and
whose contents are overwritten at the next call to ctermid(). Otherwise, s is assumed to point
to a character array of at least L_ctermid elements. The path name is placed in this array and
the value of s is returned. The constant L_ctermid is defined in the header <stdio.h>.

The ctermid_r() function behaves as ctermid() except that if s is a null pointer, the function
returns NULL.

The difference between ctermid() and ttyname(3C) is that ttyname() must be passed a file
descriptor and returns the actual name of the terminal associated with that file descriptor,
while ctermid() returns a string (/dev/tty) that will refer to the terminal if used as a file
name. The ttyname() function is useful only if the process already has at least one file open to
a terminal.

The ctermid() function is unsafe in multithreaded applications. The ctermid_r() function is
MT-Safe and should be used instead.

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should be used only with multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability ctermid() is Standard

MT-Level ctermid() is Unsafe; ctermid_r() is MT-Safe

ttyname(3C), attributes(5)

Name

Synopsis

Description

ctermid()

ctermid_r()

Usage

Attributes

See Also

ctermid(3C)

man pages section 3: Basic Library Functions • Last Revised 25 Jul 2000116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ctime, ctime_r, localtime, localtime_r, gmtime, gmtime_r, asctime, asctime_r, tzset – convert
date and time to string

#include <time.h>

char *ctime(const time_t *clock);

struct tm *localtime(const time_t *clock);

struct tm *gmtime(const time_t *clock);

char *asctime(const struct tm *tm);

extern time_t timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset(void);

char *ctime_r(const time_t *clock, char *buf, int buflen);

struct tm *localtime_r(const time_t *restrict clock,
struct tm *restrict res);

struct tm *gmtime_r(const time_t *restrict clock,
struct tm *restrict res);

char *asctime_r(const struct tm *restrict tm, char *restrict buf,
int buflen);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

char *ctime_r(const time_t *clock, char *buf);

char *asctime_r(const struct tm *tm, char *buf);

The ctime() function converts the time pointed to by clock, representing the time in seconds
since the Epoch (00:00:00 UTC, January 1, 1970), to local time in the form of a 26-character
string, as shown below. Time zone and daylight savings corrections are made before string
generation. The fields are in constant width:

Fri Sep 13 00:00:00 1986\n\0

The ctime() function is equivalent to:

asctime(localtime(clock))

The ctime(), asctime(), gmtime(), and localtime() functions return values in one of two
thread-specific data objects: a broken-down time structure and an array of char. Execution of
any of the functions can overwrite the information returned in either of these objects by any of
the other functions executed by the same thread.

Name

Synopsis

Standard conforming

Description

ctime(3C)

Basic Library Functions 117

The ctime_r() function has the same functionality as ctime() except that the caller must
supply a buffer buf with length buflen to store the result; buf must be at least 26 bytes. The
standard-conforming ctime_r() function does not take a buflen parameter.

The localtime() and gmtime() functions return pointers to tm structures (see below). The
localtime() function corrects for the main time zone and possible alternate (“daylight
savings”) time zone; the gmtime() function converts directly to Coordinated Universal Time
(UTC), which is what the UNIX system uses internally.

The localtime_r() and gmtime_r() functions have the same functionality as localtime()
and gmtime() respectively, except that the caller must supply a buffer res to store the result.

The asctime() function converts a tm structure to a 26-character string, as shown in the
previous example, and returns a pointer to the string.

The asctime_r() function has the same functionality as asctime() except that the caller must
supply a buffer buf with length buflen for the result to be stored. The buf argument must be at
least 26 bytes. The standard-conforming asctime_r() function does not take a buflen
parameter. The asctime_r() function returns a pointer to buf upon success. In case of failure,
NULL is returned and errno is set.

Declarations of all the functions and externals, and the tm structure, are in the <time.h>
header. The members of the tm structure are:

int tm_sec; /* seconds after the minute — [0, 60] */

/* for leap seconds */

int tm_min; /* minutes after the hour — [0, 59] */

int tm_hour; /* hour since midnight — [0, 23] */

int tm_mday; /* day of the month — [1, 31] */

int tm_mon; /* months since January — [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday — [0, 6] */

int tm_yday; /* days since January 1 — [0, 365] */

int tm_isdst; /* flag for alternate daylight savings time */

The value of tm_isdst is positive if daylight savings time is in effect, zero if daylight savings
time is not in effect, and negative if the information is not available. Previously, the value of
tm_isdst was defined as non-zero if daylight savings was in effect.

The external time_t variable altzone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable timezone
contains the difference, in seconds, between UTC and local standard time. The external
variable daylight indicates whether time should reflect daylight savings time. Both timezone

and altzone default to 0 (UTC). The external variable daylight is non-zero if an alternate
time zone exists. The time zone names are contained in the external variable tzname, which by
default is set to:

char *tzname[2] = { “GMT”, “ ”};

ctime(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011118

These functions know about the peculiarities of this conversion for various time periods for
the U.S. (specifically, the years 1974, 1975, and 1987). They start handling the new daylight
savings time starting with the first Sunday in April, 1987.

The tzset() function uses the contents of the environment variable TZ to override the value
of the different external variables. It is called by asctime() and can also be called by the user. If
TZ is not specified or has an invalid setting, tzset() uses GMT0. See environ(5) for a
description of the TZ environment variable.

Starting and ending times are relative to the current local time zone. If the alternate time zone
start and end dates and the time are not provided, the days for the United States that year will
be used and the time will be 2 AM. If the start and end dates are provided but the time is not
provided, the time will be 2 AM. The effects of tzset() change the values of the external
variables timezone, altzone, daylight, and tzname.

Note that in most installations, TZ is set to the correct value by default when the user logs on,
using the local /etc/default/init file (see TIMEZONE(4)).

Upon successful completion, the gmtime() and localtime() functions return a pointer to a
struct tm. If an error is detected, gmtime() and localtime() return a null pointer.

Upon successful completion, the gmtime_r() and localtime_r() functions return the
address of the structure pointed to by the res argument. If an error is detected, gmtime_r()
and localtime_r() return a null pointer and set errno to indicate the error.

The ctime_r() and asctime_r() functions will fail if:

ERANGE The length of the buffer supplied by the caller is not large enough to store the
result.

The gmtime(), gmtime_r(), localtime(), and localtime_r() functions will fail if:

EOVERFLOW The result cannot be represented.

These functions do not support localized date and time formats. The strftime(3C) function
can be used when localization is required.

The localtime(), localtime_r(), gmtime(), gmtime_r(), ctime(), and ctime_r()

functions assume Gregorian dates. Times before the adoption of the Gregorian calendar will
not match historical records.

EXAMPLE 1 Examples of the tzset() function.

The tzset() function scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New Jersey in 1986
could be:

EST5EDT4,116/2:00:00,298/2:00:00

Return Values

Errors

Usage

Examples

ctime(3C)

Basic Library Functions 119

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4

EXAMPLE 1 Examples of the tzset() function. (Continued)

or simply

EST5EDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[0] is EST, timezone is set to
5*60*60, tzname[1] is EDT, altzone is set to 4*60*60, the starting date of the alternate time
zone is the 117th day at 2 AM, the ending date of the alternate time zone is the 299th day at 2
AM (using zero-based Julian days), and daylight is set positive. Starting and ending times are
relative to the current local time zone. If the alternate time zone start and end dates and the
time are not provided, the days for the United States that year will be used and the time will be
2 AM. If the start and end dates are provided but the time is not provided, the time will be 2
AM. The effects of tzset() are thus to change the values of the external variables timezone,
altzone, daylight, and tzname. The ctime(), localtime(), mktime(), and strftime()

functions also update these external variables as if they had called tzset() at the time
specified by the time_t or struct tm value that they are converting.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

The asctime(), ctime(), gmtime(), and localtime() functions are safe to use in multithread
applications because they employ thread-specific data. However, their use is discouraged
because standards do not require them to be thread-safe. The asctime_r() and gmtime_r()

functions are MT-Safe. The ctime_r(), localtime_r(), and tzset() functions are MT-Safe
in multithread applications, as long as no user-defined function directly modifies one of the
following variables: timezone, altzone, daylight, and tzname. These four variables are not
MT-Safe to access. They are modified by the tzset() function in an MT-Safe manner. The
mktime(), localtime_r(), and ctime_r() functions call tzset().

time(2), Intro(3), getenv(3C), mktime(3C), printf(3C), putenv(3C), setlocale(3C),
strftime(3C), TIMEZONE(4), attributes(5), environ(5), standards(5)

Attributes

See Also

ctime(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

When compiling multithreaded programs, see Intro(3).

The return values for asctime(), ctime(), gmtime(), and localtime() point to
thread-specific data whose content is overwritten by each call by the same thread.

Setting the time during the interval of change from timezone to altzone or vice versa can
produce unpredictable results. The system administrator must change the Julian start and end
days annually.

If tzset() has previously evaluated the timezone identified by the value of the TZ
environment variable, tzset() can reuse the previous settings of the external variables
altzone, daylight, timezone, and tzname[] associated with that timezone.

Solaris 2.4 and earlier releases provided definitions of the ctime_r(), localtime_r(),
gmtime_r(), and asctime_r() functions as specified in POSIX.1c Draft 6. The final POSIX.1c
standard changed the interface for ctime_r() and asctime_r(). Support for the Draft 6
interface is provided for compatibility only and might not be supported in future releases.
New applications and libraries should use the standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and _REENTRANT

flags are automatically turned on by defining the _POSIX_C_SOURCE flag with a value >=
199506L.

In Solaris 10, gmtime(), gmtime_r(), localtime(), and localtime_r() were updated to
return a null pointer if an error is detected. This change was based on the SUSv3 specification.
See standards(5).

Notes

ctime(3C)

Basic Library Functions 121

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctype, isalpha, isalnum, isascii, isblank, iscntrl, isdigit, islower, isprint, isspace, isupper,
ispunct, isgraph, isxdigit – character handling

#include <ctype.h>

int isalpha(int c);

int isalnum(int c);

int isascii(int c);

int isblank(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

These macros classify character-coded integer values. Each is a predicate returning non-zero
for true, 0 for false. The behavior of these macros, except isascii(), is affected by the current
locale (see setlocale(3C)). To modify the behavior, change the LC_TYPE category in
setlocale(), that is, setlocale(LC_CTYPE, newlocale). In the “C” locale, or in a locale where
character type information is not defined, characters are classified according to the rules of the
US-ASCII 7-bit coded character set.

The isascii() macro is defined on all integer values. The rest are defined only where the
argument is an int, the value of which is representable as an unsigned char, or EOF, which is
defined by the <stdio.h> header and represents end-of-file.

Functions exist for all the macros defined below. To get the function form, the macro name
must be undefined (for example, #undef isdigit).

For macros described with Default and Standard conforming versions,
standard-conforming behavior is provided for standard-conforming applications (see
standards(5)) and for applications that define __XPG4_CHAR_CLASS__ before including
<ctype.h>.

isalpha() Tests for any character for which isupper() or islower() is true.

Name

Synopsis

Description

Default

ctype(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Jan 2005122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

isalpha() Tests for any character for which isupper() or islower() is true, or any
character that is one of the current locale-defined set of characters for which
none of iscntrl(), isdigit(), ispunct(), or isspace() is true. In “C” locale,
isalpha() returns true only for the characters for which isupper() or
islower() is true.

isalnum() Tests for any character for which isalpha() or isdigit() is true (letter or
digit).

isascii() Tests for any ASCII character, code between 0 and 0177 inclusive.

isblank() Tests whether c is a character of class blank in the current locale. This
macro/function is not available to applications conforming to standards prior
to SUSv3. See standards(5)

iscntrl() Tests for any ‘‘control character'' as defined by the character set.

isdigit() Tests for any decimal-digit character.

isgraph() Tests for any character for which ispunct(), isupper(), islower(), and
isdigit() is true.

isgraph() Tests for any character for which isalnum() and ispunct() are true, or any
character in the current locale-defined “graph” class which is neither a space
(“ ”) nor a character for which iscntrl() is true.

islower() Tests for any character that is a lower-case letter or is one of the current
locale-defined set of characters for which none of iscntrl(), isdigit(),
ispunct(), isspace(), or isupper() is true. In the “C” locale, islower()
returns true only for the characters defined as lower-case ASCII characters.

isprint() Tests for any character for which ispunct(), isupper(), islower(),
isdigit(), and the space character (“ ”) is true.

isprint() Tests for any character for which iscntrl() is false, and isalnum(),
isgraph(), ispunct(), the space character (“ ”), and the characters in the
current locale-defined “print” class are true.

ispunct() Tests for any printing character which is neither a space (“ ”) nor a character
for which isalnum() or iscntrl() is true.

isspace() Tests for any space, tab, carriage-return, newline, vertical-tab or form-feed
(standard white-space characters) or for one of the current locale-defined set
of characters for which isalnum() is false. In the “C” locale, isspace() returns
true only for the standard white-space characters.

isupper() Tests for any character that is an upper-case letter or is one of the current
locale-defined set of characters for which none of iscntrl(), isdigit(),
ispunct(), isspace(), or islower() is true. In the “C” locale, isupper()
returns true only for the characters defined as upper-case ASCII characters.

Standard conforming

Default

Standard conforming

Default

Standard conforming

ctype(3C)

Basic Library Functions 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

isxdigit() Tests for any hexadecimal-digit character ([0−9], [A−F], or [a−f]).

isxdigit() Tests for any hexadecimal-digit character ([0−9], [A−F], or [a−f] or the
current locale-defined sets of characters representing the hexadecimal digits
10 to 15 inclusive). In the “C” locale, only

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

are included.

If the argument to any of the character handling macros is not in the domain of the function,
the result is undefined. Otherwise, the macro or function returns non-zero if the classification
is TRUE and 0 if the classification is FALSE.

These macros or functions can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), stdio(3C), ascii(5), environ(5), standards(5)

Default

Standard conforming

Return Values

Usage

Attributes

See Also

ctype(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Jan 2005124

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ascii-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

cuserid – get character login name of the user

#include <stdio.h>

char *cuserid(char *s);

The cuserid() function generates a character-string representation of the login name under
which the owner of the current process is logged in. If s is a null pointer, this representation is
generated in an internal static area whose address is returned. Otherwise, s is assumed to point
to an array of at least L_cuserid characters; the representation is left in this array. The
constant L_cuserid is defined in the <stdio.h> header.

In multithreaded applications, the caller must always supply an array s for the return value.

If the login name cannot be found, cuserid() returns a null pointer. If s is not a null pointer,
the null character ‘\0’ will be placed at s[0].

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getlogin(3C), getpwnam(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

cuserid(3C)

Basic Library Functions 125

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

daemon – basic daemonization function

#include <stdlib.h>

int daemon(int nochdir, int noclose);

The daemon() function provides a means for applications to run in the background.

This function ensures that the process calling this function:

■ runs in the background
■ detaches from the controlling terminal
■ forms a new process group
■ is not a session group leader.

The arguments to this function are treated as boolean variables and are evaluated using
negative logic.

If the nochdir argument is zero the working directory will be changed to the root directory (/);
otherwise it will not be.

If the noclose argument is zero the descriptors 0, 1, and 2 (normally corresponding to standard
input, output and error output, depending on the application) will be redirected to
/dev/null; otherwise they will not be.

Upon successful completion, daemon() returns 0. Otherwise it returns -1 and sets errno to the
values specified for fork(2), setsid(2), open(2), and dup(2).

If daemon() is called with noclose set to 0 and fails to redirect descriptors 0, 1, and 2 to
/dev/null, those descriptors are not guaranteed to be the same as before the call.

EXAMPLE 1 Using daemon to run a process in the background.

The main() function of a network server could look like this:

int background; /* background flag */

/* Load and verify the configuration. */

/* Go into background. */

if (background && daemon(0, 0) < 0)

err(1, "daemon");

/* Process requests here. */

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Examples

Attributes

daemon(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Sep 2009126

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setsid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Intro(2), dup(2), fork(2), open(2), setsid(2), attributes(5)See Also

daemon(3C)

Basic Library Functions 127

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setsid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

decimal_to_floating, decimal_to_single, decimal_to_double, decimal_to_extended,
decimal_to_quadruple – convert decimal record to floating-point value

#include <floatingpoint.h>

void decimal_to_single(single *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_double(double *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_extended(extended *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_quadruple(quadruple *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

These functions convert the decimal record *pd to a floating-point value *px observing the
rounding direction specified in *pm and setting *ps to reflect any floating-point exceptions
that occur.

When pd->fpclass is fp_zero, fp_infinity, fp_quiet, or fp_signaling, *px is set to zero,
infinity, a quiet NaN, or a signaling NaN, respectively, with the sign indicated by pd->sign. All
other fields in *pd are ignored.

When pd->fpclass is fp_normal or fp_subnormal, pd->ds must contain a null-terminated
string of one or more ASCII digits representing a non-zero integer m, and pd->ndigits must
be equal to the length of this string. Then *px is set to a correctly rounded approximation to

−1**(pd->sign) * m * 10**(pd->exponent)

pd->more can be set to a non-zero value to indicate that insignificant trailing digits were
omitted from pd->ds. In this case, m is replaced by m + delta in the expression above, where
delta is some tiny positive fraction.

The converted value is rounded according to the rounding direction specified in pm->rd.
pm->df and pm->ndigits are not used.

On exit, *ps contains a bitwise OR of flags corresponding to any floating-point exceptions that
occurred. The only possible exceptions are underflow, overflow, and inexact. If no
floating-point exceptions occurred, *ps is set to zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Name

Synopsis

Description

Attributes

decimal_to_floating(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Oct 2001128

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

scanf(3C), string_to_decimal(3C), strtod(3C), attributes(5)See Also

decimal_to_floating(3C)

Basic Library Functions 129

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

difftime – computes the difference between two calendar times

#include <time.h>

double difftime(time_t time1, time_t time0);

The difftime() function computes the difference between two calendar times.

The difftime() functions returns the difference (time1-time0) expressed in seconds as a
double.

The difftime() function is provided because there are no general arithmetic properties
defined for type time_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ctime(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

difftime(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002130

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

directio – provide advice to file system

#include <sys/types.h>

#include <sys/fcntl.h>

int directio(int fildes, int advice);

The directio() function provides advice to the system about the expected behavior of the
application when accessing the data in the file associated with the open file descriptor fildes.
The system uses this information to help optimize accesses to the file's data. The directio()
function has no effect on the semantics of the other operations on the data, though it may
affect the performance of other operations.

The advice argument is kept per file; the last caller of directio() sets the advice for all
applications using the file associated with fildes.

Values for advice are defined in <sys/fcntl.h>.

DIRECTIO_OFF Applications get the default system behavior when accessing file data.

When an application reads data from a file, the data is first cached in
system memory and then copied into the application's buffer (see read(2)).
If the system detects that the application is reading sequentially from a file,
the system will asynchronously "read ahead" from the file into system
memory so the data is immediately available for the next read(2)
operation.

When an application writes data into a file, the data is first cached in
system memory and is written to the device at a later time (see write(2)).
When possible, the system increases the performance of write(2)
operations by cacheing the data in memory pages. The data is copied into
system memory and the write(2) operation returns immediately to the
application. The data is later written asynchronously to the device. When
possible, the cached data is "clustered" into large chunks and written to the
device in a single write operation.

The system behavior for DIRECTIO_OFF can change without notice.

DIRECTIO_ON The system behaves as though the application is not going to reuse the file
data in the near future. In other words, the file data is not cached in the
system's memory pages.

When possible, data is read or written directly between the application's
memory and the device when the data is accessed with read(2) and
write(2) operations. When such transfers are not possible, the system
switches back to the default behavior, but just for that operation. In
general, the transfer is possible when the application's buffer is aligned on a

Name

Synopsis

Description

directio(3C)

Basic Library Functions 131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

two-byte (short) boundary, the offset into the file is on a device sector
boundary, and the size of the operation is a multiple of device sectors.

This advisory is ignored while the file associated with fildes is mapped (see
mmap(2)).

The system behavior for DIRECTIO_ON can change without notice.

Upon successful completion, directio() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The directio() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a file system that accepts advisory
functions.

EINVAL The value in advice is invalid.

Small sequential I/O generally performs best with DIRECTIO_OFF.

Large sequential I/O generally performs best with DIRECTIO_ON, except when a file is sparse or
is being extended and is opened with O_SYNC or O_DSYNC (see open(2)).

The directio() function is supported for the NFS and UFS file system types (see fstyp(1M)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fstyp(1M), mmap(2), open(2), read(2), write(2), fcntl.h(3HEAD), attributes(5)

Switching between DIRECTIO_OFF and DIRECTIO_ON can slow the system because each switch
to DIRECTIO_ON might entail flushing the file's data from the system's memory.

Return Values

Errors

Usage

Attributes

See Also

Warnings

directio(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Apr 2003132

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstyp-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dirfd – get directory stream file descriptor

#include <dirent.h>

int dirfd(DIR *dir);

The dirfd() function returns the file descriptor associated with the directory stream dir.

This file descriptor is the one used internally by the directory stream operations. See
opendir(3C), closedir(3C), readdir(3C), rewinddir(3C), seekdir(3C), telldir(3C). The
file descriptor is automatically closed when closedir() is called for the directory stream dir
or when one of the exec functions is called. See exec(2).

The file descriptor can safely be used only by functions that do not depend on or alter the file
position, such as fstat(2) and fchdir(2). Closing the file descriptor with close(2) or
modifying the file position by means other than the directory stream operations listed above
causes undefined behavior to occur when one of the directory stream operations is
subsequently called with the directory stream dir.

Upon successful completion, the dirfd() function returns an open file descriptor for the
directory associated with the directory stream dir.

There are no defined error returns. Passing an invalid directory stream as an argument to the
dirfd() function results in undefined behavior.

The dirfd() function is intended to be used to obtain a file descriptor for use with the
fchdir() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

close(2), exec(2), fchdir(2), fstat(2), closedir(3C), opendir(3C), readdir(3C),
rewinddir(3C), seekdir(3C), telldir(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

dirfd(3C)

Basic Library Functions 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fchdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fchdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dirname – report the parent directory name of a file path name

#include <libgen.h>

char *dirname(char *path);

The dirname() function takes a pointer to a character string that contains a pathname, and
returns a pointer to a string that is a pathname of the parent directory of that file. Trailing '/'
characters in the path are not counted as part of the path.

If path does not contain a '/', then dirname() returns a pointer to the string "." . If path is a null
pointer or points to an empty string, dirname() returns a pointer to the string "." .

The dirname() function returns a pointer to a string that is the parent directory of path. If
path is a null pointer or points to an empty string, a pointer to a string "." is returned.

No errors are defined.

EXAMPLE 1 Changing the Current Directory to the Parent Directory.

The following code fragment reads a pathname, changes the current working directory to the
parent directory of the named file (see chdir(2)), and opens the file.

char path[[MAXPATHLEN], *pathcopy;

int fd;

fgets(path, MAXPATHLEN, stdin);

pathcopy = strdup(path);

chdir(dirname(pathcopy));

fd = open(basename(path), O_RDONLY);

EXAMPLE 2 Sample Input and Output Strings for dirname().

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the dirname() function.

Input String Output String

“/usr/lib"” “/usr”

“/usr/” “/”

“usr” “/”

“/” “/”

“.” “.”

“..” “.”

Name

Synopsis

Description

Return Values

Errors

Examples

dirname(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Mar 2002134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2

The dirname() function modifies the string pointed to by path.

The dirname() and basename(3C) functions together yield a complete pathname. The
expression dirname(path) obtains the pathname of the directory where basename(path) is
found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

basename(1), chdir(2), basename(3C), attributes(5), standards(5)

Usage

Attributes

See Also

dirname(3C)

Basic Library Functions 135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1basename-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

div, ldiv, lldiv – compute the quotient and remainder

#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

lldiv_t lldiv(long long numer, long long denom);

The div() function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. It provides a well-defined semantics for the signed integral
division and remainder operations, unlike the implementation-defined semantics of the
built-in operations. The sign of the resulting quotient is that of the algebraic quotient, and if
the division is inexact, the magnitude of the resulting quotient is the largest integer less than
the magnitude of the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quotient * denom + remainder will equal numer.

The ldiv() and lldiv() functions are similar to div(), except that the arguments and the
members of the returned structure are different. The ldiv() function returns a structure of
type ldiv_t and has type long int. The lldiv() function returns a structure of type lldiv_t
and has type long long.

The div() function returns a structure of type div_t, comprising both the quotient and
remainder:

int quot; /*quotient*/

int rem; /*remainder*/

The ldiv() function returns a structure of type ldiv_t and lldiv() returns a structure of
type lldiv_t, comprising both the quotient and remainder:

long int quot; /*quotient*/

long int rem; /*remainder*/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

div(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002136

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

dladdr, dladdr1 – translate address to symbolic information

#include <dlfcn.h>

int dladdr(void *address, Dl_info_t *dlip);

int dladdr1(void *address, Dl_info_t *dlip, void **info, int flags);

The dladdr() and dladdr1() functions determine if the specified address is located within
one of the mapped objects that make up the current applications address space. An address is
deemed to fall within a mapped object when it is between the base address, and the _end
address of that object. See NOTES. If a mapped object fits this criteria, the symbol table made
available to the runtime linker is searched to locate the nearest symbol to the specified address.
The nearest symbol is one that has a value less than or equal to the required address.

The Dl_info_t structure must be preallocated by the user. The structure members are filled in
by dladdr(), based on the specified address. The Dl_info_t structure includes the following
members:

const char *dli_fname;

void *dli_fbase;

const char *dli_sname;

void *dli_saddr;

The Dl_info_t members provide the following information.

dli_fname Contains a pointer to the filename of the containing object.

dli_fbase Contains the base address of the containing object.

dli_sname Contains a pointer to the symbol name that is nearest to the specified address.
This symbol either represents the exact address that was specified, or is the
nearest symbol with a lower address.

dli_saddr Contains the actual address of the symbol pointed to by dli_sname.

The dladdr1() function provides for addition information to be returned as specified by the
flags argument:

RTLD_DL_SYMENT Obtain the ELF symbol table entry for the matched symbol. The info
argument points to a symbol pointer as defined in <sys/elf.h>
(Elf32_Sym **info or Elf64_Sym **info). Most of the information
found in an ELF symbol can only be properly interpreted by the
runtime linker. However, there are two fields that contain information
useful to the caller of dladdr1(): The st_size field contains the size of
the referenced item. The st_info field provides symbol type and
binding attributes. See the Linker and Libraries Guild for more
information.

Name

Synopsis

Description

dladdr(3C)

Basic Library Functions 137

RTLD_DL_LINKMAP Obtain the Link_map for the matched file. The info argument points to
a Link_map pointer as defined in <sys/link.h> (Link_map **info).

If the specified address cannot be matched to a mapped object, a 0 is returned. Otherwise, a
non-zero return is made and the associated Dl_info_t elements are filled.

The dladdr() and dladdr1() functions are one of a family of functions that give the user
direct access to the dynamic linking facilities. These facilities are available to
dynamically-linked processes only. See Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), dlclose(3C), dldump(3C), dlerror(3C), dlopen(3C), dlsym(3C), attributes(5)

Linker and Libraries Guide

The Dl_info_t pointer elements point to addresses within the mapped objects. These
pointers can become invalid if objects are removed prior to these elements use. See
dlclose(3C).

If no symbol is found to describe the specified address, both the dli_sname and dli_saddr

members are set to 0.

If the address specified exists within a mapped object in the range between the base address
and the address of the first global symbol in the object, the reserved local symbol _START_ is
returned. This symbol acts as a label representing the start of the mapped object. As a label,
this symbol has no size. The dli_saddr member is set to the base address of the associated
object. The dli_sname member is set to the symbol name _START_. If the flag argument is set
to RTLD_DL_SYMENT, symbol information for _START_ is returned.

If an object is acting as a filter, care should be taken when interpreting the address of any
symbol obtained using a handle to this object. For example, using dlsym(3C) to obtain the
symbol _end for this object, results in returning the address of the symbol _end within the
filtee, not the filter. For more information on filters see the Linker and Libraries Guide.

Return Values

Usage

Attributes

See Also

Notes

dladdr(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Feb 2009138

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlclose – close a shared object

#include <dlfcn.h>

int dlclose(void *handle);

The dlclose() function decrements the reference count of the supplied handle. This handle
represents an executable object file and its dependencies, acquired from a previous call to
dlopen(). A handle that is no longer referenced is processed in an attempt to unload any
objects that are associated with the handle from the current process. An unreferenced handle
is no longer available to dlsym().

Any finalization code within an object is executed prior to that object being unloaded. Any
routines registered by an object using atexit(3C) are called prior to that object being
unloaded. See NOTES.

If the handle was successfully unreferenced, dlclose() returns 0. If the handle is invalid, or an
error occurred as a result of unloading an object, dlclose() returns a non-zero value.
Additional diagnostic information is available through dlerror().

The dlclose() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ld(1), ld.so.1(1), atexit(3C), dladdr(3C), dldump(3C), dlerror(3C), dlopen(3C),
dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

A successful invocation of dlclose() does not guarantee that the objects associated with the
handle are removed from the address space of the current process. Objects can be referenced
by multiple handles, or by other objects. An object is not removed from the address space of
the current process until all references to that object are removed.

Once an object has been closed by dlclose(), referencing symbols contained in that object
can cause undefined behavior.

As part of unloading an object, finalization code within the object is called before the
dlclose() returns. This finalization is user code, and as such, can produce errors that can not
be caught by dlclose(). For example, an object loaded using RTLD_LAZY that attempts to call a

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

Notes

dlclose(3C)

Basic Library Functions 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

function that can not be located, results in process termination. Erroneous programming
practices within the finalization code can also result in process termination. The runtime
linkers debugging facility can offer help identifying these types of error. See the LD_DEBUG
environment variable of ld.so.1(1).

dlclose(3C)

man pages section 3: Basic Library Functions • Last Revised 1 March 2004140

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

dldump – create a new file from a dynamic object component of the calling process

#include <dlfcn.h>

int dldump(const char * ipath, const char * opath, int flags);

The dldump() function creates a new dynamic object opath from an existing dynamic object
ipath that is bound to the current process. An ipath value of 0 is interpreted as the dynamic
object that started the process. The new object is constructed from the existing objects' disc
file. Relocations can be applied to the new object to pre-bind it to other dynamic objects, or fix
the object to a specific memory location. In addition, data elements within the new object can
be obtained from the objects' memory image as this data exists in the calling process.

These techniques allow the new object to be executed with a lower startup cost. This reduction
can be because of less relocations being required to load the object, or because of a reduction
in the data processing requirements of the object. However, limitations can exist in using these
techniques. The application of relocations to the new dynamic object opath can restrict its
flexibility within a dynamically changing environment. In addition, limitations in regards to
data usage can make dumping a memory image impractical. See EXAMPLES.

The runtime linker verifies that the dynamic object ipath is mapped as part of the current
process. Thus, the object must either be the dynamic object that started the process, one of the
process's dependencies, or an object that has been preloaded. See exec(2), and ld.so.1(1).

As part of the runtime processing of a dynamic object, relocation records within the object are
interpreted and applied to offsets within the object. These offsets are said to be relocated.
Relocations can be categorized into two basic types: non-symbolic and symbolic.

The non-symbolic relocation is a simple relative relocation that requires the base address at
which the object is mapped to perform the relocation. The symbolic relocation requires the
address of an associated symbol, and results in a binding to the dynamic object that defines
this symbol. The symbol definition can originate from any of the dynamic objects that make
up the process, that is, the object that started the process, one of the process's dependencies, an
object that has been preloaded, or the dynamic object being relocated.

The flags parameter controls the relocation processing and other attributes of producing the
new dynamic object opath. Without any flags, the new object is constructed solely from the
contents of the ipath disc file without any relocations applied.

Various relocation flags can be or'ed into the flags parameter to affect the relocations that are
applied to the new object. Non-symbolic relocations can be applied using the following:

RTLD_REL_RELATIVE Relocation records from the object ipath, that define relative
relocations, are applied to the object opath.

A variety of symbolic relocations can be applied using the following flags (each of these flags
also implies RTLD_REL_RELATIVE is in effect):

Name

Synopsis

Description

dldump(3C)

Basic Library Functions 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

RTLD_REL_EXEC Symbolic relocations that result in binding ipath to the dynamic
object that started the process, commonly a dynamic executable, are
applied to the object opath.

RTLD_REL_DEPENDS Symbolic relocations that result in binding ipath to any of the
dynamic dependencies of the process are applied to the object opath.

RTLD_REL_PRELOAD Symbolic relocations that result in binding ipath to any objects
preloaded with the process are applied to the object opath. See
LD_PRELOAD in ld.so.1(1).

RTLD_REL_SELF Symbolic relocations that result in binding ipath to itself, are applied
to the object opath.

RTLD_REL_WEAK Weak relocations that remain unresolved are applied to the object
opath as 0.

RTLD_REL_ALL All relocation records defined in the object ipath are applied to the
new object opath. This is basically a concatenation of all the above
relocation flags.

Note that for dynamic executables, RTLD_REL_RELATIVE, RTLD_REL_EXEC, and RTLD_REL_SELF

have no effect. See EXAMPLES.

If relocations, knowledgeable of the base address of the mapped object, are applied to the new
object opath, then the new object becomes fixed to the location that the ipath image is mapped
within the current process.

Any relocations applied to the new object opath will have the original relocation record
removed so that the relocation will not be applied more than once. Otherwise, the new object
opath will retain the relocation records as they exist in the ipath disc file.

The following additional attributes for creating the new dynamic object opath can be specified
using the flags parameter:

RTLD_MEMORY The new object opath is constructed from the current memory contents of
the ipath image as it exists in the calling process. This option allows data
modified by the calling process to be captured in the new object. Note that
not all data modifications may be applicable for capture; significant
restrictions exist in using this technique. See EXAMPLES. By default, when
processing a dynamic executable, any allocated memory that follows the end
of the data segment is captured in the new object (see malloc(3C) and
brk(2)). This data, which represents the process heap, is saved as a new
.SUNW_heap section in the object opath. The objects' program headers and
symbol entries, such as _end, are adjusted accordingly. See also
RTLD_NOHEAP. When using this attribute, any relocations that have been
applied to the ipath memory image that do not fall into one of the requested

dldump(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Mar 2004142

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

relocation categories are undone, that is, the relocated element is returned
to the value as it existed in the ipath disc file.

RTLD_STRIP Only collect allocatable sections within the object opath. Sections that are
not part of the dynamic objects' memory image are removed. RTLD_STRIP
reduces the size of the opath disc file and is comparable to having run the
new object through strip(1).

RTLD_NOHEAP Do not save any heap to the new object. This option is only meaningful
when processing a dynamic executable with the RTLD_MEMORY attribute and
allows for reducing the size of the opath disc file. The executable must
confine its data initialization to data elements within its data segment, and
must not use any allocated data elements that comprise the heap.

It should be emphasized, that an object created by dldump() is simply an updated ELF object
file. No additional state regarding the process at the time dldump() is called is maintained in
the new object. dldump() does not provide a panacea for checkpoint and resume. A new
dynamic executable, for example, will not start where the original executable called dldump().
It will gain control at the executable's normal entry point. See EXAMPLES.

On successful creation of the new object, dldump() returns 0. Otherwise, a non-zero value is
returned and more detailed diagnostic information is available through dlerror().

EXAMPLE 1 Sample code using dldump().

The following code fragment, which can be part of a dynamic executable a.out, can be used to
create a new shared object from one of the dynamic executables' dependencies libfoo.so.1:

const char * ipath = "libfoo.so.1";
const char * opath = "./tmp/libfoo.so.1";
...

if (dldump(ipath, opath, RTLD_REL_RELATIVE) != 0)

(void) printf("dldump failed: %s\n", dlerror());

The new shared object opath is fixed to the address of the mapped ipath bound to the dynamic
executable a.out. All relative relocations are applied to this new shared object, which will
reduce its relocation overhead when it is used as part of another process.

By performing only relative relocations, any symbolic relocation records remain defined
within the new object, and thus the dynamic binding to external symbols will be preserved
when the new object is used.

Use of the other relocation flags can fix specific relocations in the new object and thus can
reduce even more the runtime relocation startup cost of the new object. However, this will also
restrict the flexibility of using the new object within a dynamically changing environment, as it
will bind the new object to some or all of the dynamic objects presently mapped as part of the
process.

Return Values

Examples

dldump(3C)

Basic Library Functions 143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strip-1

EXAMPLE 1 Sample code using dldump(). (Continued)

For example, the use of RTLD_REL_SELF will cause any references to symbols from ipath to be
bound to definitions within itself if no other preceding object defined the same symbol. In
other words, a call to foo() within ipath will bind to the definition foo within the same object.
Therefore, opath will have one less binding that must be computed at runtime. This reduces
the startup cost of using opath by other applications; however, interposition of the symbol foo
will no longer be possible.

Using a dumped shared object with applied relocations as an applications dependency
normally requires that the application have the same dependencies as the application that
produced the dumped image. Dumping shared objects, and the various flags associated with
relocation processing, have some specialized uses. However, the technique is intended as a
building block for future technology.

The following code fragment, which is part of the dynamic executable a.out, can be used to
create a new version of the dynamic executable:

static char * dumped = 0;

const char * opath = "./a.out.new";
...

if (dumped == 0) {

char buffer[100];

int size;

time_t seconds;

...

/* Perform data initialization */

seconds = time((time_t *)0);

size = cftime(buffer, (char *)0, &seconds);

if ((dumped = (char *)malloc(size + 1)) == 0) {

(void) printf("malloc failed: %s\n", strerror(errno));

return (1);

}

(void) strcpy(dumped, buffer);

...

/*

* Tear down any undesirable data initializations and

* dump the dynamic executables memory image.

*/

_exithandle();

_exit(dldump(0, opath, RTLD_MEMORY));

}

(void) printf("Dumped: %s\n", dumped);

Any modifications made to the dynamic executable, up to the point the dldump() call is made,
are saved in the new object a.out.new. This mechanism allows the executable to update parts
of its data segment and heap prior to creating the new object. In this case, the date the

dldump(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Mar 2004144

EXAMPLE 1 Sample code using dldump(). (Continued)

executable is dumped is saved in the new object. The new object can then be executed without
having to carry out the same (presumably expensive) initialization.

For greatest flexibility, this example does not save any relocated information. The elements of
the dynamic executable ipath that have been modified by relocations at process startup, that is,
references to external functions, are returned to the values of these elements as they existed in
the ipath disc file. This preservation of relocation records allows the new dynamic executable
to be flexible, and correctly bind and initialize to its dependencies when executed on the same
or newer upgrades of the OS.

Fixing relocations by applying some of the relocation flags would bind the new object to the
dependencies presently mapped as part of the process calling dldump(). It may also remove
necessary copy relocation processing required for the correct initialization of its shared object
dependencies. Therefore, if the new dynamic executables' dependencies have no specialized
initialization requirements, the executable may still only interact correctly with the
dependencies to which it binds if they were mapped to the same locations as they were when
dldump() was called.

Note that for dynamic executables, RTLD_REL_RELATIVE, RTLD_REL_EXEC, and
RTLD_REL_SELF have no effect, as relocations within the dynamic executable will have been
fixed when it was created by ld(1).

When RTLD_MEMORY is used, care should be taken to insure that dumped data sections that
reference external objects are not reused without appropriate re-initialization. For example, if
a data item contains a file descriptor, a variable returned from a shared object, or some other
external data, and this data item has been initialized prior to the dldump() call, its value will
have no meaning in the new dumped image.

When RTLD_MEMORY is used, any modification to a data item that is initialized via a relocation
whose relocation record will be retained in the new image will effectively be lost or invalidated
within the new image. For example, if a pointer to an external object is incremented prior to
the dldump() call, this data item will be reset to its disc file contents so that it can be relocated
when the new image is used; hence, the previous increment is lost.

Non-idempotent data initializations may prevent the use of RTLD_MEMORY. For example, the
addition of elements to a linked-list via init sections can result in the linked-list data being
captured in the new image. Running this new image may result in init sections continuing to
add new elements to the list without the prerequisite initialization of the list head. It is
recommended that _exithandle(3C) be called before dldump() to tear down any data
initializations established via initialization code. Note that this may invalidate the calling
image; thus, following the call to dldump(), only a call to _Exit(2) should be made.

dldump(3C)

Basic Library Functions 145

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2

The dldump() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See Linker and Libraries Guide).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), ld.so.1(1), strip(1), _Exit(2), brk(2), exec(2), _exithandle(3C), dladdr(3C),
dlclose(3C), dlerror(3C), dlopen(3C), dlsym(3C), end(3C), malloc(3C), attributes(5)

Linker and Libraries Guide

These functions are available to dynamically-linked processes only.

Any NOBITS sections within the ipath are expanded to PROGBITS sections within the opath.
NOBITS sections occupy no space within an ELF file image. NOBITS sections declare memory
that must be created and zero-filled when the object is mapped into the runtime environment.
.bss is a typical example of this section type. PROGBITS sections, on the other hand, hold
information defined by the object within the ELF file image. This section conversion reduces
the runtime initialization cost of the new dumped object but increases the objects' disc space
requirement.

When a shared object is dumped, and relocations are applied which are knowledgeable of the
base address of the mapped object, the new object is fixed to this new base address. The
dumped object has its ELF type reclassified to be a dynamic executable. The dumped object
can be processed by the runtime linker, but is not valid as input to the link-editor.

If relocations are applied to the new object, any remaining relocation records are reorganized
for better locality of reference. The relocation sections are renamed to .SUNW_reloc and the
association with the section to relocate, is lost. Only the offset of the relocation record is
meaningful. .SUNW_reloc relocations do not make the new object invalid to either the
runtime linker or link-editor, but can reduce the objects analysis with some ELF readers.

Usage

Attributes

See Also

Notes

dldump(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Mar 2004146

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strip-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlerror – get diagnostic information

#include <dlfcn.h>

char *dlerror(void);

The dlerror() function returns a null-terminated character string that describes the last
error that occurred during dynamic linking processing. The returned string contains no
trailing newline. If no dynamic linking errors have occurred since the last invocation of
dlerror(), dlerror() returns NULL. Thus, invoking dlerror() a second time, immediately
following a prior invocation, results in NULL being returned.

The dlerror() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ld(1), dladdr(3C), dlclose(3C), dldump(3C), dlopen(3C), dlsym(3C), attributes(5),
standards(5)

Linker and Libraries Guide

The messages returned by dlerror() can reside in a static buffer that is overwritten on each
call to dlerror(). Application code should not write to this buffer. Programs wanting to
preserve an error message should make their own copies of that message.

Name

Synopsis

Description

Usage

Attributes

See Also

Notes

dlerror(3C)

Basic Library Functions 147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dlinfo – dynamic load information

#include <dlfcn.h>

#include <link.h>

#include <limits.h>

#include <sys/mman.h>

int dlinfo(void *handle, int request, void *p);

The dlinfo() function sets or extracts information from the runtime linker ld.so.1(1). This
function is loosely modeled after the ioctl(2) function. The request argument and a third
argument of varying type are passed to dlinfo(). The action taken by dlinfo() depends on
the value of the request that is provided.

The handle argument is either the value that is returned from a dlopen(3C) or dlmopen() call,
or the special handle RTLD_SELF. A handle argument is required for all requests except
RTLD_DI_CONFIGADDR, RTLD_DI_GETSIGNAL, and RTLD_DI_SETSIGNAL. If handle is the value
that is returned from a dlopen() or dlmopen() call, the information returned by the dlinfo()
call pertains to the specified object. If handle is the special handle RTLD_SELF, the information
returned by the dlinfo() call pertains to the caller.

The request argument can take the following values:

RTLD_DI_ARGSINFO

Obtain process argument information. The p argument is a pointer (Dl_argsinfo_t *p).
The following elements from this structure are initialized:

dla_argc The number of arguments passed to the process.

dla_argv The argument array passed to the process.

dla_envp The active environment variable array that is available to the process. This
element initially points to the environment variable array that is made
available to exec(2). This element can be updated should an alternative
environment be established by the process. See putenv(3C).

dla_auxv The auxiliary vector array passed to the process.

A process can be established from executing the runtime linker directly from the command
line. See ld.so.1(1). The Dl_argsinfo_t information reflects the information that is made
available to the application regardless of how the runtime linker has been invoked.

RTLD_DI_CONFIGADDR

Obtain the configuration file information. The p argument is a Dl_info_t pointer
(Dl_info_t *p). The following elements from this structure are initialized:

dli_fname The full name of the configuration file.

dli_fbase The base address of the configuration file loaded into memory.

Name

Synopsis

Description

dlinfo(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Oct 2010148

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

RTLD_DI_LINKMAP

Obtain the Link_map for the handle that is specified. The p argument points to a Link_map
pointer (Link_map **p). The actual storage for the Link_map structure is maintained by
ld.so.1.

The Link_map structure includes the following members:

unsigned long l_addr; /* base address */

char *l_name; /* object name */

Elf32_Dyn *l_ld; /* .dynamic section */

Link_map *l_next; /* next link object */

Link_map *l_prev; /* previous link object */

char *l_refname; /* filter reference name */

l_addr The base address of the object loaded into memory.

l_name The full name of the loaded object. This full name is the filename of the
object as referenced by ld.so.1.

l_ld Points to the SHT_DYNAMIC structure.

l_next The next Link_map on the link-map list. Other objects on the same
link-map list as the current object can be examined by following the l_next
and l_prev members.

l_prev The previous Link_map on the link-map list.

l_refname If the object that is referenced is a filter, this member points to the name of
the object being filtered. If the object is not a filter, this member is 0. See the
Linker and Libraries Guide.

RTLD_DI_LMID

Obtain the ID for the link-map list upon which the handle is loaded. The p argument is a
Lmid_t pointer (Lmid_t *p).

RTLD_DI_MMAPCNT

Determine the number of segment mappings for the handle that is specified, for use in a
RTLD_DI_MMAPS request. The p argument is a uint_t pointer (uint_t *p). On return from
a RTLD_DI_MMAPCNT request, the uint_t value that is pointed to by p contains the number
of segment mappings that the associated object uses.

To obtain the complete mapping information for an object, a mmapobj_result_t array for
RTLD_DI_MMAPCNT entries must be provided. This array is assigned to the dlm_maps
member, and the number of entries available in the array are assigned to the dlm_acnt
member. This initialized structure is then passed to a RTLD_DI_MMAPS request. See
EXAMPLES.

dlinfo(3C)

Basic Library Functions 149

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

RTLD_DI_MMAPS

Obtain segment mapping information for the handle that is specified. The p argument is a
Dl_mapinfo_t pointer (Dl_mapinfo_t *p). This structure can be initialized from the
mapping count obtained from a previous RTLD_DI_MMAPCNT request.

Segment mapping information is provided in an array of mmapobj_result_t structures
that originate from the mmapobj(2) of the associated object. The dlm_acnt member,
typically initialized from a previous RTLD_DI_MMAPCNT request, indicates the number of
entries in a mmapobj_result_t array. This array is assigned to the dlm_maps member. This
initialized structure is then passed to a RTLD_DI_MMAPS request, where the segment
mapping information is copied to the mmapobj_result_t array. The dlm_rcnt member
indicates the number of mmapobj_result_t element entries that are returned. See
EXAMPLES.

RTLD_DI_SERINFO

Obtain the library search paths for the handle that is specified. The p argument is a
Dl_serinfo_t pointer (Dl_serinfo_t *p). A user must first initialize the Dl_serinfo_t
structure with a RTLD_DI_SERINFOSIZE request. See EXAMPLES.

The returned Dl_serinfo_t structure contains dls_cnt Dl_serpath_t entries. Each
entry's dlp_name member points to the search path. The corresponding dlp_info member
contains one of more flags indicating the origin of the path. See the LA_SER_* flags that are
defined in <link.h>.

RTLD_DI_SERINFOSIZE

Initialize a Dl_serinfo_t structure for the handle that is specified, for use in a
RTLD_DI_SERINFO request. Both the dls_cnt and dls_size members are returned. The
dls_cnt member indicates the number of search paths that are applicable to the handle.
The dls_size member indicates the total size of a Dl_serinfo_t buffer required to hold
dls_cnt Dl_serpath_t entries and the associated search path strings. The p argument is a
Dl_serinfo_t pointer (Dl_serinfo_t *p).

To obtain the complete path information, a new Dl_serinfo_t buffer of size dls_size
should be allocated. This new buffer should be initialized with the dls_cnt and dls_size

entries. The initialized buffer is then passed to a RTLD_DI_SERINFO request. See EXAMPLES.

RTLD_DI_ORIGIN

Obtain the origin of the dynamic object that is associated with the handle. The p argument
is a char pointer (char *p). The dirname(3C) of the associated object's realpath(3C),
which can be no larger than {PATH_MAX}, is copied to the pointer p.

RTLD_DI_GETSIGNAL

Obtain the numeric signal number used by the runtime linker to kill the process in the
event of a fatal runtime error. The p argument is an int pointer (int *p). The signal
number is copied to the pointer p.

dlinfo(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Oct 2010150

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmapobj-2

By default, the signal used by the runtime linker to terminate a process is SIGKILL. See
thr_kill(3C). This default can be changed by calling dlinfo() with RTLD_DI_SETSIGNAL

or by setting the environment variable LD_SIGNAL. See ld.so.1(1).

RTLD_DI_SETSIGNAL

Provide a numeric signal number used by the runtime linker to kill the process in the event
of a fatal runtime error. The p argument is an int pointer (int *p). The value pointed to by
p is established as the terminating signal value.

The current signal number used by the runtime linker to terminate a process can be
obtained from dlinfo() using RTLD_DI_GETSIGNAL. Use of the RTLD_DI_SETSIGNAL
option is equivalent to setting the environment variable LD_SIGNAL. See ld.so.1(1).

RTLD_DI_DEFERRED

Assign a new dependency name to an existing deferred dependency. The p argument is a
Dl_definfo_t pointer (Dl_definfo *p). The dlv_refname field defines an existing
dependency name. The dlv_depname field defines the new dependency name.

Dependency names are defined by DT_NEEDED dynamic entries, which can be displayed
using the -d option of elfdump(1). Individual dependencies can be tagged as deferred. See
the -z deferred option of ld(1). Deferred dependencies are only loaded during process
execution, when the first binding to a deferred reference is made. Prior to a deferred
dependency being loaded, the dependency name can be changed with RTLD_DI_DEFERRED.
See also RTLD_DI_DEFERRED_SYM.

Once a deferred dependency is loaded, any attempt to change the dependency name with
dlinfo() results in an error return of −1.

RTLD_DI_DEFERRED_SYM

Assign a new dependency name to an existing deferred symbol, using a symbol reference
that exists to the dependency. The p argument is a Dl_definfo_t pointer (Dl_definfo *p).
The dlv_refname field defines a symbol reference to the deferred dependency. The
dlv_depname field defines the new dependency name.

RTLD_DI_DEFERRED_SYM provides an alternative means of modifying a deferred
dependency to using RTLD_DI_DEFERRED. One, or more symbol references can be
associated with a deferred dependency. RTLD_DI_DEFERRED_SYM allows one of these
deferred symbol references to be used to select the associated deferred dependency. Prior to
a deferred dependency being loaded, the dependency name can be changed with
RTLD_DI_DEFERRED_SYM. See EXAMPLES.

Once a deferred dependency is loaded, any attempt to change the dependency name with
dlinfo() results in an error return of −1.

The dlinfo() function returns −1 if the request is invalid, the parameter p is NULL, or the
Dl_serinfo_t structure is uninitialized for a RTLD_DI_SERINFO request. dlinfo() also

Return Values

dlinfo(3C)

Basic Library Functions 151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1

returns −1 if the handle argument does not refer to a valid object opened by dlopen(), or is
not the special handle RTLD_SELF. Detailed diagnostic information is available with
dlerror(3C).

EXAMPLE 1 Use dlinfo() to obtain library search paths.

The following example demonstrates how a dynamic object can inspect the library search
paths that would be used to locate a simple filename with dlopen(). For simplicity, error
checking has been omitted.

Dl_serinfo_t _info, *info = &_info;

Dl_serpath_t *path;

uint_t cnt;

/* determine search path count and required buffer size */

dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, info);

/* allocate new buffer and initialize */

info = malloc(_info.dls_size);

info->dls_size = _info.dls_size;

info->dls_cnt = _info.dls_cnt;

/* obtain search path information */

dlinfo(RTLD_SELF, RTLD_DI_SERINFO, info);

path = &info->dls_serpath[0];

for (cnt = 1; cnt <= info->dls_cnt; cnt++, path++) {

(void) printf("%2d: %s\n", cnt, path->dls_name);

}

EXAMPLE 2 Use dlinfo() to obtain segment information.

The following example demonstrates how a dynamic object can inspect its segment mapping
information. For simplicity, error checking has been omitted

Dl_mapinfo_t mi;

uint_t cnt;

/* determine the number of segment mappings */

dlinfo(RTLD_SELF, RTLD_DI_MMAPCNT, &mi.dlm_acnt);

/* allocate the appropriate mapping array */

mi.dlm_maps = malloc(mi.dlm_acnt *

sizeof (mmapobj_result_t));

/* obtain the mapping information */

dlinfo(RTLD_SELF, RTLD_DI_MMAPS, &mi);

Examples

dlinfo(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Oct 2010152

EXAMPLE 2 Use dlinfo() to obtain segment information. (Continued)

for (cnt = 0; cnt < mi.dlm_rcnt; cnt++) {

(void) printf("addr=%x - memory size=%x\n",
mi.dlm_maps[cnt].mr_addr,

mi.dlm_maps[cnt].mr_msize);

}

EXAMPLE 3 Use dlinfo() to change a deferred dependency.

The following program defines a deferred dependency, foo.so, and an associated deferred
symbol reference, foo().

$ elfdump -d main | egrep "NEEDED|POSFLAG

[0] POSFLAG_1 0x5 [LAZY DEFERRED]

[1] NEEDED 0x17e foo.so

$ elfdump -y main | fgrep foo

[12] DBLP [1] foo.so foo

The program probes the existence of the symbol foo() to verify that an associated deferred
dependency exists. If the dependency does not exist, and hence the symbol can not be found,
the program exchanges the deferred dependency associated with the symbol for a new
dependency named bar.so. Following this exchange, the program once more probes for the
existence of the symbol foo()to verify that the new dependency can be loaded, and the symbol
can be found.

if (dlsym(RTLD_PROBE, "foo") == NULL) {

Dl_definfo_t info;

info.dld_refname = "foo";
info.dld_depname = "bar.so";

if (dlinfo(RTLD_SELF, RTLD_DI_DEFERRED_SYM,

&info) == -1)

return (1);

if (dlsym(RTLD_PROBE, "foo") == NULL)

return (1);

}

foo();

A deferred dependency can only be exchanged before the dependency is loaded. If the
dependency exists, then any probe would cause the dependency to be loaded, and any
following exchange attempts would fail. To successfully exchange a deferred dependency that
is expected to exist, a program must not probe for the symbol before making the exchange.

Dl_definfo_t info;

info.dld_refname = "foo";

dlinfo(3C)

Basic Library Functions 153

info.dld_depname = "bar.so";

if (dlinfo(RTLD_SELF, RTLD_DI_DEFERRED_SYM, &info) == -1)

(void) printf("Using original dependency\n");
else

(void) printf("Using new dependency: bar.so\n");

The dlinfo() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

elfdump(1), ld(1), ld.so.1(1), exec(2), ioctl(2), mmapobj(2), dirname(3C), dlclose(3C),
dldump(3C), dlerror(3C), dlopen(3C), dlsym(3C), putenv(3C), realpath(3C),
thr_kill(3C), attributes(5).

Linker and Libraries Guide

Usage

Attributes

See Also

dlinfo(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Oct 2010154

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmapobj-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dl_iterate_phdr – walk through a list of objects

#include <link.h>

int dl_iterate_phdr(int (*callback)(struct dl_phdr_info *info,
size_t size, void *data), void *data);

The dl_iterate_phdr() function returns information regarding each ELF object currently
resident in the process address space.

The dl_iterate_phdr() function calls the function callback once for each object, until either
all objects have been processed or callback returns a non-zero value.

Each call to callback receives three arguments: info, which is a pointer to a structure
containing information about the object; size, which is the size of the structure pointed to by
info; and the data argument passed to dl_iterate_phdr() by the caller.

The info argument is a pointer to a structure of the following type:

struct dl_phdr_info {

/* Fields present in all implementations */

ElfW(Addr) dlpi_addr;

const char *dlpi_name;

const ElfW(Phdr) *dlpi_phdr;

ElfW(Half) dlpi_phnum;

/* Additional fields present in this implementation */

u_longlong_t dlpi_adds;

u_longlong_t dlpi_subs;

};

The ElfW() macro definition turns its argument into the name of an ELF data type suitable for
the hardware architecture, by adding the Elf32_ prefix for 32-bit code, or Elf64_ for 64-bit
code.

The first four fields (dlpi_addr, dlpi_name, dlpi_phdr, dlpi_phnum) are present in all
implementations of dl_iterate_phdr(), and can be accessed on any system that provides
this function. The callback function must use the size argument to determine if the remaining
fields (dlpi_adds, dlpi_subs) are present. See EXAMPLES.

The dlpi_addr field is 0 for executable objects (ET_EXEC), and is the base address at which the
object is mapped otherwise. Therefore, the address of any loadable segment in the program
header array can be calculated as:

addr == info->dlpi_addr + info->dlpi_phdr[x].p_vaddr

dlpi_name gives the pathname of the object.

dlpi_phdr provides a pointer to the program header array for the object, and dlpi_phnum

specifies the number of program headers found in the array.

Name

Synopsis

Description

dl_iterate_phdr(3C)

Basic Library Functions 155

dlpi_adds provides the number of objects that have been mapped into the current process
since it started, and dlpi_subs provides the number of objects that have been unmapped. See
NOTES.

See the Linker and Libraries Guide for more information about ELF objects, and the
information contained in program headers.

EXAMPLE 1 Display all currently mapped object

The following program displays the pathnames of currently mapped objects. For each object,
the virtual address of each loadable segment is shown.

#include <link.h>

#include <stdlib.h>

#include <stdio.h>

static int

callback(struct dl_phdr_info *info, size_t size, void *data)

{

int j;

printf("name=%s (%d program headers)\n", info->dlpi_name,

info->dlpi_phnum);

for (j = 0; j < info->dlpi_phnum; j++) {

if (info->dlpi_phdr[j].p_type == PT_LOAD)

printf("\t[%d] 0x%p\n", j,

(void *) (info->dlpi_addr +

info->dlpi_phdr[j].p_vaddr));

}

return 0;

}

int

main(int argc, char *argv[])

{

dl_iterate_phdr(callback, NULL);

return(0);

}

EXAMPLE 2 Testing for optional dl_phdr_info fields

Every implementation of dl_iterate_phdr is required to supply the first four fields in struct
dl_phdr_info described above. The callback is allowed to assume that they are present and to
access them without first testing for their presence. Additional fields may be present. The
callback must use the size argument to test for their presence before accessing them. This
example demonstrates how a callback function can detect the presence of the dlpi_adds and
dlpi_subs fields described above:

static int

callback(struct dl_phdr_info *info, size_t size, void *data)

Examples

dl_iterate_phdr(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Feb 2010156

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

EXAMPLE 2 Testing for optional dl_phdr_info fields (Continued)

{

/*

* This must match the definition of dl_phdr_info, as

* defined in <link.h>. It is used to determine whether

* the info structure contains optional fields.

*/

struct dl_phdr_info_test {

ElfW(Addr) dlpi_addr;

const char *dlpi_name;

const ElfW(Phdr) *dlpi_phdr;

ElfW(Half) dlpi_phnum;

u_longlong_t dlpi_adds;

u_longlong_t dlpi_subs;

};

printf("object: %s\n", info->dlpi_name);

printf(" addr: 0x%p\n", (u_longlong_t) info->dlpi_addr);

printf(" phdr: 0x%p\n", (u_longlong_t) info->dlpi_phdr);

printf(" phnum: %d\n", (int) info->dlpi_phnum);

if (size >= sizeof (struct dl_phdr_info_test)) {

printf(" adds: %llu\n", info->dlpi_adds);

printf(" subs: %llu\n", info->dlpi_subs);

}

return (0);

}

The dl_iterate_phdr() function returns whatever value was returned by the last call to
callback.

The dl_iterate_phdr() function is a member of a family of functions that give the user direct
access to the dynamic linking facilities. This family of functions is available only to
dynamically-linked processes. See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ld(1), ld.so.1(1), dladdr(3C), dlclose(3C), dldump(3C), dlerror(3C), dlinfo(3C),
dlopen(3C), dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

Return Values

Usage

Attributes

See Also

dl_iterate_phdr(3C)

Basic Library Functions 157

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

dl_iterate_phdr() was originally defined by the Linux operating system, and is contained in
the Linux Standard Base (LSB).

The behavior of dl_iterate_phdr()when a callback function causes a new object to be
loaded, either via lazy loading or a call to dlopen(), is undefined. The call to
dl_iterate_phdr() that triggers the load may or may not issue a callback for the new object.
This depends on the current position of dl_iterate_phdr() in the list of known objects when
the new object is added. The caller must make no assumptions about this case.

dl_iterate_phdr() callbacks must not unload objects. If a call to dlclose()is detected from
within the callback function, dl_iterate_phdr() immediately terminates the iteration
operation and returns a value of -1.

If two separate calls to dl_iterate_phdr() provide the same two values for dlpi_adds and
dlpi_subs, the caller may safely assume that the process object state has not changed between
the two calls. An application can use this information to cache object data, and avoid
unnecessary iteration. In such a scenario, the first call to the callback function would check to
see if a cache exists, and that dlpi_adds and dlpi_subs have not changed since the last call to
dl_iterate_phdr(), and if so, return a non-zero value to terminate the iteration operation
immediately.

Notes

dl_iterate_phdr(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Feb 2010158

dlopen, dlmopen – gain access to an executable object file

#include <dlfcn.h>

#include <link.h>

void * dlopen(const char *pathname, int mode);

void * dlmopen(Lmid_t lmid, const char *pathname, int mode);

The dlopen() function makes an executable object file available to a running process.
dlopen() returns to the process a handle that the process can use on subsequent calls to
dlsym(3C), dladdr(3C), dlinfo(3C), and dlclose(3C). The value of this handle should not be
interpreted in any way by the process. The pathname argument is the path name of the object
to be opened. A path name containing an embedded ’/’ is interpreted as an absolute path or
relative to the current directory. Otherwise, the set of search paths currently in effect by the
runtime linker are used to locate the specified file. See NOTES.

If the object file referenced by dlopen() is not already loaded as part of the process, then the
object file is added to the process address space. A handle for this object is created and
returned to the caller. If the object file is already part of the process, a handle is also returned to
the caller. Multiple references to the same object result in returning the same handle. A
reference count within the handle maintains the number of callers. The dlclose() of a handle
results in decrementing the handles reference count. When the reference count reaches 0 the
object file is a candidate for unloading. Any init section within an object is called once when
the object is loaded. Any fini section within an object is called once when the object is
unloaded.

When dlopen() causes an object to be loaded, it also loads any non-lazy dependencies that are
recorded within the object given by pathname. These dependencies are searched in the order
in which the dependencies were loaded to locate any additional dependencies. This process
continues until all the dependencies of pathname are loaded. This dependency tree is referred
to as a group.

If the value of pathname is 0, dlopen() provides a handle on a set of global symbol objects.
These objects consist of the original program image file, any dependencies loaded at program
startup, and any objects loaded using dlopen() with the RTLD_GLOBAL flag. Because the latter
set of objects can change during process execution, the set identified by handle can also change
dynamically.

The mode argument describes how dlopen() operates on pathname with respect to the
processing of reference relocations. The mode also affects the scope of visibility of the symbols
provided by pathname and its dependencies. This visibility can affect how the resulting handle
is used.

When an object is loaded, the object can contain references to symbols whose addresses are
not known until the object is loaded. These references must be relocated before the symbols
can be accessed. References are categorized as either immediate or lazy. Immediate references

Name

Synopsis

Description

dlopen(3C)

Basic Library Functions 159

are typically references to data items used by the object code. Immediate references include
pointers to functions and calls to functions made from position-dependent shared objects.
Lazy references are typically calls to global functions that are made from
position-independent shared objects.

Lazy references can also be identified as deferred. See the -z deferred option of ld(1).
Deferred dependencies are only loaded during process execution, when the first binding to a
deferred reference is made. These references are unaffected by the mode.

The mode argument governs when non-deferred references take place. The mode argument
can be one of the following values.

RTLD_LAZY Only immediate symbol references are relocated when the object is first
loaded. Lazy references are not relocated until a given function is called for the
first time. This value for mode should improve performance, since a process
might not require all lazy references in any given object. This behavior mimics
the normal loading of dependencies during process initialization. See NOTES.

RTLD_NOW All non-deferred relocations are performed when the object is first loaded.
This process might waste some processing if relocations are performed for lazy
references that are never used. However, this mode ensures that when an
object is loaded, all non-deferred symbols that are referenced during execution
are available. This behavior mimics the loading of dependencies when the
environment variable LD_BIND_NOW is in effect.

See the Linker and Libraries Guide for more information about symbol references.

The visibility of symbols that are available for relocation can be affected by mode. To specify
the scope of visibility for symbols that are loaded with a dlopen() call, mode should be a
bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL The object's global symbols are made available for the relocation processing
of any other object. In addition, symbol lookup using dlopen(0, mode) and
an associated dlsym() allows objects that are loaded with RTLD_GLOBAL to be
searched.

RTLD_LOCAL The object's globals symbols are only available for the relocation processing
of other objects that include the same group.

The program image file and any objects loaded at program startup have the mode
RTLD_GLOBAL. The mode RTLD_LOCAL is the default mode for any objects that are acquired with
dlopen(). A local object can be a dependency of more then one group. Any object of mode
RTLD_LOCAL that is referenced as a dependency of an object of mode RTLD_GLOBAL is promoted
to RTLD_GLOBAL. In other words, the RTLD_LOCAL mode is ignored.

Any object loaded by dlopen() that requires relocations against global symbols can reference
the symbols in any RTLD_GLOBAL object. Objects of this mode are at least the program image

dlopen(3C)

man pages section 3: Basic Library Functions • Last Revised 17 May 2010160

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

file and any objects loaded at program startup. A loaded object can also reference symbols
from itself, and from any dependencies the object references. However, the mode parameter
can also be a bitwise–inclusive OR with one of the following values to affect the scope of symbol
availability:

RTLD_GROUP Only symbols from the associated group are made available for relocation. A
group is established from the defined object and all the dependencies of that
object. A group must be completely self-contained. All dependency
relationships between the members of the group must be sufficient to satisfy
the relocation requirements of each object that defines the group.

RTLD_PARENT The symbols of the object initiating the dlopen() call are made available to
the objects obtained by dlopen(). This option is useful when hierarchical
dlopen() families are created. Although the parent object can supply
symbols for the relocation of this object, the parent object is not available to
dlsym() through the returned handle.

RTLD_WORLD Only symbols from RTLD_GLOBAL objects are made available for relocation.

The default modes for dlopen() are both RTLD_WORLD and RTLD_GROUP. If an object is requires
additional modes, the mode parameter can be the bitwise-inclusive OR of the required modes
together with the default modes.

The following modes provide additional capabilities outside of relocation processing:

RTLD_NODELETE The specified object is tagged to prevent its deletion from the address
space as part of a dlclose().

RTLD_NOLOAD The specified object is not loaded as part of the dlopen(). However, a
valid handle is returned if the object already exists as part of the process
address space. Additional modes can be specified as a bitwise–inclusive
OR with the present mode of the object and its dependencies. The
RTLD_NOLOAD mode provides a means of querying the presence or
promoting the modes of an existing dependency.

The default use of a handle with dlsym() allows a symbol search to inspect all objects that are
associated with the group of objects that are loaded from dlopen(). The mode parameter can
also be a bitwise–inclusive OR with the following value to restrict this symbol search:

RTLD_FIRST Use of this handle with dlsym(), restricts the symbol search to the first object
associated with the handle.

An object can be accessed from a process both with and without RTLD_FIRST. Although the
object will only be loaded once, two different handles are created to provide for the different
dlsym() requirements.

dlopen(3C)

Basic Library Functions 161

The dlmopen() function is identical to dlopen(), except that an identifying link-map ID
(lmid) is provided. This link-map ID informs the dynamic linking facilities upon which
link-map list to load the object. See the Linker and Libraries Guide for details about link-maps.

The lmid passed to dlmopen() identifies the link-map list on which the object is loaded. This
parameter can be any valid Lmid_t returned by dlinfo() or one of the following special
values:

LM_ID_BASE Load the object on the applications link-map list.

LM_ID_LDSO Load the object on the dynamic linkers (ld.so.1) link-map list.

LM_ID_NEWLM Cause the object to create a new link-map list as part of loading. Objects that
are opened on a new link-map list must express all of their dependencies.

The dlopen() function returns NULL if pathname cannot be found, cannot be opened for
reading, or is not a shared object or a relocatable object. dlopen() also returns NULL if an error
occurs during the process of loading pathname or relocating its symbolic references. See
NOTES. Additional diagnostic information is available through dlerror().

The dlopen() and dlmopen() functions are members of a family of functions that give the
user direct access to the dynamic linking facilities. This family of functions is available only to
dynamically-linked processes. See the Linker and Libraries Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT−Level MT−Safe

Standard See standards(5).

ld(1), ld.so.1(1), dladdr(3C), dlclose(3C), dldump(3C), dlerror(3C), dlinfo(3C),
dlsym(3C), attributes(5), standards(5)

Linker and Libraries Guide

If pathname has dependencies on other objects, these objects are automatically loaded by
dlopen(). The directory search path used to find pathname and any dependencies can be
affected by setting the environment variable LD_LIBRARY_PATH. Any LD_LIBRARY_PATH
variable is analyzed once at process startup. The search path can also be affected from a
runpath setting within the object from which the call to dlopen() originates. These search
rules will only be applied to path names that do not contain an embedded ’/’. Objects whose
names resolve to the same absolute path name or relative path name can be opened any
number of times using dlopen(). However, the object that is referenced will only be loaded
once into the address space of the current process.

Return Values

Usage

Attributes

See Also

Notes

dlopen(3C)

man pages section 3: Basic Library Functions • Last Revised 17 May 2010162

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

When loading shared objects, the application should open a specific version of the shared
object. Do not rely on the version of the shared object pointed to by the symbolic link.

When building objects to be loaded on a new link-map list, some precautions need to be taken.
In general, all dependencies must be included when building an object. Also, include
/usr/lib/libmapmalloc.so.1 before /lib/libc.so.1 when building an object.

When an object is loaded on a new link-map list, the object is isolated from the main running
program. Certain global resources are only usable from one link-map list. A few examples are
the sbrk() based malloc(), libthread(), and the signal vectors. Care must be taken not to
use any of these resources other than from the primary link-map list. These issues are
discussed in further detail in the Linker and Libraries Guide.

Some symbols defined in dynamic executables or shared objects can not be available to the
runtime linker. The symbol table created by ld for use by the runtime linker might contain
only a subset of the symbols that are defined in the object.

As part of loading a new object, initialization code within the object is called before the
dlopen() returns. This initialization is user code, and as such, can produce errors that can not
be caught by dlopen(). For example, an object loaded using RTLD_LAZY that attempts to call a
function that can not be located results in process termination. Erroneous programming
practices within the initialization code can also result in process termination. The runtime
linkers debugging facility can offer help identifying these types of error. See the LD_DEBUG
environment variable of ld.so.1(1).

Loading relocatable objects is an expensive operation that requires converting the relocatable
object into a shared object memory image. This capability may be useful in a debugging
environment, but is not recommended for production software.

dlopen(3C)

Basic Library Functions 163

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

dlsym – get the address of a symbol in a shared object or executable

#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict name);

The dlsym() function allows a process to obtain the address of a symbol that is defined within
a shared object or executable. The handle argument is either the value returned from a call to
dlopen() or one of a family of special handles. The name argument is the symbol's name as a
character string.

If handle is returned from dlopen(), the associated shared object must not have been closed
using dlclose(). A handle can be obtained from dlopen() using the RTLD_FIRST mode. With
this mode, the dlsym() function searches for the named symbol in the initial object referenced
by handle. Without this mode, the dlsym() function searches for the named symbol in the
group of shared objects loaded automatically as a result of loading the object referenced by
handle. See dlopen(3C) and NOTES.

The following special handles are supported.

RTLD_DEFAULT Instructs dlsym() to search for the named symbol starting with the first
object loaded, typically the dynamic executable. The search continues
through the list of initial dependencies that are loaded with the process,
followed by any objects obtained with dlopen(3C). This search follows the
default model that is used to relocate all objects within the process.

This model also provides for transitioning into a lazy loading
environment. If a symbol can not be found in the presently loaded objects,
any pending lazy loaded objects are processed in an attempt to locate the
symbol. This loading compensates for objects that have not fully defined
their dependencies. However, this compensation can undermine the
advantages of lazy loading.

RTLD_PROBE Instructs dlsym() to search for the named symbol in the same manner as
occurs with a handle of RTLD_DEFAULT. However, RTLD_PROBE only
searches for symbol definitions in the presently loaded objects, together
with any lazy loadable objects specifically identified by the caller to provide
the named symbol. This handle does not trigger an exhaustive load of any
lazy loadable symbols in an attempt to find the named symbol. This handle
can provide a more optimal search than would occur using RTLD_DEFAULT.

RTLD_NEXT Instructs dlsym() to search for the named symbol in the objects that were
loaded following the object from which the dlsym() call is being made.

RTLD_SELF Instructs dlsym() to search for the named symbol in the objects that were
loaded starting with the object from which the dlsym() call is being made.

Name

Synopsis

Description

dlsym(3C)

man pages section 3: Basic Library Functions • Last Revised 17 May 2010164

When used with a special handle, dlsym() is selective in searching objects that have been
loaded using dlopen(). These objects are searched for symbols if one of the following
conditions are true.

■ The object is part of the same local dlopen() dependency hierarchy as the calling object.
See the Linker and Libraries Guide for a description of dlopen() dependency hierarchies.

■ The object has global search access. See dlopen(3C) for a discussion of the RTLD_GLOBAL
mode.

The dlsym() function returns NULL if handle does not refer to a valid object opened by
dlopen() or is not one of the special handles. The function also returns NULL if the named
symbol cannot be found within any of the objects associated with handle. Additional
diagnostic information is available through dlerror(3C).

EXAMPLE 1 Use dlopen() and dlsym() to access a function or data objects.

The following code fragment demonstrates how to use dlopen() and dlsym() to access either
function or data objects. For simplicity, error checking has been omitted.

void *handle;

int *iptr, (*fptr)(int);

/* open the needed object */

handle = dlopen("/usr/home/me/libfoo.so.1", RTLD_LAZY);

/* find the address of function and data objects */

fptr = (int (*)(int))dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */

(*fptr)(*iptr);

EXAMPLE 2 Use dlsym() to verify that a particular function is defined.

The following code fragment shows how to use dlsym() to verify that a function is defined. If
the function exists, the function is called.

int (*fptr)();

if ((fptr = (int (*)())dlsym(RTLD_DEFAULT,

"my_function")) != NULL) {

(*fptr)();

}

The dlsym() function is one of a family of functions that give the user direct access to the
dynamic linking facilities. These facilities are available to dynamically-linked processes only.
See the Linker and Libraries Guide.

Return Values

Examples

Usage

dlsym(3C)

Basic Library Functions 165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ld(1), ld.so.1(1), dladdr(3C), dlclose(3C), dldump(3C), dlerror(3C), dlinfo(3C),
dlopen(3C), attributes(5), standards(5)

Linker and Libraries Guide

If an object is acting as a filter, care should be taken when interpreting the address of any
symbol obtained using a handle to this object. For example, using dlsym(3C) to obtain the
symbol _end for this object, results in returning the address of the symbol _end within the
filtee, not the filter. For more information on filters see the Linker and Libraries Guide.

Attributes

See Also

Notes

dlsym(3C)

man pages section 3: Basic Library Functions • Last Revised 17 May 2010166

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

door_bind, door_unbind – bind or unbind the current thread with the door server pool

cc -mt [flag...] file... [library...]

#include <door.h>

int door_bind(int did);

int door_unbind(void);

The door_bind() function associates the current thread with a door server pool. A door
server pool is a private pool of server threads that is available to serve door invocations
associated with the door did.

The door_unbind() function breaks the association of door_bind() by removing any private
door pool binding that is associated with the current thread.

Normally, door server threads are placed in a global pool of available threads that invocations
on any door can use to dispatch a door invocation. A door that has been created with
DOOR_PRIVATE only uses server threads that have been associated with the door by
door_bind(). It is therefore necessary to bind at least one server thread to doors created with
DOOR_PRIVATE.

The server thread create function, door_server_create(), is initially called by the system
during a door_create() operation. See door_server_create(3C) and door_create(3C).

The current thread is added to the private pool of server threads associated with a door during
the next door_return() (that has been issued by the current thread after an associated
door_bind()). See door_return(3C). A server thread performing a door_bind() on a door
that is already bound to a different door performs an implicit door_unbind() of the previous
door.

If a process containing threads that have been bound to a door calls fork(2), the threads in the
child process will be bound to an invalid door, and any calls to door_return(3C) will result in
an error.

Upon successful completion, a 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_bind() and door_unbind() functions fail if:

EBADF The did argument is not a valid door.

EBADF The door_unbind() function was called by a thread that is currently not bound.

EINVAL did was not created with the DOOR_PRIVATE attribute.

Name

Synopsis

Description

Return Values

Errors

door_bind(3C)

Basic Library Functions 167

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

EXAMPLE 1 Use door_bind() to create private server pools for two doors.

The following example shows the use of door_bind() to create private server pools for two
doors, d1 and d2. Function my_create() is called when a new server thread is needed; it
creates a thread running function, my_server_create(), which binds itself to one of the two
doors.

#include <door.h>

#include <thread.h>

#include <pthread.h>

thread_key_t door_key;

int d1 = -1;

int d2 = -1;

cond_t cv; /* statically initialized to zero */

mutex_t lock; /* statically initialized to zero */

extern void foo(void *, char *, size_t, door_desc_t *, uint_t);

extern void bar(void *, char *, size_t, door_desc_t *, uint_t);

static void *

my_server_create(void *arg)

{

/* wait for d1 & d2 to be initialized */

mutex_lock(&lock);

while (d1 == -1 || d2 == -1)

cond_wait(&cv, &lock);

mutex_unlock(&lock);

if (arg == (void *)foo){

/* bind thread with pool associated with d1 */

thr_setspecific(door_key, (void *)foo);

if (door_bind(d1) < 0) {

perror("door_bind"); exit (-1);

}

} else if (arg == (void *)bar) {

/* bind thread with pool associated with d2 */

thr_setspecific(door_key, (void *)bar);

if (door_bind(d2) < 0) {

/* bind thread to d2 thread pool */

perror("door_bind"); exit (-1);

}

}

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

door_return(NULL, 0, NULL, 0); /* Wait for door invocation */

}

static void

my_create(door_info_t *dip)

Examples

door_bind(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005168

EXAMPLE 1 Use door_bind() to create private server pools for two doors. (Continued)

{

/* Pass the door identity information to create function */

thr_create(NULL, 0, my_server_create, (void *)dip->di_proc,

THR_BOUND | THR_DETACHED, NULL);

}

main()

{

(void) door_server_create(my_create);

if (thr_keycreate(&door_key, NULL) != 0) {

perror("thr_keycreate");
exit(1);

}

mutex_lock(&lock);

d1 = door_create(foo, NULL, DOOR_PRIVATE); /* Private pool */

d2 = door_create(bar, NULL, DOOR_PRIVATE); /* Private pool */

cond_signal(&cv);

mutex_unlock(&lock);

while (1)

pause();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

fork(2), door_create(3C), door_return(3C), door_server_create(3C), attributes(5)

Attributes

See Also

door_bind(3C)

Basic Library Functions 169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_call – invoke the function associated with a door descriptor

cc -mt [flag...] file... [library...]

#include <door.h>

int door_call(int d, door_arg_t *params);

The door_call() function invokes the function associated with the door descriptor d, and
passes the arguments (if any) specified in params. All of the params members are treated as
in/out parameters during a door invocation and may be updated upon returning from a door
call. Passing NULL for params indicates there are no arguments to be passed and no results
expected.

Arguments are specified using the data_ptr and desc_ptr members of params. The size of
the argument data in bytes is passed in data_size and the number of argument descriptors is
passed in desc_num.

Results from the door invocation are placed in the buffer, rbuf. See door_return(3C). The
data_ptr and desc_ptr members of params are updated to reflect the location of the results
within the rbuf buffer. The size of the data results and number of descriptors returned are
updated in the data_size and desc_num members. It is acceptable to use the same buffer for
input argument data and results, so door_call() may be called with data_ptr and desc_ptr

pointing to the buffer rbuf.

If the results of a door invocation exceed the size of the buffer specified by rsize, the system
automatically allocates a new buffer in the caller's address space and updates the rbuf and
rsize members to reflect this location. In this case, the caller is responsible for reclaiming this
area using munmap(rbuf, rsize) when the buffer is no longer required. See munmap(2).

Descriptors passed in a door_desc_t structure are identified by the d_attributes member.
The client marks the d_attributes member with the type of object being passed by logically
OR-ing the value of object type. Currently, the only object type that can be passed or returned
is a file descriptor, denoted by the DOOR_DESCRIPTOR attribute. Additionally, the
DOOR_RELEASE attribute can be set, causing the descriptor to be closed in the caller's address
space after it is passed to the target. The descriptor will be closed even if door_call() returns
an error, unless that error is EFAULT or EBADF.

The door_desc_t structure includes the following members:

typedef struct {

door_attr_t d_attributes; /* Describes the parameter */

union {

struct {

int d_descriptor; /* Descriptor */

door_id_t d_id; /* Unique door id */

} d_desc;

} d_data;

} door_desc_t;

Name

Synopsis

Description

door_call(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005170

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2

When file descriptors are passed or returned, a new descriptor is created in the target address
space and the d_descriptor member in the target argument is updated to reflect the new
descriptor. In addition, the system passes a system-wide unique number associated with each
door in the door_id member and marks the d_attributes member with other attributes
associated with a door including the following:

DOOR_LOCAL The door received was created by this process using door_create().
See door_create(3C).

DOOR_PRIVATE The door received has a private pool of server threads associated with
the door.

DOOR_UNREF The door received is expecting an unreferenced notification.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced notifications
may be delivered for the same door.

DOOR_REFUSE_DESC This door does not accept argument descriptors.

DOOR_NO_CANCEL This door does not cancel the server thread upon client abort.

DOOR_REVOKED The door received has been revoked by the server.

The door_call() function is not a restartable system call. It returns EINTR if a signal was
caught and handled by this thread. If the door invocation is not idempotent the caller should
mask any signals that may be generated during a door_call() operation. If the client aborts in
the middle of a door_call() and the door was not created with the DOOR_NO_CANCEL flag, the
server thread is notified using the POSIX (see standards(5)) thread cancellation mechanism.
See cancellation(5).

The descriptor returned from door_create() is marked as close on exec(FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(). Applications
concerned with security should not place secure information in door data that is accessible by
door_info(). In particular, secure data should not be stored in the data item cookie. See
door_info(3C).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_call() function will fail if:

E2BIG Arguments were too big for server thread stack.

EAGAIN Server was out of available resources.

EBADF Invalid door descriptor was passed.

EFAULT Argument pointers pointed outside the allocated address space.

EINTR A signal was caught in the client, the client called fork(2), or the server exited
during invocation.

Return Values

Errors

door_call(3C)

Basic Library Functions 171

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

EINVAL Bad arguments were passed.

EMFILE The client or server has too many open descriptors.

ENFILE The desc_num argument is larger than the door's DOOR_PARAM_DESC_MAX
parameter (see door_getparam(3C)), and the door does not have the
DOOR_REFUSE_DESC set.

ENOBUFS The data_size argument is larger than the door's DOOR_PARAM_DATA_MAX
parameter, or smaller than the door's DOOR_PARAM_DATA_MIN parameter (see
door_getparam(3C)).

ENOTSUP The desc_num argument is non-zero and the door has the DOOR_REFUSE_DESC
flag set.

EOVERFLOW System could not create overflow area in caller for results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

munmap(2), door_create(3C), door_getparam(3C), door_info(3C), door_return(3C),
libdoor(3LIB), attributes(5), cancellation(5), standards(5)

Attributes

See Also

door_call(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005172

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

door_create – create a door descriptor

cc -mt [flag...] file... [library...]

#include <door.h>

int door_create(void (*server_procedure) (void *cookie, char *argp,
size_t arg_size, door_desc_t *dp, uint_t n_desc), void *cookie,
uint_t attributes);

The door_create() function creates a door descriptor that describes the procedure specified
by the function server_procedure. The data item, cookie, is associated with the door descriptor,
and is passed as an argument to the invoked function server_procedure during door_call(3C)
invocations. Other arguments passed to server_procedure from an associated door_call() are
placed on the stack and include argp and dp. The argp argument points to arg_size bytes of
data and the dp argument points to n_desc door_desc_t structures. The attributes argument
specifies attributes associated with the newly created door. Valid values for attributes are
constructed by OR-ing one or more of the following values:

DOOR_UNREF

Delivers a special invocation on the door when the number of descriptors that refer to this
door drops to one. In order to trigger this condition, more than one descriptor must have
referred to this door at some time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to server_procedure. In the case of an unreferenced
invocation, the values for arg_size, dp and n_did are 0. Only one unreferenced invocation is
delivered on behalf of a door.

DOOR_UNREF_MULTI

Similar to DOOR_UNREF, except multiple unreferenced invocations can be delivered on the
same door if the number of descriptors referring to the door drops to one more than once.
Since an additional reference may have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute returned by the door_info(3C) call can be
used to determine if the door is still unreferenced.

DOOR_PRIVATE

Maintains a separate pool of server threads on behalf of the door. Server threads are
associated with a door's private server pool using door_bind(3C).

DOOR_REFUSE_DESC

Any attempt to call door_call(3C) on this door with argument descriptors will fail with
ENOTSUP. When this flag is set, the door's server procedure will always be invoked with an
n_desc argument of 0.

DOOR_NO_CANCEL

Clients which abort calls to door_call() on this door will not cause the cancellation of the
server thread handling the request. See cancellation(5).

The descriptor returned from door_create() will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(). Applications

Name

Synopsis

Description

door_create(3C)

Basic Library Functions 173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

concerned with security should not place secure information in door data that is accessible by
door_info(). In particular, secure data should not be stored in the data item cookie.

By default, additional threads are created as needed to handle concurrent door_call()
invocations. See door_server_create(3C) for information on how to change this behavior.

A process can advertise a door in the file system name space using fattach(3C).

After creation, door_setparam(3C) can be used to set limits on the amount of data and
descriptors clients can send over the door.

Upon successful completion, door_create() returns a non-negative value. Otherwise,
door_create returns −1 and sets errno to indicate the error.

The door_create() function will fail if:

EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system namespace.

The following example creates a door and uses fattach() to advertise the door in the file
system namespace.

void

server(void *cookie, char *argp, size_t arg_size, door_desc_t *dp,

uint_t n_desc)

{

door_return(NULL, 0, NULL, 0);

/* NOTREACHED */

}

int

main(int argc, char *argv[])

{

int did;

struct stat buf;

if ((did = door_create(server, 0, 0)) < 0) {

perror("door_create");
exit(1);

}

/* make sure file system location exists */

if (stat("/tmp/door", &buf) < 0) {

int newfd;

if ((newfd = creat("/tmp/door", 0444)) < 0) {

perror("creat");
exit(1);

Return Values

Errors

Examples

door_create(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Jan 2008174

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system namespace.
(Continued)

}

(void) close(newfd);

}

/* make sure nothing else is attached */

(void) fdetach("/tmp/door");

/* attach to file system */

if (fattach(did, "/tmp/door") < 0) {

perror("fattach");
exit(2);

}

[...]

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

door_bind(3C), door_call(3C), door_info(3C), door_revoke(3C), door_setparam(3C),
door_server_create(3C), fattach(3C), libdoor(3LIB), attributes(5), cancellation(5)

Attributes

See Also

door_create(3C)

Basic Library Functions 175

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_cred – return credential information associated with the client

cc -mt [flag...] file... [library...]

#include <door.h>

int door_cred(door_cred_t *info);

The door_cred() function returns credential information associated with the client (if any) of
the current door invocation.

The contents of the info argument include the following fields:

uid_t dc_euid; /* Effective uid of client */

gid_t dc_egid; /* Effective gid of client */

uid_t dc_ruid; /* Real uid of client */

gid_t dc_rgid; /* Real gid of client */

pid_t dc_pid; /* pid of client */

The credential information associated with the client refers to the information from the
immediate caller; not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_cred() returns 0. Otherwise, door_cred() returns −1 and
sets errno to indicate the error.

The door_cred() function will fail if:

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

The door_cred() function is obsolete. Applications should use the door_ucred(3C) function
in place of door_cred().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Obsolete

MT-Level Safe

door_call(3C), door_create(3C), door_ucred(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

door_cred(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005176

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_getparam, door_setparam – retrieve and set door parameters

cc -mt [flag...] file... [library...]

#include <door.h>

int door_getparam(int d, int param, size_t *out);

int door_setparam(int d, int param, size_t val);

The door_getparam() function retrieves the value of param for the door descriptor d and
writes it through the pointer out. The door_setparam() function sets the value of param for
the door descriptor d to val. The param argument names the parameter to view or change and
can be one of the following values:

DOOR_PARAM_DATA_MAX This parameter represents the maximum amount of data that can
be passed to the door routine. Any attempt to call door_call(3C)
on a door with a data_size value larger than the door's
DOOR_PARAM_DATA_MAX parameter will fail with ENOBUFS. At door
creation time, this parameter is initialized to SIZE_MAX and can be
set to any value from 0 to SIZE_MAX, inclusive. This parameter
must be greater than or equal to the DOOR_PARAM_DATA_MIN
parameter.

DOOR_PARAM_DATA_MIN This parameter represents the the minimum amount of data that
can be passed to the door routine. Any attempt to call
door_call(3C) on a door with a data_size value smaller than the
door's DOOR_PARAM_DATA_MIN parameter will fail with ENOBUFS. At
door creation time, this parameter is initialized to 0, and can be set
to any value from 0 to SIZE_MAX, inclusive. This parameter must
be less than or equal to the DOOR_PARAM_DATA_MAX parameter.

DOOR_PARAM_DESC_MAX This parameter represents the the maximum number of argument
descriptors that can be passed to the door routine. Any attempt to
call door_call(3C) on a door with a desc_num value larger than
the door's DOOR_PARAM_DESC_MAX parameter will fail with ENFILE.
If the door was created with the DOOR_REFUSE_DESC flag, this
parameter is initialized to 0 and cannot be changed to any other
value. Otherwise, it is initialized to INT_MAX and can be set to any
value from 0 to INT_MAX, inclusive.

The door_setparam() function can only affect doors that were created by the current process.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The door_getparam() function will fail if:

EBADF The d argument is not a door descriptor.

Name

Synopsis

Description

Return Values

Errors

door_getparam(3C)

Basic Library Functions 177

EFAULT The out argument is not a valid address.

EINVAL The param argument is not a recognized parameter.

EOVERFLOW The value of the parameter is larger than the SIZE_MAX. This condition can
occur only if the calling process is 32-bit and the door targets a 64-bit process
or the kernel.

The door_setparam() function will fail if:

EBADF The d argument is not a door descriptor or has been revoked.

EINVAL The param argument is not a recognized parameter, or the requested change
would make DOOR_PARAM_DATA_MIN greater than DOOR_PARAM_DATA_MAX.

ENOTSUP The param argument is DOOR_PARAM_DESC_MAX, d was created with the
DOOR_REFUSE_DESC flag, and val is not zero.

EPERM The d argument was not created by this process.

ERANGE The val argument is not in supported range of param.

EXAMPLE 1 Set up a door with a fixed request size.

typedef struct my_request {

int request;

ar buffer[4096];

} my_request_t;

fd = door_create(my_handler, DOOR_REFUSE_DESC);

if (fd < 0)

/* handle error */

if (door_setparam(fd, DOOR_PARAM_DATA_MIN,

sizeof (my_request_t)) < 0 ||

door_setparam(fd, DOOR_PARAM_DATA_MAX,

sizeof (my_request_t)) < 0)

/* handle error */

/*

* the door will only accept door_call(3DOOR)s with a

* data_size which is exactly sizeof (my_request_t).

*/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Examples

Attributes

door_getparam(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005178

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

door_call(3C), door_create(3C), attributes(5)

The parameters that can be manipulated by door_setparam() are not the only limitation on
the size of requests. If the door server thread's stack size is not large enough to hold all of the
data requested plus room for processing the request, the door call will fail with E2BIG.

The DOOR_PARAM_DATA_MIN parameter will not prevent DOOR_UNREF_DATA notifications from
being sent to the door.

See Also

Notes

door_getparam(3C)

Basic Library Functions 179

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_info – return information associated with a door descriptor

cc -mt [flag...] file... [library...]

#include <door.h>

int door_info(int d, struct door_info *info);

The door_info() function returns information associated with a door descriptor. It obtains
information about the door descriptor d and places the information that is relevant to the
door in the structure pointed to by the info argument.

The door_info structure pointed to by the info argument contains the following members:

pid_t di_target; /* door server pid */

door_ptr_t di_proc; /* server function */

door_ptr_t di_data; /* data cookie for invocation */

door_attr_t di_attributes; /* door attributes */

door_id_t di_uniquifier; /* unique id among all doors */

The di_target member is the process ID of the door server, or −1 if the door server process
has exited.

The values for di_attributes may be composed of the following:

DOOR_LOCAL The door descriptor refers to a service procedure in this process.

DOOR_UNREF The door has requested notification when all but the last reference has
gone away.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced notifications
may be delivered for this door.

DOOR_IS_UNREF There is currently only one descriptor referring to the door.

DOOR_REFUSE_DESC The door refuses any attempt to door_call(3C) it with argument
descriptors.

DOOR_NO_CANCEL Clients who abort a door_call(3C) call on this door will not cause the
cancellation(5) of the server thread handling the request.

DOOR_REVOKED The door descriptor refers to a door that has been revoked.

DOOR_PRIVATE The door has a separate pool of server threads associated with it.

The di_proc and di_data members are returned as door_ptr_t objects rather than void *

pointers to allow clients and servers to interoperate in environments where the pointer sizes
may vary in size (for example, 32-bit clients and 64-bit servers). Each door has a system-wide
unique number associated with it that is set when the door is created by door_create(). This
number is returned in di_uniquifier.

Name

Synopsis

Description

door_info(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005180

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_info() function will fail if:

EFAULT The address of argument info is an invalid address.

EBADF d is not a door descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

door_bind(3C), door_call(3C), door_create(3C), door_server_create(3C),
attributes(5), cancellation(5)

Return Values

Errors

Attributes

See Also

door_info(3C)

Basic Library Functions 181

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

door_return – return from a door invocation

cc -mt [flag...] file... [library...]

#include <door.h>

int door_return(char *data_ptr, size_t data_size, door_desc_t *desc_ptr,
uint_t num_desc);

The door_return() function returns from a door invocation. It returns control to the thread
that issued the associated door_call() and blocks waiting for the next door invocation. See
door_call(3C). Results, if any, from the door invocation are passed back to the client in the
buffers pointed to by data_ptr and desc_ptr. If there is not a client associated with the
door_return(), the calling thread discards the results, releases any passed descriptors with
the DOOR_RELEASE attribute, and blocks waiting for the next door invocation.

Upon successful completion, door_return() does not return to the calling process.
Otherwise, door_return() returns −1 to the calling process and sets errno to indicate the
error.

The door_return() function fails and returns to the calling process if:

E2BIG Arguments were too big for client.

EFAULT The address of data_ptr or desc_ptr is invalid.

EINVAL Invalid door_return() arguments were passed or a thread is bound to a door that
no longer exists.

EMFILE The client has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

door_call(3C),attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_return(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005182

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_revoke – revoke access to a door descriptor

cc -mt [flag...] file... [library...]

#include <door.h>

int door_revoke(int d);

The door_revoke() function revokes access to a door descriptor. Door descriptors are created
with door_create(3C). The door_revoke() function performs an implicit call to close(2),
marking the door descriptor d as invalid.

A door descriptor can be revoked only by the process that created it. Door invocations that are
in progress during a door_revoke() invocation are allowed to complete normally.

Upon successful completion, door_revoke() returns 0. Otherwise, door_revoke() returns −1
and sets errno to indicate the error.

The door_revoke() function will fail if:

EBADF An invalid door descriptor was passed.

EPERM The door descriptor was not created by this process (with door_create(3C)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

close(2), door_create(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_revoke(3C)

Basic Library Functions 183

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_server_create – specify an alternative door server thread creation function

cc -mt [flag...] file... [library...]

#include <door.h>

void (*) () door_server_create(void (*create_proc)(door_info_t*));

Normally, the doors library creates new door server threads in response to incoming
concurrent door invocations automatically. There is no pre-defined upper limit on the
number of server threads that the system creates in response to incoming invocations (1 server
thread for each active door invocation). These threads are created with the default thread stack
size and POSIX (see standards(5)) threads cancellation disabled. The created threads also
have the THR_BOUND | THR_DETACHED attributes for Solaris threads and the
PTHREAD_SCOPE_SYSTEM | PTHREAD_CREATE_DETACHED attributes for POSIX threads. The
signal disposition, and scheduling class of the newly created thread are inherited from the
calling thread (initially from the thread calling door_create(), and subsequently from the
current active door server thread).

The door_server_create() function allows control over the creation of server threads
needed for door invocations. The procedure create_proc is called every time the available
server thread pool is depleted. In the case of private server pools associated with a door (see the
DOOR_PRIVATE attribute in door_create()), information on which pool is depleted is passed
to the create function in the form of a door_info_t structure. The di_proc and di_data

members of the door_info_t structure can be used as a door identifier associated with the
depleted pool. The create_proc procedure may limit the number of server threads created and
may also create server threads with appropriate attributes (stack size, thread-specific data,
POSIX thread cancellation, signal mask, scheduling attributes, and so forth) for use with door
invocations.

The overall amount of data and argument descriptors that can be sent through a door is
limited by both the server thread's stack size and by the parameters of the door itself. See
door_setparam(3C).

The specified server creation function should create user level threads using thr_create()
with the THR_BOUND flag, or in the case of POSIX threads, pthread_create() with the
PTHREAD_SCOPE_SYSTEM attribute. The server threads make themselves available for incoming
door invocations on this process by issuing a door_return(NULL, 0, NULL, 0). In this case,
the door_return() arguments are ignored. See door_return(3C) and thr_create(3C).

The server threads created by default are enabled for POSIX thread cancellations which may
lead to unexpected thread terminations while holding resources (such as locks) if the client
aborts the associated door_call(). See door_call(3C). Unless the server code is truly
interested in notifications of client aborts during a door invocation and is prepared to handle
such notifications using cancellation handlers, POSIX thread cancellation should be disabled
for server threads using pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL). If all
doors are created with the DOOR_NO_CANCEL flag (see door_create(3C)), the threads will never
be cancelled by an aborted door_call() call

Name

Synopsis

Description

door_server_create(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005184

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The create_proc procedure need not create any additional server threads if there is at least one
server thread currently active in the process (perhaps handling another door invocation) or it
may create as many as seen fit each time it is called. If there are no available server threads
during an incoming door invocation, the associated door_call() blocks until a server thread
becomes available. The create_proc procedure must be MT-Safe.

Upon successful completion, door_server_create() returns a pointer to the previous server
creation function. This function has no failure mode (it cannot fail).

EXAMPLE 1 Creating door server threads.

The following example creates door server threads with cancellation disabled and an 8k stack
instead of the default stack size:

#include <door.h>

#include <pthread.h>

#include <thread.h>

void *

my_thread(void *arg)

{

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

door_return(NULL, 0, NULL, 0);

}

void

my_create(door_info_t *dip)

{

thr_create(NULL, 8192, my_thread, NULL,

THR_BOUND | THR_DETACHED, NULL);

}

main()

{

(void)door_server_create(my_create);

. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

Return Values

Examples

Attributes

door_server_create(3C)

Basic Library Functions 185

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_bind(3C), door_call(3C), door_create(3C), door_return(3C), pthread_create(3C),
pthread_setcancelstate(3C), thr_create(3C), attributes(5), cancellation(5),
standards(5)

See Also

door_server_create(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2005186

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

door_ucred – return credential information associated with the client

cc -mt [flag...] file... [library...]

#include <door.h>

int door_ucred(ucred_t **info);

The door_ucred() function returns credential information associated with the client, if any,
of the current door invocation.

When successful, door_ucred() writes a pointer to a user credential to the location pointed to
by info if that location was previously NULL. If that location was non-null, door_ucred()
assumes that info points to a previously allocated ucred_t which is then reused. The location
pointed to by info can be used multiple times before being freed. The value returned in info
must be freed using ucred_free(3C).

The resulting user credential includes information about the effective user and group ID, the
real user and group ID, all privilege sets and the calling PID.

The credential information associated with the client refers to the information from the
immediate caller, not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_ucred() returns 0. Otherwise, -1 is returned and errno is
set to indicate the error, in which case the memory location pointed to by the info argument is
unchanged.

The door_ucred() function will fail if:

EAGAIN The location pointed to by info was NULL and allocating memory sufficient to hold
a ucred failed.

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

ENOMEM The location pointed to by info was NULL and allocating memory sufficient to hold
a ucred failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

door_call(3C), door_create(3C), ucred_get(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_ucred(3C)

Basic Library Functions 187

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_xcreate – create a door descriptor for a private door with per-door control over thread
creation

#include <door.h>

typedef void door_server_procedure_t(void *, char *, size_t,

door_desc_t *, uint_t);

typedef int door_xcreate_server_func_t(door_info_t *,

void *(*)(void *), void *, void *);

typedef void door_xcreate_thrsetup_func_t(void *);

int door_xcreate(door_server_procedure_t *server_procedure,
void *cookie, uint_t attributes,
door_xcreate_server_func_t *thr_create_func,
door_xcreate_thrsetup_func_t *thr_setup_func, void *crcookie,
int nthread);

The door_xcreate() function creates a private door to the given server_procedure, with
per-door control over the creation of threads that will service invocations of that door. A
private door is a door that has a private pool of threads that service calls to that door alone;
non-private doors share a pool of service threads (see door_create(3C)).

Prior to the introduction of door_xcreate(), a private door was created using door_create()
specifying attributes including DOOR_PRIVATE after installing a suitable door server thread
creation function using door_server_create(). During such a call to door_create(), the
first server thread for that door is created by calling the door server function; you must
therefore already have installed a custom door server creation function using
door_server_create(). The custom server creation function is called at initial creation of a
private door, and again whenever a new invocation uses the last available thread for that door.
The function must decide whether it wants to increase the level of concurrency by creating an
additional thread - if it decides not to then further invocations may have to wait for an existing
active invocation to complete before they can proceed. Additional threads may be created
using whatever thread attributes are desired in the application, and the application must
specify a thread start function (to thr_create(3C) or pthread_create(3C)) which will
perform a door_bind() to the newly-created door before calling door_return(NULL, 0, NULL,
0) to enter service. See door_server_create(3C) and door_bind(3C) for more information
and for an example.

Name

Synopsis

Description

Creating private doors
using door_create()

door_xcreate(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Nov 2009188

This “legacy” private door API is adequate for many uses, but has some limitations:

■ The server thread creation function appointed via the door_server_create() is shared by
all doors in the process. Private doors are distinguished from non-private in that the
door_info_t pointer argument to the thread creation function is non-null for private
doors; from the door_info_t the associated door server procedure is available via the
di_proc member.

■ If a library wishes to create a private door of which the application is essentially unaware it
has no option but to inherit any function appointed with door_server_create() which
may render the library door inoperable.

■ Newly-created server threads must bind to the door they will service, but the door file
descriptor to quote in door_bind() is not available in the door_info_t structure we
receive a pointer to. The door file descriptor is returned as the result of door_create(),
but the initial service thread is created during the call to door_create(). This leads to
complexity in the startup of the service thread, and tends to force the use of global
variables for the door file descriptors as per the example in door_bind().

The door_xcreate() function is purpose-designed for the creation of private doors and
simplifies their use by moving responsibility for binding the new server thread and
synchronizing with it into a library-provided thread startup function:

■ The first three arguments to door_xcreate() are as you would use in door_create(): the
door server_procedure, a private cookie to pass to that procedure whenever it is invoked for
this door, and desired door attributes. The DOOR_PRIVATE attribute is implicit, and an
additional attribute of DOOR_NO_DEPLETION_CB is available.

■ Four additional arguments specify a server thread creation function to use for this door
(must not be NULL), a thread setup function for new server threads (can be NULL), a cookie
to pass to those functions, and the initial number of threads to create for this door.

■ The door_xcreate_server_func_t() for creating server threads has differing semantics
to those of a door_server_func_t() used in door_server_create(). In addition to a
door_info_t pointer it also receives as arguments a library-provided thread start function
and thread start argument that it must use, and the private cookie registered in the call to
door_xcreate(). The nominated door_xcreate_server_func_t() must:
■ Return 0 if no additional thread is to be created, for example if it decides the current

level of concurrency is sufficient. When the server thread creation function is invoked
as part of a depletion callback (as opposed to during initial door_xcreate()) the
door_info_t di_attributes member includes DOOR_DEPLETION_CB.

■ Otherwise attempt to create exactly one new thread using thr_create() or
pthread_create(), with whatever thread attributes (stack size) are desired and
quoting the implementation-provided thread start function and opaque data cookie. If
the call to thr_create() or pthread_create() is successful then return 1, otherwise
return -1.

■ Do not call door_bind() or request to enter service via door_return(NULL, 0, NULL, 0).

Creating private doors
with door_xcreate()

door_xcreate(3C)

Basic Library Functions 189

As in door_server_create() new server threads must be created PTHREAD_SCOPE_SYSTEM

and PTHREAD_CREATE_DETACHED for POSIX threads, and THR_BOUND and THR_DETACHED for
Solaris threads. The signal disposition and scheduling class of newly-created threads are
inherited from the calling thread, initially from the thread calling door_xcreate() and
subsequently from the current active door server thread.

■ The library-provided thread start function performs the following operations in the order
presented:
■ Calls the door_xcreate_thrsetup_func_t() if it is not NULL, passing the crcookie. You

can use this setup function to perform custom service thread configuration that must
be done from the context of the new thread. Typically this is to configure cancellation
preferences, and possibly to associate application thread-specific-data with the
newly-created server thread.

If thr_setup_func() was NULL then a default is applied which will configure the new
thread with pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL) and
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL). If the server code is truly
interested in notifications of client aborts during a door invocation then you will need
to provide a thr_setup_func() that does not disable cancellations, and use
pthread_cleanup_push(3C)and pthread_cleanup_pop(3C)as appropriate.

■ Binds the new thread to the door file descriptor using door_bind().
■ Synchronizes with door_xcreate() so that the new server thread is known to have

successfully completed door_bind() before door_xcreate() returns.
■ The number of service threads to create at initial door creation time can be controlled

through the nthread argument to door_xcreate(). The nominated
door_xcreate_server_func_t() will be called nthread times. All nthread new server
threads must be created successfully (thr_create_func() returns 1 for each) and all must
succeed in binding to the new door; if fewer than nthread threads are created, or fewer
than nthread succeed in binding, then door_xcreate() fails and any threads that were
created are made to exit.

No artificial maximum value is imposed on the nthread argument: it may be as high as
system resources and available virtual memory permit. There is a small amount of
additional stack usage in the door_xcreate() stack frame for each thread - up to 16 bytes
in a 64-bit application. If there is unsufficient room to extend the stack for this purpose
then door_xcreate() fails with E2BIG.

The door attributes that can be selected in the call to door_xcreate() are the same as in
door_create(), with DOOR_PRIVATE implied and DOOR_NO_DEPLETION_CB added:

DOOR_PRIVATE

It is not necessary to include this attribute. The door_xcreate() interfaces only creates
private doors.

door_xcreate(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Nov 2009190

DOOR_NO_DEPLETION_CB

Create the initial pool of nthread service threads, but do not perform further callbacks
to the thr_create_func() for this door when the thread pool appears to be depleted at
the start of a new door invocation. This allows you to select a fixed level of concurrency.

Another di_attribute is defined during thread depletion callbacks:

DOOR_DEPLETION_CB

This call to the server thread creation function is the result of a depletion callback. This
attribute is not set when the function is called during initial door_xcreate().

The descriptor returned from door_xcreate() will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(3C).
Applications concerned with security should not place secure information in door data that is
accessible by door_info(). In particular, secure data should not be stored in the data item
cookie.

A process can advertise a door in the file system name space using fattach(3C).

After creation, door_setparam(3C)can be used to set limits on the amount of data and
descriptors clients can send over the door.

A door created with door_xcreate() may be revoked using door_revoke(3C). This closes the
associated file descriptor, and acts as a barrier to further door invocations, but existing active
invocations are not guaranteed to have completed before door_revoke() returns. Server
threads bound to a revoked door do not wakeup or exit automatically when the door is
revoked.

Upon successful completion, door_xcreate() returns a non-negative value. Otherwise,
door_xcreate() returns -1 and sets errno to indicate the error.

The door_xcreate() function will fail if:

E2BIG The requested nthread is too large. A small amount of stack space is required for
each thread we must start and synchronize with. If extending the
door_xcreate() stack by the required amount will exceed the stack bounds then
E2BIG is returned.

EBADF The attempt to door_bind() within the library-provided thread start function
failed.

EINVAL Invalid attributes are passed, nthread is less than 1, or thr_create_func() is
NULL. This is also returned if thr_create_func() returns 0 (no thread creation
attempted) during door_xcreate().

EMFILE The process has too many open descriptors.

ENOMEM Insufficient memory condition while creating the door.

ENOTSUP A door_xcreate() call was attempted from a fork handler.

Return Values

Errors

door_xcreate(3C)

Basic Library Functions 191

EPIPE A call to the nominated thr_create_func() returned -1 indicating that
pthread_create() or thr_create() failed.

EXAMPLE 1 Create a private door with an initial pool of 10 server threads

Create a private door with an initial pool of 10 server threads. Threads are created with the
minimum required attributes and there is no thread setup function. Use fattach() to
advertise the door in the filesystem namespace.

static pthread_attr_t tattr;

/*

* Simplest possible door_xcreate_server_func_t. Always attempt to

* create a thread, using the previously initialized attributes for

* all threads. We must use the start function and argument provided,

* and make no use of our private mycookie argument.

*/

int

thrcreatefunc(door_info_t *dip, void *(*startf)(void *),

void *startfarg, void *mycookie)

{

if (pthread_create(NULL, &tattr, startf, startfarg) != 0) {

perror("thrcreatefunc: pthread_create");
return (-1);

}

return (1);

}

/*

* Dummy door server procedure - does no processing.

*/

void

door_proc(void *cookie, char *argp, size_t argsz, door_desc_t *descp,

uint_t n)

{

door_return (NULL, 0, NULL, 0);

}

int

main(int argc, char *argv[])

{

struct stat buf;

int did;

/*

* Setup thread attributes - minimum required.

*/

Examples

door_xcreate(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Nov 2009192

EXAMPLE 1 Create a private door with an initial pool of 10 server threads (Continued)

(void) pthread_attr_init(&tattr);

(void) pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_DETACHED);

(void) pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

/*

* Create a private door with an initial pool of 10 server threads.

*/

did = door_xcreate(door_proc, NULL, 0, thrcreatefunc, NULL, NULL,

10);

if (did == -1) {

perror("door_xcreate");
exit(1);

}

if (stat(DOORPATH, &buf) < 0) {

int newfd;

if ((newfd = creat(DOORPATH, 0644)) < 0) {

perror("creat");
exit(1);

}

(void) close(newfd);

}

(void) fdetach(DOORPATH);

(void) fdetach(DOORPATH);

if (fattach(did, DOORPATH) < 0) {

perror("fattach");
exit(1);

}

(void) fprintf(stderr, "Pausing in main\n");
(void) pause();

}

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional threads

Create a private door with exactly one server thread and no callbacks for additional threads.
Use a server thread stacksize of 32K, and specify a thread setup function.

#define DOORPATH "/tmp/grmdoor"

static pthread_attr_t tattr;

door_xcreate(3C)

Basic Library Functions 193

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

/*

* Thread setup function - configuration that must be performed from

* the conext of the new thread. The mycookie argument is the

* second-to-last argument from door_xcreate.

*/

void

thrsetupfunc(void *mycookie)

{

/*

* If a thread setup function is specified it must do the

* following at minimum.

*/

(void) pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/*

* The default thread setup functions also performs the following

* to disable thread cancellation notifications, so that server

* threads are not cancelled when a client aborts a door call.

* This is not a requirement.

*/

(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

/*

* Now we can go on to perform other thread initialization,

* for example to allocate and initialize some thread-specific data

* for this thread; for thread-specific data you can use a

destructor function in pthread_key_create if you want to perform

any actions if/when a door server thread exits.

*/

}

/*

* The door_xcreate_server_func_t we will use for server thread

* creation. The mycookie argument is the second-to-last argument

* from door_xcreate.

*/

int

thrcreatefunc(door_info_t *dip, void *(*startf)(void *),

void *startfarg, void *mycookie)

{

if (pthread_create(NULL, &tattr, startf, startfarg) != 0) {

perror("thrcreatefunc: pthread_create");
return (-1);

}

door_xcreate(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Nov 2009194

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

return (1);

}

/*

* Door procedure. The cookie received here is the second arg to

* door_xcreate.

*/

void

door_proc(void *cookie, char *argp, size_t argsz, door_desc_t *descp,

uint_t n)

{

(void) door_return(NULL, 0, NULL, 0);

}

int

main(int argc, char *argv[])

{

struct stat buf;

int did;

/*

* Configure thread attributes we will use in thrcreatefunc.

* The PTHREAD_CREATE_DETACHED and PTHREAD_SCOPE_SYSTEM are

* required.

*/

(void) pthread_attr_init(&tattr);

(void) pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_DETACHED);

(void) pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

(void) pthread_attr_setstacksize(&tattr, 16 * 1024);

/*

* Create a private door with just one server thread and asking for

* no further callbacks on thread pool depletion during an

* invocation.

*/

did = door_xcreate(door_proc, NULL, DOOR_NO_DEPLETION_CB,

thrcreatefunc, thrsetupfunc, NULL, 1);

if (did == -1) {

perror("door_xcreate");
exit(1);

}

door_xcreate(3C)

Basic Library Functions 195

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

if (stat(DOORPATH, &buf) < 0) {

int newfd;

if ((newfd = creat(DOORPATH, 0644)) < 0) {

perror("creat");
exit(1);

}

(void) close(newfd);

}

(void) fdetach(DOORPATH);

if (fattach(did, DOORPATH) < 0) {

perror("fattach");
exit(1);

}

(void) fprintf(stderr, "Pausing in main\n");
(void) pause();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os

Interface Stability Committed

MT-Level Safe

door_bind(3C), door_call(3C), door_create(3C), door_info(3C), door_revoke(3C),
door_server_create(3C), door_setparam(3C), fattach(3C), libdoor(3LIB),
pthread_create(3C), pthread_cleanup_pop(3C), pthread_cleanup_push(3C),
thr_create(3C), attributes(5), cancellation(5)

Attributes

See Also

door_xcreate(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Nov 2009196

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2cancellation-5

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 – generate
uniformly distributed pseudo-random numbers

#include <stdlib.h>

double drand48(void)

double erand48(unsigned short x
i
[3]);

long lrand48(void)

long nrand48(unsigned short x
i
[3]);

long mrand48(void)

long jrand48(unsigned short x
i
[3]);

void srand48(long seedval);

unsigned short *seed48(unsigned short seed16v[3]);

void lcong48(unsigned short param[7]);

This family of functions generates pseudo-random numbers using the well-known linear
congruential algorithm and 48-bit integer arithmetic.

Functions drand48() and erand48() return non-negative double-precision floating-point
values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers uniformly distributed
over the interval [0, 2 31].

Functions mrand48() and jrand48() return signed long integers uniformly distributed over
the interval [-2 31 , 2 31].

Functions srand48(), seed48(), and lcong48() are initialization entry points, one of which
should be invoked before either drand48(), lrand48(), or mrand48() is called. (Although it is
not recommended practice, constant default initializer values will be supplied automatically if
drand48(), lrand48(), or mrand48() is called without a prior call to an initialization entry
point.) Functions erand48(), nrand48(), and jrand48() do not require an initialization
entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi , according to the
linear congruential formula

Xn+1= (aX n+c)mod m n>=0.

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48() has
been invoked, the multiplier value aand the addend value care given by

a = 5DEECE66D16 = 2736731631558

Name

Synopsis

Description

drand48(3C)

Basic Library Functions 197

c = B16 = 138

The value returned by any of the functions drand48(), erand48(), lrand48(), nrand48(),
mrand48(), or jrand48() is computed by first generating the next 48-bit Xi in the sequence.
Then the appropriate number of bits, according to the type of data item to be returned, are
copied from the high-order (leftmost) bits of Xi and transformed into the returned value.

The functions drand48(), lrand48(), and mrand48() store the last 48-bit Xi generated in an
internal buffer. Xi must be initialized prior to being invoked. The functions erand48(),
nrand48(), and jrand48() require the calling program to provide storage for the successive
Xi values in the array specified as an argument when the functions are invoked. These routines
do not have to be initialized; the calling program must place the desired initial value of Xi into
the array and pass it as an argument. By using different arguments, functions erand48(),
nrand48(), and jrand48() allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, that is, the sequence of numbers in each
stream will not depend upon how many times the routines have been called to generate
numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of Xi to the 32 bits contained in
its argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16 .

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the
argument array. In addition, the previous value of Xi is copied into a 48-bit internal buffer,
used only by seed48(), and a pointer to this buffer is the value returned by seed48(). This
returned pointer, which can just be ignored if not needed, is useful if a program is to be
restarted from a given point at some future time — use the pointer to get at and store the last
Xi value, and then use this value to reinitialize using seed48() when the program is restarted.

The initialization function lcong48() allows the user to specify the initial Xi the multiplier
value a, and the addend value c. Argument array elements param[0-2] specify Xi, param[3-5]
specify the multiplier a, and param[6] specifies the 16-bit addend c. After lcong48() has been
called, a subsequent call to either srand48() or seed48() will restore the ‘‘standard''
multiplier and addend values, a and c, specified above.

Programmers should use /dev/urandom or /dev/random for most random-number
generation, especially for cryptographic purposes. See random(7D).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

Usage

Attributes

drand48(3C)

man pages section 3: Basic Library Functions • Last Revised 24 May 2011198

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rand(3C), attributes(5), standards(5), random(7D)See Also

drand48(3C)

Basic Library Functions 199

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d

dup2 – duplicate an open file descriptor

#include <unistd.h>

int dup2(int fildes, int fildes2);

The dup2() function causes the file descriptor fildes2 to refer to the same file as fildes. The
fildes argument is a file descriptor referring to an open file, and fildes2 is a non-negative integer
less than the current value for the maximum number of open file descriptors allowed the
calling process. See getrlimit(2). If fildes2 already refers to an open file, not fildes, it is closed
first. If fildes2 refers to fildes, or if fildes is not a valid open file descriptor, fildes2 will not be
closed first.

The dup2() function is equivalent to fcntl(fildes, F_DUP2FD, fildes2).

Upon successful completion a non-negative integer representing the file descriptor is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The dup2() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EBADF The fildes2 argument is negative or is not less than the current resource limit
returned by getrlimit(RLIMIT_NOFILE, . . .).

EINTR A signal was caught during the dup2() call.

EMFILE The process has too many open files. See fcntl(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dup2(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Dec 2003200

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, qeconvert, qfconvert, qgconvert
– output conversion

#include <floatingpoint.h>

char *econvert(double value, int ndigit, int *decpt, int *sign,
char *buf);

char *fconvert(double value, int ndigit, int *decpt, int *sign,
char *buf);

char *gconvert(double value, int ndigit, int trailing, char *buf);

char *seconvert(single *value, int ndigit, int *decpt, int *sign,
char *buf);

char *sfconvert(single *value, int ndigit, int *decpt, int *sign,
char *buf);

char *sgconvert(single *value, int ndigit, int trailing, char *buf);

char *qeconvert(quadruple *value, int ndigit, int *decpt, int *sign,
char *buf);

char *qfconvert(quadruple *value, int ndigit, int *decpt, int *sign
char *buf);

char *qgconvert(quadruple *value, int ndigit, int trailing, char *buf);

The econvert() function converts the value to a null-terminated string of ndigit ASCII digits
in buf and returns a pointer to buf. buf should contain at least ndigit+1 characters. The
position of the decimal point relative to the beginning of the string is stored indirectly through
decpt. Thus buf == "314" and *decpt == 1 corresponds to the numerical value 3.14, while buf
== "314" and *decpt == −1 corresponds to the numerical value .0314. If the sign of the result is
negative, the word pointed to by sign is nonzero; otherwise it is zero. The least significant digit
is rounded.

The fconvert() function works much like econvert(), except that the correct digit has been
rounded as if for sprintf(%w.nf) output with n=ndigit digits to the right of the decimal point.
ndigit can be negative to indicate rounding to the left of the decimal point. The return value is
a pointer to buf. buf should contain at least 310+max(0,ndigit) characters to accomodate any
double-precision value.

The gconvert() function converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf. It produces ndigit significant digits in fixed-decimal format, like
sprintf(%w.nf), if possible, and otherwise in floating-decimal format, like sprintf(%w.ne);
in either case buf is ready for printing, with sign and exponent. The result corresponds to that
obtained by

(void) sprintf(buf,‘‘%w.ng’’,value) ;

Name

Synopsis

Description

econvert(3C)

Basic Library Functions 201

If trailing = 0, trailing zeros and a trailing point are suppressed, as in sprintf(%g). If trailing
!= 0, trailing zeros and a trailing point are retained, as in sprintf(%#g).

The seconvert(), sfconvert(), and sgconvert() functions are single-precision versions of
these functions, and are more efficient than the corresponding double-precision versions. A
pointer rather than the value itself is passed to avoid C's usual conversion of single-precision
arguments to double.

The qeconvert(), qfconvert(), and qgconvert() functions are quadruple-precision
versions of these functions. The qfconvert() function can overflow the decimal_record field
ds if value is too large. In that case, buf[0] is set to zero.

The ecvt(), fcvt() and gcvt() functions are versions of econvert(), fconvert(), and
gconvert(), respectively, that are documented on the ecvt(3C) manual page. They constitute
the default implementation of these functions and conform to the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2.

IEEE Infinities and NaNs are treated similarly by these functions. ‘‘NaN'' is returned for NaN,
and ‘‘Inf'' or ‘‘Infinity'' for Infinity. The longer form is produced when ndigit >= 8.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ecvt(3C),sprintf(3C), attributes(5)

Usage

Attributes

See Also

econvert(3C)

man pages section 3: Basic Library Functions • Last Revised 3 May 1999202

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ecvt, fcvt, gcvt – convert floating-point number to string

#include <stdlib.h>

char *ecvt(double value, int ndigit, int *restrict decpt, int *restrict sign);

char *fcvt(double value, int ndigit, int *restrict decpt, int *restrict sign);

char *gcvt(double value, int ndigit, char *buf);

The ecvt(), fcvt() and gcvt() functions convert floating-point numbers to null-terminated
strings.

The ecvt() function converts value to a null-terminated string of ndigit digits (where ndigit is
reduced to an unspecified limit determined by the precision of a double) and returns a pointer
to the string. The high-order digit is non-zero, unless the value is 0. The low-order digit is
rounded. The position of the radix character relative to the beginning of the string is stored in
the integer pointed to by decpt (negative means to the left of the returned digits). The radix
character is not included in the returned string. If the sign of the result is negative, the integer
pointed to by sign is non-zero, otherwise it is 0.

If the converted value is out of range or is not representable, the contents of the returned string
are unspecified.

The fcvt() function is identical to ecvt() except that ndigit specifies the number of digits
desired after the radix point. The total number of digits in the result string is restricted to an
unspecified limit as determined by the precision of a double.

The gcvt() function converts value to a null-terminated string (similar to that of the %g
format of printf(3C)) in the array pointed to by buf and returns buf. It produces ndigit
significant digits (limited to an unspecified value determined by the precision of a double) in
%f if possible, or %e (scientific notation) otherwise. A minus sign is included in the returned
string if value is less than 0. A radix character is included in the returned string if value is not a
whole number. Trailing zeros are suppressed where value is not a whole number. The radix
character is determined by the current locale. If setlocale(3C) has not been called
successfully, the default locale, POSIX, is used. The default locale specifies a period (.) as the
radix character. The LC_NUMERIC category determines the value of the radix character within
the current locale.

The ecvt() and fcvt() functions return a pointer to a null-terminated string of digits.

The gcvt() function returns buf.

No errors are defined.

The return values from ecvt() and fcvt() might point to thread-specific data that can be
overwritten by subsequent calls to these functions by the same thread.

For portability to implementations conforming to earlier versions of Solaris, sprintf(3C) is
preferred over this function.

Name

Synopsis

Description

ecvt()

fcvt()

gcvt()

Return Values

Errors

Usage

ecvt(3C)

Basic Library Functions 203

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

printf(3C), setlocale(3C), sprintf(3C), attributes(5), standards(5)

Attributes

See Also

ecvt(3C)

man pages section 3: Basic Library Functions • Last Revised 18 May 2004204

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

enable_extended_FILE_stdio – enable extended FILE facility within standard I/O

#include <stdio.h>

#include <stdio_ext.h>

#include <signal.h>

int enable_extended_FILE_stdio(int low_fd, int signal_action);

The enable_extended_FILE_stdio() function enables the use of the extended FILE facility
(see NOTES) and determines which, if any, signal will be sent when an application uses
FILE->_file inappropriately.

The low_fd argument specifies the lowest file descriptor in the range 3 through 255 that the
application wants to be selected as the unallocatable file descriptor. File descriptors 0, 1, and 2
cannot be used because they are reserved for use as the default file descriptors underlying the
stdin, stdout, and stderr standard I/O streams. The low_fd argument can also be set to −1 to
request that enable_extended_FILE_stdio() select a “reasonable” unallocatable file
descriptor. In this case, enable_extended_FILE_stdio() will first attempt to reserve a
relatively large file descriptor, but will keep trying to find an unallocatable file descriptor until
it is known that no file descriptor can be reserved.

The signal_action argument specifies the signal that will be sent to the process when the
unallocatable file descriptor is used as a file descriptor argument to any system call except
close(2). If signal_action is −1, the default signal (SIGABRT) will be sent. If signal_action is 0,
no signal will be sent. Otherwise, the signal specified by signal_action will be sent.

The enable_extended_FILE_stdio() function calls

unallocatablefd = fcntl(low_fd, F_BADFD, action);

to reserve the unallocatable file descriptor and set the signal to be sent if the unallocatable file
descriptor is used in a system call. If the fcntl(2) call succeeds, the extended FILE facility is
enabled and the unallocatable file descriptor is saved for later use by the standard I/O
functions. When an attempt is made to open a standard I/O stream (see fdopen(3C),
fopen(3C), and popen(3C)) with an underlying file descriptor greater than 255, the file
descriptor is stored in an auxiliary location and the field formerly known as FILE->_file is set
to the unallocatable file descriptor.

If the file descriptor limit for the process is less than or equal to 256 (the system default), the
application needs to raise the limit (see getrlimit(2)) for the extended FILE facility to be
useful. The enable_extended_FILE_stdio() function does not attempt to change the file
descriptor limit.

This function is used by the extendedFILE(5) preloadable library to enable the extended FILE
facility.

Name

Synopsis

Description

enable_extended_FILE_stdio(3C)

Basic Library Functions 205

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

Upon successful completion, enable_extended_FILE_stdio() returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

The enable_extended_FILE_stdio() function will fail if:

EAGAIN All file descriptors in the inclusive range 3 through 255 refer to files that are
currently open in the process.

EBADF The low_fd argument is greater than 255, or is less than 3 and not equal to -1.

EEXIST A file descriptor has already been marked by an earlier call to fcntl().

EINVAL The signal_action argument is not −1, is not 0, and is not a valid signal number.

The enable_extended_FILE_stdio() function is available only in the 32-bit compilation
environment.

The fdopen(3C), fopen(3C), and popen(3C) functions all enable the use of the extended FILE
facility. For source changes, a trailing F character in the mode argument can be used with any
of these functions if the FILE *fptr is used only within the context of a single function or group
of functions and not meant to be returned to a caller. All of the source code to the application
must then be recompiled, thereby exposing any improper usage of the FILE structure fields.

The F character must not be used if the FILE *fptr is to be returned to a caller. The calling
application might not understand how to process it. Alternatively, the
enable_extended_FILE_stdio() function can be used at a higher level in the code.

Use extendedFILE(5) for binary relief.

EXAMPLE 1 Increase the file limit and enable the extended FILE facility.

The following example demonstrates how to programmatically increase the file limit and
enable extended FILE facility.

(void) getrlimit(RLIMIT_NOFILE, &rlp);

rlp.rlim_cur = 1000; /* set the desired number of file descriptors */

retval = setrlimit(RLIMIT_NOFILE, &lrp);

if (retval == -1) {

/* error */

}

/* enable extended FILE facility */

retval = enable_extended_FILE_stdio(-1, SIGABRT);

if (retval == -1) {

/* error */

}

Return Values

Errors

Usage

Examples

enable_extended_FILE_stdio(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Apr 2006206

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library (32-bit)

Interface Stability Committed

MT-Level Safe

close(2), fcntl(2), getrlimit(2), fdopen(3C), fopen(3C), popen(3C), signal.h(3HEAD),
stdio(3C), attributes(5), extendedFILE(5)

Historically, 32-bit Solaris applications have been limited to using only the file descriptors 0
through 255 with the standard I/O functions (see stdio(3C)) in the C library. The extended
FILE facility allows well-behaved 32-bit applications to use any valid file descriptor with the
standard I/O functions.

For the purposes of the extended FILE facility, a well-behaved application is one that:

■ does not directly access any fields in the FILE structure pointed to by the FILE pointer
associated with any standard I/O stream,

■ checks all return values from standard I/O functions for error conditions, and
■ behaves appropriately when an error condition is reported.

The extended FILE facility generates EBADF error returns and optionally delivers a signal to the
calling process on most attempts to use the file descriptor formerly stored in FILE->_file as an
argument to a system call when a file descriptor value greater than 255 is being used to access
the file underlying the corresponding FILE pointer. The only exception is that calls to the
close() system call will return an EBADF error in this case, but will not deliver the signal. The
FILE->_file has been renamed to help applications quickly detect code that needs to be
updated.

The extended FILE facility should only be used by well-behaved applications. Although the
extended FILE facility reports errors, applications that directly reference FILE->_file should
be updated to use public interfaces rather than rely on implementation details that no longer
work as the application expects (see __fbufsize(3C) and fileno(3C).

This facility takes great care to avoid problems in well-behaved applications while
maintaining maximum compatibility. It also attempts to catch dangerous behavior in
applications that are not well-behaved as soon as possible and to notify those applications as
soon as bad behavior is detected.

There are, however, limitations. For example, if an application enables this facility and is
linked with an object file that had a standard I/O stream using an extended FILE pointer, and
then used the sequence

Attributes

See Also

Notes

enable_extended_FILE_stdio(3C)

Basic Library Functions 207

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1extendedfile-5

(void) close(FILE->_file);

FILE->_file = myfd;

to attempt to change the file descriptor associated with the stream, undesired results can
occur. The close() function will fail, but since this usage ignores the return status, the
application proceeds to perform low level I/O on FILE->_file while calls to standard I/O
functions would continue to use the original, extended FILE pointer. If the application
continues using standard I/O functions after changing FILE->_file, silent data corruption
could occur because the application thinks it has changed file descriptors with the above
assignment but the actual standard I/O file descriptor is stored in the auxiliary location. The
chances for corruption are even higher if myfd has a value greater than 255 and is truncated by
the assignment to the 8-bit _file field.

Since the_file field has been renamed, attempts to recompile this code will fail. The application
should be changed not to use this field in the FILE structure.

The application should not use this facility if it uses _file directly, including using the
fileno() macro that was provided in stdio.h(3HEAD) in Solaris 2.0 through 2.7.

enable_extended_FILE_stdio(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Apr 2006208

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdio.h-3head

encrypt – encoding function

#include <crypt.h>

void encrypt(char block[64], int edflag);

#include <unistd.h>

void encrypt(char block[64], int edflag);

The encrypt() function provides (rather primitive) access to the hashing algorithm
employed by the crypt(3C) function. The key generated by setkey(3C) is used to encrypt the
string block with encrypt().

The block argument to encrypt() is an array of length 64 bytes containing only the bytes with
numerical value of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(3C). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be
decoded (see the USAGE section below); if the argument is not decoded, errno will be set to
ENOSYS.

The encrypt() function returns no value.

The encrypt() function will fail if:

ENOSYS The functionality is not supported on this implementation.

In some environments, decoding may not be implemented. This is related to U.S.
Government restrictions on encryption and decryption routines: the DES decryption
algorithm cannot be exported outside the U.S.A. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt() does encoding but not decoding.

Because encrypt() does not return a value, applications wishing to check for errors should set
errno to 0, call encrypt(), then test errno and, if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

crypt(3C), setkey(3C), attributes(5)

Name

Synopsis

Standard conforming

Description

Return Values

Errors

Usage

Attributes

See Also

encrypt(3C)

Basic Library Functions 209

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

end, _end, etext, _etext, edata, _edata – last locations in program

extern int _etext;

extern int _edata;

extern int _end;

These names refer neither to routines nor to locations with interesting contents; only their
addresses are meaningful.

_etext The address of _etext is the first location after the last read-only loadable
segment.

_edata The address of _edata is the first location after the last read-write loadable
segment.

_end If the address of _edata is greater than the address of _etext, the address of _end
is same as the address of _edata.

If the address of _etext is greater than the address of _edata, the address of _end
is set to the page boundary after the address pointed to by _etext.

When execution begins, the program break (the first location beyond the data) coincides with
_end, but the program break can be reset by the brk(2), malloc(3C), and the standard
input/output library (see stdio(3C)), functions by the profile (-p) option of cc, and so on.
Thus, the current value of the program break should be determined by sbrk ((char *)0).

References to end, etext, and edata, without a preceding underscore will be aliased to the
associated symbol that begins with the underscore.

brk(2), malloc(3C), stdio(3C)

Name

Synopsis

Description

Usage

See Also

end(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2006210

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2

err, verr, errx, verrx, warn, vwarn, warnx, vwarnx – formatted error messages

#include <err.h>

void err(int eval, const char *fmt, ...);

void verr(int eval, const char *fmt, va_list args);

void errx(int eval, const char *fmt, ...);

void verrx(int eval, const char *fmt, va_list args);

void warn(const char *fmt, ...);

void vwarn(const char *fmt, va_list args);

void warnx(const char *fmt, ...);

void vwarnx(const char *fmt, va_list args);

The err() and warn() family of functions display a formatted error message on the standard
error output. In all cases, the last component of the program name, followed by a colon
character and a space, are output. If the fmt argument is not NULL, the formatted error message
is output. In the case of the err(), verr(), warn(), and vwarn() functions, the error message
string affiliated with the current value of the global variable errno is output next, preceded by
a colon character and a space if fmt is not NULL. In all cases, the output is followed by a newline
character. The errx(), verrx(), warnx(), and vwarnx() functions will not output this error
message string.

The err(), verr(), errx(), and verrx() functions do not return, but instead cause the
program to terminate with the status value given by the argument status.

EXAMPLE 1 Display the current errno information string and terminate with status indicating failure.

if ((p = malloc(size)) == NULL)

err(EXIT_FAILURE, NULL);

if ((fd = open(file_name, O_RDONLY, 0)) == -1)

err(EXIT_FAILURE, "%s", file_name);

EXAMPLE 2 Display an error message and terminate with status indicating failure.

if (tm.tm_hour < START_TIME)

errx(EXIT_FAILURE, "too early, wait until %s", start_time_string);

EXAMPLE 3 Warn of an error.

if ((fd = open(raw_device, O_RDONLY, 0)) == -1)

warnx("%s: %s: trying the block device",
raw_device, strerror(errno));

if ((fd = open(block_device, O_RDONLY, 0)) == -1)

warn("%s", block_device);

Name

Synopsis

Description

Examples

err(3C)

Basic Library Functions 211

It is important never to pass a string with user-supplied data as a format without using ‘%s'. An
attacker can put format specifiers in the string to mangle the stack, leading to a possible
security hole. This holds true even if the string has been built ‘‘by hand'' using a function like
snprintf(3C), as the resulting string can still contain user-supplied conversion specifiers for
later interpolation by the err() and warn() functions.

Always be sure to use the proper secure idiom:

err(1, "%s", string);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe with Exceptions

These functions are safe to use in multithreaded applications as long as setlocale(3C) is not
being called to change the locale.

exit(3C), getexecname(3C), setlocale(3C), strerror(3C), attributes(5)

Warnings

Attributes

See Also

err(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Aug 2007212

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

euclen, euccol, eucscol – get byte length and display width of EUC characters

#include <euc.h>

int euclen(const unsigned char *s);

int euccol(const unsigned char *s);

int eucscol(const unsigned char *str);

The euclen() function returns the length in bytes of the Extended Unix Code (EUC)
character pointed to by s, including single-shift characters, if present.

The euccol() function returns the screen column width of the EUC character pointed to by s.

The eucscol() function returns the screen column width of the EUC string pointed to by str.

For the euclen() and euccol(), functions, s points to the first byte of the character. This byte
is examined to determine its codeset. The character type table for the current locale is used for
codeset byte length and display width information.

These functions will work only with EUC locales.

These functions can be used safely in multithreaded applications, as long as setlocale(3C) is
not called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

getwidth(3C), setlocale(3C), attributes(5)

Name

Synopsis

Description

Usage

Attributes

See Also

euclen(3C)

Basic Library Functions 213

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

exit, _exithandle – terminate process

#include <stdlib.h>

void exit(int status);

void _exithandle(void);

The exit() function terminates a process by calling first _exithandle() and then _exit()

(see exit(2)).

The _exithandle() function calls any functions registered through the atexit(3C) function
in the reverse order of their registration. This action includes executing all finalization code
from the .fini sections of all objects that are part of the process.

The _exithandle() function is intended for use only with _exit(), and allows for specialized
processing such as dldump(3C) to be performed. Normal process execution should not be
continued after a call to _exithandle() has occurred, as internal data structures may have
been torn down due to atexit() or .fini processing.

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in the header <stdlib.h> and
may be used as the value of status to indicate successful or unsuccessful termination,
respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exit(2), atexit(3C), dldump(3C), attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

exit(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Mar 2004214

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fattach – attach a STREAMS– or doors-based file descriptor to an object in the file system
name space

#include <stropts.h>

int fattach(int fildes, const char *path);

The fattach() function attaches a STREAMS- or doors-based file descriptor to an object in
the file system name space, effectively associating a name with fildes. The fildes argument must
be a valid open file descriptor representing a STREAMS or doors file. The path argument is a
path name of an existing object and the user must have appropriate privileges or be the owner
of the file and have write permissions. All subsequent operations on path will operate on the
STREAMS or doors file until the STREAMS or doors file is detached from the node. The fildes
argument can be attached to more than one path, that is, a stream or door can have several
names associated with it.

The attributes of the named stream or door (see stat(2)), are initialized as follows: the
permissions, user ID, group ID, and times are set to those of path, the number of links is set to
1, and the size and device identifier are set to those of the streams or doors device associated
with fildes. If any attributes of the named stream or door are subsequently changed (for
example, chmod(2)), the attributes of the underlying object are not affected.

Upon successful completion, fattach() returns 0. Otherwise it returns −1 and sets errno to
indicate an error.

The fattach() function will fail if:

EACCES The user is the owner of path but does not have write permissions on path
or fildes is locked.

EBADF The fildes argument is not a valid open file descriptor.

EBUSY The path argument is currently a mount point or has a STREAMS or doors
file descriptor attached to it.

EINVAL The path argument is a file in a remotely mounted directory.

EINVAL The fildes argument does not represent a STREAMS or doors file.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or the component of a path name is
longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

ENOENT The path argument does not exist.

ENOTDIR A component of a path prefix is not a directory.

EPERM The effective user ID is not the owner of path or a user with the appropriate
privileges.

Name

Synopsis

Description

Return Values

Errors

fattach(3C)

Basic Library Functions 215

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fdetach(1M), chmod(2), mount(2), stat(2), door_create(3C), fdetach(3C), isastream(3C),
attributes(5), standards(5), streamio(7I)

STREAMS Programming Guide

Attributes

See Also

fattach(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002216

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fdetach-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

__fbufsize, __flbf, __fpending, __fpurge, __freadable, __freading, __fsetlocking, __fwritable,
__fwriting, _flushlbf – interfaces to stdio FILE structure

#include <stdio.h>

#include <stdio_ext.h>

size_t __fbufsiz(FILE *stream);

int __flbf(FILE *stream);

size_t __fpending(FILE *stream);

void __fpurge(FILE *stream);

int __freadable(FILE *stream);

int __freading(FILE *stream);

int __fsetlocking(FILE *stream, int type);

int __fwritable(FILE *stream);

int __fwriting(FILE *stream);

void _flushlbf(void);

These functions provide portable access to the members of the stdio(3C) FILE structure.

The __fbufsize() function returns in bytes the size of the buffer currently in use by the given
stream.

The __flbf() function returns non-zero if the stream is line-buffered.

The __fpending function returns in bytes the amount of output pending on a stream.

The __fpurge() function discards any pending buffered I/O on the stream.

The __freadable() function returns non-zero if it is possible to read from a stream.

The __freading() function returns non-zero if the file is open readonly, or if the last
operation on the stream was a read operation such as fread(3C) or fgetc(3C). Otherwise it
returns 0.

The __fsetlocking() function allows the type of locking performed by stdio on a given
stream to be controlled by the programmer.

If type is FSETLOCKING_INTERNAL, stdio performs implicit locking around every operation on
the given stream. This is the default system behavior on that stream.

If type is FSETLOCKING_BYCALLER, stdio assumes that the caller is responsible for maintaining
the integrity of the stream in the face of access by multiple threads. If there is only one thread
accessing the stream, nothing further needs to be done. If multiple threads are accessing the
stream, then the caller can use the flockfile(), funlockfile(), and ftrylockfile()

Name

Synopsis

Description

__fbufsize(3C)

Basic Library Functions 217

functions described on the flockfile(3C) manual page to provide the appropriate locking. In
both this and the case where type is FSETLOCKING_INTERNAL, __fsetlocking() returns the
previous state of the stream.

If type is FSETLOCKING_QUERY, __fsetlocking() returns the current state of the stream
without changing it.

The __fwritable() function returns non-zero if it is possible to write on a stream.

The __fwriting() function returns non-zero if the file is open write-only or append-only, or
if the last operation on the stream was a write operation such as fwrite(3C) or fputc(3C).
Otherwise it returns 0.

The _flushlbf() function flushes all line-buffered files. It is used when reading from a
line-buffered file.

Although the contents of the stdio FILE structure have always been private to the stdio
implementation, some applications have needed to obtain information about a stdio stream
that was not accessible through a supported interface. These applications have resorted to
accessing fields of the FILE structure directly, rendering them possibly non-portable to new
implementations of stdio, or more likely, preventing enhancements to stdio that would
cause those applications to break.

In the 64-bit environment, the FILE structure is opaque. The functions described here are
provided as a means of obtaining the information that up to now has been retrieved directly
from the FILE structure. Because they are based on the needs of existing applications (such as
mh and emacs), they may be extended as other programs are ported. Although they may still be
non-portable to other operating systems, they will be compatible from each Solaris release to
the next. Interfaces that are more portable are under development.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level __fsetlocking() is Unsafe; all others are MT-Safe

Interface Stability Committed

fgetc(3C), flockfile(3C), fputc(3C), fread(3C), fwrite(3C), stdio(3C), attributes(5)

Usage

Attributes

See Also

__fbufsize(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 1998218

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fclose, fcloseall – close a stream

#include <stdio.h>

int fclose(FILE *stream);

int fcloseall(void);

The fclose() function causes the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream is written to the file; any unread
buffered data is discarded. The stream is disassociated from the file. If the associated buffer
was automatically allocated, it is deallocated.

The fclose() function marks for update the st_ctime and st_mtime fields of the underlying
file if the stream is writable and if buffered data has not yet been written to the file. It will
perform a close(2) operation on the file descriptor that is associated with the stream pointed
to by stream.

After the call to fclose(), any use of stream causes undefined behavior.

The fclose() function is performed automatically for all open files upon calling exit(2).

The fcloseall() function calls fclose() on all open streams.

Upon successful completion, 0 is returned. Otherwise, EOF is returned and errno is set to
indicate the error.

The fclose() function will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The fclose() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fclose() function may fail if:

Name

Synopsis

Description

Return Values

Errors

fclose(3C)

Basic Library Functions 219

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

ENXIO A request was made of a non-existent device, or the request was beyond the limits
of the device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), exit(2), getrlimit(2), ulimit(2), fopen(3C), stdio(3C), attributes(5),
standards(5)

Attributes

See Also

fclose(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 2010220

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fdatasync – synchronize a file's data

#include <unistd.h>

int fdatasync(int fildes);

The fdatasync() function forces all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality is as described for fsync(3C) (with the symbol _XOPEN_REALTIME defined),
with the exception that all I/O operations are completed as defined for synchronised I/O data
integrity completion.

If successful, the fdatasync() function returns 0. Otherwise, the function returns −1 and sets
errno to indicate the error. If the fdatasync() function fails, outstanding I/O operations are
not guaranteed to have been completed.

The fdatasync() function will fail if:

EBADF The fildes argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

ENOSYS The function fdatasync() is not supported by the system.

In the event that any of the queued I/O operations fail, fdatasync() returns the error
conditions defined for read(2) and write(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

fcntl(2), open(2), read(2), write(2), fsync(3C), aio_fsync(3C), fcntl.h(3HEAD),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

fdatasync(3C)

Basic Library Functions 221

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fdetach – detach a name from a STREAMS-based file descriptor

#include <stropts.h>

int fdetach(const char *path);

The fdetach() function detaches a STREAMS-based file from the file to which it was attached
by a previous call to fattach(3C). The path argument points to the pathname of the attached
STREAMS file. The process must have appropriate privileges or be the owner of the file. A
successful call to fdetach() causes all pathnames that named the attached STREAMS file to
again name the file to which the STREAMS file was attached. All subsequent operations on
path will operate on the underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file
referenced by path, will still refer to the STREAMS file after the fdetach() has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach() has the same effect as performing the last close(2) on the attached file.

Upon successful completion, fdetach() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The fdetach() function will fail if:

EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does not have
appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path does not name an existing file or path is an empty
string.

EINVAL The path argument names a file that is not currently attached.

ENAMETOOLONG The size of a pathname exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ELOOP Too many symbolic links were encountered in resolving path.

The fdetach() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Name

Synopsis

Description

Return Values

Errors

Attributes

fdetach(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002222

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Interface Stability Standard

fdetach(1M), close(2), fattach(3C), attributes(5), standards(5), streamio(7I)

STREAMS Programming Guide

See Also

fdetach(3C)

Basic Library Functions 223

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fdetach-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

fdopen – associate a stream with a file descriptor

#include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

The fdopen() function associates a stream with a file descriptor fildes.

The mode argument is a character string having one of the following values:

r or rb Open a file for reading.

w or wb Open a file for writing.

a or ab Open a file for writing at end of file.

r+, rb+ or r+b Open a file for update (reading and writing).

w+, wb+ or w+b Open a file for update (reading and writing).

a+, ab+ or a+b Open a file for update (reading and writing) at end of file.

The meaning of these flags is exactly as specified for the fopen(3C) function, except that
modes beginning with w do not cause truncation of the file. A trailing F character can also be
included in the mode argument as described in fopen(3C) to enable extended FILE facility.

The mode of the stream must be allowed by the file access mode of the open file. The file
position indicator associated with the new stream is set to the position indicated by the file
offset associated with the file descriptor.

The fdopen() function preserves the offset maximum previously set for the open file
description corresponding to fildes.

The error and end-of-file indicators for the stream are cleared. The fdopen() function may
cause the st_atime field of the underlying file to be marked for update.

If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

Upon successful completion, fdopen() returns a pointer to a stream. Otherwise, a null pointer
is returned and errno is set to indicate the error.

The fdopen() function may fail and not set errno if there are no free stdio streams.

The fdopen() function may fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The mode argument is not a valid mode.

EMFILE {FOPEN_MAX} streams are currently open in the calling process.

{STREAM_MAX} streams are currently open in the calling process.

Name

Synopsis

Description

Return Values

Errors

fdopen(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Apr 2006224

ENOMEM There is insufficient space to allocate a buffer.

A process is allowed to have at least {FOPEN_MAX} stdio streams open at a time. For 32-bit
applications, however, the underlying ABIs formerly required that no file descriptor used to
access the file underlying a stdio stream have a value greater than 255. To maintain binary
compatibility with earlier Solaris releases, this limit still constrains 32-bit applications.

File descriptors are obtained from calls like open(2), dup(2), creat(2) or pipe(2), which open
files but do not return streams. Streams are necessary input for almost all of the standard I/O
library functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For all aspects of this function except the F character in the mode argument, see standards(5)

creat(2), dup(2), open(2), pipe(2), fclose(3C), fopen(3C), attributes(5), standards(5)

Usage

Attributes

See Also

fdopen(3C)

Basic Library Functions 225

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ferror, feof, clearerr, fileno – stream status inquiries

#include <stdio.h>

int ferror(FILE *stream);

int feof(FILE *stream);

void clearerr(FILE *stream);

int fileno(FILE *stream);

The ferror() function returns a non-zero value when an error has previously occurred
reading from or writing to the named stream (see Intro(3)). It returns 0 otherwise.

The feof() function returns a non-zero value when EOF has previously been detected reading
the named input stream. It returns 0 otherwise.

The clearerr() function resets the error indicator and EOF indicator to 0 on the named
stream.

The fileno() function returns the integer file descriptor associated with the named stream;
see open(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

open(2), Intro(3), fopen(3C), stdio(3C), attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

ferror(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Feb 2005226

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fflush – flush a stream

#include <stdio.h>

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation
was not input, fflush() causes any unwritten data for that stream to be written to the file, and
the st_ctime and st_mtime fields of the underlying file are marked for update.

If stream points to an input stream or an update stream into which the most recent operation
was input, that stream is flushed if it is seekable and is not already at end-of-file. Flushing an
input stream discards any buffered input and adjusts the file pointer such that the next input
operation accesses the byte after the last one read. A stream is seekable if the underlying file is
not a pipe, FIFO, socket, or TTY device.

If stream is a null pointer, fflush() performs this flushing action on all streams for which the
behavior is defined above.

An input stream, seekable or non-seekable, can be flushed by explicitly calling fflush() with
a non-null argument specifying that stream.

Upon successful completion, fflush() returns 0. Otherwise, it returns EOF and sets errno to
indicate the error.

The fflush() function will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The fflush() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU, and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling process.

The fflush() function may fail if:

ENXIO A request was made of a non-existent device, or the request was beyond the limits
of the device.

Name

Synopsis

Description

Return Values

Errors

fflush(3C)

Basic Library Functions 227

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getrlimit(2), ulimit(2), attributes(5), standards(5)

Attributes

See Also

fflush(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003228

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ffs, ffsl, ffsll, fls, flsl, flsll – find first or last bit set in a bit string

#include <strings.h>

int ffs(int value);

int ffsl(long value);

int ffsll(long long value);

int fls(int value);

int flsl(long value);

flsll(long long value);

The ffs(), ffsl(), and ffsll() functions find the first bit set in value and return the position
of that bit.

The fls(), fssl(), and flsll() functions find the last bit set in value and return the position
of that bit.

Bits are numbered starting at one (the least significant bit).

These functions return the position of the first bit set, or 0 if no bits are set in value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

ffs(3C)

Basic Library Functions 229

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetattr, fsetattr, getattrat, setattrat – get and set system attributes

#include <fcntl.h>

#include <sys/types.h>

#include <attr.h>

#include <sys/nvpair.h>

int fgetattr(int fildes, xattr_view_t view,nvlist_t **response);

int fsetattr(int fildes, xattr_view_t view,nvlist_t *request)

int getattrat(int fildes, xattr_view_t view, const char *filename,

nvlist_t **response);

int setattrat(int fildes, xattr_view_t view, const char *filename,

nvlist_t *request);

The fgetattr() function obtains an nvlist of system attribute information about an open file
object specified by the file descriptor fildes, obtained from a successful open(2), creat(2),
dup(2), fcntl(2), or pipe(2) function.

The getattrat() function first opens the extended attribute file specified by filename in the
already opened file directory object specified by fildes. It then retrieves an nvlist of system
attributes and their values from filename.

The response argument is allocated by either fgetattr() or getattrat(). The application
must call nvlist_free(3NVPAIR) to deallocate the memory.

Upon successful completion, the nvlist will contain one nvpair for each of the system
attributes associated with view. The list of views and the attributes associated with each view
are listed below. Not all underlying file systems support all views and all attributes. The nvlist
will not contain an nvpair for any attribute not supported by the underlying filesystem.

The fsetattr() function uses the nvlist pointed to by request to update one or more of the
system attribute's information about an open file object specified by the file descriptor fildes,
obtained from a successful open(), creat(), dup(), fcntl(), or pipe() function. The
setattrat() function first opens the extended attribute file specified by filename in the
already opened file directory object specified by fildes. It then uses the nvlist pointed to by
request to update one or more of the system attributes of filename.

If completion is not successful then no system attribute information is updated.

The following chart lists the supported views, attributes, and data types for each view:

View Attribute Data type

XATTR_VIEW_READONLY A_FSID uint64_value

A_OPAQUE boolean_value

Name

Synopsis

Description

fgetattr(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Aug 2008230

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2nvlist-free-3nvpair

View Attribute Data type

A_AV_SCANSTAMP uint8_array[]

XATTR_VIEW_READWRITE A_READONLY boolean_value

A_HIDDEN boolean_value

A_SYSTEM boolean_value

A_ARCHIVE boolean_value

A_CRTIME uint64_array[2]

A_NOUNLINK boolean_value

A_IMMUTABLE boolean_value

A_APPENDONLY boolean_value

A_NODUMP boolean_value

A_AV_QUARANTINED boolean_value

A_AV_MODIFIED boolean_value

A_OWNERSID nvlist composed of uint32_value
and string

A_GROUPSID nvlist composed of uint32_value
and string

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The fgetattr(), getattrat(), fsetattr(), and setattrat(), functions will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The underlying file system does not support extended file attributes.

EIO An error occurred while reading from the file system.

The getattrat() and setattrat() functions will fail if:

EACCES Search permission or write permission for filename is denied.

ENOENT The filename argument does not name an existing file in the extended attribute
directory represented by fildes.

EPERM There are insufficient privileges to manipulate attributes.

EXAMPLE 1 Obtain an nvlist of readonly system attributes for an open file object.

Use fgetattr() to obtain an nvlist of the readonly system attributes for the open file object
represented by file descriptor fildes.

Return Values

Errors

Examples

fgetattr(3C)

Basic Library Functions 231

EXAMPLE 1 Obtain an nvlist of readonly system attributes for an open file object. (Continued)

#include <fcntl.h>

#include <sys/types.h>

#include <attr.h>

#include <sys/nvpair.h>

nvlist_t *response;

nvpair_t *pair = NULL;

if (fgetattr(fildes, XATTR_VIEW_READONLY, &response)) {

exit(1);

}

while (pair = nvlist_next_nvpair(response, pair)) {

.

.

.

}

nvlist_free(response);

EXAMPLE 2 Set the A_READONLY system attribute on an open file object.

Use fsetattr() to set the A_OPAQUE system attribute on the open file object represented by file
descriptor fildes.

nvlist_t *request;

nvpair_t *pair = NULL;

if (nvlist_alloc(&request, NV_UNIQUE_NAME, 0) != 0) {

exit(1);

}

if (nvlist_add_boolean_value(request, A_READONLY, 1) != 0) {

exit(1);

}

if (fsetattr(fildes, XATTR_VIEW_READWRITE, request)) {

exit(1);

}

EXAMPLE 3 Obtain an nvlist of the read/write system attributes for a file.

Use getattrat() to obtain an nvlist of the read/write system attributes for the file named
xattrfile in the extended attribute directory of the open file represented by file descriptor
fildes.

nvlist_t *response;

nvpair_t *pair = NULL;

if (getattrat(fildes, XATTR_VIEW_READWRITE, "file", &response)) {

exit(1);

fgetattr(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Aug 2008232

EXAMPLE 3 Obtain an nvlist of the read/write system attributes for a file. (Continued)

}

while (pair = nvlist_next_nvpair(response, pair)) {

.

.

.

}

nvlist_free(response);

EXAMPLE 4 Set the A_APPENDONLY system attribute on a file.

Use setattrat() to set the A_APPENDONLY system attribute on the file named file in the
extended attribute directory of the open file represented by file descriptor fildes.

nvlist_t *request;

nvpair_t *pair = NULL;

if (nvlist_alloc(&request, NV_UNIQUE_NAME, 0) != 0) {

exit(1);

}

if (nvlist_add_boolean_value(request, A_APPENDONLY, 1) != 0) {

exit(1);

}

if (setattrat(fildes, XATTR_VIEW_READWRITE, "file", request)) {

exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

creat(2), dup(2), fcntl(2), fstat(2), fstatat(2), open(2), pipe(2), libnvpair(3LIB),
attributes(5), fsattr(5)

Attributes

See Also

fgetattr(3C)

Basic Library Functions 233

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstatat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libnvpair-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fsattr-5

fgetc, getc, getc_unlocked, getchar, getchar_unlocked, getw – get a byte from a stream

#include <stdio.h>

int fgetc(FILE *stream);

int getc(FILE *stream);

int getc_unlocked(FILE *stream);

int getchar(void);

int getchar_unlocked(void);

int getw(FILE *stream);

The fgetc() function obtains the next byte (if present) as an unsigned char converted to an
int, from the input stream pointed to by stream, and advances the associated file position
indicator for the stream (if defined).

For standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetc() returns EOF whether or not a next byte is present.

The fgetc() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(), fgets(3C), fread(3C), fscanf(3C), getc(), getchar(), getdelim(3C),
getline(3C), gets(3C) or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

The getc() function is functionally identical to fgetc(), except that it is implemented as a
macro. It runs faster than fgetc(), but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

The getchar() routine is equivalent to getc(stdin). It is implemented as a macro.

The getc_unlocked() and getchar_unlocked() routines are variants of getc() and
getchar(), respectively, that do not lock the stream. It is the caller's responsibility to acquire
the stream lock before calling these routines and releasing the lock afterwards; see
flockfile(3C) and stdio(3C). These routines are implemented as macros.

The getw() function reads the next word from the stream. The size of a word is the size of an
int and may vary from environment to environment. The getw() function presumes no
special alignment in the file.

The getw() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(), fgets(3C), fread(3C), getc(), getchar(), gets(3C), fscanf(3C) or scanf(3C)
using stream that returns data not supplied by a prior call to ungetc(3C).

Name

Synopsis

Description

fgetc(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Oct 2003234

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

Upon successful completion, fgetc(), getc(), getc_unlocked(), getchar(),
getchar_unlocked(), and getw() return the next byte from the input stream pointed to by
stream. If the stream is at end-of-file, the end-of-file indicator for the stream is set and these
functions return EOF. For standard-conforming (see standards(5)) applications, if the
end-of-file indicator for the stream is set, these functions return EOF whether or not the stream
is at end-of-file. If a read error occurs, the error indicator for the stream is set, EOF is returned,
and errno is set to indicate the error.

The fgetc(), getc(), getc_unlocked(), getchar(), getchar_unlocked(), and getw()

functions will fail if data needs to be read and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no data
was transferred.

EIO A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-dependent reasons.

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the offset
maximum associated with the corresponding stream.

The fgetc(), getc(), getc_unlocked(), getchar(), getchar_unlocked(), and getw()

functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

If the integer value returned by fgetc(), getc(), getc_unlocked(), getchar(),
getchar_unlocked(), and getw() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension
of a variable of type char on widening to integer is implementation-dependent.

The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

Functions exist for the getc(), getc_unlocked(), getchar(), and getchar_unlocked()

macros. To get the function form, the macro name must be undefined (for example, #undef
getc).

Return Values

Errors

Usage

fgetc(3C)

Basic Library Functions 235

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

When the macro forms are used, getc() and getc_unlocked() evaluate the stream argument
more than once. In particular, getc(*f++); does not work sensibly. The fgetc() function
should be used instead when evaluating the stream argument has side effects.

Because of possible differences in word length and byte ordering, files written using getw()
are machine-dependent, and may not be read using getw() on a different processor.

The getw() function is inherently byte stream-oriented and is not tenable in the context of
either multibyte character streams or wide-character streams. Application programmers are
recommended to use one of the character-based input functions instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability fgetc(), getc(), getc_unlocked(), getchar(), and
getchar_unlocked() are Standard.

MT-Level See NOTES below.

Intro(3), __fsetlocking(3C), fclose(3C), feof(3C), fgets(3C), fgetwc(3C), fgetws(3C),
flockfile(3C), fopen(3C), fread(3C), fscanf(3C), getdelim(3C), getline(3C), gets(3C),
putc(3C), scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C), attributes(5), standards(5)

The fgetc(), getc(), getchar(), and getw() routines are MT-Safe in multithreaded
applications. The getc_unlocked() and getchar_unlocked() routines are unsafe in
multithreaded applications.

Attributes

See Also

Notes

fgetc(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Oct 2003236

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetpos – get current file position information

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

The fgetpos() function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by fsetpos(3C) for repositioning the stream to its position at the time of
the call to fgetpos().

Upon successful completion, fgetpos() returns 0. Otherwise, it returns a non-zero value and
sets errno to indicate the error.

The fgetpos() function may fail if:

EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a
socket.

EOVERFLOW The current value of the file position cannot be represented correctly in an
object of type fpos_t.

The fgetpos() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

fopen(3C), fsetpos(3C), ftell(3C), rewind(3C), ungetc(3C), attributes(5), lf64(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

fgetpos(3C)

Basic Library Functions 237

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fgetwc – get a wide-character code from a stream

#include <stdio.h>

#include <wchar.h>

wint_t fgetwc(FILE*stream);

The fgetwc() function obtains the next character (if present) from the input stream pointed
to by stream, converts that to the corresponding wide-character code and advances the
associated file position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetwc() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetwc(), fgetc(3C), fgets(3C), fgetws(3C), fread(3C), fscanf(3C), getc(3C),
getchar(3C), gets(3C), or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

Upon successful completion the fgetwc() function returns the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t.

For standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetwc() returns WEOF whether or not the stream is at end-of-file.

If a read error occurs, the error indicator for the stream is set, fgetwc() returns WEOF and sets
errno to indicate the error.

If an encoding error occurs, the error indicator for the stream is set, fgetwc() returns WEOF,
and errno is set to indicate the error.

The fgetwc() function will fail if data needs to be read and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetwc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no data
was transferred.

EIO A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.

EOVERFLOW The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetwc() function may fail if:

Name

Synopsis

Description

Return Values

Errors

fgetwc(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Oct 2003238

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EILSEQ The data obtained from the input stream does not form a valid character.

The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

feof(3C), ferror(3C), fgetc(3C), fgets(3C), fgetws(3C), fopen(3C), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(3C), scanf(3C), setlocale(3C), ungetc(3C),
ungetwc(3C), attributes(5), standards(5)

Usage

Attributes

See Also

fgetwc(3C)

Basic Library Functions 239

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

floating_to_decimal, single_to_decimal, double_to_decimal, extended_to_decimal,
quadruple_to_decimal – convert floating-point value to decimal record

#include <floatingpoint.h>

void single_to_decimal(single *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void double_to_decimal(double *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void extended_to_decimal(extended *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

void quadruple_to_decimal(quadruple *px, decimal_mode *pm,

decimal_record *pd, fp_exception_field_type *ps);

The floating_to_decimal functions convert the floating-point value at *px into a decimal
record at *pd, observing the modes specified in *pm and setting exceptions in *ps. If there are
no IEEE exceptions, *ps will be zero.

If *px is zero, infinity, or NaN, then only pd→sign and pd→fpclass are set. Otherwise
pd→exponent and pd→ds are also set so that

(sig)*(pd->ds)*10**(pd->exponent)

is a correctly rounded approximation to *px, where sig is +1 or −1, depending upon whether
pd→sign is 0 or −1. pd→ds has at least one and no more than DECIMAL_STRING_LENGTH–1
significant digits because one character is used to terminate the string with a null.

pd→ds is correctly rounded according to the IEEE rounding modes in pm→rd. *ps has
fp_inexact set if the result was inexact, and has fp_overflow set if the string result does not fit in
pd→ds because of the limitation DECIMAL_STRING_LENGTH.

If pm→df == floating_form, then pd→ds always contains pm→ndigits significant digits. Thus
if *px == 12.34 and pm→ndigits == 8, then pd→ds will contain 12340000 and pd→exponent
will contain −6.

If pm→df == fixed_form and pm→ndigits >= 0, then the decimal value is rounded at
pm→ndigits digits to the right of the decimal point. For example, if *px == 12.34 and
pm→ndigits == 1, then pd→ds will contain 123 and pd→exponent will be set to −1.

If pm→df == fixed_form and pm→ndigits< 0, then the decimal value is rounded at
−pm→ndigits digits to the left of the decimal point, and pd→ds is padded with trailing zeros
up to the decimal point. For example, if *px == 12.34 and pm→n digits == −1, then pd→ds will
contain 10 and pd→exponent will be set to 0.

When pm→df == fixed_form and the value to be converted is large enough that the resulting
string would contain more than DECIMAL_STRING_LENGTH−1 digits, then the string placed in

Name

Synopsis

Description

floating_to_decimal(3C)

man pages section 3: Basic Library Functions • Last Revised 7 Jun 2005240

pd→ds is limited to exactly DECIMAL_STRING_LENGTH-1 digits (by moving the place at which
the value is rounded further left if need be), pd→exponent is adjusted accordingly and the
overflow flag is set in *ps.

pd->more is not used.

The econvert(3C), fconvert(3C), gconvert(3C), printf(3C), and sprintf(3C) functions all
use double_to_decimal().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

econvert(3C), fconvert(3C), gconvert(3C), printf(3C), sprintf(3C), attributes(5)

Attributes

See Also

floating_to_decimal(3C)

Basic Library Functions 241

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

flockfile, funlockfile, ftrylockfile – acquire and release stream lock

#include <stdio.h>

void flockfile(FILE *stream);

void funlockfile(FILE *stream);

int ftrylockfile(FILE *stream);

The flockfile() function acquires an internal lock of a stream stream. If the lock is already
acquired by another thread, the thread calling flockfile() is suspended until it can acquire
the lock. In the case that the stream lock is available, flockfile() not only acquires the lock,
but keeps track of the number of times it is being called by the current thread. This implies
that the stream lock can be acquired more than once by the same thread.

The funlockfile() function releases the lock being held by the current thread. In the case of
recursive locking, this function must be called the same number of times flockfile() was
called. After the number of funlockfile() calls is equal to the number of flockfile() calls,
the stream lock is available for other threads to acquire.

The ftrylockfile() function acquires an internal lock of a stream stream, only if that object
is available. In essence ftrylockfile() is a non-blocking version of flockfile().

The ftrylockfile() function returns 0 on success and non-zero to indicate a lock cannot be
acquired.

EXAMPLE 1 A sample program of flockfile().

The following example prints everything out together, blocking other threads that might want
to write to the same file between calls to fprintf(3C):

FILE iop;

flockfile(iop);

fprintf(iop, "hello ");
fprintf(iop, "world);
fputc(iop, ’a’);

funlockfile(iop);

An unlocked interface is available in case performance is an issue. For example:

flockfile(iop);

while (!feof(iop)) {

*c++ = getc_unlocked(iop);

}

funlockfile(iop);

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Examples

Attributes

flockfile(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Sep 2003242

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Intro(3), __fsetlocking(3C), ferror(3C), fprintf(3C), getc(3C), putc(3C), stdio(3C),
ungetc(3C), attributes(5), standards(5)

The interfaces on this page are as specified in IEEE Std 1003.1:2001. See standards(5).

See Also

Notes

flockfile(3C)

Basic Library Functions 243

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fmtmsg – display a message on stderr or system console

#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

The fmtmsg() function writes a formatted message to stderr, to the console, or to both, on a
message's classification component. It can be used instead of the traditional printf(3C)
interface to display messages to stderr, and in conjunction with gettxt(3C), provides a
simple interface for producing language-independent applications.

A formatted message consists of up to five standard components (label, severity, text, action,
and tag) as described below. The classification component is not part of the standard message
displayed to the user, but rather defines the source of the message and directs the display of the
formatted message.

classification Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in
combination by ORing the values together with a single identifier from a
different subclass. Two or more identifiers from the same subclass should
not be used together, with the exception of identifiers from the display
subclass. (Both display subclass identifiers may be used so that messages can
be displayed to both stderr and the system console).
■ “Major classifications” identify the source of the condition. Identifiers

are: MM_HARD (hardware), MM_SOFT (software), and MM_FIRM (firmware).
■ “Message source subclassifications” identify the type of software in which

the problem is spotted. Identifiers are: MM_APPL (application), MM_UTIL
(utility), and MM_OPSYS (operating system).

■ “Display subclassifications” indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on the
standard error stream, MM_CONSOLE to display the message on the system
console. Neither, either, or both identifiers may be used.

■ “Status subclassifications” indicate whether the application will recover
from the condition. Identifiers are: MM_RECOVER (recoverable) and
MM_NRECOV (non-recoverable).

■ An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or
application name. For example, the label UX:cat indicates the UNIX System
V package and the cat(1) utility.

Name

Synopsis

Description

fmtmsg(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002244

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cat-1

severity Indicates the seriousness of the condition. Identifiers for the standard levels
of severity are:
■ MM_HALT indicates that the application has encountered a severe fault and

is halting. Produces the print string HALT.
■ MM_ERROR indicates that the application has detected a fault. Produces the

print string ERROR.
■ MM_WARNING indicates a condition out of the ordinary that might be a

problem and should be watched. Produces the print string WARNING.
■ MM_INFO provides information about a condition that is not in error.

Produces the print string INFO.
■ MM_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity() routine.

text Describes the condition that produced the message. The text string is not
limited to a specific size.

action Describes the first step to be taken in the error recovery process. fmtmsg()
precedes each action string with the prefix: TOFIX:. The action string is not
limited to a specific size.

tag An identifier which references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying
number. A sample tag is UX:cat:146.

The MSGVERB and SEV_LEVEL environment variables control the behavior of fmtmsg() as
follows:

MSGVERB This variable determines which message components fmtmsg() selects when
writing messages to stderr. Its value is a colon-separated list of optional
keywords and can be set as follows:

MSGVERB=[keyword[:keyword[: . . .]]]

export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB
contains a keyword for a component and the component's value is not the
component's null value, fmtmsg() includes that component in the message
when writing the message to stderr. If MSGVERB does not include a keyword
for a message component, that component is not included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if
its value is the null string, if its value is not of the correct format, or if it
contains keywords other than the valid ones listed above, fmtmsg() selects all
components.

Environment Variables

fmtmsg(3C)

Basic Library Functions 245

The first time fmtmsg() is called, it examines MSGVERB to determine which
message components are to be selected when generating a message to write to
the standard error stream, stderr. The values accepted on the initial call are
saved for future calls.

The MSGVERB environment variable affects only those components that are
selected for display to the standard error stream. All message components are
included in console messages.

SEV_LEVEL This variable defines severity levels and associates print strings with them for
use by fmtmsg(). The standard severity levels listed below cannot be modified.
Additional severity levels can also be defined, redefined, and removed using
addseverity() (see addseverity(3C)). If the same severity level is defined by
both SEV_LEVEL and addseverity(), the definition by addseverity() takes
precedence.

0 (no severity is used)

1 HALT

2 ERROR

3 WARNING

4 INFO

The SEV_LEVEL variable can be set as follows:

SEV_LEVEL=[description[:description[: . . .]]]

export SEV_LEVEL

where description is a comma-separated list containing three fields:

description=severity_keyword,level,printstring

The severity_keyword field is a character string that is used as the keyword on
the -s severity option to the fmtmsg(1) utility. (This field is not used by the
fmtmsg() function.)

The level field is a character string that evaluates to a positive integer (other
than 0, 1, 2, 3, or 4, which are reserved for the standard severity levels). If the
keyword severity_keyword is used, level is the severity value passed on to the
fmtmsg() function.

The printstring field is the character string used by fmtmsg() in the standard
message format whenever the severity value level is used.

fmtmsg(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002246

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1

If a description in the colon list is not a three-field comma list, or if the second
field of a comma list does not evaluate to a positive integer, that description in
the colon list is ignored.

The first time fmtmsg() is called, it examines the SEV_LEVEL environment
variable, if defined, to determine whether the environment expands the levels
of severity beyond the five standard levels and those defined using
addseverity(). The values accepted on the initial call are saved for future
calls.

One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

The table below indicates the null values and identifiers for fmtmsg() arguments.

Argument Type Null-Value Identifier

label char* (char*) NULL MM_NULLLBL

severity int 0 MM_NULLSEV

class long 0L MM_NULLMC

text char* (char*) NULL MM_NULLTXT

action char* (char*) NULL MM_NULLACT

tag char* (char*) NULL MM_NULLTAG

Another means of systematically omitting a component is by omitting the component
keyword(s) when defining the MSGVERB environment variable (see the Environment
Variables section above).

The fmtmsg() returns the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on the standard error stream,
but otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

EXAMPLE 1 The following example of fmtmsg():

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "invalid syntax",
"refer to manual", "UX:cat:001")

Use in Applications

Return Values

Examples

fmtmsg(3C)

Basic Library Functions 247

EXAMPLE 1 The following example of fmtmsg(): (Continued)

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax

TO FIX: refer to manual UX:cat:001

EXAMPLE 2 When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg() produces:

ERROR: invalid syntax

TO FIX: refer to manual

EXAMPLE 3 When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following call to fmtmsg()

fmtmsg(MM_UTIL | MM_PRINT, "UX:cat", 5, "invalid syntax",
"refer to manual", "UX:cat:001")

produces

UX:cat: NOTE: invalid syntax

TO FIX: refer to manual UX:cat:001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

fmtmsg(1), addseverity(3C), gettxt(3C), printf(3C), attributes(5), standards(5)

Attributes

See Also

fmtmsg(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002248

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fmtmsg-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fnmatch – match filename or path name

#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

The fnmatch() function matches patterns as described on the fnmatch(5) manual page. It
checks the string argument to see if it matches the pattern argument.

The flags argument modifies the interpretation of pattern and string. It is the bitwise inclusive
OR of zero or more of the following flags defined in the header <fnmatch.h>.

FNM_PATHNAME If set, a slash (/) character in string will be explicitly matched by a slash
in pattern; it will not be matched by either the asterisk (*) or
question-mark (?) special characters, nor by a bracket ([])
expression.

If not set, the slash character is treated as an ordinary character.

FNM_FILE_NAME An alias of FNM_PATHNAME provided for a better compatibility with
other operating systems.

FNM_NOESCAPE If not set, a backslash character (\) in pattern followed by any other
character will match that second character in string. In particular, “\\”
will match a backslash in string.

If set, a backslash character will be treated as an ordinary character.

FNM_PERIOD If set, a leading period in string will match a period in pattern; where
the location of “leading” is indicated by the value of FNM_PATHNAME:
■ If FNM_PATHNAME is set, a period is “leading” if it is the first character

in string or if it immediately follows a slash.
■ If FNM_PATHNAME is not set, a period is “leading” only if it is the first

character of string.

FNM_IGNORECASE If set, during matching, case is ignored yielding case-insensitive
matching on characters based on the case folding defined for the
current locale or, if that does not exist, tolower case conversions of the
current locale.

FNM_CASEFOLD An alias of FNM_IGNORECASE provided for a better compatibility with
other operating systems.

FNM_LEADING_DIR If set, matching is done with string only until all pattern expressions in
pattern argument are consumed. Any remaining characters at string
starting with slash character (/) are simply ignored and do not affect the
matching result.

If not set, no special restrictions are placed on matching a period.

Name

Synopsis

Description

fnmatch(3C)

Basic Library Functions 249

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fnmatch-5

If string matches the pattern specified by pattern, then fnmatch() returns 0. If there is no
match, fnmatch() returns FNM_NOMATCH, which is defined in the header <fnmatch.h>. If an
error occurs, fnmatch() returns another non-zero value.

The fnmatch() function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find(1) utility is an
example of this. It can also be used by the pax(1) utility to process its pattern operands, or by
applications that need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filenames, rather than path names, since it gives no
special significance to the slash character. With the FNM_PATHNAME flag, fnmatch() does match
path names, but without tilde expansion, parameter expansion, or special treatment for period
at the beginning of a filename.

The fnmatch() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

While the FNM_CASEFOLD, FNM_FILE_NAME, FNM_IGNORECASE, and FNM_LEADING_DIR flags are
provided and supported for a better compatibility with some other operating systems, use of
them may make your program source code slightly less portable and portable only to the
operating systems that support the mentioned flags.

EXAMPLE 1 A path name matching

The following example matches all file names under /opt/MyApp1.0/ that end with data:

result = fnmatch("/opt/MyApp1.0/*.data", pname, FNM_PATHNAME);

EXAMPLE 2 A case-insensitive file name matching

The following example matches file names pointed to by fname that has myfile as prefix in any
case combination:

result = fnmatch("myfile*", fname, FNM_IGNORECASE);

EXAMPLE 3 Match all path names with a common set of parent names

The following example matches path names pointed to by pname that has a common set of
parent path names of /opt/l*/MyApps and, in doing so, also ensures slash characters are
explicitly matched:

result = fnmatch("/opt/l*/MyApps", pname, (FNM_PATHNAME | FNM_LEADING_DIR));

For instance, the above will match /opt/lib/MyApps/test/test.txt and
/opt/local/MyApps/config but not /opt/lib/locale/MyApps.

Return Values

Usage

Examples

fnmatch(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010250

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1find-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pax-1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

find(1), pax(1), glob(3C), setlocale(3C), wordexp(3C), attributes(5), fnmatch(5),
standards(5)

Attributes

See Also

fnmatch(3C)

Basic Library Functions 251

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1find-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pax-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fnmatch-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fopen – open a stream

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

The fopen() function opens the file whose pathname is the string pointed to by filename, and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

r or rb Open file for reading.

w or wb Truncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b Open file for update (reading and writing).

w+ or wb+ or w+b Truncate to zero length or create file for update.

a+ or ab+ or a+b Append; open or create file for update, writing at end-of-file.

The character b has no effect, but is allowed for ISO C standard conformance (see
standards(5)). Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of
intervening calls to fseek(3C). If two separate processes open the same file for append, each
process may write freely to the file without fear of destroying output being written by the
other. The output from the two processes will be intermixed in the file in the order in which it
is written.

When a file is opened with update mode (+ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However,
output must not be directly followed by input without an intervening call to fflush(3C) or to
a file positioning function (fseek(3C), fsetpos(3C) or rewind(3C)), and input must not be
directly followed by output without an intervening call to a file positioning function, unless
the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

If mode begins with w or a and the file did not previously exist, upon successful completion,
fopen() function will mark for update the st_atime, st_ctime and st_mtime fields of the file
and the st_ctime and st_mtime fields of the parent directory.

Name

Synopsis

Description

fopen(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Apr 2006252

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

If mode begins with w and the file did previously exist, upon successful completion, fopen()
will mark for update the st_ctime and st_mtime fields of the file. The fopen() function will
allocate a file descriptor as open(2) does.

Normally, 32-bit applications return an EMFILE error when attempting to associate a stream
with a file accessed by a file descriptor with a value greater than 255. If the last character of
mode is F, 32-bit applications will be allowed to associate a stream with a file accessed by a file
descriptor with a value greater than 255. A FILE pointer obtained in this way must never be
used by any code that might directly access fields in the FILE structure. If the fields in the FILE
structure are used directly by 32-bit applications when the last character of mode is F, data
corruption could occur. See the USAGE section of this manual page and the
enable_extended_FILE_stdio(3C) manual page for other options for enabling the extended
FILE facility.

In 64-bit applications, the last character of mode is silently ignored if it is F. 64-bit applications
are always allowed to associate a stream with a file accessed by a file descriptor with any value.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, fopen() returns a pointer to the object controlling the stream.
Otherwise, a null pointer is returned and errno is set to indicate the error.

The fopen() function may fail and not set errno if there are no free stdio streams.

The fopen() function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

EINTR A signal was caught during the execution of fopen().

EISDIR The named file is a directory and mode requires write access.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname component is
longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT A component of filename does not name an existing file or filename is an
empty string.

Return Values

Errors

fopen(3C)

Basic Library Functions 253

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2

ENOSPC The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist.

EOVERFLOW The current value of the file position cannot be represented correctly in an
object of type fpos_t.

EROFS The named file resides on a read-only file system and mode requires write
access.

The fopen() function may fail if:

EINVAL The value of the mode argument is not valid.

EMFILE {FOPEN_MAX} streams are currently open in the calling process.

{STREAM_MAX} streams are currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM Insufficient storage space is available.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and
mode requires write access.

A process is allowed to have at least {FOPEN_MAX} stdio streams open at a time. For 32-bit
applications, however, the underlying ABIs formerly required that no file descriptor used to
access the file underlying a stdio stream have a value greater than 255. To maintain binary
compatibility with earlier Solaris releases, this limit still constrains 32-bit applications.
However, when a 32-bit application is aware that no code that has access to the FILE pointer
returned by fopen() will use the FILE pointer to directly access any fields in the FILE
structure, the F character can be used as the last character in the mode argument to circumvent
this limit. Because it could lead to data corruption, the F character in mode must never be used
when the FILE pointer might later be used by binary code unknown to the user. The F
character in mode is intended to be used by library functions that need a FILE pointer to access
data to process a user request, but do not need to pass the FILE pointer back to the user. 32-bit
applications that have been inspected can use the extended FILE facility to circumvent this
limit if the inspection shows that no FILE pointers will be used to directly access FILE
structure contents.

The fopen() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

Usage

Attributes

fopen(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Apr 2006254

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For all aspects of this function except the F character in the mode argument, see standards(5)

enable_extended_FILE_stdio(3C), fclose(3C), fdopen(3C), fflush(3C), freopen(3C),
fsetpos(3C), rewind(3C), attributes(5), lf64(5), standards(5)

See Also

fopen(3C)

Basic Library Functions 255

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky – IEEE floating-point
environment control

#include <ieeefp.h>

fp_rnd fpgetround(void);

fp_rnd fpsetround(fp_rnd rnd_dir);

fp_except fpgetmask(void);

fp_except fpsetmask(fp_except mask);

fp_except fpgetsticky(void);

fp_except fpsetsticky(fp_except sticky);

There are five floating-point exceptions:
■ divide-by-zero,
■ overflow,
■ underflow,
■ imprecise (inexact) result, and
■ invalid operation.

When a floating-point exception occurs, the corresponding sticky bit is set (1), and if the mask
bit is enabled (1), the trap takes place. These routines let the user change the behavior on
occurrence of any of these exceptions, as well as change the rounding mode for floating-point
operations.

The mask argument is formed by the logical OR operation of the following floating-point
exception masks:

FP_X_INV /* invalid operation exception */

FP_X_OFL /* overflow exception */

FP_X_UFL /* underflow exception */

FP_X_DZ /* divide-by-zero exception */

FP_X_IMP /* imprecise (loss of precision) */

The following floating-point rounding modes are passed to fpsetround and returned by
fpgetround().

FP_RN /* round to nearest representative number */

FP_RP /* round to plus infinity */

FP_RM /* round to minus infinity */

FP_RZ /* round to zero (truncate) */

The default environment is rounding mode set to nearest (FP_RN) and all traps disabled.

The fpsetsticky() function modifies all sticky flags. The fpsetmask() function changes all
mask bits. The fpsetmask() function clears the sticky bit corresponding to any exception
being enabled.

Name

Synopsis

Description

fpgetround(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996256

The fpgetround() function returns the current rounding mode.

The fpsetround() function sets the rounding mode and returns the previous rounding mode.

The fpgetmask() function returns the current exception masks.

The fpsetmask() function sets the exception masks and returns the previous setting.

The fpgetsticky() function returns the current exception sticky flags.

The fpsetsticky() function sets (clears) the exception sticky flags and returns the previous
setting.

The C programming language requires truncation (round to zero) for floating point to
integral conversions. The current rounding mode has no effect on these conversions.

The sticky bit must be cleared to recover from the trap and proceed. If the sticky bit is not
cleared before the next trap occurs, a wrong exception type may be signaled.

Individual bits may be examined using the constants defined in <ieeefp.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnand(3C), attributes(5)

Return Values

Usage

Attributes

See Also

fpgetround(3C)

Basic Library Functions 257

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fputc, putc, putc_unlocked, putchar, putchar_unlocked, putw – put a byte on a stream

#include <stdio.h>

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putc_unlocked(int c, FILE *stream);

int putchar(int c);

int putchar_unlocked(int c);

int putw(int w, FILE *stream);

The fputc() function writes the byte specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the byte
is appended to the output stream.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputc() and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

The putc() routine behaves like fputc(), except that it is implemented as a macro. It runs
faster than fputc(), but it takes up more space per invocation and its name cannot be passed
as an argument to a function call.

The call putchar(c) is equivalent to putc(c, stdout). The putchar() routine is implemented
as a macro.

The putc_unlocked() and putchar_unlocked() routines are variants of putc() and
putchar(), respectively, that do not lock the stream. It is the caller's responsibility to acquire
the stream lock before calling these routines and releasing the lock afterwards; see
flockfile(3C) and stdio(3C). These routines are implemented as macros.

The putw() function writes the word (that is, type int) w to the output stream (at the position
at which the file offset, if defined, is pointing). The size of a word is the size of a type int and
varies from machine to machine. The putw() function neither assumes nor causes special
alignment in the file.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of putw() and the next successful completion of a call to fflush(3C) or fclose(3C)
on the same stream or a call to exit(3C) or abort(3C).

Name

Synopsis

Description

fputc(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003258

Upon successful completion, fputc(), putc(), putc_unlocked(), putchar(), and
putchar_unlocked() return the value that was written. Otherwise, these functions return
EOF, the error indicator for the stream is set, and errno is set to indicate the error.

Upon successful completion, putw() returns 0. Otherwise, it returns a non-zero value, sets the
error indicator for the associated stream, and sets errno to indicate the error.

An unsuccessful completion will occur, for example, if the file associated with stream is not
open for writing or if the output file cannot grow.

The fputc(), putc(), putc_unlocked(), putchar(), putchar_unlocked(), and putw()

functions will fail if either the stream is unbuffered or the stream's buffer needs to be flushed,
and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size or the
process' file size limit.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset
maximum.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EIO A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU and the process group of the
process is orphaned. This error may also be returned under
implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fputc(), putc(), putc_unlocked(), putchar(), putchar_unlocked(), and putw()

functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

Functions exist for the putc(), putc_unlocked(), putchar(), and putchar_unlocked()

macros. To get the function form, the macro name must be undefined (for example, #undef
putc).

Return Values

Errors

Usage

fputc(3C)

Basic Library Functions 259

When the macro forms are used, putc() and putc_unlocked() evaluate the stream argument
more than once. In particular, putc(c, *f++); does not work sensibly. The fputc() function
should be used instead when evaluating the stream argument has side effects.

Because of possible differences in word length and byte ordering, files written using putw()
are implementation-dependent, and possibly cannot be read using getw(3C) by a different
application or by the same application running in a different environment.

The putw() function is inherently byte stream oriented and is not tenable in the context of
either multibyte character streams or wide-character streams. Application programmers are
encouraged to use one of the character-based output functions instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability fputc(), putc(), putc_unlocked(), putchar(), and
putchar_unlocked() are Standard.

MT-Level See NOTES below.

getrlimit(2), ulimit(2) write(2), Intro(3), abort(3C), exit(3C), fclose(3C), ferror(3C),
fflush(3C), flockfile(3C), printf(3C), putc(3C), puts(3C), setbuf(3C), stdio(3C),
attributes(5), standards(5)

The fputc(), putc(), putchar(), and putw() routines are MT-Safe in multithreaded
applications. The putc_unlocked() and putchar_unlocked() routines are unsafe in
multithreaded applications.

Attributes

See Also

Notes

fputc(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003260

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fputwc, putwc, putwchar – put wide-character code on a stream

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE*stream);

wint_t putwc(wchar_t wc, FILE*stream);

#include <wchar.h>

wint_t putwchar(wchar_t wc);

The fputwc() function writes the character corresponding to the wide-character code wc to
the output stream pointed to by stream, at the position indicated by the associated
file-position indicator for the stream (if defined), and advances the indicator appropriately. If
the file cannot support positioning requests, or if the stream was opened with append mode,
the character is appended to the output stream. If an error occurs while writing the character,
the shift state of the output file is left in an undefined state.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputwc() and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The putwc() function is equivalent to fputwc(), except that it is implemented as a macro.

The call putwchar(wc) is equivalent to putwc(wc, stdout). The putwchar() routine is
implemented as a macro.

Upon successful completion, fputwc(), putwc(), and putwchar() return wc. Otherwise, they
return WEOF, the error indicator for the stream is set, and errno is set to indicate the error.

The fputwc(), putwc(), and putwchar() functions will fail if either the stream is unbuffered
or data in the stream's buffer needs to be written, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size or the
process's file size limit; or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EIO A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU, and the process group of the
process is orphaned.

Name

Synopsis

Description

Return Values

Errors

fputwc(3C)

Basic Library Functions 261

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fputwc(), putwc(), and putwchar() functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EILSEQ The wide-character code wc does not correspond to a valid character.

Functions exist for the putwc() and putwchar() macros. To get the function form, the macro
name must be undefined (for example, #undef putc).

When the macro form is used, putwc() evaluates the stream argument more than once. In
particular, putwc(wc, *f++) does not work sensibly. The fputwc() function should be used
instead when evaluating the stream argument has side effects.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exit(2), ulimit(2), abort(3C), fclose(3C), ferror(3C), fflush(3C), fopen(3C),
setbuf(3C), attributes(5), standards(5)

Usage

Attributes

See Also

fputwc(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003262

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fputws – put wide character string on a stream

#include <stdio.h>

#include <wchar.h>

int fputws(const wchar_t *restrict s, FILE *restrict stream);

The fputws() function writes a character string corresponding to the (null-terminated) wide
character string pointed to by ws to the stream pointed to by stream. No character
corresponding to the terminating null wide-character code is written, nor is a NEWLINE
character appended.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputws() and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

Upon successful completion, fputws() returns a non-negative value. Otherwise, it returns −1,
sets an error indicator for the stream, and sets errno to indicate the error.

Refer to fputwc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exit(2), abort(3C), fclose(3C), fflush(3C), fopen(3C), fputwc(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

fputws(3C)

Basic Library Functions 263

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fread – binary input

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

The fread() function reads into the array pointed to by ptr up to nitems elements whose size
is specified by size in bytes, from the stream pointed to by stream. For each object, size calls are
made to the fgetc(3C) function and the results stored, in the order read, in an array of
unsigned char exactly overlaying the object. The file-position indicator for the stream (if
defined) is advanced by the number of bytes successfully read. If an error occurs, the resulting
value of the file-position indicator for the stream is unspecified. If a partial element is read, its
value is unspecified.

The fread() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(), fscanf(3C), getc(3C),
getchar(3C), getdelim(3C), getline(3C), gets(3C), or scanf(3C) using stream that returns
data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

Upon successful completion, fread() returns the number of elements successfully read,
which is less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0,
fread() returns 0 and the contents of the array and the state of the stream remain unchanged.
Otherwise, if a read error occurs, the error indicator for the stream is set and errno is set to
indicate the error.

Refer to fgetc(3C).

EXAMPLE 1 Reading from a Stream

The following example reads a single element from the fp stream into the array pointed to by
buf.

#include <stdio.h>

...

size_t bytes_read;

char buf[100];

FILE *fp;

...

bytes_read = fread(buf, sizeof(buf), 1, fp);

...

The ferror() or feof() functions must be used to distinguish between an error condition
and end-of-file condition. See ferror(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite(3C) are application-dependent, and possibly cannot be read using fread() by a
different application or by the same application on a different processor.

Name

Synopsis

Description

Return Values

Errors

Examples

Usage

fread(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002264

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

read(2), fclose(3C), ferror(3C), fopen(3C), getc(3C), getdelim(3C), getline(3C),
gets(3C), printf(3C), putc(3C), puts(3C), attributes(5), standards(5)

Attributes

See Also

fread(3C)

Basic Library Functions 265

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

freopen – open a stream

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

The freopen() function first attempts to flush the stream and close any file descriptor
associated with stream. Failure to flush or close the file successfully is ignored. The error and
end-of-file indicators for the stream are cleared.

The freopen() function opens the file whose pathname is the string pointed to by filename
and associates the stream pointed to by stream with it. The mode argument is used just as in
fopen(3C).

If filename is a null pointer and the application conforms to SUSv3 (see standards(5)), the
freopen() function attempts to change the mode of the stream to that specified by mode, as
though the name of the file currently associated with the stream had been used. The following
changes of mode are permitted, depending upon the access mode of the file descriptor
underlying the stream:

■ When + is specified, the file descriptor mode must be O_RDWR.
■ When r is specified, the file descriptor mode must be O_RDONLY or O_RDWR.
■ When a or w is specified, the file descriptor mode must be O_WRONLY or O_RDWR.

If the filename is a null pointer and the application does not conform to SUSv3, freopen()
returns a null pointer.

The original stream is closed regardless of whether the subsequent open succeeds.

After a successful call to the freopen() function, the orientation of the stream is cleared, the
encoding rule is cleared, and the associated mbstate_t object is set to describe an initial
conversion state.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, freopen() returns the value of stream. Otherwise, a null pointer
is returned and errno is set to indicate the error.

The freopen() function will fail if:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

EBADF The application conforms to SUSv3, the filename argument is a null
pointer, and either the underlying file descriptor is not valid or the mode
specified when the underlying file descriptor was opened does not support
the file access modes requested by the mode argument.

Name

Synopsis

Description

Return Values

Errors

freopen(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002266

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

EFAULT The application does not conform to SUSv3 and the filename argument is a
null pointer.

EINTR A signal was caught during freopen().

EISDIR The named file is a directory and mode requires write access.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENAMETOOLONG The length of the filename exceeds {PATH_MAX} or a pathname component
is longer than {NAME_MAX}.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT A component of filename does not name an existing file or filename is an
empty string.

ENOSPC The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist.

EOVERFLOW The current value of the file position cannot be represented correctly in an
object of type off_t.

EROFS The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

EINVAL The value of the mode argument is not valid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and
mode requires write access.

The freopen() function is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files. By default stderr is unbuffered, but the use of
freopen() will cause it to become buffered or line-buffered.

The freopen() function has a transitional interface for 64-bit file offsets. See lf64(5).

Usage

freopen(3C)

Basic Library Functions 267

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fclose(3C), fdopen(3C), fopen(3C), stdio(3C), attributes(5), lf64(5), standards(5)

Attributes

See Also

freopen(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002268

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fseek, fseeko – reposition a file-position indicator in a stream

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

int fseeko(FILE *stream, off_t offset, int whence);

The fseek() function sets the file-position indicator for the stream pointed to by stream. The
fseeko() function is identical to fseek() except for the type of offset.

The new position, measured in bytes from the beginning of the file, is obtained by adding
offset to the position specified by whence, whose values are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes.

SEEK_CUR Set position to current location plus offset.

SEEK_END Set position to EOF plus offset.

If the stream is to be used with wide character input/output functions, offset must either be 0
or a value returned by an earlier call to ftell(3C) on the same stream and whence must be
SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes any
effects of ungetc(3C) and ungetwc(3C) on the same stream. After an fseek() call, the next
operation on an update stream may be either input or output.

If the most recent operation, other than ftell(3C), on a given stream is fflush(3C), the file
offset in the underlying open file description will be adjusted to reflect the location specified by
fseek().

The fseek() function allows the file-position indicator to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the gap will
return bytes with the value 0 until data is actually written into the gap.

The value of the file offset returned by fseek() on devices which are incapable of seeking is
undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek()
will cause the unwritten data to be written to the file and mark the st_ctime and st_mtime

fields of the file for update.

The fseek() and fseeko() functions return 0 on success; otherwise, they returned −1 and set
errno to indicate the error.

The fseek() and fseeko() functions will fail if, either the stream is unbuffered or the stream's
buffer needed to be flushed, and the call to fseek() or fseeko() causes an underlying
lseek(2) or write(2) to be invoked:

Name

Synopsis

Description

Return Values

Errors

fseek(3C)

Basic Library Functions 269

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the process would be delayed
in the write operation.

EBADF The file descriptor underlying the stream file is not open for writing or the stream's
buffer needed to be flushed and the file is not open.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the
process's file size limit, or the file is a regular file and an attempt was made to write
at or beyond the offset maximum associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal, and no data was
transferred.

EINVAL The whence argument is invalid. The resulting file-position indicator would be set
to a negative value.

EIO A physical I/O error has occurred; or the process is a member of a background
process group attempting to perform a write(2) operation to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and
the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EPIPE The file descriptor underlying stream is associated with a pipe or FIFO.

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal will also be sent to the calling thread.

The fseek() function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be represented correctly
in an object of type long.

The fseeko() function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be represented correctly
in an object of type off_t.

Although on the UNIX system an offset returned by ftell() or ftello() (see ftell(3C)) is
measured in bytes, and it is permissible to seek to positions relative to that offset, portability to
non-UNIX systems requires that an offset be used by fseek() directly. Arithmetic may not
meaningfully be performed on such an offset, which is not necessarily measured in bytes.

The fseeko() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

Usage

Attributes

fseek(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003270

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getrlimit(2), ulimit(2), ftell(3C), rewind(3C), ungetc(3C), ungetwc(3C), attributes(5),
lf64(5), standards(5)

See Also

fseek(3C)

Basic Library Functions 271

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ulimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fsetpos – reposition a file pointer in a stream

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

The fsetpos() function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos, which must be a value obtained from an
earlier call to fgetpos(3C) on the same stream.

A successful call to fsetpos() function clears the end-of-file indicator for the stream and
undoes any effects of ungetc(3C) on the same stream. After an fsetpos() call, the next
operation on an update stream may be either input or output.

The fsetpos() function returns 0 if it succeeds; otherwise it returns a non-zero value and sets
errno to indicate the error.

The fsetpos() function may fail if:

EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a socket.

The fsetpos() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

lseek(2), fgetpos(3C), fopen(3C), fseek(3C), ftell(3C), rewind(3C), ungetc(3C),
attributes(5), lf64(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

fsetpos(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002272

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fsync – synchronize changes to a file

#include <unistd.h>

int fsync(int fildes);

The fsync() function moves all modified data and attributes of the file descriptor fildes to a
storage device. When fsync() returns, all in-memory modified copies of buffers associated
with fildes have been written to the physical medium. The fsync() function is different from
sync(), which schedules disk I/O for all files but returns before the I/O completes. The
fsync() function forces all outstanding data operations to synchronized file integrity
completion (see fcntl.h(3HEAD) definition of O_SYNC.)

The fsync() function forces all currently queued I/O operations associated with the file
indicated by the file descriptor fildes to the synchronized I/O completion state. All I/O
operations are completed as defined for synchronized I/O file integrity completion.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed
to have been completed.

The fsync() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal was caught during execution of the fsync() function.

EIO An I/O error occurred while reading from or writing to the file system.

ENOSPC There was no free space remaining on the device containing the file.

ETIMEDOUT Remote connection timed out. This occurs when the file is on an NFS file
system mounted with the soft option. See mount_nfs(1M).

In the event that any of the queued I/O operations fail, fsync() returns the error conditions
defined for read(2) and write(2).

The fsync() function should be used by applications that require that a file be in a known
state. For example, an application that contains a simple transaction facility might use
fsync() to ensure that all changes to a file or files caused by a given transaction were recorded
on a storage medium.

The manner in which the data reach the physical medium depends on both implementation
and hardware. The fsync() function returns when notified by the device driver that the write
has taken place.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

fsync(3C)

Basic Library Functions 273

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-nfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

mount_nfs(1M), read(2), sync(2), write(2), fcntl.h(3HEAD), fdatasync(3C),
attributes(5), standards(5)

See Also

fsync(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008274

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-nfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sync-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftell, ftello – return a file offset in a stream

#include <stdio.h>

long ftell(FILE *stream);

off_t ftello(FILE *stream);

The ftell() function obtains the current value of the file-position indicator for the stream
pointed to by stream. The ftello() function is identical to ftell() except for the return type.

Upon successful completion, the ftell() and ftello() functions return the current value of
the file-position indicator for the stream measured in bytes from the beginning of the file.
Otherwise, they return −1 and sets errno to indicate the error.

The ftell() and ftello() functions will fail if:

EBADF The file descriptor underlying stream is not an open file descriptor.

ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a socket.

The ftell() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object of type
long.

The ftello() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object of type
off_t.

The ftello() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

lseek(2), fopen(3C), fseek(3C), attributes(5), , standards(5), lf64(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

ftell(3C)

Basic Library Functions 275

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

ftime – get date and time

#include <sys/timeb.h>

int ftime(struct timeb *tp);

The ftime() function sets the time and millitm members of the timeb structure pointed to
by tp. The structure is defined in <sys/timeb.h> and contains the following members:

time_t time;

unsigned short millitm;

short timezone;

short dstflag;

The time and millitm members contain the seconds and milliseconds portions, respectively,
of the current time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970.

The timezone member contains the local time zone. The dstflag member contains a flag
that, if non-zero, indicates that Daylight Saving time applies locally during the appropriate
part of the year.

The contents of the timezone and dstflag members of tp after a call to ftime() are
unspecified.

Upon successful completion, the ftime() function returns 0. Otherwise −1 is returned.

No errors are defined.

For portability to implementations conforming to earlier versions of this document, time(2) is
preferred over this function.

The millisecond value usually has a granularity greater than one due to the resolution of the
system clock. Depending on any granularity (particularly a granularity of one) renders code
non-portable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

date(1), time(2), ctime(3C), gettimeofday(3C), timezone(4), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

ftime(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002276

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1date-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftok – generate an IPC key

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

The ftok() function returns a key based on path and id that is usable in subsequent calls to
msgget(2), semget(2) and shmget(2). The path argument must be the pathname of an existing
file that the process is able to stat(2).

The ftok() function will return the same key value for all paths that name the same file, when
called with the same id value, and will return different key values when called with different id
values.

If the file named by path is removed while still referred to by a key, a call to ftok() with the
same path and id returns an error. If the same file is recreated, then a call to ftok() with the
same path and id is likely to return a different key.

Only the low order 8-bits of id are significant. The behavior of ftok() is unspecified if these
bits are 0.

Upon successful completion, ftok() returns a key. Otherwise, ftok() returns (key_t)−1 and
sets errno to indicate the error.

The ftok() function will fail if:

EACCES Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of the path prefix is not a directory.

The ftok() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX} .

For maximum portability, id should be a single-byte character.

Another way to compose keys is to include the project ID in the most significant byte and to
use the remaining portion as a sequence number. There are many other ways to form keys, but
it is necessary for each system to define standards for forming them. If some standard is not
adhered to, it will be possible for unrelated processes to unintentionally interfere with each

Name

Synopsis

Description

Return Values

Errors

Usage

ftok(3C)

Basic Library Functions 277

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

other's operation. It is still possible to interfere intentionally. Therefore, it is strongly
suggested that the most significant byte of a key in some sense refer to a project so that keys do
not conflict across a given system.

Since the ftok() function returns a value based on the id given and the file serial number of
the file named by path in a type that is no longer large enough to hold all file serial numbers, it
may return the same key for paths naming different files on large filesystems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

msgget(2), semget(2), shmget(2), stat(2), attributes(5), standards(5)

Notes

Attributes

See Also

ftok(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002278

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ftw, nftw – walk a file tree

#include <ftw.h>

int ftw(const char *path, int (*fn) (const char *,

const struct stat *, int), int depth);

int nftw(const char *path, int (*fn) (const char *,

const struct stat *, int, struct FTW *), int depth,
int flags);

The ftw() function recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw() calls the user-defined function fn, passing it a pointer to a
null-terminated character string containing the name of the object, a pointer to a stat
structure (see stat(2)) containing information about the object, and an integer. Possible
values of the integer, defined in the <ftw.h> header, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the directory are not
processed.

FTW_NS The stat() function failed on the object because of lack of appropriate
permission or the object is a symbolic link that points to a non-existent file. The
stat buffer passed to fn is undefined.

The ftw() function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a non-zero
value, or some error is detected within ftw() (such as an I/O error). If the tree is exhausted,
ftw() returns 0. If fn returns a non-zero value, ftw() stops its tree traversal and returns
whatever value was returned by fn.

The nftw() function is similar to ftw() except that it takes the additional argument flags,
which is a bitwise-inclusive OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() changes the current working directory to each directory as it
reports files in that directory. If clear, nftw() does not change the current
working directory.

FTW_DEPTH If set, nftw() reports all files in a directory before reporting the directory itself.
If clear, nftw() reports any directory before reporting the files in that
directory.

FTW_MOUNT If set, nftw() reports only files in the same file system as path. If clear, nftw()
reports all files encountered during the walk.

FTW_PHYS If set, nftw() performs a physical walk and does not follow symbolic links.

Name

Synopsis

Description

ftw(3C)

Basic Library Functions 279

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() follows links instead of reporting them, but
does not report any directory that would be a descendant of itself. If FTW_PHYS is clear and
FTW_DEPTH is clear, nftw() follows links instead of reporting them, but does not report the
contents of any directory that would be a descendant of itself.

At each file it encounters, nftw() calls the user-supplied function fn with four arguments:

■ The first argument is the pathname of the object.
■ The second argument is a pointer to the stat buffer containing information on the object.
■ The third argument is an integer giving additional information. Its value is one of the

following:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
only occurs if the FTW_DEPTH flag is included in flags.)

FTW_SL The object is a symbolic link. (This condition only occurs if the FTW_PHYS
flag is included in flags.)

FTW_SLN The object is a symbolic link that points to a non-existent file. (This condition
only occurs if the FTW_PHYS flag is not included in flags.)

FTW_DNR The object is a directory that cannot be read. The user-defined function fn
will not be called for any of its descendants.

FTW_NS The stat() function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn is undefined. Failure of stat() for
any other reason is considered an error and nftw() returns −1.

■ The fourth argument is a pointer to an FTW structure that contains the following members:

int base;

int level;

The base member is the offset of the object's filename in the pathname passed as the first
argument to fn(). The value of level indicates the depth relative to the root of the walk,
where the root level is 0.

The results are unspecified if the application-supplied fn() function does not preserve the
current working directory.

Both ftw() and nftw() use one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors used. If depth is zero or negative, the effect is the same as if
it were 1. It must not be greater than the number of file descriptors currently available for use.
The ftw() function runs faster if depth is at least as large as the number of levels in the tree.
Both ftw() and nftw() are able to descend to arbitrary depths in a file hierarchy and do not

ftw(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2007280

fail due to path length limitations unless either the length of the path name pointed to by the
path argument exceeds {PATH_MAX} requirements, or for ftw(), the specified depth is less than
2, or for nftw(), the specified depth is less than 2 and FTW_CHDIR is not set. When ftw() and
nftw() return, they close any file descriptors they have opened; they do not close any file
descriptors that might have been opened by fn.

If the tree is exhausted, ftw() and nftw() return 0. If the function pointed to by fn returns a
non-zero value, ftw() and nftw() stop their tree traversal and return whatever value was
returned by the function pointed to by fn. If ftw() and nftw() detect an error, they return −1
and set errno to indicate the error.

If ftw() and nftw() encounter an error other than EACCES (see FTW_DNR and FTW_NS above),
they return −1 and set errno to indicate the error. The external variable errno can contain any
error value that is possible when a directory is opened or when one of the stat functions is
executed on a directory or file.

The ftw() and nftw() functions will fail if:

ELOOP A loop exists in symbolic links encountered during resolution of the path
argument

ENAMETOOLONG The length of the path name pointed to by the path argument exceeds
{PATH_MAX}, or a path name component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENOTDIR A component of path is not a directory.

EOVERFLOW A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file
hierarchy.

The ftw() function will fail if:

EACCES Search permission is denied for any component of path or read permission
is denied for path.

ENAMETOOLONG The ftw() function has descended to a path that exceeds {PATH_MAX} and
the depth argument specified by the application is less than 2 and
FTW_CHDIR is not set.

The nftw() function will fail if:

EACCES Search permission is denied for any component of path or read permission is
denied for path, or fn() returns −1 and does not reset errno.

The nftw() and ftw() functions may fail if:

Return Values

Errors

ftw(3C)

Basic Library Functions 281

ELOOP Too many symbolic links were encountered during resolution of the path
argument.

ENAMETOOLONG Pathname resolution of a symbolic link in the path name pointed to by the
path argument produced an intermediate result whose length exceeds
{PATH_MAX}.

The ftw() function may fail if:

EINVAL The value of the depth argument is invalid.

The nftw() function may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE Too many files are currently open in the system.

If the function pointed to by fn encounters system errors, errno may be set accordingly.

EXAMPLE 1 Walk a directory structure using ftw().

The following example walks the current directory structure, calling the fn() function for
every directory entry, using at most 10 file descriptors:

#include <ftw.h>

...

if (ftw(".", fn, 10) != 0) {

perror("ftw"); exit(2);

}

EXAMPLE 2 Walk a directory structure using nftw().

The following example walks the /tmp directory and its subdirectories, calling the nftw()
function for every directory entry, to a maximum of 5 levels deep.

#include <ftw.h>

...

int nftwfunc(const char *, const struct stat *, int, struct FTW *);

int nftwfunc(const char *filename, const struct stat *statptr,

int fileflags, struct FTW *pfwt)

{

return 0;

}

...

char *startpath = "/tmp";
int depth = 5;

int flags = FTW_CHDIR | FTW_DEPTH | FTW_MOUNT;

int ret;

ret = nftw(startpath, nftwfunc, depth, flags);

Examples

ftw(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2007282

Because ftw() and nftw() are recursive, they can terminate with a memory fault when
applied by a thread with a small stack to very deep file structures.

The ftw() and nftw() functions allocate resources (memory, file descriptors) during their
operation. If ftw() they are forcibly terminated, such as by longjmp(3C) being executed by fn
or an interrupt routine, they will not have a chance to free those resources, so they remain
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred and arrange to have fn return a non-zero value at its next invocation.

The ftw() and nftw() functions have transitional interfaces for 64-bit file offsets. See lf64(5).

The ftw() function is safe in multithreaded applications. The nftw() function is safe in
multithreaded applications when the FTW_CHDIR flag is not set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

stat(2), longjmp(3C), attributes(5), lf64(5), standards(5)

Usage

Attributes

See Also

ftw(3C)

Basic Library Functions 283

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwide – set stream orientation

#include <stdio.h>

#include <wchar.h>

int fwide(FILE *stream, int mode);

The fwide() function determines the orientation of the stream pointed to by stream. If mode
is greater than 0, the function first attempts to make the stream wide-orientated. If mode is less
than 0, the function first attempts to make the stream byte-orientated. Otherwise, mode is 0
and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for
error situations should set errno to 0, then call fwide(), then check errno and if it is
non-zero, assume an error has occurred.

The fwide() function returns a value greater than 0 if, after the call, the stream has
wide-orientation, a value less than 0 if the stream has byte-orientation, or 0 if the stream has
no orientation.

The fwide() function may fail if:

EBADF The stream argument is not a valid stream.

A call to fwide() with mode set to 0 can be used to determine the current orientation of a
stream.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

fwide(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002284

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwprintf, wprintf, swprintf – print formatted wide-character output

#include <stdio.h>

#include <wchar.h>

int fwprintf(FILE *restrict stream, const wchar_t *restrict format,
...);

int wprintf(const wchar_t *restrict format, ...);

int swprintf(wchar_t *restrict s, size_t n, const wchar_t *restrict format,
...);

The fwprintf() function places output on the named output stream. The wprintf() function
places output on the standard output stream stdout. The swprintf() function places output
followed by the null wide-character in consecutive wide-characters starting at *s; no more
than n wide-characters are written, including a terminating null wide-character, which is
always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary
wide-characters, which are simply copied to the output stream and conversion specifications,
each of which results in the fetching of zero or more arguments. The results are undefined if
there are insufficient arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX], giving
the position of the argument in the argument list. This feature provides for the definition of
format wide-character strings that select arguments in an order appropriate to specific
languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specifications, each
argument in the argument list is used exactly once.

All forms of the fwprintf() functions allow for the insertion of a language-dependent radix
character in the output string, output as a wide-character value. The radix character is defined
in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

Each conversion specification is introduced by the % wide-character or by the wide-character
sequence %n$, after which the following appear in sequence:
■ Zero or more flags (in any order), which modify the meaning of the conversion

specification.

Name

Synopsis

Description

fwprintf(3C)

Basic Library Functions 285

■ An optional minimum field width. If the converted value has fewer wide-characters than
the field width, it will be padded with spaces by default on the left; it will be padded on the
right, if the left-adjustment flag (−), described below, is given to the field width. The field
width takes the form of an asterisk (*), described below, or a decimal integer.

■ An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions; the number of digits to appear after the radix character for the a, A, e,
E, f, and F conversions; the maximum number of significant digits for the g and G

conversions; or the maximum number of wide-characters to be printed from a string in s

conversions. The precision takes the form of a period (.) followed by either an asterisk (*),
described below, or an optional decimal digit string, where a null digit string is treated as 0.
If a precision appears with any other conversion wide-character, the behavior is undefined.

■ An optional length modifier that specifies the size of the argument.
■ A conversion specifier wide character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted. A
negative field width is taken as a − flag followed by a positive field width. A negative precision
is taken as if the precision were omitted. In format wide-character strings containing the %n$
form of a conversion specification, a field width or precision may be indicated by the sequence
*m$, where m is a decimal integer in the range [1, NL_ARGMAX] giving the position in the
argument list (after the format argument) of an integer argument containing the field width or
precision, for example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined.
When numbered argument specifications are used, specifying the Nth argument requires that
all the leading arguments, from the first to the (N−1)th, are specified in the format
wide-character string.

The flag wide-characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %F, %g, or
%G) will be formatted with thousands' grouping wide-characters. For other
conversions the behavior is undefined. The non-monetary grouping wide-character
is used.

− The result of the conversion will be left-justified within the field. The conversion
will be right-justified if this flag is not specified.

fwprintf(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003286

+ The result of a signed conversion will always begin with a sign (+ or −). The
conversion will begin with a sign only when a negative value is converted if this flag
is not specified.

space If the first wide-character of a signed conversion is not a sign or if a signed
conversion results in no wide-characters, a space will be prefixed to the result. This
means that if the space and + flags both appear, the space flag will be ignored.

This flag specifies that the value is to be converted to an alternative form. For o
conversion, it increases the precision (if necessary) to force the first digit of the
result to be 0. For x or X conversions, a non-zero result will have 0x (or 0X) prefixed
to it. For a, A, e, E, f, F, g, or G conversions, the result will always contain a radix
character, even if no digits follow it. Without this flag, a radix character appears in
the result of these conversions only if a digit follows it. For g and G conversions,
trailing zeros will not be removed from the result as they normally are. For other
conversions, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and − flags both appear, the 0 flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision is specified, the 0 flag will be ignored. If the 0 and ’

flags both appear, the grouping wide-characters are inserted before zero padding.
For other conversions, the behavior is undefined.

The length modifiers and their meanings:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been
promoted according to the integer promotions, but its value shall be converted
to signed char or unsigned char before printing); or that a following n

conversion specifier applies to a pointer to a signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short
or unsigned short argument (the argument will have been promoted
according to the integer promotions, but its value shall be converted to short

or unsigned short before printing); or that a following n conversion specifier
applies to a pointer to a short argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long
or unsigned long argument; that a following n conversion specifier applies to a
pointer to a long argument; that a following c conversion specifier applies to a
wint_t argument; that a following s conversion specifier applies to a pointer to
a wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G
conversion specifier.

fwprintf(3C)

Basic Library Functions 287

ll (ell-ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long
long or unsigned long long argument; or that a following n conversion
specifier applies to a pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion specifier
applies to a pointer to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a following
n conversion specifier applies to a pointer to a signed integer type
corresponding to size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned type argument; or that a following n
conversion specifier applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion wide-characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [−]dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no wide-characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style
dddd. The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit precision
of 0 is no wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style
dddd; the letters abcdef are used. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The result of converting 0
with an explicit precision of 0 is no wide-characters.

fwprintf(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003288

X Behaves the same as the x conversion wide-character except that letters “ABCDEF” are
used instead of “abcdef”.

f, F The double argument is converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the radix character (see setlocale(3C)) is equal to the
precision specification. If the precision is missing it is taken as 6; if the precision is
explicitly 0 and the # flag is not specified, no radix character appears. If a radix
character appears, at least 1 digit appears before it. The converted value is rounded to
fit the specified output format according to the prevailing floating point rounding
direction mode. If the conversion is not exact, an inexact exception is raised.

For the f specifier, a double argument representing an infinity or NaN is converted in
the style of the e conversion specifier, except that for an infinite argument, “infinity”
or “Infinity” is printed when the precision is at least 8 and “inf” or “Inf” is printed
otherwise.

For the F specifier, a double argument representing an infinity or NaN is converted in
the SUSv3 style of the E conversion specifier, except that for an infinite argument,
“INFINITY” is printed when the precision is at least 8 and or “INF” is printed
otherwise.

e, E The double argument is converted in the style [−]d.ddde ± dd, where there is one
digit before the radix character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is 0 and no # flag is present, no radix character appears. The
converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised. The E conversion wide-character will produce a number
with E instead of e introducing the exponent. The exponent always contains at least
two digits. If the value is 0, the exponent is 0.

Infinity and NaN values are handled in one of the following ways:

SUSv3 For the e specifier, a double argument representing an infinity is printed
as “[−]infinity”, when the precision for the conversion is at least 7 and
as “[−]inf” otherwise. A double argument representing a NaN is printed
as “[−]nan”. For the E specifier, “INF“, “INFINITY”, and “NAN”are printed
instead of “inf”, “infinity”, and “nan”, respectively. Printing of the sign
follows the rules described above.

Default A double argument representing an infinity is printed as “[−]Infinity”,
when the precision for the conversion is at least 7 and as “[−]Inf”
otherwise. A double argument representing a NaN is printed as “[−]NaN”.
Printing of the sign follows the rules described above.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G
conversion wide-character), with the precision specifying the number of significant

fwprintf(3C)

Basic Library Functions 289

digits. If an explicit precision is 0, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a radix character appears only if it is
followed by a digit.

A double argument representing an infinity or NaN is converted in the style of the e
or E conversion specifier, except that for an infinite argument, “infinity”, “INFINITY”,
or “Infinity” is printed when the precision is at least 8 and “inf”, “INF”, or “Inf” is
printed otherwise.

a, A A double argument representing a floating-point number is converted in the style
“[-]0xh.hhhhp±d”, where the single hexadecimal digit preceding the radix point is 0 if
the value converted is zero and 1 otherwise and the number of hexadecimal digits after
it are equal to the precision; if the precision is missing, the number of digits printed
after the radix point is 13 for the conversion of a double value, 16 for the conversion of
a long double value on x86, and 28 for the conversion of a long double value on
SPARC; if the precision is zero and the '#' flag is not specified, no decimal-point wide
character appears. The letters “abcdef” are used for a conversion and the letters
“ABCDEF” for A conversion. The A conversion specifier produces a number with 'X'
and 'P' instead of 'x' and 'p'. The exponent always contains at least one digit, and only
as many more digits as necessary to represent the decimal exponent of 2. If the value is
zero, the exponent is zero.

The converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised.

A double argument representing an infinity or NaN is converted in the SUSv3 style of
an e or E conversion specifier.

c If no l (ell) qualifier is present, the int argument is converted to a wide-character as if
by calling the btowc(3C) function and the resulting wide-character is written.
Otherwise the wint_t argument is converted to wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a character array
containing a character sequence beginning in the initial shift state. Characters from
the array are converted as if by repeated calls to the mbrtowc(3C) function, with the
conversion state described by an mbstate_t object initialized to zero before the first
character is converted, and written up to (but not including) the terminating null
wide-character. If the precision is specified, no more than that many wide-characters
are written. If the precision is not specified or is greater than the size of the array, the
array must contain a null wide-character.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type
wchar_t. Wide characters from the array are written up to (but not including) a

fwprintf(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003290

terminating null wide-character. If no precision is specified or is greater than the size
of the array, the array must contain a null wide-character. If a precision is specified, no
more than that many wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a
sequence of printable wide-characters.

n The argument must be a pointer to an integer into which is written the number of
wide-characters written to the output so far by this call to one of the fwprintf()
functions. No argument is converted.

C Same as lc.

S Same as ls.

% Output a % wide-character; no argument is converted. The entire conversion
specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by fwprintf() and wprintf() are printed as if
fputwc(3C) had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fwprintf() or wprintf() and the next successful completion of a call
to fflush(3C) or fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

Upon successful completion, these functions return the number of wide-characters
transmitted excluding the terminating null wide-character in the case of swprintf() or a
negative value if an output error was encountered.

If n or more wide characters were requested to be written, swprintf() returns a negative
value.

For the conditions under which fwprintf() and wprintf() will fail and may fail, refer to
fputwc(3C).

In addition, all forms of fwprintf() may fail if:

EILSEQ A wide-character code that does not correspond to a valid character has been
detected.

EINVAL There are insufficient arguments.

In addition, wprintf() and fwprintf() may fail if:

ENOMEM Insufficient storage space is available.

Return Values

Errors

fwprintf(3C)

Basic Library Functions 291

EXAMPLE 1 Print Language-dependent Date and Time Format.

To print the language-independent date and time format, the following statement could be
used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

btowc(3C), fputwc(3C), fwscanf(3C), mbrtowc(3C), setlocale(3C), attributes(5),
standards(5)

The fwprintf(), wprintf(), and swprintf() functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not being called to change the locale.

If the j length modifier is used, 32-bit applications that were compiled using c89 on releases
prior to Solaris 10 will experience undefined behavior.

Examples

Attributes

See Also

Notes

fwprintf(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003292

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwrite – binary output

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);

The fwrite() function writes, from the array pointed to by ptr, up to nitems elements whose
size is specified by size, to the stream pointed to by stream. For each object, size calls are made
to the fputc(3C) function, taking the values (in order) from an array of unsigned char
exactly overlaying the object. The file-position indicator for the stream (if defined) is advanced
by the number of bytes successfully written. If an error occurs, the resulting value of the
file-position indicator for the stream is unspecified.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fwrite() and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The fwrite() function returns the number of elements successfully written, which might be
less than nitems if a write error is encountered. If size or nitems is 0, fwrite() returns 0 and
the state of the stream remains unchanged. Otherwise, if a write error occurs, the error
indicator for the stream is set and errno is set to indicate the error.

Refer to fputc(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite() are application-dependent, and possibly cannot be read using fread(3C) by a
different application or by the same application on a different processor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

write(2), fclose(3C), ferror(3C), fopen(3C), fread(3C), getc(3C), gets(3C), printf(3C),
putc(3C), puts(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

fwrite(3C)

Basic Library Functions 293

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf – convert formatted wide-character
input

#include <stdio.h>

#include <wchar.h>

int fwscanf(FILE *restrict stream, const wchar_t *restrict format, ...);

int wscanf(const wchar_t *restrict format, ...);

int swscanf(const wchar_t *restrict s, const wchar_t *restrict format,
...);

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwscanf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswcanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

The fwscanf() function reads from the named input stream.

The wscanf() function reads from the standard input stream stdin.

The swscanf() function reads from the wide-character string s.

The vfwscanf(), vswscanf(), and vwscanf() functions are equivalent to the fwscanf(),
swscanf(), and wscanf() functions, respectively, except that instead of being called with a
variable number of arguments, they are called with an argument list as defined by the
<stdarg.h> header . These functions do not invoke the va_end() macro. Applications using
these functions should call va_end(ap) afterwards to clean up.

Each function reads wide-characters, interprets them according to a format, and stores the
results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should
be stored. The result is undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX]. This
feature provides for the definition of format wide-character strings that select arguments in an
order appropriate to specific languages. In format wide-character strings containing the %n$
form of conversion specifications, it is unspecified whether numbered arguments in the
argument list can be referenced from the format wide-character string more than once.

Name

Synopsis

Description

fwscanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008294

The format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide-characters (space, tab,
newline, vertical-tab or form-feed characters); an ordinary wide-character (neither % nor a
white-space character); or a conversion specification. Each conversion specification is
introduced by a % or the sequence %n$ after which the following appear in sequence:
■ An optional assignment-suppressing character *.
■ An optional non-zero decimal integer that specifies the maximum field width.
■ An option length modifier that specifies the size of the receiving object.
■ A conversion specifier wide-character that specifies the type of conversion to be applied.

The valid conversion wide-characters are described below.

The fwscanf() functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading
input until no more valid input can be read, or up to the first wide-character which is not a
white-space wide-character, which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character
is read from the input and compared with the wide-character that comprises the directive; if
the comparison shows that they are not equivalent, the directive fails, and the differing and
subsequent wide-characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide-character. A conversion specification is executed in
the following steps:

Input white-space wide-characters (as specified by iswspace(3C)) are skipped, unless the
conversion specification includes a [, c, or n conversion character.

An item is read from the input unless the conversion specification includes an n conversion
wide-character. The length of the item read is limited to any specified maximum field width.
In Solaris default mode, the input item is defined as the longest sequence of input
wide-characters that forms a matching sequence. In some cases, fwscanf() might need to
read several extra wide-characters beyond the end of the input item to find the end of a

fwscanf(3C)

Basic Library Functions 295

matching sequence. In C99/SUSv3 mode, the input item is defined as the longest sequence of
input wide-characters that is, or is a prefix of, a matching sequence. With this definition,
fwscanf() need only read at most one wide-character beyond the end of the input item.
Therefore, in C99/SUSv3 mode, some sequences that are acceptable to wcstod(3C),
wcstol(3C), and similar functions are unacceptable to fwscanf(). In either mode, fwscanf()
attempts to push back any excess bytes read using ungetc(3C). Assuming all such attempts
succeed, the first wide-character, if any, after the input item remains unread. If the length of
the input item is 0, the conversion fails. This condition is a matching failure unless end-of-file,
an encoding error, or a read error prevented input from the stream, in which case it is an input
failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n
conversion specification, the count of input wide-characters) is converted to a type
appropriate to the conversion wide-character. If the input item is not a matching sequence,
the execution of the conversion specification fails; this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already
received a conversion result if the conversion specification is introduced by %, or in the nth
argument if introduced by the wide-character sequence %n$. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in the space
provided, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e,
E, f, F, g, or G conversion specifier applies to an argument with type pointer to
double; or that a following c, s, or [conversion specifier applies to an
argument with type pointer to wchar_t.

ll (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer
type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

fwscanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008296

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion wide-characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstol(3C) with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of wcstol(3C) with 0 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of wcstoul(3C) with the value 8 for the base argument. In
the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstoul(3C) with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul(3C) with the value 16 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

a,e,f,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject sequence of wcstod(3C). In the absence of a size modifier,
the corresponding argument must be a pointer to float. The e, f, and g specifiers
match hexadecimal floating point values only in C99/SUSv3 (see standards(5))
mode, but the a specifier always matches hexadecimal floating point values.

These conversion specifiers match any subject sequence accepted by strtod(3C),
including the INF, INFINITY, NAN, and NAN(n-char-sequence) forms. The result
of the conversion is the same as that of calling strtod() (or strtof() or
strtold()) with the matching sequence, including the raising of floating point
exceptions and the setting of errno to ERANGE, if applicable.

s Matches a sequence of non white-space wide-characters. If no l (ell) qualifier is
present, characters from the input field are converted as if by repeated calls to the
wcrtomb(3C) function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide-character is converted. The corresponding

fwscanf(3C)

Basic Library Functions 297

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

argument must be a pointer to a character array large enough to accept the
sequence and the terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide-character,
which will be added automatically.

[Matches a non-empty sequence of wide-characters from a set of expected
wide-characters (the scanset). If no l (ell) qualifier is present, wide-characters from
the input field are converted as if by repeated calls to the wcrtomb() function, with
the conversion state described by an mbstate_t object initialized to zero before the
first wide-character is converted. The corresponding argument must be a pointer
to a character array large enough to accept the sequence and the terminating null
character, which will be added automatically.

If an l (ell) qualifier is present, the corresponding argument must be a pointer to an
array of wchar_t large enough to accept the sequence and the terminating null
wide-character, which will be added automatically.

The conversion specification includes all subsequent widw characters in the format
string up to and including the matching right square bracket (]). The
wide-characters between the square brackets (the scanlist) comprise the scanset,
unless the wide-character after the left square bracket is a circumflex (^), in which
case the scanset contains all wide-characters that do not appear in the scanlist
between the circumflex and the right square bracket. If the conversion specification
begins with [] or [^], the right square bracket is included in the scanlist and the
next right square bracket is the matching right square bracket that ends the
conversion specification; otherwise the first right square bracket is the one that
ends the conversion specification. If a minus-sign (−) is in the scanlist and is not
the first wide-character, nor the second where the first wide-character is a ^, nor
the last wide-character, it indicates a range of characters to be matched.

c Matches a sequence of wide-characters of the number specified by the field width
(1 if no field width is present in the conversion specification). If no l (ell) qualifier
is present, wide-characters from the input field are converted as if by repeated calls
to the wcrtomb() function, with the conversion state described by an mbstate_t

object initialized to zero before the first wide-character is converted. The
corresponding argument must be a pointer to a character array large enough to
accept the sequence. No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence. No null wide-character is added.

p Matches the set of sequences that is the same as the set of sequences that is
produced by the %p conversion of the corresponding fwprintf(3C) functions. The
corresponding argument must be a pointer to a pointer to void. If the input item is

fwscanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008298

a value converted earlier during the same program execution, the pointer that
results will compare equal to that value; otherwise the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the
integer into which is to be written the number of wide-characters read from the
input so far by this call to the fwscanf() functions. Execution of a %n conversion
specification does not increment the assignment count returned at the completion
of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters A, E, F, G, and X are also valid and behave the same as, respectively,
a, e, f, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide-characters matching the current conversion specification (except for %n) have
been read (other than leading white-space, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in swscanf() is equivalent to encountering end-of-file for
fwscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline) is left unread unless matched by a conversion
specification. The success of literal matches and suppressed assignments is only directly
determinable via the %n conversion specification.

The fwscanf() and wscanf() functions may mark the st_atime field of the file associated
with stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgetwc(3C), fgets(3C), fgetws(3C), fread(3C), getc(3C),
getwc(3C), getchar(3C), getwchar(3C), gets(3C), fscanf(3C) or fwscanf() using stream
that returns data not supplied by a prior call to ungetc(3C).

Upon successful completion, these functions return the number of successfully matched and
assigned input items; this number can be 0 in the event of an early matching failure. If the

Return Values

fwscanf(3C)

Basic Library Functions 299

input ends before the first matching failure or conversion, EOF is returned. If a read error
occurs the error indicator for the stream is set, EOF is returned, and errno is set to indicate the
error.

For the conditions under which the fwscanf() functions will fail and may fail, refer to
fgetwc(3C).

In addition, fwscanf() may fail if:

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

EXAMPLE 1 wscanf() example

The call:

int i, n; float x; char name[50];

n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E−1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the
string Hamster.

The call:

int i; float x; char name[50];

(void) wscanf(L"%2d%f%*d %[0123456789], &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar(3C) will return the character a.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Errors

Usage

Examples

Attributes

fwscanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008300

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(3C), fscanf(3C), fwprintf(3C),
getc(3C), getchar(3C), gets(3C), getwc(3C), getwchar(3C), setlocale(3C), strtod(3C),
wcrtomb(3C), wcstod(3C), wcstol(3C), wcstoul(3C), attributes(5), standards(5)

The behavior of the conversion specifier “%%” has changed for all of the functions described
on this manual page. Previously the “%%” specifier accepted a “%” character from input only if
there were no preceding whitespace characters. The new behavior accepts “%” even if there are
preceding whitespace characters. This new behavior now aligns with the description on this
manual page and in various standards. If the old behavior is desired, the conversion
specification “%*[%]” can be used.

See Also

Notes

fwscanf(3C)

Basic Library Functions 301

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4) entry. Entries
can come from any of the sources specified in the nsswitch.conf(4) file.

The getauthattr() function enumerates auth_attr entries. The getauthnam() function
searches for an auth_attr entry with a given authorization name name. Successive calls to
these functions return either successive auth_attr entries or NULL.

Th internal representation of an auth_attr entry is an authattr_t structure defined in
<auth_attr.h> with the following members:

char *name; /* name of the authorization */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

char *short_desc; /* short description */

char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of auth_attr
entries. Calls to getauthnam() can leave the enumeration in an indeterminate state.
Therefore, setauthattr() should be called before the first call to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing is complete;
the system may then close any open auth_attr file, deallocate storage, and so forth.

The chkauthattr() function verifies whether or not a user has a given authorization. It first
reads the user_attr(4) database and returns 1 if it finds a match for the given authorization. If
it does not find a match in user_attr, chkauthattr() reads the prof_attr(4) database using
the list of profiles assigned to the user and checks if any of the profiles assigned to the user has
the given authorization. When chkauthattr() finds a profile called “Stop”, further profiles
are ignored, the authorizations and profiles mentioned in /etc/security/policy.conf are
ignored and it returns 0. If it does not find a match in the user's profiles, chkauthattr() reads
the AUTHS_GRANTED key in the /etc/security/policy.conf file and returns 1 if it finds a
match for the given authorization. If chkauthattr() does not find a match and the username
is the name of the “console user”, defined as the owner of /dev/console, it first reads the
CONSOLE_USER key in /etc/security/policy.conf and returns 1 if the given authorization is

Name

Synopsis

Description

getauthattr(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Mar 2011302

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

in any of the profiles specified in the CONSOLE_USER keyword, then reads the PROFS_GRANTED
key in /etc/security/policy.conf and returns 1 if the given authorization is in any profiles
specified with the PROFS_GRANTED keyword. The chkauthattr() function returns 0 if it does
not find a match in any of the three sources or if the user does not exist.

Authorization names consist of a hierarchical set of dot (.)-separated words, called the
predicate, and an optional object qualifier preceded by a slash character (/). Authorizations
listed in user_attr and prof_attr may contain an asterisk (*) following the final dot in the
predicate to indicate a wildcard. The reserved word grant, used for delegating authorizations,
is not matched by *.

A user is considered to have been assigned an authorization if all of the following are true:
■ The authorization name matches exactly any authorization assigned in the user_attr or

prof_attr databases (authorization names are case-sensitive).
■ The predicate of authname matches the predicate of an authorization completely, or the

predicate does not end in grant and matches up to the * if present.
■ The authorization name suffix is not the key word grant and the authorization name

matches any authorization up to the asterisk (*) character assigned in the user_attr or
prof_attr databases.

■ If the authorization includes an object qualifier, then authname must include the same
object qualifier.

The examples in the following table illustrate the conditions under which a user is assigned an
authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

solaris.zone.login/z1 solaris.zone.* Yes

solaris.zone.login solaris.zone.*/z1 No

The free_authattr() function releases memory allocated by the getauthnam() and
getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Return Values

getauthattr(3C)

Basic Library Functions 303

The chkauthattr() function returns 1 if the user is authorized and 0 if the user does not exist
or is not authorized.

The getauthattr() and getauthnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_authattr() call.

Individual attributes in the attr structure can be referred to by calling the kva_match(3C)
function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown
key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for the name server
switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3C), getprofattr(3C), getuserattr(3C), auth_attr(4), nsswitch.conf(4),
prof_attr(4), user_attr(4), attributes(5), rbac(5)

Usage

Warnings

Files

Attributes

See Also

getauthattr(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Mar 2011304

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auth-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rbac-5

getcpuid, gethomelgroup – obtain information on scheduling decisions

#include <sys/processor.h>

processorid_t getcpuid(void);

ushort_t gethomelgroup(void);

The getcpuid() function returns the processor ID on which the calling thread is currently
executing.

The gethomelgroup() function returns the home locality group ID of the calling thread.

See DESCRIPTION.

No errors are defined.

Both the current CPU and the home locality group can change at any time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The getcpuid() function is Committed. The gethomelgroup() function is Obsolete.

psradm(1M), psrinfo(1M), psrset(1M), p_online(2), processor_bind(2),
processor_info(2), pset_assign(2), pset_bind(2), pset_info(2), meminfo(2),
lgrp_home(3LGRP), sysconf(3C), attributes(5)

The gethomelgroup() function is obsolete and might be removed in a future release. It has
been replaced by lgrp_home(3LGRP).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

getcpuid(3C)

Basic Library Functions 305

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psradm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1p-online-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1processor-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1processor-info-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-assign-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-info-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1meminfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lgrp-home-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lgrp-home-3lgrp

getcwd – get pathname of current working directory

#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd() function places an absolute pathname of the current working directory in the
array pointed to by buf, and returns buf. The pathname copied to the array contains no
components that are symbolic links. The size argument is the size in bytes of the character
array pointed to by buf and must be at least one greater than the length of the pathname to be
returned.

If buf is not a null pointer, the pathname is stored in the space pointed to by buf.

If buf is a null pointer, getcwd() obtains size bytes of space using malloc(3C). The pointer
returned by getcwd() can be used as the argument in a subsequent call to free().

Upon successful completion, getcwd() returns the buf argument. If buf is an invalid
destination buffer address, NULL is returned and errno is set to EFAULT. Otherwise, a null
pointer is returned and errno is set to indicate the error.

The getcwd() function will fail if:

EFAULT The buf argument is an invalid destination buffer address.

EINVAL The size argument is equal to 0.

ERANGE The size argument is greater than 0 and less than the length of the pathname plus
1.

The getcwd() function may fail if:

EACCES A parent directory cannot be read to get its name.

ENOMEM Insufficient storage space is available.

EXAMPLE 1 Determine the absolute pathname of the current working directory.

The following example returns a pointer to an array that holds the absolute pathname of the
current working directory. The pointer is returned in the ptr variable, which points to the buf
array where the pathname is stored.

#include <stdlib.h>

#include <unistd.h>

...

long size;

char *buf;

char *ptr;

size = pathconf(".", _PC_PATH_MAX);

if ((buf = (char *)malloc((size_t)size)) != NULL)

ptr = getcwd(buf, (size_t)size);

Name

Synopsis

Description

Return Values

Errors

Examples

getcwd(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Oct 2004306

EXAMPLE 1 Determine the absolute pathname of the current working directory. (Continued)

...

EXAMPLE 2 Print the current working directory.

The following example prints the current working directory.

#include <unistd.h>

#include <stdio.h>

main()

{

char *cwd;

if ((cwd = getcwd(NULL, 64)) == NULL) {

perror("pwd");
exit(2);

}

(void)printf("%s\n", cwd);

free(cwd); /* free memory allocated by getcwd() */

return(0);

}

Applications should exercise care when using chdir(2) in conjunction with getcwd(). The
current working directory is global to all threads within a process. If more than one thread
calls chdir() to change the working directory, a subsequent call to getcwd() could produce
unexpected results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

chdir(2), malloc(3C), attributes(5), standards(5)

Usage

Attributes

See Also

getcwd(3C)

Basic Library Functions 307

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdate – convert user format date and time

#include <time.h>

struct tm *getdate(const char *string);
extern int getdate_err;

The getdate() function converts user-definable date and/or time specifications pointed to by
string to a tm structure. The tm structure is defined in the <time.h> header.

User-supplied templates are used to parse and interpret the input string. The templates are
text files created by the user and identified via the environment variable DATEMSK. Each line in
the template represents an acceptable date and/or time specification using conversion
specifications similar to those used by strftime(3C) and strptime(3C). Dates before 1902
and after 2037 are illegal. The first line in the template that matches the input specification is
used for interpretation and conversion into the internal time format.

The following conversion specifications are supported:

%% Same as %.

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

%B Locale's full month name.

%c Locale's appropriate date and time representation.

%C Century number (the year divided by 100 and truncated to an integer as a decimal
number [1,99]); single digits are preceded by 0; see standards(5). If used without the
%y specifier, this format specifier will assume the current year offset in whichever
century is specified. The only valid years are between 1902-2037.

%d day of month [01,31]; leading zero is permitted but not required.

%D Date as %m/%d/%y.

%e Same as %d.

%F Equivalent to %Y-%m-%d (the ISO 8601:2004 standard date in extended format).

%g Week-based year within century [00,99]; leading zero is permitted but not required.

%G Week-based year, including the century [0000,9999]; leading zero is permitted but not
required.

%h Locale's abbreviated month name.

%H Hour (24-hour clock) [0,23]; leading zero is permitted but not required.

%I Hour (12-hour clock) [1,12]; leading zero is permitted but not required.

Name

Synopsis

Description

Conversion
Specifications

getdate(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010308

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

%j Day number of the year [1,366]; leading zeros are permitted but not required.

%k Same as %H.

%l Same as %I.

%m Month number [1,12]; leading zero is permitted but not required.

%M Minute [0,59]; leading zero is permitted but not required.

%n Any white space.

%p Locale's equivalent of either a.m. or p.m.

%P Locale's equivalent of either a.m. or p.m. in case-insensitive manner.

%r Appropriate time representation in the 12-hour clock format with %p.

%R Time as %H:%M.

SUSv3

%S Seconds [0,60]; leading zero is permitted but not required. The range of values is
[00,60] rather than [00,59] to allow for the occasional leap second.

Default and other standards

%S Seconds [0,61]; leading zero is permitted but not required. The range of values is
[00,61] rather than [00,59] to allow for the occasional leap second and even more
occasional double leap second.

%t Any white space.

%T Time as %H:%M:%S.

%u Weekday as a decimal number [1,7], with 1 representing Monday.

%U Week number of the year as a decimal number [0,53], with Sunday as the first day of
the week; leading zero is permitted but not required.

%V The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601 week-based
system, weeks begin on a Monday and week 1 of the year is the week that includes both
January 4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of the year as a decimal number [0,53], with Monday as the first day of
the week; leading zero is permitted but not required.

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

getdate(3C)

Basic Library Functions 309

%y Year within century. When a century is not otherwise specified, values in the range
69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the
range 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive).

%Y Year, including the century (for example, 1993).

%z Offset from UTC in ISO 8601:2004 standard basic format (+hhmm or -hhmm), or no
characters if no time zone is determinable.

%Z Time zone name or no characters if no time zone exists.

Some conversion specifications can be modified by the E and O modifier characters to indicate
that an alternative format or specification should be used rather than the one normally used by
the unmodified specification. If the alternative format or specification does not exist in the
current locale, the behavior be as if the unmodified conversion specification were used.

%Ec Locale's alternative appropriate date and time representation.

%EC Name of the base year (period) in the locale's alternative representation.

%Ex Locale's alternative date representation.

%EX Locale's alternative time representation.

%Ey Offset from %EC (year only) in the locale's alternative representation.

%EY Full alternative year representation.

%Od Day of the month using the locale's alternative numeric symbols; leading zeros are
permitted but not required.

%Oe Same as %Od.

%OH Hour (24-hour clock) using the locale's alternative numeric symbols.

%OI Hour (12-hour clock) using the locale's alternative numeric symbols.

%Om Month using the locale's alternative numeric symbols.

%OM Minutes using the locale's alternative numeric symbols.

%OS Seconds using the locale's alternative numeric symbols.

%OU Week number of the year (Sunday as the first day of the week) using the locale's
alternative numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale's alternative numeric symbols.

%OW Week number of the year (Monday as the first day of the week) using the locale's
alternative numeric symbols.

%Oy Year (offset from %C) in the locale's alternative representation and using the locale's
alternative numeric symbols.

Modified Conversion
Specifications

getdate(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010310

The following rules are applied for converting the input specification into the internal format:

■ If only the weekday is given, today is assumed if the given day is equal to the current day
and next week if it is less.

■ If only the month is given, the current month is assumed if the given month is equal to the
current month and next year if it is less and no year is given. (The first day of month is
assumed if no day is given.)

■ If only the year is given, the values of the tm_mon, tm_mday, tm_yday, tm_wday, and
tm_isdst members of the returned tm structure are not specified.

■ If the century is given, but the year within the century is not given, the current year within
the century is assumed.

■ If no hour, minute, and second are given, the current hour, minute, and second are
assumed.

■ If no date is given, today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less.

A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the conversion specification, the specification fails, and the differing and
subsequent characters remain unscanned.

A series of conversion specifications composed of %n, %t, white space characters, or any
combination is executed by scanning up to the first character that is not white space (which
remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character
matching the next conversion specification is scanned, or until no more characters can be
scanned. These characters, except the one matching the next conversion specification, are
then compared to the locale values associated with the conversion specifier. If a match is
found, values for the appropriate tm structure members are set to values corresponding to the
locale information. If no match is found, getdate() fails and no more characters are scanned.

The month names, weekday names, era names, and alternative numeric symbols can consist
of any combination of upper and lower case letters. The user can request that the input date or
time specification be in a specific language by setting the LC_TIME category using
setlocale(3C).

If successful, getdate() returns a pointer to a tm structure; otherwise, it returns NULL and sets
the global variable getdate_err to indicate the error. Subsequent calls to getdate() alter the
contents of getdate_err.

The following is a complete list of the getdate_err settings and their meanings:

1 The DATEMSK environment variable is null or undefined.

Internal Format
Conversion

General Specifications

Return Values

getdate(3C)

Basic Library Functions 311

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 The malloc() function failed (not enough memory is available).

7 There is no line in the template that matches the input.

8 The input specification is invalid (for example, February 31).

The getdate() function makes explicit use of macros described on the ctype(3C) manual
page.

EXAMPLE 1 Examples of the getdate() function.

The following example shows the possible contents of a template:

%m

%A %B %d %Y, %H:%M:%S

%A

%B

%m/%d/%y %I %p

%d,%m,%Y %H:%M

at %A the %dst of %B in %Y

run job at %I %p,%B %dnd

%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("10/1/87 4 PM")
getdate("Friday")
getdate("Friday September 19 1987, 10:30:30")
getdate("24,9,1986 10:30")
getdate("at monday the 1st of december in 1986")
getdate("run job at 3 PM, december 2nd")

If the LANG environment variable is set to de (German), the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show how local
date and time specification can be defined in the template.

Invocation Line in Template

getdate("11/27/86") %m/%d/%y

Usage

Examples

getdate(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010312

EXAMPLE 1 Examples of the getdate() function. (Continued)

getdate("27.11.86") %d.%m.%y

getdate("86-11-27") %y-%m-%d

getdate("Friday 12:00:00") %A %H:%M:%S

The following examples illustrate the Internal Format Conversion rules. Assume that the
current date is Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable is not set.

Input Template Line Date

Mon %a Mon Sep 22 12:19:48 EDT 1986

Sun %a Sun Sep 28 12:19:49 EDT 1986

Fri %a Fri Sep 26 12:19:49 EDT 1986

September %B Mon Sep 1 12:19:49 EDT 1986

January %B Thu Jan 1 12:19:49 EST 1987

December %B Mon Dec 1 12:19:49 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:50 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:50 EST 1987

Dec Mon %b %a Mon Dec 1 12:19:50 EST 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:51 EST 1989

Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986

Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987

10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986

13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Attributes

getdate(3C)

Basic Library Functions 313

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ctype(3C), mktime(3C), setlocale(3C), strftime(3C), strptime(3C), attributes(5),
environ(5), standards(5)

See Also

getdate(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010314

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getdtablesize – get the file descriptor table size

#include <unistd.h>

int getdtablesize(void);

The getdtablesize() function is equivalent to getrlimit(2) with the RLIMIT_NOFILE
option.

The getdtablesize() function returns the current soft limit as if obtained from a call to
getrlimit() with the RLIMIT_NOFILE option.

No errors are defined.

There is no direct relationship between the value returned by getdtablesize() and OPEN_MAX

defined in <limits.h>.

Each process has a file descriptor table which is guaranteed to have at least 20 slots. The entries
in the descriptor table are numbered with small integers starting at 0. The getdtablesize()
function returns the current maximum size of this table by calling the getrlimit() function.

close(2), getrlimit(2), open(2), setrlimit(2), select(3C)

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

getdtablesize(3C)

Basic Library Functions 315

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrlimit-2

getenv – return value for environment name

#include <stdlib.h>

char *getenv(const char *name);

The getenv() function searches the environment list (see environ(5)) for a string of the form
name=value and, if the string is present, returns a pointer to the value in the current
environment.

If successful, getenv() returns a pointer to the value in the current environment; otherwise, it
returns a null pointer.

The getenv() function can be safely called from a multithreaded application. Care must be
exercised when using both getenv() and putenv(3C) in a multithreaded application. These
functions examine and modify the environment list, which is shared by all threads in an
application. The system prevents the list from being accessed simultaneously by two different
threads. It does not, however, prevent two threads from successively accessing the
environment list using getenv() or putenv(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

exec(2), putenv(3C), attributes(5), environ(5), standards(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

getenv(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002316

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof, match_execattr –
get execution profile entry

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname,
char *type, char *id);

The getexecattr() function returns a single exec_attr(4) entry. Entries can come from any
of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or NULL. Because
getexecattr() always returns a single entry, the next pointer in the execattr_t data
structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure defined in
<exec_attr.h> with the following members:

char *name; /* name of the profile */

char *policy; /* policy under which the attributes are */

/* relevant*/

char *type; /* type of profile */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

char *id; /* unique identifier */

kva_t *attr; /* attributes */

struct execattr_s *next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of exec_attr
entries. Calls to getexecuser() can leave the enumeration in an indeterminate state.
Therefore, setexecattr() should be called before the first call to getexecattr().

The endexecattr() function can be called to indicate that exec_attr processing is complete;
the library can then close any open exec_attr file, deallocate any internal storage, and so
forth.

Name

Synopsis

Description

getexecattr(3C)

Basic Library Functions 317

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The getexecuser() function returns a linked list of entries that match the type and id
arguments and have a profile that has been assigned to the user specified by username, as
described in passwd(4). Profiles for the user are obtained from the list of default profiles in
/etc/security/policy.conf (see policy.conf(4)) and the user_attr(4) database. Only
entries in the name service scope for which the corresponding profile entry is found in the
prof_attr(4) database are returned.

The getexecprof() function returns a linked list of entries that match the type and id
arguments and have the profile specified by the profname argument. Only entries in the name
service scope for which the corresponding profile entry is found in the prof_attr database are
returned.

Using getexecuser() and getexecprof(), programmers can search for any type argument,
such as the manifest constant KV_COMMAND. The arguments are logically AND-ed together so
that only entries exactly matching all of the arguments are returned. Wildcard matching
applies if there is no exact match for an ID. Any argument can be assigned the NULL value to
indicate that it is not used as part of the matching criteria. The search_flag controls whether
the function returns the first match (GET_ONE), setting the next pointer to NULL or all matching
entries (GET_ALL), using the next pointer to create a linked list of all entries that meet the
search criteria. See EXAMPLES.

If GET_ALL is specified, the entire database is searched, resulting in a much slower operation.
Use GET_ONE when searching for the attributes for one particular application.

Once a list of entries is returned by getexecuser() or getexecprof(), the convenience
function match_execattr() can be used to identify an individual entry. It returns a pointer to
the individual element with the same profile name (profname), type name (type), and id.
Function parameters set to NULL are not used as part of the matching criteria. In the event that
multiple entries meet the matching criteria, only a pointer to the first entry is returned. The
kva_match(3C) function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully enumerates an
entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate memory for
the pointers they return. This memory should be deallocated with the free_execattr() call.
The match_execattr()(function does not allocate any memory. Therefore, pointers returned
by this function should not be deallocated.

Individual attributes may be referenced in the attr structure by calling the kva_match(3C)
function.

EXAMPLE 1 Find all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ALL)) == NULL) {

/* do error */

Return Values

Usage

Examples

getexecattr(3C)

man pages section 3: Basic Library Functions • Last Revised 10 May 2011318

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

EXAMPLE 1 Find all profiles that have the ping command. (Continued)

}

EXAMPLE 2 Find the entry for the ping command in the Network Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,

"/usr/sbin/ping", GET_ONE))==NULL) {

/* do error */

}

EXAMPLE 3 Tell everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,

GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 Tell if the tar utility is in a profile assigned to user wetmore. If there is no exact profile entry,
the wildcard (*), if defined, is returned.

The following tells if the tar utility is in a profile assigned to user wetmore. If there is no exact
profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for the name server
switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3C), getuserattr(3C), kva_match(3C), exec_attr(4), passwd(4),
policy.conf(4), prof_attr(4), user_attr(4), attributes(5)

Files

Attributes

See Also

getexecattr(3C)

Basic Library Functions 319

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1policy.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getexecname – return pathname of executable

#include <stdlib.h>

const char *getexecname(void);

The getexecname() function returns the pathname (the first argument of one of the exec
family of functions; see exec(2)) of the executable that started the process.

Normally this is an absolute pathname, as the majority of commands are executed by the shells
that append the command name to the user's PATH components. If this is not an absolute path,
the output of getcwd(3C) can be prepended to it to create an absolute path, unless the process
or one of its ancestors has changed its root directory or current working directory since the
last successful call to one of the exec family of functions.

If successful, getexecname() returns a pointer to the executables pathname; otherwise, it
returns 0.

The getexecname() function obtains the executable pathname from the AT_SUN_EXECNAME
aux vector. These vectors are made available to dynamically linked processes only.

A successful call to one of the exec family of functions will always have AT_SUN_EXECNAME in
the aux vector. The associated pathname is guaranteed to be less than or equal to PATH_MAX,
not counting the trailing null byte that is always present.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exec(2), getcwd(3C), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

getexecname(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Dec 1997320

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getgrnam, getgrnam_r, getgrent, getgrent_r, getgrgid, getgrgid_r, setgrent, endgrent,
fgetgrent, fgetgrent_r – group database entry functions

#include <grp.h>

struct group *getgrnam(const char *name);

struct group *getgrnam_r(const char *name, struct group *grp,
char *buffer, int bufsize);

struct group *getgrent(void);

struct group *getgrent_r(struct group *grp, char *buffer, int bufsize);

struct group *getgrgid(gid_t gid);

struct group *getgrgid_r(gid_t gid, struct group *grp, char *buffer,
int bufsize);

void setgrent(void);

void endgrent(void);

struct group *fgetgrent(FILE *f);

struct group *fgetgrent_r(FILE *f, struct group *grp, char *buffer,
int bufsize);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int getgrnam_r(const char *name, struct group *grp, char *buffer,
size_t bufsize, struct group **result);

int getgrgid_r(gid_t gid, struct group *grp, char *buffer,
size_t bufsize, struct group **result);

These functions are used to obtain entries describing user groups. Entries can come from any
of the sources for group specified in the /etc/nsswitch.conf file (see nsswitch.conf(4)).

The getgrnam() function searches the group database for an entry with the group name
specified by the character string parameter name.

The getgrgid() function searches the group database for an entry with the (numeric) group
id specified by gid.

The setgrent(), getgrent(), and endgrent() functions are used to enumerate group entries
from the database.

The setgrent() function effectively rewinds the group database to allow repeated searches. It
sets (or resets) the enumeration to the beginning of the set of group entries. This function
should be called before the first call to getgrent().

Name

Synopsis

Standard conforming

Description

getgrnam(3C)

Basic Library Functions 321

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The getgrent() function returns a pointer to a structure containing the broken-out fields of
an entry in the group database. When first called, getgrent() returns a pointer to a group
structure containing the next group structure in the group database. Successive calls can be
used to search the entire database.

The endgrent() function can be called to close the group database and deallocate resources
when processing is complete. It is permissible, though possibly less efficient, for the process to
call more group functions after calling endgrent().

The fgetgrent() function, unlike the other functions above, does not use nsswitch.conf. It
reads and parses the next line from the stream f, which is assumed to have the format of the
group file (see group(4)).

The getgrnam(), getgrgid(), getgrent(), and fgetgrent() functions use thread-specific
storage that is reused in each call to one of these functions by the same thread, making them
safe to use but not recommended for multithreaded applications.

The parallel functions getgrnam_r(), getgrgid_r(), getgrent_r(), and fgetgrent_r()

provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results instead of using thread-specific data that can be overwritten
by each call. They are safe for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same arguments as its non-reentrant counterpart, as well as
the following additional parameters. The grp argument must be a pointer to a struct group
structure allocated by the caller. On successful completion, the function returns the group
entry in this structure. Storage referenced by the group structure is allocated from the memory
provided with the buffer argument that is bufsize characters in size. The maximum size needed
for this buffer can be determined with the _SC_GETGR_R_SIZE_MAX sysconf(3C) parameter.
The standard-conforming versions place a pointer to the modified grp structure in the result
parameter, instead of returning a pointer to this structure. A null pointer is returned at the
location pointed to by result on error or if the requested entry is not found.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setgrent() function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getgrent_r(), the threads will enumerate disjoint subsets of the
group database. Like their non-reentrant counterparts, getgrnam_r() and getgrgid_r()

leave the enumeration position in an indeterminate state.

Group entries are represented by the struct group structure defined in <grp.h>:

struct group {

char *gr_name; /* the name of the group */

char *gr_passwd; /* the encrypted group password */

Reentrant Interfaces

group Structure

getgrnam(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 2010322

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1group-4

gid_t gr_gid; /* the numerical group ID */

char **gr_mem; /* vector of pointers to member

names */

};

The getgrnam(), getgrnam_r(), getgrgid(), and getgrgid_r() functions each return a
pointer to a struct group if they successfully locate the requested entry. They return a null
pointer if either the requested entry was not found or an error occurred. On error, errno is set
to indicate the error. The standard-conforming functions getgrnam_r() and getgrgid_r()

return 0 upon success or an error number in case of failure.

The getgrent(), getgrent_r(), fgetgrent(), and fgetgrent_r() functions each return a
pointer to a struct group if they successfully enumerate an entry; otherwise they return a null
pointer on end-of-file or error. On error, errno is set to indicate the error.

The getgrnam(), getgrgid(), getgrent(), and fgetgrent() functions use thread–specific
data storage, so returned data must be copied before a subsequent call to any of these
functions if the data are to be saved.

When the pointer returned by the reentrant functions getgrnam_r(), getgrgid_r(),
getgrent_r(), and fgetgrent_r() is non-null, it is always equal to the grp pointer that was
supplied by the caller.

Applications wishing to check for error situations should set errno to 0 before calling
getgrnam(), getgrnam_r(), getgrent(), getgrent_r(), getgrgid(), getgrgid_r(),
fgetgrent(), and fgetgrent_r(). If these functions return a null pointer and errno is
non-zero, an error occurred.

The getgrent_r(), fgetgrent(), and fgetgrent_r() functions will fail if:

EIO An I/O error has occurred.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting group structure.

The getgrent_r() function will fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

The getgrnam(), getgrnam_r(), getgrgid(), getgrgid_r(), and getgrent() functions may
fail if:

EINTR A signal was caught during the operation.

EIO An I/O error has occurred.

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

Return Values

Errors

getgrnam(3C)

Basic Library Functions 323

ENFILE The maximum allowable number of files is currently open in the system.

The getgrnam_r() and getgrgid_r() functions may fail if:

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting group structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level See Reentrant Interfaces in DESCRIPTION.

The endgrent(), getgrent(), getgrgid(), getgrgid_r(), getgrnam(), getgrnam_r(), and
setgrent() functions are Standard.

Intro(3), getpwnam(3C), group(4), nsswitch.conf(4), passwd(4), attributes(5),
standards(5)

When compiling multithreaded programs, see Intro(3).

Use of the enumeration interfaces getgrent() and getgrent_r() is discouraged;
enumeration is supported for the group file and NIS, but in general is not efficient and might
not be supported for all database sources. The semantics of enumeration are discussed further
in nsswitch.conf(4).

Previous releases allowed the use of ‘‘+'' and ‘‘-'' entries in /etc/group to selectively include
and exclude entries from NIS. The primary usage of these entries is superseded by the name
service switch, so the ‘‘+/-'' form might not be supported in future releases.

If required, the ‘‘+/-'' functionality can still be obtained for NIS by specifying compat as the
source for group.

Solaris 2.4 and earlier releases provided definitions of the getgrnam_r() and getgrgid_r()

functions as specified in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface
for these functions. Support for the Draft 6 interface is provided for compatibility only and
might not be supported in future releases. New applications and libraries should use the
standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and _REENTRANT

flags are automatically turned on by defining the _POSIX_C_SOURCE flag with a value
≥199506L.

Attributes

See Also

Notes

getgrnam(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 2010324

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1group-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

gethostid – get an identifier for the current host

#include <unistd.h>

long gethostid(void);

The gethostid() function returns the 32-bit identifier for the current host. If the hardware
capability exists, this identifier is taken from platform-dependent stable storage; otherwise it is
a randomly generated number. It is not guaranteed to be unique.

If the calling thread's process is executing within a non-global zone that emulates a host
identifier, then the zone's emulated 32-bit host identifier is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

hostid(1), sysinfo(2), attributes(5), standards(5), zones(5)

Name

Synopsis

Description

Attributes

See Also

gethostid(3C)

Basic Library Functions 325

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hostid-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

gethostname, sethostname – get or set name of current host

#include <unistd.h>

int gethostname(char *name, size_t namelen);

int sethostname(char *name, size_t namelen);

The gethostname() function returns the standard host name for the current processor, as
previously set by sethostname(). The namelen argument specifies the size of the array
pointed to by name. The returned name is null-terminated unless insufficient space is
provided.

The sethostname() function sets the name of the host machine to be name, which has length
namelen. This call is restricted to the superuser and is normally used only when the system is
bootstrapped.

Host names are limited to MAXHOSTNAMELEN characters, currently 256, defined in the
<netdb.h> header.

Upon successful completion, gethostname() and sethostname() return 0. Otherwise, they
return −1 and set errno to indicate the error.

The gethostname() and sethostname() functions will fail if:

EFAULT The name argument is an invalid address.

The sethostname() function will fail if:

EPERM The {PRIV_SYS_ADMIN} privilege was not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sysinfo(2), uname(2), gethostid(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

gethostname(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011326

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uname-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gethrtime, gethrvtime – get high resolution time

#include <sys/time.h>

hrtime_t gethrtime(void);

hrtime_t gethrvtime(void);

The gethrtime() function returns the current high-resolution real time. Time is expressed as
nanoseconds since some arbitrary time in the past; it is not correlated in any way to the time of
day, and thus is not subject to resetting or drifting by way of adjtime(2) or
settimeofday(3C). The hi-res timer is ideally suited to performance measurement tasks,
where cheap, accurate interval timing is required.

The gethrvtime() function returns the current high-resolution LWP virtual time, expressed
as total nanoseconds of execution time.

The gethrtime() and gethrvtime() functions both return an hrtime_t, which is a 64-bit
(long long) signed integer.

The following code fragment measures the average cost of getpid(2):

hrtime_t start, end;

int i, iters = 100;

start = gethrtime();

for (i = 0; i < iters; i++)

getpid();

end = gethrtime();

printf("Avg getpid() time = %lld nsec\n", (end − start) / iters);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

proc(1), adjtime(2), gettimeofday(3C), settimeofday(3C), attributes(5)

Although the units of hi-res time are always the same (nanoseconds), the actual resolution is
hardware dependent. Hi-res time is guaranteed to be monotonic (it won't go backward, it
won't periodically wrap) and linear (it won't occasionally speed up or slow down for
adjustment, like the time of day can), but not necessarily unique: two sufficiently proximate
calls may return the same value.

Name

Synopsis

Description

Examples

Attributes

See Also

Notes

gethrtime(3C)

Basic Library Functions 327

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getline, getdelim – delimited string input

#include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delimiter, FILE *restrict stream);

The getline() function reads an entire line from stream, storing the address of the buffer
containing the line in *lineptr. The buffer is null-terminated and includes the NEWLINE
character if one was found.

If *lineptr is a null pointer, getline() allocates a buffer for storing the line. Alternatively,
before the call to getline(), *lineptr can contain a pointer to a buffer allocated by malloc(3C)
whose size is *n bytes. If the buffer is not large enough to store the line, getline() resizes the
buffer with realloc(3C). In either case, a successful call to getline() updates *lineptr and *n
to reflect the buffer address and size, respectively. The buffer should be freed with a call to
free(3C).

The getdelim() function is identical to getline(), except a line delimiter other than
NEWLINE can be specified as the delimiter argument. As with getline(), a delimiter
character is not added if one was not present in stream before end-of-file was reached.

Upon successful completion, the getline() and getdelim() functions return the number of
characters written into the buffer, including the delimiter character but excluding the
terminating null character. Upon failure to read a line (including end of file condition), these
function return −1 and set errno to indicate the error.

The getline() and getdelim() functions will fail if:

EINVAL Either lineptr or n is a null pointer.

ENOMEM Insufficient memory is available.

The getline() and getdelim() functions may fail if:

EOVERFLOW More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

See fgetc(3C) for other conditions under which these functions will and may fail.

EXAMPLE 1 Retrieve a line length.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

Name

Synopsis

Description

Return Values

Errors

Examples

getline(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 2010328

EXAMPLE 1 Retrieve a line length. (Continued)

FILE *fp;

char *line = NULL;

size_t len = 0;

ssize_t read;

fp = fopen("/etc/motd", "r");
if (fp == NULL)

exit(1);

while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\

", read);

printf("%s", line);

}

if (ferror(fp)) {

/* handle error */

}

free(line);

fclose(fp);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

fgetc(3C), fgets(3C), free(3C), malloc(3C), realloc(3C), attributes(5)

Attributes

See Also

getline(3C)

Basic Library Functions 329

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getloadavg – get system load averages

#include <sys/loadavg.h>

int getloadavg(double loadavg[], int nelem);

The getloadavg() function returns the number of processes in the system run queue
averaged over various periods of time. Up to nelem samples are retrieved and assigned to
successive elements of loadavg[]. The system imposes a maximum of 3 samples, representing
averages over the last 1, 5, and 15 minutes, respectively. The LOADAVG_1MIN, LOADAVG_5MIN,
and LOADAVG_15MIN indices, defined in <sys/loadavg.h>, can be used to extract the data
from the appropriate element of the loadavg[] array.

Upon successful completion, the number of samples actually retrieved is returned. If the load
average was unobtainable, −1 is returned and errno is set to indicate the error.

The getloadavg() function will fail if:

EINVAL The number of elements specified is less than 0.

If the caller is in a non-global zone and the pools facility is active, the behavior of
getloadavg() is equivalent to that of pset_getloadavg(3C) called with psetid set to PS_MYID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

uptime(1), w(1), pooladm(1M), Kstat(3PERL), pset_getloadavg(3C), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getloadavg(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Jun 2004330

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uptime-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1w-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-3perl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getlogin, getlogin_r – get login name

#include <unistd.h>

char *getlogin(void);

char *getlogin_r(char *name, int namelen);

cc [flag ...] file... -D_POSIX_PTHREAD_SEMANTICS [library ...]

int getlogin_r(char *name, size_t namesize);

The getlogin() function returns a pointer to the login name as found in /var/adm/utmpx. It
can be used in conjunction with getpwnam(3C) to locate the correct password file entry when
the same user ID is shared by several login names.

If getlogin() is called within a process that is not attached to a terminal, it returns a null
pointer. The correct procedure for determining the login name is to call cuserid(3C), or to
call getlogin() and if it fails to call getpwuid(3C).

The getlogin_r() function has the same functionality as getlogin() except that the caller
must supply a buffer name with length namelen to store the result. The name buffer must be at
least _POSIX_LOGIN_NAME_MAX bytes in size (defined in <limits.h>). The POSIX version (see
standards(5)) of getlogin_r() takes a namesize parameter of type size_t.

Upon successful completion, getlogin() returns a pointer to the login name or a null pointer
if the user's login name cannot be found. Otherwise it returns a null pointer and sets errno to
indicate the error.

The standard-conforming getlogin_r() returns 0 if successful, or the error number upon
failure.

The getlogin_r() function will fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

EINVAL And entry for the current user was not found in the /var/adm/utmpx file.

The getlogin() and getlogin_r() functions may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

ENXIO The calling process has no controlling terminal.

The getlogin_r() function may fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

Name

Synopsis

Standard conforming

Description

Return Values

Errors

getlogin(3C)

Basic Library Functions 331

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The return value of getlogin() points to thread-specific data whose content is overwritten on
each call by the same thread.

Three names associated with the current process can be determined: getpwuid(geteuid())
returns the name associated with the effective user ID of the process; getlogin() returns the
name associated with the current login activity; and getpwuid(getuid()) returns the name
associated with the real user ID of the process.

/var/adm/utmpx user access and administration information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See standards(5).

geteuid(2), getuid(2), cuserid(3C), getgrnam(3C), getpwnam(3C), getpwuid(3C), utmpx(4),
attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3).

The getlogin() function is safe to use in multithreaded applications, but is discouraged. The
getlogin_r() function should be used instead.

Solaris 2.4 and earlier releases provided a getlogin_r() as specified in POSIX.1c Draft 6. The
final POSIX.1c standard changed the interface as described above. Support for the Draft 6
interface is provided for compatibility only and may not be supported in future releases. New
applications and libraries should use the standard-conforming interface.

Usage

Files

Attributes

See Also

Notes

getlogin(3C)

man pages section 3: Basic Library Functions • Last Revised 18 May 2004332

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1geteuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

getmntent, getmntany, getextmntent, hasmntopt, putmntent, resetmnttab – get mounted
device information

#include <stdio.h>

#include <sys/mnttab.h>

int getmntent(FILE *fp, struct mnttab *mp);

int getmntany(FILE *fp, struct mnttab *mp, struct mnttab *mpref);

int getextmntent(FILE *fp, struct extmnttab *mp, int len);

char *hasmntopt(struct mnttab *mnt, char *opt);

int putmntent(FILE *iop, struct mnttab *mp);

void resetmnttab(FILE *fp);

The getmntent() and getmntany() functions each fill in the structure pointed to by mp with
the broken-out fields of a line in the mnttab file. Each line read from the file contains a mnttab
structure, which is defined in the <sys/mnttab.h> header. The structure contains the
following members, which correspond to the broken-out fields from a line in /etc/mnttab

(see mnttab(4)).

char *mnt_special; /* name of mounted resource */

char *mnt_mountp; /* mount point */

char *mnt_fstype; /* type of file system mounted */

char *mnt_mntopts; /* options for this mount */

char *mnt_time; /* time file system mounted */

Fields with no actual content in /etc/mnttab are represented in the file as ”-”. To clearly
distinguish empty fields, getmntent() set the corresponding field in mp to NULL.

Each getmntent() call causes a new line to be read from the mnttab file. Successive calls can be
used to search the entire list. The getmntany() function searches the file referenced by fp until
a match is found between a line in the file and mpref. A match occurs if all non-null entries in
mpref match the corresponding fields in the file. These functions do not open, close, or rewind
the file.

The getextmntent() function is an extended version of the getmntent() function that
returns, in addition to the information that getmntent() returns, the major and minor
number of the mounted resource to which the line in mnttab corresponds. The
getextmntent() function also fills in the extmntent structure defined in the <sys/mnttab.h>
header. For getextmntent() to function properly, it must be notified when the mnttab file has
been reopened or rewound since a previous getextmntent() call. This notification is
accomplished by calling resetmnttab(). Otherwise, it behaves exactly as getmntent()
described above

Name

Synopsis

Description

getmntent() and
getmntany()

getextmntent()

getmntent(3C)

Basic Library Functions 333

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4

The data pointed to by the mnttab structure members are stored in a static area and must be
copied to be saved between successive calls.

The hasmntopt() function scans the mnt_mntopts member of the mnttab structure mnt for a
substring that matches opt. It returns the address of the substring if a match is found;
otherwise it returns 0. Substrings are delimited by commas and the end of the mnt_mntopts
string.

The putmntent() function is obsolete and no longer has any effect. Entries appear in mnttab

as a side effect of a mount(2) call. The function name is still defined for transition purposes.

The resetmnttab() function notifies getextmntent() to reload from the kernel the device
information that corresponds to the new snapshot of the mnttab information (see mnttab(4)).
Subsequent getextmntent() calls then return correct extmnttab information. This function
should be called whenever the mnttab file is either rewound or closed and reopened before any
calls are made to getextmntent().

If the next entry is successfully read by getmntent() or a match is found with getmntany(), 0
is returned. If an EOF is encountered on reading, these functions return −1. If an error is
encountered, a value greater than 0 is returned. The following error values are defined in
<sys/mnttab.h>:

MNT_TOOLONG A line in the file exceeded the internal buffer size of MNT_LINE_MAX.

MNT_TOOMANY A line in the file contains too many fields.

MNT_TOOFEW A line in the file contains too few fields.

Upon successful completion, hasmntopt() returns the address of the substring if a match is
found. Otherwise, it returns 0.

The putmntent() is obsolete and always returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

mount(2), mnttab(4), attributes(5)

hasmntopt()

putmntent()

resetmnttab()

Return Values

getmntent() and
getmntany()

hasmntopt()

putmntent()

Attributes

See Also

getmntent(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2004334

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mnttab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getnetgrent, getnetgrent_r, setnetgrent, endnetgrent, innetgr – get network group entry

#include <netdb.h>

int getnetgrent(char **machinep, char **userp, char **domainp);

int getnetgrent_r(char **machinep, char **userp, char **domainp,
char *buffer, intbuflen);

int setnetgrent(const char *netgroup);

int endnetgrent(void);

int innetgr(const char *netgroup, const char *machine,
const char *user, const char *domain);

These functions are used to test membership in and enumerate members of ‘‘netgroup''
network groups defined in a system database. Netgroups are sets of (machine,user,domain)
triples (see netgroup(4)).

These functions consult the source specified for netgroup in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The function innetgr() returns 1 if there is a netgroup netgroup that contains the specified
machine, user, domain triple as a member; otherwise it returns 0. Any of the supplied pointers
machine, user, and domain may be NULL, signifying a "wild card" that matches all values in
that position of the triple.

The innetgr() function is safe for use in single-threaded and multithreaded applications.

The functions setnetgrent(), getnetgrent(), and endnetgrent() are used to enumerate
the members of a given network group.

The function setnetgrent() establishes the network group specified in the parameter
netgroup as the current group whose members are to be enumerated.

Successive calls to the function getnetgrent() will enumerate the members of the group
established by calling setnetgrent(); each call returns 1 if it succeeds in obtaining another
member of the network group, or 0 if there are no further members of the group.

When calling either getnetgrent() or getnetgrent_r(), addresses of the three character
pointers are used as arguments, for example:

char *mp, *up, *dp;
getnetgrent(&mp, &up, &dp);

Upon successful return from getnetgrent(), the pointer mp points to a string containing the
name of the machine part of the member triple, up points to a string containing the user name
and dp points to a string containing the domain name. If the pointer returned for mp, up, or dp
is NULL, it signifies that the element of the netgroup contains wild card specifier in that
position of the triple.

Name

Synopsis

Description

getnetgrent(3C)

Basic Library Functions 335

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netgroup-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The pointers returned by getnetgrent() point into a buffer allocated by setnetgrent() that
is reused by each call. This space is released when an endnetgrent() call is made, and should
not be released by the caller. This implementation is not safe for use in multi-threaded
applications.

The function getnetgrent_r() is similar to getnetgrent() function, but it uses a buffer
supplied by the caller for the space needed to store the results. The parameter buffer should be
a pointer to a buffer allocated by the caller and the length of this buffer should be specified by
the parameter buflen. The buffer must be large enough to hold the data associated with the
triple. The getnetgrent_r() function is safe for use both in single-threaded and
multi-threaded applications.

The function endnetgrent() frees the space allocated by the previous setnetgrent() call.
The equivalent of an endnetgrent() implicitly performed whenever a setnetgrent() call is
made to a new network group.

Note that while setnetgrent() and endnetgrent() are safe for use in multi-threaded
applications, the effect of each is process-wide. Calling setnetgrent() resets the enumeration
position for all threads. If multiple threads interleave calls to getnetgrent_r() each will
enumerate a disjoint subset of the netgroup. Thus the effective use of these functions in
multi-threaded applications may require coordination by the caller.

The function getnetgrent_r() will return 0 and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See Intro(2) for the proper usage and
interpretation of errno in multi-threaded applications.

The functions setnetgrent() and endnetgrent() return 0 upon success.

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See DESCRIPTION section.

Intro(2), Intro(3), netgroup(4), nsswitch.conf(4), attributes(5)

The function getnetgrent_r() is included in this release on an uncommitted basis only, and
is subject to change or removal in future minor releases.

Only the Network Information Services, NIS and NIS+, are supported as sources for the
netgroup database.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

Errors

Files

Attributes

See Also

Warnings

Notes

getnetgrent(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Apr 2004336

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netgroup-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

get_nprocs, get_nprocs_conf – get number of processors

#include <unistd.h>

int get_nprocs(void);

int get_nprocs_conf(void);

The get_nprocs() and get_nprocs_conf() functions are, respectively, equivalent to:

sysconf(_SC_NPROCESSORS_ONLN);

sysconf(_SC_NPROCESSORS_CONF);

The get_nprocs() function returns the number of available processors. The
get_nprocs_conf() function returns the number of processors the operating system
configured.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

sysconf(3C), attributes(5)

The get_nprocs() and get_nprocs_conf() functions are provided only as GNU/Linux
compatibility interfaces.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

get_nprocs(3C)

Basic Library Functions 337

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getopt – command option parsing

#include <stdio.h>

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

The getopt() function is a command line parser that can be used by applications that follow
Basic Utility Syntax Guidelines 3, 4, 5, 6, 7, 9, and 10 which parallel those defined by
application portability standards (see intro(1)). It can also be used by applications which
additionally follow the Command Line Interface Paradigm (CLIP) syntax extension
guidelines 15, 16, and 17. It partially enforces guideline 18 by requiring that every option has a
short-name, but it allows multiple long-names to be associated with an option. The remaining
guidelines are not addressed by getopt() and are the responsibility of the application.

The argc and argv arguments are the argument count and argument array as passed to main
(see exec(2)). The optstring argument specifies the acceptable options. For utilities wanting to
conform to the Basic Utility Syntax Guidelines, optstring is a string of recognized option
characters. All option characters allowed by Utility Syntax Guideline 3 are allowed in
optstring. If a character is followed by a colon (:), the option is expected to have an
option-argument, which can be separated from it by white space. Utilities wanting to conform
to the extended CLIP guidelines can specify long-option equivalents to short options by
following the short-option character (and optional colon) with a sequence of strings, each
enclosed in parentheses, that specify the long-option aliases.

The getopt() function returns the short-option character in optstring that corresponds to the
next option found in argv.

The getopt() function places in optind the argv index of the next argument to be processed.
The optind variable is external and is initialized to 1 before the first call to getopt(). The
getopt() function sets the variable optarg to point to the start of the option-argument as
follows:

■ If the option is a short option and that character is the last character in the argument, then
optarg contains the next element of argv, and optind is incremented by 2.

Name

Synopsis

SVID3, XPG3

POSIX.2, XPG4, SUS,
SUSv2, SUSv3

Description

getopt(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Feb 2011338

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

■ If the option is a short option and that character is not the last character in the argument,
then optarg points to the string following the option character in that argument, and
optind is incremented by 1.

■ If the option is a long option and the character equals is not found in the argument, then
optarg contains the next element of argv, and optind is incremented by 2.

■ If the option is a long option and the character equals is found in the argument, then optarg
points to the string following the equals character in that argument and optind is
incremented by 1.

In all cases, if the resulting value of optind is not less than argc, this indicates a missing
option-argument and getopt() returns an error indication.

When all options have been processed (that is, up to the first operand), getopt() returns -1.
The special option “--”(two hyphens) can be used to delimit the end of the options; when it is
encountered, -1 is returned and “--” is skipped. This is useful in delimiting non-option
arguments that begin with “-” (hyphen).

If getopt() encounters a short-option character or a long-option string not described in the
opstring argument, it returns the question-mark (?) character. If it detects a missing
option-argument, it also returns the question-mark (?) character, unless the first character of
the optstring argument was a colon (:), in which case getopt() returns the colon (:) character.
For short options, getopt() sets the variable optopt to the option character that caused the
error. For long options, optopt is set to the hyphen (-) character and the failing long option can
be identified through argv[optind-1]. If the application has not set the variable opterr to 0 and
the first character of optstring is not a colon (:), getopt() also prints a diagnostic message to
stderr.

The getopt() function returns the short-option character associated with the option
recognized.

A colon (:) is returned if getopt() detects a missing argument and the first character of
optstring was a colon (:).

A question mark (?) is returned if getopt() encounters an option not specified in optstring or
detects a missing argument and the first character of optstring was not a colon (:).

Otherwise, getopt() returns -1 when all command line options are parsed.

No errors are defined.

EXAMPLE 1 Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that
can take the mutually-exclusive options a and b and the options f and o, both of which require
arguments:

Return Values

Errors

Examples

getopt(3C)

Basic Library Functions 339

EXAMPLE 1 Parsing Command Line Options (Continued)

#include <unistd.h>

int

main(int argc, char *argv[])

{

int c;

int bflg, aflg, errflg;

char *ifile;

char *ofile;

. . .

while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch(c) {

case ’a’:

if (bflg)

errflg++;

else

aflg++;

break;

case ’b’:

if (aflg)

errflg++;

else {

bflg++;

bproc();

}

break;

case ’f’:

ifile = optarg;

break;

case ’o’:

ofile = optarg;

break;

case ’:’: /* -f or -o without operand */

fprintf(stderr,

"Option -%c requires an operand\n", optopt);

errflg++;

break;

case ’?’:

fprintf(stderr,

"Unrecognized option: -%c\n", optopt);

errflg++;

}

}

if (errflg) {

fprintf(stderr, "usage: . . . ");
exit(2);

getopt(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Feb 2011340

EXAMPLE 1 Parsing Command Line Options (Continued)

}

for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {

. . .

}

This code accepts any of the following as equivalent:

cmd -ao arg path path

cmd -a -o arg path path

cmd -o arg -a path path

cmd -a -o arg -- path path

cmd -a -oarg path path

cmd -aoarg path path

EXAMPLE 2 Check Options and Arguments.
The following example parses a set of command line options and prints messages to standard
output for each option and argument that it encounters.

#include <unistd.h>

#include <stdio.h>

...

int c;

char *filename;

extern char *optarg;

extern int optind, optopt, opterr;

...

while ((c = getopt(argc, argv, ":abf:")) != -1) {

switch(c) {

case ’a’:

printf("a is set\n");
break;

case ’b’:

printf("b is set\n");
break;

case ’f’:

filename = optarg;

printf("filename is %s\n", filename);

break;

case ’:’:

printf("-%c without filename\n", optopt);

break;

case ’?’:

printf("unknown arg %c\n", optopt);

break;

}

}

getopt(3C)

Basic Library Functions 341

EXAMPLE 2 Check Options and Arguments. (Continued)

This example can be expanded to be CLIP-compliant by substituting the following string for
the optstring argument:

:a(ascii)b(binary)f:(in-file)o:(out-file)V(version)?(help)

and by replacing the '?' case processing with:

case ’V’:

fprintf(stdout, "cmd 1.1\n");
exit(0);

case ’?’:

if (optopt == ’?’) {

print_help();

exit(0);

}

if (optopt == ’-’)

fprintf(stderr,

"unrecognized option: %s\n", argv[optind-1]);

else

fprintf(stderr,

"unrecognized option: -%c\n", optopt);

errflg++;

break;

and by replacing the ':' case processing with:

case ’:’: /* -f or -o without operand */

if (optopt == ’-’)

fprintf(stderr,

"Option %s requires an operand\n", argv[optind-1]);

else

fprintf(stderr,

"Option -%c requires an operand\n", optopt);

errflg++;

break;

While not encouraged by the CLIP specification, multiple long-option aliases can also be
assigned as shown in the following example:

:a(ascii)b(binary):(in-file)(input)o:(outfile)(output)V(version)?(help)

See environ(5) for descriptions of the following environment variables that affect the
execution of getopt(): LANG, LC_ALL, and LC_MESSAGES.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes as characters in
optstring.

Environment
Variables

getopt(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Feb 2011342

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

The getopt() function does not fully check for mandatory arguments because there is no
unambiguous algorithm to do so. Given an option string a:b and the input -a -b, getopt()
assumes that -b is the mandatory argument to the -a option and not that -a is missing a
mandatory argument. Indeed, the only time a missing option-argument can be reliably
detected is when the option is the final option on the command line and is not followed by any
command arguments.

It is a violation of the Basic Utility Command syntax standard (see Intro(1)) for options with
arguments to be grouped with other options, as in cmd -abo filename , where a and b are
options, o is an option that requires an argument, and filename is the argument to o. Although
this syntax is permitted in the current implementation, it should not be used because it may
not be supported in future releases. The correct syntax to use is:

cmd −ab −o filename

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard See below.

For the Basic Utility Command syntax is Standard, see standards(5).

Intro(1), getopt(1), getopts(1), getsubopt(3C), gettext(3C), setlocale(3C),
attributes(5), environ(5), standards(5)

Usage

Attributes

See Also

getopt(3C)

Basic Library Functions 343

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopts-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getopt_long, getopt_long_only, getopt_clip – parse long command options

#include <getopt.h>

int getopt_long(int argc, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptr);

int getopt_long_only(int argc, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptr);

int getopt_clip(int argc, char * const *argv, const char *shortopts,
const struct option *longopts, int *indexptrextern char *optarg;

extern int optind, opterr, optopt;

These functions are provided as a porting aid for GNU/Freeware/OpenBSD utilities. The
getopt_long() function is intended to be as closely compatible with the GNU and OpenBSD
implementations as possible, but since these public implementations differ in some corner
cases, it is not possible to be fully compatible with both. The differences are enumerated in the
NOTES section.

The getopt_long() function is an aid for implementing the GNU command line argument
conventions. See the GNU documentation for the details of these conventions (glibc 2.2.3).
Note that the GNU conventions are not POSIX-conforming. Most notably, the GNU
conventions allow for optional option-arguments and do not enforce that operands must
follow options on the command line.

The getopt_clip() function provides an interface similar to getopt_long() except that it
implements the Sun CLIP convention, which is slightly more restrictive than the
GNU/Freeware conventions. CLIP is modeled after the GNU/Freeware conventions but
removes POSIX violations and syntactic ambiguities (see Intro(1)). Specifically,
getopt_clip() is a command line parser that can be used by applications that follow the
Command Line Interface Paradigm or CLIP syntax guidelines 3, 4, 5, 6, 7, 9, 10, 15, and 16.
The remaining guidelines are not addressed by getopt_clip() and are the responsibility of
the application.

The getopt_long() function is similar to getopt(3C) except that it accepts options in two
forms: words and characters, also referred to as long options and short options.

The getopt_long() function can be used in two ways. In the first way, every long option
understood by the program is mapped to a single character that is usually a corresponding
short option. The option structure is used only to translate from long options to short
options. In the second way, a long option sets a flag specified in the option structure, or
stores a pointer to the command line argument in the address passed to it for options that take
arguments. These two methods apply individually to each long option. Both methods can be
used in the same application.

The getopt_long() function accepts command lines that interleave options and operands.
The getopt_long() function reorders the elements of the argv argument such that when all
command line arguments have been processed, all operands follow options (and their

Name

Synopsis

Description

getopt_long(3C)

man pages section 3: Basic Library Functions • Last Revised 10 May 2004344

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1

option-arguments) in the argv array and optind points to the first operand. The order of
options relative to other options and operands relative to other operands is maintained. The
argument “--” is accepted as a delimiter indicating the end of options. No argument reorder
occurs past this delimiter. Argument reordering can not be unambiguously performed in all
cases. The getopt_long() function depends on a number of internal heuristics to perform the
reordering. The argc and argv arguments are the argument count and argument array as
passed to main() (see exec(2)).

The shortopts argument contains the short-option characters recognized by the command
using these functions. If a letter is followed by a colon (:), the option is expected to have an
option-argument that should be separated from it by white space. If a character is followed by
two colons (::), the option takes an optional option-argument. Any text after the option name
it is returned in optarg; otherwise, optarg is set to 0. A whitespace character can never be used
to separate an optional option-argument from its associated option. If shortopts contains the
character “W” followed by a semicolon (;), then -W foo is treated as the long option --foo.

If the first character of the shortopts argument is the plus sign (+), getopt_long() enforces the
POSIX requirement that operands follow options on the command line by returning -1 and
stopping argument processing upon encountering the first operand (or “--”). This behavior
can also be specified by setting the environment variable POSIXLY_CORRECT.

A hyphen (-) as the first character of the shortopts argument specifies that options and
operands can be intermixed in argv but no argument reordering is performed. Operands are
returned as arguments to option ‘\1', and option processing does not stop until “--” or the end
of argv is found.

If the first character of the shortopts argument (after a potential plus or minus character) is a
colon (:), a colon is returned by getopt_long() in response to a missing argument; otherwise,
a question mark (?) is returned for this condition.

The longopts argument describes the long options to accept. It is an array of struct option
structures, one for each long option. The array is terminated with an element containing all
zeros.

The struct option structure contains the following members:

const char *name Contains a pointer to the name of the option.

int has_arg Specifies whether the option takes an argument. The possible values,
defined in <getopt.h>, are no_argument, optional_argument, and
required_argument.

int *flag Contains the address of an int variable that is the flag for this option.
The value contained in val is stored in this location to indicate that the
option was seen. If flag is a null pointer, then the value contained in
val is returned when this option is encountered, otherwise zero is
returned.

getopt_long(3C)

Basic Library Functions 345

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

int val Contains the value to be stored at the variable pointed to by flag or
returned by getopt_long() if flag is a null pointer.

For any long option, getopt_long() returns the index in the array longopts of the options
definition by storing it in indexptr. The name of the option can be retrieved with
longopts[(*indexptr)].name. Long options can be distinguished either by the values in their val
members or by their indices. The indexptr variable can also distinguish long options that set
flags. The value of indexptr after encountering a short option is undefined.

If an option has an argument, the optarg global variable is set to point to the start of the option
argument on return from getopt_long(); otherwise it is set to null. A long option can take an
argument in one of two forms: --option=arg or --option arg. If the long option argument is
optional, only the “--option=arg” form can be used to specify the option argument. No
argument is specified by the simple form “--option”. The form “--option=” specifies an
empty string as the option argument.

Long-option names can be abbreviated if the abbreviation is unique or an exact match for
some defined option. An exact match takes precedence over an abbreviated match. Thus, if
foo and foobar are acceptable long-option names, then specifying --foo on the command line
always matches the former. Specifying --f or --fo would not be accepted as a match for either.

The getopt_long() function places in optind the argv index of the next argument to be
processed. The optind global variable is external and is initialized to 1 before the first call to
getopt_long(). When all options have been processed (that is, up to the first non-option
argument), getopt_long() returns -1. The special option “--” (two hyphens) can be used to
delimit the end of the options; when it is encountered, -1 is returned and “—” is skipped. This
ooption is useful in delimiting non-option arguments that begin with “-” (hyphen).

If getopt_long() encounters a short option character shortopts string or a long option not
described in the longopts array, it returns the question mark (?) character. It also returns a
question mark (?) character in response to a missing option argument unless the first
character of shortopts is a colon (:) (or the second character, if the first character is either a plus
(+) or a minus (-)), in which case it returns a colon (:). In either case, if the application has not
set opterr to 0 and the first character of shortopts is not a colon (:), getopt_long() prints a
diagnostic message to stderr.

The getopt_long_only() function is equivalent to the getopt_long() function except that it
allows the user of the application to pass long options with only a single hyphen (-) instead of
“--”. The “--” prefix is still recognized. However, when a single hyphen (-) is encountered,
getopt_long_only() attempts to match this argument to a long option, including
abbreviations of the long option. If a long option starts with the same character as a short
option, a single hyphen followed by that character (and no other characters) will be
recognized as a short option. Use of getopt_long_only() is strongly discouraged by Sun and
GNU for new applications.

getopt_long(3C)

man pages section 3: Basic Library Functions • Last Revised 10 May 2004346

The behavior of getopt_clip() differs from that of getopt_long() in the following ways:

■ The getopt_clip() function does not perform argument reordering. The getopt_clip()
function always enforces the POSIX behavior that all options should precede operands on
the command line. Specifically, getopt_clip() does not reorder arguments but returns -1
and stops processing upon encountering the first operand argument.

■ The environment variable POSIXLY_CORRECT is ignored (the getopt_clip() function
behaves as though it were set.)

■ The plus and minus characters do not have a special meaning as the first character of the
shortopts argument. They are treated as any other character (other than the colon) would
be treated.

■ Optional option-arguments are not allowed. The behavior of getopt_clip() when
optional_argument is specified as the value of has_arg in the longopts argument or
double colons are included in the shortopts argument is unspecified.

■ Long-option abbreviations are not recognized.
■ Short options are required to have at least one long-option equivalent. That is, each

character in shortopts must appear as the val member in one or more option structures.
Similarly, each long option must have a short option equivalent, meaning that the val
member of each option structure must appear in the shortopts string. If these
requirements are not met, getopt_clip() returns -1 and sets errno to EINVAL.

For short options (other than -W when W; is in shortopts), these functions return the next
option character specified on the command line. For long options, the value returned by these
functions depends upon the value of the flag structure element for the identified option. If
flag is NULL, the value contained in the val structure element for the long option encountered
on the command line is returned. Otherwise, these functions return 0 (and the value specified
in the val member for the long option is stored into the location pointed to by flag). When W;

is in shortopts and -W is encountered in the command line and the option argument to -W

matches a long-option name, the return state from these functions is as if the long option had
been encountered. However, if no argument is specified to the long option, optarg is set to the
option argument of -W (the long-option name or unique prefix). If the option argument of -W
does not match a long option (or unique prefix), the return state is as for any other short
option.

A colon (:) is returned if getopt_long() detects a missing argument and the first character of
shortopts (other than a possible initial “+” or “-”) was a colon (':').

A question mark (?) is returned if getopt_long() encounters an option letter not included in
shortopts or detects a missing argument and the first character of shortopts (other than a
possible initial “+” or “-”) was not a colon (:).

Return Values

getopt_long(3C)

Basic Library Functions 347

The getopt_clip() function expects all short options to have one or more long-option
equivalent and all long options to have one short option equivalent (see NOTES for details). If
proper equivalents are not found, getopt_clip() returns -1 and sets errno to EINVAL.

The getopt_clip() function will fail if:

EINVAL A short option does not have at least one long-option equivalent, or a long option
does not have at least one short-option equivalent.

EXAMPLE 1 Example using getopt().

#include <unistd.h>

#include <getopt.h>

/* Flag set by ‘--verbose’. */

static int verbose_flag;

int

main (int argc, char **argv)

{

int c;

while (1) {

static struct option long_options[] = {

/* These options set a flag. */

{"verbose", no_argument, &verbose_flag, 1},

{"brief", no_argument, &verbose_flag, 0},

/* The following options don’t set a flag. */

{"add", no_argument, NULL, ’a’},

{"append", no_argument, NULL, ’b’},

{"delete", required_argument, NULL, ’d’},

{"create", required_argument, NULL, ’c’},

{"file", required_argument, NULL, ’f’},

{0, 0, 0, 0}

};

/* getopt_long stores the option index here. */

int option_index = 0;

c = getopt_long (argc, argv, "abc:d:f:",
long_options, &option_index);

/* Detect the end of the options. */

if (c == -1)

break;

switch (c) {

case 0:

/* (In this example) only options which set */

Errors

Examples

getopt_long(3C)

man pages section 3: Basic Library Functions • Last Revised 10 May 2004348

EXAMPLE 1 Example using getopt(). (Continued)

/* a flag return zero, so do nothing. */

break;

case ’a’:

puts ("option --add (-a)\n");
break;

case ’b’:

puts ("option --append (-b)\n");
break;

case ’c’:

printf ("option --create (-c) with value ‘%s’\n", optarg);

break;

case ’d’:

printf ("option --delete (-d) with value ‘%s’\n", optarg);

break;

case ’f’:

printf ("option --file (-f) with value ‘%s’\n", optarg);

break;

case ’?’:

/* getopt_long already printed an error message. */

break;

default:

abort ();

}

}

/* Instead of reporting ‘--verbose’
and ‘--brief’ as they are encountered,

we report the final status resulting from them. */

if (verbose_flag)

puts ("verbose flag is set");

/* Print any remaining command line arguments (not options). */

if (optind < argc) {

printf ("non-option ARGV-elements: ");
while (optind < argc)

printf ("%s ", argv[optind++]);

putchar (’\n’);

}

getopt_long(3C)

Basic Library Functions 349

EXAMPLE 1 Example using getopt(). (Continued)

exit (0);

}

See environ(5) for descriptions of the following environment variables that affect the
execution of getopt_long(): LANG, LC_ALL, and LC_MESSAGES.

POSIXLY_CORRECT When set (and the first character of the shortopts argument is neither a
plus or minus sign), the POSIX rule that all operands must follow all
options is enforced. Option processing terminates when the first
operand is encountered. The getopt_clip() function ignores the
setting of POSIXLY_CORRECT and always behaves as if it were set.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes as
characters in shortopts and the longopts[].name structure members.

The getopt_long() function does not fully check for mandatory arguments because there is
no unambiguous algorithm to do so. Given an option string a:b and the input -a -b,
getopt_long() assumes that -b is the mandatory argument to the -a option and not that -a is
missing a mandatory argument. Indeed, the only time a missing option argument can be
reliably detected is when the option is the final option on the command line and is not
followed by any command arguments.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Intro(1), getopts(1), getopt(3C), getsubopt(3C), gettext(3C), setlocale(3C),
attributes(5), environ(5), standards(5)

Use of getopt_long() is discouraged for applications targeted strictly for Solaris. It should be
used only for applications targeted at Solaris and platforms that adhere to the GNU command
line conventions. The getopt_long_only() function is provided by Solaris and GNU for
legacy applications and its use is discouraged by both current conventions.

The differences between the Solaris/GNU and OpenBSD versions of these functions are as
follows:

■ The handling of the hyphen (-) as the first character of the option string in presence of the
environment variable POSIXLY_CORRECT:

Environment
Variables

Usage

Attributes

See Also

Notes

getopt_long(3C)

man pages section 3: Basic Library Functions • Last Revised 10 May 2004350

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getopts-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

Solaris/GNU Operands are returned as arguments to option '\\1', and option
processing does not stop until “--” or the end of argv is found.

OpenBSD obeys POSIXLY_CORRECT and stops at the first non-option.
■ The handling of the hyphen (-) within the shortopts parameter string when not the first

character.

Solaris/GNU treats a single hyphen (-) on the command line as an operand.

OpenBSD treats a single hyphen (-) on the command line as an option. BSD
recognizes this behavior as incorrect, but maintains it for compatibility.

■ The return value in the event of a missing argument if the first character after “+” or “-” in
the option string is not a colon (:)

Solaris/GNU returns “?”.

OpenBSD returns “:” (since OpenBSD's getopt does).
■ The setting optopt for long options with flag != NULL:

Solaris/GNU sets optopt to val.

OpenBSD sets optopt to 0 (since val would never be returned).
■ The setting of optarg for long options without an argument that are invoked with -W (W; in

option string):

Solaris/GNU sets optarg to the option name (the argument of -W).

OpenBSD sets optarg to NULL (the argument of the long option).
■ The handling of -W with an argument that is not (a prefix to) a known long option (W; in

option string):

Solaris/GNU returns 'W' with optarg set to the unknown option.

OpenBSD treats as an error (unknown option) and returns “?” with optopt set to 0
and optarg set to NULL.

■ The error messages are different (all).
■ The implementations do not permute the argument vector at the same points in the calling

sequence. The aspects normally used by the caller (ordering after -1 is returned, value of
optind relative to current positions) are the same. Applications should not depend upon
the ordering of the argument vector before -1 is returned.

getopt_long(3C)

Basic Library Functions 351

getpagesize – get system page size

#include <unistd.h>

int getpagesize(void);

The getpagesize() function returns the number of bytes in a page. Page granularity is the
granularity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying hardware page
size.

The getpagesize() function is equivalent to sysconf(_SC_PAGE_SIZE) and
sysconf(_SC_PAGESIZE). See sysconf(3C).

The getpagesize() function returns the current page size.

No errors are defined.

The value returned by getpagesize() need not be the minimum value that malloc(3C) can
allocate. Moreover, the application cannot assume that an object of this size can be allocated
with malloc().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pagesize(1), brk(2), getrlimit(2), mmap(2), mprotect(2), munmap(2), malloc(3C),
msync(3C), sysconf(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getpagesize(3C)

man pages section 3: Basic Library Functions • Last Revised 27 Jun 2000352

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pagesize-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mprotect-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpagesizes – get system supported page sizes

#include <sys/mman.h>

int getpagesizes(size_t pagesize[], int nelem);

The getpagesizes() function returns either the number of different page sizes supported by
the system or the actual sizes themselves. When called with nelem as 0 and pagesize as NULL,
getpagesizes() returns the number of supported page sizes. Otherwise, up to nelem page
sizes are retrieved and assigned to successive elements of pagesize[]. The return value is the
number of page sizes retrieved and set in pagesize[].

Upon successful completion, the number of pagesizes supported or actually retrieved is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The getpagesizes() function will fail if:

EINVAL The nelem argument is less than 0 or pagesize is NULL but nelem is non-zero.

The getpagesizes() function returns all the page sizes for which the hardware and system
software provide support for the memcntl(2) command MC_HAT_ADVISE. Not all processors
support all page sizes or combinations of page sizes with equal efficiency. Applications
programmers should take this into consideration when using getpagesizes().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

memcntl(2), mmap(2), getpagesize(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getpagesizes(3C)

Basic Library Functions 353

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpass, getpassphrase – read a string of characters without echo

#include <stdlib.h>

char *getpass(const char *prompt);

char *getpassphrase(const char *prompt);

#include <unistd.h>

char *getpass(const char *prompt);

The getpass() function opens the process's controlling terminal, writes to that device the
null-terminated string prompt, disables echoing, reads a string of characters up to the next
newline character or EOF, restores the terminal state and closes the terminal.

The getpassphrase() function is identical to getpass(), except that it reads and returns a
string of up to 257 characters in length.

Upon successful completion, getpass() returns a pointer to a null-terminated string of at
most 9 bytes that were read from the terminal device. If an error is encountered, the terminal
state is restored and a null pointer is returned.

The getpass() and getpassphrase() functions may fail if:

EINTR The function was interrupted by a signal.

EIO The process is a member of a background process attempting to read from its
controlling terminal, the process is ignoring or blocking the SIGTTIN signal or the
process group is orphaned.

EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

ENXIO The process does not have a controlling terminal.

The return value points to static data whose content may be overwritten by each call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability getpass() is Standard.

MT-Level Unsafe

attributes(5), standards(5)

Name

Synopsis

XPG4, SUS, SUSv2

Description

Return Values

Errors

Usage

Attributes

See Also

getpass(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Sep 2003354

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getpeerucred – get connected socket or stream peer's credentials

#include <ucred.h>

int getpeerucred(int fd, ucred_t **ucred);

The getpeerucred() function returns the credentials of the peer endpoint of a
connection-oriented socket (SOCK_STREAM) or stream fd at the time the endpoint was created
or the connection was established. A process that initiates a connection retrieves the
credentials of its peer at the time the peer's endpoint was created. A process that listens for
connections retrieves the credentials of the peer at the time the peer initiated the connection.

When successful, getpeerucred() stores the pointer to a freshly allocated ucred_t in the
memory location pointed to by the ucred argument if that memory location contains the null
pointer. If the memory location is non-null, it will reuse the existing ucred_t.

When ucred is no longer needed, a credential allocated by getpeerucred() should be freed
with ucred_free(3C).

It is possible that all fields of the ucred_t are not available to all peer endpoints and all callers.

Upon successful completion, getpeerucred() returns 0. Otherwise, it returns −1 and errno is
set to indicate the error.

The getpeerucred() function will fail if:

EAGAIN There is not enough memory available to allocate sufficient memory to hold the
user credential. The application can try again later.

EBADF The fd argument is not a valid file descriptor.

EFAULT The pointer location pointed to by the ucred_t ** argument points to an
invalid, non-null address.

EINVAL The socket is connected but the peer credentials are unknown.

ENOMEM The physical limits of the system are exceeded by the memory allocation needed
to hold the user credential.

ENOTCONN The socket or stream is not connected or the stream's peer is unknown.

ENOTSUP This operation is not supported on this file descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

getpeerucred(3C)

Basic Library Functions 355

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

door_ucred(3C), ucred_get(3C), attributes(5), connld(7M)

The system currently supports both sides of connection endpoints for local AF_UNIX, AF_INET,
and AF_INET6 sockets, /dev/tcp, /dev/ticots, and /dev/ticotsord XTI/TLI connections,
and pipe file descriptors sent using I_SENDFD as a result of the open of a named pipe with the
"connld" module pushed.

See Also

Notes

getpeerucred(3C)

man pages section 3: Basic Library Functions • Last Revised 26 May 2004356

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1connld-7m

getpriority, setpriority – get and set the nice value

#include <sys/resource.h>

int getpriority(int which, id_t who);

int setpriority(int which, id_t who, int value);

The getpriority() function obtains the nice value of a process, thread, or set of processes.
The setpriority() function sets the nice value of a process, thread, or set of processes to
value+NZERO, where NZERO is defined to be 20.

Target entities are specified by the values of the which and who arguments. The which
argument can be one of the following values: PRIO_PROCESS, PRIO_PGRP, PRIO_USER,
PRIO_GROUP, PRIO_SESSION, PRIO_LWP, PRIO_TASK, PRIO_PROJECT, PRIO_ZONE, or
PRIO_CONTRACT, indicating that the who argument is to be interpreted as a process ID, a
process group ID, an effective user ID, an effective group ID, a session ID, a thread (lwp) ID, a
task ID, a project ID, a zone ID, or a process contract ID, respectively. A 0 value for the who
argument specifies the current process, process group, or user. A 0 value for the who argument
is treated as valid group ID, session ID, thread (lwp) ID, task ID, project ID, zone ID, or
process contract ID. A P_MYID value for the who argument can be used to specify the current
group, session, thread, task, project, zone, or process contract, respectively.

If a specified process is multi-threaded, the nice value set with setpriority() affects all
threads in the process.

If more than one process is specified, getpriority() returns NZERO less than the lowest nice
value pertaining to any of the specified entities, and setpriority() sets the nice values of all
of the specified processes to value+NZERO.

The default nice value is NZERO. Lower nice values cause more favorable scheduling. The range
of valid nice values is 0 to NZERO*2-1. If value+NZERO is less than the system's lowest supported
nice value, setpriority() sets the nice value to the lowest supported value. If value+NZERO is
greater than the system's highest supported nice value, setpriority() sets the nice value to
the highest supported value.

Only a process with appropriate privileges can lower the nice value.

Any process or thread using SCHED_FIFO or SCHED_RR is unaffected by a call to
setpriority(). This is not considered an error. A process or thread that subsequently reverts
to SCHED_OTHER will not have its priority affected by such a setpriority() call.

The effect of changing the nice value varies depending on the scheduling policy in effect.

Since getpriority() can return the value -1 on successful completion, it is necessary to set
errno to 0 prior to a call to getpriority(). If getpriority() returns the value -1, then errno

can be checked to see if an error occurred or if the value is a legitimate nice value.

Name

Synopsis

Description

getpriority(3C)

Basic Library Functions 357

Upon successful completion, getpriority() returns an integer in the range from -NZERO to
NZERO-1. Otherwise, −1 is returned and errno is set to indicate the error.

Upon successful completion, setpriority() returns 0. Otherwise, −1 is returned and errno

is set to indicate the error.

The getpriority() and setpriority() functions will fail if:

ESRCH No process or thread could be located using the which and who argument values
specified.

EINVAL The value of the which argument was not recognized, or the value of the who
argument is not a valid process ID, process group ID, user ID, group ID, session
ID, thread (lwp) ID, task ID, project ID, or zone ID.

In addition, setpriority() may fail if:

EPERM A process was located, but neither the real nor effective user ID of the executing
process match the effective user ID of the process whose nice value is being
changed.

EACCES A request was made to change the nice value to a lower numeric value and the
current process does not have appropriate privileges.

EXAMPLE 1 Example using getpriority()

The following example returns the current scheduling priority for the process ID returned by
the call to getpid(2).

#include <sys/resource.h>

...

int which = PRIO_PROCESS;

id_t pid;

int ret;

pid = getpid();

ret = getpriority(which, pid);

EXAMPLE 2 Example using setpriority()

The following example sets the nice value for the current process to 0.

#include <sys/resource.h>

...

int which = PRIO_PROCESS;

id_t pid;

int value = -20;

int ret;

pid = getpid();

Return Values

Errors

Examples

getpriority(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008358

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpid-2

EXAMPLE 2 Example using setpriority() (Continued)

ret = setpriority(which, pid, value);

The getpriority() and setpriority() functions work with an offset nice value
(value-NZERO). The nice value is in the range 0 to 2*NZERO-1, while the return value for
getpriority() and the third parameter for setpriority() are in the range -NZERO to
NZERO-1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

nice(1), renice(1), sched_get_priority_max(3C), sched_setscheduler(3C),
attributes(5), standards(5)

Usage

Attributes

See Also

getpriority(3C)

Basic Library Functions 359

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1renice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist – get
profile description and attributes

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry. Entries can
come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam() function
searches for a prof_attr entry with a given name. Successive calls to these functions return
either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined in
<prof_attr.h> with the following members:

char *name; /* Name of the profile */

char *res1; /* Reserved for future use */

char *res2; /* Reserved for future use */

char *desc; /* Description/Purpose of the profile */

kva_t *attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr() and
getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of prof_attr
entries. Calls to getprofnam() can leave the enumeration in an indeterminate state.
Therefore, setprofattr() should be called before the first call to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing is complete;
the system may then close any open prof_attr file, deallocate storage, and so forth.

The getproflist() function searches for the list of sub-profiles found in the given profname
and allocates memory to store this list in proflist. The given profname will be included in the
list of sub-profiles. The profcnt argument indicates the number of items currently valid in
proflist. Memory allocated by getproflist() should be freed using the free_proflist()
function.

The free_proflist() function frees memory allocated by the getproflist() function. The
profcnt argument specifies the number of items to free from the proflist argument.

Name

Synopsis

Description

getprofattr(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2005360

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The getprofattr() function returns a pointer to a profattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3C) function.

Because the list of legal keys is likely to expand, any code must be written to ignore unknown
key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_profattr() function.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3C), getauthattr(3C), prof_attr(4)

Return Values

Usage

Files

Attributes

See Also

getprofattr(3C)

Basic Library Functions 361

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auths-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1profiles-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-attr-4

getprogname, setprogname – get or set the program name

#include <stdlib.h>

const char *getprogname(void);

void setprogname(const char *progname);

The getprogname() function returns the name of the program. If the name has not yet been
set, it returns NULL.

The setprogname() function sets the name of the program to be the last component of the
progname argument. Since a pointer to the given string is kept as the program name, it should
not be modified for the duration of the program.

These functions are used by error-reporting routines to produce consistent output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

err(3C), attributes(5)

Name

Synopsis

Description

Attributes

See Also

getprogname(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 2010362

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpw – get passwd entry from UID

#include <stdlib.h>

int getpw(uid_t uid, char *buf);

The getpw() function searches the user data base for a user id number that equals uid, copies
the line of the password file in which uid was found into the array pointed to by buf, and
returns 0. getpw() returns non-zero if uid cannot be found.

This function is included only for compatibility with prior systems and should not be used; the
functions described on the getpwnam(3C) manual page should be used instead.

If the /etc/passwd and the /etc/group files have a plus sign (+) for the NIS entry, then
getpwent() and getgrent() will not return NULL when the end of file is reached. See
getpwnam(3C).

The getpw() function returns non-zero on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

getpwnam(3C), passwd(4), attributes(5)

Name

Synopsis

Description

Usage

Return Values

Attributes

See Also

getpw(3C)

Basic Library Functions 363

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getpwnam, getpwnam_r, getpwent, getpwent_r, getpwuid, getpwuid_r, setpwent, endpwent,
fgetpwent, fgetpwent_r – get password entry

#include <pwd.h>

struct passwd *getpwnam(const char *name);

struct passwd *getpwnam_r(const char *name, struct passwd *pwd,
char *buffer, int buflen);

struct passwd *getpwent(void);

struct passwd *getpwent_r(struct passwd *pwd, char *buffer,
int buflen);

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwuid_r(uid_t uid, struct passwd *pwd,
char *buffer, int buflen);

void setpwent(void);

void endpwent(void);

struct passwd *fgetpwent(FILE *f);

struct passwd *fgetpwent_r(FILE *f, struct passwd *pwd,
char *buffer, int buflen);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

These functions are used to obtain password entries. Entries can come from any of the sources
for passwd specified in the /etc/nsswitch.conf file (see nsswitch.conf(4)).

The getpwnam() function searches for a password entry with the login name specified by the
character string parameter name.

The getpwuid() function searches for a password entry with the (numeric) user ID specified
by the uid parameter.

The setpwent(), getpwent(), and endpwent() functions are used to enumerate password
entries from the database. The setpwent() function sets (or resets) the enumeration to the
beginning of the set of password entries. This function should be called before the first call to
getpwent(). Calls to getpwnam() and getpwuid() leave the enumeration position in an
indeterminate state. Successive calls to getpwent() return either successive entries or a null
pointer, indicating the end of the enumeration.

Name

Synopsis

Standard conforming

Description

getpwnam(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 2010364

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The endpwent() function may be called to indicate that the caller expects to do no further
password retrieval operations; the system may then close the password file, deallocate
resources it was using, and so forth. It is still allowed, but possibly less efficient, for the process
to call more password functions after calling endpwent().

The fgetpwent() function, unlike the other functions above, does not use nsswitch.conf but
reads and parses the next line from the stream f, which is assumed to have the format of the
passwd file. See passwd(4).

The getpwnam(), getpwuid(), getpwent(), and fgetpwent() functions use thread–specific
data storage that is reused in each call to one of these functions by the same thread, making
them safe to use but not recommended for multithreaded applications.

The parallel functions getpwnam_r(), getpwuid_r(), getpwent_r(), and fgetpwent_r()

provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “ _r ” suffix. The reentrant interfaces, however, use buffers supplied
by the caller to store returned results instead of using thread-specific data that can be
overwritten by each call. They are safe for use in both single-threaded and multithreaded
applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The pwd parameter must be a pointer to a struct
passwd structure allocated by the caller. On successful completion, the function returns the
password entry in this structure. The parameter buffer is a pointer to a buffer supplied by the
caller, used as storage space for the password data. All pointers within the returned struct

passwd pwd point to data stored within this buffer; see passwd Structure below. The buffer
must be large enough to hold all the data associated with the password entry. The parameter
buflen (or bufsize for the standard-conforming versions; see standards(5)) should give the
size in bytes of buffer. The maximum size needed for this buffer can be determined with the
{_SC_GETPW_R_SIZE_MAX} sysconf(3C) parameter. The standard-conforming versions place a
pointer to the modified pwd structure in the result parameter, instead of returning a pointer to
this structure. A null pointer is returned at the location pointed to by result on error or if the
requested entry is not found.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setpwent() function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getpwent_r(), the threads will enumerate disjoint subsets of the
password database.

Like their non-reentrant counterparts, getpwnam_r() and getpwuid_r() leave the
enumeration position in an indeterminate state.

Reentrant Interfaces

getpwnam(3C)

Basic Library Functions 365

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

Password entries are represented by the struct passwd structure defined in <pwd.h>:

struct passwd {

char *pw_name; /* user’s login name */

char *pw_passwd; /* no longer used */

uid_t pw_uid; /* user’s uid */

gid_t pw_gid; /* user’s gid */

char *pw_age; /* not used */

char *pw_comment; /* not used */

char *pw_gecos; /* typically user’s full name */

char *pw_dir; /* user’s home dir */

char *pw_shell; /* user’s login shell */

};

The pw_passwd member should not be used as the encrypted password for the user; use
getspnam() or getspnam_r() instead. See getspnam(3C).

The getpwnam(), getpwnam_r(), getpwuid(), and getpwuid_r() functions each return a
pointer to a struct passwd if they successfully locate the requested entry. A null pointer is
returned if the requested entry is not found, or an error occurs. On error, errno is set to
indicate the error.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(), getpwnam_r(), getpwuid(), getpwuid_r(), getpwent(), getpwent_r(),
fgetpwent(), and fgetpwent_r(). If these functions return a null pointer and errno is
non-zero, an error occurred.

The standard-conforming functions getpwnam_r() and getpwuid_r() can return 0 even on
an error, particularly in the case where the requested entry is not found. The application needs
to check the return value and that the pwd pointer is non-null. Otherwise, an error value is
returned to indicate the error.

The getpwent(), getpwent_r(), fgetpwent(), and fgetpwent_r() functions each return a
pointer to a struct passwd if they successfully enumerate an entry; otherwise they return a
null pointer on end-of-file or error. On error, errno is set to indicate the error.

See Intro(2) for the proper usage and interpretation of errno in multithreaded applications.

The getpwnam(), getpwuid(), getpwent(), and fgetpwent() functions use thread–specific
data storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getpwnam_r(), getpwuid_r(),
getpwent_r(), and fgetpwent_r() is non-null, it is always equal to the pwd pointer that was
supplied by the caller.

passwd Structure

Return Values

getpwnam(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 2010366

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

The getpwent_r(), fgetpwent(), and fgetpwent_r() functions will fail if:

EIO An I/O error has occurred.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

The getpwent_r() function will fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

The getpwnam(), getpwnam_r(), getpwuid(), getpwuid_r(), getpwent(), setpwent(), and
endpwent() functions may fail if:

EIO An I/O error has occurred.

The getpwnam(), getpwnam_r(), getpwuid(), getpwuid_r(), getpwent(), and setpwent()

functions may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

The getpwnam(), getpwnam_r(), getpwuid(), and getpwuid_r() functions may fail if:

EINTR A signal was caught during the execution of the function call.

The getpwnam_r() and getpwuid_r() functions may fail if:

ERANGE Insufficient storage was supplied by buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

Three names associated with the current process can be determined: getpwuid(geteuid())
returns the name associated with the effective user ID of the process; getlogin() returns the
name associated with the current login activity; and getpwuid(getuid()) returns the name
associated with the real user ID of the process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See Reentrant Interfaces in DESCRIPTION.

Standard See below.

Errors

Usage

Attributes

getpwnam(3C)

Basic Library Functions 367

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

For endpwent(), getpwent(), getpwnam(), getpwnam_r(), getpwuid(), getpwuid_r(), and
setpwent(), see standards(5).

passwd(1), yppasswd(1), Intro(2), Intro(3), cuserid(3C), getgrnam(3C), getlogin(3C),
getspnam(3C), nsswitch.conf(4), passwd(4), shadow(4), attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3).

Use of the enumeration interfaces getpwent() and getpwent_r() is discouraged;
enumeration is supported for the passwd file and NIS, but in general is not efficient and might
not be supported for all database sources. The semantics of enumeration are discussed further
in nsswitch.conf(4).

Previous releases allowed the use of ‘+' and ‘-' entries in /etc/passwd to selectively include and
exclude NIS entries. The primary usage of these ‘+/-' entries is superseded by the name service
switch, so the ‘+/-' form might not be supported in future releases.

If required, the ‘+/-' functionality can still be obtained for NIS by specifying compat as the
source for passwd.

If the ‘+/-' is used, both /etc/shadow and /etc/passwd should have the same ‘+' and ‘-' entries
to ensure consistency between the password and shadow databases.

If a password entry from any of the sources contains an empty uid or gid field, that entry will
be ignored by the files and NIS name service switch backends, causing the user to appear
unknown to the system.

If a password entry contains an empty gecos, home directory, or shell field, getpwnam() and
getpwnam_r() return a pointer to a null string in the respective field of the passwd structure.

If the shell field is empty, login(1) automatically assigns the default shell. See login(1).

Solaris 2.4 and earlier releases provided definitions of the getpwnam_r() and getpwuid_r()

functions as specified in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface
for these functions. Support for the Draft 6 interface is provided for compatibility only and
might not be supported in future releases. New applications and libraries should use the
standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and _REENTRANT

flags are automatically turned on by defining the _POSIX_C_SOURCE flag with a value
≥199506L.

See Also

Notes

getpwnam(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 2010368

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1yppasswd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1

getrusage – get information about resource utilization

#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

The getrusage() function provides measures of the resources used by the current process, its
terminated and waited-for child processes, or the current light weight process (LWP). If the
value of the who argument is RUSAGE_SELF, information is returned about resources used by
the current process. If the value of the who argument is RUSAGE_CHILDREN, information is
returned about resources used by the terminated and waited-for children of the current
process. If the child is never waited for (for instance, if the parent has SA_NOCLDWAIT set or sets
SIGCHLD to SIG_IGN), the resource information for the child process is discarded and not
included in the resource information provided by getrusage(). If the value of the who
argument is RUSAGE_LWP, information is returned about resources used by the current LWP.

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored. The members of rusage are as follows:

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

long ru_maxrss; /* maximum resident set size */

long ru_idrss; /* integral resident set size */

long ru_minflt; /* page faults not requiring physical

I/O */

long ru_majflt; /* page faults requiring physical I/O */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

The structure members are interpreted as follows:

ru_utime The total amount of time spent executing in user mode. Time is given in
seconds and microseconds.

ru_stime The total amount of time spent executing in system mode. Time is given in
seconds and microseconds.

ru_maxrss The maximum resident set size. Size is given in pages (the size of a page, in
bytes, is given by the getpagesize(3C) function). See the NOTES section of
this page.

ru_idrss An “integral” value indicating the amount of memory in use by a process
while the process is running. This value is the sum of the resident set sizes of

Name

Synopsis

Description

getrusage(3C)

Basic Library Functions 369

the process running when a clock tick occurs. The value is given in pages
times clock ticks. It does not take sharing into account. See the NOTES section
of this page.

ru_minflt The number of page faults serviced which did not require any physical I/O
activity. See the NOTES section of this page.

ru_majflt The number of page faults serviced which required physical I/O activity.
This could include page ahead operations by the kernel. See the NOTES
section of this page.

ru_nswap The number of times a process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input in servicing a
read(2) request.

ru_oublock The number of times the file system had to perform output in servicing a
write(2) request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received from sockets.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

ru_nivcsw The number of times a context switch resulted due to a higher priority
process becoming runnable or because the current process exceeded its time
slice.

Upon successful completion, getrusage() returns 0. Otherwise, −1 is returned and errno is
set to indicate the error.

The getrusage() function will fail if:

EFAULT The address specified by the r_usage argument is not in a valid portion of the
process' address space.

EINVAL The who parameter is not a valid value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Return Values

Errors

Attributes

getrusage(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Jul 2004370

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sar(1M), read(2), times(2), write(2), getpagesize(3C), gettimeofday(3C), wait(3C),
attributes(5), standards(5)

The ru_maxrss, ru_ixrss, ru_idrss, and ru_isrss members of the rusage structure are set
to 0 in this implementation.

The numbers ru_inblock and ru_oublock account only for real I/O, and are approximate
measures at best. Data supplied by the cache mechanism is charged only to the first process to
read and the last process to write the data.

The way resident set size is calculated is an approximation, and could misrepresent the true
resident set size.

Page faults can be generated from a variety of sources and for a variety of reasons. The
customary cause for a page fault is a direct reference by the program to a page which is not in
memory. Now, however, the kernel can generate page faults on behalf of the user, for example,
servicing read(2) and write(2) functions. Also, a page fault can be caused by an absent
hardware translation to a page, even though the page is in physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page faults in order
to perform some housekeeping. For example, the kernel may generate page faults, even if the
pages exist in physical memory, in order to lock down pages involved in a raw I/O request.

By definition, major page faults require physical I/O, while minor page faults do not require
physical I/O. For example, reclaiming the page from the free list would avoid I/O and generate
a minor page fault. More commonly, minor page faults occur during process startup as
references to pages which are already in memory. For example, if an address space faults on
some “hot” executable or shared library, this results in a minor page fault for the address
space. Also, any one doing a read(2) or write(2) to something that is in the page cache will get
a minor page fault(s) as well.

There is no way to obtain information about a child process which has not yet terminated.

See Also

Notes

getrusage(3C)

Basic Library Functions 371

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sar-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1times-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

gets, fgets – get a string from a stream

#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

The gets() function reads bytes from the standard input stream (see Intro(3)), stdin, into
the array pointed to by s, until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded and the string is terminated with a null byte.

If the length of an input line exceeds the size of s, indeterminate behavior may result. For this
reason, it is strongly recommended that gets() be avoided in favor of fgets().

The fgets() function reads bytes from the stream into the array pointed to by s, until n−1
bytes are read, or a newline character is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null byte.

The fgets() and gets() functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgets(), fread(3C), fscanf(3C), getc(3C), getchar(3C),
getdelim(3C), getline(3C), gets(), or scanf(3C) using stream that returns data not
supplied by a prior call to ungetc(3C) or ungetwc(3C).

If end-of-file is encountered and no bytes have been read, no bytes are transferred to s and a
null pointer is returned. For standard-conforming (see standards(5)) applications, if the
end-of-file indicator for the stream is set, no bytes are transferred to s and a null pointer is
returned whether or not the stream is at end-of-file. If a read error occurs, such as trying to use
these functions on a file that has not been opened for reading, a null pointer is returned and
the error indicator for the stream is set. If end-of-file is encountered, the EOF indicator for the
stream is set. Otherwise s is returned.

Refer to fgetc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

lseek(2), read(2), ferror(3C), fgetc(3C), fgetwc(3C), fopen(3C), fread(3C), getchar(3C),
getdelim(3C), getline(3C), scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

gets(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Oct 2003372

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r – get
password entry

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspnam_r(const char *name, struct spwd *result,
char *buffer, int buflen);

struct spwd *getspent(void);

struct spwd *getspent_r(struct spwd *result, char *buffer,
int buflen);

void setspent(void);

void endspent(void);

struct spwd *fgetspent(FILE *fp);

struct spwd *fgetspent_r(FILE *fp, struct spwd *result,
char *buffer, int buflen);

These functions are used to obtain shadow password entries. An entry may come from any of
the sources for shadow specified in the /etc/nsswitch.conf file (see nsswitch.conf(4)).

The getspnam() function searches for a shadow password entry with the login name specified
by the character string argument name.

The setspent(), getspent(), and endspent() functions are used to enumerate shadow
password entries from the database.

The setspent() function sets (or resets) the enumeration to the beginning of the set of
shadow password entries. This function should be called before the first call to getspent().
Calls to getspnam() leave the enumeration position in an indeterminate state.

Successive calls to getspent() return either successive entries or NULL, indicating the end of
the enumeration.

The endspent() function may be called to indicate that the caller expects to do no further
shadow password retrieval operations; the system may then close the shadow password file,
deallocate resources it was using, and so forth. It is still allowed, but possibly less efficient, for
the process to call more shadow password functions after calling endspent().

The fgetspent() function, unlike the other functions above, does not use nsswitch.conf; it
reads and parses the next line from the stream fp, which is assumed to have the format of the
shadow file (see shadow(4)).

Name

Synopsis

Description

getspnam(3C)

Basic Library Functions 373

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4

The getspnam(), getspent(), and fgetspent() functions use thread-specific data storage
that is reused in each call to one of these functions by the same thread, making them safe to use
but not recommended for multithreaded applications.

The getspnam_r(), getspent_r(), and fgetspent_r() functions provide reentrant
interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same argument as its non-reentrant counterpart, as well as
the following additional arguments. The result argument must be a pointer to a struct spwd
structure allocated by the caller. On successful completion, the function returns the shadow
password entry in this structure. The buffer argument must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the shadow password data. All of the pointers
within the returned struct spwd result point to data stored within this buffer (see RETURN
VALUES). The buffer must be large enough to hold all of the data associated with the shadow
password entry. The buflen argument should give the size in bytes of the buffer indicated by
buffer.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setspent() function may be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getspent_r(), the threads will enumerate disjoint subsets of the
shadow password database.

Like its non-reentrant counterpart, getspnam_r() leaves the enumeration position in an
indeterminate state.

Password entries are represented by the struct spwd structure defined in <shadow.h>:

struct spwd{

char *sp_namp; /* login name */

char *sp_pwdp; /* encrypted passwd */

int sp_lstchg; /* date of last change */

int sp_min; /* min days to passwd change */

int sp_max; /* max days to passwd change*/

int sp_warn; /* warning period */

int sp_inact; /* max days inactive */

int sp_expire; /* account expiry date */

unsigned int sp_flag; /* not used */

};

See shadow(4) for more information on the interpretation of this data.

The getspnam()and getspnam_r() functions each return a pointer to a struct spwd if they
successfully locate the requested entry; otherwise they return NULL.

Reentrant Interfaces

Return Values

getspnam(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Dec 2009374

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4

The getspent(), getspent_r(), fgetspent(), and fgetspent() functions each return a
pointer to a struct spwd if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

The getspnam(), getspent(), and fgetspent() functions use thread–specific data storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getspnam_r(), getspent_r(), and
fgetspent_r() is non-null, it is always equal to the result pointer that was supplied by the
caller.

The reentrant functions getspnam_r(), getspent_r(), and fgetspent_r() will return NULL
and set errno to ERANGE if the length of the buffer supplied by caller is not large enough to
store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

passwd(1), yppasswd(1), Intro(3), getlogin(3C), getpwnam(3C), nsswitch.conf(4),
passwd(4), shadow(4), attributes(5)

The reentrant interfaces getspnam_r(), getspent_r(), and fgetspent_r() are included in
this release on an uncommitted basis only, and are subject to change or removal in future
minor releases.

When compiling multithreaded applications, see Intro(3),
Notes On Multithreaded Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getspent() and getspent_r() is not recommended;
enumeration is supported for the shadow file and NIS, but in general is not efficient and may
not be supported for all database sources. The semantics of enumeration are discussed further
in nsswitch.conf(4).

Access to shadow password information may be restricted in a manner depending on the
database source being used. Access to the /etc/shadow file is generally restricted to processes
running with the effective uid of the file owner or the {PRIV_FILE_DAC_READ} privilege. Other
database sources may impose stronger or less stringent restrictions.

Empty fields in the database source return -1 values for all fields except sp_pwdp and sp_flag,
where the value returned is 0.

Errors

Attributes

See Also

Warnings

Notes

getspnam(3C)

Basic Library Functions 375

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1yppasswd-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

When NIS is used as the database source, the information for the shadow password entries is
obtained from the ‘‘passwd.byname'' map. This map stores only the information for the
sp_namp and sp_pwdp fields of the struct spwd structure. Shadow password entries obtained
from NIS will contain the value -1 in the remainder of the fields.

getspnam(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Dec 2009376

getsubopt – parse suboption arguments from a string

#include <stdlib.h>

int getsubopt(char **optionp, char * const *keylistp, char **valuep);

The getsubopt() function parses suboption arguments in a flag argument. Such options
often result from the use of getopt(3C).

The getsubopt() argument optionp is a pointer to a pointer to the option argument string.
The suboption arguments are separated by commas and each can consist of either a single
token or a token-value pair separated by an equal sign.

The keylistp argument is a pointer to a vector of strings. The end of the vector is identified by a
null pointer. Each entry in the vector is one of the possible tokens that might be found in
*optionp. Since commas delimit suboption arguments in optionp, they should not appear in
any of the strings pointed to by keylistp. Similarly, because an equal sign separates a token
from its value, the application should not include an equal sign in any of the strings pointed to
by keylistp.

The valuep argument is the address of a value string pointer.

If a comma appears in optionp, it is interpreted as a suboption separator. After commas have
been processed, if there are one or more equal signs in a suboption string, the first equal sign in
any suboption string is interpreted as a separator between a token and a value. Subsequent
equal signs in a suboption string are interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no commas),
getsubopt() updates *optionp to point to the null character at the end of the string.
Otherwise, it isolates the suboption argument by replacing the comma separator with a null
character and updates *optionp to point to the start of the next suboption argument. If the
suboption argument has an associated value (equivalently, contains an equal sign),
getsubopt() updates *valuep to point to the value's first character. Otherwise, it sets *valuep
to a null pointer. The calling application can use this information to determine whether the
presence or absence of a value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption with a token in the keylistp
array, the calling application should decide if this is an error or if the unrecognized option
should be processed in another way.

The getsubopt() function returns the index of the matched token string or -1 if no token
strings were matched.

No errors are defined.

Name

Synopsis

Description

Return Values

Errors

getsubopt(3C)

Basic Library Functions 377

EXAMPLE 1 Use getsubopt() to process options.

The following example demonstrates the processing of options to the mount(1M) utility using
getsubopt().

#include <stdlib.h>

char *myopts[] = {

#define READONLY 0

"ro",
#define READWRITE 1

"rw",
#define WRITESIZE 2

"wsize",
#define READSIZE 3

"rsize",
NULL};

main(argc, argv)

int argc;

char **argv;

{

int sc, c, errflag;

char *options, *value;

extern char *optarg;

extern int optind;

.

.

.

while((c = getopt(argc, argv, "abf:o:")) != -1) {

switch (c) {

case ’a’: /* process a option */

break;

case ’b’: /* process b option */

break;

case ’f’:

ofile = optarg;

break;

case ’?’:

errflag++;

break;

case ’o’:

options = optarg;

while (*options != ’\0’) {

switch(getsubopt(&options,myopts,&value)){

case READONLY : /* process ro option */

break;

case READWRITE : /* process rw option */

break;

Examples

getsubopt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Sep 2005378

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-1m

EXAMPLE 1 Use getsubopt() to process options. (Continued)

case WRITESIZE : /* process wsize option */

if (value == NULL) {

error_no_arg();

errflag++;

} else

write_size = atoi(value);

break;

case READSIZE : /* process rsize option */

if (value == NULL) {

error_no_arg();

errflag++;

} else

read_size = atoi(value);

break;

default :

/* process unknown token */

error_bad_token(value);

errflag++;

break;

}

}

break;

}

}

if (errflag) {

/* print usage instructions etc. */

}

for (; optind<argc; optind++) {

/* process remaining arguments */

}

.

.

.

}

EXAMPLE 2 Parse suboptions.

The following example uses the getsubopt() function to parse a value argument in the optarg
external variable returned by a call to getopt(3C).

#include <stdlib.h>

...

char *tokens[] = {"HOME", "PATH", "LOGNAME", (char *) NULL };

char *value;

int opt, index;

while ((opt = getopt(argc, argv, "e:")) != -1) {

switch(opt) {

getsubopt(3C)

Basic Library Functions 379

EXAMPLE 2 Parse suboptions. (Continued)

case ’e’ :

while ((index = getsubopt(&optarg, tokens, &value)) != -1) {

switch(index) {

...

}

break;

...

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mount(1M), getopt(3C), attributes(5), standards(5)

Attributes

See Also

getsubopt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Sep 2005380

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext, textdomain, bindtextdomain,
bind_textdomain_codeset – message handling functions

#include <libintl.h>

char *gettext(const char *msgid);

char *dgettext(const char *domainname, const char *msgid);

char *textdomain(const char *domainname);

char *bindtextdomain(const char *domainname, const char *dirname);

#include <libintl.h>

#include <locale.h>

char *dcgettext(const char *domainname, const char *msgid,
int category);

#include <libintl.h>

char *ngettext(const char *msgid1, const char *msgid2,
unsigned long int n);

char *dngettext(const char *domainname, const char *msgid1,
const char *msgid2, unsigned long int n);

char *bind_textdomain_codeset(const char *domainname,
const char *codeset);

extern int _nl_msg_cat_cntr;

extern int *_nl_domain_bindings;

#include <libintl.h>

#include <locale.h>

char *dcngettext(const char *domainname, const char *msgid1,
const char *msgid2, unsigned long int n, int category);

The gettext(), dgettext(), and dcgettext() functions attempt to retrieve a target string
based on the specified msgid argument within the context of a specific domain and the current
locale. The length of strings returned by gettext(), dgettext(), and dcgettext() is
undetermined until the function is called. The msgid argument is a null-terminated string.

The ngettext(), dngettext(), and dcngettext() functions are equivalent to gettext(),
dgettext(), and dcgettext(), respectively, except for the handling of plural forms. These
functions work only with GNU-compatible message catalogues. The ngettext(),
dngettext(), and dcngettext() functions search for the message string using the msgid1
argument as the key and the n argument to determine the plural form. If no message
catalogues are found, msgid1 is returned if n == 1, otherwise msgid2 is returned.

Name

Synopsis

Solaris and
GNU-compatible

GNU-compatible

Description

gettext(3C)

Basic Library Functions 381

The NLSPATH environment variable (see environ(5)) is searched in its entirety first for the
location of the LC_MESSAGES catalogue. The setting of the LC_MESSAGES category of the current
locale determines the locale used by gettext() and dgettext() for string retrieval. If
NLSPATH contains %L and the current value of it is a canonical locale name to an obsoleted
Solaris locale name as described in locale_alias(5) and there is no message catalog for the
canonical locale name, for a better backward compatibility, gettext() and dgettext() use
the obsoleted Solaris locale names in place for %L as aliases for the canonical locale name and
try to locate the desired message catalogue. If that still does not yield a message catalogue and
the value of %L is an accepted and supported locale name alias as described in
locale_alias(5), the matching canonical locale name is used in place for %L to locate the
desired message catalogue. The category argument determines the locale used by
dcgettext(). If NLSPATH is not defined and the current locale is “C”, gettext(),
dgettext(), and dcgettext() simply return the message string that was passed. In a locale
other than “C”, if NLSPATH is not defined or if a message catalogue is not found in any of the
components specified by NLSPATH, the routines search for the message catalogue using the
scheme described in the following paragraph.

The LANGUAGE environment variable is examined in its entirety to determine the
GNU-compatible message catalogues to be used. The value of LANGUAGE is a list of locale
names separated by a colon (':') character. If LANGUAGE is defined, each locale name is tried in
the specified order and if a GNU-compatible message catalogue is found, it is used to return
target strings. If no GNU-compatible message catalogue is found for all locales specified in the
LANGUAGE and if there are accepted and supported locale name aliases for any of the locale
names in the LANGUAGE, as specified in locale_alias(5) and in the same manner as described
in the NLSPATH description at the above for %L and the current locale name, the locale name
aliases are used once again to search corresponding GNU-compatible message catalogues. If a
GNU-compatible message catalogue is found but failed to find a corresponding msgid, the
msgid string is returned. If LANGUAGE is not defined or if a Solaris message catalogue is found or
no GNU-compatible message catalogue is found in processing LANGUAGE, the pathname used
to locate the message catalogue is dirname/locale/category/domainname.mo, where dirname is
the directory specified by bindtextdomain(), locale is a locale name, and category is either
LC_MESSAGES if gettext(), dgettext(), ngettext(), or dngettext() is called, or LC_XXX
where the name is the same as the locale category name specified by the category argument to
dcgettext() or dcngettext(). In this last stage of search of message catalogue, if there is no
message catalogue found with the locale name and if the locale name has aliases as described
in locale_alias(5), the locale name aliases are used in place of the locale name to locate the
message catalogue in the same manner as described in the above for the processing of the
locale name aliases of the locales defined at the LANGUAGE.

For gettext() and ngettext(), the domain used is set by the last valid call to textdomain().
If a valid call to textdomain() has not been made, the default domain (called messages) is
used.

For dgettext(), dcgettext(), dngettext(), and dcngettext(), the domain used is specified
by the domainname argument. The domainname argument is equivalent in syntax and

gettext(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011382

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

meaning to the domainname argument to textdomain(), except that the selection of the
domain is valid only for the duration of the dgettext(), dcgettext(), dngettext(), or
dcngettext() function call.

The textdomain() function sets or queries the name of the current domain of the active
LC_MESSAGES locale category. The domainname argument is a null-terminated string that can
contain only the characters allowed in legal filenames.

The domainname argument is the unique name of a domain on the system. If there are
multiple versions of the same domain on one system, namespace collisions can be avoided by
using bindtextdomain(). If textdomain() is not called, a default domain is selected. The
setting of domain made by the last valid call to textdomain() remains valid across subsequent
calls to setlocale(3C), and gettext().

The domainname argument is applied to the currently active LC_MESSAGES locale.

The current setting of the domain can be queried without affecting the current state of the
domain by calling textdomain() with domainname set to the null pointer. Calling
textdomain() with a domainname argument of a null string sets the domain to the default
domain (messages).

The bindtextdomain() function binds the path predicate for a message domain domainname
to the value contained in dirname. If domainname is a non-empty string and has not been
bound previously, bindtextdomain() binds domainname with dirname.

If domainname is a non-empty string and has been bound previously, bindtextdomain()
replaces the old binding with dirname. The dirname argument can be an absolute or relative
pathname being resolved when gettext(), dgettext(), or dcgettext() are called. If
domainname is a null pointer or an empty string, bindtextdomain() returns NULL. User
defined domain names cannot begin with the string SYS_. Domain names beginning with this
string are reserved for system use.

The bind_textdomain_codeset() function can be used to specify the output codeset for
message catalogues for domain domainname. The codeset argument must be a valid codeset
name that can be used for the iconv_open(3C) function, or a null pointer. If the codeset
argument is the null pointer, bind_textdomain_codeset() returns the currently selected
codeset for the domain with the name domainname. It returns a null pointer if a codeset has
not yet been selected. The bind_textdomain_codeset() function can be used multiple times.
If used multiple times with the same domainname argument, the later call overrides the
settings made by the earlier one. The bind_textdomain_codeset() function returns a pointer
to a string containing the name of the selected codeset. The string is allocated internally in the
function and must not be changed by the user.

The external variables _nl_msg_cat_cntr and _nl_domain_bindings are provided for the
compatibility with the GNU gettext() implementation.

gettext(3C)

Basic Library Functions 383

The gettext(), dgettext(), and dcgettext() functions return the message string if the
search succeeds. Otherwise they return the msgid string.

The ngettext(), dngettext(), and dcngettext() functions return the message string if the
search succeeds. If the search fails, msgid1 is returned if n == 1. Otherwise msgid2 is returned.

The individual bytes of the string returned by gettext(), dgettext(), dcgettext(),
ngettext(), dngettext(), or dcngettext() can contain any value other than NULL. If msgid
is a null pointer, the return value is undefined. The string returned must not be modified by
the program and can be invalidated by a subsequent call to bind_textdomain_codeset() or
setlocale(3C). If the domainname argument to dgettext(),dcgettext(), dngettext(), or
dcngettext() is a null pointer, the the domain currently bound by textdomain() is used.

The normal return value from textdomain() is a pointer to a string containing the current
setting of the domain. If domainname is a null pointer, textdomain() returns a pointer to the
string containing the current domain. If textdomain() was not previously called and
domainname is a null string, the name of the default domain is returned. The name of the
default domain is messages. If textdomain() fails, a null pointer is returned.

The return value from bindtextdomain() is a null-terminated string containing dirname or
the directory binding associated with domainname if dirname is NULL. If no binding is found,
the default return value is /usr/lib/locale. If domainname is a null pointer or an empty
string, bindtextdomain() takes no action and returns a null pointer. The string returned
must not be modified by the caller. If bindtextdomain() fails, a null pointer is returned.

These functions impose no limit on message length. However, a text domainname is limited to
TEXTDOMAINMAX (256) bytes.

The gettext(), dgettext(), dcgettext(), ngettext(), dngettext(), dcngettext(),
textdomain(), and bindtextdomain() functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not being called to change the locale.

The gettext(), dgettext(), dcgettext(), textdomain(), and bindtextdomain() functions
work with both Solaris message catalogues and GNU-compatible message catalogues. The
ngettext(), dngettext(), dcngettext(), and bind_textdomain_codeset() functions work
only with GNU-compatible message catalogues. See msgfmt(1) for information about Solaris
message catalogues and GNU-compatible message catalogues.

/usr/lib/locale

default path predicate for message domain files

/usr/lib/locale/locale/LC_MESSAGES/domainname.mo
system default location for file containing messages for language locale and domainname

/usr/lib/locale/locale/LC_XXX/domainname.mo
system default location for file containing messages for language locale and domainname
for dcgettext() calls where LC_XXX is LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE,
LC_MONETARY, or LC_MESSAGES

Return Values

Usage

Files

gettext(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011384

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgfmt-1

dirname/locale/LC_MESSAGES/domainname.mo
location for file containing messages for domain domainname and path predicate dirname
after a successful call to bindtextdomain()

dirname/locale/LC_XXX/domainname.mo
location for files containing messages for domain domainname, language locale, and path
predicate dirname after a successful call to bindtextdomain() for dcgettext() calls where
LC_XXX is one of LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY, or
LC_MESSAGES

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level Safe with exceptions

The external variables _nl_msg_cat_cntr and _nl_domain_bindings are Uncommitted.
Otherwise, the interface is Committed.

msgfmt(1), xgettext(1), iconv_open(3C), libintl.h(3HEAD), setlocale(3C),
attributes(5), environ(5), locale_alias(5)

Attributes

See Also

gettext(3C)

Basic Library Functions 385

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgfmt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1xgettext-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libintl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

gettimeofday, settimeofday – get or set the date and time

#include <sys/time.h>

int gettimeofday(struct timeval *tp, void *tzp);

int settimeofday(struct timeval *tp, void *tzp);

The gettimeofday() function gets and the settimeofday() function sets the system's notion
of the current time. The current time is expressed in elapsed seconds and microseconds since
00:00 Universal Coordinated Time, January 1, 1970. The resolution of the system clock is
hardware dependent; the time may be updated continuously or in clock ticks.

The tp argument points to a timeval structure, which includes the following members:

long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information. See TIMEZONE(4).

The tzp argument to gettimeofday() and settimeofday() is ignored.

Only privileged processes can set the time of day.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The settimeofday() function will fail if:

EINVAL The structure pointed to by tp specifies an invalid time.

EPERM The {PRIV_SYS_TIME} privilege was not asserted in the effective set of the calling
process.

The gettimeofday() function will fail for 32-bit interfaces if:

EOVERFLOW The system time has progressed beyond 2038, thus the size of the tv_sec
member of the timeval structure pointed to by tp is insufficient to hold the
current time in seconds.

If the tv_usec member of tp is > 500000, settimeofday() rounds the seconds upward. If the
time needs to be set with better than one second accuracy, call settimeofday() for the
seconds and then adjtime(2) for finer accuracy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability gettimeofday() is Standard.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

gettimeofday(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Aug 2003386

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

adjtime(2), ctime(3C), gethrtime(3C), TIMEZONE(4), attributes(5), privileges(5),
standards(5)

See Also

gettimeofday(3C)

Basic Library Functions 387

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gettxt – retrieve a text string

#include <nl_types.h>

char *gettxt(const char *msgid, const char *dflt_str);

The gettxt() function retrieves a text string from a message file. The arguments to the
function are a message identification msgid and a default string dflt_str to be used if the
retrieval fails.

The text strings are in files created by the mkmsgs utility (see mkmsgs(1)) and installed in
directories in /usr/lib/locale/locale/LC_MESSAGES.

The directory locale can be viewed as the language in which the text strings are written. The
user can request that messages be displayed in a specific language by setting the environment
variable LC_MESSAGES. If LC_MESSAGES is not set, the environment variable LANG will be used. If
LANG is not set, the files containing the strings are in /usr/lib/locale/C/LC_MESSAGES/*.

The user can also change the language in which the messages are displayed by invoking the
setlocale(3C) function with the appropriate arguments.

If gettxt() fails to retrieve a message in a specific language it will try to retrieve the same
message in U.S. English. On failure, the processing depends on what the second argument
dflt_str points to. A pointer to the second argument is returned if the second argument is not
the null string. If dflt_str points to the null string, a pointer to the U.S. English text string
"Message not found!!\n" is returned.

The following depicts the acceptable syntax of msgid for a call to gettxt().

<msgid> = <msgfilename>:<msgnumber>

The first field is used to indicate the file that contains the text strings and must be limited to 14
characters. These characters must be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash) and : (colon). The names of message files must be the
same as the names of files created by mkmsgs and installed in
/usr/lib/locale/locale/LC_MESSAGES/*. The numeric field indicates the sequence number
of the string in the file. The strings are numbered from 1 to n where n is the number of strings
in the file.

Upon failure to pass either the correct msgid or a valid message number to gettxt(), a pointer
to the text string "Message not found!!\n" is returned.

It is recommended that gettext(3C) be used in place of this function.

EXAMPLE 1 Example of gettxt() function.

In the following example,

gettxt("UX:10", "hello world\n")
gettxt("UX:10", "")

Name

Synopsis

Description

Return Values

Usage

Examples

gettxt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996388

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkmsgs-1

EXAMPLE 1 Example of gettxt() function. (Continued)

UX is the name of the file that contains the messages and 10 is the message number.

/usr/lib/locale/C/LC_MESSAGES/* contains default message files created by
mkmsgs

/usr/lib/locale/locale/LC_MESSAGES/* contains message files for different languages
created by mkmsgs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions

exstr(1), mkmsgs(1), srchtxt(1), gettext(3C), fmtmsg(3C), setlocale(3C), attributes(5),
environ(5)

Files

Attributes

See Also

gettxt(3C)

Basic Library Functions 389

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exstr-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkmsgs-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1srchtxt-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr, fgetuserattr – get
user_attr entry

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

userattr_t *fgetuserattr(FILE *f);

The getuserattr(), getusernam(), and getuseruid() functions each return a user_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4) file. The
getuserattr() function enumerates user_attr entries. The getusernam() function searches
for a user_attr entry with a given user name name. The getuseruid() function searches for
a user_attr entry with a given user ID uid. Successive calls to these functions return either
successive user_attr entries or NULL.

The fgetuserattr() function does not use nsswitch.conf but reads and parses the next line
from the stream f. This stream is assumed to have the format of the user_attr files.

The free_userattr() function releases memory allocated by the getusernam(),
getuserattr(), and fgetuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined in
<user_attr.h> with the following members:

char *name; /* name of the user */

char *qualifier; /* reserved for future use */

char *res1; /* reserved for future use */

char *res2; /* reserved for future use */

kva_t *attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of user_attr
entries. Calls to getusernam() may leave the enumeration in an indeterminate state, so
setuserattr() should be called before the first call to getuserattr().

The enduserattr() function may be called to indicate that user_attr processing is complete;
the library may then close any open user_attr file, deallocate any internal storage, and so
forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully enumerates
an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully locates the
requested entry; otherwise it returns NULL.

Name

Synopsis

Description

Return Values

getuserattr(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Mar 2011390

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The getuserattr() and getusernam() functions both allocate memory for the pointers they
return. This memory should be deallocated with the free_userattr() function.

Individual attributes can be referenced in the attr structure by calling the kva_match(3C)
function.

Because the list of legal keys is likely to expand, code must be written to ignore unknown
key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3C), getexecattr(3C), getprofattr(3C), user_attr(4), attributes(5)

Usage

Warnings

Files

Attributes

See Also

getuserattr(3C)

Basic Library Functions 391

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1user-attr-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getusershell, setusershell, endusershell – get legal user shells

#include <unistd.h>

char *getusershell(void);

void setusershell(void);

void endusershell(void);

The getusershell() function returns a pointer to a legal user shell as defined by the system
manager in the file /etc/shells. If /etc/shells does not exist, the following locations of the
standard system shells are used in its place:

/bin/bash /bin/csh

/bin/jsh /bin/ksh

/bin/ksh93 /bin/pfcsh

/bin/pfksh /bin/pfsh

/bin/sh /bin/tcsh

/bin/zsh /usr/sbin/jsh

/usr/sbin/pfsh /usr/sbin/sh

/usr/bin/bash /usr/bin/csh

/usr/bin/jsh /usr/bin/ksh

/usr/bin/ksh93 /usr/bin/pfcsh

/usr/bin/pfksh /usr/bin/pfsh

/usr/bin/sh /usr/bin/tcsh

/usr/bin/zsh /usr/sfw/bin/zsh

/usr/xpg4/bin/sh

The getusershell() function opens the file /etc/shells, if it exists, and returns the next
entry in the list of shells.

The setusershell() function rewinds the file or the list.

The endusershell() function closes the file, frees any memory used by getusershell() and
setusershell(), and rewinds the file /etc/shells.

The getusershell() function returns a null pointer on EOF.

All information is contained in memory that may be freed with a call to endusershell(), so it
must be copied if it is to be saved.

Restricted shells should not be listed in /etc/shells.

Name

Synopsis

Description

Return Values

Bugs

Notes

getusershell(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011392

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – user accounting
database functions

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

These functions provide access to the user accounting database, utmp. Entries in the database
are described by the definitions and data structures in <utmp.h>.

The utmp structure contains the following members:

char ut_user[8]; /* user login name */

char ut_id[4]; /* /etc/inittab id */

/* (usually line #) */

char ut_line[12]; /* device name (console, lnxx) */

short ut_pid; /* process id */

short ut_type; /* type of entry */

struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp database. If the database is not
already open, it opens it. If it reaches the end of the database, it fails.

The getutid() function searches forward from the current point in the utmp database until it
finds an entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME, DOWN_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutid() will return a pointer to the
first entry whose type is one of these four and whose ut_id member matches id->ut_id. If the
end of database is reached without a match, it fails.

Name

Synopsis

Description

getutent()

getutid()

getutent(3C)

Basic Library Functions 393

The getutline() function searches forward from the current point in the utmp database until
it finds an entry of the type LOGIN_PROCESS or ut_line string matching the line->ut_line
string. If the end of database is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp database. It uses
getutid() to search forward for the proper place if it finds that it is not already at the proper
place. It is expected that normally the user of pututline() will have searched for the proper
entry using one of the these functions. If so, pututline() will not search. If pututline() does
not find a matching slot for the new entry, it will add a new entry to the end of the database. It
returns a pointer to the utmp structure. When called by a non-root user, pututline() invokes
a setuid() root program to verify and write the entry, since the utmp database is normally
writable only by root. In this event, the ut_name member must correspond to the actual user
name associated with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be writable by the
user.

The setutent() function resets the input stream to the beginning. This reset should be done
before each search for a new entry if it is desired that the entire database be examined.

The endutent() function closes the currently open database.

The utmpname() function allows the user to change the name of the database file examined to
another file. If the file does not exist, this will not be apparent until the first attempt to
reference the file is made. The utmpname() function does not open the file but closes the old
file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write. If the file name given is longer than 79 characters,
utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an unbuffered
non-standard write to avoid race conditions between processes trying to modify the utmp and
wtmp databases.

Applications should not access the utmp and wtmp databases directly, but should use these
functions to ensure that these databases are maintained consistently. Using these functions,
however, may cause applications to fail if user accounting data cannot be represented properly
in the utmp structure (for example, on a system where PIDs can exceed 32767). Use the
functions described on the getutxent(3C) manual page instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getutline()

pututline()

setutent()

endutent()

utmpname()

Return Values

Usage

Attributes

getutent(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011394

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getutxent(3C), ttyslot(3C), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. On each call to either getutid() or getutline(), the
function examines the static structure before performing more I/O. If the contents of the static
structure match what it is searching for, it looks no further. For this reason, to use
getutline() to search for multiple occurrences, it would be necessary to zero out the static
area after each success, or getutline() would just return the same structure over and over
again. There is one exception to the rule about emptying the structure before further reads are
done. The implicit read done by pututline() (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static structure returned by the getutent(),
getutid() or getutline() functions, if the user has just modified those contents and passed
the pointer back to pututline().

See Also

Notes

getutent(3C)

Basic Library Functions 395

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname, getutmp,
getutmpx, updwtmp, updwtmpx – user accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)). Entries
in the database are described by the definitions and data structures in <utmpx.h>.

The utmpx structure contains the following members:

char ut_user[32]; /* user login name */

char ut_id[4]; /* /etc/inittab id */

/* (usually line #) */

char ut_line[32]; /* device name */

/* (console, lnxx) */

pid_t ut_pid; /* process id */

short ut_type; /* type of entry */

struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

struct timeval ut_tv; /* time entry was made */

int ut_session; /* session ID, used for */

/* windowing */

short ut_syslen; /* significant length of */

/* ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The exit_status structure includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

Name

Synopsis

Description

getutxent(3C)

man pages section 3: Basic Library Functions • Last Revised 27 Jul 2004396

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4

The getutxent() function reads in the next entry from a utmpx database. If the database is not
already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx database until
it finds an entry with a ut_type matching id–>ut_type, if the type specified is RUN_LVL,
BOOT_TIME, DOWN_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutxid() will return a pointer to
the first entry whose type is one of these four and whose ut_id member matches id–>ut_id. If
the end of database is reached without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx database
until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line
string matching the line->ut_line string. If the end of the database is reached without a
match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx database. It
uses getutxid() to search forward for the proper place if it finds that it is not already at the
proper place. It is expected that normally the user of pututxline() will have searched for the
proper entry using one of the getutx() routines. If so, pututxline() will not search. If
pututxline() does not find a matching slot for the new entry, it will add a new entry to the
end of the database. It returns a pointer to the utmpx structure. When called by a non-root
user, pututxline() invokes a setuid() root program to verify and write the entry, since the
utmpx database is normally writable only by root. In this event, the ut_name member must
correspond to the actual user name associated with the process; the ut_type member must be
either USER_PROCESS or DEAD_PROCESS; and the ut_line member must be a device special file
and be writable by the user.

The setutxent() function resets the input stream to the beginning. This should be done
before each search for a new entry if it is desired that the entire database be examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file examined
from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If the file does not exist,
this will not be apparent until the first attempt to reference the file is made. The utmpxname()
function does not open the file, but closes the old file if it is currently open and saves the new
file name. The new file name must end with the “x” character to allow the name of the
corresponding utmp file to be easily obtainable.; otherwise, an error value of 0 is returned. The
function returns 1 on success.

The getutmp() function copies the information stored in the members of the utmpx structure
to the corresponding members of the utmp structure. If the information in any member of
utmpx does not fit in the corresponding utmp member, the data is silently truncated. (See
getutent(3C) for utmp structure)

getutxent()

getutxid()

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

getutxent(3C)

Basic Library Functions 397

The getutmpx() function copies the information stored in the members of the utmp structure
to the corresponding members of the utmpx structure. (See getutent(3C) for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted to a utmpx
format record and the /var/adm/wtmpx file is updated (because the /var/adm/wtmp file no
longer exists, operations on wtmp are converted to operations on wtmpx by the library
functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp format and is
updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by utmpx to
the database.

The values of the e_termination and e_exit members of the ut_exit structure are valid only
for records of type DEAD_PROCESS. For utmpx entries created by init(1M), these values are set
according to the result of the wait() call that init performs on the process when the process
exits. See the wait(3C), manual page for the values init uses. Applications creating utmpx
entries can set ut_exit values using the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)

u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wait.h(3HEAD) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by applications
interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the value of the
ut_exit.e_exit member to mark utmpx entries as real logins (as opposed to multiple xterms
started by the same user on a window system). This allows the system utilities that display
users to obtain an accurate indication of the number of actual users, while still permitting each
pty to have a utmpx record (as most applications expect.). The NONROOT_USER macro defines
the value that login places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each return a
pointer to a utmpx structure containing a copy of the requested entry in the user accounting
database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure containing
a copy of the entry added to the user accounting database. Otherwise a null pointer is
returned.

The endutxent() and setutxent() functions return no value.

getutmpx()

updwtmp()

updwtmpx()

utmpx structure

Return Values

getutxent(3C)

man pages section 3: Basic Library Functions • Last Revised 27 Jul 2004398

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1init-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head

A null pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an unbuffered
write to avoid race conditions between processes trying to modify the utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should use these
functions to ensure that these databases are maintained consistently.

/var/adm/utmpx user access and accounting information

/var/adm/wtmpx history of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level Unsafe

The endutxent(), getutxent(), getutxid(), getutxline(), pututxline(), and
setutxent() functions are Standard.

getutent(3C), ttyslot(3C), wait(3C), wait.h(3HEAD), utmpx(4), attributes(5),
standards(5)

The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. On each call to either getutxid() or getutxline(), the
routine examines the static structure before performing more I/O. If the contents of the static
structure match what it is searching for, it looks no further. For this reason, to use
getutxline() to search for multiple occurrences it would be necessary to zero out the static
after each success, or getutxline() would just return the same structure over and over again.
There is one exception to the rule about emptying the structure before further reads are done.
The implicit read done by pututxline() (if it finds that it is not already at the correct place in
the file) will not hurt the contents of the static structure returned by the getutxent(),
getutxid(), or getutxline() routines, if the user has just modified those contents and
passed the pointer back to pututxline().

Usage

Files

Attributes

See Also

Notes

getutxent(3C)

Basic Library Functions 399

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getvfsent, getvfsfile, getvfsspec, getvfsany – get vfstab file entry

#include <stdio.h>

#include <sys/vfstab.h>

int getvfsent(FILE *fp, struct vfstab *vp);

int getvfsfile(FILE *fp, struct vfstab *vp, char *file);

int getvfsspec(FILE *, struct vfstab *vp, char *spec);

int getvfsany(FILE *, struct vfstab *vp, struct vfstab *vref);

The getvfsent(), getvfsfile(), getvfsspec(), and getvfsany() functions each fill in the
structure pointed to by vp with the broken-out fields of a line in the /etc/vfstab file. Each
line in the file contains a vfstab structure, declared in the <sys/vfstab.h> header, whose
following members are described on the vfstab(4) manual page:

char *vfs_special;

char *vfs_fsckdev;

char *vfs_mountp;

char *vfs_fstype;

char *vfs_fsckpass;

char *vfs_automnt;

char *vfs_mntopts;

The getvfsent() function returns a pointer to the next vfstab structure in the file; so
successive calls can be used to search the entire file.

The getvfsfile() function searches the file referenced by fp until a mount point matching
file is found and fills vp with the fields from the line in the file.

The getvfsspec() function searches the file referenced by fp until a special device matching
spec is found and fills vp with the fields from the line in the file. The spec argument will try to
match on device type (block or character special) and major and minor device numbers. If it
cannot match in this manner, then it compares the strings.

The getvfsany() function searches the file referenced by fp until a match is found between a
line in the file and vref. A match occurs if all non-null entries in vref match the corresponding
fields in the file.

Note that these functions do not open, close, or rewind the file.

If the next entry is successfully read by getvfsent() or a match is found with getvfsfile(),
getvfsspec(), or getvfsany(), 0 is returned. If an end-of-file is encountered on reading,
these functions return −1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

VFS_TOOLONG A line in the file exceeded the internal buffer size of VFS_LINE_MAX.

VFS_TOOMANY A line in the file contains too many fields.

Name

Synopsis

Description

Return Values

getvfsent(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Mar 1997400

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1vfstab-4

VFS_TOOFEW A line in the file contains too few fields.

/etc/vfstab

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

vfstab(4), attributes(5)

The members of the vfstab structure point to information contained in a static area, so it
must be copied if it is to be saved.

Files

Attributes

See Also

Notes

getvfsent(3C)

Basic Library Functions 401

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1vfstab-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getwc – get wide character from a stream

#include <stdio.h>

#include <wchar.h>

wint_t getwc(FILE *stream);

The getwc() function is equivalent to fgetwc(3C), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression with
side effects.

Refer to fgetwc(3C).

Refer to fgetwc(3C).

This interface is provided to align with some current implementations and with possible
future ISO standards.

Because it may be implemented as a macro, getwc() may treat incorrectly a stream argument
with side effects. In particular, getwc(*f ++) may not work as expected. Therefore, use of this
function is not recommended; fgetwc(3C) should be used instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fgetwc(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getwc(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002402

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwchar – get wide character from stdin stream

#include <wchar.h>

wint_t getwchar(void)

The getwchar() function is equivalent to getwc(stdin).

Refer to fgetwc(3C).

Refer to fgetwc(3C).

If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the comparison may never succeed because
wchar_t is defined as unsigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fgetwc(3C), getwc(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getwchar(3C)

Basic Library Functions 403

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwd – get current working directory pathname

#include <unistd.h>

char *getwd(char *path_name);

The getwd() function determines an absolute pathname of the current working directory of
the calling process, and copies that pathname into the array pointed to by the path_name
argument.

If the length of the pathname of the current working directory is greater than (PATH_MAX + 1)
including the null byte, getwd() fails and returns a null pointer.

Upon successful completion, a pointer to the string containing the absolute pathname of the
current working directory is returned. Otherwise, getwd() returns a null pointer and the
contents of the array pointed to by path_name are undefined.

No errors are defined.

For portability to implementations conforming to versions of the X/Open Portability Guide
prior to SUS, getcwd(3C) is preferred over this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

getcwd(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

getwd(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002404

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getwidth – get codeset information

#include <euc.h>

#include <getwidth.h>

void getwidth(eucwidth_t *ptr);

The getwidth() function reads the character class table for the current locale to get
information on the supplementary codesets. getwidth() sets this information into the struct
eucwidth_t. This struct is defined in <euc.h> and has the following members:

short int _eucw1,_eucw2,_eucw3;

short int _scrw1,_scrw2,_scrw3;

short int _pcw;

char _multibyte;

Codeset width values for supplementary codesets 1, 2, and 3 are set in _eucw1, _eucw2, and
_eucw3, respectively. Screen width values for supplementary codesets 1, 2, and 3 are set in
_scrw1, _scrw2, and _scrw3, respectively.

The width of Extended Unix Code (EUC) Process Code is set in _pcw. The _multibyte entry
is set to 1 if multibyte characters are used, and set to 0 if only single-byte characters are used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

euclen(3C), setlocale(3C), attributes(5)

The getwidth() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

The getwidth() function will only work with EUC locales.

Name

Synopsis

Description

Attributes

See Also

Notes

getwidth(3C)

Basic Library Functions 405

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getws, fgetws – get a wide-character string from a stream

#include <stdio.h>

include <widec.h>

wchar_t *getws(wchar_t *ws);

#include <stdio.h>

include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, int n, FILE *restrict stream);

The getws() function reads a string of characters from the standard input stream, stdin,
converts these characters to the corresponding wide-character codes, and writes them to the
array pointed to by ws, until a newline character is read, converted and transferred to ws or an
end-of-file condition is encountered. The wide-character string, ws, is then terminated with a
null wide-character code.

The fgetws() function reads characters from the stream, converts them to the corresponding
wide-character codes, and places them in the wchar_t array pointed to by ws until n−1
characters are read, or until a newline character is read, converted and transferred to ws, or an
end-of-file condition is encountered. The wide-character string, ws, is then terminated with a
null wide-character code.

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetws() function may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of
fgetc(3C), fgets(3C), fgetwc(3C), fgetws(), fread(3C), fscanf(3C), getc(3C),
getchar(3C), gets(3C), or scanf(3C) using stream that returns data not supplied by a prior
call to ungetc(3C) or ungetwc(3C).

Upon successful completion, getws() and fgetws() return ws. If the stream is at end-of-file,
the end-of-file indicator for the stream is set and fgetws() returns a null pointer. For
standard-conforming (see standards(5)) applications, if the end-of-file indicator for the
stream is set, fgetws() returns a null pointer whether or not the stream is at end-of-file. If a
read error occurs, the error indicator for the stream is set and fgetws() returns a null pointer
and sets errno to indicate the error.

See fgetwc(3C) for the conditions that will cause fgetws() to fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability fgetws() is Standard.

Name

Synopsis

Description

Return Values

Errors

Attributes

getws(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Oct 2003406

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ferror(3C), fgetwc(3C), fread(3C), getwc(3C), putws(3C), scanf(3C), ungetc(3C),
ungetwc(3C), attributes(5), standards(5)

See Also

getws(3C)

Basic Library Functions 407

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getzoneid, getzoneidbyname, getzonenamebyid – map between zone id and name

#include <zone.h>

zoneid_t getzoneid(void);

zoneid_t getzoneidbyname(const char *name);

ssize_t getzonenamebyid(zoneid_t id, char *buf, size_t buflen);

The getzoneid() function returns the zone ID of the calling process.

The getzoneidbyname() function returns the zone ID corresponding to the named zone, if
that zone is currently active. If name is NULL, the function returns the zone ID of the calling
process.

The getzonenamebyid() function stores the name of the zone with ID specified by id in the
location specified by buf. The bufsize argument specifies the size in bytes of the buffer. If the
buffer is too small to hold the complete null-terminated name, the first bufsize bytes of the
name are stored in the buffer. A buffer of size {ZONENAME_MAX} is sufficient to hold any zone
name. If buf is NULL or bufsize is 0, the name is not copied into the buffer.

On successful completion, getzoneid() and getzoneidbyname() return a non-negative zone
ID. Otherwise, getzoneidbyname() returns −1 and sets errno to indicate the error.

On successful completion, the getzonenamebyid() function returns the buffer size required
to hold the full null-terminated name. Otherwise, it returns −1 and sets errno to indicate the
error.

The getzoneidbyname() function will fail if:

EFAULT The name argument is non-null and points to an illegal address.

EINVAL A zone with the indicated name is not active.

ENAMETOOLONG The length of the name argument exceeds {ZONENAME_MAX}.

The getzonenamebyid() function will fail if:

EINVAL A zone with the specified ID is not active.

EFAULT The buf argument points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

getzoneid(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2004408

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Intro(2), chroot(2), malloc(3C), attributes(5), zones(5)See Also

getzoneid(3C)

Basic Library Functions 409

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chroot-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

glob, globfree – generate path names matching a pattern

#include <glob.h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

The glob() function is a path name generator.

The globfree() function frees any memory allocated by glob() associated with pglob.

The argument pattern is a pointer to a path name pattern to be expanded. The glob()
function matches all accessible path names against this pattern and develops a list of all path
names that match. In order to have access to a path name, glob() requires search permission
on every component of a path except the last, and read permission on each directory of any
filename component of pattern that contains any of the following special characters:

* ? [

The structure type glob_t is defined in the header <glob.h> and includes at least the
following members:

size_t gl_pathc; /* count of paths matched by */

/* pattern */

char **gl_pathv; /* pointer to list of matched */

/* path names */

size_t gl_offs; /* slots to reserve at beginning */

/* of gl_pathv */

The glob() function stores the number of matched path names into pglob−>gl_pathc and a
pointer to a list of pointers to path names into pglob−>gl_pathv. The path names are in sort
order as defined by the current setting of the LC_COLLATE category. The first pointer after the
last path name is a NULL pointer. If the pattern does not match any path names, the returned
number of matched paths is set to 0, and the contents of pglob−>gl_pathv are
implementation-dependent.

It is the caller's responsibility to create the structure pointed to by pglob. The glob() function
allocates other space as needed, including the memory pointed to by gl_pathv. The
globfree() function frees any space associated with pglob from a previous call to glob().

The flags argument is used to control the behavior of glob(). The value of flags is a bitwise
inclusive OR of zero or more of the following constants, which are defined in the header
<glob.h>:

GLOB_APPEND Append path names generated to the ones from a previous call to glob().

Name

Synopsis

Description

pattern Argument

pglob Argument

flags Argument

glob(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003410

GLOB_DOOFFS Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is used to
specify how many NULL pointers to add to the beginning of
pglob−>gl_pathv. In other words, pglob−>gl_pathv will point to
pglob−>gl_offs NULL pointers, followed by pglob−>gl_pathc path name
pointers, followed by a NULL pointer.

GLOB_ERR Causes glob() to return when it encounters a directory that it cannot
open or read. Ordinarily, glob() continues to find matches.

GLOB_MARK Each path name that is a directory that matches pattern has a slash
appended.

GLOB_NOCHECK If pattern does not match any path name, then glob() returns a list
consisting of only pattern, and the number of matched path names is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching path names according to the
current setting of the LC_COLLATE category. When this flag is used the
order of path names returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of path names to those found in a
previous call to glob(). The following rules apply when two or more calls to glob() are made
with the same value of pglob and without intervening calls to globfree():

1. The first such call must not set GLOB_APPEND. All subsequent calls must set it.
2. All the calls must set GLOB_DOOFFS, or all must not set it.
3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more NULL pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.
b. Pointers to the path names that were in the pglob−>gl_pathv list before the call, in the

same order as before.
c. Pointers to the new path names generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc will be the total number of path names from the
two calls.

5. The application can change any of the fields after a call to glob(). If it does, it must reset
them to the original value before a subsequent call, using the same pglob value, to
globfree() or glob() with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and errfunc is
not a NULL pointer, glob() calls (*errfunc) with two arguments:

1. The epath argument is a pointer to the path that failed.
2. The eerrno argument is the value of errno from the failure, as set by the opendir(3C),

readdir(3C) or stat(2) functions. (Other values may be used to report other errors not
explicitly documented for those functions.)

errfunc and epath
Arguments

glob(3C)

Basic Library Functions 411

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

The following constants are defined as error return values for glob():

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc) returned
non-zero.

GLOB_NOMATCH The pattern does not match any existing path name, and GLOB_NOCHECK

was not set in flags.

GLOG_NOSPACE An attempt to allocate memory failed.

If (*errfunc) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() stops
the scan and returns GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect the
paths already scanned. If GLOB_ERR is not set and either errfunc is a NULL pointer or (*errfunc)
returns 0, the error is ignored.

The following values are returned by glob():

0 Successful completion. The argument pglob−>gl_pathc returns the number of
matched path names and the argument pglob−>gl_pathv contains a pointer to
a null-terminated list of matched and sorted path names. However, if
pglob−>gl_pathc is 0, the content of pglob−>gl_pathv is undefined.

non-zero An error has occurred. Non-zero constants are defined in <glob.h>. The
arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined
above.

The globfree() function returns no value.

This function is not provided for the purpose of enabling utilities to perform path name
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do path
name expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a path name matches a given pattern, it can use fnmatch(3C).

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to
report partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is
unspecified even if glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a path name if
wildcards are specified, but wants to treat the pattern as just a string otherwise.

The new path names generated by a subsequent call with GLOB_APPEND are not sorted together
with the previous path names. This mirrors the way that the shell handles path name
expansion when multiple expansions are done on a command line.

Return Values

Usage

glob(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003412

Applications that need tilde and parameter expansion should use the wordexp(3C) function.

EXAMPLE 1 Example of glob_doofs function.

One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with the
execv(), execve(), or execvp() functions (see exec(2)). Suppose, for example, that an
application wants to do the equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using the
sequence:

globbuf.gl_offs = 2;

glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);

globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;

glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);

glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

. . .

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

execv(2), stat(2), fnmatch(3C), opendir(3C), readdir(3C), wordexp(3C), attributes(5),
standards(5)

Examples

Attributes

See Also

glob(3C)

Basic Library Functions 413

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1execv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

grantpt – grant access to the slave pseudo-terminal device

#include <stdlib.h>

int grantpt(int fildes);

The grantpt() function changes the mode and ownership of the slave pseudo-terminal
device associated with its master pseudo-terminal counterpart. fildes is the file descriptor
returned from a successful open of the master pseudo-terminal device. The user ID of the
slave is set to the real UID of the calling process and the group ID is set to a reserved group.
The permission mode of the slave pseudo-terminal is set to readable and writable by the owner
and writable by the group.

Upon successful completion, grantpt() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The grantpt() function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master pseudo-terminal device.

EACCES The corresponding slave pseudo-terminal device could not be accessed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

open(2), ptsname(3C), unlockpt(3C), attributes(5), standards(5)

STREAMS Programming Guide

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

grantpt(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2006414

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

hsearch, hcreate, hdestroy – manage hash search tables

#include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);

int hcreate(size_t mekments);

void hdestroy(void);

The hsearch() function is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at which an entry
can be found. The comparison function used by hsearch() is strcmp() (see string(3C)). The
item argument is a structure of type ENTRY (defined in the <search.h> header) containing two
pointers: item.key points to the comparison key, and item.data points to any other data to
be associated with that key. (Pointers to types other than void should be cast to
pointer-to-void.) The action argument is a member of an enumeration type ACTION (defined
in <search.h>) indicating the disposition of the entry if it cannot be found in the table. ENTER
indicates that the item should be inserted in the table at an appropriate point. Given a
duplicate of an existing item, the new item is not entered and hsearch() returns a pointer to
the existing item. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

The hcreate() function allocates sufficient space for the table, and must be called before
hsearch() is used. The nel argument is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algorithm in order to
obtain certain mathematically favorable circumstances.

The hdestroy() function destroys the search table, and may be followed by another call to
hcreate().

The hsearch() function returns a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

The hcreate() function returns 0 if it cannot allocate sufficient space for the table.

The hsearch() and hcreate() functions use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

EXAMPLE 1 Example to read in strings.

The following example will read in strings followed by two numbers and store them in a hash
table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it.

#include <stdio.h>

#include <search.h>

#include <string.h>

Name

Synopsis

Description

Return Values

Usage

Examples

hsearch(3C)

Basic Library Functions 415

EXAMPLE 1 Example to read in strings. (Continued)

#include <stdlib.h>

struct info { /* this is the info stored in table */

int age, room; /* other than the key */

};

#define NUM_EMPL 5000 /* # of elements in search table */

main()

{

/* space to store strings */

char string_space[NUM_EMPL*20];

/* space to store employee info */

struct info info_space[NUM_EMPL];

/* next avail space in string_space */

char *str_ptr = string_space;

/* next avail space in info_space */

struct info *info_ptr = info_space;

ENTRY item, *found_item;

/* name to look for in table */

char name_to_find[30];

int i = 0;

/* create table */

(void) hcreate(NUM_EMPL);

while (scanf("%s%d%d", str_ptr, &info_ptr−>age,
&info_ptr−>room) != EOF && i++ < NUM_EMPL) {

/* put info in structure, and structure in item */

item.key = str_ptr;

item.data = (void *)info_ptr;

str_ptr += strlen(str_ptr) + 1;

info_ptr++;

/* put item into table */

(void) hsearch(item, ENTER);

}

/* access table */

item.key = name_to_find;

while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* if item is in the table */

(void)printf("found %s, age = %d, room = %d\n",
found_item−>key,
((struct info *)found_item−>data)−>age,
((struct info *)found_item−>data)−>room);

} else {

(void)printf("no such employee %s\n",
name_to_find)

hsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996416

EXAMPLE 1 Example to read in strings. (Continued)

}

}

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

bsearch(3C), lsearch(3C), malloc(3C), string(3C), tsearch(3C), malloc(3MALLOC),
attributes(5), standards(5)

The Art of Computer Programming, Volume 3, Sorting and Searching by Donald E. Knuth,
published by Addison-Wesley Publishing Company, 1973.

Attributes

See Also

hsearch(3C)

Basic Library Functions 417

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

iconv – code conversion function

#include <iconv.h>

size_t iconv(iconv_t cd, char **restrict inbuf,
size_t *restrict inbytesleft, char **restrict outbuf,
size_t *restrict outbytesleft);

The iconv() function converts the sequence of characters from one code set, in the array
specified by inbuf, into a sequence of corresponding characters in another code set, in the
array specified by outbuf. The code sets are those specified in the iconv_open() call that
returned the conversion descriptor, cd. The inbuf argument points to a variable that points to
the first character in the input buffer and inbytesleft indicates the number of bytes to the end of
the buffer to be converted. The outbuf argument points to a variable that points to the first
available byte in the output buffer and outbytesleft indicates the number of the available bytes
to the end of the buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state
by a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When
iconv() is called in this way, and if outbuf is not a null pointer or a pointer to a null pointer,
and outbytesleft points to a positive value, iconv() will place, into the output buffer, the byte
sequence to change the output buffer to its initial shift state. If the output buffer is not large
enough to hold the entire reset sequence, iconv() will fail and set errno to E2BIG. Subsequent
calls with inbuf as other than a null pointer or a pointer to a null pointer cause the conversion
to take place from the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified code set,
conversion stops after the previous successfully converted character. If the input buffer ends
with an incomplete character or shift sequence, conversion stops after the previous
successfully converted bytes. If the output buffer is not large enough to hold the entire
converted input, conversion stops just prior to the input bytes that would cause the output
buffer to overflow. The variable pointed to by inbuf is updated to point to the byte following
the last byte successfully used in the conversion. The value pointed to by inbytesleft is
decremented to reflect the number of bytes still not converted in the input buffer. The variable
pointed to by outbuf is updated to point to the byte following the last byte of converted output
data. The value pointed to by outbytesleft is decremented to reflect the number of bytes still
available in the output buffer. For state-dependent encodings, the conversion descriptor is
updated to reflect the shift state in effect at the end of the last successfully converted byte
sequence.

If iconv() encounters a character in the input buffer that is legal, but for which an identical
character does not exist in the target code set, iconv() performs an implementation-defined
conversion on this character.

The default conversion behavior mentioned above can be modified if one or more of the
conversion behavior modification indicators is specified and such conversion behavior

Name

Synopsis

Description

iconv(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011418

modifications are supported by the implementation of the corresponding iconv code
conversion. See iconv_open(3C) and iconvctl(C).

The iconv() function updates the variables pointed to by the arguments to reflect the extent
of the conversion and returns the number of non-identical conversions performed. If the
entire string in the input buffer is converted, the value pointed to by inbytesleft will be 0. If the
input conversion is stopped due to any conditions mentioned above, the value pointed to by
inbytesleft will be non-zero and errno is set to indicate the condition. If an error occurs
iconv() returns (size_t) −1 and sets errno to indicate the error.

The iconv() function will fail if:

EILSEQ Input conversion stopped due to an input byte that does not belong to the input
code set.

E2BIG Input conversion stopped due to lack of space in the output buffer.

EINVAL Input conversion stopped due to an incomplete character or shift sequence at the
end of the input buffer.

The iconv() function may fail if:

EBADF The cd argument is not a valid open conversion descriptor.

EXAMPLE 1 Using the iconv() Functions

The following example uses the iconv() functions:

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <iconv.h>

#include <stdlib.h>

/*

* For state-dependent encodings, changes the state of the

* conversion descriptor to initial shift state. Also, outputs

* the byte sequence to change the state to initial state.

* This code is assuming the iconv call for initializing the

* state will not fail due to lack of space in the output buffer.

*/

#define INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft) \

{ \

fptr = NULL; \

ileft = 0; \

tptr = to; \

oleft = BUFSIZ; \

(void) iconv(cd, &fptr, &ileft, &tptr, &oleft); \

(void) fwrite(to, 1, BUFSIZ - oleft, stdout); \

}

Return Values

Errors

Examples

iconv(3C)

Basic Library Functions 419

EXAMPLE 1 Using the iconv() Functions (Continued)

int

main(int argc, char **argv)

{

iconv_t cd;

char from[BUFSIZ], to[BUFSIZ];

char *from_code, *to_code;

char *tptr;

char *fptr;

size_t ileft, oleft, num, ret;

if (argc != 3) {

(void) fprintf(stderr,

"Usage: %s from_codeset to_codeset\\n", argv[0]);

return (1);

}

from_code = argv[1];

to_code = argv[2];

cd = iconv_open((const char *)to_code, (const char *)from_code);

if (cd == (iconv_t)-1) {

/*

* iconv_open failed

*/

(void) fprintf(stderr,

"iconv_open(%s, %s) failed\\n", to_code, from_code);

return (1);

}

ileft = 0;

while ((ileft +=

(num = fread(from + ileft, 1, BUFSIZ - ileft, stdin))) > 0) {

if (num == 0) {

/*

* Input buffer still contains incomplete character

* or sequence. However, no more input character.

*/

/*

* Initializes the conversion descriptor and outputs

* the sequence to change the state to initial state.

*/

INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);

iconv(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011420

EXAMPLE 1 Using the iconv() Functions (Continued)

(void) iconv_close(cd);

(void) fprintf(stderr, "Conversion error\\n");
return (1);

}

fptr = from;

for (;;) {

tptr = to;

oleft = BUFSIZ;

ret = iconv(cd, &fptr, &ileft, &tptr, &oleft);

if (ret != (size_t)-1) {

/*

* iconv succeeded

*/

/*

* Outputs converted characters

*/

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);

break;

}

/*

* iconv failed

*/

if (errno == EINVAL) {

/*

* Incomplete character or shift sequence

*/

/*

* Outputs converted characters

*/

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);

/*

* Copies remaining characters in input buffer

* to the top of the input buffer.

*/

(void) memmove(from, fptr, ileft);

/*

* Tries to fill input buffer from stdin

*/

break;

iconv(3C)

Basic Library Functions 421

EXAMPLE 1 Using the iconv() Functions (Continued)

} else if (errno == E2BIG) {

/*

* Lack of space in output buffer

*/

/*

* Outputs converted characters

*/

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);

/*

* Tries to convert remaining characters in

* input buffer with emptied output buffer

*/

continue;

} else if (errno == EILSEQ) {

/*

* Illegal character or shift sequence

*/

/*

* Outputs converted characters

*/

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);

/*

* Initializes the conversion descriptor and

* outputs the sequence to change the state to

* initial state.

*/

INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);

(void) iconv_close(cd);

(void) fprintf(stderr,

"Illegal character or sequence\\n");
return (1);

} else if (errno == EBADF) {

/*

* Invalid conversion descriptor.

* Actually, this shouldn’t happen here.

*/

(void) fprintf(stderr, "Conversion error\\n");
return (1);

} else {

/*

* This errno is not defined

*/

iconv(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011422

EXAMPLE 1 Using the iconv() Functions (Continued)

(void) fprintf(stderr, "iconv error\\n");
return (1);

}

}

}

/*

* Initializes the conversion descriptor and outputs

* the sequence to change the state to initial state.

*/

INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);

(void) iconv_close(cd);

return (0);

}

/usr/lib/iconv/*.so

conversion modules for 32-bit

/usr/lib/iconv/sparcv9/*.so

conversion modules for 64-bit sparc

/usr/lib/iconv/amd64/*.so

conversion modules for 64-bit amd64

/usr/lib/iconv/geniconvtbl/binarytables/*.bt

conversion binary tables

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

geniconvtbl(1), iconv(1), iconv_close(3C), iconv_open(3C), iconvctl(C), iconvstr(3C),
geniconvtbl(4), attributes(5), iconv(5), iconv_unicode(5), standards(5)

Files

Attributes

See Also

iconv(3C)

Basic Library Functions 423

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1geniconvtbl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1iconv-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1geniconvtbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1iconv-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1iconv-unicode-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

iconv_close – code conversion deallocation function

#include <iconv.h>

int iconv_close(iconv_t cd);

The iconv_close() function deallocates the conversion descriptor cd and all other associated
resources allocated by the iconv_open(3C) function.

If a file descriptor is used to implement the type iconv_t, that file descriptor will be closed.

For examples using the iconv_close() function, see iconv(3C).

Upon successful completion, iconv_close() returns 0; otherwise, it returns −1 and sets errno
to indicate the error.

The iconv_close() function may fail if:

EBADF The conversion descriptor is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

iconv(3C), iconv_open(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

iconv_close(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002424

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

iconvctl – control and query iconv code conversion behavior

#include <iconv.h>

int iconvctl(iconv_t cd, int request, void *arg);

The iconvctl() function can be used to control iconv code conversion behavior by setting or
getting the current iconv code conversion behavior settings from the current code conversion
pointed to by the conversion descriptor cdthat was returned from a successful
iconv_open(3C) call.

The following are the supported values for the request argument:

ICONV_GET_CONVERSION_BEHAVIOR

With this request, if query is successful, the function returns the current iconv code
conversion behavior represented in a bitwise-inclusive-OR of the following values into an
int variable that is pointed to by the arg argument as an int *:

ICONV_CONV_ILLEGAL_DISCARD

The current code conversion silently discards any illegal input bytes.

ICONV_CONV_ILLEGAL_REPLACE_HEX

The current code conversion replaces illegal input bytes into hexadecimal number
sequences as described in iconv_open(3C).

ICONV_CONV_ILLEGAL_RESTORE_HEX

The current code conversion restores hexadecimal number sequences originated from
illegal input bytes into actual byte values.

ICONV_CONV_NON_IDENTICAL_DISCARD

The current code conversion discards non-identical characters.

ICONV_CONV_NON_IDENTICAL_REPLACE_HEX

The current code conversion replaces bytes of non-identical characters into
hexadecimal number sequences as described in iconv_open(3C).

ICONV_CONV_NON_IDENTICAL_RESTORE_HEX

The current code conversion restores hexadecimal number sequences originated from
non-identical characters into actual byte values.

ICONV_CONV_NON_IDENTICAL_TRANSLITERATE

The current code conversion tries to transliterate non-identical characters as much as it
can.

For more details on the above iconv code conversion behaviors, refer to iconv_open(3C).

ICONV_SET_CONVERSION_BEHAVIOR

With this request, the function tries to set a specific set of code conversion behavior as
instructed by the arg argument which is a pointer to an int that has a bitwise-inclusive-OR
of the following values:

Name

Synopsis

Description

iconvctl(C)

Basic Library Functions 425

ICONV_CONV_ILLEGAL_DISCARD

Instruct the current code conversion to silently discard any illegal input bytes.

ICONV_CONV_ILLEGAL_REPLACE_HEX

Instruct the current code conversion to replace illegal input bytes into hexadecimal
number sequences.

ICONV_CONV_ILLEGAL_RESTORE_HEX

Instruct the current code conversion to restore hexadecimal number sequences
originated from illegal input bytes into actual byte values.

ICONV_CONV_NON_IDENTICAL_DISCARD

Instruct the current code conversion to discard non-identical characters.

ICONV_CONV_NON_IDENTICAL_REPLACE_HEX

Instruct the current code conversion to replace bytes of non-identical characters into
hexadecimal number sequences.

ICONV_CONV_NON_IDENTICAL_RESTORE_HEX

Instruct the current code conversion to restore hexadecimal number sequences
originated from non-identical characters into actual byte values.

ICONV_CONV_NON_IDENTICAL_TRANSLITERATE

Instruct the current code conversion to transliterate non-identical characters as much as
it can.

When conflicting values are specified together, the values for discarding and then replacing
into hexadecimal numbers will supersede other values specified.

For more details on the above iconv code conversion behaviors, refer to iconv_open(3C).

ICONV_GET_DISCARD_ILSEQ

With this request, upon successful completion, the function saves 1 into an int variable
that is pointed to by the arg argument if the current code conversion discards illegal and
non-identical characters from the input buffer. Otherwise, it saves 0.

ICONV_SET_DISCARD_ILSEQ

With this request and a pointer to a const int with a non-zero value, caller can instruct the
current conversion to discard illegal and non-identical characters from the input buffer
during the code conversion. The value of zero, on the other hand, turns it off.

ICONV_GET_TRANSLITERATE

With this request, upon successful completion, the function saves 1 into an int variable
that is pointed to by the arg argument if the current code conversion transliterates
non-identical characters from the input buffer. Otherwise, it saves 0.

ICONV_SET_TRANSLITERATE

With this request and a pointer to a const int with a non-zero value, caller can instruct the
current conversion to transliterate non-identical characters from the input buffer during
the code conversion as much as it can. The value of zero, on the other hand, turns it off.

iconvctl(C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011426

ICONV_TRIVIALP

With this request, upon successful completion, the function saves 1 into an int variable
that is pointed to by the arg argument if the current code conversion is a trivial iconv code
conversion. Otherwise, it saves 0. (In Solaris, the trivial iconv code conversion is a simple
1-to-1 mapping table based or single-step iconv code conversion requiring no complex
algorithm or data structures. This classification is largely subjective and informative only in
nature.)

Upon successful completion, iconvctl() returns 0 and, optionally, with a value pointed to by
the arg argument. Otherwise, iconvctl() returns -1 and sets errno to indicate the error.

The iconvctl() function will fail if:

EBADF The conversion descriptor is invalid.

EINVAL One or more of the requests are invalid.

ENOTSUP One or more of the requests are not supported by the corresponding code
conversion implementation.

EXAMPLE 1 Use iconvctl() to discard illegal characters and replace non-identical characters into
hexadecimal number sequences.

#include <stdio.h>

#include <errno.h>

#include <iconv.h>

:

iconv_t cd;

int r;

int status;

:

status = (ICONV_CONV_ILLEGAL_DISCARD |

ICONV_CONV_NON_IDENTICAL_REPLACE_HEX);

r = iconvctl(cd, ICONV_SET_CONVERSION_BEHAVIOR, (void *)&status);

if (r == -1) {

(void) fprintf(stderr, "iconvctl() failed due to ");
if (errno == EBADF) {

(void) fprintf(stderr, "invalid conversion descriptor.\n");
} else if (errno == EINVAL) {

(void) fprintf(stderr, "invalid request.\n");
} else if (errno == ENOTSUP) {

(void) fprintf(stderr, "unsupported request.\n");
} else {

/*

* This shouldn’t happen; this is only to make your code

* robust.

*/

Return Values

Errors

Examples

iconvctl(C)

Basic Library Functions 427

EXAMPLE 1 Use iconvctl() to discard illegal characters and replace non-identical characters into
hexadecimal number sequences. (Continued)

(void) fprintf(stderr, "unknown reason.\n");
}

return (1);

}

return (0);

EXAMPLE 2 Query to determine if the current conversion is doing transliteration on non-identical
characters.

#include <stdio.h>

#include <errno.h>

#include <iconv.h>

:

iconv_t cd;

int status;

int r;

:

r = iconvctl(cd, ICONV_GET_TRANSLITERATE, (void *)&status);

if (r == -1) {

(void) fprintf(stderr, "iconvctl() failed (errno = %d)\n", errno);

return (-1);

}

return (status);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

geniconvtbl(1), iconv(1), iconv(3C), iconv_close(3C), iconv_open(3C), iconvstr(3C),
iconv.h(3HEAD), geniconvtbl(4), attributes(5), standards(5)

It is unsafe for any thread to call iconvctl() to change the current code conversion behavior
while there is iconv(3C) being called by any other thread with the same conversion descriptor
in the application since such will yield unpredictable code conversion behavior change in the
middle of code conversion. To change the code conversion behavior in a multi-threaded
application, call iconvctl() prior to any iconv() call with the same conversion descriptor or

Attributes

See Also

Notes

iconvctl(C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011428

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2geniconvtbl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2geniconvtbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wait for existing iconv()iconv(3C) call to finish, reset the code conversion, call iconvctl(),
and then call iconv() for a new code conversion behavior

It is safe to use iconvctl() to query the current code conversion behavior except when some
other thread is changing the code conversion behavior.

iconvctl(C)

Basic Library Functions 429

iconv_open – code conversion allocation function

#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

The iconv_open() function returns a conversion descriptor that describes a conversion from
the codeset specified by the string pointed to by the fromcode argument to the codeset
specified by the string pointed to by the tocode argument. For state-dependent encodings, the
conversion descriptor will be in a codeset-dependent initial shift state, ready for immediate
use with the iconv(3C) function.

Settings of fromcode and tocode and their permitted combinations are
implementation-dependent.

The iconv_open() function supports the alias of the encoding name specified in tocode and
fromcode. The alias table of the encoding name is described in the file /usr/lib/iconv/alias.
See alias(4).

When “ ” (empty string) or char is supplied as the string value for fromcode argument, tocode
argument, or both, it is interpreted by the function as the codeset name of the current locale.
Similarly, when wchar_t is supplied, the function interprets it as the wide character encoding
of the current locale in the natural byte order of the current processor or as defined by the
locale.

When one or more of the following indicators are appended to the string values pointed to by
the arguments, code conversion behavior will be modified as specified at below:

//ILLEGAL_DISCARD

When specified, during subsequent iconv() code conversion, a sequence of illegal input
bytes that does not form a valid character in the codeset specified by the fromcode
argument is silently discarded as if there are no such illegal bytes in the input buffer and the
conversion continues.

//ILLEGAL_REPLACE_HEX

For any illegal input bytes, the iconv() code conversion converts each of such bytes into a
hexadecimal number with a specific leading four-letter designator sequence as if such is a
valid input byte and the conversion continues. More specifically, each of such hexadecimal
numbers has a leading four-letter designator sequence of “IL--” followed by two
hexadecimal digits in uppercase, for instance, “IL--01” for 1, “IL--0A” for 10, “IL--0B” for
11, “L--EF” for 239, and so on.

//ILLEGAL_RESTORE_HEX

When specified, the iconv() code conversion simply converts back the above mentioned
hexadecimal numbers for illegal input bytes into corresponding byte values regardless of
the codeset specified by the tocode argument. For instance, “IL--0A” will be converted back
into a byte with 10 as the value and “IL--FF” into 255.

Name

Synopsis

Description

iconv_open(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011430

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alias-4

If the characters following the leading four-letter designator sequence do not form a valid
hexadecimal number, such a sequence will not be treated as a hexadecimal number for
illegal input bytes.

//NON_IDENTICAL_DISCARD

During subsequent iconv() code conversion, if the conversion encounters a character in
the input buffer in the codeset specified by the fromcode argument that is legal but for
which an identical character does not exist in the target codeset specified by the tocode
argument, i.e., non-identical characters, the conversion discards such characters in the
output buffer instead of doing an implementation-defined conversion.

The number of such conversions are, nonetheless, still counted and returned as the return
value of iconv().

//NON_IDENTICAL_REPLACE_HEX

For non-identical characters, the iconv() code conversion converts each byte of such
characters into a hexadecimal number with a specific leading four-letter designator
sequence. More specifically, each of such hexadecimal numbers has a leading four-letter
designator sequence of “NI--” followed by two hexadecimal digits in uppercase, for
instance, “NI--02” for 2, “NI--0C” for 12, “NI--EF” for 239, and so on.

The number of such non-identical characters are counted and returned as the return value
of iconv().

//NON_IDENTICAL_RESTORE_HEX

When specified, the iconv() code conversion converts back the above mentioned
non-identical hexadecimal numbers into corresponding byte values regardless of the
codeset specified by the tocode argument. For instance, “NI--0B” will be converted back
into a byte with 11 as the value and “NI--FF” into 255.

If the characters following the leading four-letter designator sequence do not form a valid
hexadecimal number, such a sequence will not be treated as a non-identical hexadecimal
number.

//NON_IDENTICAL_TRANSLITERATE

For non-identical characters, if applicable, the iconv() code conversion transliterates each
of such characters into one or more characters of the target codeset best resembling the
input character.

The number of such non-identical characters are counted and returned as the return value
of iconv().

//IGNORE

A convenience alias to //NON_IDENTICAL_DISCARD//ILLEGAL_DISCARD indicators.

//REPLACE_HEX

A convenience alias to //NON_IDENTICAL_REPLACE_HEX//ILLEGAL_REPLACE_HEX

indicators.

iconv_open(3C)

Basic Library Functions 431

//RESTORE_HEX

A convenience alias to //NON_IDENTICAL_RESTORE_HEX//ILLEGAL_RESTORE_HEX

indicators.

//TRANSLIT

A convenience alias to //NON_IDENTICAL_TRANSLITERATE indicator.

When conflicting indicators are specified, one specified right-most within an argument and at
tocode argument if specified at both arguments will override preceding indicators. As an
example, in the following:

cd = iconv_open("UTF-8//IGNORE//REPLACE_HEX", "ISO8859-1//ILLEGAL_REPLACE_HEX");

Among the three indicators specified, the //REPLACE_HEX will be honored. For more details on
the associated error numbers and function return values at iconv(), see iconv(3C).

A conversion descriptor remains valid in a process until that process closes it.

For examples using the iconv_open() function, see the Examples section below and
iconv(3C).

Upon successful completion iconv_open() returns a conversion descriptor for use on
subsequent calls to iconv(). Otherwise, iconv_open() returns (iconv_t) −1 and sets errno
to indicate the error.

The iconv_open function may fail if:

EMFILE {OPEN_MAX} files descriptors are currently open in the calling process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

EINVAL The conversion specified by fromcode and tocode is not supported by the
implementation.

EXAMPLE 1 Use iconv_open() to open a simple code conversion.

#include <stdio.h>

#include <errno.h>

#include <iconv.h>

:

iconv_t cd;

:

/* Open an iconv code conversion from ISO 8859-1 to UTF-8. */

cd = iconv_open("UTF-8", "ISO8859-1");
if (cd == (iconv_t)-1) {

(void) fprintf(stderr, "iconv_open(UTF-8, ISO8859-1) failed.\n");
return (1);

Return Values

Errors

Examples

iconv_open(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011432

EXAMPLE 1 Use iconv_open() to open a simple code conversion. (Continued)

}

EXAMPLE 2 Change conversion behavior by supplying conversion behavior modification indicators.

#include <stdio.h>

#include <errno.h>

#include <iconv.h>

:

iconv_t cd;

:

/*

* Open an iconv code conversion from UTF-8 to ISO 8859-1 with

* conversion behavior modification indicators that will remove

* illegal byte sequences and replace non-identicals into hexadecimal

* number strings.

*/

cd = iconv_open("ISO8859-1//ILLEGAL_DISCARD//NON_IDENTICAL_REPLACE_HEX",
"UTF-8");

if (cd == (iconv_t)-1) {

(void) fprintf(stderr, "iconv_open(UTF-8, ISO8859-1) failed.\n");
return (1);

}

/usr/lib/iconv/alias alias table file of the encoding name

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions.

Standard See standards(5).

The iconv_open() function is MT-Safe with exception if and only if fromcode, tocode, or both
arguments are pointing to a value that is “ ” (empty string), char, or wchar_t since the
function will have to call nl_langinfo(3C) to know the codeset of the current locale in such
cases. See Attributes and Notes sections of setlocale(3C) for more detail. Otherwise, it is
fully MT-Safe.

Files

Attributes

iconv_open(3C)

Basic Library Functions 433

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

exec(2), iconv(3C), iconv_close(3C), malloc(3C), nl_langinfo(3C), setlocale(3C),
alias(4), attributes(5), standards(5)

The iconv_open() function uses malloc(3C) to allocate space for internal buffer areas.
iconv_open() may fail if there is insufficient storage space to accommodate these buffers.

Portable applications must assume that conversion descriptors are not valid after a call to one
of the exec functions (see exec(2)).

Individually, depending on the actual implementation of a code conversion, it is possible that
one or more (including all) conversion behavior modification indicators are not supported by
the code conversion and iconv_open() may fail.

See Also

Notes

iconv_open(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011434

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alias-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

iconvstr – string-based code conversion function

size_t iconvstr(const char *tocode, const char *fromcode,
char *inarray, size_t *inlen, char *outarray, size_t *outlen,
int flag);

tocode
Pointer to a target codeset name string.

fromcode
Pointer to a source codeset name string.

inarray
Pointer to a byte array containing a sequence of character bytes in fromcode codeset to be
converted.

inlen
As input argument, the number of bytes to be converted in inarray. As output argument,
the number of bytes in inarray still not converted after the conversion.

outarray
Pointer to a byte array where converted character bytes in tocode codeset can be saved.

outlen
As input argument, the number of available bytes at outarray where converted character
bytes can be saved. As output argument, after the conversion, the number of bytes still
available at outarray.

flag
Indicates possible conversion options constructed by a bitwise-inclusive-OR of the
following values:

ICONV_IGNORE_NULL

Normally iconvstr() stops the conversion if it encounters a string terminating null
character of fromcode from inarray even if the value of inlen indicates there are more
bytes in inarray.

With this option, the null character does not stop the conversion and the conversion
continues until inlen pointed amount of inarray bytes are all consumed for conversion
or an error occurred.

ICONV_REPLACE_INVALID

Normally iconvstr() stops the conversion if it encounters illegal or incomplete
characters from inarray() with a corresponding errno value.

When this option is set, iconvstr() does not stop the conversion and instead treats
such characters as non-identical conversion cases.

Name

Synopsis

Parameters

iconvstr(3C)

Basic Library Functions 435

The iconvstr() function converts the sequence of characters from one codeset, in the array
specified by inarray, into a sequence of corresponding characters in another codeset, in the
array specified by outarray. The codesets are those specified in fromcode and tocode
arguments.

Unless ICONV_IGNORE_NULL is specified in flag, iconvstr() normally stops when it
encounters a string terminating null character of fromcode from inarray regardless of the
current inlen value; in that case, it does not copy over the null character to outarray.

If ICONV_REPLACE_INVALID is not specified in flag and if a sequence of input bytes does not
form a valid character in the specified codeset, conversion stops after the previous successfully
converted character.

If ICONV_REPLACE_INVALID is not specified in flag and if the input array ends with an
incomplete character or shift sequence, conversion stops after the previous successfully
converted bytes.

If the output array is not large enough to hold the entire converted input, conversion stops just
prior to the input bytes that would cause the output array to overflow.

The value pointed to by inlen is decremented to reflect the number of bytes still not converted
in the input array. The value pointed to by outlen is decremented to reflect the number of bytes
still available in the output array.

If iconvstr() encounters a character in the input array that is legal, but for which an identical
character does not exist in the target codeset, iconvstr() performs an
implementation-defined conversion, i.e., non-identical conversion, on this character.

If ICONV_REPLACE_INVALID is specified in flag and if iconvstr() encounters illegal or
incomplete characters in the input array, instead of stopping the conversion, iconvstr()
treats such characters as if they are non-identical characters and does non-identical
conversions on such character bytes.

The iconvstr() function updates the values pointed to by inlen and outlen arguments to
reflect the extent of the conversion and returns the number of non-identical conversions
performed. If the entire string in the input array is converted, the value pointed to by inlen will
be 0. If the input conversion is stopped due to any conditions mentioned above, the value
pointed to by inlen will be non-zero and errno is set to indicate the condition. If an error
occurs, iconvstr() returns (size_t) - 1 and sets errno to indicate the error.

The iconvstr() function will fail if:

E2BIG Input conversion stopped due to lack of space in the output array.

EBADF Requested conversion is not supported.

EILSEQ Input conversion stopped due to an input byte that does not belong to the input
codeset.

Description

Return Values

Errors

iconvstr(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011436

EINVAL Input conversion stopped due to an incomplete character or shift sequence at the
end of the input array.

EXAMPLE 1 Code conversion from ISO8859-2 to UTF-8

The following example converts null-terminated ISO8859-2 pathname string to UTF-8 string
and, in doing so, treats illegal and incomplete characters as non-identical conversion cases. It
also does not stop the conversion even if it encounters a null byte from the input array.

#include <stdio.h>

#include <string.h>

#include <errno.h>

:

size_t ret;

char ib[MAXPATHLEN];

char ob[MAXPATHLEN];

size_t il, ol;

:

/*

* We got the pathname from somewhere.

*

* Calculate the length of input string including the terminating

* NULL byte and prepare other arguments for the conversion.

*/

(void) strlcpy(ib, pathname, MAXPATHLEN);

il = strlen(ib) + 1;

ol = MAXPATHLEN;

/*

* Do the conversion. If the ret > 0, that’s the number of

* non-identical character conversions happened during the conversion.

* Regardless of whether we have conversion failure or not,

* outarray could contain some converted characters.

*/

ret = iconvstr("UTF-8", "ISO-8859-2", ib, &il, ob, &ol,

(ICONV_IGNORE_NULL|ICONV_REPLACE_INVALID));

if (ret == (size_t)-1) {

/* Code conversion not supported? */

if (errno == EBADF)

return (-1);

/* Output array too small? */

if (errno == E2BIG)

return (-2);

Examples

iconvstr(3C)

Basic Library Functions 437

EXAMPLE 1 Code conversion from ISO8859-2 to UTF-8 (Continued)

/* Unknown error which isn’t possible BTW. */

return (-3);

}

:

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

geniconvtbl(1), iconv(1), iconv(3C), iconv_close(3C), iconv_open(3C), iconvctl(C),
iconv.h(3HEAD), geniconvtbl(4), attributes(5), iconv(5), iconv_unicode(5), iconv(5),
standards(5)

Attributes

See Also

iconvstr(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011438

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2geniconvtbl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2geniconvtbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv-unicode-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2iconv-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

imaxabs – return absolute value

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

The imaxabs() function computes the absolute value of an integer j. If the result cannot be
represented, the behavior is undefined.

The imaxabs() function returns the absolute value.

No errors are defined.

The absolute value of the most negative number cannot be represented in two's complement.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

imaxdiv(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

imaxabs(3C)

Basic Library Functions 439

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

imaxdiv – return quotient and remainder

#include <inttypes.h>

imaxdiv_t imaxdiv(imaxdiv_t numer, imaxdiv_t denom);

The imaxdiv() function computes numer / denom and numer % denom in a single operation.

The imaxdiv() function returns a structure of type imaxdiv_t, comprising both the quotient
and the remainder. The structure contains (in either order) the members quot (the quotient)
and rem (the remainder), each of which has type intmax_t. If either part of the result cannot
be represented, the behavior is undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

imaxabs(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

imaxdiv(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003440

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

index, rindex – string operations

#include <strings.h>

char *index(const char *s, int c);

char *rindex(const char *s, int c);

The index() and rindex() functions operate on null-terminated strings.

The index() function returns a pointer to the first occurrence of character c in string s.

The rindex() function returns a pointer to the last occurrence of character c in string s.

Both index() and rindex() return a null pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

On most modern computer systems, you can not use a null pointer to indicate a null string. A
null pointer is an error and results in an abort of the program. If you wish to indicate a null
string, you must use a pointer that points to an explicit null string. On some machines and
with some implementations of the C programming language, a null pointer, if dereferenced,
would yield a null string. Though often used, this practice is not always portable.
Programmers using a null pointer to represent an empty string should be aware of this
portability issue. Even on machines where dereferencing a null pointer does not cause an
abort of the program, it does not necessarily yield a null string.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

bstring(3C), malloc(3C), string(3C), attributes(5), standards(5)

Name

Synopsis

Description

Usage

Attributes

See Also

index(3C)

Basic Library Functions 441

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

initgroups – initialize the supplementary group access list

#include <grp.h>

#include <sys/types.h>

int initgroups(const char *name, gid_t basegid);

The initgroups() function reads the group database to get the group membership for the
user specified by name, and initializes the supplementary group access list of the calling
process (see getgrnam(3C) and getgroups(2)). The basegid group ID is also included in the
supplementary group access list. This is typically the real group ID from the user database.

While scanning the group database, if the number of groups, including the basegid entry,
exceeds NGROUPS_MAX, subsequent group entries are ignored.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The initgroups() function will fail and not change the supplementary group access list if:

EPERM The {PRIV_PROC_SETID} privilege is not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getgroups(2), getgrnam(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

initgroups(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2004442

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getgroups-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getgroups-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

insque, remque – insert/remove element from a queue

include <search.h>

void insque(struct qelem *elem, struct qelem *pred);

void remque(struct qelem *elem);

The insque() and remque() functions manipulate queues built from doubly linked lists. Each
element in the queue must be in the following form:

struct qelem {

struct qelem *q_forw;

struct qelem *q_back;

char q_data[];

};

The insque() function inserts elem in a queue immediately after pred. The remque() function
removes an entry elem from a queue.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

insque(3C)

Basic Library Functions 443

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

isaexec – invoke isa-specific executable

#include <unistd.h>

int isaexec(const char *path, char *const argv[], char *const envp[]);

The isaexec() function takes the path specified as path and breaks it into directory and file
name components. It enquires from the running system the list of supported instruction set
architectures; see isalist(5). The function traverses the list for an executable file in named
subdirectories of the original directory. When such a file is located, execve() is invoked with
argv[] and envp[]. See exec(2).

If no file is located, isaexec() returns ENOENT. Other return values are the same as for
execve().

EXAMPLE 1 Example of isaexec() function.

On a system whose isalist is

sparcv7 sparc

the program

int

main(int argc, char *argv[], char *envp[])

{

return (isaexec("/bin/thing", argv, envp));

}

will look first for an executable file named /bin/sparcv7/thing, then for an executable file
named /bin/sparc/thing. It will invoke execve() on the first executable file it finds named
thing.

On that same system, a program called /u/bin/tofu can cause either /u/bin/sparcv7/tofu
or /u/bin/sparc/tofu to be invoked using the following code:

int

main(int argc, char *argv[], char *envp[])

{

return (isaexec(getexecname(), argv, envp));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Committed

Name

Synopsis

Description

Return Values

Examples

Attributes

isaexec(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Mar 1998444

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1isalist-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

exec(2), getexecname(3C), attributes(5), isalist(5)See Also

isaexec(3C)

Basic Library Functions 445

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1isalist-5

isastream – test a file descriptor

#include <stropts.h>

int isastream(int fildes);

The isastream() function determines if a file descriptor represents a STREAMS file. The
fildes argument refers to an open file descriptor.

Upon successful completion, isastream() returns 1 if fildes represents a STREAMS file, and 0

if it does not. Otherwise, −1 is return and errno is set to indicate the error.

The isastream() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), , standards(5), streamio(7I)

STREAMS Programming Guide

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

isastream(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002446

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

isatty – test for a terminal device

#include <unistd.h>

int isatty(int fildes);

The isatty() function tests whether fildes, an open file descriptor, is associated with a
terminal device.

The isatty() function returns 1 if fildes is associated with a terminal; otherwise it returns 0
and may set errno to indicate the error.

The isatty() function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a terminal.

The isatty() function does not necessarily indicate that a human being is available for
interaction via fildes. It is quite possible that non-terminal devices are connected to the
communications line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ttyname(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

isatty(3C)

Basic Library Functions 447

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

isnand, isnanf, finite, fpclass, unordered – determine type of floating-point number

#include <ieeefp.h>

int isnand(double dsrc);

int isnanf(float fsrc);

int finite(double dsrc);

fpclass_t fpclass(double dsrc);

int unordered(double dsrc1, double dsrc2);

The isnand() and isnanf() functions return TRUE (1) if the argument dsrc or fsrc is a NaN;
otherwise they return FALSE (0).

The fpclass() function returns one of the following classes to which dsrc belongs:

FP_SNAN signaling NaN

FP_QNAN quiet NaN

FP_NINF negative infinity

FP_PINF positive infinity

FP_NDENORM negative denormalized non-zero

FP_PDENORM positive denormalized non-zero

FP_NZERO negative zero

FP_PZERO positive zero

FP_NNORM negative normalized non-zero

FP_PNORM positive normalized non-zero

The finite() function returns TRUE (1) if the argument dsrc is neither infinity nor NaN;
otherwise it returns FALSE (0).

The unordered() function returns TRUE (1) if one of its two arguments is unordered with
respect to the other argument. This is equivalent to reporting whether either argument is NaN.
If neither argument is NaN, FALSE (0) is returned.

None of these functions generates an exception, even for signaling NaNs.

See DESCRIPTION.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Attributes

isnand(3C)

man pages section 3: Basic Library Functions • Last Revised 15 Jun 2004448

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fpgetround(3C), isnan(3M), attributes(5)See Also

isnand(3C)

Basic Library Functions 449

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1isnan-3m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

is_system_labeled – determine whether Trusted Extensions software is active

#include <tsol/label.h>

int is_system_labeled(void);

The is_system_labeled function returns TRUE (1) if the Trusted Extensions software is installed
and active; otherwise it returns FALSE (0).

See DESCRIPTION.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

is_system_labeled(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2006450

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

iswalpha, isenglish, isideogram, isnumber, isphonogram, isspecial, iswalnum, iswascii,
iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper,
iswxdigit – wide-character code classification functions

#include <wchar.h>

#include <wctype.h>

int iswalpha(wint_t wc);

int isenglish(wint_t wc);

int isideogram(wint_t wc);

int isnumber(wint_t wc);

int isphonogram(wint_t wc);

int isspecial(wint_t wc);

int iswalnum(wint_t wc);

int iswascii(wint_t wc);

int iswblank(wint_t wc);

int iswcntrl(wint_t wc);

int iswdigit(wint_t wc);

int iswgraph(wint_t wc);

int iswlower(wint_t wc);

int iswprint(wint_t wc);

int iswpunct(wint_t wc);

int iswspace(wint_t wc);

int iswupper(wint_t wc);

int iswxdigit(wint_t wc);

These functions test whether wc is a wide-character code representing a character of a
particular class defined in the LC_CTYPE category of the current locale.

In all cases, wc is a wint_t, the value of which must be a wide-character code corresponding to
a valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other values, the behavior is undefined.

iswalpha(wc) Tests whether wc is a wide-character code representing a character of
class "alpha" in the program's current locale.

isenglish(wc) Tests whether wc is a wide-character code representing an English
language character, excluding ASCII characters.

Name

Synopsis

Description

iswalpha(3C)

Basic Library Functions 451

isideogram(wc) Tests whether wc is a wide-character code representing an ideographic
language character, excluding ASCII characters.

isnumber(wc) Tests whether wc is a wide-character code representing digit [0−9],
excluding ASCII characters.

isphonogram(wc) Tests whether wc is a wide-character code representing a phonetic
language character, excluding ASCII characters.

isspecial(wc) Tests whether wc is a wide-character code representing a special
language character, excluding ASCII characters.

iswalnum(wc) Tests whether wc is a wide-character code representing a character of
class "alpha" or "digit" in the program's current locale.

iswascii(wc) Tests whether wc is a wide-character code representing an ASCII
character.

iswblank(wc) Tests whether wc is a wide-character code representing a character of
class “blank” in the program's current locale. This function is not
available to applications conforming to standards prior to SUSv3. See
standards(5).

iswlower(wc) Tests whether wc is a wide-character code representing a character of
class "lower" in the program's current locale.

iswcntrl(wc) Tests whether wc is a wide-character code representing a character of
class "cntrl" in the program's current locale.

iswdigit(wc) Tests whether wc is a wide-character code representing a character of
class "digit" in the program's current locale.

iswgraph(wc) Tests whether wc is a wide-character code representing a character of
class "graph" in the program's current locale.

iswprint(wc) Tests whether wc is a wide-character code representing a character of
class "print" in the program's current locale.

iswpunct(wc) Tests whether wc is a wide-character code representing a character of
class "punct" in the program's current locale.

iswspace(wc) Tests whether wc is a wide-character code representing a character of
class "space" in the program's current locale.

iswupper(wc) Tests whether wc is a wide-character code representing a character of
class "upper" in the program's current locale.

iswxdigit(wc) Tests whether wc is a wide-character code representing a character of
class "xdigit" in the program's current locale.

iswalpha(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Apr 2004452

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability See below.

MT-Level MT-Safe with exceptions

The iswalpha(), iswalnum(), iswblank(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), and iswxdigit() functions
are Standard.

localedef(1), setlocale(3C), stdio(3C), ascii(5), attributes(5), standards(5)

Attributes

See Also

iswalpha(3C)

Basic Library Functions 453

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1localedef-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ascii-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

iswctype – test character for specified class

#include <wchar.h>

int iswctype(wint_t wc, wctype_t charclass);

The iswctype() function determines whether the wide-character code wc has the character
class charclass, returning TRUE or FALSE. The iswctype() function is defined on WEOF and
wide-character codes corresponding to the valid character encodings in the current locale. If
the wc argument is not in the domain of the function, the result is undefined. If the value of
charclass is invalid (that is, not obtained by a call to wctype(3C) or charclass is invalidated by a
subsequent call to setlocale(3C) that has affected category LC_CTYPE), the result is
indeterminate.

The iswctype() function returns 0 for FALSE and non-zero for TRUE.

There are twelve strings that are reserved for the standard character classes:

"alnum" "alpha" "blank"

"cntrl" "digit" "graph"

"lower" "print" "punct"

"space" "upper" "xdigit"

In the table below, the functions in the left column are equivalent to the functions in the right
column.

iswalnum(wc) iswctype(wc, wctype("alnum"))

iswalpha(wc) iswctype(wc, wctype("alpha"))

iswcntrl(wc) iswctype(wc, wctype("cntrl"))

iswdigit(wc) iswctype(wc, wctype("digit"))

iswgraph(wc) iswctype(wc, wctype("graph"))

iswlower(wc) iswctype(wc, wctype("lower"))

iswprint(wc) iswctype(wc, wctype("print"))

iswpunct(wc) iswctype(wc, wctype("punct"))

iswspace(wc) iswctype(wc, wctype("space"))

iswupper(wc) iswctype(wc, wctype("upper"))

iswxdigit(wc) iswctype(wc, wctype("xdigit"))

Name

Synopsis

Description

Return Values

Usage

iswctype(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002454

The call

iswctype(wc, wctype("blank"))

does not have an equivalent isw*() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe with exceptions

iswalpha(3C), setlocale(3C), wctype(3C), attributes(5), environ(5), standards(5)

Attributes

See Also

iswctype(3C)

Basic Library Functions 455

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

killpg – send signal to a process group

#include <signal.h>

int killpg(pid_t pgrp, int sig);

The killpg() function sends the signal sig to the process group pgrp. See signal.h(3HEAD)
for a list of signals.

The real or effective user ID of the sending process must match the real or saved set-user ID of
the receiving process, unless the effective user ID of the sending process is the privileged user.
A single exception is the signal SIGCONT, which may always be sent to any descendant of the
current process.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The killpg() function will fail and no signal will be sent if:

EINVAL The sig argument is not a valid signal number.

EPERM The effective user ID of the sending process is not privileged user, and neither its
real nor effective user ID matches the real or saved set-user ID of one or more of
the target processes.

ESRCH No processes were found in the specified process group.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

kill(2), setpgrp(2), sigaction(2), signal.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

killpg(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002456

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setpgrp-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

kva_match – look up a key in a key-value array

char *kva_match(kva_t *kva, char *key);

The kva_match() function searches a kva_t structure, which is part of the authattr_t,
execattr_t, profattr_t, or userattr_t structures. The function takes two arguments: a
pointer to a key value array, and a key. If the key is in the array, the function returns a pointer
to the first corresponding value that matches that key. Otherwise, the function returns NULL.

Upon successful completion, the function returns a pointer to the value sought. Otherwise, it
returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3C), getexecattr(3C), getprofattr(3C), getuserattr(3C)

The kva_match() function returns a pointer to data that already exists in the key-value array.
It does not allocate its own memory for this pointer but obtains it from the key-value array
that is passed as its first argument.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

kva_match(3C)

Basic Library Functions 457

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

lckpwdf, ulckpwdf – manipulate shadow password database lock file

#include <shadow.h>

int lckpwdf(void);

int ulckpwdf(void);

The lckpwdf() and ulckpwdf() functions enable modification access to the password
databases through the lock file. A process first uses lckpwdf() to lock the lock file, thereby
gaining exclusive rights to modify the /etc/passwd or /etc/shadow password database. See
passwd(4) and shadow(4). Upon completing modifications, a process should release the lock
on the lock file using ulckpwdf(). This mechanism prevents simultaneous modification of the
password databases. The lock file, /etc/.pwd.lock, is used to coordinate modification access
to the password databases /etc/passwd and /etc/shadow.

If lckpwdf() is successful in locking the file within 15 seconds, it returns 0. If unsuccessful (for
example, /etc/.pwd.lock is already locked), it returns −1.

If ulckpwdf() is successful in unlocking the file /etc/.pwd.lock, it returns 0. If unsuccessful
(for example, /etc/.pwd.lock is already unlocked), it returns −1.

These routines are for internal use only; compatibility is not guaranteed.

/etc/passwd password database

/etc/shadow shadow password database

/etc/.pwd.lock lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getpwnam(3C), getspnam(3C), passwd(4), shadow(4), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Files

Attributes

See Also

lckpwdf(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996458

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1passwd-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shadow-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

lfmt – display error message in standard format and pass to logging and monitoring services

#include <pfmt.h>

int lfmt(FILE *stream, long flags, char *format, ... /* arg*/);

The lfmt() function retrieves a format string from a locale-specific message database (unless
MM_NOGET is specified) and uses it for printf(3C) style formatting of args. The output is
displayed on stream. If stream is NULL no output is displayed.

The lfmt() function encapsulates the output in the standard error message format (unless
MM_NOSTD is specified, in which case the output is like that of printf(). It forwards its output
to the logging and monitoring facility, even if stream is NULL. Optionally, lfmt() displays the
output on the console with a date and time stamp.

If the printf() format string is to be retrieved from a message database, the format argument
must have the following structure:

<catalog>:<msgnum>:<defmsg>.

If MM_NOGET is specified, only the <defmsg> field must be specified.

The <catalog> field indicates the message database that contains the localized version of the
format string. This field is limited to 14 characters selected from a set of all characters values,
excluding the null character (\0) and the ASCII codes for slash (/) and colon (:).

The <msgnum> field is a positive number that indicates the index of the string into the
message database.

If the catalog does not exist in the locale (specified by the last call to setlocale(3C) using the
LC_ALL or LC_MESSAGES categories), or if the message number is out of bound, lfmt() will
attempt to retrieve the message from the C locale. If this second retrieval fails, lfmt() uses the
<defmsg> field of the format argument.

If <catalog> is omitted, lfmt() will attempt to retrieve the string from the default catalog
specified by the last call to setcat(3C). In this case, the format argument has the following
structure:

:<msgnum>:<defmsg>.

The lfmt() function will output the message

Message not found!!\n

as the format string if <catalog> is not a valid catalog name, if no catalog is specified (either
explicitly or with setcat()), if <msgnum> is not a valid number, or if no message could be
retrieved from the message databases and <defmsg> was omitted.

The flags argument determines the type of output (whether the format should be interpreted
as it is or be encapsulated in the standard message format) and the access to message catalogs
to retrieve a localized version of format.

Name

Synopsis

Description

lfmt(3C)

Basic Library Functions 459

The flags argument is composed of several groups, and can take the following values (one
from each group):

Output format control

MM_NOSTD Do not use the standard message format but interpret format as a printf()
format. Only catalog access control flags, console display control and
logging information should be specified if MM_NOSTD is used; all other flags
will be ignored.

MM_STD Output using the standard message format (default value is 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case, only the <defmsg>
field of format is specified.

MM_GET Retrieve a localized version of format from <catalog>, using <msgid> as the
index and <defmsg> as the default message (default value is 0).

Severity (standard message format only)

MM_HALT Generate a localized version of HALT, but do not halt the machine.

MM_ERROR Generate a localized version of ERROR (default value is 0).

MM_WARNING Generate a localized version of WARNING.

MM_INFO Generate a localized version of INFO.

Additional severities can be defined with the addsev(3C) function, using number-string
pairs with numeric values in the range [5-255]. The specified severity is formed by the
bitwise OR operation of the numeric value and other flags arguments.

If the severity is not defined, lfmt() uses the string SEV=N where N is the integer severity
value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any combination of
severities will be summed and the numeric value will cause the display of either a severity
string (if defined) or the string SEV=N (if undefined).

Action

MM_ACTION Specify an action message. Any severity value is superseded and replaced by
a localized version of TO FIX.

Console display control

MM_CONSOLE Display the message to the console in addition to the specified stream.

MM_NOCONSOLE Do not display the message to the console in addition to the specified
stream (default value is 0).

lfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996460

Logging information

Major classification Identify the source of the condition. Identifiers are:
MM_HARD (hardware), MM_SOFT (software), and MM_FIRM

(firmware).

Message source subclassification Identify the type of software in which the problem is
spotted. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating system).

The lfmt() function displays error messages in the following format:

label: severity: text

If no label was defined by a call to setlabel(3C), the message is displayed in the format:

severity: text

If lfmt() is called twice to display an error message and a helpful action or recovery message,
the output may appear as follows:

label: severity: text
label: TO FIX: text

Upon successful completion, lfmt() returns the number of bytes transmitted. Otherwise, it
returns a negative value:

−1 Write the error to stream.

−2 Cannot log and/or display at console.

Since lfmt() uses gettxt(3C), it is recommended that lfmt() not be used.

EXAMPLE 1 The following example

setlabel("UX:test");
lfmt(stderr, MM_ERROR|MM_CONSOLE|MM_SOFT|MM_UTIL,

"test:2:Cannot open file: %s\n", strerror(errno));

displays the message to stderr and to the console and makes it available for logging:

UX:test: ERROR: Cannot open file: No such file or directory

EXAMPLE 2 The following example

setlabel("UX:test");
lfmt(stderr, MM_INFO|MM_SOFT|MM_UTIL,

"test:23:test facility is enabled\n");

displays the message to stderr and makes it available for logging:

UX:test: INFO: test facility enabled

Standard Error
Message Format

Return Values

Usage

Examples

lfmt(3C)

Basic Library Functions 461

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

addsev(3C), gettxt(3C), pfmt(3C), printf(3C), setcat(3C), setlabel(3C), setlocale(3C),
attributes(5), environ(5)

Attributes

See Also

lfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996462

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

lio_listio – list directed I/O

#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[],
int nent, struct sigevent *restrict sig);

The lio_listio() function allows the calling process, LWP, or thread, to initiate a list of I/O
requests within a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function
waits until all I/O is complete and the sig argument is ignored.

If the mode argument is LIO_NOWAIT, the function returns immediately, and asynchronous
notification occurs, according to the sig argument, when all the I/O operations complete. If sig
is NULL, no asynchronous notification occurs. If sig is not NULL, asynchronous notification
occurs as specified in signal.h(3HEAD) when all the requests in list have completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent
elements. The array may contain null elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to
aio_read(3C) with the aiocbp equal to the address of the aiocb structure. If the
aio_lio_opcode element is equal to LIO_WRITE, then an I/O operation is submitted as if by a call
to aio_write(3C) with the aiocbp equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is to be
transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the
aio_read(3C) and aio_write(3C) functions.

The nent argument specifies how many elements are members of the list, that is, the length of
the array.

Name

Synopsis

Description

lio_listio(3C)

Basic Library Functions 463

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is
enabled on the file associated with aio_fildes. See fcntl.h(3HEAD) definitions of O_DSYNC
and O_SYNC.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp→aio_fildes.

If the mode argument has the value LIO_NOWAIT, and the I/O operations are successfully
queued, lio_listio() returns 0; otherwise, it returns −1, and sets errno to indicate the error.

If the mode argument has the value LIO_WAIT, and all the indicated I/O has completed
successfully, lio_listio() returns 0; otherwise, it returns −1, and sets errno to indicate the
error.

In either case, the return value only indicates the success or failure of the lio_listio() call
itself, not the status of the individual I/O requests. In some cases, one or more of the I/O
requests contained in the list may fail. Failure of an individual request does not prevent
completion of any other individual request. To determine the outcome of each I/O request,
the application must examine the error status associated with each aiocb control block. Each
error status so returned is identical to that returned as a result of an aio_read(3C) or
aio_write(3C) function.

The lio_listio() function will fail if:

EAGAIN The resources necessary to queue all the I/O requests were not available. The error
status for each request is recorded in the aio_error member of the corresponding
aiocb structure, and can be retrieved using aio_error(3C).

EAGAIN The number of entries indicated by nent would cause the system-wide limit
AIO_MAX to be exceeded.

EINVAL The mode argument is an improper value, or the value of nent is greater than
AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete during an
LIO_WAIT operation. Note that, since each I/O operation invoked by
lio_listio() may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations
being awaited. Outstanding I/O requests are not canceled, and the application can
use aio_fsync(3C) to determine if any request was initiated; aio_return(3C) to
determine if any request has completed; or aio_error(3C) to determine if any
request was canceled.

EIO One or more of the individual I/O operations failed. The application can use
aio_error(3C) to check the error status for each aiocb structure to determine the
individual request(s) that failed.

Return Values

Errors

lio_listio(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008464

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head

In addition to the errors returned by the lio_listio() function, if the lio_listio()
function succeeds or fails with errors of EAGAIN, EINTR, or EIO, then some of the I/O specified
by the list may have been initiated. If the lio_listio() function fails with an error code other
than EAGAIN, EINTR, or EIO, no operations from the list have been initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains
the associated error code. The error codes that can be set are the same as would be set by a
read(2) or write(2) function, with the following additional error codes possible:

EAGAIN The requested I/O operation was not queued due to resource limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel(3C) request.

EFBIG The aiocbp→aio_lio_opcode is LIO_WRITE, the file is a regular file,
aiocbp→aio_nbytes is greater than 0, and the aiocbp→aio_offset is
greater than or equal to the offset maximum in the open file description
associated with aiocbp→aio_fildes.

EINPROGRESS The requested I/O is in progress.

EOVERFLOW The aiocbp→aio_lio_opcode is LIO_READ, the file is a regular file,
aiocbp→aio_nbytes is greater than 0, and the aiocbp→aio_offset is
before the end-of-file and is greater than or equal to the offset maximum in
the open file description associated with aiocbp→aio_fildes.

The lio_listio() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), aio_cancel(3C),
aio_error(3C), aio_fsync(3C), aio_read(3C), aio_return(3C), aio_write(3C),
aio.h(3HEAD), fcntl.h(3HEAD), siginfo.h(3HEAD), signal.h(3HEAD),
attributes(5), lf64(5), standards(5)

Usage

Attributes

See Also

lio_listio(3C)

Basic Library Functions 465

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

localeconv – get numeric formatting information

#include <locale.h>

struct lconv *localeconv(void);

The localeconv() function sets the components of an object with type struct lconv
(defined in <locale.h>) with the values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale (see setlocale(3C)).
The definition of struct lconv is given below (the values for the fields in the “C” locale are
given in comments).

char *decimal_point; /* "." */

char *thousands_sep; /* "" (zero length string) */

char *grouping; /* "" */

char *int_curr_symbol; /* "" */

char *currency_symbol; /* "" */

char *mon_decimal_point; /* "" */

char *mon_thousands_sep; /* "" */

char *mon_grouping; /* "" */

char *positive_sign; /* "" */

char *negative_sign; /* "" */

char int_frac_digits; /* CHAR_MAX */

char frac_digits; /* CHAR_MAX */

char p_cs_precedes; /* CHAR_MAX */

char p_sep_by_space; /* CHAR_MAX */

char n_cs_precedes; /* CHAR_MAX */

char n_sep_by_space; /* CHAR_MAX */

char p_sign_posn; /* CHAR_MAX*/

char n_sign_posn; /* CHAR_MAX */

The following members are also available to SUSv3–conforming applications. See
standards(5)

char int_p_cs_precedes; /* CHAR_MAX */

char int_p_sep_by_space; /* CHAR_MAX */

char int_n_cs_precedes; /* CHAR_MAX */

char int_n_sep_by_space; /* CHAR_MAX */

char int_p_sign_posn; /* CHAR_MAX */

char int_n_sign_posn; /* CHAR_MAX */

The members of the structure with type char * are strings, any of which (except
decimal_point) can point to a null string (""), to indicate that the value is not available in the
current locale or is of zero length. The members with type char are non-negative numbers,
any of which can be CHAR_MAX (defined in the <limits.h> header) to indicate that the value is
not available in the current locale. The members are the following:

char *decimal_point The decimal-point character used to format non-monetary
quantities.

Name

Synopsis

Description

localeconv(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Dec 2003466

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

char *thousands_sep The character used to separate groups of digits to the left of
the decimal-point character in formatted non-monetary
quantities.

char *grouping A string whose elements taken as one-byte integer values
indicate the size of each group of digits in formatted
non-monetary quantities.

char *int_curr_symbol The international currency symbol applicable to the current
locale. The first three characters contain the alphabetic
international currency symbol in accordance with those
specified in the ISO 4217: 1995 standard. The fourth character
(immediately preceding the null byte) is the character used to
separate the international currency symbol from the
monetary quantity.

char *currency_symbol The local currency symbol applicable to the current locale.

char *mon_decimal_point The decimal point used to format monetary quantities.

char *mon_thousands_sep The separator for groups of digits to the left of the decimal
point in formatted monetary quantities.

char *mon_grouping A string whose elements taken as one-byte integer values
indicate the size of each group of digits in formatted
monetary quantities.

char *positive_sign The string used to indicate a non-negative-valued formatted
monetary quantity.

char *negative_sign The string used to indicate a negative-valued formatted
monetary quantity.

char int_frac_digits The number of fractional digits (those to the right of the
decimal point) to be displayed in an internationally formatted
monetary quantity.

char frac_digits The number of fractional digits (those to the right of the
decimal point) to be displayed in a formatted monetary
quantity.

char p_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a non-negative formatted monetary
quantity.

char p_sep_by_space Set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a non-negative
formatted monetary quantity. Set to 1 if a space separates the

localeconv(3C)

Basic Library Functions 467

symbol from the value; and set to 2 if a space separates the
symbol and the sign string, if adjacent.

char n_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a negative formatted monetary
quantity.

char n_sep_by_space Set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a negative formatted
monetary quantity. Set to 1 if a space separates the symbol
from the value; and set to 2 if a space separates the symbol and
the sign string, if adjacent.

char p_sign_posn Set to a value indicating the positioning of the positive_sign
for a non-negative formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

char int_p_cs_precedes Set to 1 or 0 if the int_curr_symbol respectively precedes or
succeeds the value for a non-negative internationally
formatted monetary quantity.

char int_n_cs_precedes Set to 1 or 0 if the int_curr_symbol respectively precedes or
succeeds the value for a negative internationally formatted
monetary quantity.

char int_p_sep_by_space Set to a value indicating the separation of the
int_curr_symbol, the sign string, and the value for a
non-negative internationally formatted monetary quantity.

char int_n_sep_by_space Set to a value indicating the separation of the
int_curr_symbol, the sign string, and the value for a negative
internationally formatted monetary quantity.

char int_p_sign_posn Set to a value indicating the positioning of the positive_sign
for a non-negative internationally formatted monetary
quantity.

char int_n_sign_posn Set to a value indicating the positioning of the negative_sign
for a negative internationally formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

{CHAR_MAX} No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits

localeconv(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Dec 2003468

before the current group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the
value; otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a
space separates the sign string from the value.

In an SUSv3–conforming application, for int_p_sep_by_space and int_n_sep_by_space,
the fourth character of int_curr_symbol is used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are
interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The localeconv() function returns a pointer to the filled-in object. The structure pointed to
by the return value may be overwritten by a subsequent call to localeconv().

EXAMPLE 1 Rules used by four countries to format monetary quantities.

The following table illustrates the rules used by four countries to format monetary quantities.

Country Positive Negative International

Italy (IT) L.1.234 −L.1.234 ITL.1.234

Netherlands (NE) F 1.234,56 F −1.234,56 NLG 1.234,56

Norway (NO) kr1.234,56 kr1.234,56− NOK 1.234,56

Switzerland (SW) SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv() are as follows:

Return Values

Examples

localeconv(3C)

Basic Library Functions 469

IT NE NO SW

int_curr_symbol "ITL." "NLG " "NOK " "CHF "

currency_symbol "L." "F" "kr" "SFrs."

mon_decimal_point "" "," "," "."

mon_thousands_sep "." "." "." ","

mon_grouping "\3" "\3" "\3" "\3"

positive_sign "" "" "" ""

negative_sign "-" "-" "-" "C"

int_frac_digits 0 2 2 2

frac_digits 0 2 2 2

p_cs_precedes 1 1 1 1

p_sep_by_space 0 1 0 0

n_cs_precedes 1 1 1 1

n_sep_by_space 0 1 0 0

p_sign_posn 1 1 1 1

n_sign_posn 1 4 2 2

int_p_cs_precedes 1 1 1 1

int_n_cs_precedes 1 1 1 1

int_p_sep_by_space 0 0 0 0

int_n_sep_by_space 0 0 0 0

int_p_sign_posn 1 1 1 1

int_n_sign_posn 1 4 4 2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

Attributes

localeconv(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Dec 2003470

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The localeconv() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

setlocale(3C), attributes(5), environ(5), standards(5)See Also

localeconv(3C)

Basic Library Functions 471

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

localelist, localelistfree – query installed locales

#include <locale.h>

int localelist(lclist_t **list, int flag);

void localelistfree(lclist_t *list);

The localelist() function checks on the current system and returns a list of installed locales
by allocating a memory for the list and data field of lclist_t type components as needed.

The localelist() function is always guaranteed to return at least the “C” locale in the list,
unless there is an error.

When there is no memory that can be allocated, the localelist() function deallocates any
memory blocks so far allocated in the list and instead sets NULL to the corresponding
addresses, as needed, before returning -1 and setting errno to ENOMEM.

The data field of lclist_t type is like the following:

char *locale Locale name as a string that can be used to set LANG environment variable.

The following values can be bitwise-inclusive-OR combined and requested to the function via
flag argument:

LCLIST_QUERY

Check on the current system and return the list of installed locales.

By default, “C” and “POSIX” are always included in the list.

The list returned will be in ascending order based on 7-bit ASCII character codes of the
locale name.

LCLIST_VALIDATE

Normally, when a locale is found from file system hierarchy, by default, it is not validated
and added to the list of installed locales.

If this flag value is specified, however, the function actually validates the locale to find out if
the locale is actually usable or not and add to the list only if it is actually usable. (This
prevents any possible bogus locales being added to the list.)

LCLIST_KEEP

When LCLIST_VALIDATE is used, after a locale is validated, the locale loaded into system
memory is marked to be unloaded from the memory. However, if this flag value is
specified, the function does not do that so that the locale can be reused later.

When you're calling localelist() multiple times with LCLIST_VALIDATE and if you have
enough memory space, using this flag may yield a better performance in the subsequent
calls to the function.

When LCLIST_VALIDATE is not specified, this flag is ignored.

Name

Synopsis

Description

localelist(3C)

man pages section 3: Basic Library Functions • Last Revised 2 June 2011472

LCLIST_DO_NOT_DLCLOSE

By default, after a locale is validated, the function unloads the locale. If this flag value is
specified, however, the function does not unload the locale.

This will yield a better performance if you have enough free memory space and frequently
reuse locales in your running program.

LCLIST_DO_NOT_INCLUDE_POSIX

If this flag is set, “POSIX” locale is not included in the list.

LCLIST_EXCLUDE_SYMBOLIC_LINKS

Occasionally, locales are presented by using a symbolic link to other locales as an alias.
When this flag value is specified, such locales are excluded from the list.

LCLIST_INCLUDE_LC_MESSAGES

If this flag is set, the function also includes locales in the list that do not have complete
locale database components but have an LC_MESSAGES directory in the locale database
directory hierarchy. In this case, setlocale(3C) with LC_MESSAGES can be successful.

The localelistfree() deallocates any allocated and associated memory blocks with the list
by the localelist() function.

Upon successful completion, the localelist() function returns the number of locales in the
list. Otherwise, the localelist() returns -1 and sets an errno to indicate the error. The
localelistfree() neither returns a specific value nor sets an errno.

The localelist() function will fail if:

ENOMEM Cannot allocate memory.

EXAMPLE 1 Query and print installed locales.

#include <locale.h>

:

lclist_t *lclp;

int count;

int i;

:

count = localelist(&lclp, LCLIST_QUERY);

if (count > 0) {

for (i = 0; i < count; i++)

printf("Locale name = %s\

", lclp[i].locale);

}

localelistfree(lclp);

Return Values

Errors

Examples

localelist(3C)

Basic Library Functions 473

EXAMPLE 2 Query and print installed locales including locales that do not have locale shared object but
LC_MESSAGES directory.

#include <locale.h>

:

lclist_t *lclp;

int count;

int i;

:

count = localelist(&lclp, LCLIST_QUERY | LCLIST_INCLUDE_LC_MESSAGES);

if (count > 0) {

for (i = 0; i < count; i++)

printf("Locale name = %s\

", lclp[i].locale);

}

localelistfree(lclp);

EXAMPLE 3 Query and print installed locales but exclude any locales that are symbolic links to other
locales.

#include <locale.h>

:

lclist_t *lclp;

int count;

int i;

:

count = localelist(&lclp, LCLIST_QUERY | LCLIST_EXCLUDE_SYMBOLIC_LINKS);

if (count > 0) {

for (i = 0; i < count; i++)

printf("Locale name = %s\

", lclp[i].locale);

}

localelistfree(lclp);

EXAMPLE 4 Query and print installed locales with locale validations.

#include <locale.h>

:

lclist_t *lclp;

int count;

localelist(3C)

man pages section 3: Basic Library Functions • Last Revised 2 June 2011474

EXAMPLE 4 Query and print installed locales with locale validations. (Continued)

int i;

:

count = localelist(&lclp, LCLIST_QUERY | LCLIST_VALIDATE);

if (count > 0) {

for (i = 0; i < count; i++)

}

localelistfree(lclp);

/usr/lib/locale/locale locale database directory for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

locale(1), setlocale(3C), attributes(5), environ(5), locale(5), standards(5)

Files

Attributes

See Also

localelist(3C)

Basic Library Functions 475

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2locale-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2locale-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2standards-5

lockf – record locking on files

#include <unistd.h>

int lockf(int fildes, int function, off_t size);

The lockf() function allows sections of a file to be locked; advisory or mandatory write locks
depending on the mode bits of the file (see chmod(2)). Calls to lockf() from other threads that
attempt to lock the locked file section will either return an error value or be put to sleep until
the resource becomes unlocked. All the locks for a process are removed when the process
terminates. See fcntl(2) for more information about record locking.

The fildes argument is an open file descriptor. The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish locks with this function call.

The function argument is a control value that specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

#define F_ULOCK 0 /* unlock previously locked section */

#define F_LOCK 1 /* lock section for exclusive use */

#define F_TLOCK 2 /* test & lock section for exclusive use */

#define F_TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an error if not
implemented.

F_TEST is used to detect if a lock by another process is present on the specified section. F_LOCK
and F_TLOCK both lock a section of a file if the section is available. F_ULOCK removes locks from
a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The resource
to be locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not including the
current offset). If size is zero, the section from the current offset through the largest file offset
is locked (that is, from the current offset through the present or any future end-of-file). An
area need not be allocated to the file in order to be locked as such locks may exist past the
end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by a previously locked section for the same process. Locked sections will be unlocked starting
at the point of the offset through size bytes or to the end of file if size is (off_t) 0. When this
situation occurs, or if this situation occurs in adjacent sections, the sections are combined into
a single section. If the request requires that a new element be added to the table of active locks
and this table is already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not available.
F_LOCK blocks the calling thread until the resource is available. F_TLOCK causes the function to
return −1 and set errno to EAGAIN if the section is already locked by another process.

Name

Synopsis

Description

lockf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Apr 2002476

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

File locks are released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may, in whole or in part, release one or more locked sections controlled by
the process. When sections are not fully released, the remaining sections are still locked by the
process. Releasing the center section of a locked section requires an additional element in the
table of active locks. If this table is full, an errno is set to EDEADLK and the requested section is
not released.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
section is the maximum value for an object of type off_t, when the process has an existing
lock in which size is 0 and which includes the last byte of the requested section, will be treated
as a request to unlock from the start of the requested section with a size equal to 0. Otherwise,
an F_ULOCK request will attempt to unlock only the requested section.

A potential for deadlock occurs if the threads of a process controlling a locked resource is put
to sleep by requesting another process's locked resource. Thus calls to lockf() or fcntl(2)
scan for a deadlock prior to sleeping on a locked resource. An error return is made if sleeping
on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) function may be used to
provide a timeout facility in applications that require this facility.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The lockf() function will fail if:

EBADF The fildes argument is not a valid open file descriptor; or function is
F_LOCK or F_TLOCK and fildes is not a valid file descriptor open for
writing.

EACCES or EAGAIN The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

EDEADLK The function argument is F_LOCK and a deadlock is detected.

EINTR A signal was caught during execution of the function.

ECOMM The fildes argument is on a remote machine and the link to that
machine is no longer active.

EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or
F_ULOCK; or size plus the current file offset is less than 0.

EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the
requested section cannot be represented correctly in an object of type
off_t.

The lockf() function may fail if:

Return Values

Errors

lockf(3C)

Basic Library Functions 477

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2

EAGAIN The function argument is F_LOCK or F_TLOCK and the file is mapped
with mmap(2).

EDEADLK or ENOLCK The function argument is F_LOCK, F_TLOCK, or F_ULOCK and the
request would cause the number of locks to exceed a
system-imposed limit.

EOPNOTSUPP or EINVAL The locking of files of the type indicated by the fildes argument is
not supported.

Record-locking should not be used in combination with the fopen(3C), fread(3C),
fwrite(3C) and other stdio functions. Instead, the more primitive, non-buffered functions
(such as open(2)) should be used. Unexpected results may occur in processes that do buffering
in the user address space. The process may later read/write data which is/was locked. The
stdio functions are the most common source of unexpected buffering.

The alarm(2) function may be used to provide a timeout facility in applications requiring it.

The lockf() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Intro(2), alarm(2), chmod(2), close(2), creat(2), fcntl(2), mmap(2), open(2), read(2),
write(2), attributes(5), lf64(5), standards(5)

Usage

Attributes

See Also

lockf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Apr 2002478

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

_longjmp, _setjmp – non-local goto

#include <setjmp.h>

void _longjmp(jmp_buf env, int val);

int _setjmp(jmp_buf env);

The _longjmp() and _setjmp() functions are identical to longjmp(3C) and setjmp(3C),
respectively, with the additional restriction that _longjmp() and _setjmp() do not
manipulate the signal mask.

If _longjmp() is called even though env was never initialized by a call to _setjmp(), or when
the last such call was in a function that has since returned, the results are undefined.

Refer to longjmp(3C) and setjmp(3C).

No errors are defined.

If _longjmp() is executed and the environment in which _setjmp() was executed no longer
exists, errors can occur. The conditions under which the environment of the _setjmp() no
longer exists include exiting the function that contains the _setjmp() call, and exiting an
inner block with temporary storage. This condition might not be detectable, in which case the
_longjmp() occurs and, if the environment no longer exists, the contents of the temporary
storage of an inner block are unpredictable. This condition might also cause unexpected
process termination. If the function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp() a
pointer to a buffer not created by _setjmp(), passing siglongjmp(3C) a pointer to a buffer not
created by sigsetjmp(3C) or passing any of these three functions a buffer that has been
modified by the user can cause all the problems listed above, and more.

The _longjmp() and _setjmp() functions are included to support programs written to
historical system interfaces. New applications should use siglongjmp(3C) and
sigsetjmp(3C) respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

longjmp(3C), setjmp(3C), siglongjmp(3C), sigsetjmp(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

_longjmp(3C)

Basic Library Functions 479

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

lsearch, lfind – linear search and update

#include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

The lsearch() function is a linear search routine generalized from Knuth (6.1) Algorithm S.
(see The Art of Computer Programming, Volume 3, Section 6.1, by Donald E. Knuth.). It returns
a pointer to a table indicating where a datum can be found. If the datum does not occur, it is
added at the end of the table. The key argument points to the datum to be sought in the table.
The base argument points to the first element in the table. The nelp argument points to an
integer containing the current number of elements in the table. The integer is incremented if
the datum is added to the table. The width argument is the size of an element in bytes. The
compar argument is a pointer to the comparison function that the user must supply
(strcmp(3C) for example). It is called with two arguments that point to the elements being
compared. The function must return zero if the elements are equal and non-zero otherwise.

The lfind() function is the same as lsearch() except that if the datum is not found, it is not
added to the table. Instead, a null pointer is returned.

It is important to note the following:
■ The pointers to the key and the element at the base of the table can be pointers to any type.
■ The comparison function need not compare every byte, so arbitrary data can be contained

in the elements in addition to the values being compared.
■ The value returned should be cast into type pointer-to-element.

If the searched-for datum is found, both lsearch() and lfind() return a pointer to it.
Otherwise, lfind() returns NULL and lsearch() returns a pointer to the newly added
element.

Undefined results can occur if there is not enough room in the table to add a new item.

The lsearch() and lfind() functions safely allows concurrent access by multiple threads to
disjoint data, such as overlapping subtrees or tables.

EXAMPLE 1 A sample code using the lsearch() function.

This program will read in less than TABSIZE strings of length less than ELSIZE and store them
in a table, eliminating duplicates, and then will print each entry.

#include <search.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

Name

Synopsis

Description

Return Values

Usage

Examples

lsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 2004480

EXAMPLE 1 A sample code using the lsearch() function. (Continued)

#define TABSIZE 50

#define ELSIZE 120

main()

{

char line[ELSIZE]; /* buffer to hold input string */

char tab[TABSIZE][ELSIZE]; /* table of strings */

size_t nel = 0; /* number of entries in tab */

int i;

while (fgets(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)

(void) lsearch(line, tab, &nel, ELSIZE, mycmp);

for(i = 0; i < nel; i++)

(void)fputs(tab[i], stdout);

return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

bsearch(3C), hsearch(3C), string(3C), tsearch(3C), attributes(5), standards(5)

The Art of Computer Programming, Volume 3, Sorting and Searching by Donald E. Knuth,
published by Addison-Wesley Publishing Company, 1973.

Attributes

See Also

lsearch(3C)

Basic Library Functions 481

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

madvise – provide advice to VM system

#include <sys/types.h>

#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The madvise() function advises the kernel that a region of user mapped memory in the range
[addr, addr + len) will be accessed following a type of pattern. The kernel uses this information
to optimize the procedure for manipulating and maintaining the resources associated with the
specified mapping range.

Values for advice are defined in <sys/mman.h> as:

#define MADV_NORMAL 0x0 /* No further special treatment */

#define MADV_RANDOM 0x1 /* Expect random page references */

#define MADV_SEQUENTIAL 0x2 /* Expect sequential page references */

#define MADV_WILLNEED 0x3 /* Will need these pages */

#define MADV_DONTNEED 0x4 /* Don’t need these pages */

#define MADV_FREE 0x5 /* Contents can be freed */

#define MADV_ACCESS_DEFAULT 0x6 /* default access */

#define MADV_ACCESS_LWP 0x7 /* next LWP to access heavily */

#define MADV_ACCESS_MANY 0x8 /* many processes to access heavily */

#define MADV_ACCESS_MANY_PSET 0x9 /* many processes in pset to access */

/* heavily */

MADV_NORMAL

This is the default system characteristic where accessing memory within the address range
causes the system to read data from the mapped file. The kernel reads all data from files into
pages which are retained for a period of time as a “cache.” System pages can be a scarce
resource, so the kernel steals pages from other mappings when needed. This is a likely
occurrence, but adversely affects system performance only if a large amount of memory is
accessed.

MADV_RANDOM

Tell the kernel to read in a minimum amount of data from a mapped file on any single
particular access. If MADV_NORMAL is in effect when an address of a mapped file is accessed,
the system tries to read in as much data from the file as reasonable, in anticipation of other
accesses within a certain locality.

MADV_SEQUENTIAL

Tell the system that addresses in this range are likely to be accessed only once, so the system
will free the resources mapping the address range as quickly as possible.

MADV_WILLNEED

Tell the system that a certain address range is definitely needed so the kernel will start
reading the specified range into memory. This can benefit programs wanting to minimize
the time needed to access memory the first time, as the kernel would need to read in from
the file.

Name

Synopsis

Description

madvise(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011482

MADV_DONTNEED

Tell the kernel that the specified address range is no longer needed, so the system starts to
free the resources associated with the address range.

MADV_FREE

Tell the kernel that contents in the specified address range are no longer important and the
range will be overwritten. When there is demand for memory, the system will free pages
associated with the specified address range. In this instance, the next time a page in the
address range is referenced, it will contain all zeroes. Otherwise, it will contain the data that
was there prior to the MADV_FREE call. References made to the address range will not make
the system read from backing store (swap space) until the page is modified again.

This value cannot be used on mappings that have underlying file objects.

MADV_ACCESS_LWP

Tell the kernel that the next LWP to touch the specified address range will access it most
heavily, so the kernel should try to allocate the memory and other resources for this range
and the LWP accordingly.

MADV_ACCESS_MANY

Tell the kernel that many processes and/or LWPs will access the specified address range
randomly across the machine, so the kernel should try to allocate the memory and other
resources for this range accordingly.

MADV_ACCESS_DEFAULT

Reset the kernel's expectation for how the specified range will be accessed to the default.

MADV_ACCESS_MANY_PSET

Tell the kernel that many processes and/or LWPs in a processor set will access the specified
address range randomly, so the kernel should try to allocate the memory and other
resources for this range accordingly.

The madvise() function should be used by applications with specific knowledge of their
access patterns over a memory object, such as a mapped file, to increase system performance.

Upon successful completion, madvise() returns 0; otherwise, it returns −1 and sets errno to
indicate the error.

EAGAIN Some or all mappings in the address range [addr, addr + len) are locked for I/O.

EBUSY Some or all of the addresses in the range [addr, addr + len) are locked and MS_SYNC

with the MS_INVALIDATE option is specified.

EFAULT Some or all of the addresses in the specified range could not be read into memory
from the underlying object when performing MADV_WILLNEED. The madvise()
function could return prior to this condition being detected, in which case errno
will not be set to EFAULT.

Return Values

Errors

madvise(3C)

Basic Library Functions 483

EINVAL The addr argument is not a multiple of the page size as returned by sysconf(3C),
the length of the specified address range is equal to 0, or the advice argument was
invalid.

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range for the
address space of a process, or specify one or more pages that are not mapped.

ESTALE Stale NFS file handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

meminfo(2), mmap(2), sysconf(3C), attributes(5)

Attributes

See Also

madvise(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011484

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1meminfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

makecontext, swapcontext – manipulate user contexts

#include <ucontext.h>

void makecontext(ucontext_t *ucp, void (*func)(), int argc...);

int swapcontext(ucontext_t *restrict oucp,
const ucontext_t *restrict ucp);

The makecontext() function modifies the context specified by ucp, which has been initialized
using getcontext(2). When this context is resumed using swapcontext() or setcontext(2),
execution continues by calling the function func, passing it the arguments that follow argc in
the makecontext() call. The value of argc must match the number of pointer-sized integer
arguments passed to func, otherwise the behavior is undefined.

Before a call is made to makecontext(), the context being modified should have a stack
allocated for it. The stack is assigned to the context by initializing the uc_stack member.

The uc_link member is used to determine the context that will be resumed when the context
being modified by makecontext() returns. The uc_link member should be initialized prior to
the call to makecontext(). If the uc_link member is initialized to NULL, the thread executing
func will exit when func returns. See pthread_exit(3C).

The swapcontext() function saves the current context in the context structure pointed to by
oucp and sets the context to the context structure pointed to by ucp.

If the ucp or oucp argument points to an invalid address, the behavior is undefined and errno

may be set to EFAULT.

On successful completion, swapcontext() returns 0. Otherwise, −1 is returned and errno is
set to indicate the error.

The swapcontext() function will fail if:

ENOMEM The ucp argument does not have enough stack left to complete the operation.

The swapcontext() function may fail if:

EFAULT The ucp or oucp argument points to an invalid address.

EXAMPLE 1 Alternate execution context on a stack whose memory was allocated using mmap().

#include <stdio.h>

#include <ucontext.h>

#include <sys/mman.h>

void

assign(long a, int *b)

{

*b = (int)a;

Name

Synopsis

Description

Return Values

Errors

Examples

makecontext(3C)

Basic Library Functions 485

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setcontext-2

EXAMPLE 1 Alternate execution context on a stack whose memory was allocated using mmap().
(Continued)

}

int

main(int argc, char **argv)

{

ucontext_t uc, back;

size_t sz = 0x10000;

int value = 0;

getcontext(&uc);

uc.uc_stack.ss_sp = mmap(0, sz,

PROT_READ | PROT_WRITE | PROT_EXEC,

MAP_PRIVATE | MAP_ANON, -1, 0);

uc.uc_stack.ss_size = sz;

uc.uc_stack.ss_flags = 0;

uc.uc_link = &back;

makecontext(&uc, assign, 2, 100L, &value);

swapcontext(&back, &uc);

printf("done %d\n", value);

return (0);

}

These functions are useful for implementing user-level context switching between multiple
threads of control within a process (co-processing). More effective multiple threads of control
can be obtained by using native support for multithreading. See threads(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mmap(2), getcontext(2), sigaction(2), sigprocmask(2), pthread_exit(3C),
ucontext.h(3HEAD), attributes(5), standards(5), threads(5)

Usage

Attributes

See Also

makecontext(3C)

man pages section 3: Basic Library Functions • Last Revised 8 Mar 2004486

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ucontext.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

The semantics of the uc_stack member of the ucontext_t structure have changed as they
apply to inputs to makecontext(). Prior to Solaris 10, the ss_sp member of the uc_stack
structure represented the high memory address of the area reserved for the stack. The ss_sp
member now represents the base (low memory address), in keeping with other uses of ss_sp.

This change in the meaning of ss_sp is now the default behavior. The
-D__MAKECONTEXT_V2_SOURCE compilation flag used in Solaris 9 update releases to access this
behavior is obsolete.

Binary compatibility has been preserved with releases prior to Solaris 10. Before recompiling,
applications that use makecontext() must be updated to reflect this behavior change. The
example below demonstates a typical change that must be applied:

--- example1_s9.c Thu Oct 3 11:58:17 2002

+++ example1.c Thu Jun 27 13:28:16 2002

@@ -27,12 +27,9 @@

uc.uc_stack.ss_sp = mmap(0, sz,

PROT_READ | PROT_WRITE | PROT_EXEC,

MAP_PRIVATE | MAP_ANON, -1, 0);

- uc.uc_stack.ss_sp = (char *)uc.uc_stack.ss_sp + sz - 8;

uc.uc_stack.ss_size = sz;

uc.uc_stack.ss_flags = 0;

uc.uc_link = &back

makecontext(&uc, assign, 2, 100L, &value);

Notes

makecontext(3C)

Basic Library Functions 487

makedev, major, minor – manage a device number

#include <sys/types.h>

#include <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

major_t major(dev_t device);

minor_t minor(dev_t device);

The makedev() function returns a formatted device number on success and NODEV on failure.
The maj argument is the major number. The min argument is the minor number. The
makedev() function can be used to create a device number for input to mknod(2).

The major() function returns the major number component from device.

The minor() function returns the minor number component from device.

Upon successful completion, makedev() returns a formatted device number. Otherwise,
NODEV is returned and errno is set to indicate the error.

The makedev() function will fail if:

EINVAL One or both of the arguments maj and min is too large, or the device number
created from maj and min is NODEV.

The major() function will fail if:

EINVAL The device argument is NODEV, or the major number component of device is too
large.

The minor() function will fail if:

EINVAL The device argument is NODEV.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mknod(2), stat(2), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

makedev(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996488

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

malloc, calloc, free, memalign, realloc, valloc, alloca – memory allocator

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

#include <alloca.h>

void *alloca(size_t size);

The malloc() and free() functions provide a simple, general-purpose memory allocation
package. The malloc() function returns a pointer to a block of at least size bytes suitably
aligned for any use. If the space assigned by malloc() is overrun, the results are undefined.

The argument to free() is a pointer to a block previously allocated by malloc(), calloc(), or
realloc(). After free() is executed, this space is made available for further allocation by the
application, though not returned to the system. Memory is returned to the system only upon
termination of the application. If ptr is a null pointer, no action occurs. If a random number is
passed to free(), the results are undefined.

The calloc() function allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

The memalign() function allocates size bytes on a specified alignment boundary and returns a
pointer to the allocated block. The value of the returned address is guaranteed to be an even
multiple of alignment. The value of alignment must be a power of two and must be greater
than or equal to the size of a word.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptr is NULL, realloc() behaves
like malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

The valloc() function has the same effect as malloc(), except that the allocated memory will
be aligned to a multiple of the value returned by sysconf(_SC_PAGESIZE).

Name

Synopsis

Description

malloc(3C)

Basic Library Functions 489

The alloca() function allocates size bytes of space in the stack frame of the caller, and returns
a pointer to the allocated block. This temporary space is automatically freed when the caller
returns. If the allocated block is beyond the current stack limit, the resulting behavior is
undefined.

Upon successful completion, each of the allocation functions returns a pointer to space
suitably aligned (after possible pointer coercion) for storage of any type of object.

If there is no available memory, malloc(), realloc(), memalign(), valloc(), and calloc()

return a null pointer. When realloc() is called with size > 0 and returns NULL, the block
pointed to by ptr is left intact. If size, nelem, or elsize is 0, either a null pointer or a unique
pointer that can be passed to free() is returned.

If malloc(), calloc(), or realloc() returns unsuccessfully, errno will be set to indicate the
error. The free() function does not set errno.

The malloc(), calloc(), and realloc() functions will fail if:

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

EAGAIN There is not enough memory available to allocate size bytes of memory; but the
application could try again later.

Portable applications should avoid using valloc() but should instead use malloc() or
mmap(2). On systems with a large page size, the number of successful valloc() operations
might be 0.

These default memory allocation routines are safe for use in multithreaded applications but
are not scalable. Concurrent accesses by multiple threads are single-threaded through the use
of a single lock. Multithreaded applications that make heavy use of dynamic memory
allocation should be linked with allocation libraries designed for concurrent access, such as
libumem(3LIB) or libmtmalloc(3LIB). Applications that want to avoid using heap allocations
(with brk(2)) can do so by using either libumem or libmapmalloc(3LIB). The allocation
libraries libmalloc(3LIB) and libbsdmalloc(3LIB) are available for special needs.

Comparative features of the various allocation libraries can be found in the
umem_alloc(3MALLOC) manual page.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See below.

Return Values

Errors

Usage

Attributes

malloc(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Mar 2005490

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmtmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmapmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libbsdmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

For malloc(), calloc(), free(), realloc(), and valloc(), see standards(5).

brk(2), getrlimit(2), libbsdmalloc(3LIB), libmalloc(3LIB), libmapmalloc(3LIB),
libmtmalloc(3LIB), libumem(3LIB), umem_alloc(3MALLOC), watchmalloc(3MALLOC),
attributes(5), standards(5)

Undefined results will occur if the size requested for a block of memory exceeds the maximum
size of a process's heap, which can be obtained with getrlimit(2)

The alloca() function is machine-, compiler-, and most of all, system-dependent. Its use is
strongly discouraged.

See Also

Warnings

malloc(3C)

Basic Library Functions 491

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libbsdmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmapmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmtmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2

malloc, free, memalign, realloc, valloc, calloc, mallopt, mallinfo – memory allocator

cc [flag ...] file ... -lmalloc [library ...]

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

#include <malloc.h>

int mallopt(int cmd, int value);

struct mallinfo mallinfo(void);

The malloc() and free() functions provide a simple general-purpose memory allocation
package.

The malloc() function returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free() is a pointer to a block previously allocated by malloc(). After free()
is performed, this space is made available for further allocation, and its contents have been
destroyed. See mallopt() below for a way to change this behavior. If ptr is a null pointer, no
action occurs.

Undefined results occur if the space assigned by malloc() is overrun or if some random
number is handed to free().

The free() function does not set errno.

The memalign() function allocates size bytes on a specified alignment boundary and returns a
pointer to the allocated block. The value of the returned address is guaranteed to be an even
multiple of alignment. The value of alignment must be a power of two and must be greater
than or equal to the size of a word.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptr is NULL, realloc() behaves
like malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

Name

Synopsis

Description

malloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 11 May 2005492

The valloc() function has the same effect as malloc(), except that the allocated memory will
be aligned to a multiple of the value returned by sysconf(_SC_PAGESIZE).

The calloc() function allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

The mallopt() function provides for control over the allocation algorithm. The available
values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below the size of maxfast
in large groups and then doles them out very quickly. The default value for
maxfast is 24.

M_NLBLKS Set numlblks to value. The above mentioned ‘‘large groups'' each contain
numlblks blocks. numlblks must be greater than 0. The default value for
numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are considered to
be rounded up to the nearest multiple of grain. grain must be greater than 0. The
default value of grain is the smallest number of bytes that will allow alignment
of any data type. Value will be rounded up to a multiple of the default when
grain is set.

M_KEEP Preserve data in a freed block until the next malloc(), realloc(), or calloc().
This option is provided only for compatibility with the old version of malloc(),
and it is not recommended.

These values are defined in the <malloc.h> header.

The mallopt() function can be called repeatedly, but cannot be called after the first small
block is allocated.

The mallinfo() function provides instrumentation describing space usage. It returns the
mallinfo structure with the following members:

unsigned long arena; /* total space in arena */

unsigned long ordblks; /* number of ordinary blocks */

unsigned long smblks; /* number of small blocks */

unsigned long hblkhd; /* space in holding block headers */

unsigned long hblks; /* number of holding blocks */

unsigned long usmblks; /* space in small blocks in use */

unsigned long fsmblks; /* space in free small blocks */

unsigned long uordblks; /* space in ordinary blocks in use */

unsigned long fordblks; /* space in free ordinary blocks */

unsigned long keepcost; /* space penalty if keep option */

/* is used */

The mallinfo structure is defined in the <malloc.h> header.

malloc(3MALLOC)

Basic Library Functions 493

Each of the allocation routines returns a pointer to space suitably aligned (after possible
pointer coercion) for storage of any type of object.

The malloc(), memalign(), realloc(), valloc(), and calloc() functions return a null
pointer if there is not enough available memory. When realloc() returns NULL, the block
pointed to by ptr is left intact. If size, nelem, or elsize is 0, either a null pointer or a unique
pointer that can be passed to free() is returned. If mallopt() is called after any allocation or
if cmd or value are invalid, a non-zero value is returned. Otherwise, it returns 0.

If malloc(), calloc(), or realloc() returns unsuccessfully, errno is set to indicate the error:

ENOMEM size bytes of memory exceeds the physical limits of your system, and cannot be
allocated.

EAGAIN There is not enough memory available at this point in time to allocate size bytes of
memory; but the application could try again later.

Unlike malloc(3C), this package does not preserve the contents of a block when it is freed,
unless the M_KEEP option of mallopt() is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for malloc(), realloc(), calloc(), and free() are also defined in the
<malloc.h> header for compatibility with old applications. New applications should include
<stdlib.h> to access the prototypes for these functions.

Comparative features of the various allocation libraries can be found in the
umem_alloc(3MALLOC) manual page.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), bsdmalloc(3MALLOC), libmtmalloc(3LIB), malloc(3C), mapmalloc(3MALLOC),
mtmalloc(3MALLOC), umem_alloc(3MALLOC), watchmalloc(3MALLOC), attributes(5)

Return Values

Errors

Usage

Attributes

See Also

malloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 11 May 2005494

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmtmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

mapmalloc – memory allocator

cc [flag ...] file ... -lmapmalloc [library ...]

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void * ptr);

void *realloc(void *ptr, size_t size);

The collection of malloc functions in this library use mmap(2) instead of sbrk(2) for acquiring
new heap space. The functions in this library are intended to be used only if necessary, when
applications must call sbrk(), but need to call other library routines that might call malloc.
The algorithms used by these functions are not sophisticated. There is no reclaiming of
memory.

The malloc() and free() functions provide a simple general-purpose memory allocation
package.

The malloc() function returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free() is a pointer to a block previously allocated by malloc(), calloc() or
realloc(). If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc() is overrun or if some random
number is handed to free().

The calloc() function allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptr is NULL, realloc() behaves
like malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

Each of the allocation functions returns a pointer to space suitably aligned (after possible
pointer coercion) for storage of any type of object.

The malloc() and realloc() functions will fail if there is not enough available memory.

Entry points for malloc_debug(), mallocmap(), mallopt(), mallinfo(), memalign(), and
valloc() are empty routines, and are provided only to protect the user from mixing malloc()
functions from different implementations.

Name

Synopsis

Description

mapmalloc(3MALLOC)

Basic Library Functions 495

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sbrk-2

If there is no available memory, malloc(), realloc(), and calloc() return a null pointer.
When realloc() returns NULL, the block pointed to by ptr is left intact. If size, nelem, or elsize
is 0, a unique pointer to the arena is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), getrlimit(2), mmap(2), realloc(3C), malloc(3MALLOC), attributes(5)

Return Values

Attributes

See Also

mapmalloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 20 Feb 2004496

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

mblen – get number of bytes in a character

#include <stdlib.h>

int mblen(const char *s, size_t n);

If s is not a null pointer, mblen() determines the number of bytes constituting the character
pointed to by s. It is equivalent to:

mbtowc((wchar_t *)0, s, n);

A call with s as a null pointer causes this function to return 0. The behavior of this function is
affected by the LC_CTYPE category of the current locale.

If s is a null pointer, mblen() returns 0. It s is not a null pointer, mblen() returns 0 (if s points
to the null byte), the number of bytes that constitute the character (if the next n or fewer bytes
form a valid character), or −1 (if they do not form a valid character) and may set errno to
indicate the error. In no case will the value returned be greater than n or the value of the
MB_CUR_MAX macro.

The mblen() function may fail if:

EILSEQ Invalid character sequence is detected.

The mblen() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe with exceptions

mbstowcs(3C), mbtowc(3C), setlocale(3C), wcstombs(3C), wctomb(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

mblen(3C)

Basic Library Functions 497

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbrlen – get number of bytes in a character (restartable)

#include <wchar.h>

size_t mbrlen(const char *restrict s, size_t n, mbstate_t *restrict ps);

If s is not a null pointer, mbrlen() determines the number of bytes constituting the character
pointed to by s. It is equivalent to:

mbstate_t internal;

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function uses its own internal mbstate_t object, which is
initialized at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. Solaris will behave as if no function defined in the Solaris Reference
Manual calls mbrlen().

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

The mbrlen() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the
null wide-character.

positive If the next n or fewer bytes complete a valid character; the value returned is
the number of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed. When n has at least the value of the
MB_CUR_MAX macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent
encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character. In this case, EILSEQ is stored in
errno and the conversion state is undefined.

The mbrlen() function may fail if:

EINVAL The ps argument points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

mbrlen(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003498

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

Standard See standards(5).

mbrtowc(3C), mbsinit(3C), setlocale(3C), attributes(5), environ(5), standards(5)

If ps is not a null pointer, mbrlen() uses the mbstate_t object pointed to by ps and the
function can be used safely in multithreaded applications, as long as setlocale(3C) is not
being called to change the locale. If ps is a null pointer, mbrlen() uses its internal mbstate_t
object and the function is Unsafe in multithreaded applications.

See Also

Notes

mbrlen(3C)

Basic Library Functions 499

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbrtowc – convert a character to a wide-character code (restartable)

#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s, size_t n,
mbstate_t *restrict ps);

If s is a null pointer, the mbrtowc() function is equivalent to the call:

mbrtowc(NULL, ‘‘’’, 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function inspects at most n bytes beginning at the byte
pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is
completed, it determines the value of the corresponding wide-character and then, if pwc is not
a null pointer, stores that value in the object pointed to by pwc. If the corresponding
wide-character is the null wide-character, the resulting state described is the initial conversion
state.

If ps is a null pointer, the mbrtowc() function uses its own internal mbstate_t object, which is
initialized at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. Solaris will behave as if no function defined in the Solaris Reference
Manual calls mbrtowc().

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

The mbrtowc() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the
null wide-character (which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned is the number of bytes that complete the
character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with
state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
EILSEQ is stored in errno and the conversion state is undefined.

Name

Synopsis

Description

Return Values

mbrtowc(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003500

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

The mbrtowc() function may fail if:

EINVAL The ps argument points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See NOTES below

Standard See standards(5).

mbsinit(3C), setlocale(3C), attributes(5), environ(5), standards(5)

If ps is not a null pointer, mbrtowc() uses the mbstate_t object pointed to by ps and the
function can be used safely in multithreaded applications, as long as setlocale(3C) is not
being called to change the locale. If ps is a null pointer, mbrtowc() uses its internal mbstate_t
object and the function is Unsafe in multithreaded applications.

Errors

Attributes

See Also

Notes

mbrtowc(3C)

Basic Library Functions 501

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbsinit – determine conversion object status

#include <wchar.h>

int mbsinit(const mbstate_t *ps);

If ps is not a null pointer, the mbsinit() function determines whether the object pointed to by
ps describes an initial conversion state.

The mbsinit() function returns non-zero if ps is a null pointer, or if the pointed-to object
describes an initial conversion state; otherwise, it returns 0.

If an mbstate_t object is altered by any of the functions described as "restartable", and is then
used with a different character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is undefined.
See environ(5).

No errors are defined.

The mbstate_t object is used to describe the current conversion state from a particular
character sequence to a wide-character sequence (or vice versa) under the rules of a particular
setting of the LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning
of a new character sequence in the initial shift state. A zero-valued mbstate_t object is at least
one way to describe an initial conversion state. A zero-valued mbstate_t object can be used to
initiate conversion involving any character sequence, in any LC_CTYPE category setting.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

mbrlen(3C), mbrtowc(3C), mbsrtowcs(3C), setlocale(3C), wcrtomb(3C), wcsrtombs(3C),
attributes(5), environ(5), standards(5)

The mbsinit() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

mbsinit(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002502

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbsrtowcs – convert a character string to a wide-character string (restartable)

#include <wchar.h>

size_t mbsrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t len, mbstate_t *restrict ps);

The mbsrtowcs() function converts a sequence of characters, beginning in the conversion
state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide-characters. If dst is not a null pointer, the converted
characters are stored into the array pointed to by dst. Conversion continues up to and
including a terminating null character, which is also stored. Conversion stops early in either of
the following cases:

■ When a sequence of bytes is encountered that does not form a valid character.
■ When len codes have been stored into the array pointed to by dst (and dst is not a null

pointer).

Each conversion takes place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer
(if conversion stopped due to reaching a terminating null character) or the address just past
the last character converted (if any). If conversion stopped due to reaching a terminating null
character, and if dst is not a null pointer, the resulting state described is the initial conversion
state.

If ps is a null pointer, the mbsrtowcs() function uses its own internal mbstate_t object, which
is initialized at program startup to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. Solaris will behave as if no function defined in the Solaris
Reference Manual calls mbsrtowcs().

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, the mbsrtowcs() function stores the value of the macro
EILSEQ in errno and returns (size_t)−1; the conversion state is undefined. Otherwise, it
returns the number of characters successfully converted, not including the terminating null (if
any).

The mbsrtowcs() function may fail if:

EINVAL The ps argument points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Name

Synopsis

Description

Return Values

Errors

mbsrtowcs(3C)

Basic Library Functions 503

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See NOTES below

Standard See standards(5).

mbrtowc(3C), mbsinit(3C), setlocale(3C), attributes(5), environ(5), standards(5)

If ps is not a null pointer, mbsrtowcs() uses the mbstate_t object pointed to by ps and the
function can be used safely in multithreaded applications, as long as setlocale(3C) is not
being called to change the locale. If ps is a null pointer, mbsrtowcs() uses its internal
mbstate_t object and the function is Unsafe in multithreaded applications.

Attributes

See Also

Notes

mbsrtowcs(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003504

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbstowcs – convert a character string to a wide-character string

#include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s, size_t n);

The mbstowcs() function converts a sequence of characters from the array pointed to by s into
a sequence of corresponding wide-character codes and stores not more than n wide-character
codes into the array pointed to by pwcs. No characters that follow a null byte (which is
converted into a wide-character code with value 0) will be examined or converted. Each
character is converted as if by a call to mbtowc(3C).

No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

The behavior of this function is affected by the LC_CTYPE category of the current locale. If pwcs
is a null pointer, mbstowcs() returns the length required to convert the entire array regardless
of the value of n, but no values are stored.

If an invalid character is encountered, mbstowcs() returns (size_t)−1 and may set errno to
indicate the error. Otherwise, mbstowcs() returns the number of the array elements modified
(or required if pwcs is NULL), not including a terminating 0 code, if any. The array will not be
zero-terminated if the value returned is n.

The mbstowcs() function may fail if:

EILSEQ Invalid byte sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mblen(3C), mbtowc(3C), setlocale(3C), wcstombs(3C), wctomb(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

mbstowcs(3C)

Basic Library Functions 505

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mbtowc – convert a character to a wide-character code

#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

If s is not a null pointer, mbtowc() determines the number of the bytes that constitute the
character pointed to by s. It then determines the wide-character code for the value of type
wchar_t that corresponds to that character. (The value of the wide-character code
corresponding to the null byte is 0.) If the character is valid and pwc is not a null pointer,
mbtowc() stores the wide-character code in the object pointed to by pwc.

A call with s as a null pointer causes this function to return 0. The behavior of this function is
affected by the LC_CTYPE category of the current locale. At most n bytes of the array pointed to
by s will be examined.

If s is a null pointer, mbtowc() returns 0. If s is not a null pointer, mbtowc() returns 0 (if s
points to the null byte), the number of bytes that constitute the converted character (if the next
n or fewer bytes form a valid character), or −1 and may set errno to indicate the error (if they
do not form a valid character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

The mbtowc() function may fail if:

EILSEQ Invalid character sequence is detected.

The mbtowc() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

mblen(3C), mbstowcs(3C), setlocale(3C), wcstombs(3C), wctomb(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

mbtowc(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003506

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

membar_ops, membar_enter, membar_exit, membar_producer, membar_consumer –
memory access synchronization barrier operations

#include <atomic.h>

void membar_enter(void);

void membar_exit(void);

void membar_producer(void);

void membar_consumer(void);

The membar_enter() function is a generic memory barrier used during lock entry. It is placed
after the memory operation that acquires the lock to guarantee that the lock protects its data.
No stores from after the memory barrier will reach visibility and no loads from after the
barrier will be resolved before the lock acquisition reaches global visibility.

The membar_exit() function is a generic memory barrier used during lock exit. It is placed
before the memory operation that releases the lock to guarantee that the lock protects its data.
All loads and stores issued before the barrier will be resolved before the subsequent lock
update reaches visibility.

The membar_enter() and membar_exit() functions are used together to allow regions of code
to be in relaxed store order and then ensure that the load or store order is maintained at a
higher level. They are useful in the implementation of mutex exclusion locks.

The membar_producer() function arranges for all stores issued before this point in the code to
reach global visibility before any stores that follow. This is useful in producer modules that
update a data item, then set a flag that it is available. The memory barrier guarantees that the
available flag is not visible earlier than the updated data, thereby imposing store ordering.

The membar_consumer() function arranges for all loads issued before this point in the code to
be completed before any subsequent loads. This is useful in consumer modules that check if
data is available and read the data. The memory barrier guarantees that the data is not sampled
until after the available flag has been seen, thereby imposing load ordering.

No values are returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

membar_ops(3C)

Basic Library Functions 507

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

atomic_add(3C), atomic_and(3C), atomic_bits(3C), atomic_cas(3C), atomic_dec(3C),
atomic_inc(3C), atomic_ops(3C), atomic_or(3C), atomic_swap(3C), attributes(5),
atomic_ops(9F)

Atomic instructions (see atomic_ops(3C)) ensure global visibility of atomically-modified
variables on completion. In a relaxed store order system, this does not guarantee that the
visibility of other variables will be synchronized with the completion of the atomic instruction.
If such synchronization is required, memory barrier instructions must be used.

See Also

Notes

membar_ops(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Feb 2005508

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1atomic-ops-9f

memory, memccpy, memchr, memcmp, memcpy, memmove, memset, memmem – memory
operations

#include <string.h>

void *memccpy(void *restrict s1, const void *restrict s2,
int c, size_t n);

void *memchr(const void *s, int c, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

void *memmove(void *s1, const void *s2, size_t n);

void *memset(void *s, int c, size_t n);

void *memmem(const void *haystack, size_t haystacklen, const void *needle,
size_t needlelen);

#include <string.h>

const void *memchr(const void *s, int c, size_t n);

#include <cstring>

void *std::memchr(void *s, int c, size_t n);

These functions operate as efficiently as possible on memory areas (arrays of bytes bounded by
a count, not terminated by a null character). They do not check for the overflow of any
receiving memory area.

The memccpy() function copies bytes from memory area s2 into s1, stopping after the first
occurrence of c (converted to an unsigned char) has been copied, or after n bytes have been
copied, whichever comes first. It returns a pointer to the byte after the copy of c in s1, or a null
pointer if c was not found in the first n bytes of s2.

The memchr() function returns a pointer to the first occurrence of c (converted to an unsigned

char) in the first n bytes (each interpreted as an unsigned char) of memory area s, or a null
pointer if c does not occur.

The memcmp() function compares its arguments, looking at the first n bytes (each interpreted
as an unsigned char), and returns an integer less than, equal to, or greater than 0, according
as s1 is lexicographically less than, equal to, or greater than s2 when taken to be unsigned
characters.

The memcpy() function copies n bytes from memory area s2 to s1. It returns s1. If copying
takes place between objects that overlap, the behavior is undefined.

The memmove() function copies n bytes from memory area s2 to memory area s1. Copying
between objects that overlap will take place correctly. It returns s1.

Name

Synopsis

ISO C++

Description

memory(3C)

Basic Library Functions 509

The memset() function sets the first n bytes in memory area s to the value of c (converted to an
unsigned char). It returns s.

The memmem() function locates the start of the first occurrence of the substring needle of length
needlelen in the memory area haystack of length haystacklen. It returns a pointer to the start of
the substring, or NULL if the substring is not found.

Using memcpy() might be faster than using memmove() if the application knows that the
objects being copied do not overlap.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

string(3C), attributes(5), standards(5)

Overlap between objects being copied can arise even when their (virtual) address ranges
appear to be disjoint; for example, as a result of memory-mapping overlapping portions of the
same underlying file, or of attaching the same shared memory segment more than once.

Usage

Attributes

See Also

Notes

memory(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 2010510

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mkfifo, mkfifoat – make a FIFO special file

#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

int mkfifoat(int fd, const char *path, mode_t mode);

The mkfifo() function creates a new FIFO special file named by the pathname pointed to by
path. The file permission bits of the new FIFO are initialized from mode. The file permission
bits of the mode argument are modified by the process's file creation mask (see umask(2)). Bits
other than the file permission bits in mode are ignored.

If path names a symbolic link, mkfifo() fails and sets errno to EEXIST.

The FIFO's user ID is set to the process's effective user ID. The FIFO's group ID is set to the
group ID of the parent directory or to the effective group ID of the process.

The mkfifo() function calls mknod(2) to create the file.

Upon successful completion, mkfifo() marks for update the st_atime, st_ctime, and
st_mtime fields of the file. Also, the st_ctime and st_mtime fields of the directory that
contains the new entry are marked for update.

The mkfifoat() function is equivalent to mkfifo() except in the case where path specifies a
relative path. In this case the newly created FIFO is created relative to the directory associated
with the file descriptor fd instead of the current working directory. If the file descriptor was
opened without O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file descriptor
was opened with O_SEARCH, the function does not perform the check

If mkfifoat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the is be identical to a call to mkfifo().

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The mkfifo() and mkfifoat() functions will fail if:

EACCES A component of the path prefix denies search permission, or write
permission is denied on the parent directory of the FIFO to be created.

EEXIST The named file already exists.

ELOOP A loop exists in symbolic links encountered during resolution of the path
argument.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

Name

Synopsis

Description

Return Values

Errors

mkfifo(3C)

Basic Library Functions 511

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mknod-2

ENOENT A component of the path prefix specified by path does not name an
existing directory or path is an empty string.

ENOSPC The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

ENOTDIR A component of the path prefix is not a directory.

EROFS The named file resides on a read-only file system.

The mkfifoat() functions will fail if:

EACCES fd was not opened with O_SEARCH and the permissions of the directory underlying
fd do not permit directory searches.

EBADF The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The mkfifo() and mkfifoat() functions may fail if:

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

The mkfifoat() functions may fail if:

ENOTDIR The path argument is not an absolute path and fd is neither AT_FDCWD nor a file
descriptor associated with a directory.

EXAMPLE 1 Create a FIFO File

The following example demonstrates how to create a FIFO file named /home/cnd/mod_done

with read and write permissions for the owner and read permissions for the group and others.

#include sys/stat.h>

int status;

...

status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |

S_IRGRP | S_IROTH);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Examples

Attributes

mkfifo(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Jul 2010512

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mkdir(1), chmod(2), exec(2), mknod(2), umask(2), stat.h(3HEAD), ufs(7FS), attributes(5),
standards(5)

See Also

mkfifo(3C)

Basic Library Functions 513

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkdir-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ufs-7fs
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mkstemp, mkstemps, mkdtemp – make a unique file name from a template and open the file

#include <stdlib.h>

int mkstemp(char *template);

int mkstemps(char *template, int slen);

char *mkdtemp(char *template);

The mkstemp() function replaces the contents of the string pointed to by template by a unique
file name, and returns a file descriptor for the file open for reading and writing. The function
thus prevents any possible race condition between testing whether the file exists and opening
it for use. The string in template should look like a file name with six trailing 'X's; mkstemp()
replaces each 'X' with a character from the portable file name character set. The characters are
chosen such that the resulting name does not duplicate the name of an existing file.

The mkstemps() function behaves the same as mkstemp(), except it permits a suffix to exist in
the template. The template should be of the form /tmp/tmpXXXXXXsuffix. The slen parameter
specifies the length of the suffix string.

The mkdtemp() function makes the same replacement to the template as in mktemp(3C) and
creates the template directory using mkdir(2), passing a mode argument of 0700.

Upon successful completion, mkstemp() returns an open file descriptor. Otherwise −1 is
returned if no suitable file could be created.

The mkstemp(), mkstemps(), and mkdtemp() functions can set errno to the same values as
lstat(2).

The mkstemp() and mkstemps() functions can set errno to the same values as open(2).

The mkdtemp() function can set errno to the same values as mkdir(2).

It is possible to run out of letters.

The mkstemp() function does not check to determine whether the file name part of template
exceeds the maximum allowable file name length.

The tmpfile(3C) function is preferred over this function.

The mkstemp() function is frequently used to create a temporary file that will be removed by
the application before the application terminates.

The mkstemp() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

mkstemp(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Feb 2006514

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard For mkstemp(), see standards(5).

getpid(2), lstat(2), mkdir(2), open(2), tmpfile(3C), mktemp(3C), attributes(5), lf64(5),
standards(5)

See Also

mkstemp(3C)

Basic Library Functions 515

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mktemp – make a unique file name from a template

#include <stdlib.h>

char *mktemp(char *template);

The mktemp() function replaces the contents of the string pointed to by template with a
unique file name, and returns template. The string in template should look like a file name
with six trailing 'X's. The mktemp() function will replace the 'X's with a character string that
can be used to create a unique file name.

The mktemp() function returns the pointer template. If a unique name cannot be created,
template points to a null string.

No errors are defined.

EXAMPLE 1 Generate a filename.

The following example replaces the contents of the “template” string with a 10-character
filename beginning with the characters “file” and returns a pointer to the “template” string
that contains the new filename.

#include <stdlib.h>

...

char *template = "/tmp/fileXXXXXX";
char *ptr;

ptr = mktemp(template);

Between the time a pathname is created and the file opened, it is possible for some other
process to create a file with the same name. The mkstemp(3C) function avoids this problem
and is preferred over this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

mkstemp(3C), tmpfile(3C), tmpnam(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Examples

Usage

Attributes

See Also

mktemp(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jan 2011516

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mktime – converts a tm structure to a calendar time

#include <time.h>

time_t mktime(struct tm *timeptr);

The mktime() function converts the time represented by the tm structure pointed to by
timeptr into a calendar time (the number of seconds since 00:00:00 UTC, January 1, 1970).

The tm structure contains the following members:

int tm_sec; /* seconds after the minute [0, 60] */

int tm_min; /* minutes after the hour [0, 59] */

int tm_hour; /* hour since midnight [0, 23] */

int tm_mday; /* day of the month [1, 31] */

int tm_mon; /* months since January [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1 [0, 365] */

int tm_isdst; /* flag for daylight savings time */

In addition to computing the calendar time, mktime() normalizes the supplied tm structure.
The original values of the tm_wday and tm_yday components of the structure are ignored, and
the original values of the other components are not restricted to the ranges indicated in the
definition of the structure. On successful completion, the values of the tm_wday and tm_yday

components are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to be within the appropriate ranges. The final value
of tm_mday is not set until tm_mon and tm_year are determined.

The tm_year member must be for year 1901 or later. Calendar times before 20:45:52 UTC,
December 13, 1901 or after 03:14:07 UTC, January 19, 2038 cannot be represented. Portable
applications should not try to create dates before 00:00:00 UTC, January 1, 1970 or after
00:00:00 UTC, January 1, 2038.

The original values of the components may be either greater than or less than the specified
range. For example, a tm_hour of −1 means 1 hour before midnight, tm_mday of 0 means the
day preceding the current month, and tm_mon of −2 means 2 months before January of
tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate timezone. If it
turns out that the alternate timezone is not valid for the computed calendar time, then the
components are adjusted to the main timezone. Likewise, if tm_isdst is zero, the original
values are assumed to be in the main timezone and are converted to the alternate timezone if
the main timezone is not valid. If tm_isdst is negative, mktime() attempts to determine
whether the alternate timezone is in effect for the specified time.

Local timezone information is used as if mktime() had called tzset(). See ctime(3C).

Name

Synopsis

Description

mktime(3C)

Basic Library Functions 517

If the calendar time can be represented in an object of type time_t, mktime() returns the
specified calendar time without changing errno. If the calendar time cannot be represented,
the function returns the value (time_t)−1 and sets errno to indicate the error.

The mktime() function will fail if:

EOVERFLOW The date represented by the input tm struct cannot be represented in a time_t.
Note that the errno setting may change if future revisions to the standards
specify a different value.

The mktime() function is MT-Safe in multithreaded applications, as long as no user-defined
function directly modifies one of the following variables: timezone, altzone, daylight, and
tzname. See ctime(3C).

Note that −1 can be a valid return value for the time that is one second before the Epoch. The
user should clear errno before calling mktime(). If mktime() then returns −1, the user should
check errno to determine whether or not an error actually occurred.

The mktime() function assumes Gregorian dates. Times before the adoption of the Gregorian
calendar will not match historical records.

EXAMPLE 1 Sample code using mktime().

What day of the week is July 4, 2001?

#include <stdio.h>

#include <time.h>

static char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};

struct tm time_str;

/* . . .*/

time_str.tm_year = 2001 - 1900;

time_str.tm_mon = 7 - 1;

time_str.tm_mday = 4;

time_str.tm_hour = 0;

time_str.tm_min = 0;

time_str.tm_sec = 1;

time_str.tm_isdst = −1;
if (mktime(&time_str)== −1)

time_str.tm_wday=7;

printf("%s\n", wday[time_str.tm_wday]);

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Usage

Examples

Attributes

mktime(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011518

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

ctime(3C), getenv(3C), TIMEZONE(4), attributes(5), standards(5)See Also

mktime(3C)

Basic Library Functions 519

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mlock, munlock – lock or unlock pages in memory

#include <sys/mman.h>

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

The mlock() function uses the mappings established for the address range [addr, addr + len)
to identify pages to be locked in memory. If the page identified by a mapping changes, such as
occurs when a copy of a writable MAP_PRIVATE page is made upon the first store, the lock will
be transferred to the newly copied private page.

The munlock() function removes locks established with mlock().

A given page may be locked multiple times by executing an mlock() through different
mappings. That is, if two different processes lock the same page, then the page will remain
locked until both processes remove their locks. However, within a given mapping, page locks
do not nest − multiple mlock() operations on the same address in the same process will all be
removed with a single munlock(). Of course, a page locked in one process and mapped in
another (or visible through a different mapping in the locking process) is still locked in
memory. This fact can be used to create applications that do nothing other than lock
important data in memory, thereby avoiding page I/O faults on references from other
processes in the system.

The contents of the locked pages will not be transferred to or from disk except when explicitly
requested by one of the locking processes. This guarantee applies only to the mapped data, and
not to any associated data structures (file descriptors and on-disk metadata, among others).

If the mapping through which an mlock() has been performed is removed, an munlock() is
implicitly performed. An munlock() is also performed implicitly when a page is deleted
through file removal or truncation.

Locks established with mlock() are not inherited by a child process after a fork() and are not
nested.

Attempts to mlock() more memory than a system-specific limit will fail.

Upon successful completion, the mlock() and munlock() functions return 0. Otherwise, no
changes are made to any locks in the address space of the process, the functions return −1 and
set errno to indicate the error.

The mlock() and munlock() functions will fail if:

EINVAL The addr argument is not a multiple of the page size as returned by sysconf(3C).

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

ENOSYS The system does not support this memory locking interface.

Name

Synopsis

Description

Return Values

Errors

mlock(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 2011520

EPERM The {PRIV_PROC_LOCK_MEMORY} privilege is not asserted in the effective set of the
calling process.

The mlock() function will fail if:

EAGAIN Some or all of the memory identified by the range [addr, addr + len) could not be
locked because of insufficient system resources or because of a limit or resource
control on locked memory.

Because of the impact on system resources, the use of mlock() and munlock() is restricted to
users with the {PRIV_PROC_LOCK_MEMORY} privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fork(2), memcntl(2), mmap(2), plock(3C), mlockall(3C), sysconf(3C), attributes(5),
standards(5)

Usage

Attributes

See Also

mlock(3C)

Basic Library Functions 521

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mlockall, munlockall – lock or unlock address space

#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

The mlockall() function locks in memory all pages mapped by an address space.

The value of flags determines whether the pages to be locked are those currently mapped by
the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

If MCL_FUTURE is specified for mlockall(), mappings are locked as they are added to the
address space (or replace existing mappings), provided sufficient memory is available.
Locking in this manner is not persistent across the exec family of functions (see exec(2)).

Mappings locked using mlockall() with any option may be explicitly unlocked with a
munlock() call (see mlock(3C)).

The munlockall() function removes address space locks and locks on mappings in the
address space.

All conditions and constraints on the use of locked memory that apply to mlock(3C) also
apply to mlockall().

Locks established with mlockall() are not inherited by a child process after a fork(2) call,
and are not nested.

Upon successful completion, the mlockall() and munlockall() functions return 0.
Otherwise, they return −1 and set errno to indicate the error.

The mlockall() and munlockall() functions will fail if:

EAGAIN Some or all of the memory in the address space could not be locked due to
sufficient resources. This error condition applies to mlockall() only.

EINVAL The flags argument contains values other than MCL_CURRENT and MCL_FUTURE.

EPERM The {PRIV_PROC_LOCK_MEMORY} privilege is not asserted in the effective set of the
calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

mlockall(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2004522

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

exec(2), fork(2), memcntl(2), mmap(2), plock(3C), mlock(3C), sysconf(3C), attributes(5),
standards(5)

See Also

mlockall(3C)

Basic Library Functions 523

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

monitor – prepare process execution profile

#include <mon.h>

void monitor(int (*lowpc(), int (*highpc)(), WORD *buffer, size_t bufsize,
size_t nfunc);

The monitor() function is an interface to the profil(2) function and is called automatically
with default parameters by any program created by the cc utility with the -p option specified.
Except to establish further control over profiling activity, it is not necessary to explicitly call
monitor().

When used, monitor() is called at least at the beginning and the end of a program. The first
call to monitor() initiates the recording of two different kinds of execution-profile
information: execution-time distribution and function call count. Execution-time
distribution data is generated by profil() and the function call counts are generated by code
supplied to the object file (or files) by cc -p. Both types of information are collected as a
program executes. The last call to monitor() writes this collected data to the output file
mon.out.

The name of the file written by monitor() is controlled by the environment variable PROFDIR.
If PROFDIR does not exist, the file mon.out is created in the current directory. If PROFDIR exists
but has no value, monitor() does no profiling and creates no output file. If PROFDIR is
dirname, and monitor() is called automatically by compilation with cc -p, the file created is
dirname/pid.progname where progname is the name of the program.

The lowpc and highpc arguments are the beginning and ending addresses of the region to be
profiled.

The buffer argument is the address of a user-supplied array of WORD (defined in the header
<mon.h>). The buffer argument is used by monitor() to store the histogram generated by
profil() and the call counts.

The bufsize argument identifies the number of array elements in buffer.

The nfunc argument is the number of call count cells that have been reserved in buffer.
Additional call count cells will be allocated automatically as they are needed.

The bufsize argument should be computed using the following formula:

size_of_buffer =

sizeof(struct hdr) +

nfunc * sizeof(struct cnt) +

((highpc-lowpc)/BARSIZE) * sizeof(WORD) +

sizeof(WORD) − 1 ;

bufsize = (size_of_buffer / sizeof(WORD));

where:

■ lowpc, highpc, nfunc are the same as the arguments to monitor();

Name

Synopsis

Description

monitor(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996524

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1profil-2

■ BARSIZE is the number of program bytes that correspond to each histogram bar, or cell, of
the profil() buffer;

■ the hdr and cnt structures and the type WORD are defined in the header <mon.h>.

The default call to monitor() is as follows:

monitor (&eprol, &etext, wbuf, wbufsz, 600);

where:

■ eprol is the beginning of the user's program when linked with cc -p (see end(3C));
■ etext is the end of the user's program (see end(3C));
■ wbuf is an array of WORD with wbufsz elements;
■ wbufsz is computed using the bufsize formula shown above with BARSIZE of 8;
■ 600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribution
histogram that uses profil() for the entire program, initially reserves room for 600 call count
cells in buffer, and provides for enough histogram cells to generate significant
distribution-measurement results. For more information on the effects of bufsize on
execution-distribution measurements, see profil(2).

EXAMPLE 1 Example to stop execution monitoring and write the results to a file.

To stop execution monitoring and write the results to a file, use the following:

monitor((int (*)())0, (int (*)())0, (WORD *)0, 0, 0);

Use prof to examine the results.

Additional calls to monitor() after main() has been called and before exit() has been called
will add to the function-call count capacity, but such calls will also replace and restart the
profil() histogram computation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

profil(2), end(3C), attributes(5), prof(5)

Examples

Usage

Attributes

See Also

monitor(3C)

Basic Library Functions 525

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1profil-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1profil-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prof-5

mq_close – close a message queue

#include <mqueue.h>

int mq_close(mqd_t mqdes);

The mq_close() function removes the association between the message queue descriptor,
mqdes, and its message queue. The results of using this message queue descriptor after
successful return from this mq_close(), and until the return of this message queue descriptor
from a subsequent mq_open(3C), are undefined.

If the process (or thread) has successfully attached a notification request to the message queue
via this mqdes, this attachment is removed and the message queue is available for another
process to attach for notification.

Upon successful completion, mq_close() returns 0; otherwise, the function returns −1 and
sets errno to indicate the error condition.

The mq_close() function will fail if:

EBADF The mqdes argument is an invalid message queue descriptor.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mqueue.h(3HEAD), mq_notify(3C), mq_open(3C), mq_unlink(3C), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_close(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008526

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_getattr – get message queue attributes

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

The mqdes argument specifies a message queue descriptor. The mq_getattr() function is
used to get status information and attributes of the message queue and the open message
queue description associated with the message queue descriptor. The results are returned in
the mq_attr structure referenced by the mqstat argument.

Upon return, the following members will have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr(3C) calls:

mq_flags message queue flags

The following attributes of the message queue are returned as set at message queue creation:

mq_maxmsg maximum number of messages

mq_msgsize maximum message size

mq_curmsgs number of messages currently on the queue.

Upon successful completion, the mq_getattr() function returns 0. Otherwise, the function
returns −1 and sets errno to indicate the error.

The mq_getattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_getattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mqueue.h(3HEAD), mq_open(3C), mq_send(3C),
mq_setattr(3C), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_getattr(3C)

Basic Library Functions 527

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_notify – notify process (or thread) that a message is available on a queue

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

The mq_notify() function provides an asynchronous mechanism for processes to receive
notice that messages are available in a message queue, rather than synchronously blocking
(waiting) in mq_receive(3C).

If notification is not NULL, this function registers the calling process to be notified of message
arrival at an empty message queue associated with the message queue descriptor, mqdes. The
notification specified by notification will be sent to the process when the message queue
transitions from empty to non-empty. See signal.h(3HEAD). At any time, only one process
may be registered for notification by a specific message queue. If the calling process or any
other process has already registered for notification of message arrival at the specified message
queue, subsequent attempts to register for that message queue will fail.

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration is removed. The message queue is then available for
future registration.

When the notification is sent to the registered process, its registration is removed. The
message queue is then available for registration.

If a process has registered for notification of message arrival at a message queue and some
processes is blocked in mq_receive(3C) waiting to receive a message when a message arrives
at the queue, the arriving message will be received by the appropriate mq_receive(3C), and no
notification will be sent to the registered process. The resulting behavior is as if the message
queue remains empty, and this notification will not be sent until the next arrival of a message
at this queue.

Any notification registration is removed if the calling process either closes the message queue
or exits.

Upon successful completion, mq_notify() returns 0; otherwise, it returns −1 and sets errno
to indicate the error.

The mq_notify() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message queue.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Attributes

mq_notify(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008528

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mq_close(3C), mq_open(3C), mq_receive(3C), mq_send(3C), mqueue.h(3HEAD),
siginfo.h(3HEAD), signal.h(3HEAD), attributes(5), standards(5)

See Also

mq_notify(3C)

Basic Library Functions 529

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_open – open a message queue

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag,
/* unsigned long mode, mq_attr attr */ ...);

The mq_open() function establishes the connection between a process and a message queue
with a message queue descriptor. It creates a open message queue description that refers to the
message queue, and a message queue descriptor that refers to that open message queue
description. The message queue descriptor is used by other functions to refer to that message
queue.

The name argument points to a string naming a message queue. The name argument must
conform to the construction rules for a path-name. If name is not the name of an existing
message queue and its creation is not requested, mq_open() fails and returns an error. The first
character of name must be a slash (/) character and the remaining characters of name cannot
include any slash characters. For maximum portability, name should include no more than 14
characters, but this limit is not enforced.

The oflag argument requests the desired receive and/or send access to the message queue. The
requested access permission to receive messages or send messages is granted if the calling
process would be granted read or write access, respectively, to a file with the equivalent
permissions.

The value of oflag is the bitwise inclusive OR of values from the following list. Applications
must specify exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the
returned message queue descriptor with mq_receive(3C), but not
mq_send(3C). A message queue may be open multiple times in the same or
different processes for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned
message queue descriptor with mq_send(3C) but not mq_receive(3C). A
message queue may be open multiple times in the same or different processes
for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use
any of the functions allowed for O_RDONLY and O_WRONLY. A message queue may
be open multiple times in the same or different processes for sending messages.

Any combination of the remaining flags may additionally be specified in the value of oflag:

O_CREAT This option is used to create a message queue, and it requires two additional
arguments: mode, which is of type mode_t, and attr, which is pointer to a
mq_attr structure. If the pathname, name, has already been used to create a

Name

Synopsis

Description

mq_open(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008530

message queue that still exists, then this flag has no effect, except as noted
under O_EXCL (see below). Otherwise, a message queue is created without
any messages in it.

The user ID of the message queue is set to the effective user ID of process,
and the group ID of the message queue is set to the effective group ID of the
process. The file permission bits are set to the value of mode, and modified by
clearing all bits set in the file mode creation mask of the process (see
umask(2)).

If attr is non-NULL and the calling process has the appropriate privilege on
name, the message queue mq_maxmsg and mq_msgsize attributes are set to
the values of the corresponding members in the mq_attr structure referred
to by attr. If attr is non-NULL, but the calling process does not have the
appropriate privilege on name, the mq_open() function fails and returns an
error without creating the message queue.

O_EXCL If both O_EXCL and O_CREAT are set, mq_open() will fail if the message queue
name exists. The check for the existence of the message queue and the
creation of the message queue if it does not exist are atomic with respect to
other processes executing mq_open() naming the same name with both
O_EXCL and O_CREAT set. If O_EXCL and O_CREAT are not set, the result is
undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue description
and determines whether a mq_send(3C) or mq_receive(3C) waits for
resources or messages that are not currently available, or fails with errno set
to EAGAIN. See mq_send(3C) and mq_receive(3C) for details.

Upon successful completion, mq_open() returns a message queue descriptor; otherwise the
function returns (mqd_t)−1 and sets errno to indicate the error condition.

The mq_open() function will fail if:

EACCES The message queue exists and the permissions specified by oflag are
denied, or the message queue does not exist and permission to create the
message queue is denied.

EEXIST O_CREAT and O_EXCL are set and the named message queue already exists.

EINTR The mq_open() operation was interrupted by a signal.

EINVAL The mq_open() operation is not supported for the given name, or O_CREAT
was specified in oflag, the value of attr is not NULL, and either mq_maxmsg
or mq_msgsize was less than or equal to zero.

Return Values

Errors

mq_open(3C)

Basic Library Functions 531

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2

EMFILE The number of open message queue descriptors in this process exceeds
MQ_OPEN_MAX, of the number of open file descriptors in this process
exceeds OPEN_MAX.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many message queues are currently open in the system.

ENOENT O_CREAT is not set and the named message queue does not exist.

ENOSPC There is insufficient space for the creation of the new message queue.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exec(2), exit(2), umask(2), sysconf(3C), mqueue.h(3HEAD), mq_close(3C),
mq_receive(3C), mq_send(3C), mq_setattr(3C), mq_unlink(3C), attributes(5),
standards(5)

Due to the manner in which message queues are implemented, they should not be considered
secure and should not be used in security-sensitive applications.

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Attributes

See Also

Notes

mq_open(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008532

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_receive, mq_timedreceive, mq_reltimedreceive_np – receive a message from a message
queue

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abs_timeout);

ssize_t mq_reltimedreceive_np(mqd_t mqdes,
char *restrict msg_ptr, size_t msg_len,
unsigned *restrict msg_prio,
const struct timespec *restrict rel_timeout);

The mq_receive() function receives the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by msg_len, is less
than the mq_msgsize member of the message queue, the function fails and returns an error.
Otherwise, the selected message is removed from the queue and copied to the buffer pointed
to by msg_ptr.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If msg_prio is not NULL, the priority of the selected message is stored in the location referenced
by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, (see mq_open(3C) and mq_setattr(3C)), mq_receive()
blocks, waiting until a message is enqueued on the message queue, or until mq_receive() is
interrupted by a signal. If more than one process (or thread) is waiting to receive a message
when a message arrives at an empty queue, then the process of highest priority that has been
waiting the longest is selected to receive the message. If the specified message queue is empty
and O_NONBLOCK is set in the message queue description associated with mqdes, no message is
removed from the queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority messages from the
message queue specified by mqdes as described for the mq_receive() function. However, if
O_NONBLOCK was not specified when the message queue was opened with the mq_open(3C)
function, and no message exists on the queue to satisfy the receive, the wait for such a message
is terminated when the specified timeout expires. If O_NONBLOCK is set, this function is
equivalent to mq_receive().

The mq_reltimedreceive_np() function is identical to the mq_timedreceive() function,
except that the timeout is specified as a relative time interval.

Name

Synopsis

Description

mq_receive(3C)

Basic Library Functions 533

For mq_timedreceive(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For mq_reltimedreceive_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if a message can be removed
from the message queue immediately. The validity of the timeout parameter need not be
checked if a message can be removed from the message queue immediately.

Upon successful completion, mq_receive(), mq_timedreceive(), and
mq_reltimedreceive_np() return the length of the selected message in bytes and the message
is removed from the queue. Otherwise, no message is removed from the queue, the functions
return a value of −1, and sets errno to indicate the error condition.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np() functions will fail
if:

EAGAIN O_NONBLOCK was set in the message description associated with mqdes, and the
specified message queue is empty.

EBADF The mqdes argument is not a valid message queue descriptor open for reading.

EINTR The function was interrupted by a signal.

EINVAL The process or thread would have blocked, and the timeout parameter specified
a nanoseconds field value less than zero or greater than or equal to 1,000
million.

EMSGSIZE The specified message buffer size, msg_len, is less than the message size
member of the message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was opened, but no
message arrived on the queue before the specified timeout expired.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np() functions may fail
if:

EBADMSG A data corruption problem with the message has been detected.

Return Values

Errors

mq_receive(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008534

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For mq_receive() and mq_timedreceive(). see standards(5).

mqueue.h(3HEAD), mq_open(3C), mq_send(3C), mq_setattr(3C), attributes(5),
standards(5)

Attributes

See Also

mq_receive(3C)

Basic Library Functions 535

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_send, mq_timedsend, mq_reltimedsend_np – send a message to a message queue

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *restrict abs_timeout);

int mq_reltimedsend_np(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *restrict rel_timeout);

The mq_send() function adds the message pointed to by the argument msg_ptr to the message
queue specified by mqdes. The msg_len argument specifies the length of the message in bytes
pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of
the message queue, or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into
the message queue at the position indicated by the msg_prio argument. A message with a
larger numeric value of msg_prio is inserted before messages with lower values of msg_prio. A
message will be inserted after other messages in the queue, if any, with equal msg_prio. The
value of msg_prio must be greater than zero and less than or equal to MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes (see mq_open(3C) and mq_setattr(3C)), mq_send() blocks
until space becomes available to enqueue the message, or until mq_send() is interrupted by a
signal. If more than one thread is waiting to send when space becomes available in the message
queue, then the thread of the highest priority which has been waiting the longest is unblocked
to send its message. Otherwise, it is unspecified which waiting thread is unblocked. If the
specified message queue is full and O_NONBLOCK is set in the message queue description
associated with mqdes, the message is not queued and mq_send() returns an error.

The mq_timedsend() function adds a message to the message queue specified by mqdes in the
manner defined for the mq_send() function. However, if the specified message queue is full
and O_NONBLOCK is not set in the message queue description associated with mqdes, the wait
for sufficient room in the queue is terminated when the specified timeout expires. If
O_NONBLOCK is set in the message queue description, this function is equivalent to mq_send().

The mq_reltimedsend_np() function is identical to the mq_timedsend() function, except that
the timeout is specified as a relative time interval.

Name

Synopsis

Description

mq_send(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008536

For mq_timedsend(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For mq_reltimedsend_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if there is sufficient room in the
queue to add the message immediately. The validity of the timeout parameter need not be
checked when there is sufficient room in the queue.

Upon successful completion, mq_send(), mq_timedsend(), and mq_reltimedsend_np()

return 0. Otherwise, no message is enqueued, the functions return −1, and errno is set to
indicate the error.

The mq_send(), mq_timedsend(), and mq_reltimedsend_np() functions will fail if:

EAGAIN The O_NONBLOCK flag is set in the message queue description associated with
mqdes, and the specified message queue is full.

EBADF The mqdes argument is not a valid message queue descriptor open for writing.

EINTR A signal interrupted the function call.

EINVAL The value of msg_prio was outside the valid range.

EINVAL The process or thread would have blocked, and the timeout parameter specified
a nanoseconds field value less than zero or greater than or equal to 1,000
million.

EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the
message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was opened, but the
timeout expired before the message could be added to the queue.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

Return Values

Errors

Attributes

mq_send(3C)

Basic Library Functions 537

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

For mq_send() and mq_timedsend(), see standards(5).

sysconf(3C), mqueue.h(3HEAD), mq_open(3C), mq_receive(3C), mq_setattr(3C),
attributes(5), standards(5)

See Also

mq_send(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008538

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_setattr – set/get message queue attributes

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat,
struct mq_attr *omqstat);

The mq_setattr() function is used to set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure are set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is either 0 or O_NONBLOCK.

The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are ignored by mq_setattr().

If omqstat is non-NULL, mq_setattr() stores, in the location referenced by omqstat, the
previous message queue attributes and the current queue status. These values are the same as
would be returned by a call to mq_getattr() at that point.

Upon successful completion, mq_setattr() returns 0 and the attributes of the message queue
will have been changed as specified. Otherwise, the message queue attributes are unchanged,
and the function returns −1 and sets errno to indicate the error.

The mq_setattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_setattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mq_getattr(3C), mq_open(3C),
mq_receive(3C), mq_send(3C), mqueue.h(3HEAD), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_setattr(3C)

Basic Library Functions 539

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mq_unlink – remove a message queue

#include <mqueue.h>

int mq_unlink(const char *name);

The mq_unlink() function removes the message queue named by the pathname name. After a
successful call to mq_unlink() with name, a call to mq_open(3C) with name fails if the flag
O_CREAT is not set in flags. If one or more processes have the message queue open when
mq_unlink() is called, destruction of the message queue is postponed until all references to
the message queue have been closed. Calls to mq_open(3C) to re-create the message queue may
fail until the message queue is actually removed. However, the mq_unlink() call need not
block until all references have been closed; it may return immediately.

Upon successful completion, mq_unlink() returns 0; otherwise, the named message queue is
not changed by this function call, the function returns −1 and sets errno to indicate the error.

The mq_unlink() function will fail if:

EACCES Permission is denied to unlink the named message queue.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named message queue, name, does not exist.

ENOSYS mq_unlink() is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mqueue.h(3HEAD), mq_close(3C), mq_open(3C), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_unlink(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008540

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

msync – synchronize memory with physical storage

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The msync() function writes all modified copies of pages over the range [addr, addr + len) to
the underlying hardware, or invalidates any copies so that further references to the pages will
be obtained by the system from their permanent storage locations. The permanent storage for
a modified MAP_SHARED mapping is the file the page is mapped to; the permanent storage for a
modified MAP_PRIVATE mapping is its swap area.

The flags argument is a bit pattern built from the following values:

MS_ASYNC perform asynchronous writes

MS_SYNC perform synchronous writes

MS_INVALIDATE invalidate mappings

If flags is MS_ASYNC or MS_SYNC, the function synchronizes the file contents to match the
current contents of the memory region.

■ All write references to the memory region made prior to the call are visible by subsequent
read operations on the file.

■ All writes to the same portion of the file prior to the call may or may not be visible by read
references to the memory region.

■ Unmodified pages in the specified range are not written to the underlying hardware.

If flags is MS_ASYNC, the function may return immediately once all write operations are
scheduled; if flags is MS_SYNC, the function does not return until all write operations are
completed.

If flags is MS_INVALIDATE, the function synchronizes the contents of the memory region to
match the current file contents.

■ All writes to the mapped portion of the file made prior to the call are visible by subsequent
read references to the mapped memory region.

■ All write references prior to the call, by any process, to memory regions mapped to the
same portion of the file using MAP_SHARED, are visible by read references to the region.

If msync() causes any write to the file, then the file's st_ctime and st_mtime fields are marked
for update.

Upon successful completion, msync() returns 0; otherwise, it returns −1 and sets errno to
indicate the error.

Name

Synopsis

Description

Return Values

msync(3C)

Basic Library Functions 541

The msync() function will fail if:

EBUSY Some or all of the addresses in the range [addr, addr + len) are locked and MS_SYNC

with the MS_INVALIDATE option is specified.

EAGAIN Some or all pages in the range [addr, addr + len) are locked for I/O.

EINVAL The addr argument is not a multiple of the page size as returned by sysconf(3C).

The flags argument is not some combination of MS_ASYNC and MS_INVALIDATE.

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range for the
address space of a process, or specify one or more pages that are not mapped.

EPERM MS_INVALIDATE was specified and one or more of the pages is locked in memory.

The msync() function should be used by programs that require a memory object to be in a
known state, for example in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no
guarantees that msync() is the only control over when pages are or are not written to disk.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

memcntl(2), mmap(2), sysconf(3C), attributes(5), standards(5)

Errors

Usage

Attributes

See Also

msync(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jul 2002542

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

mtmalloc, mallocctl – MT hot memory allocator

#include <mtmalloc.h>

cc –o a.out –lthread –lmtmalloc

void *malloc(size_t size);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

void mallocctl(int cmd, long value);

The malloc() and free() functions provide a simple general-purpose memory allocation
package that is suitable for use in high performance multithreaded applications. The
suggested use of this library is in multithreaded applications; it can be used for single threaded
applications, but there is no advantage in doing so. This library cannot be dynamically loaded
with dlopen(3C) during runtime because there must be only one manager of the process heap.

The malloc() function returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free() is a pointer to a block previously allocated by malloc() or
realloc(). After free() is performed this space is available for further allocation. If ptr is a
null pointer, no action occurs. The free() function does not set errno.

Undefined results will occur if the space assigned by malloc() is overrun or if a random
number is handed to free(). A freed pointer that is passed to free() will send a SIGABRT
signal to the calling process. This behavior is controlled by mallocctl().

The memalign() function allocates size bytes on a specified alignment boundary and returns a
pointer to the allocated block. The value of the returned address is guaranteed to be an even
multiple of alignment. Note that the value of alignment must be a power of two, and must be
greater than or equal to the size of a word.

The realloc() function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the new size of the block requires movement of the block, the
space for the previous instantiation of the block is freed. If the new size is larger, the contents
of the newly allocated portion of the block are unspecified. If ptr is NULL, realloc() behaves
like malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space pointed to
is freed.

The valloc() function has the same effect as malloc(), except that the allocated memory will
be aligned to a multiple of the value returned by sysconf(_SC_PAGESIZE).

Name

Synopsis

Description

mtmalloc(3MALLOC)

Basic Library Functions 543

After possible pointer coercion, each allocation routine returns a pointer to a space that is
suitably aligned for storage of any type of object.

The malloc(), realloc(), memalign(), and valloc() functions will fail if there is not enough
available memory.

The mallocctl() function controls the behavior of the malloc library. The options fall into
two general classes, debugging options and performance options.

MTDOUBLEFREE Allows double free of a pointer. Setting value to 1 means yes and 0

means no. The default behavior of double free results in a core dump.

MTDEBUGPATTERN Writes misaligned data into the buffer after free(). When the buffer is
reallocated, the contents are verified to ensure that there was no access to
the buffer after the free. If the buffer has been dirtied, a SIGABRT signal
is delivered to the process. Setting value to 1 means yes and 0 means no.
The default behavior is to not write misaligned data. The pattern used is
0xdeadbeef. Use of this option results in a performance penalty.

MTINITBUFFER Writes misaligned data into the newly allocated buffer. This option is
useful for detecting some accesses before initialization. Setting value to 1

means yes and 0 means no. The default behavior is to not write
misaligned data to the newly allocated buffer. The pattern used is
0xbaddcafe. Use of this option results in a performance penalty.

MTCHUNKSIZE This option changes the size of allocated memory when a pool has
exhausted all available memory in the buffer. Increasing this value
allocates more memory for the application. A substantial performance
gain can occur because the library makes fewer calls to the OS for more
memory. Acceptable number values are between 9 and 256. The default
value is 9 for 32–bit code and 64 for 64–bit code. This value is multiplied
by 8192.

MTEXCLUSIVE By default, libmtmalloc allocates 2*NCPUS buckets from which
allocations occur. Threads share buckets based on their thread ID. If
MTEXCLUSIVE is invoked, then 4*NCPUS buckets are used. Threads with
thread IDless than 2*NCPUS receive an exclusive bucket and thus do not
need to use locks. Allocation performance for these buckets may be
dramatically increased. One enabled, MTEXCLUSIVE cannot be disabled.
This feature can also be enabled by setting the option MTEXCLUSIVE in
the environment variable MTMALLOC_OPTIONS. See libmtmalloc(3LIB).

MTREALFREE This option sets the threshold for calling madvise(3C) with MADV_FREE.
Calling madvise() will result in the memory associated with the
allocation being returned to the kernel. When freed, allocations greater
than value*pagesize will have madvise() called. If value is less than 2, it
will be set to 2.

mtmalloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 5 Nov 2010544

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libmtmalloc-3lib

If there is no available memory, malloc(), realloc(), memalign(), and valloc() return a
null pointer. When realloc() is called with size > 0 and returns NULL, the block pointed to by
ptr is left intact. If size, nelem, or elsize is 0, either a null pointer or a unique pointer that can be
passed to free() is returned.

If malloc() or realloc() returns unsuccessfully, errno will be set to indicate the error.

The malloc() and realloc() functions will fail if:

ENOMEM The physical limits of the system are exceeded by size bytes of memory which
cannot be allocated.

EAGAIN There is not enough memory available to allocate size bytes of memory; but the
application could try again later.

Comparative features of the various allocation libraries can be found in the
umem_alloc(3MALLOC) manual page.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), getrlimit(2), bsdmalloc(3MALLOC), dlopen(3C), libmtmalloc(3LIB),
madvise(3C), malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC),
signal.h(3HEAD), umem_alloc(3MALLOC), watchmalloc(3MALLOC), attributes(5)

Undefined results will occur if the size requested for a block of memory exceeds the maximum
size of a process's heap. This information may be obtained using getrlimit().

Return Values

Errors

Usage

Attributes

See Also

Warnings

mtmalloc(3MALLOC)

Basic Library Functions 545

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2libmtmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

mutex_init, mutex_lock, mutex_trylock, mutex_unlock, mutex_consistent, mutex_destroy –
mutual exclusion locks

cc –mt [flag...] file... [library...]

#include <thread.h>

#include <synch.h>

int mutex_init(mutex_t *mp, int type, void * arg);

int mutex_lock(mutex_t *mp);

int mutex_trylock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

int mutex_consistent(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

Mutual exclusion locks (mutexes) prevent multiple threads from simultaneously executing
critical sections of code that access shared data (that is, mutexes are used to serialize the
execution of threads). All mutexes must be global. A successful call for a mutex lock by way of
mutex_lock() will cause another thread that is also trying to lock the same mutex to block
until the owner thread unlocks it by way of mutex_unlock(). Threads within the same process
or within other processes can share mutexes.

Mutexes can synchronize threads within the same process or in other processes. Mutexes can
be used to synchronize threads between processes if the mutexes are allocated in writable
memory and shared among the cooperating processes (see mmap(2)), and have been initialized
for this task.

Mutexes are either intra-process or inter-process, depending upon the argument passed
implicitly or explicitly to the initialization of that mutex. A statically allocated mutex does not
need to be explicitly initialized; by default, a statically allocated mutex is initialized with all
zeros and its scope is set to be within the calling process.

For inter-process synchronization, a mutex needs to be allocated in memory shared between
these processes. Since the memory for such a mutex must be allocated dynamically, the mutex
needs to be explicitly initialized using mutex_init().

The mutex_init() function initializes the mutex referenced by mp with the type specified by
type. Upon successful initialization the state of the mutex becomes initialized and unlocked.
Only the attribute type LOCK_PRIO_PROTECT uses arg. The type argument must be one of the
following:

USYNC_THREAD

The mutex can synchronize threads only in this process.

USYNC_PROCESS

The mutex can synchronize threads in this process and other processes. The object
initialized with this attribute must be allocated in memory shared between processes, either

Name

Synopsis

Description

Initialize

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007546

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

in System V shared memory (see shmop(2)) or in memory mapped to a file (see mmap(2)). If
the object is not allocated in such shared memory, it will not be shared between processes.

The type argument can be augmented by the bitwise-inclusive-OR of zero or more of the
following flags:

LOCK_ROBUST

The mutex can synchronize threads robustly. At the time of thread or process death, either
by calling thr_exit() or exit() or due to process abnormal termination, the lock is
unlocked if is held by the thread or process. The next owner of the mutex will acquire it
with an error return of EOWNERDEAD. The application must always check the return value
from mutex_lock() for a mutex of this type. The new owner of this mutex should then
attempt to make the state protected by the mutex consistent, since this state could have
been left inconsistent when the last owner died. If the new owner is able to make the state
consistent, it should call mutex_consistent() to restore the state of the mutex and then
unlock the mutex. All subsequent calls to mutex_lock()will then behave normally. Only
the new owner can make the mutex consistent. If for any reason the new owner is not able
to make the state consistent, it should not call mutex_consistent() but should simply
unlock the mutex. All waiting processes will be awakened and all subsequent calls to
mutex_lock() will fail in acquiring the mutex with an error value of ENOTRECOVERABLE. If
the thread or process that acquired the lock with EOWNERDEAD terminates without unlocking
the mutex, the next owner will acquire the lock with an error value of EOWNERDEAD.

The memory for the object to be initialized with this attribute must be zeroed before
initialization. Any thread or process interested in the robust lock can call mutex_init() to
potentially initialize it, provided that all such callers of mutex_init() specify the same set
of attribute flags. In this situation, if mutex_init() is called on a previously initialized
robust mutex, mutex_init() will not reinitialize the mutex and will return the error value
EBUSY.

LOCK_RECURSIVE

A thread attempting to relock this mutex without first unlocking it will succeed in locking
the mutex. The mutex must be unlocked as many times as it is locked.

LOCK_ERRORCHECK

Unless LOCK_RECURSIVE is also set, a thread attempting to relock this mutex without first
unlocking it will return with an error rather than deadlocking itself. A thread attempting to
unlock this mutex without first owning it will return with an error.

LOCK_PRIO_INHERIT

When a thread is blocking higher priority threads because of owning one or more mutexes
with the LOCK_PRIO_INHERIT attribute, it executes at the higher of its priority or the
priority of the highest priority thread waiting on any of the mutexes owned by this thread
and initialized with this attribute.

LOCK_PRIO_PROTECT

When a thread owns one or more mutexes initialized with the LOCK_PRIO_PROTECT
attribute, it executes at the higher of its priority or the highest of the priority ceilings of all

mutex_init(3C)

Basic Library Functions 547

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

the mutexes owned by this thread and initialized with this attribute, regardless of whether
other threads are blocked on any of these mutexes. When this attribute is specified, arg
must point to an int containing the priority ceiling.

See pthread_mutexattr_getrobust(3C) for more information about robust mutexes. The
LOCK_ROBUST attribute is the same as the POSIX PTHREAD_MUTEX_ROBUST attribute.

See pthread_mutexattr_settype(3C) for more information on recursive and error checking
mutex types. The combination (LOCK_RECURSIVE | LOCK_ERRORCHECK) is the same as the
POSIX PTHREAD_MUTEX_RECURSIVE type. By itself, LOCK_ERRORCHECK is the same as the POSIX
PTHREAD_MUTEX_ERRORCHECK type.

The LOCK_PRIO_INHERIT attribute is the same as the POSIX PTHREAD_PRIO_INHERIT attribute.
The LOCK_PRIO_PROTECT attribute is the same as the POSIX PTHREAD_PRIO_PROTECT attribute.
See pthread_mutexattr_getprotocol(3C), pthread_mutexattr_getprioceiling(3C), and
pthread_mutex_getprioceiling(3C) for a full discussion. The LOCK_PRIO_INHERIT and
LOCK_PRIO_PROTECT attributes are mutually exclusive. Specifying both of these attributes
causes mutex_init() to fail with EINVAL.

Initializing mutexes can also be accomplished by allocating in zeroed memory (default), in
which case a type of USYNC_THREAD is assumed. In general, the following rules apply to mutex
initialization:
■ The same mutex must not be simultaneously initialized by multiple threads.
■ A mutex lock must not be reinitialized while in use by other threads.

These rules do not apply to LOCK_ROBUST mutexes. See the description for LOCK_ROBUSTabove.
If default mutex attributes are used, the macro DEFAULTMUTEX can be used to initialize mutexes
that are statically allocated.

Default mutex initialization (intra-process):

mutex_t mp;

mutex_init(&mp, USYNC_THREAD, NULL);

or

mutex_t mp = DEFAULTMUTEX;

Customized mutex initialization (inter-process):

mutex_init(&mp, USYNC_PROCESS, NULL);

Customized mutex initialization (inter-process robust):

mutex_init(&mp, USYNC_PROCESS | LOCK_ROBUST, NULL);

Statically allocated mutexes can also be initialized with macros specifying LOCK_RECURSIVE
and/or LOCK_ERRORCHECK:

mutex_t mp = RECURSIVEMUTEX;

Same as (USYNC_THREAD | LOCK_RECURSIVE)

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007548

mutex_t mp = ERRORCHECKMUTEX;

Same as (USYNC_THREAD | LOCK_ERRORCHECK)

mutex_t mp = RECURSIVE_ERRORCHECKMUTEX;

Same as (USYNC_THREAD | LOCK_RECURSIVE | LOCK_ERRORCHECK)

A critical section of code is enclosed by a the call to lock the mutex and the call to unlock the
mutex to protect it from simultaneous access by multiple threads. Only one thread at a time
may possess mutually exclusive access to the critical section of code that is enclosed by the
mutex-locking call and the mutex-unlocking call, whether the mutex's scope is intra-process
or inter-process. A thread calling to lock the mutex either gets exclusive access to the code
starting from the successful locking until its call to unlock the mutex, or it waits until the
mutex is unlocked by the thread that locked it.

Mutexes have ownership, unlike semaphores. Although any thread, within the scope of a
mutex, can get an unlocked mutex and lock access to the same critical section of code, only the
thread that locked a mutex should unlock it.

If a thread waiting for a mutex receives a signal, upon return from the signal handler, the
thread resumes waiting for the mutex as if there was no interrupt. A mutex protects code, not
data; therefore, strongly bind a mutex with the data by putting both within the same structure,
or at least within the same procedure.

A call to mutex_lock() locks the mutex object referenced by mp. If the mutex is already
locked, the calling thread blocks until the mutex is freed; this will return with the mutex object
referenced by mp in the locked state with the calling thread as its owner. If the current owner
of a mutex tries to relock the mutex, it will result in deadlock.

The mutex_trylock() function is the same as mutex_lock(), respectively, except that if the
mutex object referenced by mp is locked (by any thread, including the current thread), the call
returns immediately with an error.

The mutex_unlock() function are called by the owner of the mutex object referenced by mp to
release it. The mutex must be locked and the calling thread must be the one that last locked the
mutex (the owner). If there are threads blocked on the mutex object referenced by mp when
mutex_unlock() is called, the mp is freed, and the scheduling policy will determine which
thread gets the mutex. If the calling thread is not the owner of the lock, no error status is
returned, and the behavior of the program is undefined.

The mutex_destroy() function destroys the mutex object referenced by mp. The mutex
object becomes uninitialized. The space used by the destroyed mutex variable is not freed. It
needs to be explicitly reclaimed.

If successful, these functions return 0. Otherwise, an error number is returned.

Lock and Unlock

Destroy

Return Values

mutex_init(3C)

Basic Library Functions 549

The mutex_init() function will fail if:

EINVAL The value specified by type is invalid, or the LOCK_PRIO_INHERIT and
LOCK_PRIO_PROTECT attributes are both specified.

The mutex_init() function will fail for LOCK_ROBUST type mutex if:

EBUSY The mutex pointed to by mp was previously initialized and has not yet been
destroyed.

EINVAL The mutex pointed to by mp was previously initialized with a different set of
attribute flags.

The mutex_trylock() function will fail if:

EBUSY The mutex pointed to by mp is already locked.

The mutex_lock() and mutex_trylock() functions will fail for a LOCK_RECURSIVE mutex if:

EAGAIN The mutex could not be acquired because the maximum number of recursive
locks for the mutex has been reached.

The mutex_lock() function will fail for a LOCK_ERRORCHECK and non-LOCK_RECURSIVE mutex
if:

EDEADLK The caller already owns the mutex.

The mutex_lock() function may fail for a non-LOCK_ERRORCHECK and non-LOCK_RECURSIVE
mutex if:

EDEADLK The caller already owns the mutex.

The mutex_unlock() function will fail for a LOCK_ERRORCHECK mutex if:

EPERM The caller does not own the mutex.

The mutex_lock() or mutex_trylock() functions will fail for LOCK_ROBUST type mutex if:

EOWNERDEAD The last owner of this mutex died while holding the mutex. This mutex
is now owned by the caller. The caller must now attempt to make the
state protected by the mutex consistent. If it is able to clean up the state,
then it should restore the state of the mutex by calling
mutex_consistent() and unlock the mutex. Subsequent calls to
mutex_lock() will behave normally, as before. If the caller is not able to
clean up the state, mutex_consistent() should not be called but the
mutex should be unlocked. Subsequent calls to mutex_lock() will fail
to acquire the mutex, returning with the error value ENOTRECOVERABLE.
If the owner who acquired the lock with EOWNERDEAD dies, the next
owner will acquire the lock with EOWNERDEAD.

Errors

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007550

ENOTRECOVERABLE The mutex trying to be acquired was protecting the state that has been
left unrecoverable when the mutex's last owner could not make the
state protected by the mutex consistent. The mutex has not been
acquired. This condition occurs when the lock was previously acquired
with EOWNERDEAD and the owner was not able to clean up the state and
unlocked the mutex without calling mutex_consistent().

The mutex_consistent() function will fail if:

EINVAL The caller does not own the mutex or the mutex is not a LOCK_ROBUST mutex
having an inconsistent state (EOWNERDEAD).

The following example uses one global mutex as a gate-keeper to permit each thread exclusive
sequential access to the code within the user-defined function “change_global_data.” This type
of synchronization will protect the state of shared data, but it also prohibits parallelism.

/* cc thisfile.c -lthread */

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#define NUM_THREADS 12

void *change_global_data(void *); /* for thr_create() */

main(int argc,char * argv[]) {

int i=0;

for (i=0; i< NUM_THREADS; i++) {

thr_create(NULL, 0, change_global_data, NULL, 0, NULL);

}

while ((thr_join(NULL, NULL, NULL) == 0));

}

void * change_global_data(void *null){

static mutex_t Global_mutex;

static int Global_data = 0;

mutex_lock(&Global_mutex);

Global_data++;

sleep(1);

printf("%d is global data\n",Global_data);
mutex_unlock(&Global_mutex);

return NULL;

}

The previous example, the mutex, the code it owns, and the data it protects was enclosed in
one function. The next example uses C++ features to accommodate many functions that use
just one mutex to protect one data:

Examples

Single Gate

Multiple Instruction
Single Data

mutex_init(3C)

Basic Library Functions 551

/* CC thisfile.c -lthread use C++ to compile*/

#define _REENTRANT

#include <stdlib.h>

#include <stdio.h>

#include <thread.h>

#include <errno.h>

#include <iostream.h>

#define NUM_THREADS 16

void *change_global_data(void *); /* for thr_create() */

class Mutected {

private:

static mutex_t Global_mutex;

static int Global_data;

public:

static int add_to_global_data(void);

static int subtract_from_global_data(void);

};

int Mutected::Global_data = 0;

mutex_t Mutected::Global_mutex;

int Mutected::add_to_global_data() {

mutex_lock(&Global_mutex);

Global_data++;

mutex_unlock(&Global_mutex);

return Global_data;

}

int Mutected::subtract_from_global_data() {

mutex_lock(&Global_mutex);

Global_data--;

mutex_unlock(&Global_mutex);

return Global_data;

}

void

main(int argc,char * argv[]) {

int i=0;

for (i=0;i< NUM_THREADS;i++) {

thr_create(NULL,0,change_global_data,NULL,0,NULL);

}

while ((thr_join(NULL,NULL,NULL) == 0));

}

void * change_global_data(void *) {

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007552

static int switcher = 0;

if ((switcher++ % 3) == 0) /* one-in-three threads subtracts */

cout << Mutected::subtract_from_global_data() << endl;

else

cout << Mutected::add_to_global_data() << endl;

return NULL;

}

A mutex can protect data that is shared among processes. The mutex would need to be
initialized as USYNC_PROCESS. One process initializes the process-shared mutex and writes it to
a file to be mapped into memory by all cooperating processes (see mmap(2)). Afterwards, other
independent processes can run the same program (whether concurrently or not) and share
mutex-protected data.

/* cc thisfile.c -lthread */

/* To execute, run the command line "a.out 0 &; a.out 1" */

#define _REENTRANT

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <thread.h>

#define INTERPROCESS_FILE "ipc-sharedfile"
#define NUM_ADDTHREADS 12

#define NUM_SUBTRACTTHREADS 10

#define INCREMENT ’0’

#define DECREMENT ’1’

typedef struct {

mutex_t Interprocess_mutex;

int Interprocess_data;

} buffer_t;

buffer_t *buffer;

void *add_interprocess_data(), *subtract_interprocess_data();

void create_shared_memory(), test_argv();

int zeroed[sizeof(buffer_t)];

int ipc_fd, i=0;

void

main(int argc,char * argv[]){

test_argv(argv[1]);

switch (*argv[1]) {

case INCREMENT:

/* Initializes the process-shared mutex */

/* Should be run prior to running a DECREMENT process */

Interprocess Locking

mutex_init(3C)

Basic Library Functions 553

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

create_shared_memory();

ipc_fd = open(INTERPROCESS_FILE, O_RDWR);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ | PROT_WRITE, MAP_SHARED, ipc_fd, 0);

buffer->Interprocess_data = 0;

mutex_init(&buffer->Interprocess_mutex, USYNC_PROCESS,0);

for (i=0; i< NUM_ADDTHREADS; i++)

thr_create(NULL, 0, add_interprocess_data, argv[1],

0, NULL);

break;

case DECREMENT:

/* Should be run after the INCREMENT process has run. */

while(ipc_fd = open(INTERPROCESS_FILE, O_RDWR)) == -1)

sleep(1);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ | PROT_WRITE, MAP_SHARED, ipc_fd, 0);

for (i=0; i< NUM_SUBTRACTTHREADS; i++)

thr_create(NULL, 0, subtract_interprocess_data, argv[1],

0, NULL);

break;

} /* end switch */

while ((thr_join(NULL,NULL,NULL) == 0));

} /* end main */

void *add_interprocess_data(char argv_1[]){

mutex_lock(&buffer->Interprocess_mutex);

buffer->Interprocess_data++;

sleep(2);

printf("%d is add-interprocess data, and %c is argv1\n",
buffer->Interprocess_data, argv_1[0]);

mutex_unlock(&buffer->Interprocess_mutex);

return NULL;

}

void *subtract_interprocess_data(char argv_1[]) {

mutex_lock(&buffer->Interprocess_mutex);

buffer->Interprocess_data--;

sleep(2);

printf("%d is subtract-interprocess data, and %c is argv1\n",
buffer->Interprocess_data, argv_1[0]);

mutex_unlock(&buffer->Interprocess_mutex);

return NULL;

}

void create_shared_memory(){

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007554

int i;

ipc_fd = creat(INTERPROCESS_FILE, O_CREAT | O_RDWR);

for (i=0; i<sizeof(buffer_t); i++){

zeroed[i] = 0;

write(ipc_fd, &zeroed[i],2);

}

close(ipc_fd);

chmod(INTERPROCESS_FILE, S_IRWXU | S_IRWXG | S_IRWXO);

}

void test_argv(char argv1[]) {

if (argv1 == NULL) {

printf("use 0 as arg1 for initial process\n \

or use 1 as arg1 for the second process\n");
exit(NULL);

}

}

A mutex can protect data that is shared among processes robustly. The mutex would need to
be initialized as USYNC_PROCESS | LOCK_ROBUST. One process initializes the robust
process-shared mutex and writes it to a file to be mapped into memory by all cooperating
processes (see mmap(2)). Afterwards, other independent processes can run the same program
(whether concurrently or not) and share mutex-protected data.

The following example shows how to use a USYNC_PROCESS | LOCK_ROBUST type mutex.

/* cc thisfile.c -lthread */

/* To execute, run the command line "a.out & a.out 1" */

#include <sys/types.h>

#include <sys/mman.h>

#include <fcntl.h>

#include <stdio.h>

#include <thread.h>

#define INTERPROCESS_FILE "ipc-sharedfile"
typedef struct {

mutex_t Interprocess_mutex;

int Interprocess_data;

} buffer_t;

buffer_t *buffer;

int make_date_consistent();

void create_shared_memory();

int zeroed[sizeof(buffer_t)];

int ipc_fd, i=0;

main(int argc,char * argv[]) {

int rc;

if (argc > 1) {

while((ipc_fd = open(INTERPROCESS_FILE, O_RDWR)) == -1)

sleep(1);

Solaris Interprocess
Robust Locking

mutex_init(3C)

Basic Library Functions 555

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ | PROT_WRITE, MAP_SHARED, ipc_fd, 0);

mutex_init(&buffer->Interprocess_mutex,

USYNC_PROCESS | LOCK_ROBUST,0);

} else {

create_shared_memory();

ipc_fd = open(INTERPROCESS_FILE, O_RDWR);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ | PROT_WRITE, MAP_SHARED, ipc_fd, 0);

buffer->Interprocess_data = 0;

mutex_init(&buffer->Interprocess_mutex,

USYNC_PROCESS | LOCK_ROBUST,0);

}

for(;;) {

rc = mutex_lock(&buffer->Interprocess_mutex);

switch (rc) {

case EOWNERDEAD:

/*

* The lock is acquired.

* The last owner died holding the lock.

* Try to make the state associated with

* the mutex consistent.

* If successful, make the robust lock consistent.

*/

if (make_data_consistent())

mutex_consistent(&buffer->Interprocess_mutex);

mutex_unlock(&buffer->Interprocess_mutex);

break;

case ENOTRECOVERABLE:

/*

* The lock is not acquired.

* The last owner got the mutex with EOWNERDEAD

* and failed to make the data consistent.

* There is no way to recover, so just exit.

*/

exit(1);

case 0:

/*

* There is no error - data is consistent.

* Do something with data.

*/

mutex_unlock(&buffer->Interprocess_mutex);

break;

}

}

} /* end main */

void create_shared_memory() {

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007556

int i;

ipc_fd = creat(INTERPROCESS_FILE, O_CREAT | O_RDWR);

for (i=0; i<sizeof(buffer_t); i++) {

zeroed[i] = 0;

write(ipc_fd, &zeroed[i],2);

}

close(ipc_fd);

chmod(INTERPROCESS_FILE, S_IRWXU | S_IRWXG | S_IRWXO);

}

/* return 1 if able to make data consistent, otherwise 0. */

int make_data_consistent () {

buffer->Interprocess_data = 0;

return (1);

}

The following example allocates and frees memory in which a mutex is embedded.

struct record {

int field1;

int field2;

mutex_t m;

} *r;

r = malloc(sizeof(struct record));

mutex_init(&r->m, USYNC_THREAD, NULL);

/*

* The fields in this record are accessed concurrently

* by acquiring the embedded lock.

*/

The thread execution in this example is as follows:

Thread 1 executes: Thread 2 executes:

... ...

mutex_lock(&r->m); mutex_lock(&r->m);

r->field1++; localvar = r->field1;

mutex_unlock(&r->m); mutex_unlock(&r->m);

... ...

Later, when a thread decides to free the memory pointed to by r, the thread should call
mutex_destroy() on the mutexes in this memory.

In the following example, the main thread can do a thr_join() on both of the above threads.
If there are no other threads using the memory in r, the main thread can now safely free r:

for (i = 0; i < 2; i++)

thr_join(0, 0, 0);

mutex_destroy(&r->m); /* first destroy mutex */

Dynamically Allocated
Mutexes

mutex_init(3C)

Basic Library Functions 557

free(r); /* then free memory */

If the mutex is not destroyed, the program could have memory leaks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

mmap(2), shmop(2), pthread_mutexattr_getprioceiling(3C),
pthread_mutexattr_getprotocol(3C), pthread_mutexattr_getrobust(3C),
pthread_mutexattr_gettype(3C), pthread_mutex_getprioceiling(3C),
pthread_mutex_init(3C), attributes(5), mutex(5), standards(5)

Previous releases of Solaris provided the USYNC_PROCESS_ROBUST mutex type. This type is now
deprecated but is still supported for source and binary compatibility. When passed to
mutex_init(), it is transformed into (USYNC_PROCESS | LOCK_ROBUST). The former method for
restoring a USYNC_PROCESS_ROBUST mutex to a consistent state was to reinitialize it by calling
mutex_init(). This method is still supported for source and binary compatibility, but the
proper method is to call mutex_consistent().

The USYNC_PROCESS_ROBUST type permitted an alternate error value, ELOCKUNMAPPED, to be
returned by mutex_lock() if the process containing a locked robust mutex unmapped the
memory containing the mutex or performed one of the exec(2) functions. The
ELOCKUNMAPPED error value implies all of the consequences of the EOWNERDEAD error value and
as such is just a synonym for EOWNERDEAD. For full source and binary compatibility, the
ELOCKUNMAPPED error value is still returned from mutex_lock() in these circumstances, but
only if the mutex was initialized with the USYNC_PROCESS_ROBUST type. Otherwise,
EOWNERDEAD is returned in these circumstances.

The mutex_lock(), mutex_unlock(), and mutex_trylock() functions do not validate the
mutex type. An uninitialized mutex or a mutex with an invalid type does not return EINVAL.
Interfaces for mutexes with an invalid type have unspecified behavior.

Uninitialized mutexes that are allocated locally could contain junk data. Such mutexes need to
be initialized using mutex_init().

By default, if multiple threads are waiting for a mutex, the order of acquisition is undefined.

Attributes

See Also

Notes

mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007558

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

nanosleep – high resolution sleep

#include <time.h>

int nanosleep(const struct timespec *rqtp,
struct timespec *rmtp);

The nanosleep() function causes the current thread to be suspended from execution until
either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function or to terminate the process.
The suspension time may be longer than requested because the argument value is rounded up
to an integer multiple of the sleep resolution or because of the scheduling of other activity by
the system. But, except for the case of being interrupted by a signal, the suspension time will
not be less than the time specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

If the nanosleep() function returns because the requested time has elapsed, its return value is
0.

If the nanosleep() function returns because it has been interrupted by a signal, the function
returns a value of −1 and sets errno to indicate the interruption. If the rmtp argument is
non-NULL, the timespec structure referenced by it is updated to contain the amount of time
remaining in the interval (the requested time minus the time actually slept). If the rmtp
argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns −1 and sets errno to indicate the error.

The nanosleep() function will fail if:

EINTR The nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.

ENOSYS The nanosleep() function is not supported by this implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

nanosleep(3C)

Basic Library Functions 559

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sleep(3C), time.h(3HEAD), attributes(5), standards(5)See Also

nanosleep(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008560

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ndbm, dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,
dbm_nextkey, dbm_open, dbm_store – database functions

#include <ndbm.h>

int dbm_clearerr(DBM *db);

void dbm_close(DBM *db);

int dbm_delete(DBM *db, datum key);

int dbm_error(DBM *db);

datum dbm_fetch(DBM *db, datum key);

datum dbm_firstkey(DBM *db);

datum dbm_nextkey(DBM *db);

DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);

int dbm_store(DBM *db, datum key, datum content, int store_mode);

These functions create, access and modify a database. They maintain key/content pairs in a
database. The functions will handle large databases (up to a billion blocks) and will access a
keyed item in one or two file system accesses. This package replaces the earlier dbm library,
which managed only a single database.

keys and contents are described by the datum typedef. A datum consists of at least two
members, dptr and dsize. The dptr member points to an object that is dsize bytes in length.
Arbitrary binary data, as well as ASCII character strings, may be stored in the object pointed to
by dptr.

The database is stored in two files. One file is a directory containing a bit map of keys and has
.dir as its suffix. The second file contains all data and has .pag as its suffix.

The dbm_open() function opens a database. The file argument to the function is the
pathname of the database. The function opens two files named file.dir and file.pag. The
open_flags argument has the same meaning as the flags argument of open(2) except that a
database opened for write-only access opens the files for read and write access. The file_mode
argument has the same meaning as the third argument of open(2).

The dbm_close() function closes a database. The argument db must be a pointer to a dbm
structure that has been returned from a call to dbm_open().

The dbm_fetch() function reads a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application program to the value of the key that matches
the key of the record the program is fetching.

The dbm_store() function writes a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a

Name

Synopsis

Description

ndbm(3C)

Basic Library Functions 561

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2

datum that has been initialized by the application program to the value of the key that
identifies (for subsequent reading, writing or deleting) the record the program is writing. The
argument content is a datum that has been initialized by the application program to the value
of the record the program is writing. The argument store_mode controls whether
dbm_store() replaces any pre-existing record that has the same key that is specified by the key
argument. The application program must set store_mode to either DBM_INSERT or
DBM_REPLACE. If the database contains a record that matches the key argument and store_mode
is DBM_REPLACE, the existing record is replaced with the new record. If the database contains a
record that matches the key argument and store_mode is DBM_INSERT, the existing record is
not replaced with the new record. If the database does not contain a record that matches the
key argument and store_mode is either DBM_INSERT or DBM_REPLACE, the new record is
inserted in the database.

The dbm_delete() function deletes a record and its key from the database. The argument db is
a pointer to a database structure that has been returned from a call to dbm_open(). The
argument key is a datum that has been initialized by the application program to the value of the
key that identifies the record the program is deleting.

The dbm_firstkey() function returns the first key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function returns the next key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The
dbm_firstkey() function must be called before calling dbm_nextkey(). Subsequent calls to
dbm_nextkey() return the next key until all of the keys in the database have been returned.

The dbm_error() function returns the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function clears the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

These database functions support key/content pairs of at least 1024 bytes.

The dbm_store() and dbm_delete() functions return 0 when they succeed and a negative
value when they fail.

The dbm_store() function returns 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function returns 0 if the error condition is not set and returns a non-zero
value if the error condition is set.

The return value of dbm_clearerr() is unspecified .

The dbm_firstkey() and dbm_nextkey() functions return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the
dptr member of the key is a null pointer and the error condition of the database is set.

Return Values

ndbm(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Sep 2001562

The dbm_fetch() function returns a content datum. If no record in the database matches the
key or if an error condition has been detected in the database, the dptr member of the content
is a null pointer.

The dbm_open() function returns a pointer to a database structure. If an error is detected
during the operation, dbm_open() returns a (DBM *)0.

No errors are defined.

The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_ functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do
not lock records or files), and they do not provide the many other useful database functions
that are found in more robust database management systems. Creating and updating
databases by use of these functions is relatively slow because of data copies that occur upon
hash collisions. These functions are useful for applications requiring fast lookup of relatively
static information that is to be indexed by a single key.

The dptr pointers returned by these functions may point into static storage that may be
changed by subsequent calls.

The dbm_delete() function does not physically reclaim file space, although it does make it
available for reuse.

After calling dbm_store() or dbm_delete() during a pass through the keys by
dbm_firstkey() and dbm_nextkey(), the application should reset the database by calling
dbm_firstkey() before again calling dbm_nextkey().

EXAMPLE 1 Using the Database Functions

The following example stores and retrieves a phone number, using the name as the key. Note
that this example does not include error checking.

#include <ndbm.h>

#include <stdio.h>

#include <fcntl.h>

#define NAME "Bill"
#define PHONE_NO "123-4567"
#define DB_NAME "phones"
main()

{

DBM *db;

datum name = {NAME, sizeof (NAME)};

datum put_phone_no = {PHONE_NO, sizeof (PHONE_NO)};

datum get_phone_no;

Errors

Usage

Examples

ndbm(3C)

Basic Library Functions 563

EXAMPLE 1 Using the Database Functions (Continued)

/* Open the database and store the record */

db = dbm_open(DB_NAME, O_RDWR | O_CREAT, 0660);

(void) dbm_store(db, name, put_phone_no, DBM_INSERT);

/* Retrieve the record */

get_phone_no = dbm_fetch(db, name);

(void) printf("Name: %s, Phone Number: %s\n", name.dptr,

get_phone_no.dptr);

/* Close the database */

dbm_close(db);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard See standards(5).

ar(1), cat(1), cp(1), tar(1), open(2), netconfig(4), attributes(5), standards(5)

The .pag file will contain holes so that its apparent size may be larger than its actual content.
Older versions of the UNIX operating system may create real file blocks for these holes when
touched. These files cannot be copied by normal means (cp(1), cat(1), tar(1), ar(1)) without
filling in the holes.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block.
dbm_store() will return an error in the event that a disk block fills with inseparable data.

The order of keys presented by dbm_firstkey() and dbm_nextkey() depends on a hashing
function.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading
is risky.

The database files (file.dir and file.pag) are binary and are architecture-specific (for
example, they depend on the architecture's byte order.) These files are not guaranteed to be
portable across architectures.

Attributes

See Also

Notes

ndbm(3C)

man pages section 3: Basic Library Functions • Last Revised 17 Sep 2001564

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ar-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tar-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tar-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ar-1

nl_langinfo – language information

#include <langinfo.h>

char *nl_langinfo(nl_item item);

The nl_langinfo() function returns a pointer to a null-terminated string containing
information relevant to a particular language or cultural area defined in the programs locale.
The manifest constant names and values of item are defined by <langinfo.h>. For example:

nl_langinfo (ABDAY_1);

would return a pointer to the string “Dim” if the identified language was French and a French
locale was correctly installed; or “Sun” if the identified language was English.

If setlocale(3C) has not been called successfully, or if data for a supported language is either
not available, or if item is not defined therein, then nl_langinfo() returns a pointer to the
corresponding string in the C locale. In all locales, nl_langinfo() returns a pointer to an
empty string if item contains an invalid setting.

The nl_langinfo() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), langinfo.h(3HEAD), nl_types.h(3HEAD), attributes(5), standards(5)

The array pointed to by the return value should not be modified by the program. Subsequent
calls to nl_langinfo() may overwrite the array.

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

Warnings

nl_langinfo(3C)

Basic Library Functions 565

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1langinfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nl-types.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

offsetof – offset of structure member

#include <stddef.h>

size_t offsetof(type, member-designator);

The offsetof() macro defined in <stddef.h> expands to an integral constant expression
that has type size_t. The value of this expression is the offset in bytes to the structure member
(designated by member-designator) from the beginning of its structure (designated by type).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

Name

Synopsis

Description

Attributes

See Also

offsetof(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996566

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

opendir, fdopendir – open directory

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *dirname);

DIR *fdopendir(int fildes);

The opendir() function opens a directory stream corresponding to the directory named by
the dirname argument.

The fdopendir() function opens a directory stream for the directory file descriptor fildes. The
directory file descriptor should not be used or closed following a successful function call, as
this might cause undefined results from future operations on the directory stream obtained
from the call. Use closedir(3C) to close a directory stream.

The directory stream is positioned at the first entry. If the type DIR is implemented using a file
descriptor, applications will only be able to open up to a total of {OPEN_MAX} files and
directories. A successful call to any of the exec functions will close any directory streams that
are open in the calling process. See exec(2).

Upon successful completion, opendir() and fdopendir() return a pointer to an object of
type DIR. Otherwise, a null pointer is returned and errno is set to indicate the error.

The opendir() function will fail if:

EACCES Search permission is denied for the component of the path prefix of
dirname or read permission is denied for dirname.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the dirname argument exceeds {PATH_MAX}, or a path name
component is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in
effect.

ENOENT A component of dirname does not name an existing directory or dirname
is an empty string.

ENOTDIR A component of dirname is not a directory.

The fdopendir() function will fail if:

ENOTDIR The file descriptor fildes does not reference a directory.

The opendir() function may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

Name

Synopsis

Description

Return Values

Errors

opendir(3C)

Basic Library Functions 567

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

ENFILE Too many files are currently open on the system.

The opendir() and fdopendir() functions should be used in conjunction with readdir(3C),
closedir(3C) and rewinddir(3C) to examine the contents of the directory (see the EXAMPLES
section in readdir(3C)). This method is recommended for portability.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard For opendir, see standards(5).

lstat(2), symlink(2), closedir(3C), readdir(3C), rewinddir(3C), scandir(3C),
attributes(5), standards(5)

Usage

Attributes

See Also

opendir(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Jun 2007568

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1symlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

perror, errno – print system error messages

#include <stdio.h>

void perror(const char *s)

#include <errno.h>

int errno;

The perror() function produces a message on the standard error output (file descriptor 2)
describing the last error encountered during a call to a system or library function. The
argument string s is printed, followed by a colon and a blank, followed by the message and a
NEWLINE character. If s is a null pointer or points to a null string, the colon is not printed.
The argument string should include the name of the program that incurred the error. The
error number is taken from the external variable errno, which is set when errors occur but not
cleared when non-erroneous calls are made. See Intro(2).

In the case of multithreaded applications, the -mt option must be specified on the command
line at compilation time (see threads(5)). When the -mt option is specified, errno becomes a
macro that enables each thread to have its own errno. This errno macro can be used on either
side of the assignment as though it were a variable.

Messages printed from this function are in the native language specified by the LC_MESSAGES
locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Intro(2), fmtmsg(3C), gettext(3C), setlocale(3C), strerror(3C), attributes(5),
standards(5), threads(5)

Name

Synopsis

Description

Usage

Attributes

See Also

perror(3C)

Basic Library Functions 569

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

pfmt – display error message in standard format

#include <pfmt.h>

int pfmt(FILE *stream, long flags, char *format, ... /* arg */);

The pfmt() retrieves a format string from a locale-specific message database (unless MM_NOGET
is specified) and uses it for printf(3C) style formatting of args. The output is displayed on
stream.

The pfmt() function encapsulates the output in the standard error message format (unless
MM_NOSTD is specified, in which case the output is similar to printf()).

If the printf() format string is to be retrieved from a message database, the format argument
must have the following structure:

<catalog>:<msgnum>:<defmsg>.

If MM_NOGET is specified, only the defmsg field must be specified.

The catalog field is used to indicate the message database that contains the localized version of
the format string. This field must be limited to 14 characters selected from the set of all
characters values, excluding \0 (null) and the ASCII codes for / (slash) and : (colon).

The msgnum field is a positive number that indicates the index of the string into the message
database.

If the catalog does not exist in the locale (specified by the last call to setlocale(3C) using the
LC_ALL or LC_MESSAGES categories), or if the message number is out of bound, pfmt() will
attempt to retrieve the message from the C locale. If this second retrieval fails, pfmt() uses the
defmsg field of the format argument.

If catalog is omitted, pfmt() will attempt to retrieve the string from the default catalog
specified by the last call to setcat(3C). In this case, the format argument has the following
structure:

:<msgnum>:<defmsg>.

The pfmt() will output Message not found!!\n as format string if catalog is not a valid
catalog name, if no catalog is specified (either explicitly or with setcat()), if msgnum is not a
valid number, or if no message could be retrieved from the message databases and defmsg was
omitted.

The flags argument determine the type of output (such as whether the format should be
interpreted as is or encapsulated in the standard message format), and the access to message
catalogs to retrieve a localized version of format.

The flags argument is composed of several groups, and can take the following values (one
from each group):

Name

Synopsis

Description

pfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996570

Output format control

MM_NOSTD Do not use the standard message format, interpret format as printf() format.
Only catalog access control flags should be specified if MM_NOSTD is used; all other
flags will be ignored.

MM_STD Output using the standard message format (default value 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case, only the defmsg field
of the format is specified.

MM_GET Retrieve a localized version of format from the catalog, using msgid as the index
and defmsg as the default message (default value 0).

Severity (standard message format only)

MM_HALT Generate a localized version of HALT, but do not halt the machine.

MM_ERROR Generate a localized version of ERROR (default value 0).

MM_WARNING Generate a localized version of WARNING.

MM_INFO Generate a localized version of INFO.

Additional severities can be defined. Add-on severities can be defined with number-string
pairs with numeric values from the range [5-255], using addsev(3C). The specified severity
will be generated from the bitwise OR operation of the numeric value and other flags If the
severity is not defined, pfmt() uses the string SEV=N, where N is replaced by the integer
severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any combination of
severities will be summed and the numeric value will cause the display of either a severity
string (if defined) or the string SEV=N (if undefined).

Action

MM_ACTION Specify an action message. Any severity value is superseded and replaced by a
localized version of TO FIX.

The pfmt() function displays error messages in the following format:

label: severity: text

If no label was defined by a call to setlabel(3C), the message is displayed in the format:

severity: text

If pfmt() is called twice to display an error message and a helpful action or recovery message,
the output can look like:

Standard Error
Message Format

pfmt(3C)

Basic Library Functions 571

label: severity: textlabel: TO FIX: text

Upon success, pfmt() returns the number of bytes transmitted. Upon failure, it returns a
negative value:

−1 Write error to stream.

EXAMPLE 1 Example of pfmt() function.

Example 1:

setlabel("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file: %s\n",

strerror(errno));

displays the message:

UX:test: ERROR: Cannot open file: No such file or directory

Example 2:

setlabel("UX:test");
setcat("test");
pfmt(stderr, MM_ERROR, ":10:Syntax error\n");
pfmt(stderr, MM_ACTION, "55:Usage ...\n");

displays the message

UX:test: ERROR: Syntax error

UX:test: TO FIX: Usage ...

Since it uses gettxt(3C), pfmt() should not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-safe

addsev(3C), gettxt(3C), lfmt(3C), printf(3C), setcat(3C), setlabel(3C), setlocale(3C),
attributes(5), environ(5)

Return Values

Examples

Usage

Attributes

See Also

pfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996572

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

plock – lock or unlock into memory process, text, or data

#include <sys/lock.h>

int plock(int op);

The plock() function allows the calling process to lock or unlock into memory its text
segment (text lock), its data segment (data lock), or both its text and data segments (process
lock). Locked segments are immune to all routine swapping. The effective user ID of the
calling process must be super-user to use this call.

The plock() function performs the function specified by op:

PROCLOCK Lock text and data segments into memory (process lock).

TXTLOCK Lock text segment into memory (text lock).

DATLOCK Lock data segment into memory (data lock).

UNLOCK Remove locks.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The plock() function fails and does not perform the requested operation if:

EAGAIN Not enough memory.

EINVAL The op argument is equal to PROCLOCK and a process lock, a text lock, or a data lock
already exists on the calling process; the op argument is equal to TXTLOCK and a
text lock or a process lock already exists on the calling process; the op argument is
equal to DATLOCK and a data lock or a process lock already exists on the calling
process; or the op argument is equal to UNLOCK and no lock exists on the calling
process.

EPERM The {PRIV_PROC_LOCK_MEMORY} privilege is not asserted in the effective set of the
calling process.

The mlock(3C) and mlockall(3C) functions are the preferred interfaces for process locking.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), exit(2), fork(2), memcntl(2), mlock(3C), mlockall(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

plock(3C)

Basic Library Functions 573

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

popen, pclose – initiate a pipe to or from a process

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

int pclose(FILE *stream);

The popen() function creates a pipe between the calling program and the command to be
executed. The arguments to popen() are pointers to null-terminated strings. The command
argument consists of a shell command line. The mode argument is an I/O mode, either r for
reading or w for writing. The value returned is a stream pointer such that one can write to the
standard input of the command, if the I/O mode is w, by writing to the file stream (see
Intro(3)); and one can read from the standard output of the command, if the I/O mode is r,
by reading from the file stream. Because open files are shared, a type r command may be used
as an input filter and a type w as an output filter. A trailing F character can also be included in
the mode argument as described in fopen(3C) to enable extended FILE facility.

The environment of the executed command will be as if a child process were created within
the popen() call using fork(2). If the application is standard-conforming (see standards(5)),
the child is created as if invoked with the call:

execl("/usr/xpg4/bin/sh", "sh", "-c",command, (char *)0);

otherwise, the child is created as if invoked with the call:

execl("/usr/bin/sh", "sh", "-c",command, (char *)0);

The pclose() function closes a stream opened by popen() by closing the pipe. It waits for the
associated process to terminate and returns the termination status of the process running the
command language interpreter. This is the value returned by waitpid(3C). See
wait.h(3HEAD) for more information on termination status. If, however, a call to waitpid()

with a pid argument equal to the process ID of the command line interpreter causes the
termination status to be unavailable to pclose(), then pclose() returns −1 with errno set to
ECHILD to report this condition.

Upon successful completion, popen() returns a pointer to an open stream that can be used to
read or write to the pipe. Otherwise, it returns a null pointer and may set errno to indicate the
error.

Upon successful completion, pclose() returns the termination status of the command
language interpreter as returned by waitpid(). Otherwise, it returns −1 and sets errno to
indicate the error.

The pclose() function will fail if:

ECHILD The status of the child process could not be obtained, as described in the
DESCRIPTION.

The popen() function may fail if:

Name

Synopsis

Description

Return Values

Errors

popen(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Dec 2006574

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head

EMFILE There are currently FOPEN_MAX or STREAM_MAX streams open in the calling process.

EINVAL The mode argument is invalid.

The popen() function may also set errno values as described by fork(2) or pipe(2).

If the original and popen() processes concurrently read or write a common file, neither should
use buffered I/O. Problems with an output filter may be forestalled by careful buffer flushing,
for example, with fflush() (see fclose(3C)). A security hole exists through the IFS and PATH

environment variables. Full pathnames should be used (or PATH reset) and IFS should be set to
space and tab (" \t").

Even if the process has established a signal handler for SIGCHLD, it will be called when the
command terminates. Even if another thread in the same process issues a wait(3C) call, it will
interfere with the return value of pclose(). Even if the process's signal handler for SIGCHLD
has been set to ignore the signal, there will be no effect on pclose().

EXAMPLE 1 popen() example

The following program will print on the standard output (see stdio(3C)) the names of files in
the current directory with a .c suffix.

#include <stdio.h>

#include <stdlib.h>

main()

{

char *cmd = "/usr/bin/ls *.c";
char buf[BUFSIZ];

FILE *ptr;

if ((ptr = popen(cmd, "r")) != NULL) {

while (fgets(buf, BUFSIZ, ptr) != NULL)

(void) printf("%s", buf);

(void) pclose(ptr);

}

return 0;

}

EXAMPLE 2 system() replacement

The following function can be used in a multithreaded process in place of the most common
usage of the Unsafe system(3C) function:

int my_system(const char *cmd)

{

FILE *p;

if ((p = popen(cmd, "w")) == NULL)

return (-1);

Usage

Examples

popen(3C)

Basic Library Functions 575

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2

EXAMPLE 2 system() replacement (Continued)

return (pclose(p));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See below.

For pclose() and all aspects of popen() except the F character in the mode argument, see
standards(5).

ksh(1), pipe(2), fclose(3C), fopen(3C), posix_spawn(3C), stdio(3C), system(3C),
wait(3C), waitpid(3C), wait.h(3HEAD), attributes(5), standards(5)

Attributes

See Also

popen(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Dec 2006576

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ksh-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

port_alert – set a port in alert mode

#include <port.h>

int port_alert(int port, int flags, int events, void *user);

The port_alert() function transitions a port into or out of alert mode. A port in alert mode
immediately awakens all threads blocked in port_get(3C) or port_getn(3C). These threads
return with an alert notification that consists of a single port_event_t structure with the
source PORT_SOURCE_ALERT. Subsequent threads trying to retrieve events from a port that is in
alert mode will return immediately with the alert notification.

A port is transitioned into alert mode by calling the port_alert() function with a non-zero
events parameter. The specified events and user parameters will be made available in the
portev_events and the portev_user members of the alert notification, respectively. The flags
argument determines the mode of operation of the alert mode:

■ If flags is set to PORT_ALERT_SET, port_alert() sets the port in alert mode independent of
the current state of the port. The portev_events and portev_user members are set or
updated accordingly.

■ If flags is set to PORT_ALERT_UPDATE and the port is not in alert mode, port_alert()
transitions the port into alert mode. The portev_events and portev_user members are
set accordingly.

■ If flags is set to PORT_ALERT_UPDATE and the port is already in alert mode, port_alert()
returns with an error value of EBUSY.

PORT_ALERT_SET and PORT_ALERT_UPDATE are mutually exclusive.

A port is transitioned out of alert mode by calling the port_alert() function with a zero
events parameter.

Events can be queued to a port that is in alert mode, but they will not be retrievable until the
port is transitioned out of alert mode.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The port_alert() function will fail if:

EBADF The port identifier is not valid.

EBADFD The port argument is not an event port file descriptor.

EBUSY The port is already in alert mode.

EINVAL Mutually exclusive flags are set.

Name

Synopsis

Description

Return Values

Errors

port_alert(3C)

Basic Library Functions 577

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os, system/header

Interface Stability Committed

MT-Level Safe

port_associate(3C), port_create(3C), port_get(3C), port_send(3C), attributes(5)

Attributes

See Also

port_alert(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Oct 2003578

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

port_associate, port_dissociate – associate or dissociate the object with the port

#include <port.h>

int port_associate(int port, int source, uintptr_t object,
int events, void *user);

int port_dissociate(int port, int source, uintptr_t object);

The port_associate() function associates specific events of a given object with a port. Only
objects associated with a particular port are able to generate events that can be retrieved using
port_get(3C) or port_getn(3C). The delivery event has its portev_user member set to the
value specified in the user parameter. If the specified object is already associated with the
specified port, the port_associate() function serves to update the events and user arguments
of the association. The port_dissociate() function removes the association of an object with
a port.

The objects that can be associated with a port by way of the port_associate() function are
objects of type PORT_SOURCE_FD and PORT_SOURCE_FILE. Objects of other types have
type-specific association mechanisms. A port_notify_t structure, defined in <port.h>, is
used to specify the event port and an application-defined cookie to associate with these event
sources. See port_create(3C) and signal.h(3HEAD).

The port_notify_t structure contains the following members:

int portntfy_port; /* bind request(s) to port */

void *portntfy_user; /* user defined cookie */

Objects of type PORT_SOURCE_FD are file descriptors. The event types for PORT_SOURCE_FD
objects are described in poll(2). At most one event notification will be generated per
associated file descriptor. For example, if a file descriptor is associated with a port for the
POLLRDNORM event and data is available on the file descriptor at the time the
port_associate() function is called, an event is immediately sent to the port. If data is not yet
available, one event is sent to the port when data first becomes available.

When an event for a PORT_SOURCE_FD object is retrieved, the object no longer has an
association with the port. The event can be processed without the possibility that another
thread can retrieve a subsequent event for the same object. After processing of the file
descriptor is completed, the port_associate() function can be called to reassociate the
object with the port.

Objects of type PORT_SOURCE_FILE are pointer to the structure file_obj defined in
<sys/port.h>. This event source provides event notification when the specified file/directory
is accessed or modified or when its status changes. The path name of the file/directory to be
watched is passed in the struct file_obj along with the access, modification, and change

time stamps acquired from a stat(2) call. If the file name is a symbolic links, it is followed by
default. The FILE_NOFOLLOW needs to be passed in along with the specified events if the
symbolic link itself needs to be watched and lstat() needs to be used to get the file status of
the symbolic link file.

Name

Synopsis

Description

port_associate(3C)

Basic Library Functions 579

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2

The struct file_obj contains the following elements:

timestruc_t fo_atime; /* Access time got from stat() */

timestruc_t fo_mtime; /* Modification time from stat() */

timestruc_t fo_ctime; /* Change time from stat() */

char *fo_name; /* Pointer to a null terminated path name */

At the time the port_associate() function is called, the time stamps passed in the structure
file_obj are compared with the file or directory's current time stamps and, if there has been a
change, an event is immediately sent to the port. If not, an event will be sent when such a
change occurs.

The event types that can be specified at port_associate() time for PORT_SOURCE_FILE are
FILE_ACCESS, FILE_MODIFIED, and FILE_ATTRIB, corresponding to the three time stamps. An
fo_atime change results in the FILE_ACCESS event, an fo_mtime change results in the
FILE_MODIFIED event, and an fo_time change results in the FILE_ATTRIB event.

The following exception events are delivered when they occur. These event types cannot be
filtered.

FILE_DELETE /* Monitored file/directory was deleted */

FILE_RENAME_TO /* Monitored file/directory was renamed */

FILE_RENAME_FROM /* Monitored file/directory was renamed */

UNMOUNTED /* Monitored file system got unmounted */

MOUNTEDOVER /* Monitored file/directory was mounted over */

At most one event notification will be generated per associated file_obj. When the event for
the associated file_obj is retrieved, the object is no longer associated with the port. The event
can be processed without the possibility that another thread can retrieve a subsequent event
for the same object. The port_associate() can be called to reassociate the file_obj object
with the port.

The association is also removed if the port gets closed or when port_dissociate() is called.

The parent and child processes are allowed to retrieve events from file descriptors shared after
a call to fork(2). The process performing the first association with a port (parent or child
process) is designated as the owner of the association. Only the owner of an association is
allowed to dissociate the file descriptor from a port. The association is removed if the owner of
the association closes the port .

On NFS file systems, events from only the client side (local) access/modifications to files or
directories will be delivered.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

Return Values

port_associate(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Nov 2007580

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

The port_associate() and port_dissociate() functions will fail if:

EBADF The port identifier is not valid.

EBADFD The source argument is of type PORT_SOURCE_FD and the object argument is not a
valid file descriptor.

EINVAL The source argument is not valid.

The port_associate() function will fail if:

EACCES The source argument is PORT_SOURCE_FILE and, Search permission is denied on
a component of path prefix or the file exists and the permissions, corresponding
to the events argument, are denied.

EAGAIN The maximum number of objects associated with the port was exceeded. The
maximum allowable number of events or association of objects per port is the
minimum value of the process.max-port-events resource control at the time
port_create(3C) was used to create the port. See setrctl(2) and rctladm(1M)
for information on using resource controls.

The number of objects associated with a port is composed of all supported
resource types. Some of the source types do not explicitly use the
port_associate() function.

ENOENT The source argument is PORT_SOURCE_FILE and the file does not exist or the path
prefix does not exist or the path points to an empty string.

ENOMEM The physical memory limits of the system have been exceeded.

ENOTSUP The source argument is PORT_SOURCE_FILE and the file system on which the
specified file resides, does not support watching for file events notifications.

The port_dissociate() function will fail if:

EACCES The process is not the owner of the association.

ENOENT The specified object is not associated with the port.

EXAMPLE 1 Retrieve data from a pipe file descriptor.

The following example retrieves data from a pipe file descriptor.

#include <port.h>

int port;

int fd;

int error;

int index;

void *mypointer;

port_event_t pev;

Errors

Examples

port_associate(3C)

Basic Library Functions 581

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m

EXAMPLE 1 Retrieve data from a pipe file descriptor. (Continued)

struct timespec_t timeout;

char rbuf[STRSIZE];

int fds[MAXINDEX];

/* create a port */

port = port_create();

for (index = 0; index < MAXINDEX; index++) {

error = mkfifo(name[index], S_IRWXU | S_IRWXG | S_IRWXO);

if (error)

/* handle error code */

fds[index] = open(name[index], O_RDWR);

/* associate pipe file descriptor with the port */

error = port_associate(port, PORT_SOURCE_FD, fds[index],

POLLIN, mypointer);

}

...

timeout.tv_sec = 1; /* user defined */

timeout.tv_nsec = 0;

/* loop to retrieve data from the list of pipe file descriptors */

for (...) {

/* retrieve a single event */

error = port_get(port, &pev, &timeout);

if (error) {

/* handle error code */

}

fd = pev.portev_object;

if (read(fd, rbuf, STRSIZE)) {

/* handle error code */

}

if (fd-still-accepting-data) {

/*

* re-associate the file descriptor with the port.

* The re-association is required for the

* re-activation of the data detection.

* Internals events and user arguments are set to the

* new (or the same) values delivered here.

*/

error = port_associate(port, PORT_SOURCE_FD, fd, POLLIN,

pev.portev_user);

} else {

/*

* If file descriptor is no longer required,

port_associate(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Nov 2007582

EXAMPLE 1 Retrieve data from a pipe file descriptor. (Continued)

* - it can remain disabled but still associated with

* the port, or

* - it can be dissociated from the port.

*/

}

EXAMPLE 2 Bind AIO transaction to a specific port.

The following example binds the AIO transaction to a specific port.

#include <port.h>

int port;

port_notify_t pn;

aiocb_t aiocb;

aiocb_t *aiocbp;

void *mypointer;

int error;

int my_errno;

int my_status;

struct timespec_t timeout;

port_event_t pev;

port = port_create();

...

/* fill AIO specific part */

aiocb.aio_fildes = fd;

aiocb.aio_nbytes = BUFSIZE;

aiocb.aio_buf = bufp;

aiocb.aio_offset = 0;

/* port specific part */

pn.portnfy_port = port;

pn.portnfy_user = mypointer;

aiocb.aio_sigevent.sigev_notify = SIGEV_PORT;

aiocb.aio_sigevent.sigev_value.sival_ptr = &pn

/*

* The aio_read() function binds internally the asynchronous I/O

* transaction with the port delivered in port_notify_t.

*/

error = aio_read(&aiocb);

timeout.tv_sec = 1; /* user defined */

timeout.tv_nsec = 0;

port_associate(3C)

Basic Library Functions 583

EXAMPLE 2 Bind AIO transaction to a specific port. (Continued)

/* retrieve a single event */

error = port_get(port, &pev, &timeout);

if (error) {

/* handle error code */

}

/*

* pev.portev_object contains a pointer to the aiocb structure

* delivered in port_notify_t (see aio_read()).

*/

aiocbp = pev.portev_object;

/* check error code and return value in

my_errno = aio_error(aiocbp);

...

my_status = aio_return(aiocbp);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os, system/header

Interface Stability Committed

MT-Level Safe

rctladm(1M), poll(2), setrctl(2), port_alert(3C), port_create(3C), port_get(3C),
port_send(3C), signal.h(3HEAD), attributes(5)

Attributes

See Also

port_associate(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Nov 2007584

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

port_create – create a port

#include <port.h>

int port_create(void);

The port_create() function establishes a queue that multiplexes events from disjoint
sources. Each source has a corresponding object type and source-specific mechanism for
associating an object with a port.

source object type association mechanism

PORT_SOURCE_AIO struct aiocb aio_read(3C), aio_write(3C),
lio_listio(3C)

PORT_SOURCE_FD file descriptor port_associate(3C)

PORT_SOURCE_MQ mqd_t mq_notify(3C)

PORT_SOURCE_TIMER timer_t timer_create(3C)

PORT_SOURCE_USER uintptr_t port_send(3C)

PORT_SOURCE_ALERT uintptr_t port_alert(3C)

PORT_SOURCE_FILE file_obj_t port_associate(3C)

PORT_SOURCE_AIO events represent the completion of an asynchronous I/O transaction. An
asynchronous I/O transaction is associated with a port by specifying SIGEV_PORT as its
notification mechanism. See aio_read(3C), aio_write(3C), lio_listio(3C), and
aio.h(3HEAD) for details.

PORT_SOURCE_FD events represent a transition in the poll(2) status of a given file descriptor.
Once an event is delivered, the file descriptor is no longer associated with the port. A file
descriptor is associated (or re-associated) with a port using the port_associate(3C) function.

PORT_SOURCE_MQ events represent a message queue transition from empty to non-empty. A
message queue is associated with a port by specifying SIGEV_PORT as its notification
mechanism. See mq_notify(3C) for more information.

PORT_SOURCE_TIMER events represent one or more timer expirations for a given timer. A timer
is associated with a port by specifying SIGEV_PORT as its notification mechanism. See
timer_create(3C) for more information.

PORT_SOURCE_USER events represent user-defined events. These events are generated by
port_send(3C) or port_sendn(3C).

Name

Synopsis

Description

port_create(3C)

Basic Library Functions 585

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

PORT_SOURCE_ALERT events indicate that the port itself is in alert mode. The mode of the port
is changed with port_alert(3C).The port_create() function returns a file descriptor that
represents a newly created port. The close(2) function destroys the port and frees all allocated
resources.

PORT_SOURCE_FILE events represent file/directory status change. Once an event is delivered,
the file object associated with the port is no longer active. It has to be reassociated to activate. A
file object is associated or reassociated with a port using the port_associate(3C).

The port_get(3C) and port_getn(3C) functions retrieve events from a port. They ignore non
retrievable events (non-own or non-shareable events).

As a port is represented by a file descriptor, ports are shared between child and parent
processes after fork(). Both can continue to associate sources with the port, both can receive
events from the port, and events associated with and/or generated by either process are
retrievable in the other. Since some events might not have meaning in both parent and child,
care must be taken when using ports after fork().

If a port is exported to other processes, the port is destroyed on last close.

PORT_SOURCE_USER and PORT_SOURCE_ALERT events can be distributed across processes.
PORT_SOURCE_FD events can only be shared between processes when child processes inherit
opened file descriptors from the parent process. See fork(2). PORT_SOURCE_TIMER and
PORT_SOURCE_AIO cannot be shared between processes.

Upon successful completion, the port_create() function returns a non-negative value, the
port identifier. Otherwise, −1 is returned and errno is set to indicate the error.

The port_create() function will fail if:

EAGAIN The maximum allowable number of ports is currently open in the system. The
maximum allowable number of ports is the minimum value of the
project.max-port-ids resource control. See setrctl(2) and rctladm(1M) for
information on using resource controls.

EMFILE The process has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os, system/header

Interface Stability Committed

MT-Level Safe

Return Values

Errors

Attributes

port_create(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008586

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rctladm(1M), close(2), exit(2), fork(2), poll(2), setrctl(2), aio_read(3C),
aio_write(3C), aio.h(3HEAD), lio_listio(3C), mq_notify(3C), port_associate(3C),
port_get(3C), timer_create(3C), attributes(5)

See Also

port_create(3C)

Basic Library Functions 587

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

port_get, port_getn – retrieve event information from a port

#include <port.h>

int port_get(int port, port_event_t *pe,
const timespec_t *timeout);

int port_getn(int port, port_event_t list[], uint_t max,
uint_t *nget, const timespec_t *timeout);

The port_get() and port_getn() functions retrieve events from a port. The port_get()
function retrieves at most a single event. The port_getn() function can retrieve multiple
events.

The pe argument points to an uninitialized port_event_t structure that is filled in by the
system when the port_get() function returns successfully.

The port_event_t structure contains the following members:

int portev_events; /* detected events */

ushort_t portev_source; /* event source */

uintptr_t portev_object; /* specific to event source */

void *portev_user; /* user defined cookie */

The portev_events and portev_object members are specific to the event source. The
portev_events denotes the delivered events. The portev_object refers to the associated
object (see port_create(3C)). The portev_source member specifies the source of the event.
The portev_user member is a user-specified value.

If the timeout pointer is NULL, the port_get() function blocks until an event is available. To
poll for an event without waiting, timeout should point to a zeroed timespec. A non-zeroed
timespec specifies the desired time to wait for events. The port_get() function returns
before the timeout elapses if an event is available, a signal occurs, a port is closed by another
thread, or the port is in or enters alert mode. See port_alert(3C) for details on alert mode.

The port_getn() function can retrieve multiple events from a port. The list argument is an
array of uninitialized port_event_t structures that is filled in by the system when the
port_getn() function returns successfully. The nget argument points to the desired number
of events to be retrieved. The max parameter specifies the maximum number of events that
can be returned in list[]. If max is 0, the value pointed to by nget is set to the number of events
available on the port. The port_getn() function returns immediately but no events are
retrieved.

The port_getn() function block until the desired number of events are available, the timeout
elapses, a signal occurs, a port is closed by another thread, or the port is in or enters alert
mode.

On return, the value pointed to by nget is updated to the actual number of events retrieved in
list.

Name

Synopsis

Description

port_get(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Mar 2010588

Threads calling the port_get() function might starve threads waiting in the port_getn()
function for more than one event. Similarly, threads calling the port_getn() function for n
events might starve threads waiting in the port_getn() function for more than n events.

The port_get() and the port_getn() functions ignore non-shareable events (see
port_create(3C)) generated by other processes.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The port_get() and port_getn() functions will fail if:

EBADF The port identifier is not valid.

EBADFD The port argument is not an event port file descriptor.

EFAULT Event or event list can not be delivered (list[] pointer and/or user space reserved to
accomodate the list of events is not reasonable), or the timeout argument is not
reasonable.

EINTR A signal was caught during the execution of the function.

EINVAL The timeout element tv_sec is < 0 or the timeout element tv_nsec is < 0 or >
1000000000.

ETIME The time interval expired before the expected number of events have been posted
to the port.

The port_getn() function will fail if:

EINVAL The list[] argument is NULL, the nget argument is NULL, or the content of nget is >
max and max is > 0.

EFAULT The timeout argument is not reasonable.

ETIME The time interval expired before any events were posted to the port.

EXAMPLE 1 Send a user event (PORT_SOURCE_USER) to a port and retrieve it with port_get().

The following example sends a user event (PORT_SOURCE_USER) to a port and retrieves it with
port_get(). The portev_user and portev_events members of the port_event_t structure
are the same as the corresponding user and events arguments of the port_send(3C) function.

#include <port.h>

int myport;

port_event_t pe;

struct timespec timeout;

int ret;

void *user;

uintptr_t object;

Return Values

Errors

Examples

port_get(3C)

Basic Library Functions 589

EXAMPLE 1 Send a user event (PORT_SOURCE_USER) to a port and retrieve it with port_get().
(Continued)

myport = port_create();

if (myport < 0) {

/* port creation failed ... */

...

return(...);

}

...

events = 0x01; /* own event definition(s) */

object = <myobject>;

user = <my_own_value>;

ret = port_send(myport, events, user);

if (ret == -1) {

/* error detected ... */

...

close(myport);

return (...);

}

/*

* The following code could also be executed in another thread or

* process.

*/

timeout.tv_sec = 1; /* user defined */

timeout.tv_nsec = 0;

ret = port_get(myport, &pe, &timeout);

if (ret == -1) {

/*

* error detected :

* - EINTR or ETIME : log error code and try again ...

* - Other kind of errors : may have to close the port ...

*/

return(...);

}

/*

* After port_get() returns successfully, the port_event_t

* structure will be filled with:

* pe.portev_source = PORT_SOURCE_USER

* pe.portev_events = 0x01

* pe.portev_object = <myobject>

* pe.portev_user = <my_own_value>

*/

...

port_get(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Mar 2010590

EXAMPLE 1 Send a user event (PORT_SOURCE_USER) to a port and retrieve it with port_get().
(Continued)

close(myport);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os, system/header

Interface Stability Committed

MT-Level Safe

port_alert(3C), port_associate(3C), port_create(3C), port_send(3C), attributes(5)

Attributes

See Also

port_get(3C)

Basic Library Functions 591

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

port_send, port_sendn – send a user-defined event to a port or list of ports

#include <port.h>

int port_send(int port, int events, void *user);

int port_sendn(int ports[], int errors[], uint_t nent,
int events, void *user);

The port_send() function submits a user-defined event to a specified port. The port
argument is a file descriptor that represents a port. The sent event has its portev_events
member set to the value specified in the events parameter and its portev_user member set to
the value specified in the user parameter. The portev_object member of an event sent with
port_send() is unspecified.

The port_sendn() function submits a user-defined event to multiple ports. The ports
argument is an array of file descriptors that represents ports (see port_create(3C)). The nent
argument specifies the number of file descriptors in the ports[] array. An event is submitted to
each specified port. Each event has its portev_events member set to the value specified in the
events parameter and its portev_user member set to the value specified in the user parameter.
The portev_object member of events sent with port_sendn() is unspecified.

A port that is in alert mode can be sent an event, but that event will not be retrievable until the
port has resumed normal operation. See port_alert(3C).

Upon successful completion, the port_send() function returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

The port_sendn() function returns the number of successfully submitted events. A
non-negative return value less than the nent argument indicates that at least one error
occurred. In this case, each element of the errors[] array is filled in. An element of the errors[]
array is set to 0 if the event was successfully sent to the corresponding port in the ports[] array,
or is set to indicate the error if the event was not successfully sent. If an error occurs, the
port_sendn() function returns −1 and sets errno to indicate the error.

The port_send() and port_sendn() functions will fail if:

EAGAIN The maximum number of events per port is exceeded. The maximum allowable
number of events per port is the minimum value of the
process.max-port-events resource control at the time port_create(3C) was
used to create the port.

EBADF The port file descriptor is not valid.

EBADFD The port argument is not an event port file descriptor.

ENOMEM There is not enough memory available to satisfy the request.

The port_sendn() function will fail if:

EFAULT The ports[] pointer or errors[] pointer is not reasonable.

Name

Synopsis

Description

Return Values

Errors

port_send(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Oct 2007592

EINVAL The value of the nent argument is 0.

EXAMPLE 1 Use port_send() to send a user event (PORT_SOURCE_USER) to a port.

The following example uses port_send() to send a user event (PORT_SOURCE_USER) to a port
and port_get() to retrieve it. The portev_user and portev_events members of the
port_event_t structure are the same as the corresponding user and events arguments of the
port_send() function.

#include <port.h>

int myport;

port_event_t pe;

struct timespec timeout;

int ret;

void *user;

myport = port_create();

if (myport) {

/* port creation failed ... */

...

return(...);

}

...

events = 0x01; /* own event definition(s) */

user = <my_own_value>;

ret = port_send(myport, events, user);

if (ret == -1) {

/* error detected ... */

...

close(myport);

return (...);

}

/*

* The following code could also be executed from another thread or

* process.

*/

timeout.tv_sec = 1; /* user defined */

timeout.tv_nsec = 0;

ret = port_get(myport, &pe, &timeout);

if (ret == -1) {

/*

* error detected :

* - EINTR or ETIME : log error code and try again ...

* - Other kind of errors : may have to close the port ...

*/

return(...);

Examples

port_send(3C)

Basic Library Functions 593

EXAMPLE 1 Use port_send() to send a user event (PORT_SOURCE_USER) to a port. (Continued)

}

/*

* After port_get() returns successfully, the port_event_t

* structure will be filled with:

* pe.portev_source = PORT_SOURCE_USER

* pe.portev_events = 0x01

* pe.portev_object = unspecified

* pe.portev_user = <my_own_value>

*/

...

close(myport);

See setrctl(2) and rctladm(1M) for information on using resource controls.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability system/core-os, system/header

Interface Stability Committed

MT-Level Async-Signal-Safe

rctladm(1M), setrctl(2), port_alert(3C), port_associate(3C), port_create(3C),
port_get(3C), attributes(5)

Usage

Attributes

See Also

port_send(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Oct 2007594

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

posix_fadvise – file advisory information

#include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

The posix_fadvise() function advises the system on the expected behavior of the application
with respect to the data in the file associated with the open file descriptor, fd, starting at offset
and continuing for len bytes. The specified range need not currently exist in the file. If len is
zero, all data following offset is specified. The system may use this information to optimize
handling of the specified data. The posix_fadvise() function has no effect on the semantics
of other operations on the specified data, although it may affect the performance of other
operations.

The advice to be applied to the data is specified by the advice parameter and may be one of the
following values:

POSIX_FADV_NORMAL Specifies that the application has no advice to give on its
behavior with respect to the specified data. It is the default
characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL Specifies that the application expects to access the specified data
sequentially from lower offsets to higher offsets.

POSIX_FADV_RANDOM Specifies that the application expects to access the specified data
in a random order.

POSIX_FADV_WILLNEED Specifies that the application expects to access the specified data
in the near future.

POSIX_FADV_DONTNEED Specifies that the application expects that it will not access the
specified data in the near future.

POSIX_FADV_NOREUSE Specifies that the application expects to access the specified data
once and then not reuse it thereafter.

These values are defined in <fcntl.h>

Upon successful completion, posix_fadvise() returns zero. Otherwise, an error number is
returned to indicate the error.

The posix_fadvise() function will fail if:

EBADF The fd argument is not a valid file descriptor.

EINVAL The value of advice is invalid, or the value of len is less than zero.

ESPIPE The fd argument is associated with a pipe or FIFO.

Name

Synopsis

Description

Return Values

Errors

posix_fadvise(3C)

Basic Library Functions 595

The posix_fadvise() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

posix_madvise(3C), attributes(5), standards(5)

Usage

Attributes

See Also

posix_fadvise(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Jul 2008596

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_fallocate – file space control

#include <fcntl.h>

int posix_fallocate(int fd, off_t offset, off_t len);

The posix_fallocate() function ensures that any required storage for regular file data
starting at offset and continuing for len bytes is allocated on the file system storage media. If
posix_fallocate() returns successfully, subsequent writes to the specified file data will not
fail due to the lack of free space on the file system storage media.

If the offset+len is beyond the current file size, then posix_fallocate() adjusts the file size to
offset+len. Otherwise, the file size is not changed.

Space allocated with posix_fallocate() is freed by a successful call to creat(2) or open(2)
that truncates the size of the file. Space allocated with posix_fallocate() may be freed by a
successful call to ftruncate(3C) that reduces the file size to a size smaller than offset+len.

Upon successful completion, posix_fallocate() returns zero. Otherwise, an error number is
returned to indicate the error.

The posix_fallocate() function will fail if:

EBADF The fd argument is not a valid file descriptor or references a file that was opened
without write permission.

EFBIG The value of offset+len is greater than the maximum file size.

EINTR A signal was caught during execution.

EINVAL The len argument is less than or equal to zero, or the offset argument is less than
zero, or the underlying file system does not support this operation. See NOTES.

EIO An I/O error occurred while reading from or writing to a file system.

ENODEV The fd argument does not refer to a regular file.

ENOSPC There is insufficient free space remaining on the file system storage media.

ESPIPE The fd argument is associated with a pipe or FIFO.

The posix_fallocate() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

posix_fallocate(3C)

Basic Library Functions 597

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

creat(2), open(2), unlink(2), ftruncate(3C), attributes(5), standards(5)

The posix_fallocate() function is supported only for regular files residing on UFS
filesystems. Attempts to use it with files on any other filesystem type results in an EINVAL error.

See Also

Notes

posix_fallocate(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Jul 2011598

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_madvise – memory advisory information

#include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

The posix_madvise() function advises the system on the expected behavior of the application
with respect to the data in the memory starting at address addr, and continuing for len bytes.
The system may use this information to optimize handling of the specified data. The
posix_madvise() function has no effect on the semantics of access to memory in the specified
range, although it may affect the performance of access.

The advice to be applied to the memory range is specified by the advice parameter and may be
one of the following values:

POSIX_MADV_NORMAL Specifies that the application has no advice to give on its
behavior with respect to the specified range. It is the default
characteristic if no advice is given for a range of memory.

POSIX_MADV_SEQUENTIAL Specifies that the application expects to access the specified
range sequentially from lower addresses to higher addresses.

POSIX_MADV_RANDOM Specifies that the application expects to access the specified
range in a random order.

POSIX_MADV_WILLNEED Specifies that the application expects to access the specified
range in the near future.

POSIX_MADV_DONTNEED Specifies that the application expects that it will not access the
specified range in the near future.

These values are defined in <sys/mman.h>

Upon successful completion, posix_madvise() returns zero. Otherwise, an error number is
returned to indicate the error.

The posix_madvise() function will fail if:

EINVAL The value of advice is invalid.

ENOMEM Addresses in the range starting at addr and continuing for len bytes are partly or
completely outside the range allowed for the address space of the calling process.

The posix_madvise() function may fail if:

EINVAL The value of len is zero.

Name

Synopsis

Description

Return Values

Errors

posix_madvise(3C)

Basic Library Functions 599

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mmap(2), madvise(3C), posix_madvise(3C), attributes(5), standards(5)

Attributes

See Also

posix_madvise(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Jul 2008600

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_memalign – aligned memory allocation

#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

The posix_memalign() function allocates size bytes aligned on a boundary specified by
alignment, and returns a pointer to the allocated memory in memptr. The value of alignment
must be a power of two multiple of sizeof(void *).

Upon successful completion, the value pointed to by memptr will be a multiple of alignment.

If the size of the space requested is 0, the value returned in memptr will be a null pointer.

The free(3C) function will deallocate memory that has previously been allocated by
posix_memalign().

Upon successful completion, posix_memalign() returns zero. Otherwise, an error number is
returned to indicate the error.

The posix_memalign() function will fail if:

EINVAL The value of the alignment parameter is not a power of two multiple of
sizeof(void *).

ENOMEM There is insufficient memory available with the requested alignment.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

free(3C), malloc(3C), memalign(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

posix_memalign(3C)

Basic Library Functions 601

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_openpt – open a pseudo terminal device

#include <stdlib.h>

#include <fcntl.h>

int posix_openpt(int oflag);

The posix_openpt() function establishes a connection between a master device for a
pseudo-terminal and a file descriptor. The file descriptor is used by other I/O functions that
refer to that pseudo-terminal.

The file status flags and file access modes of the open file description are set according to the
value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list,
defined in <fcntl.h>.

O_RDWR Open for reading and writing.

O_NOCTTY If set, posix_openpt() does not cause the terminal device to become the
controlling terminal for the process.

The behavior of other values for the oflag argument is unspecified.

Upon successful completion, the posix_openpt() function opens a master pseudo-terminal
device and returns a non-negative integer representing the lowest numbered unused file
descriptor. Otherwise, -1 is returned and errno is set to indicate the error.

The posix_openpt() function will fail if:

EMFILE {OPEN_MAX} file descriptors are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

The posix_openpt() function may fail if:

EINVAL The value of oflag is not valid.

EAGAIN Out of pseudo-terminal resources.

ENOSR Out of STREAMS resources.

EXAMPLE 1 Open a pseudo-terminal.

The following example opens a pseudo-terminal and returns the name of the slave device and
a file descriptor.

#include fcntl.h>

#include stdio.h>

int masterfd, slavefd;

char *slavedevice;

Name

Synopsis

Description

Return Values

Errors

Examples

posix_openpt(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Dec 2003602

EXAMPLE 1 Open a pseudo-terminal. (Continued)

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1

|| grantpt (masterfd) == -1

|| unlockpt (masterfd) == -1

|| (slavedevice = ptsname (masterfd)) == NULL)

return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slave, O_RDWR|O_NOCTTY);

if (slavefd < 0)

return -1;

This function provides a method for portably obtaining a file descriptor of a master terminal
device for a pseudo-terminal. The grantpt(3C) and ptsname(3C) functions can be used to
manipulate mode and ownership permissions and to obtain the name of the slave device,
respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

open(2), grantpt(3C), ptsname(3C), unlockpt(3C), attributes(5), standards(5)

Usage

Attributes

See Also

posix_openpt(3C)

Basic Library Functions 603

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn, posix_spawnp – spawn a process

#include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

The posix_spawn() and posix_spawnp() functions create a new process (child process) from
the specified process image. The new process image is constructed from a regular executable
file called the new process image file.

When a C program is executed as the result of this call, it is entered as a C language function
call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings. The last
member of this array is a null pointer and is not counted in argc. These strings constitute the
argument list available to the new process image. The value in argv[0] should point to a
filename that is associated with the process image being started by the posix_spawn() or
posix_spawnp() function.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated
by a null pointer.

The number of bytes available for the child process's combined argument and environment
lists is {ARG_MAX}, counting all character pointers, the strings they point to, the trailing null
bytes in the strings, and the list-terminating null pointers. There is no additional system
overhead included in this total.

The path argument to posix_spawn() is a pathname that identifies the new process image file
to execute.

The file parameter to posix_spawnp() is used to construct a pathname that identifies the new
process image file. If the file parameter contains a slash character, the file parameter is used as

Name

Synopsis

Description

posix_spawn(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Feb 2009604

the pathname for the new process image file. Otherwise, the path prefix for this file is obtained
by a search of the directories passed as the environment variable PATH. If this environment
variable is not defined, the results of the search are implementation-defined.

If file_actions is a null pointer, then file descriptors open in the calling process remain open in
the child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fcntl(2)).
For those file descriptors that remain open, all attributes of the corresponding open file
descriptions, including file locks (see fcntl(2)), remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child process are those open in
the calling process as modified by the spawn file actions object pointed to by file_actions and
the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have
been processed. The effective order of processing the spawn file actions are:

1. The set of open file descriptors for the child process are initially the same set as is open for
the calling process. All attributes of the corresponding open file descriptions, including file
locks (see fcntl(2)), remain unchanged.

2. The signal mask, signal default or ignore actions, and the effective user and group IDs for
the child process are changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object are performed in the order in
which they were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl(2)) is closed.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It contains at
least the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced
by attrp, and the spawn-pgroup attribute of the same object is non-zero, then the child's
process group is as specified in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the
object referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero,
then the child will be in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
referenced by attrp, the new child process inherits the parent's process group.

If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image initially
has the scheduling policy of the calling process with the scheduling parameters specified in the
spawn-schedparam attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in spawn-flags attribute of the object referenced
by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag), the new process
image initially has the scheduling policy specified in the spawn-schedpolicy attribute of the
object referenced by attrp and the scheduling parameters specified in the spawn-schedparam
attribute of the same object.

posix_spawn(3C)

Basic Library Functions 605

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process
inherits the parent process's effective user ID. If this flag is set, the child process's effective user
ID is reset to the parent's real user ID. In either case, if the set-user-ID mode bit of the new
process image file is set, the effective user ID of the child process becomes that file's owner ID
before the new process image begins execution. If this flag is set, the child process's effective
user ID is reset to the parent's real user ID. In either case, if the set-user-ID mode bit of the new
process image file is set, the effective user ID of the child process becomes that file's owner ID
before the new process image begins execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
also governs the effective group ID of the child process. If this flag is not set, the child process
inherits the parent process's effective group ID. If this flag is set, the child process's effective
group ID is reset to the parent's real group ID. In either case, if the set-group-ID mode bit of
the new process image file is set, the effective group ID of the child process becomes that file's
group ID before the new process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object referenced
by attrp, the child process initially has the signal mask specified in the spawn-sigmask attribute
of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
by attrp, the signals specified in the spawn-sigdefault attribute of the same object is set to their
default actions in the child process.

If the POSIX_SPAWN_SETSIGIGN_NP flag is set in the spawn-flags attribute of the object
referenced by attrp, the signals specified in the spawn-sigignore attribute of the same object are
set to be ignored in the child process.

If both POSIX_SPAWN_SETSIGDEF and POSIX_SPAWN_SETSIGIGN_NP flags are set in the
spawn-flags attribute of the object referenced by attrp, the actions for
POSIX_SPAWN_SETSIGDEF take precedence over the actions for POSIX_SPAWN_SETSIGIGN_NP.

If the POSIX_SPAWN_NOSIGCHLD_NP flag is set in the spawn-flags attribute of the object
referenced by attrp, no SIGCHLD signal will be posted to the parent process when the child
process terminates, regardless of the disposition of the SIGCHLD signal in the parent. SIGCHLD
signals are still possible for job control stop and continue actions if the parent has requested
them.

If the POSIX_SPAWN_WAITPID_NP flag is set in the spawn-flags attribute of the object referenced
by attrp, no wait-for-multiple-pids operation by the parent, as in wait(), waitid(P_ALL), or
waitid(P_PGID), will succeed in reaping the child, and the child will not be reaped
automatically due the disposition of the SIGCHLD signal being set to be ignored in the parent.
Only a specific wait for the child, as in waitid(P_PID, pid), is allowed and it is required, else
when the child exits it will remain a zombie until the parent exits.

posix_spawn(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Feb 2009606

If the POSIX_SPAWN_NOEXECERR_NP flag is set in the spawn-flags attribute of the object
referenced by attrp, and if the specified process image file cannot be executed, then the
posix_spawn() and posix_spawnp() functions do not fail with one of the exec(2) error
codes, as is normal, but rather return successfully having created a child process that exits
immediately with exit status 127. This flag permits system(3C) and popen(3C) to be
implemented with posix_spawn() and still conform strictly to their POSIX specifications.

Signals set to be caught or set to the default action in the calling process are set to the default
action in the child process, unless the POSIX_SPAWN_SETSIGIGN_NP flag is set in the
spawn-flags attribute of the object referenced by attrp and the signals are specified in the
spawn-sigignore attribute of the same object.

Except for SIGCHLD, signals set to be ignored by the calling process image are set to be ignored
by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set
in the spawn-flags attribute of the object referenced by attrp and the signals being indicated in
the spawn-sigdefault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the child process, unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn-flags attribute
of the object referenced by attrp and the SIGCHLD signal being indicated in the
spawn-sigdefault attribute of the object referenced by attrp.

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced
by attrp as specified above or by the file descriptor manipulations specified in file_actions
appear in the new process image as though fork() had been called to create a child process
and then a member of the exec family of functions had been called by the child process to
execute the new process image.

The fork handlers are not run when posix_spawn() or posix_spawnp() is called.

Upon successful completion, posix_spawn() and posix_spawnp() return the process ID of
the child process to the parent process in the variable pointed to by a non-null pid argument,
and return zero as the function return value. Otherwise, no child process is created, the value
stored into the variable pointed to by a non-null pid is unspecified, and an error number is
returned as the function return value to indicate the error. If the pid argument is a null pointer,
the process ID of the child is not returned to the caller.

The posix_spawn() and posix_spawnp() functions will fail if:

EINVAL The value specified by file_actions or attrp is invalid.

If posix_spawn() or posix_spawnp() fails for any of the reasons that would cause fork() or
one of the exec family of functions to fail, an error value is returned as described by fork(2)
and exec(2), respectively

Return Values

Errors

posix_spawn(3C)

Basic Library Functions 607

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by attrp,
and posix_spawn() or posix_spawnp() fails while changing the child's process group, an
error value is returned as described by setpgid(2).

If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in the
spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or
posix_spawnp() fails for any of the reasons that would cause sched_setparam() to fail, an
error value is returned as described by sched_setparam(3C).

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
sched_setscheduler() to fail, an error value is returned as described by
sched_setscheduler(3C).

If the file_actions argument is not NULL and specifies any close(), dup2(), or open() actions
to be performed, and if posix_spawn() or posix_spawnp() fails for any of the reasons that
would cause close(), dup2(), or open() to fail, an error value is returned as described by
close(2), dup2(3C), or open(2), respectively. An open file action might, by itself, result in any
of the errors described by close() or dup2(), in addition to those described by open().

If a close(2) operation is specified to be performed for a file descriptor that is not open at the
time of the call to posix_spawn() or posix_spawnp(), the action does not cause
posix_spawn() or posix_spawnp() to fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

alarm(2), chmod(2), close(2), dup(2), exec(2), exit(2), fcntl(2), fork(2), kill(2), open(2),
setpgid(2), setuid(2), stat(2), times(2), dup2(3C), popen(3C),
posix_spawn_file_actions_addclose(3C), posix_spawn_file_actions_adddup2(3C),
posix_spawn_file_actions_addopen(3C), posix_spawn_file_actions_destroy(3C),
posix_spawn_file_actions_init(3C), posix_spawnattr_destroy(3C),
posix_spawnattr_getflags(3C), posix_spawnattr_getpgroup(3C),
posix_spawnattr_getschedparam(3C), posix_spawnattr_getschedpolicy(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigignore_np(3C),
posix_spawnattr_getsigmask(3C), posix_spawnattr_init(3C),
posix_spawnattr_setflags(3C), posix_spawnattr_setpgroup(3C),
posix_spawnattr_setschedparam(3C), posix_spawnattr_setschedpolicy(3C),
posix_spawnattr_setsigdefault(3C), posix_spawnattr_setsigignore_np(3C),

Attributes

See Also

posix_spawn(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Feb 2009608

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setpgid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setpgid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1times-2

posix_spawnattr_setsigmask(3C), sched_setparam(3C), sched_setscheduler(3C),
system(3C), wait(3C), attributes(5), standards(5)

The SUSv3 POSIX standard (The Open Group Base Specifications Issue 6, IEEE Std
1003.1-2001) permits the posix_spawn() and posix_spawnp() functions to return
successfully before some of the above-described errors are detected, allowing the child process
to fail instead:

... if the error occurs after the calling process

successfully returns, the child process exits with

exit status 127.

With the one exception of when the POSIX_SPAWN_NOEXECERR_NP flag is passed in the
attributes structure, this behavior is not present in the Solaris implementation. Any error that
occurs before the new process image is successfully constructed causes the posix_spawn()
and posix_spawnp() functions to return the corresponding non-zero error value without
creating a child process.

The POSIX_SPAWN_NOSIGCHLD_NP, POSIX_SPAWN_WAITPID_NP, POSIX_SPAWN_NOEXECERR_NP,
and POSIX_SPAWN_SETSIGIGN_NP flags and the posix_spawnattr_getsigignore_np() and
posix_spawnattr_setsigignore_np() functions are non-portable Solaris extensions to the
posix_spawn() and posix_spawnp() interfaces.

Notes

posix_spawn(3C)

Basic Library Functions 609

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_destroy, posix_spawnattr_init – destroy and initialize spawn attributes
object

#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);

int posix_spawnattr_init(posix_spawnattr_t *attr);

The posix_spawnattr_destroy() function destroys a spawn attributes object. A destroyed
attr attributes object can be reinitialized using posix_spawnattr_init(). The results of
otherwise referencing the object after it has been destroyed are undefined. An implementation
can cause posix_spawnattr_destroy() to set the object referenced by attr to an invalid value.

The posix_spawnattr_init() function initializes a spawn attributes object attr with the
default value for all of the individual attributes used by the implementation. Results are
undefined if posix_spawnattr_init() is called specifying an already initialized attr attributes
object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
specify the inheritance of process attributes across a spawn operation.

No attributes other than those defined by IEEE Std 1003.1-200x are provided.

The resulting spawn attributes object (possibly modified by setting individual attribute
values), is used to modify the behavior of posix_spawn(3C) or posix_spawnp(3C). After a
spawn attributes object has been used to spawn a process by a call to posix_spawn() or
posix_spawnp(), any function affecting the attributes object (including destruction) will not
affect any process that has been spawned in this way.

Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init()

return 0. Otherwise, an error number is returned to indicate the error.

The posix_spawnattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the spawn attributes object.

The posix_spawnattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_destroy(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004610

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn(3C), posix_spawnattr_getflags(3C), posix_spawnattr_getpgroup(3C),
posix_spawnattr_getschedparam(3C), posix_spawnattr_getschedpolicy(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigmask(3C), attributes(5),
standards(5)

See Also

posix_spawnattr_destroy(3C)

Basic Library Functions 611

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getflags, posix_spawnattr_setflags – get and set spawn-flags attribute of
spawn attributes object

#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t * attr, short flags);

The posix_spawnattr_getflags() function obtains the value of the spawn-flags attribute
from the attributes object referenced by attr.

The posix_spawnattr_setflags() function sets the spawn-flags attribute in an initialized
attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the
new process image when invoking posix_spawn(3C) or posix_spawnp(3C). It is the bitwise
inclusive-OR of zero or more of the following flags:

POSIX_SPAWN_RESETIDS

POSIX_SPAWN_SETPGROUP

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK

POSIX_SPAWN_SETSCHEDPARAM

POSIX_SPAWN_SETSCHEDULER

POSIX_SPAWN_NOSIGCHLD_NP

POSIX_SPAWN_WAITPID_NP

POSIX_SPAWN_NOEXECERR_NP

These flags are defined in <spawn.h>. The default value of this attribute is as if no flags were
set.

Upon successful completion, posix_spawnattr_getflags() returns 0 and stores the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter. Otherwise,
an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() returns 0. Otherwise, an error
number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setflags() function may fail if:

EINVAL The value of the attribute being set is not valid.

Name

Synopsis

Description

Return Values

Errors

posix_spawnattr_getflags(3C)

man pages section 3: Basic Library Functions • Last Revised 25 Sep 2008612

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getpgroup(3C),
posix_spawnattr_getschedparam(3C), posix_spawnattr_getschedpolicy(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigmask(3C), attributes(5),
standards(5)

Attributes

See Also

posix_spawnattr_getflags(3C)

Basic Library Functions 613

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getpgroup, posix_spawnattr_setpgroup – get and set spawn-pgroup
attribute of spawn attributes object

#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

The posix_spawnattr_getpgroup() function obtains the value of the spawn-pgroup attribute
from the attributes object referenced by attr.

The posix_spawnattr_setpgroup() function sets the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process
image in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute).
The default value of this attribute is zero.

Upon successful completion, posix_spawnattr_getpgroup() returns 0 and stores the value
of the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter.
Otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setpgroup() returns 0. Otherwise, an error
number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setpgroup() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

posix_spawn(3C), posix_spawnattr_getpgroup(3C), posix_spawnattr_getpgroup(3C),
posix_spawnattr_getschedparam(3C), posix_spawnattr_getschedpolicy(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigmask(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

posix_spawnattr_getpgroup(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004614

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getschedparam, posix_spawnattr_setschedparam – get and set
spawn-schedparam attribute of spawn attributes object

#include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict attr,
struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

The posix_spawnattr_getschedparam() function obtains the value of the
spawn-schedparam attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedparam() function sets the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the
new process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

Upon successful completion, posix_spawnattr_getschedparam() returns 0 and stores the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam() returns 0. Otherwise, an
error number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedparam() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_getschedparam(3C)

Basic Library Functions 615

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getflags(3C),
posix_spawnattr_getpgroup(3C), posix_spawnattr_getschedpolicy(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigmask(3C), attributes(5),
standards(5)

See Also

posix_spawnattr_getschedparam(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004616

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy – get and set
spawn-schedpolicy attribute of spawn attributes object

#include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedpolicy(

const posix_spawnattr_t *restrict attr,
int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

The posix_spawnattr_getschedpolicy() function obtains the value of the
spawn-schedpolicy attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy() function sets the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags
attribute). The default value of this attribute is unspecified.

Upon successful completion, posix_spawnattr_getschedpolicy() returns 0 and stores the
value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy() returns 0. Otherwise, an
error number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_getschedpolicy(3C)

Basic Library Functions 617

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getflags(3C),
posix_spawnattr_getpgroup(3C), posix_spawnattr_getschedparam(3C),
posix_spawnattr_getsigdefault(3C), posix_spawnattr_getsigmask(3C), attributes(5),
standards(5)

See Also

posix_spawnattr_getschedpolicy(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004618

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault – get and set spawn-sigdefault
attribute of spawn attributes object

#include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

The posix_spawnattr_getsigdefault() function obtains the value of the spawn-sigdefault
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function sets the spawn-sigdefault attribute in an
initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal
handling in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags
attribute) by a spawn operation. The default value of this attribute is an empty signal set.

Upon successful completion, posix_spawnattr_getsigdefault() returns 0 and stores the
value of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault
parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigdefault() returns 0. Otherwise, an
error number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigdefault() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_getsigdefault(3C)

Basic Library Functions 619

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getflags(3C),
posix_spawnattr_getpgroup(3C), posix_spawnattr_getschedparam(3C),
posix_spawnattr_getschedpolicy(3C), posix_spawnattr_getsigmask(3C),
attributes(5), standards(5)

See Also

posix_spawnattr_getsigdefault(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004620

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawnattr_getsigignore_np, posix_spawnattr_setsigignore_np – get and set
spawn-sigignore attribute of spawn attributes object

#include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigignore_np(

const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigignore);

int posix_spawnattr_setsigignore_np(

posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigignore);

The posix_spawnattr_getsigignore_np() function obtains the value of the spawn-sigignore
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigignore_np() function sets the spawn-sigignore attribute in an
initialized attributes object referenced by attr.

The spawn-sigignore attribute represents the set of signals to be forced to be ignored in the new
process image (if POSIX_SPAWN_SETSIGIGN_NP is set in the spawn-flags attribute) by a spawn
operation. The default value of this attribute is an empty signal set.

Upon successful completion, posix_spawnattr_getsigignore_np() returns 0 and stores the
value of the spawn-sigignore attribute of attr into the object referenced by the sigignore
parameter. Otherwise, an error value is returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigignore_np() returns 0. Otherwise,
an error value is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigignore_np() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_getsigignore_np(3C)

Basic Library Functions 621

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getflags(3C),
posix_spawnattr_getpgroup(3C), posix_spawnattr_getschedparam(3C),
posix_spawnattr_getschedpolicy(3C), posix_spawnattr_setsigdefault(3C),
posix_spawnattr_setsigmask(3C), attributes(5)

The POSIX_SPAWN_SETSIGIGN_NP flag and the posix_spawnattr_getsigignore_np() and
posix_spawnattr_setsigignore_np() functions are non-portable Solaris extensions to the
posix_spawn(3C) and posix_spawnp() interfaces.

See Also

Notes

posix_spawnattr_getsigignore_np(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Oct 2008622

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

posix_spawnattr_getsigmask, posix_spawnattr_setsigmask – get and set spawn-sigmask
attribute of spawn attributes object

#include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

The posix_spawnattr_getsigmask() function obtains the value of the spawn-sigmask
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigmask() function sets the spawn-sigmask attribute in an
initialized attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a
spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The default
value of this attribute is unspecified.

Upon successful completion, posix_spawnattr_getsigmask() returns 0 and stores the value
of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter.
Otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigmask() returns 0. Otherwise, an error
number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigmask() function may fail if:

EINVAL The value of the attribute being set is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

posix_spawnattr_getsigmask(3C)

Basic Library Functions 623

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn(3C), posix_spawnattr_destroy(3C), posix_spawnattr_getflags(3C),
posix_spawnattr_getpgroup(3C), posix_spawnattr_getschedparam(3C),
posix_spawnattr_getschedpolicy(3C), posix_spawnattr_getsigmask(3C),
attributes(5), standards(5)

See Also

posix_spawnattr_getsigmask(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004624

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen – add close or open
action to spawn file actions object

#include <spawn.h>

int posix_spawn_file_actions_addclose(

posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_addopen(

posix_spawn_file_actions_t *restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

These functions add or delete a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>)
and is used to specify a series of actions to be performed by a posix_spawn(3C) or
posix_spawn(3C) operation to arrive at the set of open file descriptors for the child process
given the set of open file descriptors of the parent.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(), specifies how
the set of open file descriptors in the calling process is transformed into a set of potentially
open file descriptors for the spawned process. This transformation occurs as though the
specified sequence of actions was performed exactly once, in the context of the spawned
process (prior to execution of the new process image), in the order in which the actions were
added to the object. Additionally, when the new process image is executed, any file descriptor
(from this new set) which has its FD_CLOEXEC flag set is closed (see posix_spawn(3C)).

The posix_spawn_file_actions_addclose() function adds a close action to the object
referenced by file_actions that causes the file descriptor fildes to be closed (as if close(fildes)
had been called) when a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen() function adds an open action to the object
referenced by file_actions that causes the file named by path to be opened (as if open(path,
oflag, mode) had been called, and the returned file descriptor, if not fildes, had been changed to
fildes) when a new process is spawned using this file actions object. If fildes was already an
open file descriptor, it is closed before the new file is opened.

The string described by path is copied by the posix_spawn_file_actions_addopen()
function.

Upon successful completion, these functions return 0. Otherwise, an error number is returned
to indicate the error.

These functions will fail if:

EBADF The value specified by fildes is negative or greater than or equal to {OPEN_MAX}.

These functions may fail if:

EINVAL The value specified by file_actions is invalid.

Name

Synopsis

Description

Return Values

Errors

posix_spawn_file_actions_addclose(3C)

Basic Library Functions 625

ENOMEM Insufficient memory exists to add to the spawn file actions object.

It is not considered an error for the fildes argument passed to these functions to specify a file
descriptor for which the specified operation could not be performed at the time of the call.
Any such error will be detected when the associated file actions object is later used during a
posix_spawn() or posix_spawnp() operation.

If a close(2) operation is specified for a file descriptor that is not open at the time of the call to
posix_spawn() or posix_spawnp(), the close operation will not cause the posix_spawn() or
posix_spawnp() operation to fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), dup(2), open(2), posix_spawn(3C), posix_spawn_file_actions_adddup2(3C),
posix_spawn_file_actions_destroy(3C), attributes(5), standards(5)

Attributes

See Also

posix_spawn_file_actions_addclose(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Feb 2009626

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn_file_actions_addclosefrom_np – add closefrom action to spawn file actions
object

#include <spawn.h>

int posix_spawn_file_actions_addclosefrom_np(

posix_spawn_file_actions_t *file_actions, int lowfildes);

The posix_spawn_file_actions_addclosefrom_np() function adds a closefrom action to
the object referenced by file_actions that causes all open file descriptors greater than or equal
to lowfildes to be closed when a new process is spawned using this file actions object (see
closefrom(3C)).

A spawn file actions object is as defined in posix_spawn_file_actions_addclose(3C).

Upon successful completion, the posix_spawn_file_actions_addclosefrom_np() function
returns 0. Otherwise, an error number is returned to indicate the error.

The posix_spawn_file_actions_addclosefrom_np() function will fail if:

EBADF The value specified by lowfildes is negative.

The posix_spawn_file_actions_addclosefrom_np() function may fail if:

EINVAL The value specified by file_actions is invalid.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

close(2), closefrom(3C), posix_spawn(3C), posix_spawn_file_actions_addclose(3C),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

posix_spawn_file_actions_addclosefrom_np(3C)

Basic Library Functions 627

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

posix_spawn_file_actions_adddup2 – add dup2 action to spawn file actions object

#include <spawn.h>

int posix_spawn_file_actions_adddup2(

posix_spawn_file_actions_t *file_actions, int fildes,
int newfildes);

The posix_spawn_file_actions_adddup2() function adds a dup2(3C) action to the object
referenced by file_actions that causes the file descriptor fildes to be duplicated as newfildes (as
if dup2(fildes, newfildes) had been called) when a new process is spawned using this file actions
object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose(3C).

Upon successful completion, the posix_spawn_file_actions_adddup2() function returns 0.
Otherwise, an error number is be returned to indicate the error.

The posix_spawn_file_actions_adddup2() function will fail if:

EBADF The value specified by fildes or newfildes is negative or greater than or equal to
{OPEN_MAX}.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2() function may fail if:

EINVAL The value specified by file_actions is invalid.

It is not considered an error for the fildes argument passed to
posix_spawn_file_actions_adddup2() to specify a file descriptor for which the specified
operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is later used during a posix_spawn(3C) or posix_spawnp(3C)
operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

dup2(3C), posix_spawn(3C), posix_spawn_file_actions_addclose(3C),
posix_spawn_file_actions_destroy(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

posix_spawn_file_actions_adddup2(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004628

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

posix_spawn_file_actions_destroy, posix_spawn_file_actions_init – destroy and initialize
spawn file actions object

#include <spawn.h>

int posix_spawn_file_actions_destroy(

posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_init(

posix_spawn_file_actions_t *file_actions);

The posix_spawn_file_actions_destroy() function destroys the object referenced by
file_actions. The object becomes, in effect, uninitialized. An implementation can cause
posix_spawn_file_actions_destroy() to set the object referenced by file_actions to an
invalid value. A destroyed spawn file actions object can be reinitialized using
posix_spawn_file_actions_init(). The results of otherwise referencing the object after it
has been destroyed are undefined.

The posix_spawn_file_actions_init() function initializes the object referenced by
file_actions to contain no file actions for posix_spawn(3C) or posix_spawnp(3C) to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose(3C).

The effect of initializing an already initialized spawn file actions object is undefined.

Upon successful completion, these functions return 0. Otherwise, an error number is returned
to indicate the error.

The posix_spawn_file_actions_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy() function will may if:

EINVAL The value specified by file_actions is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

posix_spawn(3C), posix_spawn_file_actions_addclose(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

posix_spawn_file_actions_destroy(3C)

Basic Library Functions 629

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

printf, fprintf, sprintf, snprintf, asprintf – print formatted output

#include <stdio.h>

int printf(const char *restrict format,
/* args*/ ...);

int fprintf(FILE *restrict stream, const char *restrict format,
/* args*/ ...);

int sprintf(char *restrict s, const char *restrict format,
/* args*/ ...);

int snprintf(char *restrict s, size_t n,
const char *restrict format, /* args*/ ...);

int asprintf(char ** ret, const char *restrict format,
/* args*/ ...);

The printf() function places output on the standard output stream stdout.

The fprintf() function places output on on the named output stream stream.

The sprintf() function places output, followed by the null byte (\0), in consecutive bytes
starting at s; it is the user's responsibility to ensure that enough storage is available.

The snprintf() function is identical to sprintf() with the addition of the argument n,
which specifies the size of the buffer referred to by s. If n is 0, nothing is written and s can be a
null pointer. Otherwise, output bytes beyond the n-1st are discarded instead of being written
to the array and a null byte is written at the end of the bytes actually written into the array.

The asprintf() function is the same as the sprintf() function except that it returns, in the
ret argument, a pointer to a buffer sufficiently large to hold the output string. This pointer
should be passed to free(3C) to release the allocated storage when it is no longer needed. If
sufficient space cannot be allocated, the asprintf() function returns -1 and sets ret to be a
NULL pointer.

Each of these functions converts, formats, and prints its arguments under control of the
format. The format is a character string, beginning and ending in its initial shift state, if any.
The format is composed of zero or more directives: ordinary characters, which are simply
copied to the output stream and conversion specifications, each of which results in the fetching
of zero or more arguments. The results are undefined if there are insufficient arguments for
the format. If the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion specifier % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX], giving
the position of the argument in the argument list. This feature provides for the definition of
format strings that select arguments in an order appropriate to specific languages (see the
EXAMPLES section).

Name

Synopsis

Description

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011630

In format strings containing the %n$ form of conversion specifications, numbered arguments
in the argument list can be referenced from the format string as many times as required.

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

All forms of the printf() functions allow for the insertion of a language-dependent radix
character in the output string. The radix character is defined by the program's locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

Each conversion specification is introduced by the % character or by the character sequence
%n$, after which the following appear in sequence:

■ An optional field, consisting of a decimal digit string followed by a $, specifying the next
argument to be converted. If this field is not provided, the args following the last argument
converted will be used.

■ Zero or more flags (in any order), which modify the meaning of the conversion
specification.

■ An optional minimum field width. If the converted value has fewer bytes than the field
width, it will be padded with spaces by default on the left; it will be padded on the right, if
the left-adjustment flag (-), described below, is given to the field width. The field width
takes the form of an asterisk (*), described below, or a decimal integer.
If the conversion specifier is s, a standard-conforming application (see standards(5))
interprets the field width as the minimum number of bytes to be printed; an application
that is not standard-conforming interprets the field width as the minimum number of
columns of screen display. For an application that is not standard-conforming, %10s
means if the converted value has a screen width of 7 columns, 3 spaces would be padded on
the right.
If the format is %ws, then the field width should be interpreted as the minimum number of
columns of screen display.

■ An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions (the field is padded with leading zeros); the number of digits to appear
after the radix character for the a, A, e, E, f, and F conversions, the maximum number of
significant digits for the g and G conversions; or the maximum number of bytes to be
printed from a string in s and S conversions. The precision takes the form of a period (.)
followed either by an asterisk (*), described below, or an optional decimal digit string,
where a null digit string is treated as 0. If a precision appears with any other conversion
specifier, the behavior is undefined.
If the conversion specifier is s or S, a standard-conforming application (see standards(5))
interprets the precision as the maximum number of bytes to be written; an application that
is not standard-conforming interprets the precision as the maximum number of columns

Conversion
Specifications

printf(3C)

Basic Library Functions 631

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

of screen display. For an application that is not standard-conforming, %.5s would print
only the portion of the string that would display in 5 screen columns. Only complete
characters are written.

For %ws, the precision should be interpreted as the maximum number of columns of screen
display. The precision takes the form of a period (.) followed by a decimal digit string; a
null digit string is treated as zero. Padding specified by the precision overrides the padding
specified by the field width.

■ An optional length modifier that specified the size of the argument.
■ A conversion specifier that indicates the type of conversion to be applied.

A field width, or precision, or both can be indicated by an asterisk (*) . In this case, an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted. A
negative field width is taken as a − flag followed by a positive field width. A negative precision
is taken as if the precision were omitted. In format strings containing the %n$ form of a
conversion specification, a field width or precision may be indicated by the sequence *m$,
where m is a decimal integer in the range [1, NL_ARGMAX] giving the position in the argument
list (after the format argument) of an integer argument containing the field width or precision,
for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing numbered
and unnumbered argument specifications in a format string are undefined. When numbered
argument specifications are used, specifying the Nth argument requires that all the leading
arguments, from the first to the (N–1)th, are specified in the format string.

The flag characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %F, %g, or
%G) will be formatted with thousands' grouping characters. For other conversions
the behavior is undefined. The non-monetary grouping character is used.

− The result of the conversion will be left-justified within the field. The conversion
will be right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or –). The
conversion will begin with a sign only when a negative value is converted if this flag
is not specified.

space If the first character of a signed conversion is not a sign or if a signed conversion
results in no characters, a space will be placed before the result. This means that if
the space and + flags both appear, the space flag will be ignored.

Flag Characters

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011632

The value is to be converted to an alternate form. For c, d, i, s, and u conversions,
the flag has no effect. For an o conversion, it increases the precision (if necessary) to
force the first digit of the result to be a zero. For x or X conversion, a non-zero result
will have 0x (or 0X) prepended to it. For a, A, e, E, f, F, g, and G conversions, the
result will always contain a radix character, even if no digits follow the radix
character. Without this flag, the radix character appears in the result of these
conversions only if a digit follows it. For g and G conversions, trailing zeros will not
be removed from the result as they normally are.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and − flags both appear, the 0 flag will be ignored. For d, i, o, u,
x, and X conversions, if a precision is specified, the 0 flag will be ignored. If the 0 and
’ flags both appear, the grouping characters are inserted before zero padding. For
other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have been
promoted according to the integer promotions, but its value will be
converted to signed char or unsigned char before printing); or that a
following n conversion specifier applies to a pointer to a signed char
argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
short or unsigned short argument (the argument will have been
promoted according to the integer promotions, but its value will be
converted to short or unsigned short before printing); or that a following
n conversion specifier applies to a pointer to a short argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
long or unsigned long argument; that a following n conversion specifier
applies to a pointer to a long argument; that a following c conversion
specifier applies to a wint_t argument; that a following s conversion
specifier applies to a pointer to a wchar_t argument; or has no effect on a
following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
long long or unsigned long long argument; or that a following n

conversion specifier applies to a pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an
intmax_t or uintmax_t argument; or that a following n conversion
specifier applies to a pointer to an intmax_t argument. See NOTES.

Length Modifiers

printf(3C)

Basic Library Functions 633

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding to size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned type argument; or that a
following n conversion specifier applies to a pointer to a ptrdiff_t
argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies
to a long double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

Each conversion specifier results in fetching zero or more arguments. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are ignored.

The conversion specifiers and their meanings are:

d, i The int argument is converted to a signed decimal in the style [−]dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is
no characters.

u The unsigned int argument is converted to unsigned decimal format in the style
dddd. The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit precision
of 0 is no characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style
dddd; the letters abcdef are used. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The result of converting 0
with an explicit precision of 0 is no characters.

X Behaves the same as the x conversion specifier except that letters ABCDEF are used
instead of abcdef.

Conversion Specifiers

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011634

f, F The double argument is converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the radix character (see setlocale(3C)) is equal to the
precision specification. If the precision is missing it is taken as 6; if the precision is
explicitly 0 and the # flag is not specified, no radix character appears. If a radix
character appears, at least 1 digit appears before it. The converted value is rounded to
fit the specified output format according to the prevailing floating point rounding
direction mode. If the conversion is not exact, an inexact exception is raised.

For the f specifier, a double argument representing an infinity or NaN is converted in
the style of the e conversion specifier, except that for an infinite argument, “infinity”
or “Infinity” is printed when the precision is at least 8 and “inf” or “Inf” is printed
otherwise.

For the F specifier, a double argument representing an infinity or NaN is converted in
the SUSv3 style of the E conversion specifier, except that for an infinite argument,
“INFINITY” is printed when the precision is at least 8 and or “INF” is printed
otherwise.

e, E The double argument is converted to the style [−]d.ddde±dd, where there is one digit
before the radix character (which is non-zero if the argument is non-zero) and the
number of digits after it is equal to the precision. When the precision is missing it is
taken as 6; if the precision is 0 and the # flag is not specified, no radix character
appears. The E conversion specifier will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits. The
converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised.

Infinity and NaN values are handled in one of the following ways:

SUSv3 For the e specifier, a double argument representing an infinity is printed
as “[−]infinity”, when the precision for the conversion is at least 7 and
as “[−]inf” otherwise. A double argument representing a NaN is printed
as “[−]nan”. For the E specifier, “INF”, “INFINITY”, and “NAN” are printed
instead of “inf”, “infinity”, and “nan”, respectively. Printing of the sign
follows the rules described above.

Default A double argument representing an infinity is printed as “[−]Infinity”,
when the precision for the conversion is at least 7 and as “[−]Inf”
otherwise. A double argument representing a NaN is printed as “[−]NaN”.
Printing of the sign follows the rules described above.

g, G The double argument is printed in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits. If
an explicit precision is 0, it is taken as 1. The style used depends on the value
converted: style e (or E) will be used only if the exponent resulting from the

printf(3C)

Basic Library Functions 635

conversion is less than –4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional part of the result. A radix character appears only if it is
followed by a digit.

A double argument representing an infinity or NaN is converted in the style of the e
or E conversion specifier, except that for an infinite argument, “infinity”, “INFINITY”,
or “Infinity” is printed when the precision is at least 8 and “inf”, “INF”, or “Inf” is
printed otherwise.

a, A A double argument representing a floating-point number is converted in the style
“[-]0xh.hhhhp±d”, where the single hexadecimal digit preceding the radix point is 0 if
the value converted is zero and 1 otherwise and the number of hexadecimal digits after
it is equal to the precision; if the precision is missing, the number of digits printed
after the radix point is 13 for the conversion of a double value, 16 for the conversion of
a long double value on x86, and 28 for the conversion of a long double value on
SPARC; if the precision is zero and the '#' flag is not specified, no decimal-point
character will appear. The letters “abcdef” are used for a conversion and the letters
“ABCDEF” for A conversion. The A conversion specifier produces a number with 'X' and
'P' instead of 'x' and 'p'. The exponent will always contain at least one digit, and only as
many more digits as necessary to represent the decimal exponent of 2. If the value is
zero, the exponent is zero.

The converted value is rounded to fit the specified output format according to the
prevailing floating point rounding direction mode. If the conversion is not exact, an
inexact exception is raised.

A double argument representing an infinity or NaN is converted in the SUSv3 style of
an e or E conversion specifier.

c The int argument is converted to an unsigned char, and the resulting byte is printed.

If an l (ell) qualifier is present, the wint_t argument is converted as if by an ls

conversion specification with no precision and an argument that points to a
two-element array of type wchar_t, the first element of which contains the wint_t
argument to the ls conversion specification and the second element contains a null
wide-character.

C Same as lc.

wc The int argument is converted to a wide character (wchar_t), and the resulting wide
character is printed.

s The argument must be a pointer to an array of char. Bytes from the array are written
up to (but not including) any terminating null byte. If a precision is specified, a
standard-conforming application (see standards(5)) will write only the number of
bytes specified by precision; an application that is not standard-conforming will write
only the portion of the string that will display in the number of columns of screen

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011636

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

display specified by precision. If the precision is not specified, it is taken to be infinite,
so all bytes up to the first null byte are printed. An argument with a null value will yield
undefined results.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type
wchar_t. Wide-characters from the array are converted to characters (each as if by a
call to the wcrtomb(3C) function, with the conversion state described by an mbstate_t

object initialized to zero before the first wide-character is converted) up to and
including a terminating null wide-character. The resulting characters are written up
to (but not including) the terminating null character (byte). If no precision is
specified, the array must contain a null wide-character. If a precision is specified, no
more than that many characters (bytes) are written (including shift sequences, if any),
and the array must contain a null wide-character if, to equal the character sequence
length given by the precision, the function would need to access a wide-character one
past the end of the array. In no case is a partial character written.

S Same as ls.

ws The argument must be a pointer to an array of wchar_t. Bytes from the array are
written up to (but not including) any terminating null character. If the precision is
specified, only that portion of the wide-character array that will display in the number
of columns of screen display specified by precision will be written. If the precision is
not specified, it is taken to be infinite, so all wide characters up to the first null
character are printed. An argument with a null value will yield undefined results.

p The argument must be a pointer to void. The value of the pointer is converted to a set
of sequences of printable characters, which should be the same as the set of sequences
that are matched by the %p conversion of the scanf(3C) function.

n The argument must be a pointer to an integer into which is written the number of
bytes written to the output standard I/O stream so far by this call to one of the
printf() functions. No argument is converted.

% Print a %; no argument is converted. The entire conversion specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by printf() and fprintf() are printed as if the
putc(3C) function had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of printf() or fprintf() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

printf(3C)

Basic Library Functions 637

The printf(), fprintf(), sprintf(), and asprintf() functions return the number of bytes
transmitted (excluding the terminating null byte in the case of sprintf() and asprintf()).

The snprintf() function returns the number of bytes that would have been written to s if n
had been sufficiently large (excluding the terminating null byte.) If the value of n is 0 on a call
to snprintf(), s can be a null pointer and the number of bytes that would have been written if
n had been sufficiently large (excluding the terminating null byte) is returned.

Each function returns a negative value if an output error was encountered.

For the conditions under which printf() and fprintf() will fail and may fail, refer to
fputc(3C) or fputwc(3C).

The snprintf() function will fail if:

EOVERFLOW The value of n is greater than INT_MAX or the number of bytes needed to hold
the output excluding the terminating null is greater than INT_MAX.

The printf(), fprintf(), sprintf(), and snprintf() functions may fail if:

EILSEQ A wide-character code that does not correspond to a valid character has been
detected.

EINVAL There are insufficient arguments.

The printf(), fprintf(), and asprintf() functions may fail due to an underlying
malloc(3C) failure if:

EAGAIN Storage space is temporarily unavailable.

ENOMEM Insufficient storage space is available.

If the application calling the printf() functions has any objects of type wint_t or wchar_t, it
must also include the header <wchar.h> to have these objects defined.

It is common to use the following escape sequences built into the C language when entering
format strings for the printf() functions, but these sequences are processed by the C
compiler, not by the printf() function.

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current position,
unless the current position is the start of a line.

\f Form feed. Move the printing position to the initial printing position of the next logical
page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current line.

Return Values

Errors

Usage

Escape Character
Sequences

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011638

\t Horizontal tab. Move the printing position to the next implementation-defined
horizontal tab position on the current line.

\v Vertical tab. Move the printing position to the start of the next
implementation-defined vertical tab position.

In addition, the C language supports character sequences of the form

\octal-number

and

\hex-number

which translates into the character represented by the octal or hexadecimal number. For
example, if ASCII representations are being used, the letter 'a' may be written as '\141' and 'Z'
as '\132'. This syntax is most frequently used to represent the null character as '\0'. This is
exactly equivalent to the numeric constant zero (0). Note that the octal number does not
include the zero prefix as it would for a normal octal constant. To specify a hexadecimal
number, omit the zero so that the prefix is an 'x' (uppercase 'X' is not allowed in this context).
Support for hexadecimal sequences is an ANSI extension. See standards(5).

EXAMPLE 1 To print the language-independent date and time format, the following statement could be
used:

printf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the string:

"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

EXAMPLE 2 To print a date and time in the form Sunday, July 3, 10:02, where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

EXAMPLE 3 To print pi to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0));

Examples

printf(3C)

Basic Library Functions 639

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

EXAMPLE 4 The following example applies only to applications that are not standard-conforming. To
print a list of names in columns which are 20 characters wide:

printf("%20s%20s%20s", lastname, firstname, middlename);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level See below.

Standard See below.

All of these functions can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. The sprintf() and snprintf()

functions are Async-Signal-Safe.

See standards(5) for the standards conformance of printf(), fprintf(), sprintf(), and
snprintf(). The asprintf() function is modeled on the one that appears in the FreeBSD,
NetBSD, and GNU C libraries.

exit(2), lseek(2), write(2), abort(3C), ecvt(3C), exit(3C), fclose(3C), fflush(3C),
fputwc(3C), free(3C), malloc(3C), putc(3C), scanf(3C), setlocale(3C), stdio(3C),
vprintf(3C), wcstombs(3C), wctomb(3C), attributes(5), environ(5), standards(5)

If the j length modifier is used, 32-bit applications that were compiled using c89 on releases
prior to Solaris 10 will experience undefined behavior.

The snprintf() return value when n = 0 was changed in the Solaris 10 release. The change
was based on the SUSv3 specification. The previous behavior was based on the initial SUSv2
specification, where snprintf() when n = 0 returns an unspecified value less than 1.

Attributes

See Also

Notes

printf(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jul 2011640

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

priv_addset, priv_allocset, priv_copyset, priv_delset, priv_emptyset, priv_basicset,
priv_fillset, priv_freeset, priv_intersect, priv_inverse, priv_isemptyset, priv_isequalset,
priv_isfullset, priv_ismember, priv_issubset, priv_union – privilege set manipulation
functions

#include <priv.h>

int priv_addset(priv_set_t *sp, const char *priv);

priv_set_t *priv_allocset(void);

void priv_copyset(const priv_set_t *src, priv_set_t *dst);

int priv_delset(priv_set_t *sp, const char *priv);

void priv_emptyset(priv_set_t *sp);

void priv_basicset(priv_set_t *sp);

void priv_fillset(priv_set_t *sp);

void priv_freeset(priv_set_t *sp);

void priv_intersect(const priv_set_t *src, priv_set_t *dst);

void priv_inverse(priv_set_t *sp);

boolean_t priv_isemptyset(const priv_set_t *sp);

boolean_t priv_isequalset(const priv_set_t *src, const priv_set_t *dst);

boolean_t priv_isfullset(const priv_set_t *sp);

boolean_t priv_ismember(const priv_set_t *sp, const char *priv);

boolean_t priv_issubset(const priv_set_t *src, const priv_set_t *dst);

void priv_union(const priv_set_t *src, priv_set_t *dst);

The sp, src, and dst arguments point to privilege sets. The priv argument points to a named
privilege.

The priv_addset() function adds the named privilege priv to sp.

The priv_allocset() function allocates sufficient memory to contain a privilege set. The
value of the returned privilege set is indeterminate. The function returns NULL and sets errno
when it fails to allocate memory.

The priv_copyset() function copies the set src to dst.

The priv_delset() function removes the named privilege priv from sp.

The priv_emptyset() function clears all privileges from sp.

The priv_basicset() function copies the basic privilege set to sp.

Name

Synopsis

Description

priv_addset(3C)

Basic Library Functions 641

The priv_fillset() function asserts all privileges in sp, including the privileges not currently
defined in the system.

The priv_freeset() function frees the storage allocated by priv_allocset().

The priv_intersect() function intersects src with dst and places the results in dst.

The priv_inverse() function inverts the privilege set given as argument in place.

The priv_isemptyset() function checks whether the argument is an empty set.

The priv_isequalset() function checks whether the privilege set src is equal to dst.

The priv_isfullset() function checks whether the argument is a full set. A full set is a set
with all bits set, regardless of whether the privilege is currently defined in the system.

The priv_ismember() function checks whether the named privilege priv is a member of sp.

The priv_issubset() function checks whether src is a subset of dst.

The priv_union() function takes the union of src and dst and places the result in dst.

Upon successful completion, priv_allocset() returns a pointer to an opaque data structure.
It returns NULL if memory allocation fails and sets errno to indicate the error.

Upon successful completion, priv_isemptyset(), priv_isfullset(), priv_isequalset(),
priv_issubset(), and priv_ismember() return B_TRUE. Otherwise, they return B_FALSE.

Upon successful completion, priv_delset() and priv_addset() return 0. Otherwise, they
return -1 and set errno to indicate the error.

The priv_allocset() function will fail if:

ENOMEM The physical limits of the system are exceeded by the memory allocation needed to
hold a privilege set.

EAGAIN There is insufficient memory for allocation to hold a privilege set. The application
can try again later.

The priv_delset() and priv_addset() functions will fail if:

EINVAL The privilege argument is not a valid privilege name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Return Values

Errors

Attributes

priv_addset(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Jan 2010642

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

setppriv(2), malloc(3C), priv_str_to_set(3C), attributes(5), privileges(5)

The functions that compare sets operate on all bits of the set, regardless of whether the specific
privileges are currently defined in the system.

See Also

Notes

priv_addset(3C)

Basic Library Functions 643

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5

priv_set, priv_ineffect – change privilege sets and check whether privileges are set

#include <priv.h>

int priv_set(priv_op_t op, priv_ptype_t which...);

boolean_t priv_ineffect(const char *priv);

The priv_set() function is a convenient wrapper for the setppriv(2) function. It takes three
or more arguments. The operation argument, op, can be one of PRIV_OFF, PRIV_ON or
PRIV_SET. The which argument is the name of the privilege set to change. The third argument
is a list of zero or more privilege names terminated with a null pointer. If which is the special
pseudo set PRIV_ALLSETS, the operation should be applied to all privilege sets.

The specified privileges are converted to a binary privilege set and setppriv() is called with
the same op and which arguments. When called with PRIV_ALLSETS as the value for the which
argument, setppriv() is called for each set in turn, aborting on the first failed call.

The priv_ineffect() function is a convenient wrapper for the getppriv(2) function. The
priv argument specifies the name of the privilege for which this function checks its presence in
the effective set.

Upon successful completion, priv_set() return 0. Otherwise, -1 is returned and errno is set
to indicate the error.

If priv is a valid privilege that is a member of the effective set, priv_ineffect() returns
B_TRUE. Otherwise, it returns B_FALSE and sets errno to indicate the error.

The priv_set() function will fail if:

EINVAL The value of op or which is out of range.

ENOMEM Insufficient memory was allocated.

EPERM The application attempted to add privileges to PRIV_LIMIT or PRIV_PERMITTED, or
the application attempted to add privileges to PRIV_INHERITABLE or
PRIV_EFFECTIVE that were not in PRIV_PERMITTED.

The priv_ineffect() function will fail if:

EINVAL The privilege specified by priv is invalid.

ENOMEM Insufficient memory was allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

priv_set(3C)

man pages section 3: Basic Library Functions • Last Revised 25 Sep 2003644

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setppriv(2), priv_str_to_set(3C), attributes(5), privileges(5)See Also

priv_set(3C)

Basic Library Functions 645

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5

priv_str_to_set, priv_set_to_str, priv_getbyname, priv_getbynum, priv_getsetbyname,
priv_getsetbynum, priv_gettext – privilege name functions

#include <priv.h>

priv_set_t *priv_str_to_set(const char *buf, const char *sep,
const char **endptr);

char *priv_set_to_str(const priv_set_t *set, char sep, int flag);

int priv_getbyname(const char *privname);

const char *priv_getbynum(int privnum);

int priv_getsetbyname(const char *privsetname);

const char *priv_getsetbynum(int privname);

char *priv_gettext(const char *privname);

The priv_str_to_set() function maps the privilege specification in buf to a privilege set. It
returns a privilege set on success or NULL on failure. If an error occurs when parsing the string,
a pointer to the remainder of the string is stored in the object pointed to by endptr, provided
that endptr is not a null pointer. If an error occurs when allocating memory, errno is set and
the object pointed to by endptr is set to the null pointer, provided that endptr is not a null
pointer.

The application is responsible for freeing the returned privilege set using priv_freeset(3C).

A privilege specification should contain one or more privilege names, separated by characters
in sep using the same algorithm as strtok(3C). Privileges can optionally be preceded by a dash
(-) or an exclamation mark (!), in which case they are excluded from the resulting set. The
special strings “none” for the empty set, “all” for the set of all privileges, “zone” for the set of all
privileges available within the caller's zone, and “basic” for the set of basic privileges are also
recognized. Set specifications are interpreted from left to right.

The priv_set_to_str() function converts the privilege set to a sequence of privileges
separated by sep, returning the a pointer to the dynamically allocated result. The application is
responsible for freeing the memory using free(3C).

To maintain future compatibility, the “basic” set of privileges is included as
“basic,!missing_basic_priv1,...”. When further currently unprivileged operations migrate to
the basic privilege set, the conversion back of the result with priv_str_to_set() includes the
additional basic privileges, guaranteeing that the resulting privilege set carries the same
privileges. This behavior is the default and is equivalent to specifying a flag argument of
PRIV_STR_PORT. When specifying a flag argument of PRIV_STR_LIT, the result does not treat
basic privileges differently and the privileges present are all literally presented in the output. A
flag argument of PRIV_STR_SHORT attempts to arrive at the shortest output, using the tokens
“basic”, “zone”, “all”, and negated privileges. This output is most useful for trace output.

Name

Synopsis

Description

priv_str_to_set(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Jan 2004646

The priv_getbyname() and priv_getsetbyname() functions map privilege names and
privilege set names to numbers. The numbers returned are valid for the current kernel
instance only and could change at the next boot. Only the privilege names should be
committed to persistent storage. The numbers should not be committed to persistent storage.
Both functions return -1 on error, setting errno to EINVAL.

The priv_getbynum() and priv_getsetbynum() functions map privileges numbers to names.
The strings returned point to shared storage that should not be modified and is valid for the
lifetime of the process. Both functions return NULL on error, setting errno to EINVAL.

The priv_gettext() function returns a pointer to a string consisting of one or more
newline-separated lines of text describing the privilege. The text is localized using
{LC_MESSAGES}. The application is responsible for freeing the memory returned.

These functions pick up privileges allocated during the lifetime of the process using
priv_getbyname(9F) by refreshing the internal data structures when necessary.

Upon successful completion, priv_str_to_set() and priv_set_to_str() return a non-null
pointer to allocated memory that should be freed by the application using the appropriate
functions when it is no longer referenced.

The priv_getbynum() and priv_getsetbynum() functions return non-null pointers to
constant memory that should not be modified or freed by the application. Otherwise, NULL is
returned and errno is set to indicate the error.

Upon successful completion, priv_getbyname() and priv_getsetbyname() return a
non-negative integer. Otherwise, -1 is returned and errno is set to indicate the error.

Upon successful completion, priv_gettext() returns a non-null value. It returns NULL if an
error occurs or no descriptive text for the specified privilege can be found.

The priv_str_to_set() and priv_set_to_str() functions will fail if:

ENOMEM The physical limits of the system are exceeded by the memory allocation needed to
hold a privilege set.

EAGAIN There is not enough memory available to allocate sufficient memory to hold a
privilege set, but the application could try again later.

All of these functions will fail if:

EINVAL One or more of the arguments is invalid.

EXAMPLE 1 List all the sets and privileges defined in the system.

The following example lists all the sets and privileges defined in the system.

#include <priv.h>

#include <stdio.h>

Return Values

Errors

Examples

priv_str_to_set(3C)

Basic Library Functions 647

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priv-getbyname-9f

EXAMPLE 1 List all the sets and privileges defined in the system. (Continued)

/* list all the sets and privileges defined in the system */

const char *name;

int i;

printf("Each process has the following privilege sets:\n");
for (i = 0; (name = priv_getsetbynum(i++)) != NULL;)

printf("\t%s\n", name);

printf("Each set can contain the following privileges:\n");
for (i = 0; (name = priv_getbynum(i++)) != NULL;)

printf("\t%s\n", name);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

free(3C), priv_set(3C), attributes(5), privileges(5), priv_getbyname(9F)

Attributes

See Also

priv_str_to_set(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Jan 2004648

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priv-getbyname-9f

pset_getloadavg – get system load averages for a processor set

#include <sys/pset.h>

#include <sys/loadavg.h>

int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);

The pset_getloadavg() function returns the number of processes assigned to the specified
processor set that are in the system run queue, averaged over various periods of time. Up to
nelem samples are retrieved and assigned to successive elements of loadavg[]. The system
imposes a maximum of 3 samples, representing averages over the last 1, 5, and 15 minutes,
respectively.

The LOADAVG_1MIN, LOADAVG_5MIN, and LOADAVG_15MIN indices, defined in
<sys/loadavg.h>, can be used to extract the data from the appropriate element of the
loadavg[] array.

If pset is PS_NONE, the load average for processes not assigned to a processor set is returned.

If pset is PS_MYID, the load average for the processor set to which the caller is bound is
returned. If the caller is not bound to a processor set, the result is the same as if PS_NONE was
specified.

Upon successful completion, the number of samples actually retrieved is returned. If the load
average was unobtainable or the processor set does not exist, −1 is returned and errno is set to
indicate the error.

The pset_getloadavg() function will fail if:

EINVAL The number of elements specified is less than 0, or an invalid processor set ID was
specified.

The caller is in a non-global zone, the pools facility is active, and the specified
processor set is not that of the zone's pool.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

uptime(1), w(1), psrset(1M), prstat(1M), pset_bind(2), pset_create(2), Kstat(3PERL),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pset_getloadavg(3C)

Basic Library Functions 649

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uptime-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1w-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1psrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1prstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-bind-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pset-create-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-3perl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

psignal, psiginfo – system signal messages

#include <siginfo.h>

void psignal(int sig, const char *s);

void psiginfo(siginfo_t *pinfo, char *s);

The psignal() and psiginfo() functions produce messages on the standard error output
describing a signal. The sig argument is a signal that may have been passed as the first
argument to a signal handler. The pinfo argument is a pointer to a siginfo structure that may
have been passed as the second argument to an enhanced signal handler. See sigaction(2).
The argument string s is printed first, followed by a colon and a blank, followed by the message
and a NEWLINE character.

Messages printed from these functions are in the native language specified by the
LC_MESSAGES locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

sigaction(2), gettext(3C), perror(3C), setlocale(3C), siginfo.h(3HEAD),
signal.h(3HEAD), attributes(5)

Name

Synopsis

Description

Usage

Attributes

See Also

psignal(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2005650

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

pthread_atfork – register fork handlers

#include <sys/types.h>

#include <unistd.h>

int pthread_atfork(void (*prepare) (void), void (*parent) (void),

void (*child) (void));

The pthread_atfork() function declares fork handlers to be called prior to and following
fork(2), within the thread that called fork(). The order of calls to pthread_atfork() is
significant.

Before fork() processing begins, the prepare fork handler is called. The prepare handler is not
called if its address is NULL.

The parent fork handler is called after fork() processing finishes in the parent process, and
the child fork handler is called after fork() processing finishes in the child process. If the
address of parent or child is NULL, then its handler is not called.

The prepare fork handler is called in LIFO (last-in first-out) order, whereas the parent and
child fork handlers are called in FIFO (first-in first-out) order. This calling order allows
applications to preserve locking order.

Upon successful completion, pthread_atfork() returns 0. Otherwise, an error number is
returned.

The pthread_atfork() function will fail if:

ENOMEM Insufficient table space exists to record the fork handler addresses.

Solaris threads do not offer pthread_atfork() functionality (there is no thr_atfork()

interface). However, a Solaris threads application can call pthread_atfork() to ensure
fork()–safety, since the two thread APIs are interoperable. Seefork(2) for information
relating to fork() in a Solaris threads environment in Solaris 10 relative to previous releases.

EXAMPLE 1 Make a library safe with respect to fork().

All multithreaded applications that call fork() in a POSIX threads program and do more than
simply call exec(2) in the child of the fork need to ensure that the child is protected from
deadlock.

Since the "fork-one" model results in duplicating only the thread that called fork(), it is
possible that at the time of the call another thread in the parent owns a lock. This thread is not
duplicated in the child, so no thread will unlock this lock in the child. Deadlock occurs if the
single thread in the child needs this lock.

The problem is more serious with locks in libraries. Since a library writer does not know if the
application using the library calls fork(), the library must protect itself from such a deadlock

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

pthread_atfork(3C)

Basic Library Functions 651

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

EXAMPLE 1 Make a library safe with respect to fork(). (Continued)

scenario. If the application that links with this library calls fork() and does not call exec() in
the child, and if it needs a library lock that may be held by some other thread in the parent that
is inside the library at the time of the fork, the application deadlocks inside the library.

The following describes how to make a library safe with respect to fork() by using
pthread_atfork().

1. Identify all locks used by the library (for example {L1, . . .Ln}). Identify also the
locking order for these locks (for example {L1 . . .Ln}, as well.)

2. Add a call to pthread_atfork(f1, f2, f3) in the library's .init section. f1, f2, f3 are
defined as follows:

f1()

{

/* ordered in lock order */

pthread_mutex_lock(L1);

pthread_mutex_lock(. . .);

pthread_mutex_lock(Ln);

}

f2()

{

pthread_mutex_unlock(L1);

pthread_mutex_unlock(. . .);

pthread_mutex_unlock(Ln);

}

f3()

{

pthread_mutex_unlock(L1);

pthread_mutex_unlock(. . .);

pthread_mutex_unlock(Ln);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Attributes

pthread_atfork(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Dec 2003652

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

exec(2), fork(2), atexit(3C), attributes(5), standards(5)See Also

pthread_atfork(3C)

Basic Library Functions 653

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getdetachstate, pthread_attr_setdetachstate – get or set detachstate attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr,
int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

The detachstate attribute controls whether the thread is created in a detached state. If the
thread is created detached, then use of the ID of the newly created thread by the
pthread_detach() or pthread_join() function is an error.

The pthread_attr_setdetachstate() and pthread_attr_getdetachstate(), respectively,
set and get the detachstate attribute in the attr object.

The detachstate can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all threads created
with attr to be in the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE
causes all threads created with attr to be in the joinable state. The default value of the
detachstate attribute is PTHREAD_CREATE_JOINABLE.

Upon successful completion, pthread_attr_setdetachstate() and
pthread_attr_getdetachstate() return a value of 0. Otherwise, an error number is
returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute
in detachstate if successful.

The pthread_attr_setdetachstate() or pthread_attr_getdetachstate() functions may
fail if:

EINVAL attr or detachstate is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setstackaddr(3C),
pthread_attr_setstacksize(3C), pthread_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_attr_getdetachstate(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005654

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getguardsize, pthread_attr_setguardsize – get or set thread guardsize attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

The guardsize attribute controls the size of the guard area for the created thread's stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread's stack
is created with guard protection, the implementation allocates extra memory at the overflow
end of the stack as a buffer against stack overflow of the stack pointer. If an application
overflows into this buffer an error results (possibly in a SIGSEGV signal being delivered to the
thread).

The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application that
creates a large number of threads, and which knows its threads will never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

The pthread_attr_getguardsize() function gets the guardsize attribute in the attr object.
This attribute is returned in the guardsize parameter.

The pthread_attr_setguardsize() function sets the guardsize attribute in the attr object.
The new value of this attribute is obtained from the guardsize parameter. If guardsize is 0, a
guard area will not be provided for threads created with attr. If guardsize is greater than 0, a
guard area of at least size guardsize bytes is provided for each thread created with attr.

A conforming implementation is permitted to round up the value contained in guardsize to a
multiple of the configurable system variable PAGESIZE. If an implementation rounds up the
value of guardsize to a multiple of PAGESIZE, a call to pthread_attr_getguardsize()

specifying attr will store in the guardsize parameter the guard size specified by the previous
pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is
implementation-dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own
thread stacks), the guardsize attribute is ignored and no protection will be provided by the
implementation. It is the responsibility of the application to manage stack overflow along with
stack allocation and management in this case.

Name

Synopsis

Description

pthread_attr_getguardsize(3C)

Basic Library Functions 655

If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize()

functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions will fail
if:

EINVAL The attribute attr is invalid.

EINVAL The parameter guardsize is invalid.

EINVAL The parameter guardsize contains an invalid value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sysconf(3C), pthread_attr_init(3C), attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

pthread_attr_getguardsize(3C)

man pages section 3: Basic Library Functions • Last Revised 23 mar 2005656

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getinheritsched, pthread_attr_setinheritsched – get or set inheritsched attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);

The functions pthread_attr_setinheritsched() and pthread_attr_getinheritsched(),
respectively, set and get the inheritsched attribute in the attr argument.

When the attribute objects are used by pthread_create(), the inheritsched attribute
determines how the other scheduling attributes of the created thread are to be set:

PTHREAD_INHERIT_SCHED Specifies that the scheduling policy and associated attributes
are to be inherited from the creating thread, and the
scheduling attributes in this attr argument are to be ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the scheduling policy and associated attributes
are to be set to the corresponding values from this attribute
object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in the
header <pthread.h>.

If successful, the pthread_attr_setinheritsched() and
pthread_attr_getinheritsched() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_attr_setinheritsched() or pthread_attr_getinheritsched() functions
may fail if:

EINVAL attr or inheritsched is invalid.

After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

pthread_attr_getinheritsched(3C)

Basic Library Functions 657

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getschedparam(3C), pthread_attr_init(3C),
pthread_attr_setscope(3C), pthread_attr_setschedpolicy(3C), pthread_create(3C),
pthread_setschedparam(3C), attributes(5), standards(5)

See Also

pthread_attr_getinheritsched(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005658

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getschedparam, pthread_attr_setschedparam – get or set schedparam attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

The functions pthread_attr_setschedparam() and pthread_attr_getschedparam(),
respectively, set and get the scheduling parameter attributes in the attr argument. The
contents of the param structure are defined in <sched.h>. The only required member of
param is sched_priority.

If successful, the pthread_attr_setschedparam() and pthread_attr_getschedparam()

functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_setschedparam() function may fail if:

EINVAL attr is invalid.

The pthread_attr_getschedparam() function may fail if:

EINVAL attr or param is invalid.

After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setscope(3C),
pthread_attr_setinheritsched(3C), pthread_attr_setschedpolicy(3C),
pthread_create(3C), pthread_setschedparam(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

pthread_attr_getschedparam(3C)

Basic Library Functions 659

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy – get or set schedpolicy attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

The functions pthread_attr_setschedpolicy() and pthread_attr_getschedpolicy(),
respectively, set and get the schedpolicy attribute in the attr argument.

Supported values of policy include SCHED_FIFO, SCHED_RR and SCHED_OTHER, which are
defined by the header <sched.h>. When threads executing with the scheduling policy
SCHED_FIFO or SCHED_RR are waiting on a mutex, they acquire the mutex in priority order
when the mutex is unlocked.

See sched.h(3HEAD) for a description of all defined policy values. Valid policy values can
also be obtained from pthread_getschedparam(3C) and sched_getscheduler(3C).

If successful, the pthread_attr_setschedpolicy() and pthread_attr_getschedpolicy()

functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_setschedpolicy() or pthread_attr_getschedpolicy() function may
fail if:

EINVAL attr or policy is invalid.

After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setscope(3C),
pthread_attr_setinheritsched(3C), pthread_attr_setschedparam(3C),
pthread_create(3C), pthread_getschedparam(3C), sched.h(3HEAD),
sched_getscheduler(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

pthread_attr_getschedpolicy(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008660

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getscope, pthread_attr_setscope – get or set contentionscope attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

The pthread_attr_setscope() and pthread_attr_getscope() functions are used to set and
get the contentionscope attribute in the attr object.

The contentionscope attribute can have the value PTHREAD_SCOPE_SYSTEM, signifying system
scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process scheduling
contention scope.

The symbols PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS are defined by the header
<pthread.h>.

If successful, the pthread_attr_setscope() and pthread_attr_getscope() functions
return 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_setscope(), or pthread_attr_getscope(), function may fail if:

EINVAL attr or contentionscope is invalid.

After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setinheritsched(3C),
pthread_attr_setschedpolicy(3C), pthread_attr_setschedparam(3C),
pthread_create(3C), pthread_setschedparam(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

pthread_attr_getscope(3C)

Basic Library Functions 661

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getstack, pthread_attr_setstack – get or set stack attributes

cc -mt [flag...] file... -lpthread [library...]

#include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t * attr, void *stackaddr,
size_t stacksize);

The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, get
and set the thread creation stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created thread's stack. The
base (lowest addressable byte) of the storage is stackaddr, and the size of the storage is stacksize
bytes. The stacksize argument must be at least {PTHREAD_STACK_MIN}. The stackaddr argument
must be aligned appropriately to be used as a stack; for example, pthread_attr_setstack()
might fail with EINVAL if (stackaddr & 0x7) is not 0. All pages within the stack described by
stackaddr and stacksize are both readable and writable by the thread.

Upon successful completion, these functions return a 0; otherwise, an error number is
returned to indicate the error.

The pthread_attr_getstack() function stores the stack attribute values in stackaddr and
stacksize if successful.

The pthread_attr_setstack() function will fail if:

EINVAL The value of stacksize is less than {PTHREAD_STACK_MIN}.

The pthread_attr_setstack() function may fail if:

EACCES The stack page(s) described by stackaddr and stacksize are not both readable and
writable by the thread.

EINVAL The value of stackaddr does not have proper alignment to be used as a stack, or
(stackaddr + stacksize) lacks proper alignment.

These functions are appropriate for use by applications in an environment where the stack for
a thread must be placed in some particular region of memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

pthread_attr_getstack(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005662

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setdetachstate(3C),
pthread_attr_setstacksize(3C), pthread_create(3C), attributes(5)

See Also

pthread_attr_getstack(3C)

Basic Library Functions 663

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

pthread_attr_getstackaddr, pthread_attr_setstackaddr – get or set stackaddr attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,
void **restrict stackaddr);

int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);

The functions pthread_attr_setstackaddr() and pthread_attr_getstackaddr(),
respectively, set and get the thread creation stackaddr attribute in the attr object. The
stackaddr default is NULL. See pthread_create(3C).

The stackaddr attribute specifies the location of storage to be used for the created thread's
stack. The size of the storage is at least PTHREAD_STACK_MIN.

Upon successful completion, pthread_attr_setstackaddr() and
pthread_attr_getstackaddr() return a value of 0. Otherwise, an error number is returned
to indicate the error.

If successful, the pthread_attr_getstackaddr() function stores the stackaddr attribute value
in stackaddr.

The pthread_attr_setstackaddr() function may fail if:

EINVAL attr is invalid.

The pthread_attr_getstackaddr() function may fail if:

EINVAL attr or stackaddr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setdetachstate(3C),
pthread_attr_setstacksize(3C), pthread_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_attr_getstackaddr(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005664

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_getstacksize, pthread_attr_setstacksize – get or set stacksize attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

The functions pthread_attr_setstacksize() and pthread_attr_getstacksize(),
respectively, set and get the thread creation stacksize attribute in the attr object.

The stacksize attribute defines the minimum stack size (in bytes) allocated for the created
threads stack. When the stacksize argument is NULL, the default stack size becomes 1 megabyte
for 32-bit processes and 2 megabytes for 64-bit processes.

Upon successful completion, pthread_attr_setstacksize() and
pthread_attr_getstacksize() return a value of 0. Otherwise, an error number is returned
to indicate the error. The pthread_attr_getstacksize() function stores the stacksize
attribute value in stacksize if successful.

The pthread_attr_setstacksize() or pthread_attr_getstacksize() function may fail if:

EINVAL attr or stacksize is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), pthread_attr_setstackaddr(3C),
pthread_attr_setdetachstate(3C), pthread_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_attr_getstacksize(3C)

Basic Library Functions 665

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_attr_init, pthread_attr_destroy – initialize or destroy threads attribute object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

The function pthread_attr_init() initializes a thread attributes object attr with the default
value for all of the individual attributes used by a given implementation.

The resulting attribute object (possibly modified by setting individual attribute values), when
used by pthread_create(), defines the attributes of the thread created. A single attributes
object can be used in multiple simultaneous calls to pthread_create().

The pthread_attr_init() function initializes a thread attributes object (attr) with the
default value for each attribute as follows:

Attribute Default Value Meaning of Default

contentionscope PTHREAD_SCOPE_PROCESS resource competition within
process

detachstate PTHREAD_CREATE_JOINABLE joinable by other threads

stackaddr NULL stack allocated by system

stacksize 0 1 or 2 megabyte

priority 0 priority of the thread

policy SCHED_OTHER traditional time-sharing policy

inheritsched PTHREAD_INHERIT_SCHED scheduling policy and parameters
are inherited from the creating
thread

guardsize PAGESIZE size of guard area for a thread's
created stack

The pthread_attr_destroy() function destroys a thread attributes object (attr), which
cannot be reused until it is reinitialized. An implementation may cause
pthread_attr_destroy() to set attr to an implementation-dependent invalid value. The
behavior of using the attribute after it has been destroyed is undefined.

Upon successful completion, pthread_attr_init() and pthread_attr_destroy() return a
value of 0. Otherwise, an error number is returned to indicate the error.

Name

Synopsis

Description

Return Values

pthread_attr_init(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008666

The pthread_attr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the thread attributes object.

The pthread_attr_destroy() function may fail if:

EINVAL attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sysconf(3C), pthread_attr_getdetachstate(3C), pthread_attr_getguardsize(3C),
pthread_attr_getinheritsched(3C), pthread_attr_getschedparam(3C),
pthread_attr_getschedpolicy(3C), pthread_attr_getscope(3C),
pthread_attr_getstackaddr(3C), pthread_attr_getstacksize(3C),
pthread_attr_setdetachstate(3C), pthread_attr_setguardsize(3C),
pthread_attr_setinheritsched(3C), pthread_attr_setschedparam(3C),
pthread_attr_setschedpolicy(3C), pthread_attr_setscope(3C),
pthread_attr_setstackaddr(3C), pthread_attr_setstacksize(3C),
pthread_create(3C), attributes(5), standards(5)

Errors

Attributes

See Also

pthread_attr_init(3C)

Basic Library Functions 667

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_barrierattr_destroy, pthread_barrierattr_init – destroy and initialize barrier
attributes object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

The pthread_barrierattr_destroy() function destroys a barrier attributes object. A
destroyed attr attributes object can be reinitialized using pthread_barrierattr_init(). The
results of otherwise referencing the object after it has been destroyed are undefined. An
implementation can cause pthread_barrierattr_destroy() to set the object referenced by
attr to an invalid value.

The pthread_barrierattr_init() function initializes a barrier attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_barrierattr_init() is called specifying an already
initialized attr attributes object.

After a barrier attributes object has been used to initialize one or more barriers, any function
affecting the attributes object (including destruction) does not affect any previously initialized
barrier.

Upon successful completion, the pthread_barrierattr_destroy() and
pthread_barrierattr_init() functions returns 0. Otherwise, an error number is returned
to indicate the error.

The pthread_barrierattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the barrier attributes object.

The pthread_barrierattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_barrierattr_destroy(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004668

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_barrierattr_getpshared(3C), attributes(5), standards(5)See Also

pthread_barrierattr_destroy(3C)

Basic Library Functions 669

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_barrierattr_getpshared, pthread_barrierattr_setpshared – get and set process-shared
attribute of barrier attributes object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_barrierattr_getpshared(

const pthread_barrierattr_t *restrict attr,
int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

The pthread_barrierattr_getpshared() function obtains the value of the process-shared
attribute from the attributes object referenced by attr. The
pthread_barrierattr_setpshared() function sets the process-shared attribute in an
initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be
operated upon by any thread that has access to the memory where the barrier is allocated. If
the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the barrier will only be operated
upon by threads created within the same process as the thread that initialized the barrier. If
threads of different processes attempt to operate on such a barrier, the behavior is undefined.

The default value of the attribute is PTHREAD_PROCESS_PRIVATE. Both constants
PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE are defined in <pthread.h>.

No barrier attributes other than the process-shared attribute are provided.

Upon successful completion, the pthread_barrierattr_getpshared() function returns 0
and stores the value of the process-shared attribute of attr into the object referenced by the
pshared parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, the pthread_barrierattr_setpshared() function returns 0.
Otherwise, an error number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The pthread_barrierattr_setpshared() function may fail if:

EINVAL The new value specified for the process-shared attribute is not one of the legal
values PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_barrierattr_getpshared(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004670

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_barrier_init(3C), pthread_barrierattr_destroy(3C), attributes(5),
standards(5)

See Also

pthread_barrierattr_getpshared(3C)

Basic Library Functions 671

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_barrier_destroy, pthread_barrier_init – destroy and initialize a barrier object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_init(pthread_barrier_t *barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

The pthread_barrier_destroy() function destroys the barrier referenced by barrier and
releases any resources used by the barrier. The effect of subsequent use of the barrier is
undefined until the barrier is reinitialized by another call to pthread_barrier_init(). An
implementation can use this function to set barrier to an invalid value. The results are
undefined if pthread_barrier_destroy() is called when any thread is blocked on the barrier,
or if this function is called with an uninitialized barrier.

The pthread_barrier_init() function allocates any resources required to use the barrier
referenced by barrier and initializes the barrier with attributes referenced by attr. If attr is
NULL, the default barrier attributes are used; the effect is the same as passing the address of a
default barrier attributes object. The results are undefined if pthread_barrier_init() is
called when any thread is blocked on the barrier (that is, has not returned from the
pthread_barrier_wait(3C) call). The results are undefined if a barrier is used without first
being initialized. The results are undefined if pthread_barrier_init() is called specifying an
already initialized barrier.

The count argument specifies the number of threads that must call pthread_barrier_wait()
before any of them successfully return from the call. The value specified by count must be
greater than 0.

If the pthread_barrier_init() function fails, the barrier is not initialized and the contents of
barrier are undefined.

Only the object referenced by barrier can be used for performing synchronization. The result
of referring to copies of that object in calls to pthread_barrier_destroy() or
pthread_barrier_wait() is undefined.

Upon successful completion, these functions returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_barrier_init() function will fail if:

EAGAIN The system lacks the necessary resources to initialize another barrier.

EINVAL The value specified by count is equal to 0.

ENOMEM Insufficient memory exists to initialize the barrier.

The pthread_barrier_init() function may fail if:

Name

Synopsis

Description

Return Values

Errors

pthread_barrier_destroy(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004672

EBUSY The implementation has detected an attempt to destroy a barrier while it is in use
(for example, while being used in a pthread_barrier_wait() call) by another
thread.

EINVAL The value specified by attr is invalid.

The pthread_barrier_destroy() function may fail if:

EBUSY The implementation has detected an attempt to destroy a barrier while it is in use
(for example, while being used in a pthread_barrier_wait() call) by another
thread.

EINVAL The value specified by barrier is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_barrier_wait(3C), attributes(5), standards(5)

Attributes

See Also

pthread_barrier_destroy(3C)

Basic Library Functions 673

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_barrier_wait – synchronize at a barrier

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

The pthread_barrier_wait() function synchronizes participating threads at the barrier
referenced by barrier. The calling thread blocks until the required number of threads have
called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait() specifying the
barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD is returned to one unspecified thread
and 0 is returned to each of the remaining threads. At this point, the barrier is reset to the state
it had as a result of the most recent pthread_barrier_init(3C) function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value is
distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the
thread resumes waiting at the barrier if the barrier wait has not completed (that is, if the
required number of threads have not arrived at the barrier during the execution of the signal
handler); otherwise, the thread continues as normal from the completed barrier wait. Until the
thread in the signal handler returns from it, it is unspecified whether other threads may
proceed past the barrier once they have all reached it.

A thread that has blocked on a barrier does not prevent any unblocked thread that is eligible to
use the same processing resources from eventually making forward progress in its execution.

Eligibility for processing resources is determined by the scheduling policy.

Upon successful completion, the pthread_barrier_wait() function returns
PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized at the barrier
and 0 for each of the other threads. Otherwise, an error number is returned to indicate the
error.

The pthread_barrier_wait() function will fail if:

EINVAL The value specified by barrier does not refer to an initialized barrier object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_barrier_wait(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004674

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_barrier_destroy(3C), attributes(5), standards(5)See Also

pthread_barrier_wait(3C)

Basic Library Functions 675

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cancel – cancel execution of a thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_cancel(pthread_t target_thread);

The pthread_cancel() function requests that target_thread be canceled.

By default, cancellation is deferred until target_thread reaches a cancellation point. See
cancellation(5).

Cancellation cleanup handlers for target_thread are called when the cancellation is acted on.
Upon return of the last cancellation cleanup handler, the thread-specific data destructor
functions are called for target_thread. target_thread is terminated when the last destructor
function returns.

A thread acting on a cancellation request runs with all signals blocked. All thread termination
functions, including cancellation cleanup handlers and thread-specific data destructor
functions, are called with all signals blocked.

The cancellation processing in target_thread runs asynchronously with respect to the calling
thread returning from pthread_cancel().

If successful, the pthread_cancel() function returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_cancel() function may fail if:

ESRCH No thread was found with an ID corresponding to that specified by the given thread
ID, target_thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cleanup_pop(3C), pthread_cleanup_push(3C), pthread_cond_wait(3C),
pthread_cond_timedwait(3C), pthread_exit(3C), pthread_join(3C),
pthread_setcancelstate(3C), pthread_setcanceltype(3C), pthread_testcancel(3C),
setjmp(3C), attributes(5), cancellation(5), condition(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_cancel(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 2007676

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

See cancellation(5) for a discussion of cancellation concepts.Notes

pthread_cancel(3C)

Basic Library Functions 677

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

pthread_cleanup_pop – pop a thread cancellation cleanup handler

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

void pthread_cleanup_pop(int execute);

The pthread_cleanup_pop() function removes the cleanup handler routine at the top of the
cancellation cleanup stack of the calling thread and executes it if execute is non-zero.

When the thread calls pthread_cleanup_pop() with a non-zero execute argument, the
argument at the top of the stack is popped and executed. An argument of 0 pops the handler
without executing it.

The pthread_cleanup_push(3C) and pthread_cleanup_pop() functions can be
implemented as macros. The application must ensure that they appear as statements, and in
pairs within the same lexical scope (that is, the pthread_cleanup_push() macro can be
thought to expand to a token list whose first token is '{' with pthread_cleanup_pop()

expanding to a token list whose last token is the corresponding '}').

The effect of the use of return, break, continue, and goto to prematurely leave a code block
described by a pair of pthread_cleanup_push() and pthread_cleanup_pop() function calls
is undefined.

Using longjmp() or siglongjmp() to jump into or out of a push/pop pair can result in either
the matching push or the matching pop statement not getting executed.

The pthread_cleanup_pop() function returns no value.

No errors are defined.

The pthread_cleanup_pop() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cancel(3C), pthread_cleanup_push(3C), pthread_exit(3C), pthread_join(3C),
pthread_setcancelstate(3C), pthread_setcanceltype(3C), pthread_testcancel(3C),
setjmp(3C), attributes(5), cancellation(5), condition(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_cleanup_pop(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Oct 2005678

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

See cancellation(5) for a discussion of cancellation concepts.Notes

pthread_cleanup_pop(3C)

Basic Library Functions 679

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

pthread_cleanup_push – push a thread cancellation cleanup handler

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

void pthread_cleanup_push(void (*handler) (void *), void *arg);

The pthread_cleanup_push() function pushes the specified cancellation cleanup handler
routine, handler, onto the cancellation cleanup stack of the calling thread.

When a thread exits or is canceled and its cancellation cleanup stack is not empty, the cleanup
handlers are invoked with the argument arg in last in, first out (LIFO) order from the
cancellation cleanup stack.

An exiting or cancelled thread runs with all signals blocked. All thread termination functions,
including cancellation cleanup handlers, are called with all signals blocked.

The pthread_cleanup_push() and pthread_cleanup_pop(3C) functions can be
implemented as macros. The application must ensure that they appear as statements, and in
pairs within the same lexical scope (that is, the pthread_cleanup_push() macro can be
thought to expand to a token list whose first token is '{' with pthread_cleanup_pop()

expanding to a token list whose last token is the corresponding '}').

The effect of the use of return, break, continue, and goto to prematurely leave a code block
described by a pair of pthread_cleanup_push() and pthread_cleanup_pop() function calls
is undefined.

Using longjmp() or siglongjmp() to jump into or out of a push/pop pair can cause either the
matching push or the matching pop statement not getting executed.

The pthread_cleanup_push() function returns no value.

No errors are defined.

The pthread_cleanup_push() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_cleanup_push(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 2007680

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

longjmp(3C), pthread_cancel(3C), pthread_cleanup_pop(3C), pthread_exit(3C),
pthread_join(3C), pthread_setcancelstate(3C), pthread_setcanceltype(3C),
pthread_testcancel(3C), attributes(5), cancellation(5), condition(5), standards(5)

See cancellation(5) for a discussion of cancellation concepts.

See Also

Notes

pthread_cleanup_push(3C)

Basic Library Functions 681

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

pthread_condattr_getclock, pthread_condattr_setclock – get and set the clock selection
condition variable attribute

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_condattr_getclock(

const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr
clockid_t clock_id);

The pthread_condattr_getclock() function obtains the value of the clock attribute from the
attributes object referenced by attr. The pthread_condattr_setclock() function sets the
clock attribute in an initialized attributes object referenced by attr. If
pthread_condattr_setclock() is called with a clock_id argument that refers to a CPU-time
clock, the call fails.

The clock attribute is the clock ID of the clock that is used to measure the timeout service of
pthread_cond_timedwait(3C). The default value of the clock attribute refers to the system
clock.

Upon successful completion, the pthread_condattr_getclock() function returns 0 and
stores the value of the clock attribute of attr into the object referenced by the clock_id
argument. Otherwise, an error number is returned to indicate the error.

Upon successful completion, the pthread_condattr_setclock() function returns 0.
Otherwise, an error number is returned to indicate the error.

These functions may fail if:

EINVAL The value specified by attr is invalid.

The pthread_condattr_setclock() function may fail if:

EINVAL The value specified by clock_id does not refer to a known clock, or is a CPU-time
clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_condattr_getclock(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004682

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cond_init(3C), pthread_cond_timedwait(3C), pthread_condattr_destroy(3C),
pthread_condattr_getpshared(3C), pthread_create(3C), pthread_mutex_init(3C),
attributes(5), standards(5)

See Also

pthread_condattr_getclock(3C)

Basic Library Functions 683

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_condattr_getpshared, pthread_condattr_setpshared – get or set process-shared
condition variable attributes

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_condattr_getpshared(

const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

The pthread_condattr_getpshared() function obtains the value of the process-shared
attribute from the attributes object referenced by attr. The pthread_condattr_setpshared()
function is used to set the process-shared attribute in an initialized attributes object referenced
by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition variable
to be operated upon by any thread that has access to the memory where the condition variable
is allocated, even if the condition variable is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the condition
variable will only be operated upon by threads created within the same process as the thread
that initialized the condition variable; if threads of differing processes attempt to operate on
such a condition variable, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-dependent.

If successful, the pthread_condattr_setpshared() function returns 0. Otherwise, an error
number is returned to indicate the error.

If successful, the pthread_condattr_getpshared() function returns 0 and stores the value of
the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number is returned to indicate the error.

The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions
may fail if:

EINVAL The value specified by attr is invalid.

The pthread_condattr_setpshared() function will fail if:

EINVAL The new value specified for the attribute is outside the range of legal values for that
attribute.

Name

Synopsis

Description

Return Values

Errors

pthread_condattr_getpshared(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005684

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_condattr_init(3C), pthread_create(3C), pthread_mutex_init(3C),
pthread_cond_init(3C), attributes(5), standards(5)

Attributes

See Also

pthread_condattr_getpshared(3C)

Basic Library Functions 685

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_condattr_init, pthread_condattr_destroy – initialize or destroy condition variable
attributes object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

int pthread_condattr_destroy(pthread_condattr_t *attr);

The pthread_condattr_init() function initializes a condition variable attributes object attr
with the default value for all of the attributes defined by the implementation.

At present, the only attribute available is the scope of condition variables. The default scope of
the attribute is PTHREAD_PROCESS_PRIVATE.

Attempts to initialize previously initialized condition variable attributes object will leave the
storage allocated by the previous initialization unallocated.

After a condition variable attributes object has been used to initialize one or more condition
variables, any function affecting the attributes object (including destruction) does not affect
any previously initialized condition variables.

The pthread_condattr_destroy() function destroys a condition variable attributes object;
the object becomes, in effect, uninitialized. An implementation may cause
pthread_condattr_destroy() to set the object referenced by attr to an invalid value. A
destroyed condition variable attributes object can be re-initialized using
pthread_condattr_init(); the results of otherwise referencing the object after it has been
destroyed are undefined.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-dependent.

If successful, the pthread_condattr_init() and pthread_condattr_destroy() functions
return 0. Otherwise, an error number is returned to indicate the error.

The pthread_condattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the condition variable attributes object.

The pthread_condattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_condattr_init(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005686

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

pthread_condattr_getpshared(3C), pthread_condattr_setpshared(3C),
pthread_cond_init(3C), pthread_create(3C), pthread_mutex_init(3C), attributes(5),
standards(5)

See Also

pthread_condattr_init(3C)

Basic Library Functions 687

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cond_init, pthread_cond_destroy – initialize or destroy condition variables

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond

pthread_cond_t cond= PTHREAD_COND_INITIALIZER;

The function pthread_cond_init() initializes the condition variable referenced by cond with
attributes referenced by attr. If attr is NULL, the default condition variable attributes are used;
the effect is the same as passing the address of a default condition variable attributes object.
See pthread_condattr_init(3C). Upon successful initialization, the state of the condition
variable becomes initialized.

Attempting to initialize an already initialized condition variable results in undefined behavior.

The function pthread_cond_destroy() destroys the given condition variable specified by
cond; the object becomes, in effect, uninitialized. An implementation may cause
pthread_cond_destroy() to set the object referenced by cond to an invalid value. A destroyed
condition variable object can be re-initialized using pthread_cond_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

It is safe to destroy an initialized condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically
allocated. The effect is equivalent to dynamic initialization by a call to pthread_cond_init()

with parameter attr specified as NULL, except that no error checks are performed.

If successful, the pthread_cond_init() and pthread_cond_destroy() functions return 0.
Otherwise, an error number is returned to indicate the error. The EBUSY and EINVAL error
checks, if implemented, act as if they were performed immediately at the beginning of
processing for the function and caused an error return prior to modifying the state of the
condition variable specified by cond.

The pthread_cond_init() function will fail if:

EAGAIN The system lacked the necessary resources (other than memory) to initialize
another condition variable.

ENOMEM Insufficient memory exists to initialize the condition variable.

The pthread_cond_init() function may fail if:

Name

Synopsis

Description

Return Values

Errors

pthread_cond_init(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005688

EBUSY The implementation has detected an attempt to re-initialize the object referenced
by cond, a previously initialized, but not yet destroyed, condition variable.

EINVAL The value specified by attr is invalid.

The pthread_cond_destroy() function may fail if:

EBUSY The implementation has detected an attempt to destroy the object referenced by
cond while it is referenced (for example, while being used in a
pthread_cond_wait() or pthread_cond_timedwait()) by another thread.

EINVAL The value specified by cond is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cond_signal(3C), pthread_cond_broadcast(3C), pthread_cond_wait(3C),
pthread_cond_timedwait(3C), pthread_condattr_init(3C), attributes(5),
condition(5), standards(5)

Attributes

See Also

pthread_cond_init(3C)

Basic Library Functions 689

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cond_signal, pthread_cond_broadcast – signal or broadcast a condition

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

These two functions are used to unblock threads blocked on a condition variable.

The pthread_cond_signal() call unblocks at least one of the threads that are blocked on the
specified condition variable cond (if any threads are blocked on cond).

The pthread_cond_broadcast() call unblocks all threads currently blocked on the specified
condition variable cond.

If more than one thread is blocked on a condition variable, the scheduling policy determines
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_signal() or pthread_cond_broadcast() returns from its call to
pthread_cond_wait() or pthread_cond_timedwait(), the thread owns the mutex with
which it called pthread_cond_wait() or pthread_cond_timedwait(). The thread(s) that are
unblocked contend for the mutex according to the scheduling policy (if applicable), and as if
each had called pthread_mutex_lock().

The pthread_cond_signal() or pthread_cond_broadcast() functions may be called by a
thread whether or not it currently owns the mutex that threads calling pthread_cond_wait()
or pthread_cond_timedwait() have associated with the condition variable during their waits;
however, if predictable scheduling behavior is required, then that mutex is locked by the
thread calling pthread_cond_signal() or pthread_cond_broadcast().

The pthread_cond_signal() and pthread_cond_broadcast() functions have no effect if
there are no threads currently blocked on cond.

If successful, the pthread_cond_signal() and pthread_cond_broadcast() functions return
0. Otherwise, an error number is returned to indicate the error.

The pthread_cond_signal() and pthread_cond_broadcast() function may fail if:

EINVAL The value cond does not refer to an initialized condition variable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_cond_signal(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005690

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_cond_init(3C), pthread_cond_wait(3C), pthread_cond_timedwait(3C),
attributes(5), condition(5), standards(5)

See Also

pthread_cond_signal(3C)

Basic Library Functions 691

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cond_wait, pthread_cond_timedwait, pthread_cond_reltimedwait_np – wait on a
condition

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_reltimedwait_np(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *reltime);

The pthread_cond_wait(), pthread_cond_timedwait(), and
pthread_cond_reltimedwait_np() functions are used to block on a condition variable. They
are called with mutex locked by the calling thread or undefined behavior will result.

These functions atomically release mutex and cause the calling thread to block on the
condition variable cond. Atomically here means ‘‘atomically with respect to access by another
thread to the mutex and then the condition variable.” That is, if another thread is able to
acquire the mutex after the about-to-block thread has released it, then a subsequent call to
pthread_cond_signal() or pthread_cond_broadcast() in that thread behaves as if it were
issued after the about-to-block thread has blocked.

Upon successful return, the mutex has been locked and is owned by the calling thread. If
mutex is a robust mutex where an owner terminated while holding the lock and the state is
recoverable, the mutex is acquired even though the function returns an error value.

When using condition variables there is always a boolean predicate, an invariant, associated
with each condition wait that must be true before the thread should proceed. Spurious
wakeups from the pthread_cond_wait(), pthread_cond_timedwait(), or
pthread_cond_reltimedwait_np() functions could occur. Since the return from
pthread_cond_wait(), pthread_cond_timedwait(), or pthread_cond_reltimedwait_np()
does not imply anything about the value of this predicate, the predicate should always be
reevaluated.

The order in which blocked threads are awakened by pthread_cond_signal() or
pthread_cond_broadcast() is determined by the scheduling policy. See pthreads(5).

The effect of using more than one mutex for concurrent pthread_cond_wait(),
pthread_cond_timedwait(), or pthread_cond_reltimedwait_np() operations on the same
condition variable will result in undefined behavior.

Name

Synopsis

Description

pthread_cond_wait(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Nov 2008692

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pthreads-5

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation
request while in a condition wait is that the mutex is reacquired before calling the first
cancellation cleanup handler.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_wait() or pthread_cond_timedwait() does not consume any condition
signal that may be directed concurrently at the condition variable if there are other threads
blocked on the condition variable.

The pthread_cond_timedwait() function is the same as pthread_cond_wait() except that
an error is returned if the absolute time specified by abstime passes (that is, system time equals
or exceeds abstime) before the condition cond is signaled or broadcast, or if the absolute time
specified by abstime has already been passed at the time of the call. The abstime argument is of
type struct timespec, defined in time.h(3HEAD). When such time-outs occur,
pthread_cond_timedwait() will nonetheless release and reacquire the mutex referenced by
mutex. The function pthread_cond_timedwait() is also a cancellation point.

The pthread_cond_reltimedwait_np() function is a non-standard extension provided by
the Solaris version of POSIX threads as indicated by the ‘‘_np'' (non-portable) suffix. The
pthread_cond_reltimedwait_np() function is the same as pthread_cond_timedwait()
except that the reltime argument specifies a non-negative time relative to the current system
time rather than an absolute time. The reltime argument is of type struct timespec, defined
in time.h(3HEAD). An error value is returned if the relative time passes (that is, system time
equals or exceeds the starting system time plus the relative time) before the condition cond is
signaled or broadcast. When such timeouts occur, pthread_cond_reltimedwait_np()
releases and reacquires the mutex referenced by mutex. The
pthread_cond_reltimedwait_np() function is also a cancellation point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
returns 0 due to spurious wakeup.

Except in the case of ETIMEDOUT, EOWNERDEAD, or ENOTRECOVERABLE, all of these error checks
act as if they were performed immediately at the beginning of processing for the function and
cause an error return, in effect, prior to modifying the state of the mutex specified by mutex or
the condition variable specified by cond.

Upon successful completion, 0 is returned. Otherwise, an error value is returned to indicate
the error.

These functions will fail if:

EPERM The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a robust mutex, and
the current thread does not own the mutex.

The pthread_cond_timedwait() function will fail if:

Return Values

Errors

pthread_cond_wait(3C)

Basic Library Functions 693

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2time.h-3head

ETIMEDOUT The absolute time specified by abstime to pthread_cond_timedwait() has
passed.

The pthread_cond_reltimedwait_np() function will fail if:

EINVAL The value specified by reltime is invalid.

ETIMEDOUT The relative time specified by reltime to pthread_cond_reltimedwait_np()

has passed.

These functions may fail if:

EINVAL The value specified by cond, mutex, abstime, or reltime is invalid.

EINVAL Different mutexes were supplied for concurrent operations on the same condition
variable.

If the mutex specified by mutex is a robust mutex (initialized with the robustness attribute
PTHREAD_MUTEX_ROBUST), the pthread_cond_wait(), pthread_cond_timedwait(), and
pthread_cond_reltimedwait_np() functions will, under the specified conditions, return the
following error values. For complete information, see the pthread_mutex_lock(3C) and
pthread_mutexattr_setrobust(3C) manual pages.

EOWNERDEAD The last owner of this mutex died while holding the mutex, leaving the
state it was protecting possibly inconsistent. The mutex is now owned
by the caller.

ENOTRECOVERABLE The mutex was protecting state that has now been left irrecoverable.
The mutex has not been acquired.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cond_signal(3C), pthread_cond_broadcast(3C), pthread_mutex_lock(3C),
pthread_mutexattr_getrobust(3C), time.h(3HEAD), attributes(5), condition(5),
pthreads(5), standards(5)

Attributes

See Also

pthread_cond_wait(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Nov 2008694

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pthreads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_create – create a thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

The pthread_create() function is used to create a new thread, with attributes specified by
attr, within a process. If attr is NULL, the default attributes are used. (See
pthread_attr_init(3C)). If the attributes specified by attr are modified later, the thread's
attributes are not affected. Upon successful completion, pthread_create() stores the ID of
the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the start_routine
returns, the effect is as if there was an implicit call to pthread_exit() using the return value of
start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect is as if there was an implicit call to
exit() using the return value of main() as the exit status.

The signal state of the new thread is initialised as follows:

■ The signal mask is inherited from the creating thread.
■ The set of signals pending for the new thread is empty.

Default thread creation:

pthread_t tid;

void *start_func(void *), *arg;

pthread_create(&tid, NULL, start_func, arg);

This would have the same effect as:

pthread_attr_t attr;

pthread_attr_init(&attr); /* initialize attr with default */

/* attributes */

pthread_create(&tid, &attr, start_func, arg);

User-defined thread creation: To create a thread that is scheduled on a system-wide basis, use:

pthread_attr_init(&attr); /* initialize attr with default */

/* attributes */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* system-wide contention */

pthread_create(&tid, &attr, start_func, arg);

To customize the attributes for POSIX threads, see pthread_attr_init(3C).

Name

Synopsis

Description

pthread_create(3C)

Basic Library Functions 695

A new thread created with pthread_create() uses the stack specified by the stackaddr
attribute, and the stack continues for the number of bytes specified by the stacksize attribute.
By default, the stack size is 1 megabyte for 32-bit processes and 2 megabyte for 64-bit
processes (see pthread_attr_setstacksize(3C)). If the default is used for both the stackaddr
and stacksize attributes, pthread_create() creates a stack for the new thread with at least 1
megabyte for 32-bit processes and 2 megabyte for 64-bit processes. (For customizing stack
sizes, see NOTES).

If pthread_create() fails, no new thread is created and the contents of the location
referenced by thread are undefined.

If successful, the pthread_create() function returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_create() function will fail if:

EAGAIN The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
PTHREAD_THREADS_MAX would be exceeded.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have appropriate permission to set the required scheduling
parameters or scheduling policy.

EXAMPLE 1 Example of concurrency with multithreading

The following is an example of concurrency with multithreading. Since POSIX threads and
Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1.

Five threads are created that simultaneously perform a time-consuming function, sleep(10).
If the execution of this process is timed, the results will show that all five individual calls to
sleep for ten-seconds completed in about ten seconds, even on a uniprocessor. If a
single-threaded process calls sleep(10) five times, the execution time will be about
50-seconds.

The command-line to time this process is:

POSIX threading /usr/bin/time a.out 0

Solaris threading /usr/bin/time a.out 1

/* cc thisfile.c -lthread -lpthread */

#define _REENTRANT /* basic 3-lines for threads */

#include <pthread.h>

#include <thread.h>

#define NUM_THREADS 5

#define SLEEP_TIME 10

Return Values

Errors

Examples

pthread_create(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005696

EXAMPLE 1 Example of concurrency with multithreading (Continued)

void *sleeping(void *); /* thread routine */

int i;

thread_t tid[NUM_THREADS]; /* array of thread IDs */

int

main(int argc, char *argv[])

{

if (argc == 1) {

printf("use 0 as arg1 to use pthread_create()\n");
printf("or use 1 as arg1 to use thr_create()\n");
return (1);

}

switch (*argv[1]) {

case ’0’: /* POSIX */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], NULL, sleeping,

(void *)SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

break;

case ’1’: /* Solaris */

for (i = 0; i < NUM_THREADS; i++)

thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0,

&tid[i]);

while (thr_join(0, NULL, NULL) == 0)

;

break;

} /* switch */

printf("main() reporting that all %d threads have

terminated\n", i);

return (0);

} /* main */

void *

sleeping(void *arg)

{

int sleep_time = (int)arg;

printf("thread %d sleeping %d seconds ...\n", thr_self(),

sleep_time);

sleep(sleep_time);

printf("\nthread %d awakening\n", thr_self());

pthread_create(3C)

Basic Library Functions 697

EXAMPLE 1 Example of concurrency with multithreading (Continued)

return (NULL);

}

If main() had not waited for the completion of the other threads (using pthread_join(3C) or
thr_join(3C)), it would have continued to process concurrently until it reached the end of its
routine and the entire process would have exited prematurely. See exit(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fork(2), pthread_attr_init(3C), pthread_cancel(3C), pthread_exit(3C),
pthread_join(3C), sysconf(3C), attributes(5), standards(5)

Multithreaded application threads execute independently of each other, so their relative
behavior is unpredictable. Therefore, it is possible for the thread executing main() to finish
before all other user application threads. The pthread_join(3C)function, on the other hand,
must specify the terminating thread (IDs) for which it will wait.

A user-specified stack size must be greater than the value PTHREAD_STACK_MIN. A minimum
stack size may not accommodate the stack frame for the user thread function start_func. If a
stack size is specified, it must accommodate start_func requirements and the functions that it
may call in turn, in addition to the minimum requirement.

It is usually very difficult to determine the runtime stack requirements for a thread.
PTHREAD_STACK_MIN specifies how much stack storage is required to execute a NULL start_func.
The total runtime requirements for stack storage are dependent on the storage required to do
runtime linking, the amount of storage required by library runtimes (as printf()) that your
thread calls. Since these storage parameters are not known before the program runs, it is best
to use default stacks. If you know your runtime requirements or decide to use stacks that are
larger than the default, then it makes sense to specify your own stacks.

Attributes

See Also

Notes

pthread_create(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005698

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_detach – detach a thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_detach(pthread_t thread);

The pthread_detach() function is used to indicate to the implementation that storage for the
thread thread can be reclaimed when that thread terminates. In other words,
pthread_detach() dynamically resets the detachstate attribute of the thread to
PTHREAD_CREATE_DETACHED. After a successful call to this function, it would not be necessary
to reclaim the thread using pthread_join(). See pthread_join(3C). If thread has not
terminated, pthread_detach() will not cause it to terminate. The effect of multiple
pthread_detach() calls on the same target thread is unspecified.

If successful, pthread_detach() returns 0. Otherwise, an error number is returned to indicate
the error.

The pthread_detach() function will fail if:

EINVAL The implementation has detected that the value specified by thread does not refer
to a joinable thread.

ESRCH No thread could be found corresponding to that specified by the given thread ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_create(3C), pthread_join(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_detach(3C)

Basic Library Functions 699

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_equal – compare thread IDs

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

The pthread_equal() function compares the thread IDs t1 and t2.

The pthread_equal() function returns a non-zero value if t1 and t2 are equal. Otherwise, 0 is
returned.

If t1 or t2 is an invalid thread ID, the behavior is undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_create(3C), pthread_self(3C), attributes(5), standards(5)

Solaris thread IDs do not require an equivalent function because the thread_t structure is an
unsigned int.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

pthread_equal(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005700

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_exit – terminate calling thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

void pthread_exit(void *value_ptr);

The pthread_exit() function terminates the calling thread, in a similar way that exit(3C)
terminates the calling process. If the thread is not detached, the exit status specified by
value_ptr is made available to any successful join with the terminating thread. See
pthread_join(3C). Any cancellation cleanup handlers that have been pushed and not yet
popped are popped in the reverse order that they were pushed and then executed. After all
cancellation cleanup handlers have been executed, if the thread has any thread-specific data,
appropriate destructor functions will be called in an unspecified order. Thread termination
does not release any application visible process resources, including, but not limited to,
mutexes and file descriptors, nor does it perform any process level cleanup actions, including,
but not limited to, calling any atexit() routines that might exist.

An exiting thread runs with all signals blocked. All thread termination functions, including
cancellation cleanup handlers and thread-specific data destructor functions, are called with all
signals blocked.

An implicit call to pthread_exit() is made when a thread other than the thread in which
main() was first invoked returns from the start routine that was used to create it. The
function's return value serves as the thread's exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit() value_ptr parameter value.

The process exits with an exit status of 0 after the last thread has been terminated. The
behavior is as if the implementation called exit() with a 0 argument at thread termination
time.

The pthread_exit() function cannot return to its caller.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_exit(3C)

Basic Library Functions 701

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

exit(3C), pthread_cancel(3C), pthread_create(3C), pthread_join(3C),
pthread_key_create(3C), attributes(5), standards(5)

See Also

pthread_exit(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 2007702

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_getconcurrency, pthread_setconcurrency – get or set level of concurrency

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_getconcurrency(void);

int pthread_setconcurrency(int new_level);

Unbound threads in a process may or may not be required to be simultaneously active. By
default, the threads implementation ensures that a sufficient number of threads are active so
that the process can continue to make progress. While this conserves system resources, it may
not produce the most effective level of concurrency.

The pthread_setconcurrency() function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.

If new_level is 0, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() was never called.

The pthread_getconcurrency() function returns the value set by a previous call to the
pthread_setconcurrency() function. If the pthread_setconcurrency() function was not
previously called, this function returns 0 to indicate that the implementation is maintaining
the concurrency level.

When an application calls pthread_setconcurrency() it is informing the implementation of
its desired concurrency level. The implementation uses this as a hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several kernel
scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency()

functions will be provided for source code compatibility but they will have no effect when
called. To maintain the function semantics, the new_level parameter will be saved when
pthread_setconcurrency() is called so that a subsequent call to
pthread_getconcurrency() returns the same value.

If successful, the pthread_setconcurrency() function returns 0. Otherwise, an error number
is returned to indicate the error.

The pthread_getconcurrency() function always returns the concurrency level set by a
previous call to pthread_setconcurrency(). If the pthread_setconcurrency() function has
never been called, pthread_getconcurrency() returns 0.

The pthread_setconcurrency() function will fail if:

EINVAL The value specified by new_level is negative.

EAGAIN The value specific by new_level would cause a system resource to be exceeded.

Name

Synopsis

Description

Return Values

Errors

pthread_getconcurrency(3C)

Basic Library Functions 703

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_create(3C), pthread_attr_init(3C), attributes(5), standards(5)

Attributes

See Also

pthread_getconcurrency(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005704

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_getschedparam, pthread_setschedparam – access dynamic thread scheduling
parameters

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_getschedparam(pthread_t thread, int *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

The pthread_getschedparam() and pthread_setschedparam() functions allow the
scheduling policy and scheduling parameters of individual threads within a multithreaded
process to be retrieved and set. Supported policies are :

SCHED_OTHER traditional time-sharing scheduling class

SCHED_FIFO real-time class: run to completion

SCHED_RR real-time class: round-robin

SCHED_IA interactive time-sharing class

SCHED_FSS fair-share scheduling class

SCHED_FX fixed priority scheduling class

See pthreads(5). The affected scheduling parameter is the sched_priority member of the
sched_param structure.

The pthread_getschedparam() function retrieves the scheduling policy and scheduling
parameters for the thread whose thread ID is given by thread and stores those values in policy
and param, respectively. The priority value returned from pthread_getschedparam() is the
value specified by the most recent pthread_setschedparam() or pthread_create() call
affecting the target thread, and does not reflect any temporary adjustments to its priority as a
result of any priority inheritance or ceiling functions. The pthread_setschedparam()
function sets the scheduling policy and associated scheduling parameters for the thread whose
thread ID is given by thread to the policy and associated parameters provided in policy and
param, respectively.

If the pthread_setschedparam() function fails, no scheduling parameters will be changed for
the target thread.

If successful, the pthread_getschedparam() and pthread_setschedparam() functions
return 0. Otherwise, an error number is returned to indicate the error.

The pthread_getschedparam() and pthread_gsetschedparam() functions will fail if:

ESRCH The value specified by thread does not refer to an existing thread.

Name

Synopsis

Description

Return Values

Errors

pthread_getschedparam(3C)

Basic Library Functions 705

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pthreads-5

The pthread_setschedparam() function will fail if:

EINVAL The value specified by policy or one of the scheduling parameters associated with
the scheduling policy policy is invalid.

EPERM The caller does not have the appropriate permission to set either the scheduling
parameters or the scheduling policy of the specified thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_init(3C), sched_getparam(3C),
sched_get_priority_max(3C)sched_get_priority_max(3C),
sched_get_priority_min(3C), sched_setparam(3C), sched_getscheduler(3C),
sched_setscheduler(3C), attributes(5), pthreads(5), standards(5)

Attributes

See Also

pthread_getschedparam(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008706

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pthreads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_getspecific, pthread_setspecific – manage thread-specific data

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

void *pthread_getspecific(pthread_key_t key);

The pthread_setspecific() function associates a thread-specific value with a key obtained
by way of a previous call to pthread_key_create(). Different threads may bind different
values to the same key. These values are typically pointers to blocks of dynamically allocated
memory that have been reserved for use by the calling thread.

The pthread_getspecific() function returns the value currently bound to the specified key
on behalf of the calling thread.

The effect of calling pthread_setspecific() or pthread_getspecific() with a key value
not obtained from pthread_key_create() or after key has been deleted with
pthread_key_delete() is undefined.

Both pthread_setspecific() and pthread_getspecific() may be called from a
thread-specific data destructor function. However, calling pthread_setspecific() from a
destructor may result in lost storage or infinite loops.

The pthread_getspecific() function returns the thread-specific data value associated with
the given key. If no thread-specific data value is associated with key, then the value NULL is
returned.

Upon successful completion, the pthread_setspecific() function returns 0. Otherwise, an
error number is returned to indicate the error.

The pthread_setspecific() function will fail if:

ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific() function may fail if:

EINVAL The key value is invalid.

The pthread_getspecific() function does not return errors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_getspecific(3C)

Basic Library Functions 707

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_key_create(3C), attributes(5), standards(5)See Also

pthread_getspecific(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005708

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_join – wait for thread termination

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_join(pthread_t thread, void **status);

The pthread_join() function suspends processing of the calling thread until the target
thread completes. thread must be a member of the current process and it cannot be a detached
thread. See pthread_create(3C).

If two or more threads wait for the same thread to complete, all will suspend processing until
the thread has terminated, and then one thread will return successfully and the others will
return with an error of ESRCH. The pthread_join() function will not block processing of the
calling thread if the target thread has already terminated.

If a pthread_join() call returns successfully with a non-null status argument, the value
passed to pthread_exit(3C) by the terminating thread will be placed in the location
referenced by status.

If the pthread_join() calling thread is cancelled, then the target thread will remain joinable
by pthread_join(). However, the calling thread may set up a cancellation cleanup handler on
thread prior to the join call, which may detach the target thread by calling
pthread_detach(3C). See pthread_detach(3C) and pthread_cancel(3C).

If successful, pthread_join() returns 0. Otherwise, an error number is returned to indicate
the error.

EDEADLK A joining deadlock would occur, such as when a thread attempts to wait for itself.

EINVAL The thread corresponding to the given thread ID is a detached thread.

ESRCH No thread could be found corresponding to the given thread ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cancel(3C), pthread_create(3C), pthread_detach(3C), pthread_exit(3C),
wait(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_join(3C)

Basic Library Functions 709

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The pthread_join(3C) function must specify the thread ID for whose termination it will wait.

Calling pthread_join() also "detaches" the thread; that is, pthread_join() includes the
effect of the pthread_detach() function. If a thread were to be cancelled when blocked in
pthread_join(), an explicit detach would have to be performed in the cancellation cleanup
handler. The pthread_detach() function exists primarily for this purpose.

Notes

pthread_join(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005710

pthread_key_create, pthread_key_create_once_np – create thread-specific data key

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_key_create(pthread_key_t *key,
void (*destructor)(void*));

int pthread_key_create_once_np(pthread_key_t *key,
void (*destructor)(void*));

The pthread_key_create() function creates a thread-specific data key visible to all threads in
the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist
for the life of the calling thread.

Upon key creation, the value NULL is associated with the new key in all active threads. Upon
thread creation, the value NULL is associated with all defined keys in the new thread.

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-null destructor pointer and the thread has a non-null value associated with
that key, the value of the key is set to NULL and then the function pointed to is called with the
previously associated value as its sole argument. Destructors can be called in any order.

If, after all the destructors have been called for all keys with non-null values, there are still
some keys with non-null values, the process will be repeated. POSIX requires that this process
be executed at least PTHREAD_DESTRUCTOR_ITERATIONS times. Solaris calls the destructors
repeatedly until all values with associated destructors are NULL. Destructors that set new values
can cause an infinite loop.

An exiting thread runs with all signals blocked. All thread termination functions, including
thread-specific data destructor functions, are called with all signals blocked.

The pthread_key_create_once_np() function is identical to the pthread_key_create()
function except that the key referred to by *key must be statically initialized with the value
PTHREAD_ONCE_KEY_NP before calling pthread_key_create_once_np(), and the key is created
exactly once. This function call is equivalent to using pthread_once(3C) to call a onetime
initialization function that calls pthread_key_create() to create the data key.

If successful, the pthread_key_create() and pthread_key_create_once_np() functions
store the newly created key value at *key and return 0. Otherwise, an error number is returned
to indicate the error.

The pthread_key_create() and pthread_key_create_once_np() functions will fail if:

EAGAIN The system lacked the necessary resources to create another thread-specific data
key, or the system-imposed limit on the total number of keys per process
PTHREAD_KEYS_MAX has been exceeded.

Name

Synopsis

Description

Return Values

Errors

pthread_key_create(3C)

Basic Library Functions 711

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create() and pthread_key_create_once_np() functions will not return
an error value of EINTR.

EXAMPLE 1 Call thread-specific data in the function from more than one thread without special
initialization.

In the following example, the thread-specific data in the function can be called from more
than one thread without special initialization. For each argument passed to the executable, a
thread is created and privately bound to the string-value of that argument.

/* cc -mt thisfile.c */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

static void *thread_function(void *);

static void show_tsd(void);

static void cleanup(void*);

#define MAX_THREADS 20

static pthread_key_t tsd_key = PTHREAD_ONCE_KEY_NP;

int

main(int argc, char *argv[])

{

pthread_t tid[MAX_THREADS];

int num_threads;

int i;

if ((num_threads = argc - 1) > MAX_THREADS)

num_threads = MAX_THREADS;

for (i = 0; i < num_threads; i++)

pthread_create(&tid[i], NULL, thread_function, argv[i+1]);

for (i = 0; i < num_threads; i++)

pthread_join(tid[i], NULL);

return (0);

}

static void *

thread_function(void *arg)

{

char *data;

Examples

pthread_key_create(3C)

man pages section 3: Basic Library Functions • Last Revised 3Nov 2010712

EXAMPLE 1 Call thread-specific data in the function from more than one thread without special
initialization. (Continued)

pthread_key_create_once_np(&tsd_key, cleanup);

data = malloc(strlen(arg) + 1);

strcpy(data, arg);

pthread_setspecific(tsd_key, data);

show_tsd();

return (NULL);

}

static void

show_tsd()

{

void *tsd = pthread_getspecific(tsd_key);

printf("tsd for %d = %s\n", pthread_self(), (char *)tsd);

}

/* application-specific clean-up function */

static void

cleanup(void *tsd)

{

printf("freeing tsd for %d = %s\n", pthread_self(), (char *)tsd);

free(tsd);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed.

MT-Level MT-Safe

Standard See below.

For pthread_key_create(), see standards(5).

pthread_once(3C), pthread_getspecific(3C), pthread_setspecific(3C),
pthread_key_delete(3C), attributes(5), standards(5)

Attributes

See Also

pthread_key_create(3C)

Basic Library Functions 713

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_key_delete – delete thread-specific data key

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

The pthread_key_delete() function deletes a thread-specific data key previously returned
by pthread_key_create(). The thread-specific data values associated with key need not be
NULL at the time pthread_key_delete() is called. It is the responsibility of the application to
free any application storage or perform any cleanup actions for data structures related to the
deleted key or associated thread-specific data in any threads; this cleanup can be done either
before or after pthread_key_delete() is called. Any attempt to use key following the call to
pthread_key_delete() results in undefined behaviour.

The pthread_key_delete() function is callable from within destructor functions. No
destructor functions will be invoked by pthread_key_delete(). Any destructor function that
may have been associated with key will no longer be called upon thread exit.

If successful, the pthread_key_delete() function returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_key_delete() function may fail if:

EINVAL The key value is invalid.

The pthread_key_delete() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_key_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_key_delete(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005714

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_kill – send a signal to a thread

cc –mt [flag...] file... –lpthread [library...]

#include <signal.h>

#include <pthread.h>

int pthread_kill(pthread_t thread, int sig);

The pthread_kill() function sends the sig signal to the thread designated by thread. The
thread argument must be a member of the same process as the calling thread. The sig
argument must be one of the signals listed in signal.h(3HEAD), with the exception of
SIGCANCEL being reserved and off limits to pthread_kill(). If sig is 0, a validity check is
performed for the existence of the target thread; no signal is sent.

Upon successful completion, the function returns a value of 0. Otherwise the function returns
an error number. If the pthread_kill() function fails, no signal is sent.

The pthread_kill() function will fail if:

ESRCH No thread could be found corresponding to that specified by the given thread ID.

EINVAL The value of the sig argument is an invalid or unsupported signal number.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

kill(1), pthread_self(3C), pthread_sigmask(3C), raise(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_kill(3C)

Basic Library Functions 715

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling – get or set prioceiling
attribute of mutex attribute object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutexattr_getprioceiling(

const pthread_mutexattr_t *restrict attr,
int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling()

functions, respectively, get and set the priority ceiling attribute of a mutex attribute object
pointed to by attr, which was previously created by the pthread_mutexattr_init() function.

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
prioceiling must be within the range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the
minimum priority level at which the critical section guarded by the mutex is executed. In
order to avoid priority inversion, the priority ceiling of the mutex must be set to a priority
higher than or equal to the highest priority of all the threads that may lock that mutex.

The ceiling value should be drawn from the range of priorities for the SCHED_FIFO policy.
When a thread acquires such a mutex, the policy of the thread at mutex acquisition should
match that from which the ceiling value was derived (SCHED_FIFO, in this case). If a thread
changes its scheduling policy while holding a ceiling mutex, the behavior of
pthread_mutex_lock() and pthread_mutex_unlock() on this mutex is undefined. See
pthread_mutex_lock(3C).

Upon successful completion, the pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_mutexattr_setprioceiling() function will fail if:

EINVAL The value specified by attr is NULL or prioceiling is invalid.

The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling()

functions may fail if:

EINVAL The value specified by attr or prioceiling is invalid.

EPERM The caller does not have the privilege to perform the operation.

Name

Synopsis

Description

Return Values

Errors

pthread_mutexattr_getprioceiling(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008716

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cond_init(3C), pthread_create(3C), pthread_mutex_init(3C),
pthread_mutex_lock(3C), sched_get_priority_min(3C), attributes(5), standards(5)

Attributes

See Also

pthread_mutexattr_getprioceiling(3C)

Basic Library Functions 717

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol – get or set protocol
attribute of mutex attribute object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutexattr_getprotocol(

const pthread_mutexattr_t *restrict attr,
int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

The pthread_mutexattr_setprotocol() and pthread_mutexattr_getprotocol()

functions, respectively, set and get the protocol attribute of a mutex attribute object pointed to
by attr, which was previously created by the pthread_mutexattr_init() function.

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
protocol may be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or
PTHREAD_PRIO_PROTECT, which are defined by the header <pthread.h>.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and
scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more mutexes
with the PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or
the priority of the highest priority thread waiting on any of the mutexes owned by this thread
and initialized with this protocol.

When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT
protocol, it executes at the higher of its priority or the highest of the priority ceilings of all the
mutexes owned by this thread and initialized with this attribute, regardless of whether other
threads are blocked on any of these mutexes.

While a thread is holding a mutex that has been initialized with the PRIO_INHERIT or
PRIO_PROTECT protocol attributes, it will not be subject to being moved to the tail of the
scheduling queue at its priority in the event that its original priority is changed, such as by a
call to sched_setparam(). Likewise, when a thread unlocks a mutex that has been initialized
with the PRIO_INHERIT or PRIO_PROTECT protocol attributes, it will not be subject to being
moved to the tail of the scheduling queue at its priority in the event that its original priority is
changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it will
execute at the highest of the priorities that it would have obtained by each of these protocols.

If a thread makes a call to pthread_mutex_lock() for a mutex that was initialized with the
protocol attribute PTHREAD_PRIO_INHERIT, and if the calling thread becomes blocked because
the mutex is owned by another thread, then the owner thread inherits the priority level of the

Name

Synopsis

Description

pthread_mutexattr_getprotocol(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008718

calling thread for as long as it continues to own the mutex. The implementation updates its
execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread becomes blocked on another mutex, the same priority
inheritance effect will be propagated to the other owner thread, in a recursive manner.

A thread that uses mutexes initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attribute values should have its scheduling policy equal to
SCHED_FIFO or SCHED_RR (see pthread_attr_getschedparam(3C) and
pthread_getschedparam(3C)).

If a thread with scheduling policy equal to SCHED_OTHER uses a mutex initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attribute value, the effect on the
thread's scheduling and priority is unspecified.

The _POSIX_THREAD_PRIO_INHERIT and _POSIX_THREAD_PRIO_PROTECT options are designed
to provide features to solve priority inversion due to mutexes. A priority inheritance or
priority ceiling mutex is designed to minimize the dispatch latency of a high priority thread
when a low priority thread is holding a mutex required by the high priority thread. This is a
specific need for the realtime application domain.

Threads created by realtime applications need to be such that their priorities can influence
their access to system resources (CPU resources, at least), in competition with all threads
running on the system.

Upon successful completion, the pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol()

functions will fail if:

EINVAL The value specified by attr is NULL.

ENOSYS Neither of the options _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT is defined and the system does not support the
function.

ENOTSUP The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol()

functions may fail if:

EINVAL The value specified by attr or protocol is invalid.

EPERM The caller does not have the privilege to perform the operation.

Return Values

Errors

pthread_mutexattr_getprotocol(3C)

Basic Library Functions 719

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_attr_getschedparam(3C), pthread_mutex_init(3C),
pthread_mutexattr_init(3C), sched_setparam(3C), sched_setscheduler(3C),
attributes(5), standards(5)

Attributes

See Also

pthread_mutexattr_getprotocol(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008720

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sched-setparam-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sched-setscheduler-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_getpshared, pthread_mutexattr_setpshared – get or set process-shared
attribute

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutexattr_getpshared(

const pthread_mutexattr_t *restrict attr,
int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

The pthread_mutexattr_getpshared() function obtains the value of the process-shared
attribute from the attributes object referenced by attr. The
pthread_mutexattr_setpshared() function is used to set the process-shared attribute in an
initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even
if the mutex is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the mutex will only be operated upon by threads
created within the same process as the thread that initialized the mutex; if threads of differing
processes attempt to operate on such a mutex, the behavior is undefined. The default value of
the attribute is PTHREAD_PROCESS_PRIVATE.

Upon successful completion, pthread_mutexattr_getpshared() returns 0 and stores the
value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, pthread_mutexattr_setpshared() returns 0. Otherwise, an
error number is returned to indicate the error.

The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions
may fail if:

EINVAL The value specified by attr is invalid.

The pthread_mutexattr_setpshared() function may fail if:

EINVAL The new value specified for the attribute is outside the range of legal values for that
attribute.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_mutexattr_getpshared(3C)

Basic Library Functions 721

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

pthread_create(3C), pthread_mutex_init(3C), pthread_mutexattr_init(3C),
pthread_cond_init(3C), attributes(5), standards(5)

See Also

pthread_mutexattr_getpshared(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005722

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_getrobust, pthread_mutexattr_setrobust – get and set the mutex robust
attribute

cc –mt [flag...] file... [library...]

#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
int *robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions,
respectively, get and set the mutex robust attribute. This attribute is set in the robust
parameter. Valid values for robust include:

PTHREAD_MUTEX_STALLED

No special actions are taken if the owner of the mutex is terminated while holding the
mutex lock. This can lead to deadlocks because no other thread can unlock the mutex. This
is the default value.

PTHREAD_MUTEX_ROBUST

If the owning thread of a robust mutex terminates while holding the mutex lock, or if the
process containing the owning thread of a robust mutex terminates, either normally or
abnormally, or if the process containing the owner of the mutex unmaps the memory
containing the mutex or performs one of the exec(2) functions, the next thread that
acquires the mutex will be notified by the return value EOWNERDEAD from the locking
function.

The notified thread can then attempt to recover the state protected by the mutex and, if
successful, mark the state as consistent again by a call to pthread_mutex_consistent().
After a subsequent successful call to pthread_mutex_unlock(3C), the mutex lock will be
released and can be used normally by other threads. If the mutex is unlocked without a call
to pthread_mutex_consistent(), it will be in a permanently unusable state and all
attempts to lock the mutex will fail with the error ENOTRECOVERABLE. The only permissible
operation on such a mutex is pthread_mutex_destroy(3C).

The actions required to make the state protected by the mutex consistent are solely
dependent on the application. Calling pthread_mutex_consistent(3C) does not, by itself,
make the state protected by the mutex consistent.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getrobust() or pthread_mutexattr_setrobust() does not refer to
an initialized mutex attributes object.

Upon successful completion, the pthread_mutexattr_getrobust() function returns 0 and
stores the value of the robust attribute of attr into the object referenced by the robust
parameter. Otherwise, an error value is returned to indicate the error.

Name

Synopsis

Description

Return Values

pthread_mutexattr_getrobust(3C)

Basic Library Functions 723

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

Upon successful completion, the pthread_mutexattr_setrobust() function returns 0.
Otherwise, an error value is returned to indicate the error.

The pthread_mutexattr_setrobust() function will fail if:

EINVAL The value of robust is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exec(2), pthread_mutex_consistent(3C), pthread_mutex_destroy(3C),
pthread_mutex_init(3C), pthread_mutex_lock(3C), pthread_mutex_unlock(3C),
pthread_mutexattr_getpshared(3C), pthread_mutexattr_init(3C), attributes(5),
mutex(5), standards(5)

The mutex memory must be zeroed before first initialization of a mutex with the
PTHREAD_MUTEX_ROBUST attribute. Any thread in any process interested in the robust lock can
call pthread_mutex_init() to potentially initialize it, provided that all such callers of
pthread_mutex_init() specify the same set of attributes in their attribute structures. In this
situation, if pthread_mutex_init() is called on a previously initialized robust mutex, it will
not reinitialize the mutex and will return the error value EBUSY. If pthread_mutex_init() is
called on a previously initialized robust mutex, and if the caller specifies a different set of
attributes from those already in effect for the mutex, it will not reinitialize the mutex and will
return the error value EINVAL.

Errors

Attributes

See Also

Notes

pthread_mutexattr_getrobust(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Nov 2008724

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_gettype, pthread_mutexattr_settype – get or set mutex type

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions
respectively get and set the mutex type attribute. This attribute is set in the type parameter to
these functions. The default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL This type of mutex does not detect deadlock. A thread
attempting to relock this mutex without first unlocking it
will deadlock. Attempting to unlock a mutex locked by a
different thread results in undefined behavior. Attempting
to unlock an unlocked mutex results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK This type of mutex provides error checking. A thread
attempting to relock this mutex without first unlocking it
will return with an error. A thread attempting to unlock a
mutex that another thread has locked will return with an
error. A thread attempting to unlock an unlocked mutex
will return with an error.

PTHREAD_MUTEX_RECURSIVE A thread attempting to relock this mutex without first
unlocking it will succeed in locking the mutex. The
relocking deadlock that can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of
mutex. Multiple locks of this mutex require the same
number of unlocks to release the mutex before another
thread can acquire the mutex. A thread attempting to
unlock a mutex that another thread has locked will return
with an error. A thread attempting to unlock an unlocked
mutex will return with an error. This type of mutex is only
supported for mutexes whose process shared attribute is
PTHREAD_PROCESS_PRIVATE.

PTHREAD_MUTEX_DEFAULT Attempting to recursively lock a mutex of this type results in
undefined behavior. Attempting to unlock a mutex of this
type that was not locked by the calling thread results in
undefined behavior. Attempting to unlock a mutex of this
type that is not locked results in undefined behavior. An

Name

Synopsis

Description

pthread_mutexattr_gettype(3C)

Basic Library Functions 725

implementation is allowed to map this mutex to one of the
other mutex types.

Upon successful completion, the pthread_mutexattr_settype() function returns 0.
Otherwise, an error number is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_gettype() function returns 0 and
stores the value of the type attribute of attr in the object referenced by the type parameter.
Otherwise an error number is returned to indicate the error.

The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions will fail
if:

EINVAL The value type is invalid.

The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions may fail
if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cond_timedwait(3C), pthread_cond_wait(3C), attributes(5), standards(5)

Application should not use a PTHREAD_MUTEX_RECURSIVE mutex with condition variables
because the implicit unlock performed for pthread_cond_wait() or
pthread_cond_timedwait() will not actually release the mutex (if it had been locked multiple
times). If this occurs, no other thread can satisfy the condition of the predicate.

Return Values

Errors

Attributes

See Also

Notes

pthread_mutexattr_gettype(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005726

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutexattr_init, pthread_mutexattr_destroy – initialize or destroy mutex attributes
object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

The pthread_mutexattr_init() function initializes a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any function
affecting the attributes object (including destruction) does not affect any previously initialized
mutexes.

The pthread_mutexattr_destroy() function destroys a mutex attributes object; the object
becomes, in effect, uninitialized. An implementation may cause
pthread_mutexattr_destroy() to set the object referenced by attr to an invalid value. A
destroyed mutex attributes object can be re-initialized using pthread_mutexattr_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

Upon successful completion, pthread_mutexattr_init() and
pthread_mutexattr_destroy() return 0. Otherwise, an error number is returned to indicate
the error.

The pthread_mutexattr_init() function may fail if:

ENOMEM Insufficient memory exists to initialize the mutex attributes object.

The pthread_mutexattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_mutexattr_init(3C)

Basic Library Functions 727

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_cond_init(3C), pthread_create(3C), pthread_mutex_init(3C),
pthread_mutexattr_settype(3C), attributes(5), standards(5)

See Also

pthread_mutexattr_init(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005728

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutex_consistent – mark state protected by robust mutex as consistent

cc –mt [flag...] file... [library...]

#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

The following applies only to mutexes that have been initialized with the
PTHREAD_MUTEX_ROBUST attribute. See pthread_mutexattr_getrobust(3C).

If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent()
function can be used to mark the state protected by the mutex referenced by mutex as
consistent again.

If the owner of a robust mutex terminates while holding the mutex, or if the process
containing the owner of the mutex unmaps the memory containing the mutex or performs
one of the exec(2) functions, the mutex becomes inconsistent and the next thread that
acquires the mutex lock is notified of the state by the return value EOWNERDEAD. In this case, the
mutex does not become normally usable again until the state is marked consistent.

The pthread_mutex_consistent() function is only responsible for notifying the system that
the state protected by the mutex has been recovered and that normal operations with the
mutex can be resumed. It is the responsibility of the application to recover the state so it can be
reused. If the application is not able to perform the recovery, it can notify the system that the
situation is unrecoverable by a call to pthread_mutex_unlock(3C) without a prior call to
pthread_mutex_consistent(), in which case subsequent threads that attempt to lock the
mutex will fail to acquire the lock and be returned ENOTRECOVERABLE.

If the thread which acquired the mutex lock with the return value EOWNERDEAD terminates
before calling either pthread_mutex_consistent() or pthread_mutex_unlock(), the next
thread that acquires the mutex lock is notified about the state of the mutex by the return value
EOWNERDEAD.

Upon successful completion, the pthread_mutexattr_consistent() function returns 0.
Otherwise, an error value is returned to indicate the error.

The pthread_mutex_consistent() function will fail if:

EINVAL The current thread does not own the mutex or the mutex is not a
PTHREAD_MUTEX_ROBUST mutex having an inconsistent state (EOWNERDEAD).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_mutex_consistent(3C)

Basic Library Functions 729

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), pthread_mutex_lock(3C), pthread_mutex_unlock(3C),
pthread_mutexattr_getrobust(3C), attributes(5), mutex(5), standards(5)

See Also

pthread_mutex_consistent(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007730

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutex_getprioceiling, pthread_mutex_setprioceiling – change priority ceiling of a
mutex

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

The pthread_mutex_getprioceiling() function returns the current priority ceiling of the
mutex.

The pthread_mutex_setprioceiling() function either locks the mutex if it is unlocked, or
blocks until it can successfully lock the mutex, then it changes the mutex's priority ceiling and
releases the mutex. When the change is successful, the previous value of the priority ceiling is
returned in old_ceiling. The process of locking the mutex need not adhere to the priority
protect protocol.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling is not
changed.

The ceiling value should be drawn from the range of priorities for the SCHED_FIFO policy.
When a thread acquires such a mutex, the policy of the thread at mutex acquisition should
match that from which the ceiling value was derived (SCHED_FIFO, in this case). If a thread
changes its scheduling policy while holding a ceiling mutex, the behavior of
pthread_mutex_lock() and pthread_mutex_unlock() on this mutex is undefined. See
pthread_mutex_lock(3C).

The ceiling value should not be treated as a persistent value resident in a pthread_mutex_t
that is valid across upgrades of Solaris. The semantics of the actual ceiling value are
determined by the existing priority range for the SCHED_FIFO policy, as returned by the
sched_get_priority_min() and sched_get_priority_max() functions (see
sched_get_priority_min(3C)) when called on the version of Solaris on which the ceiling
value is being utilized.

Upon successful completion, the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions
may fail if:

EINVAL The value specified by mutex does not refer to a currently existing mutex.

The pthread_mutex_setprioceiling() function will fail if:

Name

Synopsis

Description

Return Values

Errors

pthread_mutex_getprioceiling(3C)

Basic Library Functions 731

EINVAL The mutex was not initialized with its protocol attribute having the value of
PTHREAD_PRIO_PROTECT.

EINVAL The priority requested by prioceiling is out of range.

EPERM The caller does not have the privilege to perform the operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_mutex_init(3C), pthread_mutex_lock(3C), sched_get_priority_min(3C),
attributes(5), standards(5)

Attributes

See Also

pthread_mutex_getprioceiling(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008732

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutex_init, pthread_mutex_destroy – initialize or destroy a mutex

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_t mutex= PTHREAD_MUTEX_INITIALIZER;

The pthread_mutex_init() function initializes the mutex referenced by mutex with
attributes specified by attr. If attr is NULL, the default mutex attributes are used; the effect is the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

Except for robust mutexes, attempting to initialize an already initialized mutex results in
undefined behavior.

The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. A destroyed mutex object can be re-initialized
using pthread_mutex_init(); the results of otherwise referencing the object after it has been
destroyed are undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex
results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically allocated.
The effect is equivalent to dynamic initialization by a call to pthread_mutex_init() with
parameter attr specified as NULL, except that no error checks are performed.

If successful, the pthread_mutex_init() and pthread_mutex_destroy() functions return 0.
Otherwise, an error number is returned to indicate the error.

The pthread_mutex_init() function will fail if:

EAGAIN The system lacked the necessary resources (other than memory) to initialize
another mutex.

EBUSY An attempt was detected to re-initialize a robust mutex previously initialized but
not yet destroyed. See pthread_mutexattr_setrobust(3C).

EINVAL An attempt was detected to re-initialize a robust mutex previously initialized with
a different set of attributes. See pthread_mutexattr_setrobust(3C).

ENOMEM Insufficient memory exists to initialize the mutex.

EPERM The caller does not have the privilege to perform the operation.

The pthread_mutex_init() function may fail if:

Name

Synopsis

Description

Return Values

Errors

pthread_mutex_init(3C)

Basic Library Functions 733

EBUSY An attempt was detected to re-initialize the object referenced by mutex, a mutex
previously initialized but not yet destroyed.

EINVAL The value specified by attr or mutex is invalid.

The pthread_mutex_destroy() function may fail if:

EBUSY An attempt was detected to destroy the object referenced by mutex while it is
locked or referenced (for example, while being used in a pthread_cond_wait(3C)
or pthread_cond_timedwait(3C)) by another thread.

EINVAL The value specified by mutex is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cond_wait(3C), pthread_mutex_lock(3C),
pthread_mutexattr_setprioceiling(3C), pthread_mutexattr_setprotocol(3C),
pthread_mutexattr_setpshared(3C), pthread_mutexattr_setrobust(3C),
pthread_mutexattr_settype(3C), attributes(5), mutex(5), standards(5)

Attributes

See Also

pthread_mutex_init(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Nov 2008734

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock – lock or unlock a
mutex

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The mutex object referenced by mutex is locked by calling pthread_mutex_lock(). If the
mutex is already locked, the calling thread blocks until the mutex becomes available. This
operation returns with the mutex object referenced by mutex in the locked state with the
calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided. Attempting
to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it has not
locked or a mutex that is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If a thread
attempts to relock a mutex that it has already locked, an error will be returned. If a thread
attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error will
be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the concept of a
lock count. When a thread successfully acquires a mutex for the first time, the lock count is set
to 1. Every time a thread relocks this mutex, the lock count is incremented by one. Each time
the thread unlocks the mutex, the lock count is decremented by one. When the lock count
reaches 0, the mutex becomes available for other threads to acquire. If a thread attempts to
unlock a mutex that it has not locked or a mutex that is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex results
in undefined behavior. Attempting to unlock the mutex if it was not locked by the calling
thread results in undefined behavior. Attempting to unlock the mutex if it is not locked results
in undefined behavior.

The pthread_mutex_trylock() function is identical to pthread_mutex_lock() except that if
the mutex object referenced by mutex is currently locked (by any thread, including the current
thread), the call fails immediately with EBUSY.

The pthread_mutex_unlock() function releases the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex's type attribute. If there are
threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is
called, resulting in the mutex becoming available, the scheduling policy is used to determine
which thread will acquire the mutex. (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the
mutex becomes available when the count reaches 0 and the calling thread no longer has any
locks on this mutex.)

Name

Synopsis

Description

pthread_mutex_lock(3C)

Basic Library Functions 735

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread resumes waiting for the mutex as if it was not interrupted.

If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions return 0.
Otherwise, an error number is returned to indicate the error.

The pthread_mutex_trylock() function returns 0 if a lock on the mutex object referenced by
mutex is acquired. Otherwise, an error number is returned to indicate the error.

The pthread_mutex_lock() and pthread_mutex_trylock() functions will fail if:

EAGAIN The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

EINVAL The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread's priority is higher than the mutex's
current priority ceiling.

EPERM The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread is not in the real-time class
(SCHED_RR or SCHED_FIFO scheduling class).

The pthread_mutex_trylock() function will fail if:

EBUSY The mutex could not be acquired because it was already locked.

The pthread_mutex_lock(), pthread_mutex_trylock() and pthread_mutex_unlock()

functions may fail if:

EINVAL The value specified by mutex does not refer to an initialized mutex object.

The pthread_mutex_lock() function may fail if:

EDEADLK The current thread already owns the mutex.

ENOMEM The limit on the number of simultaneously held mutexes has been exceeded.

The pthread_mutex_unlock() function will fail if:

EPERM The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a robust
mutex, and the current thread does not own the mutex.

When a thread makes a call to pthread_mutex_lock() or pthread_mutex_trylock(), if the
mutex is initialized with the robustness attribute having the value PTHREAD_MUTEX_ROBUST
(see pthread_mutexattr_getrobust(3C)), the call will return these error values if:

EOWNERDEAD The last owner of this mutex died while holding the mutex, or the
process containing the owner of the mutex unmapped the memory
containing the mutex or performed one of the exec(2) functions. This
mutex is now owned by the caller. The caller must now attempt to
make the state protected by the mutex consistent. If it is able to clean up

Return Values

Errors

pthread_mutex_lock(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Nov 2008736

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

the state, then it should call pthread_mutex_consistent() for the
mutex and unlock the mutex. Subsequent calls to
pthread_mutex_lock() and pthread_mutex_trylock() will behave
normally, as before. If the caller is not able to clean up the state,
pthread_mutex_consistent() should not be called for the mutex, but
the mutex should be unlocked. Subsequent calls to
pthread_mutex_lock() and pthread_mutex_trylock() will fail to
acquire the mutex with the error value ENOTRECOVERABLE. If the owner
who acquired the lock with EOWNERDEAD dies, the next owner will
acquire the lock with EOWNERDEAD.

ENOTRECOVERABLE The mutex trying to be acquired was protecting the state that has been
left irrecoverable by the mutex's last owner. The mutex has not been
acquired. This condition can occur when the lock was previously
acquired with EOWNERDEAD, and the owner was not able to clean up the
state and unlocked the mutex without calling
pthread_mutex_consistent().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_mutex_consistent(3C), pthread_mutex_init(3C),
pthread_mutexattr_setprotocol(3C), pthread_mutexattr_setrobust(3C),
pthread_mutexattr_settype(3C), attributes(5), standards(5)

In the current implementation of threads, pthread_mutex_lock(),
pthread_mutex_unlock(), mutex_lock(), mutex_unlock(), pthread_mutex_trylock(),
and mutex_trylock() do not validate the mutex type. Therefore, an uninitialized mutex or a
mutex with an invalid type does not return EINVAL. Interfaces for mutexes with an invalid type
have unspecified behavior.

Uninitialized mutexes that are allocated locally may contain junk data. Such mutexes need to
be initialized using pthread_mutex_init() or mutex_init().

Attributes

See Also

Notes

pthread_mutex_lock(3C)

Basic Library Functions 737

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_mutex_timedlock, pthread_mutex_reltimedlock_np – lock a mutex

cc -mt [flag...] file... [library...]

#include <pthread.h>

#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abs_timeout);

int pthread_mutex_reltimedlock_np(pthread_mutex_t *restrict mutex,
const struct timespec *restrict rel_timeout);

The pthread_mutex_timedlock() function locks the mutex object referenced by mutex. If the
mutex is already locked, the calling thread blocks until the mutex becomes available as in the
pthread_mutex_lock(3C). If the mutex cannot be locked without waiting for another thread
to unlock the mutex, this wait is terminated when the specified timeout expires.

The pthread_mutex_reltimedlock_np() function is identical to the
pthread_mutex_timedlock() function, except that the timeout is specified as a relative time
interval.

For pthread_mutex_timedlock(), the timeout expires when the absolute time specified by
abs_timeout passes, as measured by the clock on which timeouts are based (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by
abs_timeout has already been passed at the time of the call.

For pthread_mutex_reltimedlock_np(), the timeout expires when the time interval
specified by rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time
interval specified by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
data type is defined in the <time.h>header.

Under no circumstance will either function fail with a timeout if the mutex can be locked
immediately. The validity of the timeout parameter is not checked if the mutex can be locked
immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex is adjusted as necessary to reflect the fact that this thread is
no longer among the threads waiting for the mutex.

Upon successful completion, the pthread_mutex_timedlock() and
pthread_mutex_reltimedlock_np() functions return 0. Otherwise, an error number is
returned to indicate the error.

Name

Synopsis

Description

Return Values

pthread_mutex_timedlock(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007738

The pthread_mutex_timedlock() and pthread_mutex_reltimedlock_np() functions will
fail for the same reasons as pthread_mutex_lock(3C). In addition, they will fail if:

EINVAL The caller would have blocked and the timeout parameter specified a
nanoseconds field value less than zero or greater than or equal to 1,000 million.

ETIMEDOUT The mutex could not be locked before the specified timeout expired.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard For pthread_mutex_timedlock(), see
standards(5).

time(2), pthread_mutex_destroy(3C), pthread_mutex_lock(3C),
pthread_mutex_trylock(3C), attributes(5), standards(5)

Errors

Attributes

See Also

pthread_mutex_timedlock(3C)

Basic Library Functions 739

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_once – initialize dynamic package

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

If any thread in a process with a once_control parameter makes a call to pthread_once(), the
first call will summon the init_routine(), but subsequent calls will not. The once_control
parameter determines whether the associated initialization routine has been called. The
init_routine() is complete upon return of pthread_once().

pthread_once() is not a cancellation point; however, if the function init_routine() is a
cancellation point and is canceled, the effect on once_control is the same as if pthread_once()
had never been called.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

If once_control has automatic storage duration or is not initialized by PTHREAD_ONCE_INIT, the
behavior of pthread_once() is undefined.

Upon successful completion, pthread_once() returns 0. Otherwise, an error number is
returned to indicate the error.

EINVAL once_control or init_routine is NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Solaris threads do not offer this functionality.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

pthread_once(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005740

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared – get or set process-shared
attribute of read-write lock attributes object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlockattr_getpshared(

const pthread_rwlockattr_t *restrict attr,
int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock to
be operated upon by any thread that has access to the memory where the read-write lock is
allocated, even if the read-write lock is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock
will only be operated upon by threads created within the same process as the thread that
initialised the read-write lock; if threads of differing processes attempt to operate on such a
read-write lock, the behaviour is undefined. The default value of the process-shared attribute is
PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared() function obtains the value of the process-shared
attribute from the initialised attributes object referenced by attr. The
pthread_rwlockattr_setpshared() function is used to set the process-shared attribute in an
initialised attributes object referenced by attr.

If successful, the pthread_rwlockattr_setpshared() function returns 0. Otherwise, an error
number is returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared() returns 0 and stores
the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise an error number is returned to indicate the error.

The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared()

functions will fail if:

EINVAL The value specified by attr or pshared is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_rwlockattr_getpshared(3C)

Basic Library Functions 741

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_init(3C), pthread_rwlock_rdlock(3C), pthread_rwlock_unlock(3C),
pthread_rwlock_wrlock(3C), pthread_rwlockattr_init(3C), attributes(5),
standards(5)

See Also

pthread_rwlockattr_getpshared(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005742

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlockattr_init, pthread_rwlockattr_destroy – initialize or destroy read-write lock
attributes object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

The pthread_rwlockattr_init() function initializes a read-write lock attributes object attr
with the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already
initialized read-write lock attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write
locks, any function affecting the attributes object (including destruction) does not affect any
previously initialized read-write locks.

The pthread_rwlockattr_destroy() function destroys a read-write lock attributes object.
The effect of subsequent use of the object is undefined until the object is re-initialized by
another call to pthread_rwlockattr_init(). An implementation can cause
pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid value.

If successful, the pthread_rwlockattr_init() and pthread_rwlockattr_destroy()

functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_rwlockattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the read-write lock attributes object.

The pthread_rwlockattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_rwlock_init(3C), pthread_rwlock_rdlock(3C), pthread_rwlock_unlock(3C),
pthread_rwlock_wrlock(3C), pthread_rwlockattr_getpshared(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_rwlockattr_init(3C)

Basic Library Functions 743

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_init, pthread_rwlock_destroy – initialize or destroy read-write lock object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);

int pthread_rwlock_destroy(pthread_rwlock_t **rwlock);

pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

The pthread_rwlock_init() function initializes the read-write lock referenced by rwlock
with the attributes referenced by attr. If attr is NULL, the default read-write lock attributes are
used; the effect is the same as passing the address of a default read-write lock attributes object.
Once initialized, the lock can be used any number of times without being re-initialized. Upon
successful initialization, the state of the read-write lock becomes initialized and unlocked.
Results are undefined if pthread_rwlock_init() is called specifying an already initialized
read-write lock. Results are undefined if a read-write lock is used without first being
initialized.

If the pthread_rwlock_init() function fails, rwlock is not initialized and the contents of
rwlock are undefined.

The pthread_rwlock_destroy() function destroys the read-write lock object referenced by
rwlock and releases any resources used by the lock. The effect of subsequent use of the lock is
undefined until the lock is re-initialized by another call to pthread_rwlock_init(). An
implementation may cause pthread_rwlock_destroy() to set the object referenced by rwlock
to an invalid value. Results are undefined if pthread_rwlock_destroy() is called when any
thread holds rwlock. Attempting to destroy an uninitialized read-write lock results in
undefined behaviour. A destroyed read-write lock object can be re-initialized using
pthread_rwlock_init(); the results of otherwise referencing the read-write lock object after
it has been destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically
allocated. The effect is equivalent to dynamic initialization by a call to
pthread_rwlock_init() with the parameter attr specified as NULL, except that no error
checks are performed.

If successful, the pthread_rwlock_init() and pthread_rwlock_destroy() functions return
0. Otherwise, an error number is returned to indicate the error.

The pthread_rwlock_init() and pthread_rwlock_destroy() functions will fail if:

EINVAL The value specified by attr is invalid.

EINVAL The value specified by rwlock is invalid.

Name

Synopsis

Description

Return Values

Errors

pthread_rwlock_init(3C)

man pages section 3: Basic Library Functions • Last Revised 23 mar 2005744

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_rwlock_rdlock(3C), pthread_rwlock_unlock(3C), pthread_rwlock_wrlock(3C),
pthread_rwlockattr_init(3C), attributes(5), standards(5)

Attributes

See Also

pthread_rwlock_init(3C)

Basic Library Functions 745

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_rdlock, pthread_rwlock_tryrdlock – lock or attempt to lock read-write lock
object for reading

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_rdlock() function applies a read lock to the read-write lock referenced
by rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there
are no writers blocked on the lock.

The calling thread does not acquire the lock if a writer holds the lock or if writers of higher or
equal priority are blocked on the lock; otherwise, the calling thread acquires the lock. If the
read lock is not acquired, the calling thread blocks until it can acquire the lock.

A thread can hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the thread must perform matching
unlocks (that is, it must call the pthread_rwlock_unlock() function n times).

The maximum number of concurrent read locks that a thread can hold on one read-write lock
is currently set at 100,000, though this number could change in a future release. There is no
imposed limit on the number of different threads that can apply a read lock to one read-write
lock.

The pthread_rwlock_tryrdlock() function applies a read lock like the
pthread_rwlock_rdlock() function, with the exception that the function fails if the
equivalent pthread_rwlock_rdlock() call would have blocked the calling thread. In no case
will the pthread_rwlock_tryrdlock() function ever bloc. It always either acquires the lock or
fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from
the signal handler the thread resumes waiting for the read-write lock for reading as if it was
not interrupted.

If successful, the pthread_rwlock_rdlock() function returns 0. Otherwise, an error number
is returned to indicate the error.

The pthread_rwlock_tryrdlock() function returns 0 if the lock for reading on the
read-write lock object referenced by rwlock is acquired. Otherwise an error number is
returned to indicate the error.

Name

Synopsis

Description

Return Values

pthread_rwlock_rdlock(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005746

The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions will fail if:

EAGAIN The read lock could not be acquired because the maximum number of read locks
by the current thread for rwlock has been exceeded.

The pthread_rwlock_rdlock() function will fail if:

EDEADLK The current thread already owns the read-write lock for writing.

The pthread_rwlock_tryrdlock() function will fail if:

EBUSY The read-write lock could not be acquired for reading because a writer holds the
lock or a writer with the appropriate priority was blocked on it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_rwlock_init(3C), pthread_rwlock_wrlock(3C), pthread_rwlockattr_init(3C),
pthread_rwlock_unlock(3C), attributes(5), standards(5)

Errors

Attributes

See Also

pthread_rwlock_rdlock(3C)

Basic Library Functions 747

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_timedrdlock, pthread_rwlock_reltimedrdlock_np – lock a read-write lock
for reading

cc -mt [flag...] file... [library...]

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

int pthread_rwlock_reltimedrdlock_np(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict rel_timeout);

The pthread_rwlock_timedrdlock() function applies a read lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_rdlock(3C) function. If the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait will be terminated
when the specified timeout expires. The timeout expires when the absolute time specified by
abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that
clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout has
already been passed at the time of the call.

The pthread_rwlock_reltimedrdlock_np() function is identical to the
pthread_rwlock_timedrdlock() function, except that the timeout is specified as a relative
time interval. The timeout expires when the time interval specified by rel_timeout passes, as
measured by the CLOCK_REALTIME clock, or if the time interval specified by rel_timeout is
negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
data type is defined in the <time.h> header. Under no circumstances does either function fail
with a timeout if the lock can be acquired immediately. The validity of the timeout parameter
need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a
read-write lock with a call to pthread_rwlock_timedrdlock() or
pthread_rwlock_reltimedrdlock_np(), upon return from the signal handler the thread
resumes waiting for the lock as if it was not interrupted.

The calling thread might deadlock if at the time the call is made it holds a write lock on rwlock.

The results are undefined if this function is called with an uninitialized read-write lock.

The pthread_rwlock_timedrdlock() and pthread_rwlock_reltimedrdlock_np()

functions return 0 if the lock for reading on the read-write lock object referenced by rwlock is
acquired. Otherwise, an error number is returned to indicate the error.

Name

Synopsis

Description

Return Values

pthread_rwlock_timedrdlock(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004748

The pthread_rwlock_timedrdlock() and and pthread_rwlock_reltimedrdlock_np()

functions will fail if:

ETIMEDOUT The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() and pthread_rwlock_reltimedrdlock_np()

functions may fail if:

EAGAIN The read lock could not be acquired because the maximum number of read locks
for lock would be exceeded.

EDEADLK The calling thread already holds a write lock on rwlock.

EINVAL The value specified by rwlock does not refer to an initialized read-write lock
object, or the timeout nanosecond value is less than zero or greater than or equal
to 1 000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard For pthread_rwlock_timedrdlock(), see
standards(5).

pthread_rwlock_destroy(3C), pthread_rwlock_rdlock(3C),
pthread_rwlock_timedwrlock(3C), pthread_rwlock_trywrlock(3C),
pthread_rwlock_unlock(3C), pthread_rwlock_wrlock(3C), attributes(5), standards(5)

Errors

Attributes

See Also

pthread_rwlock_timedrdlock(3C)

Basic Library Functions 749

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_timedwrlock, pthread_rwlock_reltimedwrlock_np – lock a read-write lock
for writing

cc -mt [flag...] file... [library...]

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

int pthread_rwlock_reltimedwrlock_np(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict rel_timeout);

The pthread_rwlock_timedwrlock() function applies a write lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_wrlock(3C) function. If the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait will be terminated
when the specified timeout expires. The timeout expires when the absolute time specified by
abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that
clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout has
already been passed at the time of the call.

The pthread_rwlock_reltimedwrlock_np() function is identical to the
pthread_rwlock_timedwrlock() function, except that the timeout is specified as a relative
time interval. The timeout expires when the time interval specified by rel_timeout passes, as
measured by the CLOCK_REALTIME clock, or if the time interval specified by rel_timeout is
negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
data type is defined in the <time.h> header. Under no circumstances does either function fail
with a timeout if the lock can be acquired immediately. The validity of the abs_timeout
parameter need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock with a call to pthread_rwlock_timedwrlock() or
pthread_rwlock_reltimedwrlock_np(), upon return from the signal handler the thread
resumes waiting for the lock as if it was not interrupted.

The calling thread can deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if this function is called with an uninitialized read-write lock.

The pthread_rwlock_timedwrlock() and pthread_rwlock_reltimedwrlock_np()

functions return 0 if the lock for writing on the read-write lock object referenced by rwlock is
acquired. Otherwise, an error number is returned to indicate the error.

The pthread_rwlock_timedwrlock() and pthread_rwlock_reltimedwrlock_np()

functions will fail if:

ETIMEDOUT The lock could not be acquired before the specified timeout expired.

Name

Synopsis

Description

Return Values

Errors

pthread_rwlock_timedwrlock(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004750

The pthread_rwlock_timedwrlock() and pthread_rwlock_reltimedwrlock_np()

functions may fail if:

EDEADLK The calling thread already holds the rwlock.

EINVAL The value specified by rwlock does not refer to an initialized read-write lock
object, or the timeout nanosecond value is less than zero or greater than or equal
to 1,000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard For pthread_rwlock_timedwrlock(), see
standards(5).

pthread_rwlock_destroy(3C), pthread_rwlock_rdlock(3C),
pthread_rwlock_timedrdlock(3C), pthread_rwlock_trywrlock(3C),
pthread_rwlock_unlock(3C), pthread_rwlock_wrlock(3C), attributes(5), standards(5)

Attributes

See Also

pthread_rwlock_timedwrlock(3C)

Basic Library Functions 751

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_unlock – unlock read-write lock object

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_unlock() function is called to release a lock held on the read-write lock
object referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by
the calling thread.

If this function is called to release a read lock from the read-write lock object and there are
other read locks currently held on this read-write lock object, the read-write lock object
remains in the read locked state. If this function releases the calling thread's last read lock on
this read-write lock object, then the calling thread is no longer one of the owners of the object.
If this function releases the last read lock for this read-write lock object, the read-write lock
object will be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write
lock object will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock() function results in the read-write lock object
becoming unlocked and there are multiple threads waiting to acquire the read-write lock
object for writing, the scheduling policy is used to determine which thread acquires the
read-write lock object for writing. If there are multiple threads waiting to acquire the
read-write lock object for reading, the scheduling policy is used to determine the order in
which the waiting threads acquire the read-write lock object for reading. If there are multiple
threads blocked on rwlock for both read locks and write locks, it is unspecified whether the
readers acquire the lock first or whether a writer acquires the lock first.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If successful, the pthread_rwlock_unlock() function returns 0. Otherwise, an error number
is returned to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Attributes

pthread_rwlock_unlock(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005752

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_init(3C), pthread_rwlock_rdlock(3C), pthread_rwlock_wrlock(3C),
pthread_rwlockattr_init(3C), attributes(5), standards(5)

See Also

pthread_rwlock_unlock(3C)

Basic Library Functions 753

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_rwlock_wrlock, pthread_rwlock_trywrlock – lock or attempt to lock read-write lock
object for writing

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_wrlock() function applies a write lock to the read-write lock referenced
by rwlock. The calling thread acquires the write lock if no other thread (reader or writer) holds
the read-write lock rwlock. Otherwise, the thread blocks until it can acquire the lock.

The pthread_rwlock_trywrlock() function applies a write lock like the
pthread_rwlock_wrlock() function, with the exception that the function fails if any thread
currently holds rwlock (for reading or writing).

Writers are favored over readers of the same priority to avoid writer starvation. See
pthread_rwlock_rdlock(3C).

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from
the signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

If successful, the pthread_rwlock_wrlock() function returns 0. Otherwise, an error number
is returned to indicate the error.

The pthread_rwlock_trywrlock() function returns 0 if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise an error number is returned to
indicate the error.

The pthread_rwlock_wrlock() function will fail if:

EDEADLK The current thread already owns the read-write lock for writing or reading.

The pthread_rwlock_trywrlock() function will fail if:

EBUSY The read-write lock could not be acquired for writing because it was already locked
for reading or writing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_rwlock_wrlock(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005754

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_rwlock_init(3C), pthread_rwlock_unlock(3C), pthread_rwlockattr_init(3C),
pthread_rwlock_rdlock(3C), attributes(5), standards(5)

See Also

pthread_rwlock_wrlock(3C)

Basic Library Functions 755

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_self – get calling thread's ID

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

pthread_t pthread_self(void);

The pthread_self() function returns the thread ID of the calling thread.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_create(3C), pthread_equal(3C), attributes(5), standards(5)

Name

Synopsis

Description

Errors

Attributes

See Also

pthread_self(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005756

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_setcancelstate – enable or disable cancellation

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

The pthread_setcancelstate() function atomically sets the calling thread's cancellation
state to the specified state and if oldstate is not NULL, stores the previous cancellation state in
oldstate.

The state can be either of the following:

PTHREAD_CANCEL_ENABLE

This is the default. When cancellation is deferred (deferred cancellation is also the default),
cancellation occurs when the target thread reaches a cancellation point and a cancel is
pending. When cancellation is asynchronous, receipt of a pthread_cancel(3C) call causes
immediate cancellation.

PTHREAD_CANCEL_DISABLE

When cancellation is deferred, all cancellation requests to the target thread are held
pending. When cancellation is asynchronous, all cancellation requests to the target thread
are held pending; as soon as cancellation is re-enabled, pending cancellations are executed
immediately.

See cancellation(5) for the definition of a cancellation point and a discussion of cancellation
concepts. See pthread_setcanceltype(3C) for explanations of deferred and asynchronous
cancellation.

Upon successful completion, pthread_setcancelstate(), returns 0. Otherwise, an error
number is returned to indicate the error.

The pthread_setcancelstate() function will fail if:

EINVAL The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_cancel(3C), pthread_cleanup_pop(3C), pthread_cleanup_push(3C),
pthread_exit(3C), pthread_join(3C), pthread_setcanceltype(3C),
pthread_testcancel(3C), setjmp(3C), attributes(5), cancellation(5), condition(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_setcancelstate(3C)

Basic Library Functions 757

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_setcanceltype – set cancellation type of a thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

The pthread_setcanceltype() function atomically sets the calling thread's cancellation type
to the specified type and, if oldtype is not NULL, stores the previous cancellation type in
oldtype. The type can be either of the following:

PTHREAD_CANCEL_DEFERRED This is the default. When cancellation is enabled
(enabled cancellation is also the default), cancellation
occurs when the target thread reaches a cancellation
point and a cancel is pending. When cancellation is
disabled, all cancellation requests to the target thread
are held pending.

PTHREAD_CANCEL_ASYNCHRONOUS When cancellation is enabled, receipt of a
pthread_cancel(3C) call causes immediate
cancellation. When cancellation is disabled, all
cancellation requests to the target thread are held
pending; as soon as cancellation is re-enabled, pending
cancellations are executed immediately.

See cancellation(5) for the definition of a cancellation point and a discussion of cancellation
concepts. See pthread_setcancelstate(3C) for explanations of enabling and disabling
cancellation.

The pthread_setcanceltype() function is a cancellation point if type is called with
PTHREAD_CANCEL_ASYNCHRONOUS and the cancellation state is PTHREAD_CANCEL_ENABLE.

Upon successful completion, the pthread_setcanceltype() function returns 0. Otherwise,
an error number is returned to indicate the error.

The pthread_setcanceltype() function will fail if:

EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

pthread_setcanceltype(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005758

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

pthread_cancel(3C), pthread_cleanup_pop(3C), pthread_cleanup_push(3C),
pthread_exit(3C), pthread_join(3C), pthread_setcancelstate(3C),
pthread_testcancel(3C), setjmp(3C), attributes(5), cancellation(5), condition(5),
standards(5)

See Also

pthread_setcanceltype(3C)

Basic Library Functions 759

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_setschedprio – dynamic thread scheduling parameters access

cc -mt [flag...] file... -lpthread [library...]

#include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

The pthread_setschedprio() function sets the scheduling priority for the thread whose
thread ID is given by thread to the value given by prio.

If the pthread_setschedprio() function fails, the scheduling priority of the target thread is
not changed.

If successful, the pthread_setschedprio() function returns 0; otherwise, an error number is
returned to indicate the error.

The pthread_setschedprio() function will fail if:

EINVAL The value of prio is invalid for the scheduling policy of the specified thread.

EPERM The caller does not have the appropriate permission to set the priority to the value
specified.

ESRCH The value specified by thread does not refer to an existing thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_getschedparam(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_setschedprio(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008760

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_sigmask – change or examine calling thread's signal mask

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

#include <signal.h>

int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);

The pthread_sigmask() function changes or examines a calling thread's signal mask. Each
thread has its own signal mask. A new thread inherits the calling thread's signal mask and
priority; however, pending signals are not inherited. Signals pending for a new thread will be
empty.

If the value of the argument set is not NULL, set points to a set of signals that can modify the
currently blocked set. If the value of set is NULL, the value of how is insignificant and the
thread's signal mask is unmodified; thus, pthread_sigmask() can be used to inquire about the
currently blocked signals.

The value of the argument how specifies the method in which the set is changed and takes one
of the following values:

SIG_BLOCK set corresponds to a set of signals to block. They are added to the current
signal mask.

SIG_UNBLOCK set corresponds to a set of signals to unblock. These signals are deleted from
the current signal mask.

SIG_SETMASK set corresponds to the new signal mask. The current signal mask is replaced
by set.

If the value of oset is not NULL, it points to the location where the previous signal mask is
stored.

Upon successful completion, the pthread_sigmask() function returns 0. Otherwise, it
returns a non-zero value.

The pthread_sigmask() function will fail if:

EINVAL The value of how is not defined and oset is NULL.

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal mask.

The following example shows how to create a default thread that can serve as a signal
catcher/handler with its own signal mask. new will have a different value from the creator's
signal mask.

As POSIX threads and Solaris threads are fully compatible even within the same process, this
example uses pthread_create(3C) if you execute a.out 0, or thr_create(3C) if you execute
a.out 1.

Name

Synopsis

Description

Return Values

Errors

Examples

pthread_sigmask(3C)

Basic Library Functions 761

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

In this example:

■ The sigemptyset(3C) function initializes a null signal set, new. The sigaddset(3C)
function packs the signal, SIGINT, into that new set.

■ Either pthread_sigmask() or thr_sigsetmask() is used to mask the signal, SIGINT
(CTRL-C), from the calling thread, which is main(). The signal is masked to guarantee
that only the new thread will receive this signal.

■ pthread_create() or thr_create() creates the signal-handling thread.
■ Using pthread_join(3C) or thr_join(3C), main() then waits for the termination of that

signal-handling thread, whose ID number is user_threadID; main() will then sleep(3C)
for 2 seconds, after which the program terminates.

■ The signal-handling thread, handler:
■ Assigns the handler interrupt() to handle the signal SIGINT, by the call to

sigaction(2).
■ Resets its own signal set to not block the signal, SIGINT.
■ Sleeps for 8 seconds to allow time for the user to deliver the signal, SIGINT, by pressing

the CTRL-C.

/* cc thisfile.c -lthread -lpthread */

#define _REENTRANT /* basic first 3-lines for threads */

#include <pthread.h>

#include <thread.h>

thread_t user_threadID;

sigset_t new;

void *handler(), interrupt();

int

main(int argc, char *argv[]) {

test_argv(argv[1]);

sigemptyset(&new);

sigaddset(&new, SIGINT);

switch(*argv[1]) {

case ’0’: /* POSIX */

pthread_sigmask(SIG_BLOCK, &new, NULL);

pthread_create(&user_threadID, NULL, handler,

argv[1]);

pthread_join(user_threadID, NULL);

break;

pthread_sigmask(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005762

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

case ’1’: /* Solaris */

thr_sigsetmask(SIG_BLOCK, &new, NULL);

thr_create(NULL, 0, handler, argv[1], 0,

&user_threadID);

thr_join(user_threadID, NULL, NULL);

break;

} /* switch */

printf("thread handler, # %d, has exited\n",user_threadID);
sleep(2);

printf("main thread, # %d is done\n", thr_self());

return (0)

} /* end main */

struct sigaction act;

void *

handler(char *argv1)

{

act.sa_handler = interrupt;

sigaction(SIGINT, &act, NULL);

switch(*argv1) {

case ’0’: /* POSIX */

pthread_sigmask(SIG_UNBLOCK, &new, NULL);

break;

case ’1’: /* Solaris */

thr_sigsetmask(SIG_UNBLOCK, &new, NULL);

break;

}

printf("\n Press CTRL-C to deliver SIGINT signal to the

process\n");
sleep(8); /* give user time to hit CTRL-C */

return (NULL)

}

void

interrupt(int sig)

{

printf("thread %d caught signal %d\n", thr_self(), sig);

}

void test_argv(char argv1[]) {

if(argv1 == NULL) {

printf("use 0 as arg1 to use thr_create();\n \

pthread_sigmask(3C)

Basic Library Functions 763

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

or use 1 as arg1 to use pthread_create()\n");
exit(NULL);

}

}

In the last example, the handler thread served as a signal-handler while also taking care of
activity of its own (in this case, sleeping, although it could have been some other activity). A
thread could be completely dedicated to signal-handling simply by waiting for the delivery of a
selected signal by blocking with sigwait(2). The two subroutines in the previous example,
handler() and interrupt(), could have been replaced with the following routine:

void *

handler(void *unused)

{

int signal;

printf("thread %d is waiting for you to press the CTRL-C keys\n",
thr_self());

sigwait(&new, &signal);

printf("thread %d has received the signal %d \n", thr_self(),

signal);

return (NULL);

}

/* pthread_create() and thr_create() would use NULL instead

of argv[1] for the arg passed to handler() */

In this routine, one thread is dedicated to catching and handling the signal specified by the set
new, which allows main() and all of its other sub-threads, created after pthread_sigmask() or
thr_sigsetmask() masked that signal, to continue uninterrupted. Any use of sigwait(2)
should be such that all threads block the signals passed to sigwait(2) at all times. Only the
thread that calls sigwait() will get the signals. The call to sigwait(2) takes two arguments.

For this type of background dedicated signal-handling routine, a Solaris daemon thread can
be used by passing the argument THR_DAEMON to thr_create(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe and Async-Signal-Safe

Standard See standards(5).

Attributes

pthread_sigmask(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005764

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sigaction(2), sigprocmask(2), sigwait(2), cond_wait(3C), pthread_cancel(3C),
pthread_create(3C), pthread_join(3C), pthread_self(3C), sigaddset(3C),
sigemptyset(3C), sigsetops(3C), sleep(3C), attributes(5), cancellation(5),
standards(5)

It is not possible to block signals that cannot be caught or ignored (see sigaction(2)). It is also
not possible to block or unblock SIGCANCEL, as SIGCANCEL is reserved for the implementation
of POSIX thread cancellation (see pthread_cancel(3C) and cancellation(5)). This
restriction is quietly enforced by the standard C library.

Using sigwait(2) in a dedicated thread allows asynchronously generated signals to be
managed synchronously; however, sigwait(2) should never be used to manage
synchronously generated signals.

Synchronously generated signals are exceptions that are generated by a thread and are
directed at the thread causing the exception. Since sigwait() blocks waiting for signals, the
blocking thread cannot receive a synchronously generated signal.

The sigprocmask(2) function behaves the same as if pthread_sigmask() has been called.
POSIX leaves the semantics of the call to sigprocmask(2) unspecified in a multi-threaded
process, so programs that care about POSIX portability should not depend on this semantic.

If a signal is delivered while a thread is waiting on a condition variable, the cond_wait(3C)
function will be interrupted and the handler will be executed. The state of the lock protecting
the condition variable is undefined while the thread is executing the signal handler.

Although pthread_sigmask() is Async-Signal-Safe with respect to the Solaris environment,
this safeness is not guaranteed to be portable to other POSIX domains.

Signals that are generated synchronously should not be masked. If such a signal is blocked and
delivered, the receiving process is killed.

See Also

Notes

pthread_sigmask(3C)

Basic Library Functions 765

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2

pthread_spin_destroy, pthread_spin_init – destroy or initialize a spin lock object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

The pthread_spin_destroy() function destroys the spin lock referenced by lock and release
any resources used by the lock. The effect of subsequent use of the lock is undefined until the
lock is reinitialized by another call to pthread_spin_init(). The results are undefined if
pthread_spin_destroy() is called when a thread holds the lock, or if this function is called
with an uninitialized thread spin lock.

The pthread_spin_init() function allocates any resources required to use the spin lock
referenced by lock and initialize the lock to an unlocked state.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the spin lock can be operated upon by any thread that has access to
the memory where the spin lock is allocated, even if it is allocated in memory that is shared by
multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock can only be
operated upon by threads created within the same process as the thread that initialized the
spin lock. If threads of differing processes attempt to operate on such a spin lock, the behavior
is undefined.

The results are undefined if pthread_spin_init() is called specifying an already initialized
spin lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init() function fails, the lock is not initialized and the contents of lock
are undefined.

Only the object referenced by lock can be used for performing synchronization.

The result of referring to copies of that object in calls to pthread_spin_destroy(),
pthread_spin_lock(3C), pthread_spin_trylock(3C), or pthread_spin_unlock(3C) is
undefined.

Upon successful completion, these functions returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_spin_init() function will fail if:

EAGAIN The system lacks the necessary resources to initialize another spin lock.

These functions may fail if:

Name

Synopsis

Description

Return Values

Errors

pthread_spin_destroy(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004766

EBUSY The system has detected an attempt to initialize or destroy a spin lock while it is in
use (for example, while being used in a pthread_spin_lock() call) by another
thread.

EINVAL The value specified by lock is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_spin_lock(3C), pthread_spin_unlock(3C), attributes(5), standards(5)

Attributes

See Also

pthread_spin_destroy(3C)

Basic Library Functions 767

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_spin_lock, pthread_spin_trylock – lock a spin lock object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

#include <pthread.h>

int pthread_spin_trylock(pthread_spinlock_t *lock);

The pthread_spin_lock() function locks the spin lock referenced by lock. The calling thread
acquires the lock if it is not held by another thread. Otherwise, the thread spins (that is, does
not return from the pthread_spin_lock call()) until the lock becomes available. The results
are undefined if the calling thread holds the lock at the time the call is made.

The pthread_spin_trylock() function locks the spin lock referenced by lock if it is not held
by any thread. Otherwise, the function fails.

The results are undefined if either of these functions is called with an uninitialized spin lock.

Upon successful completion, these functions returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_spin_trylock() function will fail if:

EBUSY A thread currently holds the lock.

These functions may fail if:

EINVAL The value specified by lock does not refer to an initialized spin lock object.

The pthread_spin_lock() function may fail if:

EDEADLK The calling thread already holds the lock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_spin_destroy(3C), pthread_spin_unlock(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_spin_lock(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Jan 2004768

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_spin_unlock – unlock a spin lock object

cc -mt [flag...] file... [library...]

#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

The pthread_spin_unlock() function releases the spin lock referenced by lock which was
locked with the pthread_spin_lock(3C) or pthread_spin_trylock(3C) functions. The
results are undefined if the lock is not held by the calling thread. If there are threads spinning
on the lock when pthread_spin_unlock() is called, the lock becomes available and an
unspecified spinning thread acquires the lock.

The results are undefined if this function is called with an uninitialized thread spin lock.

Upon successful completion, the pthread_spin_unlock() function returns 0. Otherwise, an
error number shall be returned to indicate the error.

The pthread_spin_unlock() function will fail if:

EINVAL An invalid argument was specified.

EPERM The calling thread does not hold the lock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_spin_destroy(3C), pthread_spin_lock(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

pthread_spin_unlock(3C)

Basic Library Functions 769

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

pthread_testcancel – create cancellation point in the calling thread

cc –mt [flag...] file... –lpthread [library...]

#include <pthread.h>

void pthread_testcancel(void);

The pthread_testcancel() function forces testing for cancellation. This is useful when you
need to execute code that runs for long periods without encountering cancellation points;
such as a library routine that executes long-running computations without cancellation
points. This type of code can block cancellation for unacceptable long periods of time. One
strategy for avoiding blocking cancellation for long periods, is to insert calls to
pthread_testcancel() in the long-running computation code and to setup a cancellation
handler in the library code, if required.

The pthread_testcancel() function returns void.

The pthread_testcancel() function does not return errors.

See cancellation(5) for an example of using pthread_testcancel() to force testing for
cancellation and a discussion of cancellation concepts.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Intro(3), pthread_cleanup_pop(3C), pthread_cleanup_push(3C), pthread_exit(3C),
pthread_join(3C), pthread_setcancelstate(3C), pthread_setcanceltype(3C),
setjmp(3C), attributes(5), cancellation(5), condition(5), standards(5)

The pthread_testcancel() function has no effect if cancellation is disabled.

Use pthread_testcancel() with pthread_setcanceltype() called with its canceltype set to
PTHREAD_CANCEL_DEFERRED. The pthread_testcancel() function operation is undefined if
pthread_setcanceltype() was called with its canceltype argument set to
PTHREAD_CANCEL_ASYNCHRONOUS.

It is possible to kill a thread when it is holding a resource, such as lock or allocated memory. If
that thread has not setup a cancellation cleanup handler to release the held resource, the
application is "cancel-unsafe". See attributes(5) for a discussion of Cancel-Safety,
Deferred-Cancel-Safety, and Asynchronous-Cancel-Safety.

Name

Synopsis

Description

Return Values

Errors

Examples

Attributes

See Also

Notes

pthread_testcancel(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005770

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1condition-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ptrace – allows a parent process to control the execution of a child process

#include <unistd.h>

#include <sys/types.h>

int ptrace(int request, pid_t pid, int addr, int data);

The ptrace() function allows a parent process to control the execution of a child process. Its
primary use is for the implementation of breakpoint debugging. The child process behaves
normally until it encounters a signal (see signal.h(3HEAD)), at which time it enters a
stopped state and its parent is notified by the wait(3C) function. When the child is in the
stopped state, its parent can examine and modify its “core image” using ptrace(). Also, the
parent can cause the child either to terminate or continue, with the possibility of ignoring the
signal that caused it to stop.

The request argument determines the action to be taken by ptrace() and is one of the
following:

0 This request must be issued by the child process if it is to be traced by its parent. It turns
on the child's trace flag that stipulates that the child should be left in a stopped state on
receipt of a signal rather than the state specified by func (see signal(3C)). The pid, addr,
and data arguments are ignored, and a return value is not defined for this request.
Peculiar results ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the
process ID of the child. The child must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child is
returned to the parent process. If instruction and data space are separated, request 1
returns a word from instruction space, and request 2 returns a word from data space.
If instruction and data space are not separated, either request 1 or request 2 may be
used with equal results. The data argument is ignored. These two requests fail if addr
is not the start address of a word, in which case −1 is returned to the parent process
and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's user area in the system's
address space (see <sys/user.h>) is returned to the parent process. The data
argument is ignored. This request fails if addr is not the start address of a word or is
outside the user area, in which case −1 is returned to the parent process and the
parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written into the address
space of the child at location addr. If instruction and data space are separated, request
4 writes a word into instruction space, and request 5 writes a word into data space. If
instruction and data space are not separated, either request 4 or request 5 may be
used with equal results. On success, the value written into the address space of the

Name

Synopsis

Description

ptrace(3C)

Basic Library Functions 771

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

child is returned to the parent. These two requests fail if addr is not the start address
of a word. On failure −1 is returned to the parent process and the parent's errno is set
to EIO.

6 With this request, a few entries in the child's user area can be written. data gives the
value that is to be written and addr is the location of the entry. The few entries that
can be written are the general registers and the condition codes of the Processor
Status Word.

7 This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid signal number, the child resumes
execution as if it had incurred that signal, and any other pending signals are canceled.
The addr argument must be equal to 1 for this request. On success, the value of data
is returned to the parent. This request fails if data is not 0 or a valid signal number, in
which case −1 is returned to the parent process and the parent's errno is set to EIO.

8 This request causes the child to terminate with the same consequences as exit(2).

9 This request sets the trace bit in the Processor Status Word of the child and then
executes the same steps as listed above for request 7. The trace bit causes an interrupt
on completion of one machine instruction. This effectively allows single stepping of
the child.

To forestall possible fraud, ptrace() inhibits the set-user-ID facility on subsequent calls to
one of the exec family of functions (see exec(2)). If a traced process calls one of these
functions, it stops before executing the first instruction of the new image showing signal
SIGTRAP.

The ptrace() function will fail if:

EIO The request argument is an illegal number.

EPERM The calling process does not have appropriate privileges to control the calling
process. See proc(4).

ESRCH The pid argument identifies a child that does not exist or has not executed a
ptrace() call with request 0.

The ptrace() function is available only with the 32-bit version of libc(3LIB). It is not
available with the 64-bit version of this library.

The /proc debugging interfaces should be used instead of ptrace(), which provides quite
limited debugger support and is itself implemented using the /proc interfaces. There is no
actual ptrace() system call in the kernel. See proc(4) for descriptions of the /proc debugging
interfaces.

Errors

Usage

ptrace(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 2004772

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exec(2), exit(2), libc(3LIB), signal(3C), signal.h(3HEAD), wait(3C), proc(4),
attributes(5)

Attributes

See Also

ptrace(3C)

Basic Library Functions 773

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ptsname – get name of the slave pseudo-terminal device

#include <stdlib.h>

char *ptsname(int fildes);

The ptsname() function returns the name of the slave pseudo-terminal device associated with
a master pseudo-terminal device. fildes is a file descriptor returned from a successful open of
the master device. ptsname() returns a pointer to a string containing the null-terminated path
name of the slave device of the form /dev/pts/N, where N is a non-negative integer.

Upon successful completion, the function ptsname() returns a pointer to a string which is the
name of the pseudo-terminal slave device. This value points to a static data area that is
overwritten by each call to ptsname(). Upon failure, ptsname() returns NULL. This could
occur if fildes is an invalid file descriptor or if the slave device name does not exist in the file
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

open(2), grantpt(3C), ttyname(3C), unlockpt(3C), attributes(5), standards(5)

STREAMS Programming Guide

Name

Synopsis

Description

Return Values

Attributes

See Also

ptsname(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002774

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

putenv – change or add value to environment

#include <stdlib.h>

int putenv(char *string);

The putenv() function makes the value of the environment variable name equal to value by
altering an existing variable or creating a new one. In either case, the string pointed to by string
becomes part of the environment, so altering the string will change the environment.

The string argument points to a string of the form name=value. The space used by string is no
longer used once a new string-defining name is passed to putenv().

The putenv() function uses malloc(3C) to enlarge the environment.

After putenv() is called, environment variables are not in alphabetical order.

Upon successful completion, putenv() returns 0. Otherwise, it returns a non-zero value and
sets errno to indicate the error.

The putenv() function may fail if:

ENOMEM Insufficient memory was available.

The putenv() function can be safely called from multithreaded programs. Caution must be
exercised when using this function and getenv(3C) in multithreaded programs. These
functions examine and modify the environment list, which is shared by all threads in a
program. The system prevents the list from being accessed simultaneously by two different
threads. It does not, however, prevent two threads from successively accessing the
environment list using putenv() or getenv().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

exec(2), getenv(3C), malloc(3C), attributes(5), environ(5), standards(5)

The string argument should not be an automatic variable. It should be declared static if it is
declared within a function because it cannot be automatically declared. A potential error is to
call putenv() with a pointer to an automatic variable as the argument and to then exit the
calling function while string is still part of the environment.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Warnings

putenv(3C)

Basic Library Functions 775

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

putpwent – write password file entry

#include <pwd.h>

int putpwent(const struct passwd *p, FILE *f);

The putpwent() function is the inverse of getpwent(). See getpwnam(3C). Given a pointer to
a passwd structure created by getpwent(), getpwuid(), or getpwnam(), putpwent() writes a
line on the stream f that matches the format of /etc/passwd.

The putpwent() function returns a non-zero value if an error was detected during its
operation. Otherwise, it returns 0.

The putpwent() function is of limited utility, since most password files are maintained as
Network Information Service (NIS) files that cannot be updated with this function. For this
reason, the use of this function is discouraged. If used at all, it should be used with
putspent(3C) to update the shadow file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getpwnam(3C), putspent(3C), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

putpwent(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996776

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

puts, fputs – put a string on a stream

#include <stdio.h>

int puts(const char *s);

int fputs(const char *s, FILE *stream);

The puts() function writes the string pointed to by s, followed by a NEWLINE character, to the
standard output stream stdout (see Intro(3)). The terminating null byte is not written.

The fputs() function writes the null-terminated string pointed to by s to the named output
stream. The terminating null byte is not written.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputs() and the next successful completion of a call to fflush(3C) or
fclose(3C) on the same stream or a call to exit(2) or abort(3C).

On successful completion, both functions return the number of bytes written; otherwise they
return EOF and set errno to indicate the error.

Refer to fputc(3C).

Unlike puts(), the fputs() function does not write a NEWLINE character at the end of the
string.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exit(2), write(2), Intro(3), abort(3C), fclose(3C), ferror(3C), fflush(3C), fopen(3C),
fputc(3C), printf(3C), stdio(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

puts(3C)

Basic Library Functions 777

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

putspent – write shadow password file entry

#include <shadow.h>

int putspent(const struct spwd *p, FILE *fp);

The putspent() function is the inverse of getspent(). See getspnam(3C). Given a pointer to
a spwd structure created by getspent() or getspnam(), putspent() writes a line on the
stream fp that matches the format of /etc/shadow.

The spwd structure contains the following members:

char *sp_namp;

char *sp_pwdp;

int sp_lstchg;

int sp_min;

int sp_max;

int sp_warn;

int sp_inact;

int sp_expire;

unsigned int sp_flag;

If the sp_min, sp_max, sp_lstchg, sp_warn, sp_inact, or sp_expire member of the spwd
structure is −1, or if sp_flag is 0, the corresponding /etc/shadow field is cleared.

The putspent() function returns a non-zero value if an error was detected during its
operation. Otherwise, it returns 0.

Since this function is for internal use only, compatibility is not guaranteed. For this reason, its
use is discouraged. If used at all, if should be used with putpwent(3C) to update the password
file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getpwnam(3C), getspnam(3C), putpwent(3C), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

putspent(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Jan 2008778

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

putws – convert a string of Process Code characters to EUC characters

#include <stdio.h>

#include <widec.h>

int putws(wchar_t *s);

The putws() function converts the Process Code string (terminated by a (wchar_t)NULL)
pointed to by s, to an Extended Unix Code (EUC) string followed by a NEWLINE character,
and writes it to the standard output stream stdout. It does not write the terminal null
character.

The putws() function returns the number of Process Code characters transformed and
written. It returns EOF if it attempts to write to a file that has not been opened for writing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ferror(3C), fopen(3C), fread(3C), getws(3C), printf(3C), putwc(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

putws(3C)

Basic Library Functions 779

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

qsort – quick sort

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

The qsort() function is an implementation of the quick-sort algorithm. It sorts a table of data
in place. The contents of the table are sorted in ascending order according to the user-supplied
comparison function.

The base argument points to the element at the base of the table. The nel argument is the
number of elements in the table. The width argument specifies the size of each element in
bytes. The compar argument is the name of the comparison function, which is called with two
arguments that point to the elements being compared.

The function must return an integer less than, equal to, or greater than zero to indicate if the
first argument is to be considered less than, equal to, or greater than the second argument.

The contents of the table are sorted in ascending order according to the user supplied
comparison function.

The qsort() function safely allows concurrent access by multiple threads to disjoint data,
such as overlapping subtrees or tables.

EXAMPLE 1 Program sorts.

The following program sorts a simple array:

#include <stdlib.h>

#include <stdio.h>

static int

intcompare(const void *p1, const void *p2)

{

int i = *((int *)p1);

int j = *((int *)p2);

if (i > j)

return (1);

if (i < j)

return (-1);

return (0);

}

int

main()

{

int i;

Name

Synopsis

Description

Usage

Examples

qsort(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 2004780

EXAMPLE 1 Program sorts. (Continued)

int a[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };

size_t nelems = sizeof (a) / sizeof (int);

qsort((void *)a, nelems, sizeof (int), intcompare);

for (i = 0; i < nelems; i++) {

(void) printf("%d ", a[i]);

}

(void) printf("\n");
return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sort(1), bsearch(3C), lsearch(3C), string(3C), attributes(5), standards(5)

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredictable.

Attributes

See Also

Notes

qsort(3C)

Basic Library Functions 781

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sort-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

raise – send a signal to the executing thread

#include <signal.h>

int raise(int sig);

The raise() function sends the signal sig to the executing thread. If a signal handler is called,
the raise function does not return until after the signal handler returns.

The effect of the raise function is equivalent to calling:

pthread_kill(pthread_self(), sig);

See the pthread_kill(3C) manual page for a detailed list of failure conditions and the
signal.h(3HEAD) manual page for a list of signals.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

pthread_kill(3C), pthread_self(3C), signal.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

raise(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 2005782

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

rand, srand, rand_r – simple random-number generator

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

int rand_r(unsigned int *seed);

The rand() function uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudo-random numbers in the range of 0 to RAND_MAX

(defined in <stdlib.h>).

The srand() function uses the argument seed as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers will be repeated. If rand() is called
before any calls to srand() have been made, the same sequence will be generated as when
srand() is first called with a seed value of 1.

The rand_r() function has the same functionality as rand() except that a pointer to a seed
seed must be supplied by the caller. If rand_r() is called with the same initial value for the
object pointed to by seed and that object is not modified between successive calls to rand_r(),
the same sequence as that produced by calls to rand() will be generated.

The rand() and srand() functions provide per-process pseudo-random streams shared by all
threads. The same effect can be achieved if all threads call rand_r() with a pointer to the same
seed object. The rand_r() function allows a thread to generate a private pseudo-random
stream by having the seed object be private to the thread.

The spectral properties of rand() are limited. The drand48(3C) function provides a better,
more elaborate random-number generator.

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should be used only in multithreaded applications.

Programmers should use /dev/urandom or /dev/random for most random-number
generation, especially for cryptographic purposes. See random(7D).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

Name

Synopsis

Description

Usage

Attributes

rand(3C)

Basic Library Functions 783

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

drand48(3C), attributes(5), standards(5), random(7D)See Also

rand(3C)

man pages section 3: Basic Library Functions • Last Revised 24 May 2011784

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d

random, srandom, initstate, setstate – pseudorandom number functions

#include <stdlib.h>

long random(void);

void srandom(unsigned int seed);

char *initstate(unsigned int seed, char *state, size_t size);

char *setstate(const char *state);

The random() function uses a nonlinear additive feedback random-number generator
employing a default state array size of 31 long integers to return successive pseudo-random
numbers in the range from 0 to 231 −1. The period of this random-number generator is
approximately 16 x (231 −1). The size of the state array determines the period of the
random-number generator. Increasing the state array size increases the period.

The srandom() function initializes the current state array using the value of seed.

The random() and srandom() functions have (almost) the same calling sequence and
initialization properties as rand() and srand() (see rand(3C)). The difference is that
rand(3C) produces a much less random sequence—in fact, the low dozen bits generated by
rand go through a cyclic pattern. All the bits generated by random() are usable.

The algorithm from rand() is used by srandom() to generate the 31 state integers. Because of
this, different srandom() seeds often produce, within an offset, the same sequence of low order
bits from random(). If low order bits are used directly, random() should be initialized with
setstate() using high quality random values.

Unlike srand(), srandom() does not return the old seed because the amount of state
information used is much more than a single word. Two other routines are provided to deal
with restarting/changing random number generators. With 256 bytes of state information, the
period of the random-number generator is greater than 269, which should be sufficient for
most purposes.

Like rand(3C), random() produces by default a sequence of numbers that can be duplicated by
calling srandom() with 1 as the seed.

The initstate() and setstate() functions handle restarting and changing random-number
generators. The initstate() function allows a state array, pointed to by the state argument,
to be initialized for future use. The size argument, which specifies the size in bytes of the state
array, is used by initstate() to decide what type of random-number generator to use; the
larger the state array, the more random the numbers. Values for the amount of state
information are 8, 32, 64, 128, and 256 bytes. Other values greater than 8 bytes are rounded
down to the nearest one of these values. For values smaller than 8, random() uses a simple
linear congruential random number generator. The seed argument specifies a starting point
for the random-number sequence and provides for restarting at the same point. The
initstate() function returns a pointer to the previous state information array.

Name

Synopsis

Description

random(3C)

Basic Library Functions 785

If initstate() has not been called, then random() behaves as though initstate() had been
called with seed = 1 and size = 128.

If initstate() is called with size < 8, then random() uses a simple linear congruential random
number generator.

Once a state has been initialized, setstate() allows switching between state arrays. The array
defined by the state argument is used for further random-number generation until
initstate() is called or setstate() is called again. The setstate() function returns a
pointer to the previous state array.

The random() function returns the generated pseudo-random number.

The srandom() function returns no value.

Upon successful completion, initstate() and setstate() return a pointer to the previous
state array. Otherwise, a null pointer is returned.

No errors are defined.

After initialization, a state array can be restarted at a different point in one of two ways:
■ The initstate() function can be used, with the desired seed, state array, and size of the

array.
■ The setstate() function, with the desired state, can be used, followed by srandom() with

the desired seed. The advantage of using both of these functions is that the size of the state
array does not have to be saved once it is initialized.

Programmers should use /dev/urandom or /dev/random for most random-number
generation, especially for cryptographic purposes. See random(7D).

EXAMPLE 1 Initialize an array.

The following example demonstrates the use of initstate() to initialize an array. It also
demonstrates how to initialize an array and pass it to setstate().

include <stdlib.h>

static unsigned int state0[32];

static unsigned int state1[32] = {

3,

0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,

0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,

0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,

0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,

0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,

0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,

0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,

0xf5ad9d0e, 0x8999220b, 0x27fb47b9

};

Return Values

Errors

Usage

Examples

random(3C)

man pages section 3: Basic Library Functions • Last Revised 24 May 2011786

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d

EXAMPLE 1 Initialize an array. (Continued)

main() {

unsigned seed;

int n;

seed = 1;

n = 128;

(void)initstate(seed, (char *)state0, n);

printf("random() = %d0\n", random());

(void)setstate((char *)state1);

printf("random() = %d0\n", random());

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See NOTES below.

Standard See standards(5).

drand48(3C), rand(3C), attributes(5), standards(5), random(7D)

The random() and srandom() functions are unsafe in multithreaded applications.

Use of these functions in multithreaded applications is unsupported.

For initstate() and setstate(), the state argument must be aligned on an int boundary.

Newer and better performing random number generators such as addrans() and lcrans()

are available with the Oracle Solaris Studio compilers.

Attributes

See Also

Notes

random(3C)

Basic Library Functions 787

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2random-7d

rctlblk_set_value, rctlblk_get_firing_time, rctlblk_get_global_action,
rctlblk_get_global_flags, rctlblk_get_local_action, rctlblk_get_local_flags,
rctlblk_get_privilege, rctlblk_get_recipient_pid, rctlblk_get_value,
rctlblk_get_enforced_value, rctlblk_set_local_action, rctlblk_set_local_flags,
rctlblk_set_privilege, rctlblk_set_recipient_pid, rctlblk_size – manipulate resource control
blocks

#include <rctl.h>

hrtime_t rctlblk_get_firing_time(rctlblk_t *rblk);

int rctlblk_get_global_action(rctlblk_t *rblk);

int rctlblk_get_global_flags(rctlblk_t *rblk);

int rctlblk_get_local_action(rctlblk_t *rblk, int *signalp);

int rctlblk_get_local_flags(rctlblk_t *rblk);

rctl_priv_t rctlblk_get_privilege(rctlblk_t *rblk);

id_t rctlblk_get_recipient_pid(rctlblk_t *rblk);

rctl_qty_t rctlblk_get_value(rctlblk_t *rblk);

rctl_qty_t rctlblk_get_enforced_value(rctlblk_t *rblk);

void rctlblk_set_local_action(rctlblk_t *rblk, rctl_action_t action,
int signal);

void rctlblk_set_local_flags(rctlblk_t *rblk, int flags);

void rctlblk_set_privilege(rctlblk_t *rblk, rctl_priv_t privilege);

void rctlblk_set_value(rctlblk_t *rblk, rctl_qty_t value);

void rctlblk_set_recipient_pid(id_tpid);

size_t rctlblk_size(void);

The resource control block routines allow the establishment or retrieval of values from a
resource control block used to transfer information using the getrctl(2) and setrctl(2)
functions. Each of the routines accesses or sets the resource control block member
corresponding to its name. Certain of these members are read-only and do not possess set
routines.

The firing time of a resource control block is 0 if the resource control action-value has not
been exceeded for its lifetime on the process. Otherwise the firing time is the value of
gethrtime(3C) at the moment the action on the resource control value was taken.

The global actions and flags are the action and flags set by rctladm(1M). These values cannot
be set with setrctl(2). Valid global actions are listed in the table below. Global flags are
generally a published property of the control and are not modifiable.

Name

Synopsis

Description

rctlblk_set_value(3C)

man pages section 3: Basic Library Functions • Last Revised 15 May 2006788

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2

RCTL_GLOBAL_DENY_ALWAYS The action taken when a control value is exceeded on this
control will always include denial of the resource.

RCTL_GLOBAL_DENY_NEVER The action taken when a control value is exceeded on this
control will always exclude denial of the resource; the
resource will always be granted, although other actions can
also be taken.

RCTL_GLOBAL_SIGNAL_NEVER No signal actions are permitted on this control.

RCTL_GLOBAL_CPU_TIME The valid signals available as local actions include the
SIGXCPU signal.

RCTL_GLOBAL_FILE_SIZE The valid signals available as local actions include the
SIGXFSZ signal.

RCTL_GLOBAL_INFINITE This resource control supports the concept of an unlimited
value; generally true only of accumulation-oriented
resources, such as CPU time.

RCTL_GLOBAL_LOWERABLE Non-privileged callers are able to lower the value of
privileged resource control values on this control.

RCTL_GLOBAL_NOACTION No global action will be taken when a resource control value
is exceeded on this control.

RCTL_GLOBAL_NOBASIC No values with the RCPRIV_BASIC privilege are permitted on
this control.

RCTL_GLOBAL_SYSLOG A standard message will be logged by the syslog(3C) facility
when any resource control value on a sequence associated
with this control is exceeded.

RCTL_GLOBAL_SYSLOG_NEVER The resource control does not support the syslog() global
action. Exceeding a resource control value on this control
will not result in a message logged by the syslog() facility.

RCTL_GLOBAL_UNOBSERVABLE The resource control (generally on a task- or project-related
control) does not support observational control values. An
RCPRIV_BASIC privileged control value placed by a process
on the task or process will generate an action only if the
value is exceeded by that process.

RCTL_GLOBAL_BYTES This resource control represents a number of bytes.

RCTL_GLOBAL_SECONDS This resource control represents a quantity of time in
seconds.

RCTL_GLOBAL_COUNT This resource control represents an integer count.

rctlblk_set_value(3C)

Basic Library Functions 789

The local action and flags are those on the current resource control value represented by this
resource control block. Valid actions and flags are listed in the table below. In the case of
RCTL_LOCAL_SIGNAL, the second argument to rctlblk_set_local_action() contains the
signal to be sent. Similarly, the signal to be sent is copied into the integer location specified by
the second argument to rctlblk_get_local_action(). A restricted set of signals is made
available for normal use by the resource control facility: SIGBART, SIGXRES, SIGHUP, SIGSTOP,
SIGTERM, and SIGKILL. Other signals are permitted due to global properties of a specific
control. Calls to setrctl() with illegal signals will fail.

RCTL_LOCAL_DENY When this resource control value is encountered, the request for
the resource will be denied. Set on all values if
RCTL_GLOBAL_DENY_ALWAYS is set for this control; cleared on all
values if RCTL_GLOBAL_DENY_NEVER is set for this control.

RCTL_LOCAL_MAXIMAL This resource control value represents a request for the maximum
amount of resource for this control. If RCTL_GLOBAL_INFINITE is
set for this resource control, RCTL_LOCAL_MAXIMAL indicates an
unlimited resource control value, one that will never be exceeded.

RCTL_LOCAL_NOACTION No local action will be taken when this resource control value is
exceeded.

RCTL_LOCAL_SIGNAL The specified signal, sent by rctlblk_set_local_action(), will
be sent to the process that placed this resource control value in the
value sequence. This behavior is also true for signal actions on
project and task resource controls. The specified signal is sent only
to the recipient process, not all processes within the project or
task.

The rctlblk_get_recipient_pid() function returns the value of the process ID that placed
the resource control value for basic rctls. For privileged or system rctls,
rctlblk_get_recipient_pid() returns -1.

The rctlblk_set_recipient_pid() function sets the recipient pid for a basic rctl. When
setrctl(2) is called with the flag RCTL_USE_RECIPIENT_PID, this pid is used. Otherwise, the
PID of the calling process is used. Only privileged users can set the recipient PID to one other
than the PID of the calling process. Process-scoped rctls must have a recipient PID that
matches the PID of the calling process.

The rctlblk_get_privilege() function returns the privilege of the resource control block.
Valid privileges are RCPRIV_BASIC, RCPRIV_PRIVILEGED, and RCPRIV_SYSTEM. System
resource controls are read-only. Privileged resource controls require the
{PRIV_SYS_RESOURCE} privilege to write, unless the RCTL_GLOBAL_LOWERABLE global flag is set,
in which case unprivileged applications can lower the value of a privileged control.

rctlblk_set_value(3C)

man pages section 3: Basic Library Functions • Last Revised 15 May 2006790

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2

The rctlblk_get_value() and rctlblk_set_value() functions return or establish the
enforced value associated with the resource control. In cases where the process, task, or
project associated with the control possesses fewer capabilities than allowable by the current
value, the value returned by rctlblk_get_enforced_value() will differ from that returned
by rctlblk_get_value(). This capability difference arises with processes using an address
space model smaller than the maximum address space model supported by the system.

The rctlblk_size() function returns the size of a resource control block for use in memory
allocation. The rctlblk_t * type is an opaque pointer whose size is not connected with that of
the resource control block itself. Use of rctlblk_size() is illustrated in the example below.

The various set routines have no return values. Incorrectly composed resource control blocks
will generate errors when used with setrctl(2) or getrctl(2).

No error values are returned. Incorrectly constructed resource control blocks will be rejected
by the system calls.

EXAMPLE 1 Display the contents of a fetched resource control block.

The following example displays the contents of a fetched resource control block.

#include <rctl.h>

#include <stdio.h>

#include <stdlib.h>

rctlblk_t *rblk;

int rsignal;

int raction;

if ((rblk = malloc(rctlblk_size())) == NULL) {

(void) perror("rblk malloc");
exit(1);

}

if (getrctl("process.max-cpu-time", NULL, rblk, RCTL_FIRST) == -1) {

(void) perror("getrctl");
exit(1);

}

main()

{

raction = rctlblk_get_local_action(rblk, &rsignal),

(void) printf("Resource control for %s\n",
"process.max-cpu-time");

(void) printf("Process ID: %d\n",
rctlblk_get_recipient_pid(rblk));

(void) printf("Privilege: %x\n"
rctlblk_get_privilege(rblk));

Return Values

Errors

Examples

rctlblk_set_value(3C)

Basic Library Functions 791

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrctl-2

EXAMPLE 1 Display the contents of a fetched resource control block. (Continued)

(void) printf("Global flags: %x\n"
rctlblk_get_global_flags(rblk));

(void) printf("Global actions: %x\n"
rctlblk_get_global_action(rblk));

(void) printf("Local flags: %x\n"
rctlblk_get_local_flags(rblk));

(void) printf("Local action: %x (%d)\n"
raction, raction == RCTL_LOCAL_SIGNAL ? rsignal : 0);

(void) printf("Value: %llu\n",
rctlblk_get_value(rblk));

(void) printf("\\tEnforced value: %llu\n",
rctlblk_get_enforced_value(rblk));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

rctladm(1M), getrctl(2), setrctl(2), gethrtime(3C), attributes(5)

Attributes

See Also

rctlblk_set_value(3C)

man pages section 3: Basic Library Functions • Last Revised 15 May 2006792

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rctladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rctl_walk – visit registered rctls on current system

#include <rctl.h>

int rctl_walk(int (*callback)(const char *rctlname, void *walk_data),
void *init_data);

The rctl_walk() function provides a mechanism for the application author to examine all
active resource controls (rctls) on the current system. The callback function provided by the
application is given the name of an rctl at each invocation and can use the walk_data to record
its own state. The callback function should return non-zero if it encounters an error condition
or attempts to terminate the walk prematurely; otherwise the callback function should return
0.

Upon successful completion, rctl_walk() returns 0. It returns −1 if the callback function
returned a non-zero value or if the walk encountered an error, in which case errno is set to
indicate the error.

The rctl_walk() function will fail if:

ENOMEM There is insufficient memory available to set up the initial data for the walk.

Other returned error values are presumably caused by the callback function.

EXAMPLE 1 Count the number of rctls available on the system.

The following example counts the number of resource controls on the system.

#include <sys/types.h>

#include <rctl.h>

#include <stdio.h>

typedef struct wdata {

uint_t count;

} wdata_t;

wdata_t total_count;

int

simple_callback(const char *name, void *pvt)

{

wdata_t *w = (wdata_t *)pvt;

w->count++;

return (0);

}

...

total_count.count = 0;

Name

Synopsis

Description

Return Values

Errors

Examples

rctl_walk(3C)

Basic Library Functions 793

EXAMPLE 1 Count the number of rctls available on the system. (Continued)

errno = 0;

if (rctl_walk(simple_callback, &total_count)) == 0)

(void) printf("count = %u\n", total_count.count);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

setrctl(2), attributes(5)

Attributes

See Also

rctl_walk(3C)

man pages section 3: Basic Library Functions • Last Revised 2001794

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

readdir, readdir_r – read directory

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

struct dirent *readdir_r(DIR *dirp, struct dirent *entry);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int readdir_r(DIR *restrict dirp, struct dirent *restrict entry,
struct dirent **restrict result);

The type DIR, which is defined in the header <dirent.h>, represents a directory stream, which
is an ordered sequence of all the directory entries in a particular directory. Directory entries
represent files. Files can be removed from a directory or added to a directory asynchronously
to the operation of readdir() and readdir_r().

The readdir() function returns a pointer to a structure representing the directory entry at the
current position in the directory stream specified by the argument dirp, and positions the
directory stream at the next entry. It returns a null pointer upon reaching the end of the
directory stream. The structure dirent defined by the <dirent.h> header describes a
directory entry.

The readdir() function will not return directory entries containing empty names. If entries
for . (dot) or .. (dot-dot) exist, one entry will be returned for dot and one entry will be returned
for dot-dot; otherwise they will not be returned.

The pointer returned by readdir() points to data that can be overwritten by another call to
readdir() on the same directory stream. These data are not overwritten by another call to
readdir() on a different directory stream.

If a file is removed from or added to the directory after the most recent call to opendir(3C) or
rewinddir(3C), whether a subsequent call to readdir() returns an entry for that file is
unspecified.

The readdir() function can buffer several directory entries per actual read operation. It
marks for update the st_atime field of the directory each time the directory is actually read.

After a call to fork(2), either the parent or child (but not both) can continue processing the
directory stream using readdir(), rewinddir() or seekdir(3C). If both the parent and child
processes use these functions, the result is undefined.

If the entry names a symbolic link, the value of the d_ino member is unspecified.

Name

Synopsis

Standard conforming

Description

readdir()

readdir(3C)

Basic Library Functions 795

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

Unless the end of the directory stream has been reached or an error occurred, the
readdir_r() function initializes the dirent structure referenced by entry to represent the
directory entry at the current position in the directory stream referred to by dirp, and
positions the directory stream at the next entry.

The caller must allocate storage pointed to by entry to be large enough for a dirent structure
with an array of char d_name member containing at least NAME_MAX (that is,
pathconf(directory, _PC_NAME_MAX)) plus one elements. (_PC_NAME_MAX is defined in
<unistd.h>.)

The readdir_r() function will not return directory entries containing empty names. It is
unspecified whether entries are returned for . (dot) or .. (dot-dot).

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is
unspecified.

The readdir_r() function can buffer several directory entries per actual read operation. It
marks for update the st_atime field of the directory each time the directory is actually read.

The standard-conforming version (see standards(5)) of the readdir_r() function performs
all of the actions described above and sets the pointer pointed to by result. If a directory entry
is returned, the pointer will be set to the same value as the entry argument; otherwise, it will be
set to NULL.

Upon successful completion, readdir() and the default readdir_r() return a pointer to an
object of type struct dirent. When an error is encountered, a null pointer is returned and
errno is set to indicate the error. When the end of the directory is encountered, a null pointer
is returned and errno is not changed.

The standard-conforming readdir_r() returns 0 if the end of the directory is encountered or
a directory entry is stored in the structure referenced by entry. Otherwise, an error number is
returned to indicate the failure.

The readdir() and readdir_r() functions will fail if:

EOVERFLOW One of the values in the structure to be returned cannot be represented
correctly.

The readdir() and readdir_r() functions may fail if:

EBADF The dirp argument does not refer to an open directory stream.

ENOENT The current position of the directory stream is invalid.

The readdir() and readdir_r() functions should be used in conjunction with opendir(),
closedir(), and rewinddir() to examine the contents of the directory. Since readdir() and
the default readdir_r() return a null pointer both at the end of the directory and on error, an

readdir_r()

Return Values

Errors

Usage

readdir(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Jun 2007796

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

application wanting to check for error situations should set errno to 0 before calling either of
these functions. If errno is set to non-zero on return, an error occurred.

It is safe to use readdir() in a threaded application, so long as only one thread reads from the
directory stream at any given time. The readdir() function is generally preferred over the
readdir_r() function.

The standard-conforming readdir_r() returns the error number if an error occurred. It
returns 0 on success (including reaching the end of the directory stream).

The readdir() and readdir_r() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

EXAMPLE 1 Search the current directory for the entry name.

The following sample program will search the current directory for each of the arguments
supplied on the command line:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

#include <strings.h>

static void lookup(const char *arg)

{

DIR *dirp;

struct dirent *dp;

if ((dirp = opendir(".")) == NULL) {

perror("couldn’t open ’.’");
return;

}

do {

errno = 0;

if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, arg) != 0)

continue;

(void) printf("found %s\n", arg);

(void) closedir(dirp);

return;

}

} while (dp != NULL);

if (errno != 0)

perror("error reading directory");

Examples

readdir(3C)

Basic Library Functions 797

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

EXAMPLE 1 Search the current directory for the entry name. (Continued)

else

(void) printf("failed to find %s\n", arg);

(void) closedir(dirp);

return;

}

int main(int argc, char *argv[])

{

int i;

for (i = 1; i < argc; i++)

lookup(argv[i]);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See standards(5).

The readdir() function is Unsafe. The readdir_r() function is Safe.

fork(2), lstat(2), symlink(2), Intro(3), closedir(3C), opendir(3C), rewinddir(3C),
scandir(3C), seekdir(3C), attributes(5), lf64(5), standards(5)

When compiling multithreaded programs, see the MULTITHREADED APPLICATIONS section of
Intro(3).

Solaris 2.4 and earlier releases provided a readdir_r() interface as specified in POSIX.1c
Draft 6. The final POSIX.1c standard changed the interface as described above. Support for the
Draft 6 interface is provided for compatibility only and might not be supported in future
releases. New applications and libraries should use the standard-conforming interface.

For POSIX.1c-conforming applications, the _POSIX_PTHREAD_SEMANTICS and _REENTRANT

flags are automatically turned on by defining the _POSIX_C_SOURCE flag with a value >=
199506L.

Attributes

See Also

Notes

readdir(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Jun 2007798

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1symlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

realpath, canonicalize_file_name – resolve pathname

#include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

char *canonicalize_file_name (const char *path);

The realpath() function derives, from the pathname pointed to by file_name, an absolute
pathname that resolves to the same directory entry, whose resolution does not involve “.”,
“..”, or symbolic links. If resolved_name is not null, the generated pathname is stored as a
null-terminated string, up to a maximum of {PATH_MAX} (defined in limits.h(3HEAD)) bytes
in the buffer pointed to by resolved_name. If resolved_name is null, the generated pathname is
stored as a null-terminated string in a buffer that is allocated as if malloc(3C) were called.

The call canonicalize_file_name(path) is equivalent to the call realpath(path, NULL).

On successful completion, realpath() returns a pointer to the resolved name. Otherwise,
realpath() returns a null pointer and sets errno to indicate the error, and the contents of the
buffer pointed to by resolved_name are left in an indeterminate state.

The realpath() function will fail if:

EACCES Read or search permission was denied for a component of file_name.

EINVAL Either the file_name or resolved_name argument is a null pointer.

EIO An error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in resolving file_name.

ELOOP A loop exists in symbolic links encountered during resolution of the
file_name argument.

ENAMETOOLONG The file_name argument is longer than {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT A component of file_name does not name an existing file or file_name
points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

The realpath() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

ENOMEM Insufficient storage space is available.

Name

Synopsis

Description

Return Values

Errors

realpath(3C)

Basic Library Functions 799

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1limits.h-3head

The realpath() function operates on null-terminated strings.

Execute permission is required for all the directories in the given and the resolved path.

The realpath() function might fail to return to the current directory if an error occurs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getcwd(3C), limits.h(3HEAD), malloc(3C), sysconf(3C), attributes(5), standards(5)

Usage

Attributes

See Also

realpath(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 2010800

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1limits.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

reboot – reboot system or halt processor

#include <sys/reboot.h>

int reboot(int howto, char *bootargs);

The reboot() function reboots the system. The howto argument specifies the behavior of the
system while rebooting and is a mask constructed by a bitwise-inclusive-OR of flags from the
following list:

RB_AUTOBOOT The machine is rebooted from the root filesystem on the default boot device.
This is the default behavior. See boot(1M) and kernel(1M).

RB_HALT The processor is simply halted; no reboot takes place. This option should be
used with caution.

RB_ASKNAME Interpreted by the bootstrap program and kernel, causing the user to be
asked for pathnames during the bootstrap.

RB_DUMP The system is forced to panic immediately without any further processing
and a crash dump is written to the dump device (see dumpadm(1M)) before
rebooting.

Any other howto argument causes the kernel file to boot.

The interpretation of the bootargs argument is platform-dependent.

Upon successful completion, reboot() never returns. Otherwise, −1 is returned and errno is
set to indicate the error.

The reboot() function will fail if:

EPERM The {PRIV_SYS_CONFIG} privilege is not asserted in the effective set of the calling
process.

Intro(1M), boot(1M), dumpadm(1M), halt(1M), init(1M), kernel(1M), reboot(1M),
uadmin(2)

Name

Synopsis

Description

Return Values

Errors

See Also

reboot(3C)

Basic Library Functions 801

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1boot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kernel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1boot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1halt-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1init-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kernel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1reboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uadmin-2

re_comp, re_exec – compile and execute regular expressions

#include <re_comp.h>

char *re_comp(const char *string);

int re_exec(const char *string);

The re_comp() function converts a regular expression string (RE) into an internal form
suitable for pattern matching. The re_exec() function compares the string pointed to by the
string argument with the last regular expression passed to re_comp().

If re_comp() is called with a null pointer argument, the current regular expression remains
unchanged.

Strings passed to both re_comp() and re_exec() must be terminated by a null byte, and may
include NEWLINE characters.

The re_comp() and re_exec() functions support simple regular expressions, which are
defined on the regexp(5) manual page. The regular expressions of the form \{m\}, \{m,\},
or \{m,n\} are not supported.

The re_comp() function returns a null pointer when the string pointed to by the string
argument is successfully converted. Otherwise, a pointer to one of the following error message
strings is returned:

No previous regular expression

Regular expression too long

unmatched \ (

missing]

too many \ (\) pairs

unmatched \)

Upon successful completion, re_exec() returns 1 if string matches the last compiled regular
expression. Otherwise, re_exec() returns 0 if string fails to match the last compiled regular
expression, and −1 if the compiled regular expression is invalid (indicating an internal error).

No errors are defined.

For portability to implementations conforming to X/Open standards prior to SUS,
regcomp(3C) and regexec(3C) are preferred to these functions. See standards(5).

grep(1), regcmp(1), regcmp(3C), regcomp(3C), regexec(3C), regexpr(3GEN), regexp(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

See Also

re_comp(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Feb 1997802

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regexp-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1grep-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regcmp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regexpr-3gen
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regexp-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

regcmp, regex – compile and execute regular expression

#include <libgen.h>

char *regcmp(const char *string1, /* char *string2 */ ...,

int /*(char*)0*/);

char *regex(const char *re, const char *subject,
/* char *ret0 */ ...);

extern char *__loc1;

The regcmp() function compiles a regular expression (consisting of the concatenated
arguments) and returns a pointer to the compiled form. The malloc(3C) function is used to
create space for the compiled form. It is the user's responsibility to free unneeded space so
allocated. A NULL return from regcmp() indicates an incorrect argument. regcmp(1) has been
written to generally preclude the need for this routine at execution time.

The regex() function executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. The regex() function returns NULL on failure or
a pointer to the next unmatched character on success. A global character pointer __loc1
points to where the match began. The regcmp() and regex() functions were mostly borrowed
from the editor ed(1); however, the syntax and semantics have been changed slightly. The
following are the valid symbols and associated meanings.

[] * .^ This group of symbols retains its meaning as described on the regexp(5)
manual page.

$ Matches the end of the string; \n matches a newline.

− Within brackets the minus means through. For example, [a−z] is
equivalent to [abcd . . .xyz]. The − can appear as itself only if used as
the first or last character. For example, the character class expression []−]
matches the characters] and −.

+ A regular expression followed by + means one or more times. For example,
[0−9]+ is equivalent to [0−9][0−9]*.

{m} {m,} {m,u} Integer values enclosed in { } indicate the number of times the preceding
regular expression is to be applied. The value m is the minimum number
and u is a number, less than 256, which is the maximum. If only m is
present (that is, {m}), it indicates the exact number of times the regular
expression is to be applied. The value {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to {1,} and {0,}

respectively.

(...)$n The value of the enclosed regular expression is to be returned. The value
will be stored in the (n+1)th argument following the subject argument. At

Name

Synopsis

Description

regcmp(3C)

Basic Library Functions 803

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regcmp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ed-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regexp-5

most, ten enclosed regular expressions are allowed. The regex() function
makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, for example, *, +, { }, can
work on a single character or a regular expression enclosed in parentheses.
For example, (a*(cb+)*)$0. By necessity, all the above defined symbols
are special. They must, therefore, be escaped with a \ (backslash) to be
used as themselves.

EXAMPLE 1 Example matching a leading newline in the subject string.

The following example matches a leading newline in the subject string pointed at by cursor.

char *cursor, *newcursor, *ptr;

. . .

newcursor = regex((ptr = regcmp("^\n", (char *)0)), cursor);

free(ptr);

The following example matches through the string Testing3 and returns the address of the
character after the last matched character (the ‘‘4''). The string Testing3 is copied to the
character array ret0.

char ret0[9];

char *newcursor, *name;

. . .

name = regcmp("([A−Za−z][A−za−z0−9]{0,7})$0", (char *)0);

newcursor = regex(name, "012Testing345", ret0);

The following example applies a precompiled regular expression in file.i (see regcmp(1))
against string.

#include "file.i"
char *string, *newcursor;

. . .

newcursor = regex(name, string);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ed(1), regcmp(1), malloc(3C), attributes(5), regexp(5)

The user program may run out of memory if regcmp() is called iteratively without freeing the
vectors no longer required.

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should only be used in multithreaded applications.

Examples

Attributes

See Also

Notes

regcmp(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Nov 2002804

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regcmp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ed-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regcmp-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regexp-5

regcomp, regexec, regerror, regfree – regular expression matching

#include <sys/types.h>

#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict pattern,
int cflags);

int regexec(const regex_t *restrict preg,
const char *restrict string, size_t nmatch,
regmatch_t pmatch[restrict], int eflags);

size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);

void regfree(regex_t *preg);

These functions interpret basic and extended regular expressions (described on the regex(5)
manual page).

The structure type regex_t contains at least the following member:

size_t re_nsub Number of parenthesised subexpressions.

The structure type regmatch_t contains at least the following members:

regoff_t rm_so Byte offset from start of string to start of substring.

regoff_t rm_eo Byte offset from start of string of the first character after the end of
substring.

The regcomp() function will compile the regular expression contained in the string pointed to
by the pattern argument and place the results in the structure pointed to by preg. The cflags
argument is the bitwise inclusive OR of zero or more of the following flags, which are defined
in the header <regex.h>:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match.

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of NEWLINE characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application
can specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() will set re_nsub to the number of
parenthesised subexpressions (delimited by \(\) in basic regular expressions or () in extended
regular expressions) found in pattern.

Name

Synopsis

Description

regcomp()

regcomp(3C)

Basic Library Functions 805

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regex-5

The regexec() function compares the null-terminated string specified by string with the
compiled regular expression preg initialized by a previous call to regcomp(). The eflags
argument is the bitwise inclusive OR of zero or more of the following flags, which are defined
in the header <regex.h>:

REG_NOTBOL The first character of the string pointed to by string is not the beginning of the
line. Therefore, the circumflex character (^), when taken as a special
character, will not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end of the line.
Therefore, the dollar sign ($), when taken as a special character, will not
match the end of string.

If nmatch is zero or REG_NOSUB was set in the cflags argument to regcomp(), then regexec()

will ignore the pmatch argument. Otherwise, the pmatch argument must point to an array
with at least nmatch elements, and regexec() will fill in the elements of that array with offsets
of the substrings of string that correspond to the parenthesised subexpressions of pattern:
pmatch[i].rm_so will be the byte offset of the beginning and pmatch[i].rm_eo will be one
greater than the byte offset of the end of substring i. (Subexpression i begins at the ith matched
open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
corresponds to the entire regular expression. Unused elements of pmatch up to
pmatch[nmatch−1] will be filled with −1. If there are more than nmatch subexpressions in
pattern (pattern itself counts as a subexpression), then regexec() will still do the match, but
will record only the first nmatch substrings.

When matching a basic or extended regular expression, any given parenthesised
subexpression of pattern might participate in the match of several different substrings of
string, or it might not match any substring even though the pattern as a whole did match. The
following rules are used to determine which substrings to report in pmatch when matching
regular expressions:

1. If subexpression i in a regular expression is not contained within another
subexpression, and it participated in the match several times, then the byte offsets in
pmatch[i] will delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not
participate in an otherwise successful match, the byte offsets in pmatch[i] will be −1. A
subexpression does not participate in the match when:

* or \{\} appears immediately after the subexpression in a basic regular expression, or
*, ?, or { } appears immediately after the subexpression in an extended regular
expression, and the subexpression did not match (matched zero times)

or

| is used in an extended regular expression to select this subexpression or another, and
the other subexpression matched.

regexec()

regcomp(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003806

3. If subexpression i is contained within another subexpression j, and i is not contained
within any other subexpression that is contained within j, and a match of subexpression
j is reported in pmatch[j], then the match or non-match of subexpression i reported in
pmatch[i] will be as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are
−1, then the pointers in pmatch[i] also will be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will
be the byte offset of the character or NULL terminator immediately following the
zero-length string.

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a NEWLINE character in pattern or string will be
treated as an ordinary character. If REG_NEWLINE is set, then newline will be treated as an
ordinary character except as follows:

1. A NEWLINE character in string will not be matched by a period outside a bracket
expression or by any form of a non-matching list.

2. A circumflex (^) in pattern, when used to specify expression anchoring will match the
zero-length string immediately after a newline in string, regardless of the setting of
REG_NOTBOL.

3. A dollar-sign ($) in pattern, when used to specify expression anchoring, will match the
zero-length string immediately before a newline in string, regardless of the setting of
REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as error return values:

REG_NOMATCH The regexec() function failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing \ in pattern.

REG_ESUBREG Number in \digit invalid or in error.

REG_EBRACK [] imbalance.

REG_ENOSYS The function is not supported.

regfree()

regcomp(3C)

Basic Library Functions 807

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

REG_BADBR Content of \{ \} invalid: not a number, number too large, more than two
numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, * or + not preceded by valid regular expression.

The regerror() function provides a mapping from error codes returned by regcomp() and
regexec() to unspecified printable strings. It generates a string corresponding to the value of
the errcode argument, which must be the last non-zero value returned by regcomp() or
regexec() with the given value of preg. If errcode is not such a value, an error message
indicating that the error code is invalid is returned.

If preg is a NULL pointer, but errcode is a value returned by a previous call to regexec() or
regcomp(), the regerror() still generates an error string corresponding to the value of
errcode.

If the errbuf_size argument is not zero, regerror() will place the generated string into the
buffer of size errbuf_size bytes pointed to by errbuf. If the string (including the terminating
NULL) cannot fit in the buffer, regerror() will truncate the string and null-terminate the
result.

If errbuf_size is zero, regerror() ignores the errbuf argument, and returns the size of the
buffer needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned
by regcomp(), the result is undefined. A preg is no longer treated as a compiled regular
expression after it is given to regfree().

See regex(5) for BRE (Basic Regular Expression) Anchoring.

On successful completion, the regcomp() function returns 0. Otherwise, it returns an integer
value indicating an error as described in <regex.h>, and the content of preg is undefined.

On successful completion, the regexec() function returns 0. Otherwise it returns
REG_NOMATCH to indicate no match, or REG_ENOSYS to indicate that the function is not
supported.

Upon successful completion, the regerror() function returns the number of bytes needed to
hold the entire generated string. Otherwise, it returns 0 to indicate that the function is not
implemented.

regerror()

Return Values

regcomp(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003808

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regex-5

The regfree() function returns no value.

No errors are defined.

An application could use:

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc a buffer to hold the
string, and then call regerror() again to get the string (see malloc(3C)). Alternately, it could
allocate a fixed, static buffer that is big enough to hold most strings, and then use malloc() to
allocate a larger buffer if it finds that this is too small.

EXAMPLE 1 Example to match string against the extended regular expression in pattern.

#include <regex.h>

/*

* Match string against the extended regular expression in

* pattern, treating errors as no match.

*

* return 1 for match, 0 for no match

*/

int

match(const char *string, char *pattern)

{

int status;

regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB) != 0) {

return(0); /* report error */

}

status = regexec(&re, string, (size_t) 0, NULL, 0);

regfree(&re);

if (status != 0) {

return(0); /* report error */

}

return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all
substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
little error checking is done.)

(void) regcomp (&re, pattern, 0);

/* this call to regexec() finds the first match on the line */

error = regexec (&re, &buffer[0], 1, &pm, 0);

while (error == 0) { /* while matches found */

/* substring found between pm.rm_so and pm.rm_eo */

/* This call to regexec() finds the next match */

Errors

Usage

Examples

regcomp(3C)

Basic Library Functions 809

EXAMPLE 1 Example to match string against the extended regular expression in pattern. (Continued)

error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

fnmatch(3C), glob(3C), malloc(3C), setlocale(3C), attributes(5), standards(5),
regex(5)

The regcomp() function can be used safely in a multithreaded application as long as
setlocale(3C) is not being called to change the locale.

Attributes

See Also

Notes

regcomp(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003810

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1regex-5

remove – remove file

#include <stdio.h>

int remove(const char *path);

The remove() function causes the file or empty directory whose name is the string pointed to
by path to be no longer accessible by that name. A subsequent attempt to open that file using
that name will fail, unless the file is created anew.

For files, remove() is identical to unlink(). For directories, remove() is identical to rmdir().

See rmdir(2) and unlink(2) for a detailed list of failure conditions.

Upon successful completion, remove() returns 0. Otherwise, it returns −1 and sets errno to
indicate an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

rmdir(2), unlink(2), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

remove(3C)

Basic Library Functions 811

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rmdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rmdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

rewind – reset file position indicator in a stream

#include <stdio.h>

void rewind(FILE *stream);

The call:

rewind(stream)

is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() also clears the error indicator.

The rewind() function returns no value.

Refer to fseek(3C) with the exception of EINVAL which does not apply.

Because rewind() does not return a value, an application wishing to detect errors should clear
errno, then call rewind(), and if errno is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fseek(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

rewind(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002812

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

rewinddir – reset position of directory stream to the beginning of a directory

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dirp);

The rewinddir() function resets the position of the directory stream to which dirp refers to
the beginning of the directory. It also causes the directory stream to refer to the current state of
the corresponding directory, as a call to opendir(3C) would have done. If dirp does not refer
to a directory stream, the effect is undefined.

After a call to the fork(2) function, either the parent or child (but not both) may continue
processing the directory stream using readdir(3C), rewinddir() or seekdir(3C). If both the
parent and child processes use these functions, the result is undefined.

The rewinddir() function does not return a value.

No errors are defined.

The rewinddir() function should be used in conjunction with opendir(), readdir(), and
closedir(3C) to examine the contents of the directory. This method is recommended for
portability.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

fork(2), closedir(3C), opendir(3C), readdir(3C), seekdir(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

rewinddir(3C)

Basic Library Functions 813

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

rwlock, rwlock_init, rwlock_destroy, rw_rdlock, rw_wrlock, rw_tryrdlock, rw_trywrlock,
rw_unlock – multiple readers, single writer locks

cc –mt [flag...] file...[library...]

#include <synch.h>

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

int rwlock_destroy(rwlock_t *rwlp);

int rw_rdlock(rwlock_t *rwlp);

int rw_wrlock(rwlock_t *rwlp);

int rw_unlock(rwlock_t *rwlp);

int rw_tryrdlock(rwlock_t *rwlp);

int rw_trywrlock(rwlock_t *rwlp);

Many threads can have simultaneous read-only access to data, while only one thread can have
write access at any given time. Multiple read access with single write access is controlled by
locks, which are generally used to protect data that is frequently searched.

Readers/writer locks can synchronize threads in this process and other processes if they are
allocated in writable memory and shared among cooperating processes (see mmap(2)), and are
initialized for this purpose.

Additionally, readers/writer locks must be initialized prior to use. rwlock_init() The
readers/writer lock pointed to by rwlp is initialized by rwlock_init(). A readers/writer lock is
capable of having several types of behavior, which is specified by type. arg is currently not
used, although a future type may define new behavior parameters by way of arg.

The type argument can be one of the following:

USYNC_PROCESS The readers/writer lock can synchronize threads in this process and other
processes. The readers/writer lock should be initialized by only one
process. arg is ignored. A readers/writer lock initialized with this type,
must be allocated in memory shared between processes, either in Sys V
shared memory (see shmop(2)) or in memory mapped to a file (see
mmap(2)). It is illegal to initialize the object this way and to not allocate it in
such shared memory.

USYNC_THREAD The readers/writer lock can synchronize threads in this process, only. arg
is ignored.

Additionally, readers/writer locks can be initialized by allocation in zeroed memory. A type of
USYNC_THREAD is assumed in this case. Multiple threads must not simultaneously initialize the
same readers/writer lock. And a readers/writer lock must not be re-initialized while in use by
other threads.

Name

Synopsis

Description

rwlock(3C)

man pages section 3: Basic Library Functions • Last Revised 14 May 1998814

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

The following are default readers/writer lock initialization (intra-process):

rwlock_t rwlp;

rwlock_init(&rwlp, NULL, NULL);

or

rwlock_init(&rwlp, USYNC_THREAD, NULL);

or

rwlock_t rwlp = DEFAULTRWLOCK;

The following is a customized readers/writer lock initialization (inter-process):

rwlock_init(&rwlp, USYNC_PROCESS, NULL);

Any state associated with the readers/writer lock pointed to by rwlp are destroyed by
rwlock_destroy() and the readers/writer lock storage space is not released.

rw_rdlock() gets a read lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is currently locked for writing, the calling thread blocks until the write lock
is freed. Multiple threads may simultaneously hold a read lock on a readers/writer lock.

rw_tryrdlock() trys to get a read lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is locked for writing, it returns an error; otherwise, the read lock is
acquired.

rw_wrlock() gets a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is currently locked for reading or writing, the calling thread blocks until all
the read and write locks are freed. At any given time, only one thread may have a write lock on
a readers/writer lock.

rw_trywrlock() trys to get a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is currently locked for reading or writing, it returns an error.

rw_unlock() unlocks a readers/writer lock pointed to by rwlp, if the readers/writer lock is
locked and the calling thread holds the lock for either reading or writing. One of the other
threads that is waiting for the readers/writer lock to be freed will be unblocked, provided there
is other waiting threads. If the calling thread does not hold the lock for either reading or
writing, no error status is returned, and the program's behavior is unknown.

If successful, these functions return 0. Otherwise, a non-zero value is returned to indicate the
error.

The rwlock_init() function will fail if:

EINVAL type is invalid.

Return Values

Errors

rwlock(3C)

Basic Library Functions 815

The rw_tryrdlock() or rw_trywrlock() functions will fail if:

EBUSY The reader or writer lock pointed to by rwlp was already locked.

These functions may fail if:

EFAULT rwlp or arg points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mmap(2), attributes(5)

These interfaces also available by way of:

#include <thread.h>

If multiple threads are waiting for a readers/writer lock, the acquisition order is random by
default. However, some implementations may bias acquisition order to avoid depriving
writers. The current implementation favors writers over readers.

Attributes

See Also

Notes

rwlock(3C)

man pages section 3: Basic Library Functions • Last Revised 14 May 1998816

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

scandir, alphasort – scan a directory

#include <sys/types.h>

#include <dirent.h>

int scandir(const char *dirname, struct dirent *(*namelist[]),
int (*select)(const struct dirent *),

int (*dcomp)(const struct dirent **,

const struct dirent **));

int alphasort(const struct dirent **d1,
const struct dirent **d2);

The scandir() function reads the directory dirname using readdir(3C) and builds an array
of pointers to directory entries using malloc(3C). The namelist argument is a pointer to an
array of structure pointers. The select argument is a pointer to a routine that is called with a
pointer to a directory entry and returns a non-zero value if the directory entry is included in
the array. If this pointer is NULL, then all the directory entries are included. The dcomp
argument is a pointer to a routine that is passed to qsort(3C), which sorts the completed
array. If this pointer is NULL, the array is not sorted.

The alphasort() function can be used as the dcomp() function parameter for the scandir()
function to sort the directory entries into alphabetical order, as if by the strcoll(3C)
function. Its arguments are the two directory entries to compare.

The scandir() function returns the number of entries in the array and a pointer to the array
through the namelist argument. When an error is encountered, scandir() returns -1 and
errno is set to indicate the error.

The alphasort() function returns an integer greater than, equal to, or less than 0 if the
directory entry name pointed to by d1 is greater than, equal to, or less than the directory entry
name pointed to by d2 when both are interpreted as appropriate to the current locale. There is
no return value reserved to indicate an error.

The scandir() function will fail if:

EOVERFLOW The number of directory entries exceeds the number that can be represented
by an int.

The scandir() and alphasort() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

scandir(3C)

Basic Library Functions 817

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

The scandir() function is Unsafe. The alphasort() function is Safe.

malloc(3C), qsort(3C), readdir(3C), strcoll(3C), attributes(5), lf64(5)See Also

scandir(3C)

man pages section 3: Basic Library Functions • Last Revised 4 May 2004818

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5

scanf, fscanf, sscanf, vscanf, vfscanf, vsscanf – convert formatted input

#include <stdio.h>

int scanf(const char *restrict format...);

int fscanf(FILE *restrict stream, const char *restrict format...);

int sscanf(const char *restrict s, const char *restrict format...);

#include <stdarg.h>

#include <stdio.h>

int vscanf(const char *format, va_list arg);

int vfscanf(FILE *stream, const char *format, va_list arg);

int vsscanf(const char *s, const char *format, va_list arg);

The scanf() function reads from the standard input stream stdin.

The fscanf() function reads from the named input stream.

The sscanf() function reads from the string s.

The vscanf(), vfscanf(), and vsscanf() functions are equivalent to the scanf(), fscanf(),
and sscanf() functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by the <stdarg.h>
header . These functions do not invoke the va_end() macro. Applications using these
functions should call va_end(ap) afterwards to clean up.

Each function reads bytes, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be stored. The result is
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, NL_ARGMAX]. This
feature provides for the definition of format strings that select arguments in an order
appropriate to specific languages. In format strings containing the %n$ form of conversion
specifications, it is unspecified whether numbered arguments in the argument list can be
referenced from the format string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format string. The only exception to this is
that %% or %* can be mixed with the %n$ form.

Name

Synopsis

Description

scanf(3C)

Basic Library Functions 819

The scanf() function in all its forms allows for detection of a language-dependent radix
character in the input string. The radix character is defined in the program's locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

The format is a character string, beginning and ending in its initial shift state, if any, composed
of zero or more directives. Each directive is composed of one of the following:
■ one or more white-space characters (space, tab, newline, vertical-tab or form-feed

characters);
■ an ordinary character (neither % nor a white-space character); or
■ a conversion specification.

Each conversion specification is introduced by the character % or the character sequence %n$,
after which the following appear in sequence:
■ An optional assignment-suppressing character *.
■ An optional non-zero decimal integer that specifies the maximum field width.
■ An option length modifier that specifies the size of the receiving object.
■ A conversion specifier character that specifies the type of conversion to be applied. The

valid conversion characters are described below.

The scanf() functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading input
until no more valid input can be read, or up to the first byte which is not a white-space
character which remains unread.

A directive that is an ordinary character is executed as follows. The next byte is read from the
input and compared with the byte that comprises the directive; if the comparison shows that
they are not equivalent, the directive fails, and the differing and subsequent bytes remain
unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification is executed in the
following steps:

Input white-space characters (as specified by isspace(3C)) are skipped, unless the conversion
specification includes a [, c, C, or n conversion character.

An item is read from the input unless the conversion specification includes an n conversion
character. The length of the item read is limited to any specified maximum field width, which
is interpreted in either characters or bytes depending on the conversion character. In Solaris
default mode, the input item is defined as the longest sequence of input bytes that forms a

Conversion
Specifications

scanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008820

matching sequence. In some cases, scanf() might need to read several extra characters
beyond the end of the input item to find the end of a matching sequence. In C99/SUSv3 mode,
the input item is defined as the longest sequence of input bytes that is, or is a prefix of, a
matching sequence. With this definition, scanf() need only read at most one character
beyond the end of the input item. Therefore, in C99/SUSv3 mode, some sequences that are
acceptable to strtod(3C), strtol(3C), and similar functions are unacceptable to scanf(). In
either mode, scanf() attempts to push back any excess bytes read using ungetc(3C).
Assuming all such attempts succeed, the first byte, if any, after the input item remains unread.
If the length of the input item is 0, the conversion fails. This condition is a matching failure
unless end-of-file, an encoding error, or a read error prevented input from the stream, in
which case it is an input failure.

Except in the case of a % conversion character, the input item (or, in the case of a %n conversion
specification, the count of input bytes) is converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails; this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the format argument that has not already received a conversion result if
the conversion specification is introduced by %, or in the nth argument if introduced by the
character sequence %n$. If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e,
E, f, F, g, or G conversion specifier applies to an argument with type pointer to
double; or that a following c, s, or [conversion specifier applies to an
argument with type pointer to wchar_t.

ll (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer
type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

Length Modifiers

scanf(3C)

Basic Library Functions 821

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of strtol(3C) with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of strtol() with 0 for the base argument. In the absence of a size
modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of strtoul(3C) with the value 8 for the base argument. In
the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 16 for the base
argument. In the absence of a size modifier, the corresponding argument must be a
pointer to unsigned int.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence of strtod(3C). In the
absence of a size modifier, the corresponding argument must be a pointer to float.
The e, f, and g specifiers match hexadecimal floating point values only in
C99/SUSv3 (see standards(5)) mode, but the a specifier always matches
hexadecimal floating point values.

These conversion specifiers match any subject sequence accepted by strtod(3C),
including the INF, INFINITY, NAN, and NAN(n-char-sequence) forms. The result
of the conversion is the same as that of calling strtod() (or strtof() or
strtold()) with the matching sequence, including the raising of floating point
exceptions and the setting of errno to ERANGE, if applicable.

s Matches a sequence of bytes that are not white-space characters. The
corresponding argument must be a pointer to the initial byte of an array of char,

Conversion Characters

scanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008822

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

signed char, or unsigned char large enough to accept the sequence and a
terminating null character code, which will be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in
the initial shift state. Each character is converted to a wide-character as if by a call
to the mbrtowc(3C) function, with the conversion state described by an mbstate_t

object initialized to zero before the first character is converted. The corresponding
argument must be a pointer to an array of wchar_t large enough to accept the
sequence and the terminating null wide-character, which will be added
automatically.

[Matches a non-empty sequence of characters from a set of expected characters (the
scanset). The normal skip over white-space characters is suppressed in this case.
The corresponding argument must be a pointer to the initial byte of an array of
char, signed char, or unsigned char large enough to accept the sequence and a
terminating null byte, which will be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in
the initial shift state. Each character in the sequence is converted to a
wide-character as if by a call to the mbrtowc() function, with the conversion state
described by an mbstate_t object initialized to zero before the first character is
converted. The corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide-character,
which will be added automatically.

The conversion specification includes all subsequent characters in the format
string up to and including the matching right square bracket (]). The characters
between the square brackets (the scanlist) comprise the scanset, unless the
character after the left square bracket is a circumflex (^), in which case the scanset
contains all characters that do not appear in the scanlist between the circumflex
and the right square bracket. If the conversion specification begins with [] or [^],
the right square bracket is included in the scanlist and the next right square bracket
is the matching right square bracket that ends the conversion specification;
otherwise the first right square bracket is the one that ends the conversion
specification. If a – is in the scanlist and is not the first character, nor the second
where the first character is a ^, nor the last character, it indicates a range of
characters to be matched.

c Matches a sequence of characters of the number specified by the field width (1 if no
field width is present in the conversion specification). The corresponding
argument must be a pointer to the initial byte of an array of char, signed char, or
unsigned char large enough to accept the sequence. No null byte is added. The
normal skip over white-space characters is suppressed in this case.

scanf(3C)

Basic Library Functions 823

If an l (ell) qualifier is present, the input is a sequence of characters that begins in
the initial shift state. Each character in the sequence is converted to a
wide-character as if by a call to the mbrtowc() function, with the conversion state
described by an mbstate_t object initialized to zero before the first character is
converted. The corresponding argument must be a pointer to an array of wchar_t
large enough to accept the resulting sequence of wide-characters. No null
wide-character is added.

p Matches the set of sequences that is the same as the set of sequences that is
produced by the %p conversion of the corresponding printf(3C) functions. The
corresponding argument must be a pointer to a pointer to void. If the input item is
a value converted earlier during the same program execution, the pointer that
results will compare equal to that value; otherwise the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the
integer into which is to be written the number of bytes read from the input so far by
this call to the scanf() functions. Execution of a %n conversion specification does
not increment the assignment count returned at the completion of execution of the
function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters A, E, F, G, and X are also valid and behave the same as, respectively,
a, e, f, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any bytes matching the current conversion specification (except for %n) have been read
(other than leading white-space characters, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in sscanf() is equivalent to encountering end-of-file for
fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline characters) is left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %n conversion specification.

scanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008824

The fscanf() and scanf() functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgets(3C), fread(3C), fscanf(), getc(3C), getdelim(3C),
getline(3C), getchar(3C), gets(3C), or scanf() using stream that returns data not supplied
by a prior call to ungetc(3C).

Upon successful completion, these functions return the number of successfully matched and
assigned input items; this number can be 0 in the event of an early matching failure. If the
input ends before the first matching failure or conversion, EOF is returned. If a read error
occurs the error indicator for the stream is set, EOF is returned, and errno is set to indicate the
error.

For the conditions under which the scanf() functions will fail and may fail, refer to
fgetc(3C) or fgetwc(3C).

In addition, fscanf() may fail if:

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

If the application calling the scanf() functions has any objects of type wint_t or wchar_t, it
must also include the header <wchar.h> to have these objects defined.

EXAMPLE 1 The call:

int i, n; float x; char name[50];

n = scanf("%d%f%s", &i, &x, name)

with the input line:

25 54.32E–1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the
string Hamster.

EXAMPLE 2 The call:

int i; float x; char name[50];

(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar(3C) will return the character a.

Return Values

Errors

Usage

Examples

scanf(3C)

Basic Library Functions 825

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fgetc(3C), fgets(3C), fgetwc(3C), fread(3C), getdelim(3C), getline(3C), isspace(3C),
printf(3C), setlocale(3C), strtod(3C), strtol(3C), strtoul(3C), wcrtomb(3C),
ungetc(3C), attributes(5), standards(5)

The behavior of the conversion specifier “%%” has changed for all of the functions described
on this manual page. Previously the “%%” specifier accepted a “%” character from input only if
there were no preceding whitespace characters. The new behavior accepts “%” even if there are
preceding whitespace characters. This new behavior now aligns with the description on this
manual page and in various standards. If the old behavior is desired, the conversion
specification “%*[%]” can be used.

Attributes

See Also

Notes

scanf(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Jul 2008826

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

schedctl_init, schedctl_lookup, schedctl_exit, schedctl_start, schedctl_stop – preemption
control

cc [flag...] file... [library...]

#include <schedctl.h>

schedctl_t *schedctl_init(void);

schedctl_t *schedctl_lookup(void);

void schedctl_exit(void);

void schedctl_start(schedctl_t *ptr);

void schedctl_stop(schedctl_t *ptr);

These functions provide limited control over the scheduling of a thread (see threads(5)).
They allow a running thread to give a hint to the kernel that preemptions of that thread should
be avoided. The most likely use for these functions is to block preemption while holding a
spinlock. Improper use of this facility, including attempts to block preemption for sustained
periods of time, may result in reduced performance.

The schedctl_init() function initializes preemption control for the calling thread and
returns a pointer used to refer to the data. If schedctl_init() is called more than once by the
same thread, the most recently returned pointer is the only valid one.

The schedctl_lookup() function returns the currently allocated preemption control data
associated with the calling thread that was previously returned by schedctl_init(). This can
be useful in programs where it is difficult to maintain local state for each thread.

The schedctl_exit() function removes the preemption control data associated with the
calling thread.

The schedctl_start() macro gives a hint to the kernel scheduler that preemption should be
avoided on the current thread. The pointer passed to the macro must be the same as the
pointer returned by the call to schedctl_init() by the current thread. The behavior of the
program when other values are passed is undefined.

The schedctl_stop() macro removes the hint that was set by schedctl_start(). As with
schedctl_start(), the pointer passed to the macro must be the same as the pointer returned
by the call to schedctl_init() by the current thread.

The schedctl_start() and schedctl_stop() macros are intended to be used to bracket
short critical sections, such as the time spent holding a spinlock. Other uses, including the
failure to call schedctl_stop() soon after calling schedctl_start(), might result in poor
performance.

Name

Synopsis

Description

schedctl_init(3C)

Basic Library Functions 827

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

The schedctl_init() function returns a pointer to a schedctl_t structure if the
initialization was successful, or NULL otherwise. The schedctl_lookup() function returns a
pointer to a schedctl_t structure if the data for that thread was found, or NULL otherwise.

No errors are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

priocntl(1), exec(2), fork(2), priocntl(2), attributes(5), threads(5)

Preemption control is intended for use by threads belonging to the time-sharing (TS),
interactive (IA), fair-share (FSS), and fixed-priority (FX) scheduling classes. If used by threads
in other scheduling classes, such as real-time (RT), no errors will be returned but
schedctl_start() and schedctl_stop() will not have any effect.

The data used for preemption control are not copied in the child of a fork(2). Thus, if a
process containing threads using preemption control calls fork and the child does not
immediately call exec(2), each thread in the child must call schedctl_init() again prior to
any future uses of schedctl_start() and schedctl_stop(). Failure to do so will result in
undefined behavior.

Return Values

Errors

Attributes

See Also

Notes

schedctl_init(3C)

man pages section 3: Basic Library Functions • Last Revised 28 May 2003828

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

sched_getparam – get scheduling parameters

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

The sched_getparam() function returns the scheduling parameters of a process specified by
pid in the sched_param structure pointed to by param. The only required member of param is
sched_priority.

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid will be returned.

If pid is 0, the scheduling parameters for the calling process will be returned. The behavior of
the sched_getparam() function is unspecified if the value of pid is negative.

Upon successful completion, the sched_getparam() function returns 0. If the call to
sched_getparam() is unsuccessful, the function returns −1 and sets errno to indicate the
error.

The sched_getparam() function will fail if:

EPERM The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

librt(3LIB), sched.h(3HEAD), sched_getscheduler(3C), sched_setparam(3C),
sched_setscheduler(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_getparam(3C)

Basic Library Functions 829

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_get_priority_max, sched_get_priority_min – get scheduling parameter limits

#include <sched.h>

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

The sched_get_priority_max() and sched_get_priority_min() functions return the
appropriate maximum or minimum, respectfully, for the scheduling policy specified by policy.

The value of policy is one of the scheduling policy values defined in <sched.h>.

If successful, the sched_get_priority_max() and sched_get_priority_min() functions
return the appropriate maximum or minimum priority values, respectively. If unsuccessful,
they return −1 and set errno to indicate the error.

The sched_get_priority_max() and sched_get_priority_min() functions will fail if:

EINVAL The value of the policy parameter does not represent a defined scheduling policy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

librt(3LIB), sched.h(3HEAD), sched_getparam(3C), sched_setparam(3C),
sched_getscheduler(3C), sched_rr_get_interval(3C), sched_setscheduler(3C),
time.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_get_priority_max(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008830

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_getscheduler – get scheduling policy

#include <sched.h>

int sched_getscheduler(pid_t pid);

The sched_getscheduler() function returns the scheduling policy of the process specified by
pid. If the value of pid is negative, the behavior of the sched_getscheduler() function is
unspecified.

The values that can be returned by sched_getscheduler() are defined in the header
<sched.h> and described on the sched_setscheduler(3C) manual page.

If a process specified by pid exists and if the calling process has permission, the scheduling
policy will be returned for the process whose process ID is equal to pid.

If pid is 0, the scheduling policy will be returned for the calling process.

Upon successful completion, the sched_getscheduler() function returns the scheduling
policy of the specified process. If unsuccessful, the function returns −1 and sets errno to
indicate the error.

The sched_getscheduler() function will fail if:

EPERM The requesting process does not have permission to determine the scheduling
policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

librt(3LIB), sched.h(3HEAD), sched_getparam(3C), sched_setparam(3C),
sched_setscheduler(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_getscheduler(3C)

Basic Library Functions 831

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_rr_get_interval – get execution time limits

#include <sched.h>

int sched_rr_get_interval(pid_t pid,
struct timespec *interval);

The sched_rr_get_interval() function updates the timespec structure referenced by the
interval argument to contain the current execution time limit (that is, time quantum) for the
process specified by pid. If pid is 0, the current execution time limit for the calling process will
be returned.

If successful, the sched_rr_get_interval() function returns 0. Otherwise, it returns −1 and
sets errno to indicate the error.

The sched_rr_get_interval() function will fail if:

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

librt(3LIB), sched.h(3HEAD), sched_getparam(3C), sched_setparam(3C),
sched_get_priority_max(3C), sched_getscheduler(3C), sched_setscheduler(3C),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_rr_get_interval(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008832

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_setparam – set scheduling parameters

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

The sched_setparam() function sets the scheduling parameters of the process specified by
pid to the values specified by the sched_param structure pointed to by param. The value of the
sched_priority member in the sched_param structure is any integer within the inclusive
priority range for the current scheduling policy of the process specified by pid. Higher
numerical values for the priority represent higher priorities. If the value of pid is negative, the
behavior of the sched_setparam() function is unspecified.

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters will be set for the process whose process ID is equal to pid. The real or effective
user ID of the calling process must match the real or saved (from exec(2)) user ID of the target
process unless the effective user ID of the calling process is 0. See Intro(2).

If pid is zero, the scheduling parameters will be set for the calling process.

The target process, whether it is running or not running, resumes execution after all other
runnable processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the lowest
priority running process and if the specified process is ready to run, the process specified by
the pid argument preempts a lowest priority running process. Similarly, if the process calling
sched_setparam() sets its own priority lower than that of one or more other non-empty
process lists, then the process that is the head of the highest priority list also preempts the
calling process. Thus, in either case, the originating process might not receive notification of
the completion of the requested priority change until the higher priority process has executed.

If successful, the sched_setparam() function returns 0.

If the call to sched_setparam() is unsuccessful, the priority remains unchanged, and the
function returns −1 and sets errno to indicate the error.

The sched_setparam() function will fail if:

EINVAL One or more of the requested scheduling parameters is outside the range defined
for the scheduling policy of the specified pid.

EPERM The requesting process does not have permission to set the scheduling parameters
for the specified process, or does not have the appropriate privilege to invoke
sched_setparam().

ESRCH No process can be found corresponding to that specified by pid.

Name

Synopsis

Description

Return Values

Errors

sched_setparam(3C)

Basic Library Functions 833

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Intro(2), exec(2), librt(3LIB), sched.h(3HEAD), sched_getparam(3C),
sched_getscheduler(3C), sched_setscheduler(3C), attributes(5), standards(5)

Attributes

See Also

sched_setparam(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008834

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_setscheduler – set scheduling policy and scheduling parameters

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

The sched_setscheduler() function sets the scheduling policy and scheduling parameters of
the process specified by pid to policy and the parameters specified in the sched_param
structure pointed to by param, respectively. The value of the sched_priority member in the
sched_param structure is any integer within the inclusive priority range for the scheduling
policy specified by policy. The sched_setscheduler() function ignores the other members of
the sched_param structure. If the value of pid is negative, the behavior of the
sched_setscheduler() function is unspecified.

The possible values for the policy parameter are defined in the header <sched.h> (see
sched.h(3HEAD)):

If a process specified by pid exists and if the calling process has permission, the scheduling
policy and scheduling parameters are set for the process whose process ID is equal to pid. The
real or effective user ID of the calling process must match the real or saved (from exec(2)) user
ID of the target process unless the effective user ID of the calling process is 0. See Intro(2).

If pid is 0, the scheduling policy and scheduling parameters are set for the calling process.

To change the policy of any process to either of the real time policies SCHED_FIFO or SCHED_RR,
the calling process must either have the SCHED_FIFO or SCHED_RR policy or have an effective
user ID of 0.

The sched_setscheduler() function is considered successful if it succeeds in setting the
scheduling policy and scheduling parameters of the process specified by pid to the values
specified by policy and the structure pointed to by param, respectively.

Upon successful completion, the function returns the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete successfully, the
policy and scheduling paramenters remain unchanged, and the function returns −1 and sets
errno to indicate the error.

The sched_setscheduler() function will fail if:

EINVAL The value of policy is invalid, or one or more of the parameters contained in param
is outside the valid range for the specified scheduling policy.

EPERM The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

Name

Synopsis

Description

Return Values

Errors

sched_setscheduler(3C)

Basic Library Functions 835

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

priocntl(1), Intro(2), exec(2), priocntl(2), librt(3LIB), sched.h(3HEAD),
sched_get_priority_max(3C), sched_getparam(3C), sched_getscheduler(3C),
sched_setparam(3C), attributes(5), standards(5)

Attributes

See Also

sched_setscheduler(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 2008836

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_yield – yield processor

#include <sched.h>

int sched_yield(void);

The sched_yield() function forces the running thread to relinquish the processor until the
process again becomes the head of its process list. It takes no arguments.

If successful, sched_yield() returns 0, otherwise, it returns −1, and sets errno to indicate the
error condition.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

librt(3LIB), sched.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_yield(3C)

Basic Library Functions 837

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

seekdir – set position of directory stream

#include <sys/types.h>

#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

The seekdir() function sets the position of the next readdir(3C) operation on the directory
stream specified by dirp to the position specified by loc. The value of loc should have been
returned from an earlier call to telldir(3C). The new position reverts to the one associated
with the directory stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir() or if a call to
rewinddir(3C) occurred between the call to telldir () and the call to seekdir(), the results
of subsequent calls to readdir() are unspecified.

The seekdir() function returns no value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

opendir(3C), readdir(3C), rewinddir(3C), telldir(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

seekdir(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002838

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

select, pselect, FD_SET, FD_CLR, FD_ISSET, FD_ZERO – synchronous I/O multiplexing

#include <sys/time.h>

int select(int nfds,
fd_set *restrict readfds, fd_set *restrict writefds,
fd_set *restrict errorfds,
struct timeval *restrict timeout);

int pselect(int nfds,
fd_set *restrict readfds, fd_set *restrict writefds,
fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

void FD_SET(int fd, fd_set *fdset);

void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

void FD_ZERO(fd_set *fdset);

The pselect() function examines the file descriptor sets whose addresses are passed in the
readfds, writefds, and errorfds parameters to see if some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending, respectively.

The select() function is equivalent to the pselect() function, except as follows:

■ For the select() function, the timeout period is given in seconds and microseconds in an
argument of type struct timeval, whereas for the pselect() function the timeout period
is given in seconds and nanoseconds in an argument of type struct timespec.

■ The select() function has no sigmask argument. It behaves as pselect() does when
sigmask is a null pointer.

■ Upon successful completion, the select() function might modify the object pointed to by
the timeout argument.

The select() and pselect() functions support regular files, terminal and pseudo-terminal
devices, STREAMS-based files, FIFOs, pipes, and sockets. The behavior of select() and
pselect() on file descriptors that refer to other types of file is unspecified.

The nfds argument specifies the range of file descriptors to be tested. The first nfds descriptors
are checked in each set; that is, the descriptors from zero through nfds-1 in the descriptor sets
are examined.

If the readfs argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to read, and on output indicates
which file descriptors are ready to read.

Name

Synopsis

Description

select(3C)

Basic Library Functions 839

If the writefs argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to write, and on output indicates
which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output
indicates which file descriptors have error conditions pending.

Upon successful completion, the objects pointed to by the readfs, writefs, and errorfds
arguments are modified to indicate which file descriptors are ready for reading, ready for
writing, or have an error condition pending, respectively, and return the total number of ready
descriptors in all the output sets. For each file descriptor less than nfds, the corresponding bit
will be set on successful completion if it was set on input and the associated condition is true
for that file descriptor.

If none of the selected descriptors are ready for the requested operation, the select() or
pselect() function blocks until at least one of the requested operations becomes ready, until
the timeout occurs, or until interrupted by a signal. The timeout parameter controls how long
the select() or pselect() function takes before timing out. If the timeout parameter is not a
null pointer, it specifies a maximum interval to wait for the selection to complete. If the
specified time interval expires without any requested operation becoming ready, the function
returns. If the timeout parameter is a null pointer, then the call to select() or pselect()
blocks indefinitely until at least one descriptor meets the specified criteria. To effect a poll, the
timeout parameter should not be a null pointer, and should point to a zero-valued timespec

structure.

The use of a timeout does not affect any pending timers set up by alarm(2), ualarm(3C), or
setitimer(2).

If sigmask is not a null pointer, then the pselect() function replaces the signal mask of the
process by the set of signals pointed to by sigmask before examining the descriptors, and
restores the signal mask of the process before returning.

A descriptor is considered ready for reading when a call to an input function with O_NONBLOCK

clear would not block, whether or not the function would transfer data successfully. (The
function might return data, an end-of-file indication, or an error other than one indicating
that it is blocked, and in each of these cases the descriptor will be considered ready for
reading.)

A descriptor is considered ready for writing when a call to an output function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully.

If a socket has a pending error, it is considered to have an exceptional condition pending.
Otherwise, what constitutes an exceptional condition is file type-specific. For a file descriptor
for use with a socket, it is protocol-specific except as noted below. For other file types, if the

select(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2004840

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2

operation is meaningless for a particular file type, select() or pselect() indicates that the
descriptor is ready for read or write operations and indicates that the descriptor has no
exceptional condition pending.

If a descriptor refers to a socket, the implied input function is the recvmsg(3XNET) function
with parameters requesting normal and ancillary data, such that the presence of either type
causes the socket to be marked as readable. The presence of out-of-band data is checked if the
socket option SO_OOBINLINE has been enabled, as out-of-band data is enqueued with normal
data. If the socket is currently listening, then it is marked as readable if an incoming
connection request has been received, and a call to the accept function completes without
blocking.

If a descriptor refers to a socket, the implied output function is the sendmsg(3XNET) function
supplying an amount of normal data equal to the current value of the SO_SNDLOWAT option for
the socket. If a non-blocking call to the connect function has been made for a socket, and the
connection attempt has either succeeded or failed leaving a pending error, the socket is
marked as writable.

A socket is considered to have an exceptional condition pending if a receive operation with
O_NONBLOCK clear for the open file description and with the MSG_OOB flag set would return
out-of-band data without blocking. (It is protocol-specific whether the MSG_OOB flag would be
used to read out-of-band data.) A socket will also be considered to have an exceptional
condition pending if an out-of-band data mark is present in the receive queue.

A file descriptor for a socket that is listening for connections will indicate that it is ready for
reading, when connections are available. A file descriptor for a socket that is connecting
asynchronously will indicate that it is ready for writing, when a connection has been
established.

Selecting true for reading on a socket descriptor upon which a listen(3XNET) call has been
performed indicates that a subsequent accept(3XNET) call on that descriptor will not block.

If the timeout argument is not a null pointer, it points to an object of type struct timeval
that specifies a maximum interval to wait for the selection to complete. If the timeout
argument points to an object of type struct timeval whose members are 0, select() does
not block. If the timeout argument is a null pointer, select() blocks until an event causes one
of the masks to be returned with a valid (non-zero) value. If the time limit expires before any
event occurs that would cause one of the masks to be set to a non-zero value, select()
completes successfully and returns 0.

If the readfs, writefs, and errorfds arguments are all null pointers and the timeout argument is
not a null pointer, select() or pselect() blocks for the time specified, or until interrupted
by a signal. If the readfs, writefs, and errorfds arguments are all null pointers and the timeout
argument is a null pointer, select() blocks until interrupted by a signal.

File descriptors associated with regular files always select true for ready to read, ready to write,
and error conditions.

select(3C)

Basic Library Functions 841

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1recvmsg-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sendmsg-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1listen-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1accept-3xnet

On failure, the objects pointed to by the readfs, writefs, and errorfds arguments are not
modified. If the timeout interval expires without the specified condition being true for any of
the specified file descriptors, the objects pointed to by the readfs, writefs, and errorfds
arguments have all bits set to 0.

File descriptor masks of type fd_set can be initialized and tested with the macros FD_CLR(),
FD_ISSET(), FD_SET(), and FD_ZERO().

FD_CLR(fd, &fdset) Clears the bit for the file descriptor fd in the file descriptor set fdset.

FD_ISSET(fd, &fdset) Returns a non-zero value if the bit for the file descriptor fd is set in
the file descriptor set pointed to by fdset, and 0 otherwise.

FD_SET(fd, &fdset) Sets the bit for the file descriptor fd in the file descriptor set fdset.

FD_ZERO(&fdset) Initializes the file descriptor set fdset to have zero bits for all file
descriptors.

The behavior of these macros is undefined if the fd argument is less than 0 or greater than or
equal to FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are
expressions with side effects.

On successful completion, select() and pselect() return the total number of bits set in the
bit masks. Otherwise, −1 is returned and errno is set to indicate the error.

The FD_CLR(), FD_SET(), and FD_ZERO() macros return no value. The FD_ISSET() macro
returns a non-zero value if the bit for the file descriptor fd is set in the file descriptor set
pointed to by fdset, and 0 otherwise.

The select() and pselect() functions will fail if:

EBADF One or more of the file descriptor sets specified a file descriptor that is not a valid
open file descriptor.

EINTR The function was interrupted before any of the selected events occurred and
before the timeout interval expired.

If SA_RESTART has been set for the interrupting signal, it is
implementation-dependent whether select() restarts or returns with EINTR.

EINVAL An invalid timeout interval was specified.

EINVAL The nfds argument is less than 0 or greater than FD_SETSIZE.

EINVAL One of the specified file descriptors refers to a STREAM or multiplexer that is
linked (directly or indirectly) downstream from a multiplexer.

EINVAL A component of the pointed-to time limit is outside the acceptable range: t_sec
must be between 0 and 108, inclusive. t_usec must be greater than or equal to 0,
and less than 106.

Return Values

Errors

select(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2004842

The poll(2) function is preferred over this function. It must be used when the number of file
descriptors exceeds FD_SETSIZE.

The use of a timeout does not affect any pending timers set up by alarm(2), ualarm(3C) or
setitimer(2).

On successful completion, the object pointed to by the timeout argument may be modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

alarm(2), fcntl(2), poll(2), read(2), setitimer(2), write(2), accept(3SOCKET),
listen(3SOCKET), ualarm(3C), attributes(5), standards(5)

The default value for FD_SETSIZE (currently 1024) is larger than the default limit on the
number of open files. To accommodate 32-bit applications that wish to use a larger number of
open files with select(), it is possible to increase this size at compile time by providing a
larger definition of FD_SETSIZE before the inclusion of any system-supplied header. The
maximum supported size for FD_SETSIZE is 65536. The default value is already 65536 for
64-bit applications.

Usage

Attributes

See Also

Notes

select(3C)

Basic Library Functions 843

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1accept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1listen-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

semaphore, sema_init, sema_destroy, sema_wait, sema_trywait, sema_post – semaphores

cc [flag...] file... -lthread –lc [library...]

#include <synch.h>

int sema_init(sema_t *sp, unsigned int count, int type,
void * arg);

int sema_destroy(sema_t *sp);

int sema_wait(sema_t *sp);

int sema_trywait(sema_t *sp);

int sema_post(sema_t *sp);

A semaphore is a non-negative integer count and is generally used to coordinate access to
resources. The initial semaphore count is set to the number of free resources, then threads
slowly increment and decrement the count as resources are added and removed. If the
semaphore count drops to 0, which means no available resources, threads attempting to
decrement the semaphore will block until the count is greater than 0.

Semaphores can synchronize threads in this process and other processes if they are allocated
in writable memory and shared among the cooperating processes (see mmap(2)), and have been
initialized for this purpose.

Semaphores must be initialized before use; semaphores pointed to by sp to count are
initialized by sema_init(). The type argument can assign several different types of behavior to
a semaphore. No current type uses arg, although it may be used in the future.

The type argument may be one of the following:

USYNC_PROCESS The semaphore can synchronize threads in this process and other
processes. Initializing the semaphore should be done by only one process.
A semaphore initialized with this type must be allocated in memory
shared between processes, either in Sys V shared memory (see shmop(2)),
or in memory mapped to a file (see mmap(2)). It is illegal to initialize the
object this way and not allocate it in such shared memory. arg is ignored.

USYNC_THREAD The semaphore can synchronize threads only in this process. The arg
argument is ignored. USYNC_THREAD does not support multiple mappings
to the same logical synch object. If you need to mmap() a synch object to
different locations within the same address space, then the synch object
should be initialized as a shared object USYNC_PROCESS for Solaris threads
and PTHREAD_PROCESS_PRIVATE for POSIX threads.

A semaphore must not be simultaneously initialized by multiple threads, nor re-initialized
while in use by other threads.

Default semaphore initialization (intra-process):

Name

Synopsis

Description

semaphore(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008844

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

sema_t sp;

int count = 1;

sema_init(&sp, count, NULL, NULL);

or

sema_init(&sp, count, USYNC_THREAD, NULL);

Customized semaphore initialization (inter-process):

sema_t sp;

int count = 1;

sema_init(&sp, count, USYNC_PROCESS, NULL);

The sema_destroy() function destroys any state related to the semaphore pointed to by sp.
The semaphore storage space is not released.

The sema_wait() function blocks the calling thread until the semaphore count pointed to by
sp is greater than 0, and then it atomically decrements the count.

The sema_trywait() function atomically decrements the semaphore count pointed to by sp,
if the count is greater than 0; otherwise, it returns an error.

The sema_post() function atomically increments the semaphore count pointed to by sp. If
there are any threads blocked on the semaphore, one will be unblocked.

The semaphore functionality described on this man page is for the Solaris threads
implementation. For the POSIX-conforming semaphore interface documentation, see
sem_close(3C), sem_destroy(3C), sem_getvalue(3C), sem_init(3C), sem_open(3C),
sem_post(3C), sem_unlink(3C), and sem_wait(3C).

Upon successful completion, 0 is returned; otherwise, a non-zero value indicates an error.

These functions will fail if:

EINVAL The sp argument does not refer to a valid semaphore.

EFAULT Either the sp or arg argument points to an illegal address.

The sema_wait() function will fail if:

EINTR The wait was interrupted by a signal or fork().

The sema_trywait() function will fail if:

EBUSY The semaphore pointed to by sp has a 0 count.

The sema_post() function will fail if:

EOVERFLOW The semaphore value pointed to by sp exceeds SEM_VALUE_MAX.

Return Values

Errors

semaphore(3C)

Basic Library Functions 845

EXAMPLE 1 The customer waiting-line in a bank is analogous to the synchronization scheme of a
semaphore using sema_wait() and sema_trywait():

/* cc [flag . . .] file . . . –lthread [library . . .] */

#include <errno.h>

#define TELLERS 10

sema_t tellers; /* semaphore */

int banking_hours(), deposit_withdrawal;

void*customer(), do_business(), skip_banking_today();

. . .

sema_init(&tellers, TELLERS, USYNC_THREAD, NULL);

/* 10 tellers available */

while(banking_hours())

pthread_create(NULL, NULL, customer, deposit_withdrawal);

. . .

void *

customer(int deposit_withdrawal)

{

int this_customer, in_a_hurry = 50;

this_customer = rand() % 100;

if (this_customer == in_a_hurry) {

if (sema_trywait(&tellers) != 0)

if (errno == EBUSY){ /* no teller available */

skip_banking_today(this_customer);

return;

} /* else go immediately to available teller and

decrement tellers */

}

else

sema_wait(&tellers); /* wait for next teller, then

proceed, and decrement tellers */

do_business(deposit_withdrawal);

sema_post(&tellers); /* increment tellers; this_customer’s

teller is now available */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Examples

Attributes

semaphore(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008846

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

mmap(2), shmop(2), sem_close(3C), sem_destroy(3C), sem_getvalue(3C), sem_init(3C),
sem_open(3C), sem_post(3C), sem_unlink(3C), sem_wait(3C), attributes(5),
standards(5)

These functions are also available by way of:

#include <thread.h>

By default, there is no defined order of unblocking for multiple threads waiting for a
semaphore.

See Also

Notes

semaphore(3C)

Basic Library Functions 847

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_close – close a named semaphore

#include <semaphore.h>

int sem_close(sem_t *sem);

The sem_close() function is used to indicate that the calling process is finished using the
named semaphore indicated by sem. The effects of calling sem_close() for an unnamed
semaphore (one created by sem_init(3C)) are undefined. The sem_close() function
deallocates (that is, make available for reuse by a subsequent sem_open(3C) by this process)
any system resources allocated by the system for use by this process for this semaphore. The
effect of subsequent use of the semaphore indicated by sem by this process is undefined. If the
semaphore has not been removed with a successful call to sem_unlink(3C), then sem_close()

has no effect on the state of the semaphore. If the sem_unlink(3C) function has been
successfully invoked for name after the most recent call to sem_open(3C) with O_CREAT for this
semaphore, then when all processes that have opened the semaphore close it, the semaphore is
no longer be accessible.

If successful, sem_close() returns 0, otherwise it returns −1 and sets errno to indicate the
error.

The sem_close() function will fail if:

EINVAL The sem argument is not a valid semaphore descriptor.

ENOSYS The sem_close() function is not supported by the system.

The sem_close() function should not be called for an unnamed semaphore initialized by
sem_init(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sem_init(3C), sem_open(3C), sem_unlink(3C), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

sem_close(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008848

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_destroy – destroy an unnamed semaphore

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The sem_destroy() function is used to destroy the unnamed semaphore indicated by sem.
Only a semaphore that was created using sem_init(3C) may be destroyed using
sem_destroy(); the effect of calling sem_destroy() with a named semaphore is undefined.
The effect of subsequent use of the semaphore sem is undefined until sem is re-initialized by
another call to sem_init(3C).

It is safe to destroy an initialised semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

If successful, sem_destroy() returns 0, otherwise it returns −1 and sets errno to indicate the
error.

The sem_destroy() function will fail if:

EINVAL The sem argument is not a valid semaphore.

The sem_destroy() function may fail if:

EBUSY There are currently processes (or LWPs or threads) blocked on the semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sem_init(3C), sem_open(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sem_destroy(3C)

Basic Library Functions 849

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_getvalue – get the value of a semaphore

#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

The sem_getvalue() function updates the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore.
The updated value represents an actual semaphore value that occurred at some unspecified
time during the call, but it need not be the actual value of the semaphore when it is returned to
the calling process.

If sem is locked, then the value returned by sem_getvalue() is either zero or a negative
number whose absolute value represents the number of processes waiting for the semaphore
at some unspecified time during the call.

The value set in sval may be 0 or positive. If sval is 0, there may be other processes (or LWPs or
threads) waiting for the semaphore; if sval is positive, no process is waiting.

Upon successful completion, sem_getvalue() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The sem_getvalue() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_getvalue() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

semctl(2), semget(2), semop(2), sem_post(3C), sem_wait(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sem_getvalue(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008850

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_init – initialize an unnamed semaphore

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The sem_init() function is used to initialize the unnamed semaphore referred to by sem. The
value of the initialized semaphore is value. Following a successful call to sem_init(), the
semaphore may be used in subsequent calls to sem_wait(3C), sem_trywait(3C),
sem_post(3C), and sem_destroy(3C). This semaphore remains usable until the semaphore is
destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between
processes; in this case, any process that can access the semaphore sem can use sem for
performing sem_wait(3C), sem_trywait(3C), sem_post(3C), and sem_destroy(3C)
operations.

Only sem itself may be used for performing synchronization. The result of referring to copies
of sem in calls to sem_wait(3C), sem_trywait(3C), sem_post(3C), and sem_destroy(3C), is
undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the process;
any thread in this process can use sem for performing sem_wait(3C), sem_trywait(3C),
sem_post(3C), and sem_destroy(3C) operations. The use of the semaphore by threads other
than those created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined behavior.

The sem_open(3C) function is used with named semaphores.

Upon successful completion, the function initializes the semaphore in sem. Otherwise, it
returns −1 and sets errno to indicate the error.

The sem_init() function will fail if:

EINVAL The value argument exceeds SEM_VALUE_MAX.

ENOSPC A resource required to initialize the semaphore has been exhausted, or the
resources have reached the limit on semaphores (SEM_NSEMS_MAX).

ENOSYS The sem_init() function is not supported by the system.

EPERM The process lacks the appropriate privileges to initialize the semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

sem_init(3C)

Basic Library Functions 851

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

MT-Level MT-Safe

Standard See standards(5).

sem_destroy(3C), sem_open(3C), sem_post(3C), sem_wait(3C), attributes(5),
standards(5)

See Also

sem_init(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Jul 2009852

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_open – initialize/open a named semaphore

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag,
/* unsigned long mode, unsigned int value */ ...);

The sem_open() function establishes a connection between a named semaphore and a process
(or LWP or thread). Following a call to sem_open() with semaphore name name, the process
may reference the semaphore associated with name using the address returned from the call.
This semaphore may be used in subsequent calls to sem_wait(3C), sem_trywait(3C),
sem_post(3C), and sem_close(3C). The semaphore remains usable by this process until the
semaphore is closed by a successful call to sem_close(3C), _Exit(2), or one of the exec
functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call
to sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is set
and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The
O_CREAT flag requires a third and a fourth argument: mode, which is of type
mode_t, and value, which is of type unsigned int. The semaphore is created with
an initial value of value. Valid initial values for semaphores are less than or equal
to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the process; the
group ID of the semaphore is set to a system default group ID or to the effective
group ID of the process. The permission bits of the semaphore are set to the value
of the mode argument except those set in the file mode creation mask of the
process (see umask(2)). When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore
if it does not exist are atomic with respect to other processes executing
sem_open() with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set,
the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect is
unspecified.

Name

Synopsis

Description

sem_open(3C)

Basic Library Functions 853

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2

The name argument points to a string naming a semaphore object. It is unspecified whether
the name appears in the file system and is visible to functions that take pathnames as
arguments. The name argument conforms to the construction rules for a pathname. The first
character of name must be a slash (/) character and the remaining characters of name cannot
include any slash characters. For maximum portability, name should include no more than 14
characters, but this limit is not enforced.

If a process makes multiple successful calls to sem_open() with the same value for name, the
same semaphore address is returned for each such successful call, provided that there have
been no calls to sem_unlink(3C) for this semaphore.

References to copies of the semaphore produce undefined results.

The sem_init(3C) function is used with unnamed semaphores.

Upon successful completion, the function returns the address of the semaphore. Otherwise, it
will return a value of SEM_FAILED and set errno to indicate the error. The symbol SEM_FAILED
is defined in the header <semaphore.h>. No successful return from sem_open() will return the
value SEM_FAILED.

If any of the following conditions occur, the sem_open() function will return SEM_FAILED and
set errno to the corresponding value:

EACCES The named semaphore exists and the O_RDWR permissions are denied, or
the named semaphore does not exist and permission to create the named
semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named semaphore already exists.

EINTR The sem_open() function was interrupted by a signal.

EINVAL The sem_open() operation is not supported for the given name, or
O_CREAT was set in oflag and value is greater than SEM_VALUE_MAX.

EMFILE The number of open semaphore descriptors in this process exceeds
SEM_NSEMS_MAX, or the number of open file descriptors in this process
exceeds OPEN_MAX.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many semaphores are currently open in the system.

ENOENT O_CREAT is not set and the named semaphore does not exist.

ENOSPC There is insufficient space for the creation of the new named semaphore.

ENOSYS The sem_open() function is not supported by the system.

Return Values

Errors

sem_open(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Jul 2009854

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exec(2), exit(2), umask(2), sem_close(3C), sem_init(3C), sem_post(3C), sem_unlink(3C),
sem_wait(3C), sysconf(3C), attributes(5), standards(5)

Attributes

See Also

sem_open(3C)

Basic Library Functions 855

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_post – increment the count of a semaphore

#include <semaphore.h>

int sem_post(sem_t *sem);

The sem_post() function unlocks the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is 0, then one of the threads
blocked waiting for the semaphore will be allowed to return successfully from its call to
sem_wait(3C). If the symbol _POSIX_PRIORITY_SCHEDULING is defined, the thread to be
unblocked will be chosen in a manner appropriate to the scheduling policies and parameters
in effect for the blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the
highest priority waiting thread will be unblocked, and if there is more than one highest
priority thread blocked waiting for the semaphore, then the highest priority thread that has
been waiting the longest will be unblocked. If the symbol _POSIX_PRIORITY_SCHEDULING is
not defined, the choice of a thread to unblock is unspecified.

If successful, sem_post() returns 0; otherwise it returns −1 and sets errno to indicate the
error.

The sem_post() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_post() function is not supported by the system.

EOVERFLOW The semaphore value exceeds SEM_VALUE_MAX.

The sem_post() function is reentrant with respect to signals and may be invoked from a
signal-catching function. The semaphore functionality described on this manual page is for
the POSIX (see standards(5)) threads implementation. For the documentation of the Solaris
threads interface, see semaphore(3C)).

See sem_wait(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

Attributes

sem_post(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008856

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sched_setscheduler(3C), sem_wait(3C), semaphore(3C), attributes(5), standards(5)See Also

sem_post(3C)

Basic Library Functions 857

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_timedwait, sem_reltimedwait_np – lock a semaphore

#include <semaphore.h>

#include <time.h>

int sem_timedwait(sem_t *restrict sem,

const struct timespec *restrict abs_timeout);

int sem_reltimedwait_np(sem_t *restrict sem,

const struct timespec *restrict rel_timeout);

The sem_timedwait() function locks the semaphore referenced by sem as in the
sem_wait(3C) function. However, if the semaphore cannot be locked without waiting for
another process or thread to unlock the semaphore by performing a sem_post(3C) function,
this wait is terminated when the specified timeout expires.

The sem_reltimedwait_np() function is identical to the sem_timedwait() function, except
that the timeout is specified as a relative time interval.

For sem_timedwait(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For sem_reltimedwait_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
data type is defined as a structure in the <time.h> header.

Under no circumstance does the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abs_timeout need not be checked if the semaphore can be
locked immediately.

The sem_timedwait() and sem_reltimedwait_np() functions return 0 if the calling process
successfully performed the semaphore lock operation on the semaphore designated by sem. If
the call was unsuccessful, the state of the semaphore is be unchanged and the function returns
-1 and sets errno to indicate the error.

The sem_timedwait() and sem_reltimedwait_np() functions will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

EINVAL The process or thread would have blocked, and the timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1,000 million.

ETIMEDOUT The semaphore could not be locked before the specified timeout expired.

The sem_timedwait() and sem_reltimedwait_np() functions may fail if:

Name

Synopsis

Description

Return Values

Errors

sem_timedwait(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008858

EDEADLK A deadlock condition was detected.

EINTR A signal interrupted this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Commmitted

MT-Level MT-Safe

Committed See below.

Standard See standards(5).

For sem_timedwait(), see standards(5).

semctl(2), semget(2), semop(2), time(2), sem_post(3C), sem_trywait(3C)sem_wait(3C),
attributes(5), standards(5)

Attributes

See Also

sem_timedwait(3C)

Basic Library Functions 859

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_unlink – remove a named semaphore

#include <semaphore.h>

int sem_unlink(const char *name);

The sem_unlink() function removes the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then sem_unlink() has
no effect on the state of the semaphore. If one or more processes have the semaphore open
when sem_unlink() is called, destruction of the semaphore is postponed until all references to
the semaphore have been destroyed by calls to sem_close(3C), _Exit(2), or one of the exec
functions (see exec(2)) . Calls to sem_open(3C) to re-create or re-connect to the semaphore
refer to a new semaphore after sem_unlink() is called. The sem_unlink() call does not block
until all references have been destroyed; it returns immediately.

Upon successful completion, sem_unlink() returns 0. Otherwise, the semaphore is not
changed and the function returns a value of −1 and sets errno to indicate the error.

The sem_unlink() function will fail if:

EACCES Permission is denied to unlink the named semaphore.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named semaphore does not exist.

ENOSYS The sem_unlink() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exec(2), exit(2), sem_close(3C), sem_open(3C), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sem_unlink(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008860

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sem_wait, sem_trywait – acquire or wait for a semaphore

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

The sem_wait() function locks the semaphore referenced by sem by performing a semaphore
lock operation on that semaphore. If the semaphore value is currently zero, then the calling
thread will not return from the call to sem_wait() until it either locks the semaphore or the
call is interrupted by a signal. The sem_trywait() function locks the semaphore referenced by
sem only if the semaphore is currently not locked; that is, if the semaphore value is currently
positive. Otherwise, it does not lock the semaphore.

Upon successful return, the state of the semaphore is locked and remains locked until the
sem_post(3C) function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

The sem_wait() and sem_trywait() functions return 0 if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore is unchanged, and the function returns −1 and sets
errno to indicate the error.

The sem_wait() and sem_trywait() functions will fail if:

EINVAL The sem function does not refer to a valid semaphore.

ENOSYS The sem_wait() and sem_trywait() functions are not supported by the system.

The sem_trywait() function will fail if:

EAGAIN The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

The sem_wait() and sem_trywait() functions may fail if:

EDEADLK A deadlock condition was detected; that is, two separate processes are waiting
for an available resource to be released via a semaphore "held" by the other
process.

EINTR A signal interrupted this function.

Realtime applications may encounter priority inversion when using semaphores. The
problem occurs when a high priority thread “locks” (that is, waits on) a semaphore that is
about to be “unlocked” (that is, posted) by a low priority thread, but the low priority thread is
preempted by a medium priority thread. This scenario leads to priority inversion; a high
priority thread is blocked by lower priority threads for an unlimited period of time. During
system design, realtime programmers must take into account the possibility of this kind of

Name

Synopsis

Description

Return Values

Errors

Usage

sem_wait(3C)

Basic Library Functions 861

priority inversion. They can deal with it in a number of ways, such as by having critical
sections that are guarded by semaphores execute at a high priority, so that a thread cannot be
preempted while executing in its critical section.

EXAMPLE 1 The customer waiting-line in a bank may be analogous to the synchronization scheme of a
semaphore utilizing sem_wait() and sem_trywait():

#include <errno.h>

#define TELLERS 10

sem_t bank_line; /* semaphore */

int banking_hours(), deposit_withdrawal;

void *customer(), do_business(), skip_banking_today();

thread_t tid;

...

sem_init(&bank_line,TRUE,TELLERS); /* 10 tellers

available */

while(banking_hours())

thr_create(NULL, NULL, customer,

(void *)deposit_withdrawal, THREAD_NEW_LWP, &tid);

...

void *

customer(deposit_withdrawal)

void *deposit_withdrawal;

{

int this_customer, in_a_hurry = 50;

this_customer = rand() % 100;

if (this_customer == in_a_hurry) {

if (sem_trywait(&bank_line) != 0)

if (errno == EAGAIN) { /* no teller available */

skip_banking_today(this_customer);

return;

} /*else go immediately to available teller

& decrement bank_line*/

}

else

sem_wait(&bank_line); /* wait for next teller,

then proceed, and decrement bank_line */

do_business((int *)deposit_withdrawal);

sem_getvalue(&bank_line,&num_tellers);

sem_post(&bank_line); /* increment bank_line;

this_customer’s teller is now available */

}

See attributes(5) for descriptions of the following attributes:

Examples

Attributes

sem_wait(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008862

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sem_post(3C), attributes(5), standards(5)See Also

sem_wait(3C)

Basic Library Functions 863

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setbuf, setvbuf – assign buffering to a stream

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int type, size_t size);

The setbuf() function may be used after the stream pointed to by stream (see Intro(3)) is
opened but before it is read or written. It causes the array pointed to by buf to be used instead
of an automatically allocated buffer. If buf is the null pointer, input/output will be completely
unbuffered. The constant BUFSIZ, defined in the <stdio.h> header, indicates the size of the
array pointed to by buf.

The setvbuf() function may be used after a stream is opened but before it is read or written.
The type argument determines how stream will be buffered. Legal values for type (defined in
<stdio.h>) are:

_IOFBF Input/output to be fully buffered.

_IOLBF Output to be line buffered; the buffer will be flushed when a NEWLINE is written, the
buffer is full, or input is requested.

_IONBF Input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to will be used for buffering, instead of an
automatically allocated buffer. The size argument specifies the size of the buffer to be used. If
input/output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3C).

If an illegal value for type is provided, setvbuf() returns a non-zero value. Otherwise, it
returns 0.

A common source of error is allocating buffer space as an “automatic” variable in a code block,
and then failing to close the stream in the same block.

When using setbuf(), buf should always be sized using BUFSIZ. If the array pointed to by buf
is larger than BUFSIZ, a portion of buf will not be used. If buf is smaller than BUFSIZ, other
memory may be unexpectedly overwritten.

Parts of buf will be used for internal bookkeeping of the stream and, therefore, buf will
contain less than size bytes when full. It is recommended that stdio(3C) be used to handle
buffer allocation when using setvbuf().

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Return Values

Usage

Attributes

setbuf(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002864

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fopen(3C), getc(3C), malloc(3C), putc(3C), stdio(3C), attributes(5), standards(5)See Also

setbuf(3C)

Basic Library Functions 865

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setbuffer, setlinebuf – assign buffering to a stream

#include <stdio.h>

void setbuffer(FILE *iop, char *abuf, size_t asize);

int setlinebuf(FILE *iop);

The setbuffer() and setlinebuf() functions assign buffering to a stream. The three types of
buffering available are unbuffered, block buffered, and line buffered. When an output stream
is unbuffered, information appears on the destination file or terminal as soon as written; when
it is block buffered, many characters are saved and written as a block; when it is line buffered,
characters are saved until either a NEWLINE is encountered or input is read from stdin. The
fflush(3C) function may be used to force the block out early. Normally all files are block
buffered. A buffer is obtained from malloc(3C) upon the first getc(3C) or putc(3C)
performed on the file. If the standard stream stdout refers to a terminal, it is line buffered. The
standard stream stderr is unbuffered by default.

The setbuffer() function can be used after a stream iop has been opened but before it is read
or written. It uses the character array abuf whose size is determined by the asize argument
instead of an automatically allocated buffer. If abuf is the null pointer, input/output will be
completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header, tells
how large an array is needed:

char buf[BUFSIZ];

The setlinebuf() function is used to change the buffering on a stream from block buffered
or unbuffered to line buffered. Unlike setbuffer(), it can be used at any time that the stream
iop is active.

A stream can be changed from unbuffered or line buffered to block buffered by using
freopen(3C). A stream can be changed from block buffered or line buffered to unbuffered by
using freopen(3C) followed by setbuf(3C) with a buffer argument of NULL.

The setlinebuf() function returns no useful value.

malloc(3C), fclose(3C), fopen(3C), fread(3C), getc(3C), printf(3C), putc(3C), puts(3C),
setbuf(3C), setvbuf(3C)

A common source of error is allocating buffer space as an “automatic” variable in a code block,
and then failing to close the stream in the same block.

Name

Synopsis

Description

Return Values

See Also

Notes

setbuffer(3C)

man pages section 3: Basic Library Functions • Last Revised 13 May 1997866

setcat – define default catalog

#include <pfmt.h>

char *setcat(const char *catalog);

The setcat() function defines the default message catalog to be used by subsequent calls to
gettxt(3C), lfmt(3C), or pfmt(3C) that do not explicitly specify a message catalog.

The catalog argument must be limited to 14 characters. These characters must be selected
from a set of all characters values, excluding \0 (null) and the ASCII codes for / (slash) and :

(colon).

The setcat() function assumes that the catalog exists. No checking is done on the argument.

A null pointer passed as an argument will result in the return of a pointer to the current default
message catalog name. A pointer to an empty string passed as an argument will cancel the
default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, subsequent calls to
gettxt(3C), lfmt(3C), or pfmt(3C) that do not explicitly specify a catalog name will use
Message not found!!\n as default string.

Upon successful completion, setcat() returns a pointer to the catalog name. Otherwise, it
returns a null pointer.

EXAMPLE 1 Example of setcat() function.

setcat("test");
gettxt(":10", "hello world\n")

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), lfmt(3C), pfmt(3C), setlocale(3C), attributes(5), environ(5)

Name

Synopsis

Description

Return Values

Examples

Attributes

See Also

setcat(3C)

Basic Library Functions 867

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

setenv – add or change environment variable

#include <stdlib.h>

int setenv(const char *envname, const char *envval,
int overwrite);

The setenv() function updates or adds a variable in the environment of the calling process.
The envname argument points to a string containing the name of an environment variable to
be added or altered. The environment variable is set to the value to which envval points. The
function fails if envname points to a string which contains an '=' character. If the environment
variable named by envname already exists and the value of overwrite is non-zero, the function
returns successfully and the environment is updated. If the environment variable named by
envname already exists and the value of overwrite is zero, the function returns successfully and
the environment remains unchanged.

If the application modifies environ or the pointers to which it points, the behavior of setenv()
is undefined. The setenv() function updates the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

Upon successful completion, 0 is returned. Otherwise, -1 is returned, errno set to indicate the
error, and the environment is left unchanged.

The setenv() function will fail if:

EINVAL The envname argument is a null pointer, points to an empty string, or points to a
string containing an '=' character.

ENOMEM Insufficient memory was available to add a variable or its value to the
environment.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getenv(3C), unsetenv(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

setenv(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2002868

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setjmp, sigsetjmp, longjmp, siglongjmp – non-local goto

#include <setjmp.h>

int setjmp(jmp_buf env);

int sigsetjmp(sigjmp_buf env, int savemask);

void longjmp(jmp_buf env, int val);

void siglongjmp(sigjmp_buf env, int val);

These functions are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

The setjmp() function saves its stack environment in env for later use by longjmp().

The sigsetjmp() function saves the calling process's registers and stack environment (see
sigaltstack(2)) in env for later use by siglongjmp(). If savemask is non-zero, the calling
process's signal mask (see sigprocmask(2)) and scheduling parameters (see priocntl(2)) are
also saved.

The longjmp() function restores the environment saved by the last call of setjmp() with the
corresponding env argument. After longjmp() completes, program execution continues as if
the corresponding call to setjmp() had just returned the value val. The caller of setjmp()
must not have returned in the interim. The longjmp() function cannot cause setjmp() to
return the value 0. If longjmp() is invoked with a second argument of 0, setjmp() will return
1. At the time of the second return from setjmp(), all external and static variables have values
as of the time longjmp() is called (see EXAMPLES).

The siglongjmp() function restores the environment saved by the last call of sigsetjmp()
with the corresponding env argument. After siglongjmp() completes, program execution
continues as if the corresponding call to sigsetjmp() had just returned the value val. The
siglongjmp() function cannot cause sigsetjmp() to return the value 0. If siglongjmp() is
invoked with a second argument of 0, sigsetjmp() will return 1. At the time of the second
return from sigsetjmp(), all external and static variables have values as of the time
siglongjmp() was called.

If a signal-catching function interrupts sleep(3C) and calls siglongjmp() to restore an
environment saved prior to the sleep() call, the action associated with SIGALRM and time it is
scheduled to be generated are unspecified. It is also unspecified whether the SIGALRM signal is
blocked, unless the process's signal mask is restored as part of the environment.

The siglongjmp() function restores the saved signal mask if and only if the env argument was
initialized by a call to the sigsetjmp() function with a non-zero savemask argument.

The values of register and automatic variables are undefined. Register or automatic variables
whose value must be relied upon must be declared as volatile.

Name

Synopsis

Description

setjmp(3C)

Basic Library Functions 869

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2

If the return is from a direct invocation, setjmp() and sigsetjmp() return 0. If the return is
from a call to longjmp(), setjmp() returns a non-zero value. If the return is from a call to
siglongjmp(), sigsetjmp() returns a non-zero value.

After longjmp() is completed, program execution continues as if the corresponding
invocation of setjmp() had just returned the value specified by val. The longjmp() function
cannot cause setjmp() to return 0; if val is 0, setjmp() returns 1.

After siglongjmp() is completed, program execution continues as if the corresponding
invocation of sigsetjmp() had just returned the value specified by val. The siglongjmp()
function cannot cause sigsetjmp() to return 0; if val is 0, sigsetjmp() returns 1.

EXAMPLE 1 Example of setjmp() and longjmp() functions.

The following example uses both setjmp() and longjmp() to return the flow of control to the
appropriate instruction block:

#include <stdio.h>

#include <setjmp.h>

#include <signal.h>

#include <unistd.h>

jmp_buf env; static void signal_handler();

main() {

int returned_from_longjump, processing = 1;

unsigned int time_interval = 4;

if ((returned_from_longjump = setjmp(env)) != 0)

switch (returned_from_longjump) {

case SIGINT:

printf("longjumped from interrupt %d\n",SIGINT);
break;

case SIGALRM:

printf("longjumped from alarm %d\n",SIGALRM);
break;

}

(void) signal(SIGINT, signal_handler);

(void) signal(SIGALRM, signal_handler);

alarm(time_interval);

while (processing) {

printf(" waiting for you to INTERRUPT (cntrl-C) ...\n");
sleep(1);

} /* end while forever loop */

}

static void signal_handler(sig)

int sig; {

switch (sig) {

case SIGINT: ... /* process for interrupt */

longjmp(env,sig);

Return Values

Examples

setjmp(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002870

EXAMPLE 1 Example of setjmp() and longjmp() functions. (Continued)

/* break never reached */

case SIGALRM: ... /* process for alarm */

longjmp(env,sig);

/* break never reached */

default: exit(sig);

}

}

When this example is compiled and executed, and the user sends an interrupt signal, the
output will be:

longjumped from interrupt

Additionally, every 4 seconds the alarm will expire, signalling this process, and the output will
be:

longjumped from alarm

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard See standards(5).

getcontext(2), priocntl(2), sigaction(2), sigaltstack(2), sigprocmask(2), signal(3C),
attributes(5), standards(5)

If longjmp() or siglongjmp() are called even though env was never primed by a call to
setjmp() or sigsetjmp(), or when the last such call was in a function that has since returned,
the results are undefined.

Attributes

See Also

Warnings

setjmp(3C)

Basic Library Functions 871

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setkey – set encoding key

#include <stdlib.h>

void setkey(const char *key);

The setkey() function provides (rather primitive) access to the hashing algorithm employed
by the crypt(3C) function. The argument of setkey() is an array of length 64 bytes
containing only the bytes with numerical value of 0 and 1. If this string is divided into groups
of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is used by the
algorithm. This is the key that will be used with the algorithm to encode a string block passed
to encrypt(3C).

No values are returned.

The setkey() function will fail if:

ENOSYS The functionality is not supported on this implementation.

In some environments, decoding may not be implemented. This is related to U.S.
Government restrictions on encryption and decryption routines: the DES decryption
algorithm cannot be exported outside the U.S.A. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt() does encoding but not decoding.

Because setkey() does not return a value, applications wishing to check for errors should set
errno to 0, call setkey(), then test errno and, if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

crypt(3C), encrypt(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

setkey(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002872

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setlabel – define the label for pfmt() and lfmt()

#include <pfmt.h>

int setlabel(const char *label);

The setlabel() function defines the label for messages produced in standard format by
subsequent calls to lfmt(3C) and pfmt(3C).

The label argument is a character string no more than 25 characters in length.

No label is defined before setlabel() is called. The label should be set once at the beginning
of a utility and remain constant. A null pointer or an empty string passed as argument will
reset the definition of the label.

Upon successful completion, setlabel() returns 0; otherwise, it returns a non-zero value.

The following code (without previous call to setlabel()):

pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");
setlabel("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");

will produce the following output:

ERROR: Cannot open file

UX:test: ERROR: Cannot open file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getopt(3C), lfmt(3C), pfmt(3C), attributes(5)

Name

Synopsis

Description

Return Value

Examples

Attributes

See Also

setlabel(3C)

Basic Library Functions 873

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

setlocale – modify and query a program's locale

#include <locale.h>

char *setlocale(int category, const char *locale);

The setlocale() function selects the appropriate piece of the program's locale as specified by
the category and locale arguments. The category argument may have the following values:
LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY, LC_MESSAGES, and LC_ALL.
These names are defined in the <locale.h> header. The LC_ALL variable names all of a
program's locale categories.

The LC_CTYPE variable affects the behavior of character handling functions such as
isdigit(3C) and tolower(3C), and multibyte character functions such as mbtowc(3C) and
wctomb(3C).

The LC_NUMERIC variable affects the decimal point character and thousands separator
character for the formatted input/output functions and string conversion functions.

The LC_TIME variable affects the date and time format as delivered by ascftime(3C),
cftime(3C), getdate(3C), strftime(3C), and strptime(3C).

The LC_COLLATE variable affects the sort order produced by collating functions such as
strcoll(3C) and strxfrm(3C).

The LC_MONETARY variable affects the monetary formatted information returned by
localeconv(3C).

The LC_MESSAGES variable affects the behavior of messaging functions such as dgettext(3C),
gettext(3C), and gettxt(3C).

A value of “C” for locale specifies the traditional UNIX system behavior. At program startup,
the equivalent of

setlocale(LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale described by the
environment “C”.

A value of “” for locale specifies that the locale should be taken from environment variables.
The order in which the environment variables are checked for the various categories is given
below:

Category 1st Env Var 2nd Env Var 3rd Env Var

LC_CTYPE: LC_ALL LC_CTYPE LANG

LC_COLLATE: LC_ALL LC_COLLATE LANG

Name

Synopsis

Description

setlocale(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011874

Category 1st Env Var 2nd Env Var 3rd Env Var

LC_TIME: LC_ALL LC_TIME LANG

LC_NUMERIC: LC_ALL LC_NUMERIC LANG

LC_MONETARY: LC_ALL LC_MONETARY LANG

LC_MESSAGES: LC_ALL LC_MESSAGES LANG

If a pointer to a string is given for locale, setlocale() attempts to set the locale for the given
category to locale. If setlocale() succeeds, locale is returned. If setlocale() fails, a null
pointer is returned and the program's locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is given for locale
and LC_ALL is given for category, setlocale() attempts to set the locale for all the categories
to locale. The locale may be a simple locale, consisting of a single locale, or a composite locale.
If the locales for all the categories are the same after all the attempted locale changes,
setlocale() will return a pointer to the common simple locale. If there is a mixture of locales
among the categories, setlocale() will return a composite locale.

Upon successful completion, setlocale() returns the string associated with the specified
category for the new locale. Otherwise, setlocale() returns a null pointer and the program's
locale is not changed.

A null pointer for locale causes setlocale() to return a pointer to the string associated with
the category for the program's current locale. The program's locale is not changed.

The string returned by setlocale() is such that a subsequent call with that string and its
associated category will restore that part of the program's locale. The string returned must not
be modified by the program, but may be overwritten by a subsequent call to setlocale().

No errors are defined.

/usr/lib/locale/locale locale database directory for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

Return Values

Errors

Files

Attributes

setlocale(3C)

Basic Library Functions 875

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

locale(1), ctype(3C), getdate(3C) gettext(3C), gettxt(3C), isdigit(3C), libc(3LIB),
localelist(3C), localelistfree(3C), localeconv(3C), mbtowc(3C), strcoll(3C),
strftime(3C), strptime(3C) strxfrm(3C) tolower(3C), wctomb(3C), attributes(5),
environ(5), locale(5), locale_alias(5), standards(5)

It is unsafe for any thread to change locale (by calling setlocale() with a non-null locale
argument) in a multithreaded application while any other thread in the application is using
any locale-sensitive routine. To change locale in a multithreaded application, setlocale()
should be called prior to using any locale-sensitive routine. Using setlocale() to query the
current locale is safe and can be used anywhere in a multithreaded application except when
some other thread is changing locale.

It is the user's responsibility to ensure that mixed locale categories are compatible. For
example, setting LC_CTYPE=C and LC_TIME=ja (where ja indicates Japanese) will not work,
because Japanese time cannot be represented in the “C” locale's ASCII codeset.

To get the list of installed locales, instead of calling setlocale() over a list of potentially
installed locales and checking on the return values, using localelist(3C) is recommended.
The localelist() function does not switch locales and it is more efficient, faster, and fully
MT-safe.

If a string pointed by locale argument has a locale name that does not yield a usable locale in
the current system but it is a locale name alias that is accepted and supported, such name is
internally mapped to a corresponding canonical locale name which is then used to locate,
load, and return the actual locale defined in the current system. If successful, the return value
of the function is the locale name alias. If there is no actual locale for the canonical locale
name, obviously, the setlocale() will fail. The accepted and supported locale name aliases
are shown in locale_alias(5).

See Also

Notes

setlocale(3C)

man pages section 3: Basic Library Functions • Last Revised 5 May 2011876

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1locale-alias-5

shm_open – open a shared memory object

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

The shm_open() function establishes a connection between a shared memory object and a file
descriptor. It creates an open file description that refers to the shared memory object and a file
descriptor that refers to that open file description. The file descriptor is used by other
functions to refer to that shared memory object. The name argument points to a string
naming a shared memory object. It is unspecified whether the name appears in the file system
and is visible to other functions that take pathnames as arguments. The name argument
conforms to the construction rules for a pathname. The first character of name must be a slash
(/) character and the remaining characters of name cannot include any slash characters. For
maximum portability, name should include no more than 14 characters, but this limit is not
enforced.

If successful, shm_open() returns a file descriptor for the shared memory object that is the
lowest numbered file descriptor not currently open for that process. The open file description
is new, and therefore the file descriptor does not share it with any other processes. It is
unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with
the new file descriptor is set.

The file status flags and file access modes of the open file description are according to the value
of oflag. The oflag argument is the bitwise inclusive OR of the following flags defined in the
header <fcntl.h>. Applications specify exactly one of the first two values (access modes)
below in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted under
O_EXCL below. Otherwise the shared memory object is created; the user ID of the
shared memory object will be set to the effective user ID of the process; the group
ID of the shared memory object will be set to a system default group ID or to the
effective group ID of the process. The permission bits of the shared memory
object will be set to the value of the mode argument except those set in the file
mode creation mask of the process. When bits in mode other than the file
permission bits are set, the effect is unspecified. The mode argument does not
affect whether the shared memory object is opened for reading, for writing, or
for both. The shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory object
exists. The check for the existence of the shared memory object and the creation
of the object if it does not exist is atomic with respect to other processes

Name

Synopsis

Description

shm_open(3C)

Basic Library Functions 877

executing shm_open() naming the same shared memory object with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object will be truncated to zero length and the mode and owner will be
unchanged by this function call. The result of using O_TRUNC with O_RDONLY is
undefined.

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

Upon successful completion, the shm_open() function returns a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it returns −1 and sets
errno to indicate the error condition.

The shm_open() function will fail if:

EACCES The shared memory object exists and the permissions specified by oflag
are denied, or the shared memory object does not exist and permission to
create the shared memory object is denied, or O_TRUNC is specified and
write permission is denied.

EEXIST O_CREAT and O_EXCL are set and the named shared memory object already
exists.

EINTR The shm_open() operation was interrupted by a signal.

EINVAL The shm_open() operation is not supported for the given name.

EMFILE Too many file descriptors are currently in use by this process.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many shared memory objects are currently open in the system.

ENOENT O_CREAT is not set and the named shared memory object does not exist.

ENOSPC There is insufficient space for the creation of the new shared memory
object.

ENOSYS The shm_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Return Values

Errors

Attributes

shm_open(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008878

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), dup(2), exec(2), fcntl(2), mmap(2), umask(2), shm_unlink(3C), sysconf(3C),
fcntl.h(3HEAD), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

shm_open(3C)

Basic Library Functions 879

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

shm_unlink – remove a shared memory object

#include <sys/mman.h>

int shm_unlink(const char *name);

The shm_unlink() function removes the name of the shared memory object named by the
string pointed to by name. If one or more references to the shared memory object exists when
the object is unlinked, the name is removed before shm_unlink() returns, but the removal of
the memory object contents will be postponed until all open and mapped references to the
shared memory object have been removed.

Upon successful completion, shm_unlink() returns 0. Otherwise it returns −1 and sets errno
to indicate the error condition, and the named shared memory object is not affected by this
function call.

The shm_unlink() function will fail if:

EACCES Permission is denied to unlink the named shared memory object.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named shared memory object does not exist.

ENOSYS The shm_unlink() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), mmap(2), mlock(3C), shm_open(3C), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

shm_unlink(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008880

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sigfpe – signal handling for specific SIGFPE codes

#include <floatingpoint.h>

#include <siginfo.h>

sigfpe_handler_type sigfpe(sigfpe_code_type code,
sigfpe_handler_type hdl);

The sigfpe() function allows signal handling to be specified for particular SIGFPE codes. A
call to sigfpe() defines a new handler hdl for a particular SIGFPE code and returns the old
handler as the value of the function sigfpe(). Normally handlers are specified as pointers to
functions; the special cases SIGFPE_IGNORE, SIGFPE_ABORT, and SIGFPE_DEFAULT allow
ignoring, dumping core using abort(3C), or default handling respectively. Default handling is
to dump core using abort(3C).

The code argument is usually one of the five IEEE 754-related SIGFPE codes:

FPE_FLTRES fp_inexact − floating-point inexact result

FPE_FLTDIV fp_division − floating-point division by zero

FPE_FLTUND fp_underflow − floating-point underflow

FPE_FLTOVF fp_overflow − floating-point overflow

FPE_FLTINV fp_invalid − floating-point invalid operation

Three steps are required to intercept an IEEE 754-related SIGFPE code with sigfpe():

1. Set up a handler with sigfpe().
2. Enable the relevant IEEE 754 trapping capability in the hardware, perhaps by using

assembly-language instructions.
3. Perform a floating-point operation that generates the intended IEEE 754 exception.

The sigfpe() function never changes floating-point hardware mode bits affecting IEEE 754
trapping. No IEEE 754-related SIGFPE signals will be generated unless those hardware mode
bits are enabled.

SIGFPE signals can be handled using sigfpe(), sigaction(2) or signal(3C). In a particular
program, to avoid confusion, use only one of these interfaces to handle SIGFPE signals.

EXAMPLE 1 Example Of A User-Specified Signal Handler

A user-specified signal handler might look like this:

#include <floatingpoint.h>

#include <siginfo.h>

#include <ucontext.h>

/*

* The sample_handler prints out a message then commits suicide.

*/

void

sample_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

Name

Synopsis

Description

Examples

sigfpe(3C)

Basic Library Functions 881

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2

EXAMPLE 1 Example Of A User-Specified Signal Handler (Continued)

char *label;

switch (sip−>si_code) {

case FPE_FLTINV: label = "invalid operand"; break;

case FPE_FLTRES: label = "inexact"; break;

case FPE_FLTDIV: label = "division-by-zero"; break;

case FPE_FLTUND: label = "underflow"; break;

case FPE_FLTOVF: label = "overflow"; break;

default: label = "???"; break;

}

fprintf(stderr,

"FP exception %s (0x%x) occurred at address %p.\n",
label, sip−>si_code, (void *) sip−>si_addr);

abort();

}

and it might be set up like this:

#include <floatingpoint.h>

#include <siginfo.h>

#include <ucontext.h>

extern void sample_handler(int, siginfo_t *, ucontext_t *);

main(void) {

sigfpe_handler_type hdl, old_handler1, old_handler2;

/*

* save current fp_overflow and fp_invalid handlers; set the new

* fp_overflow handler to sample_handler() and set the new

* fp_invalid handler to SIGFPE_ABORT (abort on invalid)

*/

hdl = (sigfpe_handler_type) sample_handler;

old_handler1 = sigfpe(FPE_FLTOVF, hdl);

old_handler2 = sigfpe(FPE_FLTINV, SIGFPE_ABORT);

. . .

/*

* restore old fp_overflow and fp_invalid handlers

*/

sigfpe(FPE_FLTOVF, old_handler1);

sigfpe(FPE_FLTINV, old_handler2);

}

/usr/include/floatingpoint.h

/usr/include/siginfo.h

See attributes(5) for descriptions of the following attributes:

Files

Attributes

sigfpe(3C)

man pages section 3: Basic Library Functions • Last Revised 4 May 2004882

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

sigaction(2), abort(3C), signal(3C), attributes(5), floatingpoint.h(3HEAD)

The sigfpe() function returns (void(*)())-1 if code is not zero or a defined SIGFPE code.

See Also

Diagnostics

sigfpe(3C)

Basic Library Functions 883

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1floatingpoint.h-3head

siginterrupt – allow signals to interrupt functions

#include <signal.h>

int siginterrupt(int sig, int flag);

The siginterrupt() function changes the restart behavior when a function is interrupted by
the specified signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

siginterrupt(int sig, int flag) {

int ret;

struct sigaction act;

(void) sigaction(sig, NULL, &act);

if (flag)

act.sa_flags &= SA_RESTART;

else

act.sa_flags |= SA_RESTART;

ret = sigaction(sig, &act, NULL);

return ret;

}

Upon successful completion, siginterrupt() returns 0. Otherwise, −1 is returned and errno

is set to indicate the error.

The siginterrupt() function will fail if:

EINVAL The sig argument is not a valid signal number.

The siginterrupt() function supports programs written to historical system interfaces. A
standard-conforming application, when being written or rewritten, should use sigaction(2)
with the SA_RESTART flag instead of siginterrupt().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

sigaction(2), signal.h(3HEAD), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

siginterrupt(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Sep 2003884

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

signal, sigset, sighold, sigrelse, sigignore, sigpause – simplified signal management for
application processes

#include <signal.h>

void (*signal(int sig, void (*disp)(int)))(int);

void (*sigset(int sig, void (*disp)(int)))(int);

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

These functions provide simplified signal management for application processes. See
signal.h(3HEAD) for an explanation of general signal concepts.

The signal() and sigset() functions modify signal dispositions. The sig argument specifies
the signal, which may be any signal except SIGKILL and SIGSTOP. The disp argument specifies
the signal's disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If
signal() is used, disp is the address of a signal handler, and sig is not SIGILL, SIGTRAP, or
SIGPWR, the system first sets the signal's disposition to SIG_DFL before executing the signal
handler. If sigset() is used and disp is the address of a signal handler, the system adds sig to
the calling process's signal mask before executing the signal handler; when the signal handler
returns, the system restores the calling process's signal mask to its state prior to the delivery of
the signal. In addition, if sigset() is used and disp is equal to SIG_HOLD, sig is added to the
calling process's signal mask and the signal's disposition remains unchanged.

The sighold() function adds sig to the calling process's signal mask.

The sigrelse() function removes sig from the calling process's signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN.

The sigpause() function removes sig from the calling process's signal mask and suspends the
calling process until a signal is received.

Upon successful completion, signal() returns the signal's previous disposition. Otherwise, it
returns SIG_ERR and sets errno to indicate the error.

Upon successful completion, sigset() returns SIG_HOLD if the signal had been blocked or the
signal's previous disposition if it had not been blocked. Otherwise, it returns SIG_ERR and sets
errno to indicate the error.

Upon successful completion, sighold(), sigrelse(), sigignore(), and sigpause(), return
0. Otherwise, they return −1 and set errno to indicate the error.

Name

Synopsis

Description

Return Values

signal(3C)

Basic Library Functions 885

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head

These functions fail if:

EINTR A signal was caught during the execution sigpause().

EINVAL The value of the sig argument is not a valid signal or is equal to SIGKILL or
SIGSTOP.

The sighold() function used in conjunction with sigrelse() or sigpause() may be used to
establish critical regions of code that require the delivery of a signal to be temporarily deferred.

If signal() or sigset() is used to set SIGCHLD's disposition to a signal handler, SIGCHLD will
not be sent when the calling process's children are stopped or continued.

If any of the above functions are used to set SIGCHLD's disposition to SIG_IGN, the calling
process's child processes will not create zombie processes when they terminate (see exit(2)).
If the calling process subsequently waits for its children, it blocks until all of its children
terminate; it then returns −1 with errno set to ECHILD (see wait(3C) and waitid(2)).

The system guarantees that if more than one instance of the same signal is generated to a
process, at least one signal will be received. It does not guarantee the reception of every
generated signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

exit(2), kill(2), pause(2), sigaction(2), sigsend(2), waitid(2), signal.h(3HEAD),
wait(3C), attributes(5), standards(5)

Errors

Usage

Attributes

See Also

signal(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Sep 2007886

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pause-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigsend-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sigqueue – queue a signal to a process

#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

The sigqueue() function causes the signal specified by signo to be sent with the value
specified by value to the process specified by pid. If signo is 0 (the null signal), error checking is
performed but no signal is actually sent. The null signal can be used to check the validity of
pid.

The conditions required for a process to have permission to queue a signal to another process
are the same as for the kill(2) function.

The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if the
resources were available to queue the signal, the signal is queued and sent to the receiving
process. If SA_SIGINFO is not set for signo, then signo is sent at least once to the receiving
process; it is unspecified whether value will be sent to the receiving process as a result of this
call.

If the value of pid causes signo to be generated for the sending process, and if signo is not
blocked for the calling thread and if no other thread has signo unblocked or is waiting in a
sigwait(2) function for signo, either signo or at least the pending, unblocked signal will be
delivered to the calling thread before the sigqueue() function returns. Should any of multiple
pending signals in the range SIGRTMIN to SIGRTMAX be selected for delivery, it will be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified.

Upon successful completion, the specified signal will have been queued, and the sigqueue()
function returns 0. Otherwise, the function returns −1 and sets errno to indicate the error.

The sigqueue() function will fail if:

EAGAIN No resources are available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver(s), or a system wide
resource limit has been exceeded.

EINVAL The value of signo is an invalid or unsupported signal number.

ENOSYS The sigqueue() function is not supported by the system.

EPERM The process does not have the appropriate privilege to send the signal to the
receiving process.

ESRCH The process pid does not exist.

Name

Synopsis

Description

Return Values

Errors

sigqueue(3C)

Basic Library Functions 887

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

kill(2), siginfo.h(3HEAD), signal.h(3HEAD), sigwaitinfo(3C), attributes(5),
standards(5)

Attributes

See Also

sigqueue(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008888

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember – manipulate sets of signals

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

These functions manipulate sigset_t data types, representing the set of signals supported by
the implementation.

The sigemptyset() function initializes the set pointed to by set to exclude all signals defined
by the system.

The sigfillset() function initializes the set pointed to by set to include all signals defined by
the system.

The sigaddset() function adds the individual signal specified by the value of signo to the set
pointed to by set.

The sigdelset() function deletes the individual signal specified by the value of signo from the
set pointed to by set.

The sigismember() function checks whether the signal specified by the value of signo is a
member of the set pointed to by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or
sigfillset() before applying any other operation.

Upon successful completion, the sigismember() function returns 1 if the specified signal is a
member of the specified set, or 0 if it is not.

Upon successful completion, the other functions return 0. Otherwise −1 is returned and errno

is set to indicate the error.

The sigaddset(), sigdelset(), and sigismember() functions will fail if:

EINVAL The value of the signo argument is not a valid signal number.

The sigfillset() function will fail if:

EFAULT The set argument specifies an invalid address.

Name

Synopsis

Description

Return Values

Errors

sigsetops(3C)

Basic Library Functions 889

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), signal.h(3HEAD),
attributes(5), standards(5)

Attributes

See Also

sigsetops(3C)

man pages section 3: Basic Library Functions • Last Revised 19 Dec 2003890

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigpending-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigsuspend-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sigstack – set and/or get alternate signal stack context

#include <signal.h>

int sigstack(struct sigstack *ss, struct sigstack *oss);

The sigstack() function allows the calling process to indicate to the system an area of its
address space to be used for processing signals received by the process.

If the ss argument is not a null pointer, it must point to a sigstack structure. The length of the
application-supplied stack must be at least SIGSTKSZ bytes. If the alternate signal stack
overflows, the resulting behavior is undefined. (See USAGE below.)

■ The value of the ss_onstack member indicates whether the process wants the system to
use an alternate signal stack when delivering signals.

■ The value of the ss_sp member indicates the desired location of the alternate signal stack
area in the process' address space.

■ If the ss argument is a null pointer, the current alternate signal stack context is not
changed.

If the oss argument is not a null pointer, it points to a sigstack structure in which the current
alternate signal stack context is placed. The value stored in the ss_onstack member of oss will
be non-zero if the process is currently executing on the alternate signal stack. If the oss
argument is a null pointer, the current alternate signal stack context is not returned.

When a signal's action indicates its handler should execute on the alternate signal stack
(specified by calling sigaction(2)), sigstack() checks to see if the process is currently
executing on that stack. If the process is not currently executing on the alternate signal stack,
the system arranges a switch to the alternate signal stack for the duration of the signal
handler's execution.

After a successful call to one of the exec functions, there are no alternate signal stacks in the
new process image.

Upon successful completion, sigstack() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The sigstack() function will fail if:

EPERM An attempt was made to modify an active stack.

A portable application, when being written or rewritten, should use sigaltstack(2) instead
of sigstack().

The direction of stack growth is not indicated in the historical definition of struct sigstack.
The only way to portably establish a stack pointer is for the application to determine stack
growth direction, or to allocate a block of storage and set the stack pointer to the middle.

Name

Synopsis

Description

Return Values

Errors

Usage

sigstack(3C)

Basic Library Functions 891

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2

sigstack() may assume that the size of the signal stack is SIGSTKSZ as found in <signal.h>.
An application that would like to specify a signal stack size other than SIGSTKSZ should use
sigaltstack(2).

Applications should not use longjmp(3C) to leave a signal handler that is running on a stack
established with sigstack(). Doing so may disable future use of the signal stack. For
abnormal exit from a signal handler, siglongjmp(3C), setcontext(2), or swapcontext(3C)
may be used. These functions fully support switching from one stack to another.

The sigstack() function requires the application to have knowledge of the underlying
system's stack architecture. For this reason, sigaltstack(2) is recommended over this
function.

fork(2), _longjmp(3C), longjmp(3C), setjmp(3C), sigaltstack(2), siglongjmp(3C),
sigsetjmp(3C)

See Also

sigstack(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Feb 1996892

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2

sigwaitinfo, sigtimedwait – wait for queued signals

#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

The sigwaitinfo() function selects the pending signal from the set specified by set. Should
any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it will be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
the time of the call, the calling thread is suspended until one or more signals in set become
pending or until it is interrupted by an unblocked, caught signal.

The sigwaitinfo() function behaves the same as the sigwait(2) function if the info
argument is NULL. If the info argument is non-NULL, the sigwaitinfo() function behaves the
same as sigwait(2), except that the selected signal number is stored in the si_signo member,
and the cause of the signal is stored in the si_code member. If any value is queued to the
selected signal, the first such queued value is dequeued and, if the info argument is non-NULL,
the value is stored in the si_value member of info. The system resource used to queue the
signal will be released and made available to queue other signals. If no value is queued, the
content of the si_value member is undefined. If no further signals are queued for the selected
signal, the pending indication for that signal will be reset. If the value of the si_code member
is SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and the value of all
other members is unspecified.

The sigtimedwait() function behaves the same as sigwaitinfo() except that if none of the
signals specified by set are pending, sigtimedwait() waits for the time interval specified in
the timespec structure referenced by timeout. If the timespec structure pointed to by timeout
is zero-valued and if none of the signals specified by set are pending, then sigtimedwait()

returns immediately with an error. If timeout is the NULL pointer, the behavior is unspecified.

If, while sigwaitinfo() or sigtimedwait() is waiting, a signal occurs which is eligible for
delivery (that is, not blocked by the process signal mask), that signal is handled
asynchronously and the wait is interrupted.

Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() will return the selected signal number.
Otherwise, the function returns −1 and sets errno to indicate the error.

The sigwaitinfo() and sigtimedwait() functions will fail if:

EINTR The wait was interrupted by an unblocked, caught signal.

Name

Synopsis

Description

Return Values

Errors

sigwaitinfo(3C)

Basic Library Functions 893

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2

ENOSYS The sigwaitinfo() and sigtimedwait() functions are not supported.

The sigtimedwait() function will fail if:

EAGAIN No signal specified by set was generated within the specified timeout period.

The sigwaitinfo() and sigtimedwait() functions may fail if:

EFAULT The set, info, or timeout argument points to an invalid address.

The sigtimedwait() function may fail if:

EINVAL The timeout argument specified a tv_nsec value less than zero or greater than or
equal to 1000 million. The system only checks for this error if no signal is pending
in set and it is necessary to wait.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Safe

Standard See standards(5).

time(2), sigqueue(3C), siginfo.h(3HEAD), signal.h(3HEAD), time.h(3HEAD),
attributes(5), standards(5)

Attributes

See Also

sigwaitinfo(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 2008894

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sleep – suspend execution for an interval of time

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

The caller is suspended from execution for the number of seconds specified by the argument.
The actual suspension time may be less than that requested because any caught signal will
terminate the sleep() following execution of that signal's catching routine. The suspension
time may be longer than requested by an arbitrary amount because of the scheduling of other
activity in the system. The value returned by sleep() will be the ‘‘unslept'' amount (the
requested time minus the time actually slept) if the caller incurred premature arousal because
of a caught signal.

The use of the sleep() function has no effect on the action or blockage of any signal. In a
multithreaded process, only the invoking thread is suspended from execution.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

nanosleep(3C), attributes(5), standards(5)

Name

Synopsis

Description

Attributes

See Also

sleep(3C)

Basic Library Functions 895

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

smt_pause – busy wait idle function

#include <synch.h>

void smt_pause(void);

The smt_pause() function delays for a short implementation-dependent period before
returning to the caller, consuming as few processor resources as possible. This primitive is
recommended for use in busy wait loops to lessen the impact the loop has on the rest of the
system. For example, on CMT systems it enables other hardware strands sharing the core to go
faster during the busy wait.

Typical usage is as follows:

volatile int *wait;

while (*wait == 1)

smt_pause();

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5)

Name

Synopsis

Description

Usage

Attributes

See Also

smt_pause(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Jul 2010896

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ssignal, gsignal – software signals

#include <signal.h>

void(*ssignal (int sig, int (*action)(int)))(int);

int gsignal(int sig);

The ssignal() and gsignal() functions implement a software facility similar to signal(3C).
This facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 17. A call to ssignal() associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal(). Raising a software signal causes the action
established for that signal to be taken.

The first argument to ssignal() is a number identifying the type of signal for which an action
is to be established. The second argument defines the action; it is either the name of a
(user-defined) action function or one of the manifest constants SIG_DFL (default) or SIG_IGN
(ignore). The ssignal() function returns the action previously established for that signal
type; if no action has been established or the signal number is illegal, ssignal() returns
SIG_DFL.

The gsignal() raises the signal identified by its argument, sig.

If an action function has been established for sig, then that action is reset to SIG_DFL and the
action function is entered with argument sig. The gsignal() function returns the value
returned to it by the action function.

If the action for sig is SIG_IGN, gsignal() returns the value 1 and takes no other action.

If the action for sig is SIG_DFL, gsignal() returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal() returns the value 0
and takes no other action.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

raise(3C), signal(3C), attributes(5)

Name

Synopsis

Description

ssignal()

gsignal()

Attributes

See Also

ssignal(3C)

Basic Library Functions 897

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

stack_getbounds – retrieve stack boundaries

#include <ucontext.h>

int stack_getbounds(stack_t *sp);

The stack_getbounds() function retrieves the stack boundaries that the calling thread is
currently operating on. If the thread is currently operating on the alternate signal stack, this
function will retrieve the bounds of that stack.

If successful, stack_getbounds() sets the ss_sp member of the stack_t structure pointed to
by sp to the base of the stack region and the ss_size member to its size (maximum extent) in
bytes. The ss_flags member is set to SS_ONSTACK if the calling thread is executing on its
alternate signal stack, and zero otherwise.

Upon successful completion, stack_getbounds() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

The stack_getbounds() function will fail if:

EFAULT The sp argument does not refer to a valid address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

getustack(2), sigaction(2), sigaltstack(2), stack_setbounds(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

stack_getbounds(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jul 2002898

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getustack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

_stack_grow – express an intention to extend the stack

#include <ucontext.h>

void *_stack_grow(void *addr);

The _stack_grow() function indicates to the system that the stack is about to be extended to
the address specified by addr. If extending the stack to this address would violate the stack
boundaries as retrieved by stack_getbounds(3C), a SIGSEGV is raised.

If the disposition of SIGSEGV is SIG_DFL, the process is terminated and a core dump is
generated. If the application has installed its own SIGSEGV handler to run on the alternate
signal stack, the signal information passed to the handler will be such that a call to
stack_violation(3C) with these parameters returns 1.

The addr argument is a biased stack pointer value. See the Solaris 64–bit Developer's Guide.

This function has no effect if the specified address, addr, is within the bounds of the current
stack.

If the _stack_grow() function succeeds and does not detect a stack violation, it returns addr.

No errors are defined.

The _stack_grow() function does not actually adjust the stack pointer register. The caller is
responsible for manipulating the stack pointer register once _stack_grow() returns.

The _stack_grow() function is typically invoked by code created by the compilation
environment prior to executing code that modifies the stack pointer. It can also be used by
hand-written assembly routines to allocate stack-based storage safely.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

stack_getbounds(3C), stack_inbounds(3C), stack_violation(3C), attributes(5)

Solaris 64–bit Developer's Guide

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

_stack_grow(3C)

Basic Library Functions 899

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

stack_inbounds – determine if address is within stack boundaries

#include <ucontext.h>

int stack_inbounds(void *addr);

The stack_inbounds() function returns a boolean value indicating whether the address
specified by addr is within the boundaries of the stack of the calling thread. The address is
compared to the stack boundary information returned by a call to stack_getbounds(3C).

The stack_inbounds() function returns 0 to indicate that addr is not within the current stack
bounds, or a non-zero value to indicate that addr is within the stack bounds.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

stack_getbounds(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

stack_inbounds(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jul 2002900

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

stack_setbounds – update stack boundaries

#include <ucontext.h>

int stack_setbounds(const stack_t *sp);

The stack_setbounds() function updates the current base and bounds of the stack for the
current thread to the bounds specified by the stack_t structure pointed to by sp. The ss_sp
member refers to the virtual address of the base of the stack memory. The ss_size member
refers to the size of the stack in bytes. The ss_flags member must be set to 0.

Upon successful completion, stack_setbounds() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

The stack_setbounds() function will fail if:

EFAULT The sp argument does not refer to a valid address or the ss_sp member of the
stack_t structure pointed to by sp points to an illegal address.

EINVAL The ss_sp member of the stack_t structure pointed to by sp is not properly
aligned, the ss_size member is too small or is not properly aligned, or the
ss_flags member is non-zero.

The stack_setbounds() function is intended for use by applications that are managing their
own alternate stacks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

getustack(2), _stack_grow(3C), stack_getbounds(3C), stack_inbounds(3C),
stack_violation(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

stack_setbounds(3C)

Basic Library Functions 901

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getustack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

stack_violation – determine stack boundary violation event

#include <ucontext.h>

int stack_violation(int sig, const siginfo_t *sip,
const ucontext_t *ucp);

The stack_violation() function returns a boolean value indicating whether the signal, sig,
and accompanying signal information, sip, and saved context, ucp, represent a stack boundary
violation event or a stack overflow.

The stack_violation() function returns 0 if the signal does not represent a stack boundary
violation event and 1 if the signal does represent a stack boundary violation event.

No errors are defined.

EXAMPLE 1 Set up a signal handler to run on an alternate stack.

The following example sets up a signal handler for SIGSEGV to run on an alternate signal stack.
For each signal it handles, the handler emits a message to indicate if the signal was produced
due to a stack boundary violation.

#include <stdlib.h>

#include <unistd.h>

#include <ucontext.h>

#include <signal.h>

static void

handler(int sig, siginfo_t *sip, void *p)

{

ucontext_t *ucp = p;

const char *str;

if (stack_violation(sig, sip, ucp))

str = "stack violation.\n";
else

str = "no stack violation.\n";

(void) write(STDERR_FILENO, str, strlen(str));

exit(1);

}

int

main(int argc, char **argv)

{

struct sigaction sa;

stack_t altstack;

Name

Synopsis

Description

Return Values

Errors

Examples

stack_violation(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Jul 2002902

EXAMPLE 1 Set up a signal handler to run on an alternate stack. (Continued)

altstack.ss_size = SIGSTKSZ;

altstack.ss_sp = malloc(SIGSTKSZ);

altstack.ss_flags = 0;

(void) sigaltstack(&altstack, NULL);

sa.sa_sigaction = handler;

(void) sigfillset(&sa.sa_mask);

sa.sa_flags = SA_ONSTACK | SA_SIGINFO;

(void) sigaction(SIGSEGV, &sa, NULL);

/*

* The application is now set up to use stack_violation(3C).

*/

return (0);

}

An application typically uses stack_violation() in a signal handler that has been installed
for SIGSEGV using sigaction(2) with the SA_SIGINFO flag set and is configured to run on an
alternate signal stack.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

sigaction(2), sigaltstack(2), stack_getbounds(3C), stack_inbounds(3C),
stack_setbounds(3C), attributes(5)

Usage

Attributes

See Also

stack_violation(3C)

Basic Library Functions 903

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

stdio – standard buffered input/output package

#include <stdio.h>

extern FILE *stdin;

extern FILE *stdout;

extern FILE *stderr;

The standard I/O functions described in section 3C of this manual constitute an efficient,
user-level I/O buffering scheme. The in-line macros getc() and putc() handle characters
quickly. The macros getchar(3C) and putchar(3C), and the higher-level routines fgetc(3C),
fgets(3C), fprintf(3C), fputc(3C), fputs(3C), fread(3C), fscanf(3C), fwrite(3C),
gets(3C), getw(3C), printf(3C), puts(3C), putw(3C), and scanf(3C) all use or act as if they
use getc() and putc(); they can be freely intermixed.

A file with associated buffering is called a stream (see Intro(3)) and is declared to be a pointer
to a defined type FILE. The fopen(3C) function creates certain descriptive data for a stream
and returns a pointer to designate the stream in all further transactions. Normally, there are
three open streams with constant pointers declared in the <stdio.h> header and associated
with the standard open files:

stdin standard input file

stdout standard output file

stderr standard error file

The following symbolic values in <unistd.h> define the file descriptors that will be associated
with the C-language stdin, stdout and stderr when the application is started:

STDIN_FILENO Standard input value 0 stdin

STDOUT_FILENO Standard output value 1 stdout

STDERR_FILENO Standard error value 2 stderr

The constant NULL designates a null pointer.

The integer-constant EOF is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual descriptions for details).

The integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

The integer constant FILENAME_MAX specifies the number of bytes needed to hold the longest
pathname of a file allowed by the implementation. If the system does not impose a maximum
limit, this value is the recommended size for a buffer intended to hold a file's pathname.

Name

Synopsis

Description

stdio(3C)

man pages section 3: Basic Library Functions • Last Revised 18 May 2005904

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

The integer constant FOPEN_MAX specifies the minimum number of files that the
implementation guarantees can be open simultaneously. Note that no more than 255 files may
be opened using fopen(), and only file descriptors 0 through 255 can be used in a stream.

The functions and constants mentioned in the entries of section 3S of this manual are declared
in that header and need no further declaration. The constants and the following “functions”
are implemented as macros (redeclaration of these names is perilous): getc(), getchar(),
putc(), putchar(), ferror(3C), feof(3C), clearerr(3C), and fileno(3C). There are also
function versions of getc(), getchar(), putc(), putchar(), ferror(), feof(), clearerr(),
and fileno().

Output streams, with the exception of the standard error stream stderr, are by default
buffered if the output refers to a file and line-buffered if the output refers to a terminal. The
standard error output stream stderr is by default unbuffered, but use of freopen() (see
fopen(3C)) will cause it to become buffered or line-buffered. When an output stream is
unbuffered, information is queued for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the destination terminal as soon as
the line is completed (that is, as soon as a new-line character is written or terminal input is
requested). The setbuf() or setvbuf() functions (both described on the setbuf(3C) manual
page) may be used to change the stream's buffering strategy.

A single open file description can be accessed both through streams and through file
descriptors. Either a file descriptor or a stream will be called a handle on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by user action without affecting the underlying open file
description. Some of the ways to create them include fcntl(2), dup(2), fdopen(3C),
fileno(3C) and fork(2) (which duplicates existing ones into new processes). They can be
destroyed by at least fclose(3C) and close(2), and by the exec functions (see exec(2)), which
close some file descriptors and destroy streams.

A file descriptor that is never used in an operation and could affect the file offset (for example
read(2), write(2), or lseek(2)) is not considered a handle in this discussion, but could give
rise to one (as a consequence of fdopen(), dup(), or fork(), for example). This exception
does include the file descriptor underlying a stream, whether created with fopen() or
fdopen(), as long as it is not used directly by the application to affect the file offset. (The
read() and write() functions implicitly affect the file offset; lseek() explicitly affects it.)

If two or more handles are used, and any one of them is a stream, their actions shall be
coordinated as described below. If this is not done, the result is undefined.

A handle that is a stream is considered to be closed when either an fclose() or freopen(3C)
is executed on it (the result of freopen() is a new stream for this discussion, which cannot be a
handle on the same open file description as its previous value) or when the process owning

Interactions of Other
FILE-Type C Functions

stdio(3C)

Basic Library Functions 905

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2

that stream terminates the exit(2) or abort(3C). A file descriptor is closed by close(),
_exit() (see exit(2)), or by one of the exec functions when FD_CLOEXEC is set on that file
descriptor.

For a handle to become the active handle, the actions below must be performed between the
last other user of the first handle (the current active handle) and the first other user of the
second handle (the future active handle). The second handle then becomes the active handle.
All activity by the application affecting the file offset on the first handle shall be suspended
until it again becomes the active handle. (If a stream function has as an underlying function
that affects the file offset, the stream function will be considered to affect the file offset. The
underlying functions are described below.)

The handles need not be in the same process for these rules to apply. Note that after a fork(),
two handles exist where one existed before. The application shall assure that, if both handles
will ever be accessed, that they will both be in a state where the other could become the active
handle first. The application shall prepare for a fork() exactly as if it were a change of active
handle. (If the only action performed by one of the processes is one of the exec functions or
_exit(), the handle is never accessed in that process.)

1. For the first handle, the first applicable condition below shall apply. After the actions
required below are taken, the handle may be closed if it is still open.

a. If it is a file descriptor, no action is required.

b. If the only further action to be performed on any handle to this open file description is
to close it, no action need be taken.

c. If it is a stream that is unbuffered, no action need be taken.

d. If it is a stream that is line-buffered and the last character written to the stream was a
newline (that is, as if a putc(’\n’) was the most recent operation on that stream), no
action need be taken.

e. If it is a stream that is open for writing or append (but not also open for reading), either
an fflush(3C) shall occur or the stream shall be closed.

f. If the stream is open for reading and it is at the end of the file (feof(3C) is true), no
action need be taken.

g. If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, either an fflush() shall occur
or the stream shall be closed.

h. Otherwise, the result is undefined.

2. For the second handle: if any previous active handle has called a function that explicitly
changed the file offset, except as required above for the first handle, the application shall
perform an lseek() or an fseek(3C) (as appropriate to the type of the handle) to an
appropriate location.

stdio(3C)

man pages section 3: Basic Library Functions • Last Revised 18 May 2005906

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

3. If the active handle ceases to be accessible before the requirements on the first handle
above have been met, the state of the open file description becomes undefined. This might
occur, for example, during a fork() or an _exit().

4. The exec functions shall be considered to make inaccessible all streams that are open at the
time they are called, independent of what streams or file descriptors may be available to the
new process image.

5. Implementation shall assure that an application, even one consisting of several processes,
shall yield correct results (no data is lost or duplicated when writing, all data is written in
order, except as requested by seeks) when the rules above are followed, regardless of the
sequence of handles used. If the rules above are not followed, the result is unspecified.
When these rules are followed, it is implementation defined whether, and under what
conditions, all input is seen exactly once.

All the stdio functions are safe unless they have the _unlocked suffix. Each FILE pointer has
its own lock to guarantee that only one thread can access it. In the case that output needs to be
synchronized, the lock for the FILE pointer can be acquired before performing a series of
stdio operations. For example:

FILE iop;

flockfile(iop);

fprintf(iop, "hello ");
fprintf(iop, "world);
fputc(iop, ’a’);

funlockfile(iop);

will print everything out together, blocking other threads that might want to write to the same
file between calls to fprintf().

An unlocked interface is available in case performance is an issue. For example:

flockfile(iop);

while (!feof(iop)) {

*c++ = getc_unlocked(iop);

}

funlockfile(iop);

Invalid stream pointers usually cause grave disorder, possibly including program termination.
Individual function descriptions describe the possible error conditions.

close(2), lseek(2), open(2), pipe(2), read(2), write(2), ctermid(3C), cuserid(3C),
fclose(3C), ferror(3C), fopen(3C), fread(3C), fseek(3C), flockfile(3C), getc(3C),
gets(3C), popen(3C), printf(3C), putc(3C), puts(3C), scanf(3C), setbuf(3C), system(3C),
tmpfile(3C), tmpnam(3C), ungetc(3C)

Use of stdio in
Multithreaded

Applications

Return Values

See Also

stdio(3C)

Basic Library Functions 907

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

str2sig, sig2str – translation between signal name and signal number

#include <signal.h>

int str2sig(const char *str, int *signum);

int sig2str(int signum, char *str);

The str2sig() function translates the signal name str to a signal number, and stores that
result in the location referenced by signum. The name in str can be either the symbol for that
signal, without the "SIG" prefix, or a decimal number. All the signal symbols defined in
<sys/signal.h> are recognized. This means that both "CLD" and "CHLD" are recognized
and return the same signal number, as do both "POLL" and "IO". For access to the signals in
the range SIGRTMIN to SIGRTMAX, the first four signals match the strings "RTMIN",
"RTMIN+1", "RTMIN+2", and "RTMIN+3" and the last four match the strings "RTMAX-3",
"RTMAX-2", "RTMAX-1", and "RTMAX".

The sig2str() function translates the signal number signum to the symbol for that signal,
without the "SIG" prefix, and stores that symbol at the location specified by str. The storage
referenced by str should be large enough to hold the symbol and a terminating null byte. The
symbol SIG2STR_MAX defined by <signal.h> gives the maximum size in bytes required.

The str2sig() function returns 0 if it recognizes the signal name specified in str; otherwise, it
returns −1.

The sig2str() function returns 0 if the value signum corresponds to a valid signal number;
otherwise, it returns −1.

EXAMPLE 1 A sample program using the str2sig() function.

int i;

char buf[SIG2STR_MAX]; /*storage for symbol */

str2sig("KILL",&i); /*stores 9 in i */

str2sig("9", &i); /* stores 9 in i */

sig2str(SIGKILL,buf); /* stores "KILL" in buf */

sig2str(9,buf); /* stores "KILL" in buf */

kill(1), strsignal(3C)

Name

Synopsis

Description

Return Values

Examples

See Also

str2sig(3C)

man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999908

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-1

strcoll – string collation

#include <string.h>

int strcoll(const char *s1, const char *s2);

Both strcoll() and strxfrm(3C) provide for locale-specific string sorting. strcoll() is
intended for applications in which the number of comparisons per string is small. When
strings are to be compared a number of times, strxfrm(3C) is a more appropriate function
because the transformation process occurs only once.

The strcoll() function does not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strcoll(), then check errno.

Upon successful completion, strcoll() returns an integer greater than, equal to, or less than
zero in direct correlation to whether string s1 is greater than, equal to, or less than the string
s2. The comparison is based on strings interpreted as appropriate to the program's locale for
category LC_COLLATE (see setlocale(3C)).

On error, strcoll() may set errno, but no return value is reserved to indicate an error.

The strcoll() function may fail if:

EINVAL The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

/usr/lib/locale/locale/locale.so.* LC_COLLATE database for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

The strcoll() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

localedef(1), setlocale(3C), string(3C), strxfrm(3C), wsxfrm(3C), attributes(5),
environ(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Files

Attributes

See Also

strcoll(3C)

Basic Library Functions 909

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1localedef-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strerror, strerror_r – get error message string

#include <string.h>

char *strerror(int errnum);

int strerror_r(int errnum, char *strerrbuf, size_t buflen);

The strerror() function maps the error number in errnum to an error message string, and
returns a pointer to that string. It uses the same set of error messages as perror(3C). The
returned string should not be overwritten.

The strerror_r() function maps the error number in errnum to an error message string and
returns the string in the buffer pointed to by strerrbuf with length buflen.

Upon successful completion, strerror() returns a pointer to the generated message string.
Otherwise, it sets errno and returns a pointer to an error message string. It returns the string
“Unknown error” if errnum is not a valid error number.

Upon successful completion, strerror_r() returns 0. Otherwise it sets errno and returns the
value of errno to indicate the error. It returns the string “Unknown error” in the buffer
pointed to by strerrbuf if errnum is not a valid error number.

These functions may fail if:

EINVAL The value of errnum is not a valid error number.

The strerror_r() function may fail if:

ERANGE The buflen argument specifies insufficient storage to contain the generated
message string.

Messages returned from these functions are in the native language specified by the
LC_MESSAGES locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

gettext(3C), perror(3C), setlocale(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

strerror(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2005910

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strfmon – convert monetary value to string

#include <monetary.h>

ssize_t strfmon(char *restrict s, size_t maxsize,
const char *restrict format...);

The strfmon() function places characters into the array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string that contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which results in the
fetching of zero or more arguments which are converted and formatted. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are simply ignored.

A conversion specification consists of the following sequence:

■ a % character
■ optional flags
■ optional field width
■ optional left precision
■ optional right precision
■ a required conversion character that determines the conversion to be performed.

One or more of the following optional flags can be specified to control the conversion:

=f An = followed by a single character f which is used as the numeric fill character. The
fill character must be representable in a single byte in order to work with precision
and width counts. The default numeric fill character is the space character. This flag
does not affect field width filling which always uses the space character. This flag is
ignored unless a left precision (see below) is specified.

^ Do not format the currency amount with grouping characters. The default is to
insert the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one
of ‘+' or ‘(' may be specified. If ‘+' is specified, the locale's equivalent of + and ‘−' are
used. If ‘(' is specified, negative amounts are enclosed within parentheses. If neither
flag is specified, the ‘+' style is used.

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present all fields are left-justified (padded to the
right) rather than right-justified.

w A decimal digit string w specifying a minimum field width in bytes in which the result of
the conversion is right-justified (or left-justified if the flag ‘−' is specified). The default is
zero.

Name

Synopsis

Description

Flags

Field Width

strfmon(3C)

Basic Library Functions 911

#n A ‘#' followed by a decimal digit string n specifying a maximum number of digits
expected to be formatted to the left of the radix character. This option can be used to
keep the formatted output from multiple calls to the strfmon() aligned in the same
columns. It can also be used to fill unused positions with a special character as in
$***123.45. This option causes an amount to be formatted as if it has the number of
digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ‘^' flag, and it is defined for the current
locale, grouping separators are inserted before the fill characters (if any) are added.
Grouping separators are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the
formatted output such as currency or sign symbols are padded as necessary with space
characters to make their positive and negative formats an equal length.

.p A period followed by a decimal digit string p specifying the number of digits after the
radix character. If the value of the right precision p is zero, no radix character appears. If
a right precision is not included, a default specified by the current locale is used. The
amount being formatted is rounded to the specified number of digits prior to
formatting.

The conversion characters and their meanings are:

i The double argument is formatted according to the locale's international currency
format (for example, in the U.S.A.: USD 1,234.56).

n The double argument is formatted according to the locale's national currency format
(for example, in the U.S.A.: $1,234.56).

% Convert to a % no argument is converted. The entire conversion specification must be
%%.

The LC_MONETARY category of the program's locale affects the behavior of this function
including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols
and formats. The international currency symbol should be in conformance with the ISO 4217:
1987 standard.

If the total number of resulting bytes (including the terminating null byte) is not more than
maxsize, strfmon() returns the number of bytes placed into the array pointed to by s, not
including the terminating null byte. Otherwise, −1 is returned, the contents of the array are
indeterminate, and errno is set to indicate the error.

Left Precision

Right Precision

Conversion Characters

Locale Information

Return Values

strfmon(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jan 2008912

The strfmon() function will fail if:

ENOSYS The function is not supported.

E2BIG Conversion stopped due to lack of space in the buffer.

The behavior of strfmon() in an SUSv3–conforming application differs from its behavior in a
non-conforming application as follows:

■ With the conversion 'i', strfmon() uses information set to int_p_cs_precedes,
int_n_cs_precedes, int_p_sep_by_space, int_n_sep_by_space, int_p_sign_posn,
and int_n_sign_posn of the current locale instead of p_cs_precedes, n_cs_precedes,
p_sep_by_space, n_sep_by_space, p_sign_posn, and n_sign_posn, respectively.

■ With the conversion 'i', strfmon() uses the fourth character of the string set to
int_curr_symbol of the current locale instead of a space forint_p_sep_by_space and
int_n_sep_by_space.

■ When the value of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, or
int_n_sep_by_space is set to 2 in the current locale, strfmon() separates the currency
symbol from the sign string by a space, if adjacent; otherwise, strfmon() separates the sign
string from the value by a space.

EXAMPLE 1 A sample output of strfmon().

Given a locale for the U.S.A. and the values 123.45, −123.45, and 3456.781:

Conversion Output Comments

Specification

%n $123.45 default formatting

-$123.45

$3,456.78

%11n $123.45 right align within an 11

-$123.45 character field

$3,456.78

%#5n $123.45 aligned columns for values

-$123.45 up to 99,999

$3,456.78

%=*#5n $***123.45 specify a fill character

-$***123.45

Errors

Usage

Examples

strfmon(3C)

Basic Library Functions 913

EXAMPLE 1 A sample output of strfmon(). (Continued)

Conversion Output Comments

Specification

$*3,456.78

%=0#5n $000123.45 fill characters do not use

-$000123.45 grouping even if the fill

$03,456.78 character is a digit

%^#5n $123.45 disable the grouping

-$123.45 separator

$3456.78

%^#5.0n $123 round off to whole units

-$123

$3457

%^#5.4n $123.4500 increase the precision

-$123.4500

$3456.7810

%(#5n 123.45 use an alternative

($123.45) pos/neg style

$3,456.78

%!(#5n 123.45 disable the currency

(123.45) symbol

3,456.78

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

Attributes

strfmon(3C)

man pages section 3: Basic Library Functions • Last Revised 24 Jan 2008914

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

Th strfmon() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not called to change the locale.

localeconv(3C), setlocale(3C), attributes(5), standards(5)See Also

strfmon(3C)

Basic Library Functions 915

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strftime, cftime, ascftime – convert date and time to string

#include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format,
const struct tm *restrict timeptr);

int cftime(char *s, char *format, const time_t *clock);

int ascftime(char *s, const char *format,
const struct tm *timeptr);

The strftime(), ascftime(), and cftime() functions place bytes into the array pointed to by
s as controlled by the string pointed to by format. The format string consists of zero or more
conversion specifications and ordinary characters. A conversion specification consists of a '%'
(percent) character, an optional flag character, an optional field width, and one or two
terminating conversion characters that determine the conversion specification's behavior. All
ordinary characters (including the terminating null byte) are copied unchanged into the array
pointed to by s. If copying takes place between objects that overlap, the behavior is undefined.
For strftime(), no more than maxsize bytes are placed into the array.

If format is (char *)0, then the locale's default format is used. For strftime() the default
format is the same as %c; for cftime() and ascftime() the default format is the same as %C.
cftime() and ascftime() first try to use the value of the environment variable CFTIME, and if
that is undefined or empty, the default format is used.

Each conversion specification is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME category of the
program's locale and by the values contained in the structure pointed to by timeptr for
strftime() and ascftime(), and by the time represented by clock for cftime(). Supported
optional flag characters and optional field width are described at the end of the section.

%% Same as %.

%+ Locale's date and time representation as produced by date(1).

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

%B Locale's full month name.

%c Locale's appropriate date and time represented as:

%a %b %d %H:%M:%S %Y

This is the default behavior as well as standard-conforming behavior for standards first
supported by releases prior to Solaris 2.4. See standards(5).

Name

Synopsis

Description

Default

strftime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010916

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1date-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

%c Locale's appropriate date and time represented as:

%a %b %e %H:%M:%S %Y

This is standard-conforming behavior for standards first supported by Solaris 2.4
through Solaris 10.

%C Locale's date and time representation as produced by date(1).

This is the default behavior as well as standard-conforming behavior for standards first
supported by releases prior to Solaris 2.4.

%C Century number (the year divided by 100 and truncated to an integer as a decimal
number [01,99]).

This is standard-conforming behavior for standards first supported by Solaris 2.4
through Solaris 10.

%d Day of month [01,31].

%D Date as %m/%d/%y.

%e Day of month [1,31]; single digits are preceded by a space.

%F Equivalent to %Y-%m-%d (the ISO 8601:2000 standard date in extended format).

%g Week-based year within century [00,99].

%G Week-based year, including the century [0000,9999].

%h Locale's abbreviated month name.

%H Hour (24-hour clock) [00,23].

%I Hour (12-hour clock) [01,12].

%j Day number of year [001,366].

%k Hour (24-hour clock) [0,23]; single digits are preceded by a space.

%l Hour (12-hour clock) [1,12]; single digits are preceded by a space.

%m Month number [01,12].

%M Minute [00,59].

%n Insert a NEWLINE.

%p Locale's equivalent of either a.m. or p.m.

%r Appropriate time representation in 12-hour clock format with %p.

%P Locale's equivalent of either a.m. or p.m. in lowercase if applicable for the current
locale.

%R Time as %H:%M.

Standard conforming

Default

Standard conforming

strftime(3C)

Basic Library Functions 917

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1date-1

%s The number of seconds since the Epoch (00:00:00 UTC, January 1, 1970).

%S Seconds [00,60]; the range of values is [00,60] rather than [00,59] to allow for the
occasional leap second.

%t Insert a TAB.

%T Time as %H:%M:%S.

%u Weekday as a decimal number [1,7], with 1 representing Monday. See NOTES below.

%U Week number of year as a decimal number [00,53], with Sunday as the first day of week
1.

%V The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601 week-based
system, weeks begin on a Monday and week 1 of the year is the week that includes both
January 4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year. See NOTES
below.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of year as a decimal number [00,53], with Monday as the first day of
week 1.

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

%y Year within century [00,99].

%Y Year, including the century (for example 1993).

%z Replaced by offset from UTC in ISO 8601:2004 standard basic format (+hhmm or
-hhmm), or by no characters if no time zone is determinable. For example, “-0430”
means 4 hours 30 minutes behind UTC (west of Greenwich). If tm_isdst is zero, the
standard time offset is used. If tm_isdst is greater than zero, the daylight savings time
offset is used. If tm_isdst is negative, no characters are returned.

%Z Time zone name or abbreviation, or no bytes if no time zone information exists.

If a conversion specification does not correspond to any of the above or to any of the modified
conversion specifications listed below, the behavior is undefined and 0 is returned.

The difference between %U and %W (and also between modified conversion specifications %OU
and %OW) lies in which day is counted as the first of the week. Week number 1 is the first week
in January starting with a Sunday for %U or a Monday for %W. Week number 0 contains those
days before the first Sunday or Monday in January for %U and %W, respectively.

Some conversion specifications can be modified by the E and O modifiers to indicate that an
alternate format or specification should be used rather than the one normally used by the

Modified Conversion
Specifications

strftime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010918

unmodified conversion specification. If the alternate format or specification does not exist in
the current locale, the behavior will be as if the unmodified specification were used.

%Ec Locale's alternate appropriate date and time representation.

%EC Name of the base year (period) in the locale's alternate representation.

%Eg Offset from %EC of the week-based year in the locale's alternative representation.

%EG Full alternative representation of the week-based year.

%Ex Locale's alternate date representation.

%EX Locale's alternate time representation.

%Ey Offset from %EC (year only) in the locale's alternate representation.

%EY Full alternate year representation.

%OB Locale's full month name using the locale's alternate numeric symbols if applicable.

%Od Day of the month using the locale's alternate numeric symbols.

%Oe Same as %Od.

%Og Week-based year (offset from %C) in the locale's alternate representation and using the
locale's alternate numeric symbols.

%OH Hour (24-hour clock) using the locale's alternate numeric symbols.

%OI Hour (12-hour clock) using the locale's alternate numeric symbols.

%Om Month using the locale's alternate numeric symbols.

%OM Minutes using the locale's alternate numeric symbols.

%OS Seconds using the locale's alternate numeric symbols.

%Ou Weekday as a number in the locale's alternate numeric symbols.

%OU Week number of the year (Sunday as the first day of the week) using the locale's
alternate numeric symbols.

%OV Week number of the year (Monday as the first day of the week as specified in the
description for %V) using the locale's alternate numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale's alternate numeric symbols.

%OW Week number of the year (Monday as the first day of the week) using the locale's
alternate numeric symbols.

%Oy Year (offset from %C) in the locale's alternate representation and using the locale's
alternate numeric symbols.

strftime(3C)

Basic Library Functions 919

By default, the output of strftime(), cftime(), and ascftime() appear in U.S. English. The
user can request that the output of strftime(), cftime(), or ascftime() be in a specific
language by setting the LC_TIME category using setlocale().

Local time zone information is used as though tzset(3C) were called.

The following flag characters are accepted and supported to be compatible with some other
operating systems:

If applicable, convert the case of the alphabetic characters to the other case,
i.e., uppercase to lowercase or lowercase to uppercase, while trying to
preserve the first so-called title case character in the conversion to
uppercase.

- (dash) Do not pad anything for numeric values.

0 Pad left with zeros for numeric values even in cases where the conversion
character used with is specified with in the Description section such that
digits are preceded by a space or a blank character.

^ If applicable, convert lowercase characters into uppercase characters.

_ (underscore) Pad left with space (0x20) characters for numeric values.

When an optional field width is specified before the conversion characters, the resultant
characters are padded at the left with appropriate padding characters if the field width is
bigger than the width of the resultant characters. If the field width value specified is smaller
than or equal to the actual width of the resultant characters, the resultant characters is
presented without any truncation or change in length as if there is no field width value
specified.

The strftime(), cftime(), and ascftime() functions return the number of characters
placed into the array pointed to by s, not including the terminating null character. If the total
number of resulting characters including the terminating null character is more than maxsize,
strftime() returns 0 and the contents of the array are indeterminate.

EXAMPLE 1 An example of the strftime() function.

The following example illustrates the use of strftime() for the POSIX locale. It shows what
the string in str would look like if the structure pointed to by tmptr contains the values
corresponding to Thursday, August 28, 1986 at 12:44:36.

strftime(str, strsize, "%A %b %d %j", tmptr)

This results in str containing “Thursday Aug 28 240”.

Selecting the Output
Language

Time Zone

Optional Flag
Characters and

Optional Field Width

Return Values

Examples

strftime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010920

EXAMPLE 2 Using flag and field width at conversion specification.

Assuming the data structure pointed to by tmptr has the values corresponding to Sunday,
December 5, 2009 at 12:00:00 and the current locale is POSIX, with the following:

strftime(str, strsize, "Day:%#10A", tmptr);

The result in str would be “Day: SUNDAY” where Sunday is converted to uppercase while
preserving the initial title case character and with four space (0x20) characters padded at left.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For strftime(), see standards(5).

date(1), ctime(3C), mktime(3C), setlocale(3C), strptime(3C), tzset(3C), TIMEZONE(4),
zoneinfo(4), attributes(5), environ(5), standards(5)

The conversion specification for %V was changed in the Solaris 7 release. This change was
based on the public review draft of the ISO C9x standard at that time. Previously, the
specification stated that if the week containing 1 January had fewer than four days in the new
year, it became week 53 of the previous year. The ISO C9x standard committee subsequently
recognized that that specification had been incorrect.

The conversion specifications for %g, %G, %Eg, %EG, and %Og were added in the Solaris 7 release.
This change was based on the public review draft of the ISO C9x standard at that time. These
specifications are evolving. If the ISO C9x standard is finalized with a different conclusion,
these specifications will change to conform to the ISO C9x standard decision.

The conversion specification for %u was changed in the Solaris 8 release. This change was
based on the XPG4 specification.

If using the %Z specifier and zoneinfo timezones and if the input date is outside the range
20:45:52 UTC, December 13, 1901 to 03:14:07 UTC, January 19, 2038, the timezone name may
not be correct.

The conversion specifications for %+, %P, %s, %OB, and %OV and also optional flag characters and
optional field width were added in the Solaris 11 and OpenSolaris releases for a better
compatibility with other operating systems. The current form of %OV is also specified in the
Single Unix Specification, Version 2.

Attributes

See Also

Notes

strftime(3C)

Basic Library Functions 921

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1date-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uc-timezone-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zoneinfo-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

string, strcasecmp, strncasecmp, strcat, strncat, strlcat, strchr, strrchr, strchrnul, strcmp,
strncmp, strcpy, strncpy, strlcpy, stpcpy, stpncpy, strcspn, strspn, strdup, strndup, strdupa,
strndupa, strlen, strnlen, strpbrk, strsep, strstr, strnstr, strcasestr, strtok, strtok_r – string
operations

#include <strings.h>

int strcasecmp(const char *s1, const char *s2);

int strncasecmp(const char *s1, const char *s2, size_t n);

#include <string.h>

char *strcat(char *restrict s1, const char *restrict s2);

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

size_t strlcat(char *dst, const char *src, size_t dstsize);

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

char *strchrnul(const char *s, int c);

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

char *strcpy(char *restrict s1, const char *restrict s2);

char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

size_t strlcpy(char *dst, const char *src, size_t dstsize);

char *stpcpy(char *restrict s1, const char *restrict s2);

char *stpncpy(char *restrict s1, const char *restrict s2, size_t n);

size_t strcspn(const char *s1, const char *s2);

size_t strspn(const char *s1, const char *s2);

char *strdup(const char *s);

char *strndup(const char *s, size_t size);

char *strdupa(const char *s);

char *strndupa(const char *s, size_t size);

size_t strlen(const char *s);

size_t strnlen(const char *s, size_t n);

char *strpbrk(const char *s1, const char *s2);

char *strsep(char **stringp, const char *delim);

char *strstr(const char *s1, const char *s2);

Name

Synopsis

string(3C)

man pages section 3: Basic Library Functions • Last Revised 23 May 2011922

char *strnstr(const char *s1, const char *s2, size_t n);

char *strcasestr(const char *s1, const char *s2);

char *strtok(char *restrict s1, const char *restrict s2);

char *strtok_r(char *s1, const char *s2, char **lasts);

#include <string.h>

const char *strchr(const char *s, int c);

const char *strpbrk(const char *s1, const char *s2);

const char *strrchr(const char *s, int c);

const char *strstr(const char *s1, const char *s2);

#include <cstring>

char *std::strchr(char *s, int c);

char *std::strpbrk(char *s1, const char *s2);

char *std::strrchr(char *s, int c);

char *std::strstr(char *s1, const char *s2);

The arguments s, s1, and s2 point to strings (arrays of characters terminated by a null
character). The strcat(), strncat(), strlcat(), strcpy(), strncpy(), strlcpy(),
strsep(), strtok(), and strtok_r() functions all alter their first argument. Additionally, the
strcat() and strcpy() functions do not check for overflow of the array.

The strcasecmp() and strncasecmp() functions are case-insensitive versions of strcmp()
and strncmp() respectively, described below. They ignore differences in case when
comparing lower and upper case characters, using the current locale of the process to
determine the case of the characters.

The strcat() function appends a copy of string s2, including the terminating null character,
to the end of string s1. The strncat() function appends at most n characters. Each returns a
pointer to the null-terminated result. The initial character of s2 overrides the null character at
the end of s1. If copying takes place between objects that overlap, the behavior of strcat(),
strncat(), and strlcat() is undefined.

The strlcat() function appends at most (dstsize-strlen(dst)-1) characters of src to dst
(dstsize being the size of the string buffer dst). If the string pointed to by dst contains a
null-terminated string that fits into dstsize bytes when strlcat() is called, the string pointed
to by dst will be a null-terminated string that fits in dstsize bytes (including the terminating
null character) when it completes, and the initial character of src will override the null
character at the end of dst. If the string pointed to by dst is longer than dstsize bytes when
strlcat() is called, the string pointed to by dst will not be changed. The function returns
min{dstsize,strlen(dst)}+strlen(src). Buffer overflow can be checked as follows:

ISO C++

Description

strcasecmp(),
strncasecmp()

strcat(), strncat(),
strlcat()

string(3C)

Basic Library Functions 923

if (strlcat(dst, src, dstsize) >= dstsize)

return −1;

The strchr() function returns a pointer to the first occurrence of c (converted to a char) in
string s, or a null pointer if c does not occur in the string.

The strrchr() function returns a pointer to the last occurrence of c. The null character
terminating a string is considered to be part of the string.

The strchrnul() function is similar to strchr() except that if c is not found in s, it returns a
pointer to the null byte at the end of s, rather than NULL.

The strcmp() function compares two strings byte-by-byte, according to the ordering of your
machine's character set. The function returns an integer greater than, equal to, or less than 0, if
the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2
respectively. The sign of a non-zero return value is determined by the sign of the difference
between the values of the first pair of bytes that differ in the strings being compared. The
strncmp() function makes the same comparison but looks at a maximum of n bytes. Bytes
following a null byte are not compared.

The strcpy() and stpcpy() functions copy string s2 to s1, including the terminating null
character, stopping after the null character has been copied. The strcpy() function returns s1.
The stpcpy() function returns a pointer to the terminating null character copied into the s1
array.

The strncpy() stpncpy() and functions copy not more than n bytes (bytes that follow a null
byte are not copied) from the array pointed to by s2 to the array pointed to by s1. If the array
pointed to by s2 is a string that is shorter than n bytes, null bytes are appended to the copy in
the array pointed to by s1, until n bytes in all are written. The stpcpy() function returns s1. If
s1 contains null bytes, stpncpy() returns a pointer to the first such null byte. Otherwise, it
returns &s1[n].

The strlcpy() function copies at most dstsize−1 characters (dstsize being the size of the string
buffer dst) from src to dst, truncating src if necessary. The result is always null-terminated. The
function returns strlen(src). Buffer overflow can be checked as follows:

if (strlcpy(dst, src, dstsize) >= dstsize)

return −1;

If copying takes place between objects that overlap, the behavior of these functions is
undefined.

The strcspn() function returns the length of the initial segment of string s1 that consists
entirely of characters not from string s2. The strspn() function returns the length of the
initial segment of string s1 that consists entirely of characters from string s2.

strchr(), strrchr(),
strchrnul()

strcmp(), strncmp()

strcpy(), stpcpy(),
strncpy(),
stpncpy(),
strlcpy()

strcspn(), strspn()

string(3C)

man pages section 3: Basic Library Functions • Last Revised 23 May 2011924

The strdup() function returns a pointer to a new string that is a duplicate of the string
pointed to by s. The returned pointer can be passed to free(). The space for the new string is
obtained using malloc(3C). If the new string cannot be created, a null pointer is returned and
errno may be set to ENOMEM to indicate that the storage space available is insufficient.

The strndup() function is similar to strdup(), except that it copies at most size bytes. If the
length of s is larger than size, only size bytes are copied and a terminating null byte is added. If
size is larger than the length of s, all bytes in s are copied, including the terminating null
character.

The strdupa() and strndupa() functions are similar to strdup() and strndup(),
respectively, but use alloca(3C) to allocate the buffer.

The strlen() function returns the number of bytes in s, not including the terminating null
character.

The strnlen() function returns the smaller of n or the number of bytes in s, not including the
terminating null character. The strnlen() function never examines more than n bytes of the
string pointed to by s.

The strpbrk() function returns a pointer to the first occurrence in string s1 of any character
from string s2, or a null pointer if no character from s2 exists in s1.

The strsep() function locates, in the null-terminated string referenced by *stringp, the first
occurrence of any character in the string delim (or the terminating ‘\0' character) and replaces
it with a ‘\0'. The location of the next character after the delimiter character (or NULL, if the end
of the string was reached) is stored in *stringp. The original value of *stringp is returned.

An ‘‘empty'' field (one caused by two adjacent delimiter characters) can be detected by
comparing the location referenced by the pointer returned by strsep() to ‘\0'.

If *stringp is initially NULL, strsep() returns NULL.

The strstr() function locates the first occurrence of the string s2 (excluding the terminating
null character) in string s1 and returns a pointer to the located string, or a null pointer if the
string is not found. If s2 points to a string with zero length (that is, the string ""), the function
returns s1.

The strnstr() function locates the first occurrence of the null-terminated string s2 in the
string s1, where not more than n characters are searched. Characters that appear after a ‘\0'
character are not searched.

The strcasestr() function is similar to strstr(), but ignores the case of both strings.

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by s2. The first call in the
sequence has s1 as its first argument, and is followed by calls with a null pointer as their first
argument. The separator string pointed to by s2 can be different from call to call.

strdup(), strndup(),
strdupa(),
strndupa()

strlen(), strnlen()

strpbrk()

strsep()

strstr(), strnstr(),
strcasestr()

strtok()

string(3C)

Basic Library Functions 925

The first call in the sequence searches the string pointed to by s1 for the first byte that is not
contained in the current separator string pointed to by s2. If no such byte is found, then there
are no tokens in the string pointed to by s1 and strtok() returns a null pointer. If such a byte
is found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current
separator string. If no such byte is found, the current token extends to the end of the string
pointed to by s1, and subsequent searches for a token return a null pointer. If such a byte is
found, it is overwritten by a null byte that terminates the current token. The strtok()
function saves a pointer to the following byte in thread-specific data, from which the next
search for a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

See Example 1, 2, and 3 in the EXAMPLES section for examples of strtok() usage and the
explanation in NOTES.

The strtok_r() function considers the null-terminated string s1 as a sequence of zero or
more text tokens separated by spans of one or more characters from the separator string s2.
The argument lasts points to a user-provided pointer which points to stored information
necessary for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s1 points to a null-terminated string, s2 to a null-terminated
string of separator characters, and the value pointed to by lasts is ignored. The strtok_r()
function returns a pointer to the first character of the first token, writes a null character into s1
immediately following the returned token, and updates the pointer to which lasts points.

In subsequent calls, s1 is a null pointer and lasts is unchanged from the previous call so that
subsequent calls move through the string s1, returning successive tokens until no tokens
remain. The separator string s2 can be different from call to call. When no token remains in s1,
a null pointer is returned.

See Example 3 in the EXAMPLES section for an example of strtok_r() usage and the
explanation in NOTES.

EXAMPLE 1 Search for word separators.

The following example searches for tokens separated by space characters.

#include <string.h>

...

char *token;

char line[] = "LINE TO BE SEPARATED";
char *search = " ";

/* Token will point to "LINE". */

token = strtok(line, search);

strtok_r()

Examples

string(3C)

man pages section 3: Basic Library Functions • Last Revised 23 May 2011926

EXAMPLE 1 Search for word separators. (Continued)

/* Token will point to "TO". */

token = strtok(NULL, search);

EXAMPLE 2 Break a Line.

The following example uses strtok() to break a line into two character strings separated by
any combination of SPACEs, TABs, or NEWLINEs.

#include <string.h>

...

struct element {

char *key;

char *data;

};

...

char line[LINE_MAX];

char *key, *data;

...

key = strtok(line, " \n");
data = strtok(NULL, " \n");

EXAMPLE 3 Search for tokens.

The following example uses both strtok() and strtok_r() to search for tokens separated by
one or more characters from the string pointed to by the second argument, “/”.

#define __EXTENSIONS__

#include <stdio.h>

#include <string.h>

int

main() {

char buf[13];

char *token;

char *lasts;

(void) strlcpy(buf, "5/90/45", 8);

(void) printf("tokenizing \\"%s\\" with strtok():\

", buf);

if ((token = strtok(buf, "/")) != NULL) {

(void) printf("token = \\"%s\\"\
", token);

while ((token = strtok(NULL, "/")) != NULL) {

(void) printf("token = \\"%s\\"\
", token);

}

}

string(3C)

Basic Library Functions 927

EXAMPLE 3 Search for tokens. (Continued)

(void) strlcpy(buf, "//5//90//45//", 13);

(void) printf("\
tokenizing \\"%s\\" with strtok_r():\

", buf);

if ((token = strtok_r(buf, "/", &lasts)) != NULL) {

(void) printf("token = \\"%s\\"\
", token);

while ((token = strtok_r(NULL, "/", &lasts)) != NULL) {

(void) printf("token = \\"%s\\"\
", token);

}

}

}

When compiled and run, this example produces the following output:

tokenizing "5/90/45" with strtok():

token = "5"
token = "90"
token = "45"

tokenizing "//5//90//45//" with strtok_r():

token = "5"
token = "90"
token = "45"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See below.

The strtok() and strdup() functions are MT-Safe. The remaining functions are
Async-Signal-Safe.

For all except strlcat(), strlcpy(), and strsep(), see standards(5).

alloca(3C), malloc(3C), setlocale(3C), strxfrm(3C), attributes(5), standards(5)

Attributes

See Also

string(3C)

man pages section 3: Basic Library Functions • Last Revised 23 May 2011928

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should only be used in multithreaded applications.

A single-threaded application can gain access to strtok_r() only by defining
__EXTENSIONS__ or by defining _POSIX_C_SOURCE to a value greater than or equal to 199506L.

All of these functions assume the default locale ‘‘C.'' For some locales, strxfrm(3C) should be
applied to the strings before they are passed to the functions.

The strtok() function is safe to use in multithreaded applications because it saves its internal
state in a thread-specific data area. However, its use is discouraged, even for single-threaded
applications. The strtok_r() function should be used instead.

Do not pass the address of a character string literal as the argument s1 to either strtok() or
strtok_r(). Similarly, do not pass a pointer to the address of a character string literal as the
argument stringp to strsep(). These functions can modify the storage pointed to by s1 in the
case of strtok() and strtok_r() or *stringp in the case of strsep(). The C99 standard
specifies that attempting to modify the storage occupied by a string literal results in undefined
behavior. This allows compilers (including gcc and the Sun Studio compilers) to place string
literals in read-only memory. Note that in Example 1 above, this problem is avoided because
the variable line is declared as a writable array of type char that is initialized by a string literal
rather than a pointer to char that points to a string literal.

Notes

string(3C)

Basic Library Functions 929

string_to_decimal, file_to_decimal, func_to_decimal – parse characters into decimal record

#include <floatingpoint.h>

void string_to_decimal(char **pc, int nmax,
int fortran_conventions, decimal_record *pd,
enum decimal_string_form *pform, char **pechar);

void func_to_decimal(char **pc, int nmax,
int fortran_conventions, decimal_record *pd,
enum decimal_string_form *pform, char **pechar,
int (*pget)(void), int *pnread, int (*punget)(int c));

#include <stdio.h>

void file_to_decimal(char **pc, int nmax,
int fortran_conventions, decimal_record *pd,
enum decimal_string_form *pform, char **pechar,
FILE *pf, int *pnread);

These functions attempt to parse a numeric token from at most nmax characters read from a
string **pc, a file *pf, or function (*pget). They set the decimal record *pd to reflect the value of
the numeric token recognized and set *pform and *pechar to indicate its form.

The accepted forms for the numeric token consist of an initial, possibly empty, sequence of
white-space characters, as defined by isspace(3C), followed by a subject sequence
representing a numeric value, infinity, or NaN. The subject sequence consists of an optional
plus or minus sign followed by one of the following:

■ a non-empty sequence of decimal digits optionally containing a decimal point character,
then an optional exponent part

■ one of INF or INFINITY, ignoring case
■ one of NAN or NAN(string), ignoring case in the NAN part; string can be any sequence of

characters not containing ')' (right parenthesis) or '\0' (null).

The fortran_conventions argument provides additional control over the set of accepted forms.
It must be one of the following values:

0 no Fortran conventions

1 Fortran list-directed input conventions

2 Fortran formatted input conventions, blanks are ignored

3 Fortran formatted input conventions, blanks are interpreted as zeroes

When fortran_conventions is zero, the decimal point character is the current locale's decimal
point character, and the exponent part consists of the letter E or e followed by an optional sign
and a non-empty string of decimal digits.

Name

Synopsis

Description

string_to_decimal(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Oct 2003930

When fortran_conventions is non-zero, the decimal point character is “.” (period), and the
exponent part consists of either a sign or one of the letters E, e, D, d, Q, or q followed by an
optional sign, then a non-empty string of decimal digits.

When fortran_conventions is 2 or 3, blanks can appear in the digit strings for the integer,
fraction, and exponent parts, between the exponent delimiter and optional exponent sign, and
after an INF, INFINITY, NAN, or NAN(string). When fortran_conventions is 2, all blanks are
ignored. When fortran_conventions is 3, blanks in digit strings are interpreted as zeros and
other blanks are ignored.

The following table summarizes the accepted forms and shows the corresponding values to
which *pform and pd->fpclass are set. Here digits represents any string of decimal digits, “.”
(period) stands for the decimal point character, and exponent represents the exponent part as
defined above. Numbers in brackets refer to the notes following the table.

form *pform pd->fpclass

all white space [1] whitespace_form fp_zero

digits fixed_int_form fp_normal [2]

digits. fixed_intdot_form fp_normal [2]

.digits fixed_dotfrac_form fp_normal [2]

digits.digits fixed_intdotfrac_form fp_normal [2]

digits exponent floating_int_form fp_normal [2]

digits. exponent floating_intdot_form fp_normal [2]

.digits exponent floating_dotfrac_form fp_normal [2]

digits.digits exponent floating_intdotfrac_form fp_normal [2]

INF inf_form fp_infinity

INFINITY infinity_form fp_infinity

NAN nan_form fp_quiet

NAN(string) nanstring_form fp_quiet

none of the above invalid_form fp_signaling

Notes:

1. The whitespace_form is accepted only when fortran_conventions is 2 or 3 and is
interpreted as zero.

2. For all numeric forms, pd->fpclass is set to fp_normal if any non-zero digits appear in
the integer or fraction parts, and otherwise pd->fpclass is set to fp_zero.

string_to_decimal(3C)

Basic Library Functions 931

If the accepted token has one of the numeric forms and represents a non-zero number x, its
significant digits are stored in pd->ds. Leading and trailing zeroes and the radix point are
omitted. pd->sign and pd->exponent are set so that if m is the integer represented by pd->ds,

−1**(pd->sign) * m * 10**(pd->exponent)

approximates x to at least 511 significant digits. pd->more is set to 1 if this approximation is
not exact (that is, the accepted token contains additional non-zero digits beyond those copied
to pd->ds) and to 0 otherwise.

If the accepted token has the NAN(string) form, up to 511 characters from the string part are
copied to pd->ds.

pd->ds is always terminated by a null byte, and pd->ndigits is set to the length of the string
stored in pd->ds.

On entry, *pc points to the beginning of a character string buffer. The string_to_decimal()
function reads characters from this buffer until either enough characters are read to delimit
the accepted token (for example, a null character marking the end of the string is found) or the
limit of nmax characters is reached. The file_to_decimal() function reads characters from
the file *pf and stores them in the buffer. The func_to_decimal() function reads characters
one at a time by calling the function (*pget)() and stores them in the buffer; (*pget)() must
return integer values in the range −1 to 255, where −1 is interpreted as EOF and 0, ..., 255 are
interpreted as unsigned char values. Both file_to_decimal() and func_to_decimal() read
characters until either enough characters are read to delimit the accepted token, EOF is
encountered, or the limit of nmax characters is reached. These functions, therefore, typically
read one or more additional characters beyond the end of the accepted token and attempt to
push back any excess characters read. Provided that the punget argument is not NULL,
func_to_decimal() pushes back characters one at a time by calling (*punget)(c), where c is an
integer in the range 0 to 255 corresponding to a value previously read via (*pget)(). After
pushing back as many excess characters as possible, file_to_decimal() and
func_to_decimal() store a null byte in the buffer following the last character read and not
pushed back and set *pnread to the number of characters stored in the buffer prior to this null
byte. Since these functions can read up to nmax characters, the buffer must be large enough to
hold nmax + 1.

On exit, *pc points to the next character in the buffer past the last one that was accepted as part
of the numeric token. If no valid token is found, *pc is unchanged. If file_to_decimal() and
func_to_decimal() successfully push back all unused characters, *pc points to the null byte
stored in the buffer following the last character read and not pushed back.

If the accepted token contains an exponent part, *pechar is set to point to the position in the
buffer where the first character of the exponent field is stored. If the accepted token does not
contain an exponent part, *pechar is set to NULL.

string_to_decimal(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Oct 2003932

If the _IOWRT flag is set in *pf, file_to_decimal() reads characters directly from the file buffer
until a null character is found. (The _IOWRT flag should only be set when file_to_decimal()

is called from sscanf(3C).) Otherwise, file_to_decimal() uses getc_unlocked(3C), so it is
not MT-safe unless the caller holds the stream lock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

ctype(3C), decimal_to_floating(3C), getc_unlocked(3C), isspace(3C), localeconv(3C),
scanf(3C), setlocale(3C), strtod(3C), ungetc(3C), attributes(5)

Usage

Attributes

See Also

string_to_decimal(3C)

Basic Library Functions 933

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

strptime – date and time conversion

#include <time.h>

char *strptime(const char *restrict buf,
const char *restrict format, struct tm *restrict tm);

cc [flag...] file... -D_STRPTIME_DONTZERO [library...]
#include <time.h>

char *strptime(const char *restrict buf,
const char *restrict format, struct tm *restrict tm);

The strptime() function converts the character string pointed to by buf to values which are
stored in the tm structure pointed to by tm, using the format specified by format.

The format argument is composed of zero or more conversion specifications. Each conversion
specification is composed of a “%” (percent) character followed by one or two conversion
characters which specify the replacement required. One or more white space characters (as
specified by isspace(3C)) may precede or follow a conversion specification. There must be
white-space or other non-alphanumeric characters between any two conversion
specifications.

A non-zeroing version of strptime(), described below under Non-zeroing Behavior, is
provided if _STRPTIME_DONTZERO is defined.

The following conversion specifications are supported:

%% Same as %.

%a Day of week, using the locale's weekday names; either the abbreviated or full name may
be specified.

%A Same as %a.

%b Month, using the locale's month names; either the abbreviated or full name may be
specified.

%B Same as %b.

%c Locale's appropriate date and time representation.

%C Century number (the year divided by 100 and truncated to an integer as a decimal
number [1,99]); single digits are preceded by 0. If %C is used without the %y specifier,
strptime() assumes the year offset is zero in whichever century is specified. Note the
behavior of %C in the absence of %y is not specified by any of the standards or
specifications described on the standards(5) manual page, so portable applications
should not depend on it. This behavior may change in a future release.

%d Day of month [1,31]; leading zero is permitted but not required.

%D Date as %m/%d/%y.

Name

Synopsis

Non-zeroing Behavior

Description

Conversion
Specifications

strptime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010934

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

%e Same as %d.

%F Equivalent to %Y-%m-%d (the ISO 8601:2004 standard date in extended format).

%g Week-based year within century [00,99]; leading zero is permitted but not required.

%G Week-based year, including the century [0000,9999]; leading zero is permitted but not
required.

%h Same as %b.

%H Hour (24-hour clock) [0,23]; leading zero is permitted but not required.

%I Hour (12-hour clock) [1,12]; leading zero is permitted but not required.

%j Day number of the year [1,366]; leading zeros are permitted but not required.

%k Same as %H.

%l Same as %I.

%m Month number [1,12]; leading zero is permitted but not required.

%M Minute [0-59]; leading zero is permitted but not required.

%n Any white space.

%p Locale's equivalent of either a.m. or p.m.

%P Locale's equivalent of either a.m. or p.m. in case-insensitive manner.

%r Appropriate time representation in the 12-hour clock format with %p.

%R Time as %H:%M.

SUSv3

%S Seconds [0,60]; leading zero is permitted but not required. The range of values is
[00,60] rather than [00,59] to allow for the occasional leap second.

Default and other standards

%S Seconds [0,61]; leading zero is permitted but not required. The range of values is
[00,61] rather than [00,59] to allow for the occasional leap second and even more
occasional double leap second.

%t Any white space.

%T Time as %H:%M:%S.

%u Weekday as a decimal number [1,7], with 1 representing Monday.

%U Week number of the year as a decimal number [0,53], with Sunday as the first day of
the week; leading zero is permitted but not required.

strptime(3C)

Basic Library Functions 935

%V The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601 week-based
system, weeks begin on a Monday and week 1 of the year is the week that includes both
January 4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of the year as a decimal number [0,53], with Monday as the first day of
the week; leading zero is permitted but not required.

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in the range
69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the
range 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive).

%Y Year, including the century (for example, 1993).

%z Offset from UTC in ISO 8601:2004 standard basic format (+hhmm or -hhmm), or no
characters if no time zone is determinable.

%Z Time zone name or no characters if no time zone exists.

Some conversion specifications can be modified by the E and O modifier characters to indicate
that an alternate format or specification should be used rather than the one normally used by
the unmodified specification. If the alternate format or specification does not exist in the
current locale, the behavior will be as if the unmodified conversion specification were used.

%Ec Locale's alternate appropriate date and time representation.

%EC Name of the base year (era) in the locale's alternate representation.

%Ex Locale's alternate date representation.

%EX Locale's alternate time representation.

%Ey Offset from %EC (year only) in the locale's alternate representation.

%EY Full alternate year representation.

%Od Day of the month using the locale's alternate numeric symbols.

%Oe Same as %Od.

%OH Hour (24-hour clock) using the locale's alternate numeric symbols.

%OI Hour (12-hour clock) using the locale's alternate numeric symbols.

%Om Month using the locale's alternate numeric symbols.

%OM Minutes using the locale's alternate numeric symbols.

Modified Conversion
Specifications

strptime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010936

%OS Seconds using the locale's alternate numeric symbols.

%OU Week number of the year (Sunday as the first day of the week) using the locale's
alternate numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale's alternate numeric symbols.

%OW Week number of the year (Monday as the first day of the week) using the locale's
alternate numeric symbols.

%Oy Year (offset from %C) in the locale's alternate representation and using the locale's
alternate numeric symbols.

A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the specification, the specification fails, and the differing and subsequent
characters remain unscanned.

A series of specifications composed of %n, %t, white-space characters or any combination is
executed by scanning up to the first character that is not white space (which remains
unscanned), or until no more characters can be scanned. White space is defined by
isspace(3C).

Any other conversion specification is executed by scanning characters until a character
matching the next specification is scanned, or until no more characters can be scanned. These
characters, except the one matching the next specification, are then compared to the locale
values associated with the conversion specifier. If a match is found, values for the appropriate
tm structure members are set to values corresponding to the locale information. If no match is
found, strptime() fails and no more characters are scanned.

The month names, weekday names, era names, and alternate numeric symbols can consist of
any combination of upper and lower case letters. The user can request that the input date or
time specification be in a specific language by setting the LC_TIME category using
setlocale(3C).

In addition to the behavior described above by various standards, the Solaris implementation
of strptime() provides the following extensions. These may change at any time in the future.
Portable applications should not depend on these extended features:

■ If _STRPTIME_DONTZERO is not defined, the tm struct is zeroed on entry and strptime()

updates the fields of the tm struct associated with the specifiers in the format string.
■ If _STRPTIME_DONTZERO is defined, strptime() does not zero the tm struct on entry.

Additionally, for some specifiers, strptime() will use some values in the input tm struct
to recalculate the date and re-assign the appropriate members of the tm struct.

The following describes extended features regardless of whether _STRPTIME_DONTZERO is
defined or not defined:

General Specifications

Non-zeroing Behavior

strptime(3C)

Basic Library Functions 937

■ If %j is specified, tm_yday is set; if year is given, and if month and day are not given,
strptime() calculates and sets tm_mon, tm_mday, and tm_year.

■ If %U, %V, or %W is specified and if weekday and year are given and month and day of month
are not given, strptime() calculates and sets tm_mon, tm_mday, tm_wday, and tm_year.

The following describes extended features when _STRPTIME_DONTZERO is not defined:

■ If %C is specified and neither %g nor %y is specified, strptime() assumes 0 as the year offset,
then calculates the year and assigns tm_year.

The following describes extended features when _STRPTIME_DONTZERO is defined:

■ If %C is specified and neither %g nor %y is specified, strptime() assumes the year offset of
the year value of the tm_year member of the input tm struct, then calculates the year and
assigns tm_year.

■ If %j is specified and neither %C, %g, %G, %y, nor %Y is specified, and neither month nor day
of month is specified, strptime() assumes the year value given by the value of the tm_year
field of the input tm struct. Then, in addition to setting tm_yday, strptime() uses
day-of-year and year values to calculate the month and day-of-month, and assigns
tm_month and tm_mday.

■ If %U, %V, or %W is specified, and if weekday and/or year are not given, and month and day of
month are not given, strptime() will assume the weekday value and/or the year value as
the value of the tm_wday field and/or tm_year field of the input tm struct. Then,
strptime() will calculate the month and day-of-month and assign tm_month, tm_mday,
and/or tm_year.

■ If %p or %P is specified and if hour is not specified, strptime() will reference, and if needed,
update the tm_hour member. If the am_pm input is p.m. and the input tm_hour value is
between 0 - 11, strptime() will add 12 hours and update tm_hour. If the am_pm input is
a.m. and input tm_hour value is between 12 - 23, strptime() will subtract 12 hours and
update tm_hour.

Upon successful completion, strptime() returns a pointer to the character following the last
character parsed. Otherwise, a null pointer is returned.

Several “same as” formats, and the special processing of white-space characters are provided
in order to ease the use of identical format strings for strftime(3C) and strptime().

The strptime() function tries to calculate tm_year, tm_mon, and tm_mday when given
incomplete input. This allows the struct tm created by strptime() to be passed to
mktime(3C) to produce a time_t value for dates and times that are representable by a time_t.
As an example, since mktime() ignores tm_yday, strptime() calculates tm_mon and tm_mday

as well as filling in tm_yday when %j is specified without otherwise specifying a month and day
within month.

Return Values

Usage

strptime(3C)

man pages section 3: Basic Library Functions • Last Revised 21 Dec 2010938

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ctime(3C), getdate(3C), isspace(3C), mktime(3C), setlocale(3C), strftime(3C),
attributes(5), environ(5), standards(5)

Attributes

See Also

strptime(3C)

Basic Library Functions 939

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strsignal – get name of signal

#include <string.h>

char *strsignal(int sig);

The strsignal() function maps the signal number in sig to a string describing the signal and
returns a pointer to that string. It uses the same set of the messages as psignal(3C). The
returned string should not be overwritten.

The strsignal() function returns NULL if sig is not a valid signal number.

Messages returned from this function are in the native language specified by the LC_MESSAGES
locale category. See setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gettext(3C), psignal(3C), setlocale(3C), str2sig(3C), attributes(5)

Name

Synopsis

Description

Return Values

Usage

Attributes

See Also

strsignal(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 2005940

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

strtod, strtof, strtold, atof – convert string to floating-point number

#include <stdlib.h>

double strtod(const char *restrict nptr, char **restrict endptr);

float strtof(const char *restrict nptr, char **restrict endptr);

long double strtold(const char *restrict nptr, char **restrict endptr);

double atof(const char *str);

The strtod(), strtof(), and strtold() functions convert the initial portion of the string
pointed to by nptr to double, float, and long double representation, respectively. First they
decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by
isspace(3C))

2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN
3. A final string of one or more unrecognized characters, including the terminating null byte

of the input string.

Then they attempt to convert the subject sequence to a floating-point number, and return the
result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:
■ A non-empty sequence of digits optionally containing a radix character, then an optional

exponent part
■ A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix

character, then an optional binary exponent part
■ One of INF or INFINITY, ignoring case
■ One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:

n-char-sequence:

digit

nondigit

n-char-sequence digit

n-char-sequence nondigit

In default mode for strtod(), only decimal, INF/INFINITY, and
NAN/NAN(n-char-sequence) forms are recognized. In C99/SUSv3 mode, hexadecimal strings
are also recognized.

In default mode for strtod(), the n-char-sequence in the NAN(n-char-equence) form can
contain any character except ')' (right parenthesis) or '\0' (null). In C99/SUSv3 mode, the
n-char-sequence can contain only upper and lower case letters, digits, and '_' (underscore).

The strtof() and strtold() functions always function in C99/SUSv3-conformant mode.

Name

Synopsis

Description

strtod(3C)

Basic Library Functions 941

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first) is
interpreted as a floating constant of the C language, except that the radix character is used in
place of a period, and that if neither an exponent part nor a radix character appears in a
decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence
is interpreted as negated. A character sequence INF or INFINITY is interpreted as an infinity.
A character sequence NAN or NAN(n-char-sequenceopt) is interpreted as a quiet NaN. A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

If the subject sequence has either the decimal or hexadecimal form, the value resulting from
the conversion is rounded correctly according to the prevailing floating point rounding
direction mode. The conversion also raises floating point inexact, underflow, or overflow
exceptions as appropriate.

The radix character is defined in the program's locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character defaults to a
period ('.').

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

The strtod() function does not change the setting of errno if successful.

The atof(str) function call is equivalent to strtod(nptr, (char **)NULL).

Upon successful completion, these functions return the converted value. If no conversion
could be performed, 0 is returned.

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL is returned (according to the sign of the value), a floating point overflow
exception is raised, and errno is set to ERANGE.

If the correct value would cause an underflow, the correctly rounded result (which may be
normal, subnormal, or zero) is returned, a floating point underflow exception is raised, and
errno is set to ERANGE.

Return Values

strtod(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003942

These functions will fail if:

ERANGE The value to be returned would cause overflow or underflow

These functions may fail if:

EINVAL No conversion could be performed.

Since 0 is returned on error and is also a valid return on success, an application wishing to
check for error situations should set errno to 0, then call strtod(), strtof(), or strtold(),
then check errno.

The changes to strtod() introduced by the ISO/IEC 9899: 1999 standard can alter the
behavior of well-formed applications complying with the ISO/IEC 9899: 1990 standard and
thus earlier versions of IEEE Std 1003.1-200x. One such example would be:

int

what_kind_of_number (char *s)

{

char *endp;

double d;

long l;

d = strtod(s, &endp);

if (s != endp && *endp == ‘\\0’)
printf("It’s a float with value %g\n", d);

else

{

l = strtol(s, &endp, 0);

if (s != endp && *endp == ‘\0’)
printf("It’s an integer with value %ld\n", 1);

else

return 1;

}

return 0;

}

If the function is called with:

what_kind_of_number ("0x10")

an ISO/IEC 9899: 1990 standard-compliant library will result in the function printing:

It’s an integer with value 16

With the ISO/IEC 9899: 1999 standard, the result is:

It’s a float with value 16

The change in behavior is due to the inclusion of floating-point numbers in hexadecimal
notation without requiring that either a decimal point or the binary exponent be present.

Errors

Usage

strtod(3C)

Basic Library Functions 943

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

isspace(3C), localeconv(3C), scanf(3C), setlocale(3C), strtol(3C), attributes(5),
standards(5)

The strtod() and atof() functions can be used safely in multithreaded applications, as long
as setlocale(3C) is not called to change the locale.

The DESCRIPTION and RETURN VALUES sections above are very similar to the wording
used by the Single UNIX Specification version 2 (SUSv2) and the 1989 C Standard to describe
the behavior of the strtod() function. Since some users have reported that they find the
description confusing, the following notes might be helpful.

1. The strtod() function does not modify the string pointed to by str and does not malloc()
space to hold the decomposed portions of the input string.

2. If endptr is not (char **)NULL, strtod() will set the pointer pointed to by endptr to the
first byte of the “final string of unrecognized characters”. (If all input characters were
processed, the pointer pointed to by endptr will be set to point to the null character at the
end of the input string.)

3. If strtod() returns 0.0, one of the following occurred:
a. The “subject sequence” was not an empty string, but evaluated to 0.0. (In this case,

errno will be left unchanged.)
b. The “subject sequence” was an empty string . In this case, errno will be left unchanged.

(The Single UNIX Specification version 2 allows errno to be set to EINVAL or to be left
unchanged. The C Standard does not specify any specific behavior in this case.)

c. The “subject sequence” specified a numeric value whose conversion resulted in a
floating point underflow. In this case, an underflow exception is raised and errno is set
to ERANGE.

Note that the standards do not require that implementations distinguish between these
three cases. An application can determine case (b) by making sure that there are no leading
white-space characters in the string pointed to by str and giving strtod() an endptr that is
not (char **)NULL. If endptr points to the first character of str when strtod() returns,
you have detected case (b). Case (c) can be detected by examining the underflow flag or by
looking for a non-zero digit before the exponent part of the “subject sequence”. Note,
however, that the decimal-point character is locale-dependent.

Attributes

See Also

Notes

strtod(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003944

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

4. If strtod() returns +HUGE_VAL or −HUGE_VAL, one of the following occurred:
a. If +HUGE_VAL is returned and errno is set to ERANGE, a floating point overflow occurred

while processing a positive value, causing a floating point overflow exception to be
raised.

b. If −HUGE_VAL is returned and errno is set to ERANGE, a floating point overflow occurred
while processing a negative value, causing a floating point overflow exception to be
raised.

c. If strtod() does not set errno to ERANGE, the value specified by the “subject string”
converted to +HUGE_VAL or −HUGE_VAL, respectively.

Note that if errno is set to ERANGE when strtod() is called, case (c) can be distinguished
from cases (a) and (b) by examining either ERANGE or the overflow flag.

strtod(3C)

Basic Library Functions 945

strtoimax, strtoumax – convert string to integer type

#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtoumax(const char *restrict nptr,
char **restrict endptr, int base);

These functions are equivalent to the strtol(), strtoll(), strtoul(), and strtoull()

functions, except that the initial portion of the string is converted to intmax_t and uintmax_t

representation, respectively.

These functions return the converted value, if any.

If no conversion could be performed, 0 is returned.

If the correct value is outside the range of representable values, {INTMAX_MAX}, {INTMAX_MIN},
or {UINTMAX_MAX} is returned (according to the return type and sign of the value, if any), and
errno is set to ERANGE.

These functions will fail if:

ERANGE The value to be returned is not representable.

These functions may fail if:

EINVAL The value of base is not supported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

strtol(3C), strtoul(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

strtoimax(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003946

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strtol, strtoll, atol, atoll, atoi, lltostr, ulltostr – string conversion routines

#include <stdlib.h>

long strtol(const char *restrict str, char **restrict endptr, int base);

long long strtoll(const char *restrict str, char **restrict endptr,
int base);

long atol(const char *str);

long long atoll(const char *str);

int atoi(const char *str);

char *lltostr(long long value, char *endptr);

char *ulltostr(unsigned long long value, char *endptr);

The strtol() function converts the initial portion of the string pointed to by str to a type long
int representation.

The strtoll() function converts the initial portion of the string pointed to by str to a type
long long representation.

Both functions first decompose the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by isspace(3C)); a subject sequence
interpreted as an integer represented in some radix determined by the value of base; and a final
string of one or more unrecognized characters, including the terminating null byte of the
input string. They then attempt to convert the subject sequence to an integer and return the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant or hexadecimal constant, any of which may be preceded by a + or − sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally
preceded by a + or − sign. The letters from a (or A) to z (or Z) inclusive are ascribed the values
10 to 35; only letters whose ascribed values are less than that of base are permitted. If the value
of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence

Name

Synopsis

Description

strtol() and
strtoll()

strtol(3C)

Basic Library Functions 947

contains no characters if the input string is empty or consists entirely of white-space
characters, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the base
for conversion, ascribing to each letter its value as given above. If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence
forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of str is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

Except for behavior on error, atol() is equivalent to: strtol(str, (char **)NULL, 10).

Except for behavior on error, atoll() is equivalent to: strtoll(str, (char **)NULL, 10).

Except for behavior on error, atoi() is equivalent to: (int) strtol(str, (char **)NULL,
10).

If the value cannot be represented, the behavior is undefined.

The lltostr() function returns a pointer to the string represented by the long long value.
The endptr argument is assumed to point to the byte following a storage area into which the
decimal representation of value is to be placed as a string. The lltostr() function converts
value to decimal and produces the string, and returns a pointer to the beginning of the string.
No leading zeros are produced, and no terminating null is produced. The low-order digit of
the result always occupies memory position endptr−1. The behavior of lltostr() is
undefined if value is negative. A single zero digit is produced if value is 0.

The ulltostr() function is similar to lltostr() except that value is an unsigned long long.

Upon successful completion, strtol(), strtoll(), atol(), atoll(), and atoi() return the
converted value, if any. If no conversion could be performed, strtol() and strtoll() return
0 and errno may be set to EINVAL.

If the correct value is outside the range of representable values, strtol() returns LONG_MAX or
LONG_MIN and strtoll() returns LLONG_MAX or LLONG_MIN (according to the sign of the
value), and errno is set to ERANGE.

Upon successful completion, lltostr() and ulltostr() return a pointer to the converted
string.

atol(), atoll() and
atoi()

lltostr() and
ulltostr()

Return Values

strtol(3C)

man pages section 3: Basic Library Functions • Last Revised 6 May 2003948

The strtol() and strtoll() functions will fail if:

ERANGE The value to be returned is not representable.

The strtol() and strtoll() functions may fail if:

EINVAL The value of base is not supported.

Because 0, LONG_MIN, LONG_MAX, LLONG_MIN, and LLONG_MAX are returned on error and are also
valid returns on success, an application wishing to check for error situations should set errno
to 0, call the function, then check errno and if it is non-zero, assume an error has occurred.

The strtol() function no longer accepts values greater than LONG_MAX or LLONG_MAX as valid
input. Use strtoul(3C) instead.

Calls to atoi() and atol() might be faster than corresponding calls to strtol(), and calls to
atoll() might be faster than corresponding calls to strtoll(). However, applications should
not use the atoi(), atol(), or atoll() functions unless they know the value represented by
the argument will be in range for the corresponding result type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For strtol(), strtoll(), atol(), atoll(), and atoi(), see standards(5).

isalpha(3C), isspace(3C), scanf(3C), strtod(3C), strtoul(3C), attributes(5),
standards(5)

Errors

Usage

Attributes

See Also

strtol(3C)

Basic Library Functions 949

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strtoul, strtoull – convert string to unsigned long

#include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, int base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, int base);

The strtoul() function converts the initial portion of the string pointed to by str to a type
unsigned long int representation. First it decomposes the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as specified by isspace(3C)); a
subject sequence interpreted as an integer represented in some radix determined by the value
of base; and a final string of one or more unrecognised characters, including the terminating
null byte of the input string. Then it attempts to convert the subject sequence to an unsigned
integer, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant or hexadecimal constant, any of which may be preceded by a + or − sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally
preceded by a + or − sign. The letters from a (or A) to z (or Z) inclusive are ascribed the values
10 to 35; only letters whose ascribed values are less than that of base are permitted. If the value
of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white-space
characters, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the base
for conversion, ascribing to each letter its value as given above. If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence
forms may be accepted.

Name

Synopsis

Description

strtoul(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 2003950

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of str is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

The strtoull() function is identical to strtoul() except that it returns the value represented
by str as an unsigned long long.

Upon successful completion strtoul() returns the converted value, if any. If no conversion
could be performed, 0 is returned and errno may be set to EINVAL. If the correct value is
outside the range of representable values, ULONG_MAX is returned and errno is set to ERANGE.

The strtoul() function will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The strtoul() function may fail if:

EINVAL No conversion could be performed.

Because 0 and ULONG_MAX are returned on error and are also valid returns on success, an
application wishing to check for error situations should set errno to 0, then call strtoul(),
then check errno and if it is non-zero, assume an error has occurred.

Unlike strtod(3C) and strtol(3C), strtoul() must always return a non-negative number;
so, using the return value of strtoul() for out-of-range numbers with strtoul() could cause
more severe problems than just loss of precision if those numbers can ever be negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

isalpha(3C), isspace(3C), scanf(3C), strtod(3C), strtol(3C), attributes(5),
standards(5)

Return Values

Errors

Usage

Attributes

See Also

strtoul(3C)

Basic Library Functions 951

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

strtows, wstostr – code conversion for Process Code and File Code

#include <widec.h>

wchar_t *strtows(wchar_t *dst, char *src);

char *wstostr(char *dst, wchar_t *src);

The strtows() and wstostr() functions convert strings back and forth between File Code
representation and Process Code.

The strtows() function takes a character string src, converts it to a Process Code string,
terminated by a Process Code null, and places the result into dst.

The wstostr() function takes the Process Code string pointed to by src, converts it to a
character string, and places the result into dst.

The strtows() function returns the Process Code string if it completes successfully.
Otherwise, a null pointer will be returned and errno will be set to EILSEQ.

The wstostr() function returns the File Code string if it completes successfully. Otherwise, a
null pointer will be returned and errno will be set to EILSEQ.

wstring(3C)

Name

Synopsis

Description

Return Values

See Also

strtows(3C)

man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996952

strxfrm – string transformation

#include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2, size_t n);

The strxfrm() function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if strcmp(3C) is applied to two
transformed strings, it returns a value greater than, equal to or less than 0, corresponding to
the result of strcoll(3C) applied to the same two original strings. No more than n bytes are
placed into the resulting array pointed to by s1, including the terminating null byte. If n is 0, s1
is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

The strxfrm() function does not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strxfrm(), then check errno.

Upon successful completion, strxfrm() returns the length of the transformed string (not
including the terminating null byte). If the value returned is n or more, the contents of the
array pointed to by s1 are indeterminate.

On error, strxfrm() may set errno but no return value is reserved to indicate the error.

The transformation function is such that two transformed strings can be ordered by
strcmp(3C) as appropriate to collating sequence information in the program's locale (category
LC_COLLATE).

The fact that when n is 0, s1 is permitted to be a null pointer, is useful to determine the size of
the s1 array prior to making the transformation.

EXAMPLE 1 A sample of using the strxfm() function.

The value of the following expression is the size of the array needed to hold the transformation
of the string pointed to by s.

1 + strxfrm(NULL, s, 0);

/usr/lib/locale/locale/locale.so.* LC_COLLATE database for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Name

Synopsis

Description

Return Values

Usage

Examples

Files

Attributes

strxfrm(3C)

Basic Library Functions 953

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

The strxfrm() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

localedef(1), setlocale(3C), strcmp(3C), strcoll(3C), wscoll(3C), attributes(5),
environ(5), standards(5)

See Also

strxfrm(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Dec 2003954

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1localedef-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

swab – swap bytes

#include <unistd.h>

void swab(const void *restrict src, void *restrict dest,
ssize_t nbytes);

The swab() function copies nbytes bytes, which are pointed to by src, to the object pointed to
by dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd
swab() copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified.
If copying takes place between objects that overlap, the behavior is undefined. If nbytes is
negative, swab() does nothing.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Name

Synopsis

Description

Errors

Attributes

See Also

swab(3C)

Basic Library Functions 955

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sync_instruction_memory – make modified instructions executable

void sync_instruction_memory(caddr_t addr, int len);

The sync_instruction_memory() function performs whatever steps are required to make
instructions modified by a program executable.

Some processor architectures, including some SPARC processors, have separate and
independent instruction and data caches which are not kept consistent by hardware. For
example, if the instruction cache contains an instruction from some address and the program
then stores a new instruction at that address, the new instruction may not be immediately
visible to the instruction fetch mechanism. Software must explicitly invalidate the instruction
cache entries for new or changed mappings of pages that might contain executable
instructions. The sync_instruction_memory() function performs this function, and/or any
other functions needed to make modified instructions between addr and addr+len visible. A
program should call sync_instruction_memory() after modifying instructions and before
executing them.

On processors with unified caches (one cache for both instructions and data) and pipelines
which are flushed by a branch instruction, such as the x86 architecture, the function may do
nothing and just return.

The changes are immediately visible to the thread calling sync_instruction_memory() when
the call returns, even if the thread should migrate to another processor during or after the call.
The changes become visible to other threads in the same manner that stores do; that is, they
eventually become visible, but the latency is implementation-dependent.

The result of executing sync_instruction_memory() are unpredictable if addr through
addr+len-1 are not valid for the address space of the program making the call.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

sync_instruction_memory(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Feb 1997956

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sysconf – get configurable system variables

#include <unistd.h>

long sysconf(int name);

The sysconf() function provides a method for an application to determine the current value
of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following table lists the
minimal set of system variables from <limits.h> and <unistd.h> that can be returned by
sysconf() and the symbolic constants defined in <unistd.h> that are the corresponding
values used for name on the SPARC and x86 platforms.

Name Return Value Meaning

_SC_2_C_BIND _POSIX2_C_BIND Supports the C lang-

uage binding option

_SC_2_C_DEV _POSIX2_C_DEV Supports the C lang-

uage development

utilities option

_SC_2_C_VERSION _POSIX2_C_VERSION Integer value

indicates version

of ISO POSIX-2

standard (Commands)

_SC_2_CHAR_TERM _POSIX2_CHAR_TERM Supports at least

one terminal

_SC_2_FORT_DEV _POSIX2_FORT_DEV Supports FORTRAN

Development

Utilities Option

_SC_2_FORT_RUN _POSIX2_FORT_RUN Supports FORTRAN

Run-time Utilities

Option

_SC_2_LOCALEDEF _POSIX2_LOCALEDEF Supports creation

of locales by the

localedef utility

_SC_2_SW_DEV _POSIX2_SW_DEV Supports Software

Development Utility

Option

_SC_2_UPE _POSIX2_UPE Supports User

Portability

Utilities Option

_SC_2_VERSION _POSIX2_VERSION Integer value

indicates version

of ISO POSIX-2

standard (C language

binding)

_SC_AIO_LISTIO_MAX AIO_LISTIO_MAX Max number of I/O

operations in a

Name

Synopsis

Description

sysconf(3C)

Basic Library Functions 957

single list I/O call

supported

_SC_AIO_MAX AIO_MAX Max number of

outstanding

asynchronous I/O

operations supported

_SC_AIO_PRIO_DELTA_MAX AIO_PRIO_DELTA_MAX Max amount by which

process can decrease

its asynchronous

I/O priority level

from its own

scheduling priority

_SC_ARG_MAX ARG_MAX Max size of argv[]

plus envp[]

_SC_ASYNCHRONOUS_IO _POSIX_ASYNCHRONOUS_IO Supports

Asynchronous I/O

_SC_ATEXIT_MAX ATEXIT_MAX Max number of

functions that can

be registered with

atexit()

_SC_AVPHYS_PAGES Number of physical

memory pages not

currently in use by

system

_SC_BARRIERS _POSIX_BARRIERS Supports Barriers

option

_SC_BC_BASE_MAX BC_BASE_MAX Maximum obase values

allowed by bc

_SC_BC_DIM_MAX BC_DIM_MAX Max number of

elements permitted

in array by bc

_SC_BC_SCALE_MAX BC_SCALE_MAX Max scale value

allowed by bc

_SC_BC_STRING_MAX BC_STRING_MAX Max length of string

constant allowed by

bc

_SC_CHILD_MAX CHILD_MAX Max processes

allowed to a UID

_SC_CLK_TCK CLK_TCK Ticks per second

(clock_t)

_SC_CLOCK_SELECTION _POSIX_CLOCK_SELECTION Supports Clock

Selection option

_SC_COLL_WEIGHTS_MAX COLL_WEIGHTS_MAX Max number of

weights that can be

assigned to entry of

the LC_COLLATE order

keyword in locale

definition file

sysconf(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Mar 2008958

_SC_CPUID_MAX Max possible

processor ID

_SC_DELAYTIMER_MAX DELAYTIMER_MAX Max number of timer

expiration overruns

_SC_EXPR_NEST_MAX EXPR_NEST_MAX Max number of

parentheses by expr

_SC_FSYNC _POSIX_FSYNC Supports File

Synchronization

_SC_GETGR_R_SIZE_MAX Max size of group

entry buffer

_SC_GETPW_R_SIZE_MAX Max size of password

entry buffer

_SC_HOST_NAME_MAX _POSIX_HOST_NAME_MAX Maximum length of a

host name (excluding

terminating null)

_SC_IOV_MAX IOV_MAX Max number of iovec

structures available

to one process for

use with readv()

and writev()

_SC_JOB_CONTROL _POSIX_JOB_CONTROL Job control

supported?

_SC_LINE_MAX LINE_MAX Max length of input

line

_SC_LOGIN_NAME_MAX LOGNAME_MAX + 1 Max length of login

name

_SC_LOGNAME_MAX LOGNAME_MAX

_SC_MAPPED_FILES _POSIX_MAPPED_FILES Supports Memory

Mapped Files

_SC_MAXPID Max pid value

_SC_MEMLOCK _POSIX_MEMLOCK Supports Process

Memory Locking

_SC_MEMLOCK_RANGE _POSIX_MEMLOCK_RANGE Supports Range

Memory Locking

_SC_MEMORY_PROTECTION _POSIX_MEMORY_PROTECTION Supports Memory

Protection

_SC_MESSAGE_PASSING _POSIX_MESSAGE_PASSING Supports Message

Passing

_SC_MONOTONIC_CLOCK _POSIX_MONOTONIC_CLOCK Supports Monotonic

Clock option

_SC_MQ_OPEN_MAX MQ_OPEN_MAX Max number of open

message queues a

process can hold

_SC_MQ_PRIO_MAX MQ_PRIO_MAX Max number of

message priorities

supported

_SC_NGROUPS_MAX NGROUPS_MAX Max simultaneous

groups to which

sysconf(3C)

Basic Library Functions 959

one can belong

_SC_NPROCESSORS_CONF Number of processors

configured

_SC_NPROCESSORS_MAX Max number of

processors supported

by platform

_SC_NPROCESSORS_ONLN Number of processors

online

_SC_OPEN_MAX OPEN_MAX Max open files per

process

_SC_PAGESIZE PAGESIZE System memory page

size

_SC_PAGE_SIZE PAGESIZE Same as _SC_PAGESIZE

_SC_PASS_MAX PASS_MAX Max number of

significant bytes

in a password

_SC_PHYS_PAGES Total number of

pages of physical

memory in system

_SC_PRIORITIZED_IO _POSIX_PRIORITIZED_IO Supports Prioritized

I/O

_SC_PRIORITY_SCHEDULING _POSIX_PRIORITY_SCHEDULING Supports Process

Scheduling

_SC_RAW_SOCKETS _POSIX_RAW_SOCKETS Supports Raw Sockets

option

_SC_RE_DUP_MAX RE_DUP_MAX Max number of

repeated occurrences

of a regular

expression permitted

when using interval

notation \{m,n\}

_SC_READER_WRITER_LOCKS _POSIX_READER_WRITER_LOCKS Supports IPV6 option

_SC_REALTIME_SIGNALS _POSIX_REALTIME_SIGNALS Supports Realtime

Signals

_SC_REGEXP _POSIX_REGEXP Supports Regular

Expression Handling

option

_SC_RTSIG_MAX RTSIG_MAX Max number of

realtime signals

reserved for

application use

_SC_SAVED_IDS _POSIX_SAVED_IDS Saved IDs

(seteuid())

supported?

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Max number of POSIX

semaphores a process

can have

_SC_SEM_VALUE_MAX SEM_VALUE_MAX Max value a POSIX

sysconf(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Mar 2008960

semaphore can have

_SC_SEMAPHORES _POSIX_SEMAPHORES Supports Semaphores

_SC_SHARED_MEMORY_ _POSIX_SHARED_MEMORY_ Supports Shared

OBJECTS OBJECTS Memory Objects

_SC_SHELL _POSIX_SHELL Supports POSIX shell

_SC_SIGQUEUE_MAX SIGQUEUE_MAX Max number of queued

signals that a

process can send and

have pending at

receiver(s) at a

time

_SC_SPAWN _POSIX_SPAWN Supports Spawn option

_SC_SPIN_LOCKS _POSIX_SPIN_LOCKS Supports Spin Locks

option

_SC_STACK_PROT Default stack

protection

_SC_STREAM_MAX STREAM_MAX Number of streams

one process can

have open at a time

_SC_SYMLOOP_MAX _POSIX_SYMLOOP_MAX Max number of symbolic

links that can be

reliably traversed in

the resolution of a

pathname in the absence

of a loop

_SC_SYNCHRONIZED_IO _POSIX_SYNCHRONIZED_IO Supports

Synchronized I/O

_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports Thread

STACKADDR STACKADDR Stack Address

Attribute option

_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports Thread

STACKSIZE STACKSIZE Stack Size

Attribute option

_SC_THREAD_DESTRUCTOR_ PTHREAD_DESTRUCTOR_ Number attempts made

ITERATIONS ITERATIONS to destroy thread-

specific data on

thread exit

_SC_THREAD_KEYS_MAX PTHREAD_KEYS_MAX Max number of data

keys per process

_SC_THREAD_PRIO_ _POSIX_THREAD_PRIO_ Supports Priority

INHERIT INHERIT Inheritance option

_SC_THREAD_PRIO_ _POSIX_THREAD_PRIO_ Supports Priority

PROTECT PROTECT Protection option

_SC_THREAD_PRIORITY_ _POSIX_THREAD_PRIORITY_ Supports Thread

SCHEDULING SCHEDULING Execution

Scheduling option

_SC_THREAD_PROCESS_ _POSIX_THREAD_PROCESS_ Supports

SHARED SHARED Process-Shared

sysconf(3C)

Basic Library Functions 961

Synchronization

option

_SC_THREAD_SAFE_ _POSIX_THREAD_SAFE_ Supports Thread-Safe

FUNCTIONS FUNCTIONS Functions option

_SC_THREAD_STACK_MIN PTHREAD_STACK_MIN Min byte size of

thread stack storage

_SC_THREAD_THREADS_MAX PTHREAD_THREADS_MAX Max number of

threads per process

_SC_THREADS _POSIX_THREADS Supports Threads

option

_SC_TIMEOUTS _POSIX_TIMEOUTS Supports Timeouts

option

_SC_TIMER_MAX TIMER_MAX Max number of timer

per process

supported

_SC_TIMERS _POSIX_TIMERS Supports Timers

_SC_TTY_NAME_MAX TTYNAME_MAX Max length of tty

device name

_SC_TZNAME_MAX TZNAME_MAX Max number of bytes

supported for name

of a time zone

_SC_V6_ILP32_OFF32 _POSIX_V6_ILP32_OFF32 Supports X/Open

ILP32 w/32-bit

offset build

environment

_SC_V6_ILP32_OFFBIG _POSIX_V6_ILP32_OFFBIG Supports X/Open

ILP32 w/64-bit

offset build

environment

_SC_V6_LP64_OFF64 _POSIX_V6_LP64_OFF64 Supports X/Open

LP64 w/64-bit

offset build

environment

_SC_V6_LPBIG_OFFBIG _POSIX_V6_LPBIG_OFFBIG Same as

_SC_V6_LP64_OFF64

_SC_VERSION _POSIX_VERSION POSIX.1 version

supported

_SC_XBS5_ILP32_OFF32 _XBS_ILP32_OFF32 Indicates support

for X/Open ILP32

w/32-bit offset

build environment

_SC_XBS5_ILP32_OFFBIG _XBS5_ILP32_OFFBIG Indicates support

for X/Open ILP32

w/64-bit offset

build environment

_SC_XBS5_LP64_OFF64 _XBS5_LP64_OFF64 Indicates support of

X/Open LP64,

64-bit offset

sysconf(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Mar 2008962

build environment

_SC_XBS5_LPBIG_OFFBIG _XBS5_LP64_OFF64 Same as

_SC_XBS5_LP64_OFF64

_SC_XOPEN_CRYPT _XOPEN_CRYPT Supports X/Open

Encryption Feature

Group

_SC_XOPEN_ENH_I18N _XOPEN_ENH_I18N Supports X/Open

Enhanced

Internationalization

Feature Group

_SC_XOPEN_LEGACY _XOPEN_LEGACY Supports X/Open

Legacy Feature Group

_SC_XOPEN_REALTIME _XOPEN_REALTIME Supports X/Open

POSIX Realtime

Feature Group

_SC_XOPEN_REALTIME_ _XOPEN_REALTIME_THREADS Supports X/Open

THREADS POSIX Realtime

Threads Feature

Group

_SC_XOPEN_SHM _XOPEN_SHM Supports X/Open

Shared Memory

Feature Group

_SC_XOPEN_STREAMS _POSIX_XOPEN_STREAMS Supports XSI Streams

option group

_SC_XOPEN_UNIX _XOPEN_UNIX Supports X/Open CAE

Specification,

August 1994, System

Interfaces and

Headers, Issue 4,

Version 2

_SC_XOPEN_VERSION _XOPEN_VERSION Integer value

indicates version of

X/Open Portability

Guide to which

implementation

conforms

_SC_XOPEN_XCU_VERSION _XOPEN_XCU_VERSION Integer value

indicates version of

XCU specification to

which implementation

conforms

The following options are not supported and return −1:

_SC_2_PBS _POSIX2_PBS

_SC_2_PBS_ACCOUNTING _POSIX2_PBS_ACCOUNTING

sysconf(3C)

Basic Library Functions 963

_SC_2_PBS_CHECKPOINT _POSIX2_PBS_CHECKPOINT

_SC_2_PBS_LOCATE _POSIX2_PBS_LOCATE

_SC_2_PBS_MESSAGE _POSIX2_PBS_MESSAGE

_SC_2_PBS_TRACK _POSIX2_PBS_TRACK

_SC_ADVISORY_INFO _POSIX_ADVISORY_INFO

_SC_CPUTIME _POSIX_CPUTIME

_SC_SPORADIC_SERVER _POSIX_SPORADIC_SERVER

_SC_SS_REPL_MAX _POSIX_SS_REPL_MAX

_SC_THREAD_CPUTIME _POSIX_THREAD_CPUTIME

_SC_THREAD_SPORADIC_SERVER _POSIX_THREAD_SPORADIC_SERVER

_SC_TRACE _POSIX_TRACE

_SC_TRACE_EVENT_FILTER _POSIX_TRACE_EVENT_FILTER

_SC_TRACE_EVENT_NAME_MAX _POSIX_TRACE_EVENT_NAME_MAX

_SC_TRACE_INHERIT _POSIX_TRACE_INHERIT

_SC_TRACE_LOG _POSIX_TRACE_LOG

_SC_TRACE_NAME_MAX _POSIX_TRACE_NAME_MAX

_SC_TRACE_SYS_MAX _POSIX_TRACE_SYS_MAX

_SC_TRACE_USER_EVENT_MAX _POSIX_TRACE_USER_EVENT_MAX

_SC_TYPED_MEMORY_OBJECTS _POSIX_TYPED_MEMORY_OBJECTS

Upon successful completion, sysconf() returns the current variable value on the system. The
value returned will not be more restrictive than the corresponding value described to the
application when it was compiled with the implementation's <limits.h>, <unistd.h> or
<time.h>. With only a few obvious exceptions such as _SC_AVPHYS_PAGES and
_SC_NPROCESSORS_ONLN, the value will not change during the lifetime of the calling process.

If name is an invalid value, sysconf() returns −1 and sets errno to indicate the error. If the
variable corresponding to name is associated with functionality that is not supported by the
system, sysconf() returns −1 without changing the value of errno.

Calling sysconf() with the following returns −1 without setting errno, because no maximum
limit can be determined. The system supports at least the minimum values and can support
higher values depending upon system resources.

Variable Minimum supported value

_SC_AIO_MAX _POSIX_AIO_MAX

_SC_ATEXIT_MAX 32

Return Values

sysconf(3C)

man pages section 3: Basic Library Functions • Last Revised 26 Mar 2008964

_SC_MQ_OPEN_MAX 32

_SC_THREAD_THREADS_MAX _POSIX_THREAD_THREADS_MAX

_SC_THREAD_KEYS_MAX _POSIX_THREAD_KEYS_MAX

_SC_THREAD_DESTRUCTOR_ITERATIONS _POSIX_THREAD_DESTRUCTOR_ITERATIONS

The following SPARC and x86 platform variables return EINVAL:

_SC_COHER_BLKSZ _SC_DCACHE_ASSOC

_SC_DCACHE_BLKSZ _SC_DCACHE_LINESZ

_SC_DCACHE_SZ _SC_DCACHE_TBLKSZ

_SC_ICACHE_ASSOC _SC_ICACHE_BLKSZ

_SC_ICACHE_LINESZ _SC_ICACHE_SZ

_SC_SPLIT_CACHE

The sysconf() function will fail if:

EINVAL The value of the name argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC and x86

Interface Stability Committed

MT-Level MT-Safe, Async-Signal-Safe

Standard See standards(5).

pooladm(1M), zoneadm(1M), fpathconf(2), seteuid(2), setrlimit(2), confstr(3C),
attributes(5), standards(5)

A call to setrlimit() can cause the value of OPEN_MAX to change.

Multiplying sysconf(_SC_PHYS_PAGES) or sysconf(_SC_AVPHYS_PAGES) by
sysconf(_SC_PAGESIZE) to determine memory amount in bytes can exceed the maximum
values representable in a 32–bit signed or unsigned integer.

The value of CLK_TCK can be variable and it should not be assumed that CLK_TCK is a
compile-time constant.

If the caller is in a non-global zone and the pools facility is active,
sysconf(_SC_NPROCESSORS_CONF) and sysconf(_SC_NPROCESSORS_ONLN) return the number
of processors in the processor set of the pool to which the zone is bound.

Errors

Attributes

See Also

Notes

sysconf(3C)

Basic Library Functions 965

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pooladm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zoneadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fpathconf-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1seteuid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

syslog, openlog, closelog, setlogmask – control system log

#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

void syslog(int priority, const char *message, .../* arguments */);

void closelog(void);

int setlogmask(int maskpri);

The syslog() function sends a message to syslogd(1M), which, depending on the
configuration of /etc/syslog.conf, logs it in an appropriate system log, writes it to the
system console, forwards it to a list of users, or forwards it to syslogd on another host over the
network. The logged message includes a message header and a message body. The message
header consists of a facility indicator, a severity level indicator, a timestamp, a tag string, and
optionally the process ID.

The message body is generated from the message and following arguments in the same
manner as if these were arguments to printf(3C), except that occurrences of %m in the format
string pointed to by the message argument are replaced by the error message string associated
with the current value of errno. A trailing NEWLINE character is added if needed.

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
defined in the <syslog.h> header.

Values of the priority argument are formed by ORing together a severity level value and an
optional facility value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include, in decreasing order:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted
system database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible
facility values include:

Name

Synopsis

Description

syslog(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Aug 2011966

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m

LOG_KERN Messages generated by the kernel. These cannot be generated by any user
processes.

LOG_USER Messages generated by random user processes. This is the default facility
identifier if none is specified.

LOG_MAIL The mail system.

LOG_DAEMON System daemons.

LOG_AUTH The authentication / security / authorization system: login(1), su(1M),
getty(1M).

LOG_NEWS Designated for the USENET network news system.

LOG_UUCP Designated for the UUCP system; it does not currently use syslog().

LOG_CRON The cron/at facility; crontab(1), at(1), cron(1M).

LOG_AUDIT The audit facility, for example, auditd(1M).

LOG_LOCAL0 Designated for local use.

LOG_LOCAL1 Designated for local use.

LOG_LOCAL2 Designated for local use.

LOG_LOCAL3 Designated for local use.

LOG_LOCAL4 Designated for local use.

LOG_LOCAL5 Designated for local use.

LOG_LOCAL6 Designated for local use.

LOG_LOCAL7 Designated for local use.

The openlog() function sets process attributes that affect subsequent calls to syslog(). The
ident argument is a string that is prepended to every message. The openlog() function uses
the passed-in ident argument directly, rather than making a private copy of it. The logopt
argument indicates logging options. Values for logopt are constructed by a bitwise-inclusive
OR of zero or more of the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
daemon processes (for daemons that fork).

LOG_CONS Write messages to the system console if they cannot be sent to syslogd(1M).
This option is safe to use in daemon processes that have no controlling
terminal, since syslog() forks before opening the console.

LOG_NDELAY Open the connection to syslogd(1M) immediately. Normally the open is
delayed until the first message is logged. This is useful for programs that need
to manage the order in which file descriptors are allocated.

syslog(3C)

Basic Library Functions 967

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1su-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getty-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crontab-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1at-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cron-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auditd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that have been forked to log messages onto
the console. This option should be used by processes that enable notification
of child termination using SIGCHLD, since syslog() may otherwise block
waiting for a child whose exit status has already been collected.

The facility argument encodes a default facility to be assigned to all messages that do not have
an explicit facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not necessary to call
openlog() prior to calling syslog().

The closelog() function closes any open file descriptors allocated by previous calls to
openlog() or syslog().

The setlogmask() function sets the log priority mask for the current process to maskpri and
returns the previous mask. If the maskpri argument is 0, the current log mask is not modified.
Calls by the current process to syslog() with a priority not set in maskpri are rejected. The
mask for an individual priority pri is calculated by the macro LOG_MASK(pri); the mask for all
priorities up to and including toppri is given by the macro LOG_UPTO(toppri). The default log
mask allows all priorities to be logged.

The setlogmask() function returns the previous log priority mask. The closelog(),
openlog() and syslog() functions return no value.

No errors are defined.

EXAMPLE 1 Example of LOG_ALERTmessage.

This call logs a message at priority LOG_ALERT:

syslog(LOG_ALERT, "who: internal error 23");

The FTP daemon ftpd would make this call to openlog() to indicate that all messages it logs
should have an identifying string of ftpd, should be treated by syslogd(1M) as other
messages from system daemons are, should include the process ID of the process logging the
message:

openlog("ftpd", LOG_PID, LOG_DAEMON);

Then it would make the following call to setlogmask() to indicate that messages at priorities
from LOG_EMERG through LOG_ERR should be logged, but that no messages at any other priority
should be logged:

setlogmask(LOG_UPTO(LOG_ERR));

Then, to log a message at priority LOG_INFO, it would make the following call to syslog:

Return Values

Errors

Examples

syslog(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Aug 2011968

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m

EXAMPLE 1 Example of LOG_ALERTmessage. (Continued)

syslog(LOG_INFO, "Connection from host %d", CallingHost);

A locally-written utility could use the following call to syslog() to log a message at priority
LOG_INFO to be treated by syslogd(1M) as other messages to the facility LOG_LOCAL2 are:

syslog(LOG_INFO|LOG_LOCAL2, "error: %m");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

at(1), crontab(1), logger(1), login(1), auditd(1M), cron(1M), getty(1M), su(1M),
syslogd(1M), printf(3C), syslog.conf(4), attributes(5), standards(5)

Attributes

See Also

syslog(3C)

Basic Library Functions 969

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1at-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1crontab-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1logger-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1login-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1auditd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cron-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getty-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1su-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

system – issue a shell command

#include <stdlib.h>

int system(const char *string);

The system() function causes string to be given to the shell as input, as if string had been typed
as a command at a terminal. The invoker waits until the shell has completed, then returns the
exit status of the shell in the format specified by waitpid(3C).

If string is a null pointer, system() checks if the shell exists and is executable. If the shell is
available, system() returns a non-zero value; otherwise, it returns 0. The standard to which
the caller conforms determines which shell is used. See standards(5).

The system() function sets the SIGINT and SIGQUIT signals to be ignored, and blocks the
SIGCHLD signal for the calling thread, while waiting for the command to terminate. The
system() function does not affect the termination status of any child of the calling processes
other than the process it creates.

The termination status of the process created by the system() function is not affected by the
actions of other threads in the calling process (it is invisible to wait(3C)) or by the disposition
of the SIGCHLD signal in the calling process, even if it is set to be ignored. No SIGCHLD signal is
sent to the process containing the calling thread when the command terminates.

The system() function executes posix_spawn(3C) to create a child process running the shell
that in turn executes the commands in string. If posix_spawn() fails, system() returns −1 and
sets errno to indicate the error; otherwise the exit status of the shell is returned.

The system() function may set errno values as described by fork(2), in particular:

EAGAIN A resource control or limit on the total number of processes, tasks or LWPs under
execution by a single user, task, project, or zone has been exceeded, or the total
amount of system memory available is temporarily insufficient to duplicate this
process.

ENOMEM There is not enough swap space.

EPERM The {PRIV_PROC_FORK} privilege is not asserted in the effective set of the calling
process.

The system() function manipulates the signal handlers for SIGINT and SIGQUIT. It is
therefore not safe to call system() in a multithreaded process, since some other thread that
manipulates these signal handlers and a thread that concurrently calls system() can interfere
with each other in a destructive manner. If, however, no such other thread is active, system()
can safely be called concurrently from multiple threads. See popen(3C) for an alternative to
system() that is thread-safe.

Name

Synopsis

Description

Return Values

Errors

Usage

system(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Dec 2006970

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Unsafe

Standard See standards(5).

ksh(1), sh(1), popen(3C), posix_spawn(3C), wait(3C), waitpid(3C), attributes(5),
standards(5)

Attributes

See Also

system(3C)

Basic Library Functions 971

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ksh-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sh-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

tcdrain – wait for transmission of output

#include <termios.h>

int tcdrain(int fildes);

The tcdrain() function waits until all output written to the object referred to by fildes is
transmitted. The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process
group on a fildes associated with its controlling terminal, will cause the process group to be
sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the
process is allowed to perform the operation, and no signal is sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcdrain() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal interrupted tcdrain().

ENOTTY The file associated with fildes is not a terminal.

The tcdrain() function may fail if:

EIO The process group of the writing process is orphaned, and the writing process is not
ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

tcflush(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcdrain(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002972

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcflow – suspend or restart the transmission or reception of data

#include <termios.h>

int tcflow(int fildes, int action);

The tcflow() function suspends transmission or reception of data on the object referred to by
fildes, depending on the value of action. The fildes argument is an open file descriptor
associated with a terminal.

■ If action is TCOOFF, output is suspended.
■ If action is TCOON, suspended output is restarted.
■ If action is TCIOFF, the system transmits a STOP character, which is intended to cause the

terminal device to stop transmitting data to the system.
■ If action is TCION, the system transmits a START character, which is intended to cause the

terminal device to start transmitting data to the system.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, will cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcflow() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The action argument is not a supported value.

ENOTTY The file associated with fildes is not a terminal.

The tcflow() function may fail if:

EIO The process group of the writing process is orphaned, and the writing process is not
ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

tcflow(3C)

Basic Library Functions 973

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

tcsendbreak(3C), attributes(5), standards(5), termio(7I)See Also

tcflow(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002974

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcflush – flush non-transmitted output data, non-read input data or both

#include <termios.h>

int tcflush(int fildes, int queue_selector);

Upon successful completion, tcflush() discards data written to the object referred to by
fildes (an open file descriptor associated with a terminal) but not transmitted, or data received
but not read, depending on the value of queue_selector:

■ If queue_selector is TCIFLUSH it flushes data received but not read.
■ If queue_selector is TCOFLUSH it flushes data written but not transmitted.
■ If queue_selector is TCIOFLUSH it flushes both data received but not read and data written

but not transmitted.

Attempts to use tcflush() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, will cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcflush() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The queue_selector argument is not a supported value.

ENOTTY The file associated with fildes is not a terminal.

The tcflush() function may fail if:

EIO The process group of the writing process is orphaned, and the writing process is not
ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

tcdrain(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcflush(3C)

Basic Library Functions 975

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcgetattr – get the parameters associated with the terminal

#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

The tcgetattr() function gets the parameters associated with the terminal referred to by
fildes and stores them in the termios structure (see termio(7I)) referenced by termios_p. The
fildes argument is an open file descriptor associated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates stored in
the termios structure returned by tcgetattr() reflect the actual baud rates, even if they are
equal. If differing baud rates are not supported, the rate returned as the output baud rate is the
actual baud rate. If the terminal device does not support split baud rates, the input baud rate
stored in the termios structure will be 0.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcgetattr() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

tcsetattr(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcgetattr(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002976

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcgetpgrp – get foreground process group ID

#include <sys/types.h>

#include <unistd.h>

pid_t tcgetpgrp(int fildes);

The tcgetpgrp() function will return the value of the process group ID of the foreground
process group associated with the terminal.

If there is no foreground process group, tcgetpgrp() returns a value greater than 1 that does
not match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background
process group; however, the information may be subsequently changed by a process that is a
member of a foreground process group.

Upon successful completion, tcgetpgrp() returns the value of the process group ID of the
foreground process associated with the terminal. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcgetpgrp() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

setpgid(2), setsid(2), tcsetpgrp(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcgetpgrp(3C)

Basic Library Functions 977

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setpgid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setsid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcgetsid – get process group ID for session leader for controlling terminal

#include <termios.h>

pid_t tcgetsid(int fildes);

The tcgetsid() function obtains the process group ID of the session for which the terminal
specified by fildes is the controlling terminal.

Upon successful completion, tcgetsid() returns the process group ID associated with the
terminal. Otherwise, a value of (pid_t)−1 is returned and errno is set to indicate the error.

The tcgetsid() function will fail if:

EACCES The fildes argument is not associated with a controlling terminal.

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcgetsid(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002978

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcsendbreak – send a ‘‘break'' for a specific duration

#include <termios.h>

int tcsendbreak(int fildes, int duration);

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is using asynchronous serial data transmission, tcsendbreak() will cause
transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0,
it will cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it behaves in a way similar to tcdrain(3C).

If the terminal is not using asynchronous serial data transmission, it sends data to generate a
break condition or returns without taking any action.

Attempts to use tcsendbreak() from a process which is a member of a background process
group on a fildes associated with its controlling terminal will cause the process group to be sent
a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcsendbreak() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

The tcsendbreak() function may fail if:

EIO The process group of the writing process is orphaned, and the writing process is not
ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

tcdrain(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcsendbreak(3C)

Basic Library Functions 979

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcsetattr – set the parameters associated with the terminal

#include <termios.h>

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

The tcsetattr() function sets the parameters associated with the terminal referred to by the
open file descriptor fildes (an open file descriptor associated with a terminal) from the
termios structure (see termio(7I)) referenced by termios_p as follows:
■ If optional_actions is TCSANOW, the change will occur immediately.
■ If optional_actions is TCSADRAIN, the change will occur after all output written to fildes is

transmitted. This function should be used when changing parameters that affect output.
■ If optional_actions is TCSAFLUSH, the change will occur after all output written to fildes is

transmitted, and all input so far received but not read will be discarded before the change is
made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero
baud rate, B0, the modem control lines will no longer be asserted. Normally, this will
disconnect the line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input
baud rate given to the hardware will be the same as the output baud rate stored in the termios
structure.

The tcsetattr() function will return successfully if it was able to perform any of the
requested actions, even if some of the requested actions could not be performed. It will set all
the attributes that implementation supports as requested and leave all the attributes not
supported by the implementation unchanged. If no part of the request can be honoured, it will
return −1 and set errno to EINVAL. If the input and output baud rates differ and are a
combination that is not supported, neither baud rate is changed. A subsequent call to
tcgetattr(3C) will return the actual state of the terminal device (reflecting both the changes
made and not made in the previous tcsetattr() call). The tcsetattr() function will not
change the values in the termios structure whether or not it actually accepts them.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by
termios_p was not derived from the result of a call to tcgetattr(3C) on fildes; an application
should modify only fields and flags defined by this document between the call to
tcgetattr(3C) and tcsetattr(), leaving all other fields and flags unmodified.

No actions defined by this document, other than a call to tcsetattr() or a close of the last file
descriptor in the system associated with this terminal device, will cause any of the terminal
attributes defined by this document to change.

Attempts to use tcsetattr() from a process which is a member of a background process
group on a fildes associated with its controlling terminal, will cause the process group to be

Name

Synopsis

Description

tcsetattr(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002980

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the
process is allowed to perform the operation, and no signal is sent.

If trying to change baud rates, applications should call tcsetattr() then call tcgetattr(3C)
in order to determine what baud rates were actually selected.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcsetattr() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal interrupted tcsettattr().

EINVAL The optional_actions argument is not a supported value, or an attempt was made
to change an attribute represented in the termios structure to an unsupported
value.

ENOTTY The file associated with fildes is not a terminal.

The tcsetattr() function may fail if:

EIO The process group of the writing process is orphaned, and the writing process is not
ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

cfgetispeed(3C), tcgetattr(3C), attributes(5), standards(5), termio(7I)

Usage

Return Values

Errors

Attributes

See Also

tcsetattr(3C)

Basic Library Functions 981

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

tcsetpgrp – set foreground process group ID

#include <sys/types.h>

#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

If the process has a controlling terminal, tcsetpgrp() will set the foreground process group
ID associated with the terminal to pgid_id. The file associated with fildes must be the
controlling terminal of the calling process and the controlling terminal must be currently
associated with the session of the calling process. The value of pgid_id must match a process
group ID of a process in the same session as the calling process.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The tcsetpgrp() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL This implementation does not support the value in the pgid_id argument.

ENOTTY The calling process does not have a controlling terminal, or the file is not the
controlling terminal, or the controlling terminal is no longer associated with the
session of the calling process.

EIO The process is not ignoring or holding SIGTTOU and is a member of an orphaned
process group.

EPERM The value of pgid_id does not match the process group ID of a process in the same
session as the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe, and Async-Signal-Safe

Standard See standards(5).

tcgetpgrp(3C), attributes(5), standards(5), termio(7I)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tcsetpgrp(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 2002982

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

td_init – performs initialization for libc_db library of interfaces

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_init();

The td_init() function is the global initialization function for the libc_db() library of
interfaces. It must be called exactly once by any process using the libc_db() library before any
other libc_db() function can be called.

TD_OK The libc_db() library of interfaces successfully initialized.

TD_ERR Initialization failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_init(3C_DB)

Basic Library Functions 983

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_log – placeholder for future logging functionality

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

void td_log(void);

This function presently does nothing. It is merely a placeholder for future logging
functionality in libc_db(3LIB).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), attributes(5), threads(5)

Name

Synopsis

Description

Attributes

See Also

td_log(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 1998984

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

td_sync_get_info, td_ta_sync_tracking_enable, td_sync_get_stats, td_sync_setstate,
td_sync_waiters – operations on a synchronization object in libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_sync_get_info(const td_synchandle_t *sh_p, td_syncinfo_t *si_p);

td_err_e td_ta_sync_tracking_enable(const td_thragent_t *ta_p, int on_off);

td_err_e td_sync_get_stats(const td_synchandle_t *sh_p, td_syncstats_t *ss_p);

td_err_e td_sync_setstate(const td_synchandle_t *sh_p);

typedef int td_thr_iter_f(const td_thrhandle_t *th_p, void *cb_data_p);

td_err_e td_sync_waiters(const td_synchandle_t *sh_p, td_thr_iter_f *cb,
void *cb_data_p);

Synchronization objects include mutexes, condition variables, semaphores, and reader-writer
locks. In the same way that thread operations use a thread handle of type td_thrhandle_t,
operations on synchronization objects use a synchronization object handle of type
td_synchandle_t.

The controlling process obtains synchronization object handles either by calling the function
td_ta_sync_iter() to obtain handles for all synchronization objects of the target process
that are known to the libc_db library of interfaces, or by mapping the address of a
synchronization object in the address space of the target process to a handle by calling
td_ta_map_addr2sync(3C_DB).

Not all synchronization objects that a process uses can be known to the libc_db library and
returned by td_ta_sync_iter(3C_DB). A synchronization object is known to libc_db only if
it has been the target of a synchronization primitive in the process (such as mutex_lock(),
described on the mutex_init(3C) manual page) after td_ta_new(3C_DB) has been called to
attach to the process and td_ta_sync_tracking_enable() has been called to enable
synchronization object tracking.

The td_ta_sync_tracking_enable() function turns synchronization object tracking on or
off for the process identified by ta_p, depending on whether on_off is 0 (off) or non-zero (on).

The td_sync_get_info() function fills in the td_syncinfo_t structure *si_p with values for
the synchronization object identified by sh_p. The td_syncinfo_t structure contains the
following fields:

td_thragent_t *si_ta_p The internal process handle identifying the target process
through which this synchronization object handle was
obtained. Synchronization objects may be process-private or
process-shared. In the latter case, the same synchronization
object may have multiple handles, one for each target process's
"view" of the synchronization object.

Name

Synopsis

Description

td_sync_get_info(3C_DB)

Basic Library Functions 985

psaddr_t si_sv_addr The address of the synchronization object in this target
process's address space.

td_sync_type_e si_type The type of the synchronization variable: mutex, condition
variable, semaphore, or readers-writer lock.

int si_shared_type If si_shared_type is non-zero, this synchronization object is
process-shared, otherwise it is process-private.

td_sync_flags_t si_flags Flags dependent on the type of the synchronization object.

int si_state.sema_count Semaphores only. The current value of the semaphore

int si_state.nreaders Readers-writer locks only. The number of readers currently
holding the lock, or -1, if a writer is currently holding the lock.

int si_state.mutex_locked For mutexes only. Non-zero if and only if the mutex is
currently locked.

int si_size The size of the synchronization object.

uint8_t si_has_waiters Non-zero if and only if at least one thread is blocked on this
synchronization object.

uint8_t si_is_wlocked For reader-writer locks only. The value is non-zero if and only
if this lock is held by a writer.

uint8_t si_rcount PTHREAD_MUTEX_RECURSIVE mutexes only. If the mutex is held,
the recursion count.

uint8_t si_prioceiling PTHREAD_PRIO_PROTECT protocol mutexes only. The priority
ceiling.

td_thrhandle_t si_owner Mutexes and readers-writer locks only. This is the thread
holding the mutex, or the write lock, if this is a reader-writer
lock. The value is NULL if no one holds the mutex or write-lock.

pid_t si_ownerpid Mutexes only. For a locked process-shared mutex, this is the
process-ID of the process containing the owning thread.

The td_sync_get_stats() function fills in the td_syncstats_t structure *ss_p with values
for the synchronization object identified by sh_p. The td_syncstats_t structure contains an
embedded td_syncinfo_t structure that is filled in as described above for
td_sync_get_info(). In addition, usage statistics gathered since
td_ta_sync_tracking_enable() was called to enable synchronization object tracking are
returned in the ss_un.mutex, ss_un.cond, ss_un.rwlock, or ss_un.sema members of the
td_syncstats_t structure, depending on the type of the synchronization object.

The td_sync_setstate function modifies the state of synchronization object si_p, depending
on the synchronization object type. For mutexes, td_sync_setstate is unlocked if the value is

td_sync_get_info(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 5 Jun 2007986

0. Otherwise it is locked. For semaphores, the semaphore's count is set to the value. For
reader-writer locks, the reader count set to the value if value is >0. The count is set to
write-locked if value is –1. It is set to unlocked if the value is 0. Setting the state of a
synchronization object from a libc_db interface may cause the synchronization object's
semantics to be violated from the point of view of the threads in the target process. For
example, if a thread holds a mutex, and td_sync_setstate is used to set the mutex to
unlocked, then a different thread will also be able to subsequently acquire the same mutex.

The td_sync_waiters function iterates over the set of thread handles of threads blocked on
sh_p. The callback function cb is called once for each such thread handle, and is passed the
thread handle and cb_data_p. If the callback function returns a non-zero value, iteration is
terminated early. See td_ta_thr_iter(3C_DB).

TD_OK The call returned successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libc_db-internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), mutex_init(3C), td_ta_map_addr2sync(3C_DB),
td_ta_sync_iter(3C_DB), td_ta_thr_iter(3C_DB), attributes(5)

Return Values

Attributes

See Also

td_sync_get_info(3C_DB)

Basic Library Functions 987

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_enable_stats, td_ta_reset_stats, td_ta_get_stats – collect target process statistics for
libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_enable_stats(const td_thragent_t *ta_p, int on_off);

td_err_e_stats td_ta_reset(const td_thragent_t *ta_p);

td_err_e td_ta_get_stats(const td_thragent_t *ta_p, td_ta_stats_t *tstats);

The controlling process can request the collection of certain statistics about a target process.
Statistics gathering is disabled by default. Each target process has a td_ta_stats_t structure
that contains current values when statistic gathering is enabled.

The td_ta_enable_stats() function turns statistics gathering on or off for the process
identified by ta_p, depending on whether or not on_off is non-zero. When statistics gathering
is turned on, all statistics are implicitly reset as though td_ta_reset_stats() had been called.
Statistics are not reset when statistics gathering is turned off. Except for nthreads and
r_concurrency, the values do not change further, but they remain available for inspection by
way of td_ta_get_stats().

The td_ta_reset_stats() function resets all counters in the td_ta_stats_t structure to
zero for the target process.

The td_ta_get_stats() function returns the structure for the process in tstats.

The td_ta_stats_t structure is defined in <thread_db.h> and contains the following
members:

typedef struct {

int nthreads; /* total number of threads in use */

int r_concurrency; /* requested concurrency level */

int nrunnable_num; /* numerator of avg runnable threads */

int nrunnable_den; /* denominator of avg runnable threads */

int a_concurrency_num; /* numerator, avg achieved concurrency */

int a_concurrency_den; /* denominator, avg achieved concurrency */

int nlwps_num; /* numerator, avg number of LWPs in use */

int nlwps_den; /* denominator, avg number of LWPs in use */

int nidle_num; /* numerator, avg number of idling LWPs */

int nidle_den; /* denominator, avg number of idling LWPs */

} td_ta_stats_t;

The nthreads member is the number of threads that are currently part of the target process.
The r_concurrency member is the current requested concurrency level, such as would be
returned by thr_setconcurrency(3C). The remaining members are averages over time, each
expressed as a fraction with an integral numerator and denominator. The nrunnable_num and
nrunnable_den members represent the average number of runnable threads. The

Name

Synopsis

Description

td_ta_enable_stats(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 1998988

a_concurrency_num and a_concurrency_den members represent the average achieved
concurrency, the number of actually running threads. The a_concurrency_num and
a_concurrency_den members are less than or equal to nrunnable_num and nrunnable_den,
respectively. The nlwps_num and nlwps_den members represent the average number of
lightweight processes (LWPs) participating in this process. They must be greater than or equal
to a_concurrency_num and a_concurrency_den, respectively, since every running thread is
assigned to an LWP, but there can at times be additional idling LWPs with no thread assigned
to them. The nidle_num and nidle_den members represent the average number of idle LWPs.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR Something else went wrong.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), thr_getconcurrency(3C), attributes(5)

Return Values

Attributes

See Also

td_ta_enable_stats(3C_DB)

Basic Library Functions 989

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_event_addr, td_thr_event_enable, td_ta_set_event, td_thr_set_event,
td_ta_clear_event, td_thr_clear_event, td_ta_event_getmsg, td_thr_event_getmsg,
td_event_emptyset, td_event_fillset, td_event_addset, td_event_delset, td_eventismember,
td_eventisempty – thread events in libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_event_addr(const td_thragent_t *ta_p, u_long event,td_notify_t *notify_p);

td_err_e td_thr_event_enable(const td_thrhandle_t *th_p, int on_off);

td_err_e td_thr_set_event(const td_thrhandle_t *th_p, td_thr_events_t *events);

td_err_e td_ta_set_event(const td_thragent_t *ta_p, td_thr_events_t *events);

td_err_e td_thr_clear_event(const td_thrhandle_t *th_p, td_thr_events_t *events);

td_err_e td_ta_clear_event(const td_thragent_t *ta_p, td_thr_events_t *events);

td_err_e td_thr_event_getmsg(const td_thrhandle_t *th_p, td_event_msg_t *msg);

td_err_e td_ta_event_getmsg(const td_thragent_t *ta_p, td_event_msg_t *msg);

void td_event_emptyset(td_thr_events_t *);

void td_event_fillset(td_thr_events_t *);

void td_event_addset(td_thr_events_t *, td_thr_events_e n);

void td_event_delset(td_thr_events_t *, td_thr_events_e n);

void td_eventismember(td_thr_events_t *, td_thr_events_e n);

void td_eventisempty(td_thr_events_t*);

These functions comprise the thread event facility for libc_db(3LIB). This facility allows the
controlling process to be notified when certain thread-related events occur in a target process
and to retrieve information associated with these events. An event consists of an event type,
and optionally, some associated event data, depending on the event type. See the section titled
"Event Set Manipulation Macros" that follows.

The event type and the associated event data, if any, constitute an "event message." "Reporting
an event" means delivering an event message to the controlling process by way of libc_db.

Several flags can control event reporting, both a per-thread and per event basis. Event
reporting may further be enabled or disabled for a thread. There is not only a per-thread event
mask that specifies which event types should be reported for that thread, but there is also a
global event mask that applies to all threads.

An event is reported, if and only if, the executing thread has event reporting enabled, and
either the event type is enabled in the executing thread's event mask, or the event type is
enabled in the global event mask.

Name

Synopsis

Description

td_ta_event_addr(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 1998990

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib

Each thread has associated with it an event buffer in which it stores the most recent event
message it has generated, the type of the most recent event that it reported, and, depending on
the event type, some additional information related to that event. See the section titled "Event
Set Manipulation Macros" for a description of the td_thr_events_e and td_event_msg_t

types and a list of the event types and the values reported with them. The thread handle, type
td_thrhandle_t, the event type, and the possible value, together constitute an event message.
Each thread's event buffer holds at most one event message.

Each event type has an event reporting address associated with it. A thread reports an event by
writing the event message into the thread's event buffer and having control reach the event
reporting address for that event type.

Typically, the controlling process sets a breakpoint at the event reporting address for one or
more event types. When the breakpoint is hit, the controlling process knows that an event of
the corresponding type has occurred.

The event types, and the additional information, if any, reported with each event, are:

TD_READY The thread became ready to execute.

TD_SLEEP The thread has blocked on a synchronization object.

TD_SWITCHTO A runnable thread is being assigned to LWP.

TD_SWITCHFROM A running thread is being removed from its LWP.

TD_LOCK_TRY A thread is trying to get an unavailable lock.

TD_CATCHSIG A signal was posted to a thread.

TD_IDLE An LWP is becoming idle.

TD_CREATE A thread is being created.

TD_DEATH A thread has terminated.

TD_PREEMPT A thread is being preempted.

TD_PRI_INHERIT A thread is inheriting an elevated priority from another thread.

TD_REAP A thread is being reaped.

TD_CONCURRENCY The number of LWPs is changing.

TD_TIMEOUT A condition-variable timed wait expired.

The td_ta_event_addr() function returns in *notify_p the event reporting address associated
with event type event. The controlling process may then set a breakpoint at that address. If a
thread hits that breakpoint, it reports an event of type event.

The td_thr_event_enable() function enables or disables event reporting for thread th_p. If a
thread has event reporting disabled, it will not report any events. Threads are started with

td_ta_event_addr(3C_DB)

Basic Library Functions 991

event reporting disabled. Event reporting is enabled if on_off is non-zero; otherwise, it is
disabled. To determine whether or not event reporting is enabled on a thread, call
td_thr_getinfo() for the thread and examine the ti_traceme member of the td_thrinfo_t
structure it returns.

The td_thr_set_event() and td_thr_clear_event() functions set and clear, respectively, a
set of event types in the event mask associated with the thread th_p. To inspect a thread's event
mask, call td_thr_getinfo() for the thread and examine the ti_events member of the
td_thrinfo_t structure it returns.

The td_ta_set_event() and td_ta_clear_event() functions identical to
td_thr_set_event() and td_thr_clear_event(), respectively, except that the target
process's global event mask is modified. There is no provision for inspecting the value of a
target process's global event mask.

The td_thr_event_getmsg() function returns in *msg the event message associated with
thread *th_p. Reading a thread's event message consumes the message, emptying the thread's
event buffer. As noted above, each thread's event buffer holds at most one event message; if a
thread reports a second event before the first event message has been read, the second event
message overwrites the first.

The td_ta_event_getmsg() function is identical to td_thr_event_getmsg(), except that it is
passed a process handle rather than a thread handle. It selects some thread that has an event
message buffered and returns that thread's message. The thread selected is undefined, except
that as long as at least one thread has an event message buffered, it returns an event message
from some such thread.

Several macros are provided for manipulating event sets of type td_thr_events_t:

td_event_emptyset Sets its argument to the NULL event set.

td_event_fillset Sets its argument to the set of all events.

td_event_addset Adds a specific event type to an event set.

td_event_delset Deletes a specific event type from an event set.

td_eventismember Tests whether a specific event type is a member of an event set.

td_eventisempty Tests whether an event set is the NULL set.

The following values may be returned for all thread event routines:

TD_OK The call returned successfully.

TD_BADTH An invalid thread handle was passed in.

TD_BADTA An invalid internal process handle was passed.

Event Set Manipulation
Macros

Return Values

td_ta_event_addr(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 19 Oct 1998992

TD_BADPH There is a NULL external process handle associated with this internal process
handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOMSG No event message was available to return to td_thr_event_getmsg() or
td_ta_event_getmsg().

TD_ERR Some other parameter error occurred, or a libc_db() internal error occurred.

The following value can be returned for td_thr_event_enable(), td_thr_set_event(), and
td_thr_clear_event() only:

TD_NOCAPAB Because the agent thread in the target process has not completed
initialization, this operation cannot be performed. The operation can be
performed after the target process has been allowed to make some forward
progress. See libc_db(3LIB).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

Attributes

See Also

td_ta_event_addr(3C_DB)

Basic Library Functions 993

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_get_nthreads – gets the total number of threads in a process for libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_get_nthreads(const td_thragent_t *ta_p, int *nthread_p);

The td_ta_get_nthreads() function returns the total number of threads in process ta_p,
including any system threads. System threads are those created by libc or libc_db on its own
behalf. The number of threads is written into *nthread_p.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this internal process
handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The nthread_p argument was NULL, or a libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5), threads(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_ta_get_nthreads(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 1998994

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

td_ta_map_addr2sync – get a synchronization object handle from a synchronization object's
address

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_ta_map_addr2sync(const td_thragent_t *ta_p, psaddr_t addr, td_synchandle_t *sh_p);

The td_ta_map_addr2sync() function produces the synchronization object handle of type
td_synchandle_t that corresponds to the address of the synchronization object (mutex,
semaphore, condition variable, or reader/writer lock). Some effort is made to validate addr
and verify that it does indeed point at a synchronization object. The handle is returned in
*sh_p.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed.

TD_BADPH There is a NULL external process handle associated with this internal process
handle.

TD_BADSH The sh_p argument is NULL or addr does not appear to point to a valid
synchronization object.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR addr is NULL, or a libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_ta_map_addr2sync(3C_DB)

Basic Library Functions 995

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_map_id2thr, td_ta_map_lwp2thr – convert a thread ID or LWP ID to a thread handle

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_ta_map_id2thr(const td_thragent_t *ta_p, thread_t tid,td_thrhandle_t *th_p);

td_ta_map_lwp2thr(const td_thragent_t *ta_p, lwpid_t lwpid,td_thrhandle_t *th_p);

The td_ta_map_id2thr() function produces the td_thrhandle_t thread handle that
corresponds to a particular thread ID, as returned by thr_create(3C) or thr_self(3C). The
thread handle is returned in *th_p.

The td_ta_map_lwp2thr() function produces the td_thrhandle_t thread handle for the
thread that is currently executing on the light weight process (LWP) and has an ID of lwpid.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this internal process
handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOTHR Either there is no thread with the given thread ID (td_ta_map_id2thr) or no
thread is currently executing on the given LWP (td_ta_map_lwp2thr).

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), thr_create(3C), thr_self(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_ta_map_id2thr(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 1998996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_new, td_ta_delete, td_ta_get_ph – allocate and deallocate process handles for libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_new(const struct ps_prochandle *ph_p, td_thragent_t **ta_pp);

td_err_e td_ta_delete(const td_thragent_t *ta_p);

td_err_e td_ta_get_ph(const td_thragent_t *ta_p, struct ps_prochandle **ph_pp);

The td_ta_new() function registers a target process with libc_db(3LIB) and allocates an
internal process handle of type td_thragent_t for this target process. Subsequent calls to
libc_db can use this handle to refer to this target process.

There are actually two process handles, an internal process handle assigned by libc_db and an
external process handle assigned by the libc_db client. There is a one-to-one correspondence
between the two handles. When the client calls a libc_db function, it uses the internal process
handle. When libc_db calls one of the client-provided routines listed in
proc_service(3PROC), it uses the external process handle.

The ph argument is the external process handle that libc_db should use to identify this target
process to the controlling process when it calls routines in the imported interface.

If this call is successful, the value of the newly allocated td_thragent_t handle is returned in
*ta_pp. The td_ta_delete() function deregisters a target process with libc_db, which
deallocates its internal process handle and frees any other resources libc_db has acquired
with respect to the target process. The ta_p argument specifies the target process to be
deregistered.

The td_ta_get_ph() function returns in *ph_pp the external process handle that corresponds
to the internal process handle ta_p. This is useful for checking internal consistency.

TD_OK The call completed successfully.

TD_BADPH A NULL external process handle was passed to td_ta_new().

TD_ERR The ta_pp argument is NULL or an internal error occurred.

TD_DBERR A call to one of the imported interface routines failed.

TD_MALLOC Memory allocation failure.

TD_NOLIBTHREAD The target process does not appear to be multithreaded.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Name

Synopsis

Description

Return Values

Attributes

td_ta_new(3C_DB)

Basic Library Functions 997

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-service-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libc_db(3LIB), proc_service(3PROC), attributes(5)See Also

td_ta_new(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 1998998

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-service-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_setconcurrency – set concurrency level for target process

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_setconcurrency(const td_thragent_t *ta_p, int level);

The td_ta_setconcurrency() function sets the desired concurrency level for the process
identified by ta_p to level, just as if a thread within the process had called
thr_setconcurrency(3C).

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this internal process
handle. TD_NOCAPAB The client did not implement the ps_kill(3PROC)
function in the imported interface.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), ps_kill(3PROC), thr_setconcurrency(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_ta_setconcurrency(3C_DB)

Basic Library Functions 999

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-kill-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-kill-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_ta_sync_iter, td_ta_thr_iter, td_ta_tsd_iter – iterator functions on process handles from
libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

typedef int td_sync_iter_f(const td_synchandle_t *sh_p, void *cbdata_p);

typedef int td_thr_iter_f(const td_thrhandle_t *th_p, void *cbdata_p);

typedef int td_key_iter_f(thread_key_t key, void (*destructor)(), void *cbdata_p);

td_err_e td_ta_sync_iter(const td_thragent_t *ta_p, td_sync_iter_f *cb,
void *cbdata_p);

td_err_e td_ta_thr_iter(const td_thragent_t *ta_p, td_thr_iter_f *cb,
void *cbdata_p, td_thr_state_e state, int ti_pri, sigset_t *ti_sigmask_p,
unsigned ti_user_flags);

td_err_e td_ta_tsd_iter(const td_thragent_t *ta_p, td_key_iter_f *cb,
void *cbdata_p);

The td_ta_sync_iter(), td_ta_thr_iter(), and td_ta_tsd_iter() functions are iterator
functions that when given a target process handle as an argument, return sets of handles for
objects associated with the target process. The method is to call back a client-provided
function once for each associated object, passing back a handle as well as the client-provided
pointer cb_data_p. This enables a client to easily build a linked list of the associated objects. If
the client-provided function returns non-zero, the iteration terminates, even if there are
members remaining in the set of associated objects.

The td_ta_sync_iter() function returns handles of synchronization objects (mutexes,
readers-writer locks, semaphores, and condition variables) associated with a process. Some
synchronization objects might not be known to libc_db and will not be returned. If the
process has initialized the synchronization object (by calling mutex_init(3C), for example) or
a thread in the process has called a synchronization primitive (mutex_lock(), for example)
using this object after td_ta_new(3C_DB) was called to attach to the process and
td_ta_sync_tracking_enable() was called to enable synchronization object tracking, then a
handle for the synchronization object will be passed to the callback function. See
td_sync_get_info(3C_DB) for operations that can be performed on synchronization object
handles.

The td_ta_thr_iter() function returns handles for threads that are part of the target
process. For td_ta_thr_iter(), the caller specifies several criteria to select a subset of threads
for which the callback function should be called. Any of these selection criteria may be
wild-carded. If all of them are wild-carded, then handles for all threads in the process will be
returned.

The selection parameters and corresponding wild-card values are:

Name

Synopsis

Description

td_ta_sync_iter(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 19 Jun 20011000

state (TD_THR_ANY_STATE): Select only threads whose state matches
state. See td_thr_get_info(3C_DB) for a
list of thread states.

ti_pri (TD_THR_LOWEST_PRIORITY): Select only threads for which the priority is
at least ti_pri.

ti_sigmask_p (TD_SIGNO_MASK): Select only threads whose signal mask
exactly matches *ti_sigmask_p.

ti_user_flags (TD_THR_ANY_USER_FLAGS): Select only threads whose user flags
(specified at thread creation time) exactly
match ti_user_flags.

The td_ta_tsd_iter() function returns the thread-specific data keys in use by the current
process. Thread-specific data for a particular thread and key can be obtained by calling
td_thr_tsd(3C_DB).

TD_OK The call completed successfully.

TD_BADTA An invalid process handle was passed.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), mutex_init(3C), td_sync_get_info(3C_DB), td_thr_get_info(3C_DB),
td_thr_tsd(3C_DB), attributes(5)

Return Values

Attributes

See Also

td_ta_sync_iter(3C_DB)

Basic Library Functions 1001

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_dbsuspend, td_thr_dbresume – suspend and resume threads in libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_dbsuspend(const td_thrhandle_t *th_p);

td_err_e td_thr_dbresume(const td_thrhandle_t *th_p);

These operations do nothing other than call ps_lstop(3PROC) and ps_lcontinue(3PROC),
respectively, on the lightweight process (LWP) identified by the thread handle, th_p. Since
ps_lstop() and ps_lcontinue() must be provided by the caller's application (see
proc_service(3PROC)), and the application (a debugger-like entity) has full control over the
stopped state of the process and all of its LWPs, td_thr_dbsuspend() and
td_thr_dbresume() are unnecessary interfaces. They exist only to maintain interface
compatibility with the past.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to ps_lstop() or ps_lcontinue() failed.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_dbsuspend(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 19981002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-lstop-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-lcontinue-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-service-3proc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_getgregs, td_thr_setgregs, td_thr_getfpregs, td_thr_setfpregs, td_thr_getxregsize,
td_thr_getxregs, td_thr_setxregs – reading and writing thread registers in libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_getgregs(const td_thrhandle_t *th_p, prgregset_tgregset);

td_err_e td_thr_setgregs(const td_thrhandle_t *th_p, prgregset_tgregset);

td_err_e td_thr_getfpregs(const td_thrhandle_t *th_p, prfpregset_t *fpregset);

td_err_e td_thr_setfpregs(const td_thrhandle_t *th_p, prfpregset_t *fpregset);

td_err_e td_thr_getxregsize(const td_thrhandle_t *th_p, int *xregsize);

td_err_e td_thr_getxregs(const td_thrhandle_t *th_p, prxregset_t *xregset);

td_err_e td_thr_setxregs(const td_thrhandle_t *th_p, prxregset_t *xregset);

These functions read and write the register sets associated with thread th_p. The
td_thr_getgregs() and td_thr_setgregs() functions get and set, respectively, the general
registers of thread th_p. The td_thr_getfpregs() and td_thr_setfpregs() functions get
and set, respectively, the thread's floating point register set. The td_thr_getxregsize(),
td_thr_getxregs(), and td_thr_setxregs() functions are system-specific. The
td_thr_getxregsize() function returns in *xregsize the size of the architecture-dependent
extra state registers. The td_thr_getxregs() and td_thr_setxregs() functions get and set,
respectively, those extra state registers. On systems that does not support extra state registers,
these functions return TD_NOXREGS.

If the thread specified by th_p is currently executing on a lightweight process (LWP), these
functions read or write, respectively, the appropriate register set to the LWP using the
imported interface. If the thread is not currently executing on an LWP, the floating point and
extra state registers may cannot be read or written. Some of the general registers might also
not be readable or writable, depending on the architecture, in which case
td_thr_getfpregs() and td_thr_setfpregs() return TD_NOFPREGS and
td_thr_getxregs() and td_thr_setxregs() will TD_NOXREGS. Calls to td_thr_getgregs()

and td_thr_setgregs() succeed, but values returned for unreadable registers are undefined,
values specified for unwritable registers are ignored. In this instance, and TD_PARTIALREGS is
returned. See the architecture-specific notes that follow regarding the registers that may be
read and written for a thread not currently executing on an LWP.

On a thread not currently assigned to an LWP, only %i0-%i7, %l0-%l7, %g7, %pc, and %sp
(%o6) can be read or written. %pc and %sp refer to the program counter and stack pointer that
the thread will have when it resumes execution.

Name

Synopsis

Description

SPARC

td_thr_getgregs(3C_DB)

Basic Library Functions 1003

On a thread not currently assigned to an LWP, only %pc, %sp, %ebp, %edi, %edi, and %ebx
can be read.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_PARTIALREGS Because the thread is not currently assigned to a LWP, not all registers
were read or written. See DESCRIPTION for a discussion about which
registers are not saved when a thread is not assigned to an LWP.

TD_NOFPREGS Floating point registers could not be read or written, either because the
thread is not currently assigned to an LWP, or because the architecture
does not have such registers.

TD_NOXREGS System-dependent extra state registers could not be read or written,
either because the thread is not currently assigned to an LWP, or because
the architecture does not have such registers, or because the system does
not have extra state registers.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

x86 Architecture

Return Values

Attributes

See Also

td_thr_getgregs(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 13 Sep 20101004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_get_info – get thread information in libc_db library of interfaces

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_get_info(const td_thrhandle_t *th_p, td_thrinfo_t *ti_p);

The td_thr_get_info() function fills in the td_thrinfo_t structure *ti_p with values for the
thread identified by th_p.

The td_thrinfo_t structure contains the following fields:

typedef struct td_thrinfo_t {

td_thragen_tx *ti_ta_p /* internal process handle */

unsigned ti_user_flags; /* value of flags parameter */

thread_t ti_tid; /* thread identifier */

char *ti_tls; /* pointer to thread-local storage*/

paddr ti_startfunc; /* address of function at which thread

execution began*/

paddr ti_stkbase; /* base of thread’s stack area*/

int ti_stksize; /* size in bytes of thread’s allocated

stack region*/

paddr ti_ro_area; /* address of ulwp_t structure*/

int ti_ro_size /* size of the ulwp_t structure in

bytes */

td_thr_state_e ti_state /* state of the thread */

uchar_t ti_db_suspended /* non-zero if thread suspended by

td_thr_dbsuspend*/

td_thr_type_e ti_type /* type of the thread*/

int ti_pc /* value of thread’s program counter*/

int ti_sp /* value of thread’s stack counter*/

short ti_flags /* set of special flags used by

libc*/

int ti_pri /* priority of thread returned by

thr_getprio(3T)*/

lwpid_t ti_lid /* id of light weight process (LWP)

executing this thread*/

sigset_t ti_sigmask /* thread’s signal mask. See

thr_sigsetmask(3T)*/

u_char ti_traceme /* non-zero if event tracing is on*/

u_char_t ti_preemptflag /* non-zero if thread preempted when

last active*/

u_char_t ti_pirecflag /* non-zero if thread runs priority

beside regular */

sigset_t ti_pending /* set of signals pending for this

thread*/

td_thr_events_t ti_events /* bitmap of events enabled for this

thread*/

} ;

Name

Synopsis

Description

td_thr_get_info(3C_DB)

Basic Library Functions 1005

The ti_ta_p member is the internal process handle identifying the process of which the
thread is a member.

The ti_user_flags member is the value of the flags parameter passed to thr_create(3C)
when the thread was created.

The ti_tid member is the thread identifier for the thread returned by thr_create(3C).

The ti_tls member is the thread's pointer to thread-local storage.

The ti_startfunc member is the address of the function at which thread execution began, as
specified when the thread was created with thr_create(3C).

The ti_stkbase member is the base of the thread's stack area.

The ti_stksize member is the size in bytes of the thread's allocated stack region.

The ti_ro_area member is the address of the ulwp_t structure for this thread. Since accessing
the ulwp_t structure directly violates the encapsulation provided by libc_db, this member
should generally not be used. However, it might be useful as a prototype for extensions.

The ti_state member is the state of the thread. The td_thr_state_e enumeration type can
contain the following values:

TD_THR_ANY_STATE This value is never returned by td_thr_get_info() but is used
as a wildcard to select threads in td_ta_thr_iter().

TD_THR_UNKNOWN The libc_db library cannot determine the state of the thread.

TD_THR_STOPPED The thread has been stopped by a call to thr_suspend(3C).

TD_THR_RUN The thread is runnable, but it is not currently assigned to an
LWP.

TD_THR_ACTIVE The thread is currently executing on an LWP.

TD_THR_ZOMBIE The thread has exited, but it has not yet been deallocated by a
call to thr_join(3C).

TD_THR_SLEEP The thread is not currently runnable.

TD_THR_STOPPED_ASLEEP The thread is both blocked by TD_THR_SLEEP and stopped by a
call to td_thr_dbsuspend(3C_DB).

The ti_db_suspended member is non-zero if and only if this thread is currently suspended
because the controlling process has called td_thr_dbsuspend on it.

The ti_type member is a type of thread. It is either TD_THR_USER for a user thread (one
created by the application), or TD_THR_SYSTEM for one created by libc.

td_thr_get_info(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 19981006

The ti_pc member is the value of the thread's program counter, provided that the thread's
ti_state value is TD_THR_SLEEP, TD_THR_STOPPED, or TD_THR_STOPPED_ASLEEP. Otherwise,
the value of this member is undefined.

The ti_sp member is the value of the thread's stack pointer, provided that the thread's
ti_state value is TD_THR_SLEEP, TD_THR_STOPPED, or TD_THR_STOPPED_ASLEEP. Otherwise,
the value of this member is undefined.

The ti_flags member is a set of special flags used by libc, currently of use only to those
debugging libc.

The ti_pri member is the thread's priority as it would be returned by thr_getprio(3C).

The ti_lid member is the ID of the LWP executing this thread, or the ID of the LWP that last
executed this thread, if this thread is not currently assigned to anLWP.

The ti_sigmask member is this thread's signal mask. See thr_sigsetmask(3C).

The ti_traceme member is non-zero if and only if event tracing for this thread is on.

The ti_preemptflag member is non-zero if and only if the thread was preempted the last
time it was active.

The ti_pirecflag member is non-zero if and only if due to priority inheritance the thread is
currently running at a priority other than its regular priority.

The ti_events member is the bitmap of events enabled for this thread.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), td_ta_thr_iter(3C_DB), td_thr_dbsuspend(3C_DB), thr_create(3C),
thr_getprio(3C), thr_join(3C), thr_sigsetmask(3C), thr_suspend(3C), attributes(5),
threads(5)

Return Values

Attributes

See Also

td_thr_get_info(3C_DB)

Basic Library Functions 1007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

td_thr_lockowner – iterate over the set of locks owned by a thread

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_lockowner(const td_thrhandle_t *th_p, td_sync_iter_f *cb,
void *cb_data_p);

The td_thr_lockowner() function calls the iterator function cb once for every mutex that is
held by the thread whose handle is th_p. The synchronization handle and the pointer
cb_data_p are passed to the function. See td_ta_thr_iter(3C_DB) for a similarly structured
function.

Iteration terminates early if the callback function cb returns a non-zero value.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_BADPH There is a NULL external process handle associated with this internal process
handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), td_ta_thr_iter(3C_DB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_lockowner(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 19981008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_setprio – set the priority of a thread

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_setprio(const td_thrhandle_t *th_p,
const int new_prio;);

The td_thr_setprio() function is obsolete. It always fails and returns TD_NOCAPAB.

TD_NOCAPAB Capability not available.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), thr_setprio(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_setprio(3C_DB)

Basic Library Functions 1009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_setsigpending, td_thr_sigsetmask – manage thread signals for libc_db

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_setsigpending(const td_thrhandle_t * th_p, const uchar_ t ti_sigpending_flag,
const sigset_t ti_sigmask;);

td_err_e td_thr_sigsetmask(const td_thrhandle_t *th_p, const sigset_t ti_sigmask);

The td_thr_setsigpending() and td_thr_setsigmask() functions affect the signal state of
the thread identified by th_p.

The td_thr_setsigpending() function sets the set of pending signals for thread th_p to
ti_sigpending. The value of the libc-internal field that indicates whether a thread has any
signal pending is set to ti_sigpending_flag. To be consistent, ti_sigpending_flag should be 0 if
and only if all of the bits in ti_sigpending are 0.

The td_thr_sigsetmask() function sets the signal mask of the thread th_p as if the thread
had set its own signal mask with thr_sigsetmask(3C). The new signal mask is the value of
ti_sigmask.

There is no equivalent to the SIG_BLOCK or SIG_UNBLOCK operations of thr_sigsetmask(3C),
which mask or unmask specific signals without affecting the mask state of other signals. To
block or unblock specific signals,

1. stop either the entire process or the thread with td_thr_dbsuspend(),
2. determine the thread's existing signal mask by calling td_thr_get_info(3C_DB),
3. modify the ti_sigmask member of the td_thrinfo_t structure as desired, and
4. set the new signal mask withtd_thr_sigsetmask().

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), td_thr_dbsuspend(3C_DB), td_thr_get_info(3C_DB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_setsigpending(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 19981010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_sleepinfo – return the synchronization handle for the object on which a thread is
blocked

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_sleepinfo(const td_thrhandle_t *th_p, td_synchandle_t *sh_p);

The td_thr_sleepinfo() function returns in *sh_p the handle of the synchronization object
on which a sleeping thread is blocked.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The thread th_p is not blocked on a synchronization object, or a libc_db
internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_sleepinfo(3C_DB)

Basic Library Functions 1011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_tsd – get a thread's thread-specific data for libc_db library of interfaces

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_tsd(const td_thrhandle_t, const thread_key_t key, void *data_pp);

The td_thr_tsd() function returns in *data_pp the thread-specific data pointer for the
thread identified by th_p and the thread-specific data key key. This is the same value that the
thread th_p would obtain if it called thr_getspecific(3C).

To find all the thread-specific data keys in use in a given target process, call
td_ta_tsd_iter(3C_DB).

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), td_ta_tsd_iter(3C_DB), thr_getspecific(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_tsd(3C_DB)

man pages section 3: Basic Library Functions • Last Revised 20 Oct 19981012

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

td_thr_validate – test a thread handle for validity

cc [flag...] file... -lc_db [library...]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_validate(const td_thrhandle_t *th_p);

The td_thr_validate() function tests whether th_p is a valid thread handle. A valid thread
handle can become invalid if its thread exits.

TD_OK The call completed successfully. th_p is a valid thread handle.

TD_BADTH th_p was NULL.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOTHR th_p is not a valid thread handle.

TD_ERR A libc_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libc_db(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

td_thr_validate(3C_DB)

Basic Library Functions 1013

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

tell – return a file offset for a file descriptor

#include <unistd.h>

off_t tell(int fd);

The tell() function obtains the current value of the file-position indicator for the file
descriptor fd.

Upon successful completion, tell() returns the current value of the file-position indicator
for fd measured in bytes from the beginning of the file.

Otherwise, it returns −1 and sets errno to indicate the error.

The tell() function will fail if:

EBADF The file descriptor fd is not an open file descriptor.

EOVERFLOW The current file offset cannot be represented correctly in an object of type
off_t.

ESPIPE The file descriptor fd is associated with a pipe or FIFO.

The tell() function is equivalent to lseek(fd, 0, SEEK_CUR).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lseek(2), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

tell(3C)

man pages section 3: Basic Library Functions • Last Revised 28 Jan 19981014

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

telldir – current location of a named directory stream

#include <dirent.h>

long int telldir(DIR *dirp);

The telldir() function obtains the current location associated with the directory stream
specified by dirp.

If the most recent operation on the directory stream was a seekdir(3C), the directory position
returned from the telldir() is the same as that supplied as a loc argument for seekdir().

Upon successful completion, telldir() returns the current location of the specified directory
stream.

The telldir() function will fail if:

EOVERFLOW The current location of the directory cannot be stored in an object of type
long.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

opendir(3C), readdir(3C), seekdir(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

telldir(3C)

Basic Library Functions 1015

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

termios – general terminal interface

#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(const struct termios *termios_p);

int cfsetospeed(struct termios *termios_p, speed_t speed);

speed_t cfgetispeed(const struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);

#include <sys/types.h>

#include <termios.h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

These functions describe a general terminal interface for controlling asynchronous
communications ports. A more detailed overview of the terminal interface can be found in
termio(7I), which also describes an ioctl(2) interface that provides the same functionality.
However, the function interface described by these functions is the preferred user interface.

Each of these functions is now described on a separate manual page.

ioctl(2), cfgetispeed(3C), cfgetospeed(3C), cfsetispeed(3C), cfsetospeed(3C),
tcdrain(3C), tcflow(3C), tcflush(3C), tcgetattr(3C), tcgetpgrp(3C), tcgetsid(3C),
tcsendbreak(3C), tcsetattr(3C), tcgetpgrp(3C), tcsendbreak(3C), termio(7I)

Name

Synopsis

Description

See Also

termios(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Apr 19961016

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i

thr_create – create a thread

cc –mt [flag...] file...[library...]

#include <thread.h>

int thr_create(void *stack_base, size_t stack_size,
void *(*start_func) (void*), void *arg, long flags,
thread_t *new_thread_ID);

Thread creation adds a new thread of control to the current process. The procedure main() is
a single thread of control. Each thread executes concurrently with all other threads within the
calling process and with other threads from other active processes.

Although a newly created thread shares all of the calling process's global data with the other
threads in the process, it has its own set of attributes and private execution stack. The new
thread inherits the calling thread's signal mask and scheduling priority. Pending signals for a
new thread are not inherited and will be empty.

The call to create a thread takes the address of a user-defined function, specified by start_func,
as one of its arguments. This function is the complete execution routine for the new thread.

The lifetime of a thread begins with the successful return from thr_create(), which calls
start_func() and ends with one of the following:

■ the normal completion of start_func(),
■ an explicit call to thr_exit(3C), or
■ the conclusion of the calling process (see exit(2)).

The new thread performs by calling the function defined by start_func with only one
argument, arg. If more than one argument needs to be passed to start_func, the arguments can
be packed into a structure, the address of which can be passed to arg.

If start_func returns, the thread terminates with the exit status set to the start_func return
value (see thr_exit(3C)).

When the thread from which main() originated returns, the effect is the same as if an implicit
call to exit() were made using the return value of main() as the exit status. This behavior
differs from a start_func return. If main() calls thr_exit(3C), only the main thread exits, not
the entire process.

If the thread creation fails, a new thread is not created and the contents of the location
referenced by the pointer to the new thread are undefined.

The flags argument specifies which attributes are modifiable for the created thread. The value
in flags is determined by the bitwise inclusive-OR of the following:

THR_BOUND This flag is obsolete and is maintained for compatibility.

Name

Synopsis

Description

thr_create(3C)

Basic Library Functions 1017

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

THR_DETACHED This flag affects the detachstate attribute of the thread. The new thread is
created detached. The exit status of a detached thread is not accessible to
other threads. Its thread ID and other resources may be re-used as soon
as the thread terminates. thr_join(3C) will not wait for a detached
thread.

THR_NEW_LWP This flag is obsolete and is maintained for compatibility.

THR_SUSPENDED This flag affects the suspended attribute of the thread. The new thread is
created suspended and will not execute start_func until it is started by
thr_continue().

THR_DAEMON This flag affects the daemon attribute of the thread. In addition to being
created detached (THR_DAEMON implies THR_DETACHED), the thread is
marked as a daemon. Daemon threads do not interfere with the exit
conditions for a process. A process will terminate when the last
non-daemon thread exits or the process calls exit(2). Also, a thread that
is waiting in thr_join(3C) for any thread to terminate will return
EDEADLK when all remaining threads in the process are either daemon
threads or other threads waiting in thr_join(). Daemon threads are
most useful in libraries that want to use threads.

Default thread creation:

thread_t tid;

void *start_func(void *), *arg;

thr_create(NULL, 0, start_func, arg, 0, &tid);

Create a detached thread whose thread ID we do not care about:

thr_create(NULL, 0, start_func, arg, THR_DETACHED, NULL);

If stack_base is not NULL, the new thread uses the stack beginning at the address specified by
stack_base and continuing for stack_size bytes, where stack_size must be greater than or equal
to THR_MIN_STACK. If stack_base is NULL, thr_create() allocates a stack for the new thread
with at least stack_size bytes. If stack_size is 0, a default size is used. If stack_size is not 0, it
must be greater than or equal to THR_MIN_STACK. See NOTES.

When new_thread_ID is not NULL, it points to a location where the ID of the new thread is
stored if thr_create() is successful. The ID is only valid within the calling process.

If successful, the thr_create() function returns 0. Otherwise, an error value is returned to
indicate the error.

EAGAIN A resource control limit on the total number of threads in a process, task, project,
or zone has been exceeded or some system resource has been exceeded.

Return Values

Errors

thr_create(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Mar 20091018

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

EINVAL The stack_base argument is not NULL and stack_size is less than THR_MIN_STACK,
or the stack_base argument is NULL and stack_size is not 0 and is less than
THR_MIN_STACK.

ENOMEM The system cannot allocate stack for the thread.

The thr_create() function may use mmap() to allocate thread stacks from MAP_PRIVATE,
MAP_NORESERVE, and MAP_ANON memory mappings if stack_base is NULL, and consequently
may return upon failure the relevant error values returned by mmap(). See the mmap(2) manual
page for these error values.

The following is an example of concurrency with multithreading. Since POSIX threads and
Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1.

Five threads are created that simultaneously perform a time-consuming function, sleep(10).
If the execution of this process is timed, the results will show that all five individual calls to
sleep for ten-seconds completed in about ten seconds, even on a uniprocessor. If a
single-threaded process calls sleep(10) five times, the execution time will be about
50-seconds.

The command-line to time this process is:

/usr/bin/time a.out 0 (for POSIX threading)

or

/usr/bin/time a.out 1 (for Solaris threading)

EXAMPLE 1 An example of concurrency with multithreading.

#define _REENTRANT /* basic 3-lines for threads */

#include <pthread.h>

#include <thread.h>

#define NUM_THREADS 5

#define SLEEP_TIME 10

void *sleeping(void *); /* thread routine */

int i;

thread_t tid[NUM_THREADS]; /* array of thread IDs */

int

main(int argc, char *argv[])

{

if (argc == 1) {

printf("use 0 as arg1 to use pthread_create()\n");
printf("or use 1 as arg1 to use thr_create()\n");
return (1);

Examples

thr_create(3C)

Basic Library Functions 1019

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

EXAMPLE 1 An example of concurrency with multithreading. (Continued)

}

switch (*argv[1]) {

case ’0’: /* POSIX */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], NULL, sleeping,

(void *)SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

break;

case ’1’: /* Solaris */

for (i = 0; i < NUM_THREADS; i++)

thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0,

&tid[i]);

while (thr_join(0, NULL, NULL) == 0)

continue;

break;

} /* switch */

printf("main() reporting that all %d threads have

terminated\n", i);

return (0);

} /* main */

void *

sleeping(void *arg)

{

int sleep_time = (int)arg;

printf("thread %d sleeping %d seconds ...\n", thr_self(),

sleep_time);

sleep(sleep_time);

printf("\nthread %d awakening\n", thr_self());

return (NULL);

}

Had main() not waited for the completion of the other threads (using pthread_join(3C) or
thr_join(3C)), it would have continued to process concurrently until it reached the end of its
routine and the entire process would have exited prematurely (see exit(2)).

EXAMPLE 2 Creating a default thread with a new signal mask.

The following example demonstrates how to create a default thread with a new signal mask.
The new_mask argument is assumed to have a value different from the creator's signal mask
(orig_mask). The new_mask argument is set to block all signals except for SIGINT. The

thr_create(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Mar 20091020

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

EXAMPLE 2 Creating a default thread with a new signal mask. (Continued)

creator's signal mask is changed so that the new thread inherits a different mask, and is
restored to its original value after thr_create() returns.

This example assumes that SIGINT is also unmasked in the creator. If it is masked by the
creator, then unmasking the signal opens the creator to this signal. The other alternative is to
have the new thread set its own signal mask in its start routine.

thread_t tid;

sigset_t new_mask, orig_mask;

int error;

(void)sigfillset(&new_mask);

(void)sigdelset(&new_mask, SIGINT);

(void)thr_sigsetmask(SIG_SETMASK, &new_mask, &orig_mask);

error = thr_create(NULL, 0, do_func, NULL, 0, &tid);

(void)thr_sigsetmask(SIG_SETMASK, &orig_mask, NULL);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(2), getrlimit(2), mmap(2), exit(3C), sleep(3C), thr_exit(3C), thr_join(3C),
thr_min_stack(3C), thr_setconcurrency(3C), thr_suspend(3C), attributes(5),
standards(5), threads(5)

Since multithreaded-application threads execute independently of each other, their relative
behavior is unpredictable. It is therefore possible for the thread executing main() to finish
before all other user-application threads.

Using thr_join(3C) in the following syntax,

while (thr_join(0, NULL, NULL) == 0)

continue;

will cause the invoking thread (which may be main()) to wait for the termination of all
non-daemon threads, excluding threads that are themselves waiting in thr_join(); however,
the second and third arguments to thr_join() need not necessarily be NULL.

A thread has not terminated until thr_exit() has finished. The only way to determine this is
by thr_join(). When thr_join() returns a departed thread, it means that this thread has
terminated and its resources are reclaimable. For instance, if a user specified a stack to
thr_create(), this stack can only be reclaimed after thr_join() has reported this thread as a
departed thread. It is not possible to determine when a detached thread has terminated. A
detached thread disappears without leaving a trace.

Attributes

See Also

Notes

thr_create(3C)

Basic Library Functions 1021

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getrlimit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

Typically, thread stacks allocated by thr_create() begin on page boundaries and any
specified (a red-zone) size is rounded up to the next page boundary. A page with no access
permission is appended to the top of the stack so that most stack overflows will result in a
SIGSEGV signal being sent to the offending thread. Thread stacks allocated by the caller are
used as is.

Using a default stack size for the new thread, instead of passing a user-specified stack size,
results in much better thr_create() performance. The default stack size for a user-thread is 1
megabyte in a 32-bit process and 2 megabyte in a 64-bit process.

A user-specified stack size must be greater than or equal to THR_MIN_STACK. A minimum stack
size may not accommodate the stack frame for the user thread function start_func. If a stack
size is specified, it must accommodate start_func requirements and the functions that it may
call in turn, in addition to the minimum requirement.

It is usually very difficult to determine the runtime stack requirements for a thread.
THR_MIN_STACK specifies how much stack storage is required to execute a trivial start_func.
The total runtime requirements for stack storage are dependent on the storage required to do
runtime linking, the amount of storage required by library runtimes (like printf()) that your
thread calls. Since these storage parameters are not known before the program runs, it is best
to use default stacks. If you know your runtime requirements or decide to use stacks that are
larger than the default, then it makes sense to specify your own stacks.

thr_create(3C)

man pages section 3: Basic Library Functions • Last Revised 16 Mar 20091022

thr_exit – terminate the calling thread

cc –mt [flag...] file...[library...]

#include <thread.h>

void thr_exit(void *status);

The thr_exit() function terminates the calling thread, in a similar way that exit(3C)
terminates the calling process. If the calling thread is not detached, then the thread's ID and
the exit status specified by status are retained. The value status is then made available to any
successful join with the terminating thread (see thr_join(3C)); otherwise, status is
disregarded allowing the thread's ID to be reclaimed immediately.

Any cancellation cleanup handlers that have been pushed and not yet popped are popped in
the reverse order that they were pushed and then executed. After all cancellation cleanup
handlers have been executed, if the thread has any thread-specific data, appropriate destructor
functions will be called in an unspecified order. Thread termination does not release any
application visible process resources, including, but not limited to, mutexes and file
descriptors, nor does it perform any process level cleanup actions, including, but not limited
to, calling any atexit() routines that might exist.

An exiting thread runs with all signals blocked. All thread termination functions, including
cancellation cleanup handlers and thread-specific data destructor functions, are called with all
signals blocked.

If any thread, including the main() thread, calls thr_exit(), only that thread will exit.

If main() returns or exits (either implicitly or explicitly), or any thread explicitly calls exit(),
the entire process will exit.

The behavior of thr_exit() is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
thr_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
thr_exit() status parameter value.

If any thread (except the main() thread) implicitly or explicitly returns, the result is the same
as if the thread called thr_exit() and it will return the value of status as the exit code.

The process will terminate with an exit status of 0 after the last non-daemon thread has
terminated (including the main() thread). This behavior is the same as if the application had
called exit() with a 0 argument at thread termination time.

Name

Synopsis

Description

thr_exit(3C)

Basic Library Functions 1023

The thr_exit() function cannot return to its caller.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(3C), thr_create(3C), thr_join(3C), thr_keycreate(3C), attributes(5),
standards(5)

Although only POSIX implements cancellation, cancellation can be used with Solaris threads,
due to their interoperability.

The status argument should not reference any variables local to the calling thread.

Return Values

Errors

Attributes

See Also

Notes

thr_exit(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 20071024

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_getconcurrency, thr_setconcurrency – get or set thread concurrency level

cc –mt [flag...] file...[library...]

#include <thread.h>

int thr_setconcurrency(int new_level);

int thr_getconcurrency(void);

These functions are obsolete and maintained for compatibility only. The
thr_setconcurrency() function updates the desired concurrency level that libthread
maintains for the calling process. This value does not affect the behavior of the calling process.

The thr_getconcurrency() function returns the current value for the desired concurrency
level.

The thr_getconcurrency() function always returns the current value for the desired
concurrency level.

If successful, the thr_setconcurrency() function returns 0. Otherwise, a non-zero value is
returned to indicate the error.

The thr_setconcurrency() function will fail if:

EAGAIN The specified concurrency level would cause a system resource to be exceeded.

EINVAL The value for new_level is negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

thr_getconcurrency(3C)

Basic Library Functions 1025

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_getprio, thr_setprio – access dynamic thread scheduling

cc –mt [flag...] file...[library...]

#include <thread.h>

int thr_setprio(thread_t target_thread, int priority);

int thr_getprio(thread_t target_thread, int *priority);

The thr_setprio() function sets the scheduling priority for the thread specified by
target_thread within the current process to the value given by priority.

The thr_getprio() function stores the current priority for the thread specified by
target_thread in the location pointed to by priority.

If the thr_setprio() function fails, the scheduling priority of the target thread is not
changed.

See priocntl(2), pthread_setschedprio(3C), and sched_setparam(3C).

If successful, the thr_getprio() and thr_setprio() functions return 0. Otherwise, an error
number is returned to indicate the error.

The thr_getprio() and thr_setprio() functions will fail if:

ESRCH The value specified by target_thread does not refer to an existing thread.

The thr_setprio() function will fail if:

EINVAL The value of priority is invalid for the scheduling policy of the specified thread.

EPERM The caller does not have the appropriate permission to set the priority to the value
specified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

priocntl(2), pthread_setschedprio(3C), sched_setparam(3C), thr_create(3C),
thr_suspend(3C), thr_yield(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

thr_getprio(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Apr 20081026

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_join – wait for thread termination

cc –mt [flag...] file...[library...]

#include <thread.h>

int thr_join(thread_t thread, thread_t *departed, void **status);

The thr_join() function suspends processing of the calling thread until the target thread
completes. The thread argument must be a member of the current process and cannot be a
detached thread. See thr_create(3C).

If two or more threads wait for the same thread to complete, all will suspend processing until
the thread has terminated, and then one thread will return successfully and the others will
return with an error of ESRCH. The thr_join() function will not block processing of the
calling thread if the target thread has already terminated.

If a thr_join() call returns successfully with a non-null status argument, the value passed to
thr_exit(3C) by the terminating thread will be placed in the location referenced by status.

If the target thread ID is 0, thr_join() finds and returns the status of a terminated
undetached thread in the process. If no such thread exists, it suspends processing of the calling
thread until a thread for which no other thread is waiting enters that state, at which time it
returns successfully, or until all other threads in the process are either daemon threads or
threads waiting in thr_join(), in which case it returns EDEADLK. See NOTES.

If departed is not NULL, it points to a location that is set to the ID of the terminated thread if
thr_join() returns successfully.

If successful, thr_join() returns 0. Otherwise, an error number is returned to indicate the
error.

EDEADLK A joining deadlock would occur, such as when a thread attempts to wait for
itself, or the calling thread is waiting for any thread to exit and only daemon
threads or waiting threads exist in the process.

ESRCH No undetached thread could be found corresponding to the given thread ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3C), thr_exit(3C), wait(3C), attributes(5), standards(5)

Using thr_join(3C) in the following syntax,

while (thr_join(0, NULL, NULL) == 0);

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

thr_join(3C)

Basic Library Functions 1027

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

will wait for the termination of all non-daemon threads, excluding threads that are themselves
waiting in thr_join().

thr_join(3C)

man pages section 3: Basic Library Functions • Last Revised 27 Mar 20001028

thr_keycreate, thr_keycreate_once, thr_setspecific, thr_getspecific – thread-specific data
functions

cc –mt [flag...] file... [library...]

#include <thread.h>

int thr_keycreate(thread_key_t *keyp,
void (*destructor)(void *));

int thr_keycreate_once(thread_key_t *keyp,
void (*destructor)(void *));

int thr_setspecific(thread_key_t key, void *value);

int thr_getspecific(thread_key_t key, void **valuep);

In general, thread key creation allocates a key that locates data specific to each thread in the
process. The key is global to all threads in the process, which allows each thread to bind a value
to the key once the key has been created. The key independently maintains specific values for
each binding thread. The thr_keycreate() function allocates a global key namespace,
pointed to by keyp, that is visible to all threads in the process. Each thread is initially bound to
a private element of this key, which allows access to its thread-specific data.

Upon key creation, a new key is assigned the value NULL for all active threads. Additionally,
upon thread creation, all previously created keys in the new thread are assigned the value
NULL.

Optionally, a destructor function destructor can be associated with each key. Upon thread exit,
if a key has a non-null destructor function and the thread has a non-null value associated with
that key, the destructor function is called with the current associated value. If more than one
destructor exists for a thread when it exits, the order of destructor calls is unspecified.

An exiting thread runs with all signals blocked. All thread termination functions, including
thread-specific data destructor functions, are called with all signals blocked.

The thr_keycreate_once() function is identical to the thr_keycreate() function except
that the key pointed to by keyp must be statically initialized with the value THR_ONCE_KEY
before calling thr_keycreate_once() and the key will be created exactly once. This is
equivalent to using pthread_once() to call a onetime initialization function that calls
thr_keycreate() to create the data key.

Once a key has been created, each thread can bind a new value to the key using
thr_setspecific(). The values are unique to the binding thread and are individually
maintained. These values continue for the life of the calling thread.

Proper synchronization of key storage and access must be ensured by the caller. The value
argument to thr_setspecific() is generally a pointer to a block of dynamically allocated
memory reserved by the calling thread for its own use. See EXAMPLES below.

Name

Synopsis

Description

Create Key

Set Value

thr_keycreate(3C)

Basic Library Functions 1029

At thread exit, the destructor function, which is associated at time of creation, is called and it
uses the specific key value as its sole argument.

thr_getspecific() stores the current value bound to key for the calling thread into the
location pointed to by valuep.

If successful, thr_keycreate(), thr_keycreate_once(), thr_setspecific() and
thr_getspecific() return 0. Otherwise, an error number is returned to indicate the error.

If the following conditions occur, thr_keycreate() and thr_keycreate_once() return the
corresponding error number:

EAGAIN The system lacked the necessary resources to create another thread-specific data
key.

ENOMEM Insufficient memory exists to create the key.

If the following conditions occur, thr_setspecific() returns the corresponding error
number:

ENOMEM Insufficient memory exists to associate the value with the key.

The thr_setspecific() function returns the corresponding error number:

EINVAL The key value is invalid.

EXAMPLE 1 Call the thread-specific data from more than one thread without special initialization.

In this example, the thread-specific data in this function can be called from more than one
thread without special initialization. For each argument passed to the executable, a thread is
created and privately bound to the string-value of that argument.

/* cc -mt thisfile.c */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <thread.h>

void *thread_specific_data(void *);

void cleanup(void*);

#define MAX_ARGC 20

thread_t tid[MAX_ARGC];

int num_threads;

int

main(int argc, char *argv[]) {

int i;

num_threads = argc - 1;

for (i = 0; i < num_threads; i++)

Get Value

Return Values

Errors

Examples

thr_keycreate(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 20071030

EXAMPLE 1 Call the thread-specific data from more than one thread without special initialization.
(Continued)

thr_create(NULL, 0, thread_specific_data, argv[i+1], 0, &tid[i]);

for (i = 0; i < num_threads; i++)

thr_join(tid[i], NULL, NULL);

return (0);

} /* end main */

void *

thread_specific_data(void *arg) {

static thread_key_t key = THR_ONCE_KEY;

char *private_data = arg;

void *tsd = NULL;

void *data;

thr_keycreate_once(&key, cleanup);

thr_getspecific(key, &tsd);

if (tsd == NULL) {

data = malloc(strlen(private_data) + 1);

strcpy(data, private_data);

thr_setspecific(key, data);

thr_getspecific(key, &tsd);

}

printf("tsd for %d = %s\n", thr_self(), (char *)tsd);

thr_getspecific(key, &tsd);

printf("tsd for %d remains %s\n", thr_self(), (char *)tsd);

return (NULL);

} /* end thread_specific_data */

void

cleanup(void *v) {

/* application-specific clean-up function */

free(v);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

pthread_once(3C), thr_exit(3C), attributes(5), standards(5)

Attributes

See Also

thr_keycreate(3C)

Basic Library Functions 1031

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The thr_getspecific() and thr_setspecific() functions can be called either explicitly or
implicitly from a thread-specific data destructor function. Calling thr_setspecific() from a
destructor can result in lost storage or infinite loops.

Warnings

thr_keycreate(3C)

man pages section 3: Basic Library Functions • Last Revised 2 Nov 20071032

thr_kill – send a signal to a thread

cc –mt [flag...] file... [library...]

#include <signal.h>

#include <thread.h>

int thr_kill(thread_t thread, int sig);

The thr_kill() function sends the sig signal to the thread designated by thread. The thread
argument must be a member of the same process as the calling thread. The sig argument must
be one of the signals listed in signal.h(3HEAD), with the exception of SIGCANCEL being
reserved and off limits to thr_kill(). If sig is 0, a validity check is done for the existence of the
target thread; no signal is sent.

Upon successful completion, thr_kill() returns 0. Otherwise, an error number is returned.
In the event of failure, no signal is sent.

The thr_kill() function will fail if:

EINVAL The sig argument value is not zero and is an invalid or an unsupported signal
number.

ESRCH No thread was found that corresponded to the thread designated by thread ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

kill(2), sigaction(2), raise(3C), signal.h(3HEAD), thr_self(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

thr_kill(3C)

Basic Library Functions 1033

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_main – identify the main thread

cc –mt [flag...] file... [library...]

#include <thread.h>

int thr_main(void);

The thr_main() function returns one of the following:

1 if the calling thread is the main thread

0 if the calling thread is not the main thread

-1 if libthread is not linked in or thread initialization has not completed

/lib/libthread

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_self(3C), attributes(5)

Name

Synopsis

Description

Files

Attributes

See Also

thr_main(3C)

man pages section 3: Basic Library Functions • Last Revised 11 May 19981034

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

thr_min_stack – return the minimum-allowable size for a thread's stack

cc –mt [flag...] file...[library...]

#include <thread.h>

size_t thr_min_stack(void);

When a thread is created with a user-supplied stack, the user must reserve enough space to
run this thread. In a dynamically linked execution environment, it is very hard to know what
the minimum stack requirements are for a thread. The function thr_min_stack() returns the
amount of space needed to execute a null thread. This is a thread that was created to execute a
null procedure. A thread that does something useful should have a stack size that is
thr_min_stack() + <some increment>.

Most users should not be creating threads with user-supplied stacks. This functionality was
provided to support applications that wanted complete control over their execution
environment.

Typically, users should let the threads library manage stack allocation. The threads library
provides default stacks which should meet the requirements of any created thread.

thr_min_stack() will return the unsigned int THR_MIN_STACK, which is the
minimum-allowable size for a thread's stack.

In this implementation the default size for a user-thread's stack is one mega-byte. If the second
argument to thr_create(3C) is NULL, then the default stack size for the newly-created thread
will be used. Otherwise, you may specify a stack-size that is at least THR_MIN_STACK, yet less
than the size of your machine's virtual memory.

It is recommended that the default stack size be used.

To determine the smallest-allowable size for a thread's stack, execute the following:

/* cc thisfile.c -lthread */

#define _REENTRANT

#include <thread.h>

#include <stdio.h>

main() {

printf("thr_min_stack() returns %u\n",thr_min_stack());

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Name

Synopsis

Description

Attributes

thr_min_stack(3C)

Basic Library Functions 1035

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

attributes(5), standards(5)See Also

thr_min_stack(3C)

man pages section 3: Basic Library Functions • Last Revised 12 May 19981036

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_self – get calling thread's ID

cc –mt [flag...] file...[library...]

#include <thread.h>

thread_t thr_self(void);

typedef(unsigned int thread_t);

thr_self() returns the thread ID of the calling thread.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Errors

Attributes

See Also

thr_self(3C)

Basic Library Functions 1037

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_sigsetmask – change or examine calling thread's signal mask

cc –mt [flag...] file... [library...]

#include <thread.h>

#include <signal.h>

int thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset);

The thr_sigsetmask() function changes or examines a calling thread's signal mask. Each
thread has its own signal mask. A new thread inherits the calling thread's signal mask and
priority; however, pending signals are not inherited. Signals pending for a new thread will be
empty.

If the value of the argument set is not NULL, set points to a set of signals that can modify the
currently blocked set. If the value of set is NULL, the value of how is insignificant and the
thread's signal mask is unmodified; thus, thr_sigsetmask() can be used to inquire about the
currently blocked signals.

The value of the argument how specifies the method in which the set is changed and takes one
of the following values:

SIG_BLOCK set corresponds to a set of signals to block. They are added to the current
signal mask.

SIG_UNBLOCK set corresponds to a set of signals to unblock. These signals are deleted from
the current signal mask.

SIG_SETMASK set corresponds to the new signal mask. The current signal mask is replaced
by set.

If the value of oset is not NULL, it points to the location where the previous signal mask is
stored.

Upon successful completion, the thr_sigsetmask() function returns 0. Otherwise, it returns
a non-zero value.

The thr_sigsetmask() function will fail if:

EINVAL The value of how is not defined and oset is NULL.

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal mask.

The following example shows how to create a default thread that can serve as a signal
catcher/handler with its own signal mask. new will have a different value from the creator's
signal mask.

As POSIX threads and Solaris threads are fully compatible even within the same process, this
example uses pthread_create(3C) if you execute a.out 0, or thr_create(3C) if you execute
a.out 1.

Name

Synopsis

Description

Return Values

Errors

Examples

thr_sigsetmask(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 20051038

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

In this example:

■ The sigemptyset(3C) function initializes a null signal set, new. The sigaddset(3C)
function packs the signal, SIGINT, into that new set.

■ Either pthread_sigmask() or thr_sigsetmask() is used to mask the signal, SIGINT
(CTRL-C), from the calling thread, which is main(). The signal is masked to guarantee
that only the new thread will receive this signal.

■ pthread_create() or thr_create() creates the signal-handling thread.
■ Using pthread_join(3C) or thr_join(3C), main() then waits for the termination of that

signal-handling thread, whose ID number is user_threadID. Then main() will sleep(3C)
for 2 seconds, after which the program terminates.

■ The signal-handling thread, handler:
■ Assigns the handler interrupt() to handle the signal SIGINT by the call to

sigaction(2).
■ Resets its own signal set to not block the signal, SIGINT.
■ Sleeps for 8 seconds to allow time for the user to deliver the signal SIGINT by pressing

the CTRL-C.

/* cc thisfile.c -lthread -lpthread */

#define _REENTRANT /* basic first 3-lines for threads */

#include <pthread.h>

#include <thread.h>

thread_t user_threadID;

sigset_t new;

void *handler(), interrupt();

int

main(int argc, char *argv[]){

test_argv(argv[1]);

sigemptyset(&new);

sigaddset(&new, SIGINT);

switch(*argv[1]) {

case ’0’: /* POSIX */

pthread_sigmask(SIG_BLOCK, &new, NULL);

pthread_create(&user_threadID, NULL, handler, argv[1]);

pthread_join(user_threadID, NULL);

break;

thr_sigsetmask(3C)

Basic Library Functions 1039

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

case ’1’: /* Solaris */

thr_sigsetmask(SIG_BLOCK, &new, NULL);

thr_create(NULL, 0, handler, argv[1], 0, &user_threadID);

thr_join(user_threadID, NULL, NULL);

break;

} /* switch */

printf("thread handler, # %d, has exited\n",user_threadID);
sleep(2);

printf("main thread, # %d is done\n", thr_self());

return (0)

} /* end main */

struct sigaction act;

void *

handler(char *argv1)

{

act.sa_handler = interrupt;

sigaction(SIGINT, &act, NULL);

switch(*argv1){

case ’0’: /* POSIX */

pthread_sigmask(SIG_UNBLOCK, &new, NULL);

break;

case ’1’: /* Solaris */

thr_sigsetmask(SIG_UNBLOCK, &new, NULL);

break;

}

printf("\n Press CTRL-C to deliver SIGINT signal to the process\n");
sleep(8); /* give user time to hit CTRL-C */

return (NULL)

}

void

interrupt(int sig)

{

printf("thread %d caught signal %d\n", thr_self(), sig);

}

void test_argv(char argv1[]) {

if(argv1 == NULL) {

printf("use 0 as arg1 to use thr_create();\n \

or use 1 as arg1 to use pthread_create()\n");
exit(NULL);

thr_sigsetmask(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 20051040

EXAMPLE 1 Create a default thread that can serve as a signal catcher/handler with its own signal
mask. (Continued)

}

}

In the last example, the handler thread served as a signal-handler while also taking care of
activity of its own (in this case, sleeping, although it could have been some other activity). A
thread could be completely dedicated to signal-handling simply by waiting for the delivery of a
selected signal by blocking with sigwait(2). The two subroutines in the previous example,
handler() and interrupt(), could have been replaced with the following routine:

void *

handler(void *ignore)

{ int signal;

printf("thread %d waiting for you to press the CTRL-C keys\n",
thr_self());

sigwait(&new, &signal);

printf("thread %d has received the signal %d \n", thr_self(), signal);

}

/*pthread_create() and thr_create() would use NULL instead of

argv[1] for the arg passed to handler() */

In this routine, one thread is dedicated to catching and handling the signal specified by the set
new, which allows main() and all of its other sub-threads, created after pthread_sigmask() or
thr_sigsetmask() masked that signal, to continue uninterrupted. Any use of sigwait(2)
should be such that all threads block the signals passed to sigwait(2) at all times. Only the
thread that calls sigwait() will get the signals. The call to sigwait(2) takes two arguments.

For this type of background dedicated signal-handling routine, a Solaris daemon thread can
be used by passing the argument THR_DAEMON to thr_create().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe and Async-Signal-Safe

sigaction(2), sigprocmask(2), sigwait(2), cond_wait(3C), pthread_cancel(3C),
pthread_create(3C), pthread_join(3C), pthread_self(3C), sigaddset(3C),
sigemptyset(3C), sigsetops(3C), sleep(3C), attributes(5), cancellation(5),
standards(5)

It is not possible to block signals that cannot be caught or ignored (see sigaction(2)). It is also
not possible to block or unblock SIGCANCEL, as SIGCANCEL is reserved for the implementation
of POSIX thread cancellation (see pthread_cancel(3C) and cancellation(5)). This
restriction is quietly enforced by the standard C library.

Attributes

See Also

Notes

thr_sigsetmask(3C)

Basic Library Functions 1041

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cancellation-5

Using sigwait(2) in a dedicated thread allows asynchronously generated signals to be
managed synchronously; however, sigwait(2) should never be used to manage
synchronously generated signals.

Synchronously generated signals are exceptions that are generated by a thread and are
directed at the thread causing the exception. Since sigwait() blocks waiting for signals, the
blocking thread cannot receive a synchronously generated signal.

Calling thesigprocmask(2) function will be the same as if thr_sigsetmask() or
pthread_sigmask() has been called. POSIX leaves the semantics of the call to
sigprocmask(2) unspecified in a multi-threaded process, so programs that care about POSIX
portability should not depend on this semantic.

If a signal is delivered while a thread is waiting on a condition variable, the cond_wait(3C)
function will be interrupted and the handler will be executed. The state of the lock protecting
the condition variable is undefined while the thread is executing the signal handler.

Signals that are generated synchronously should not be masked. If such a signal is blocked and
delivered, the receiving process is killed.

thr_sigsetmask(3C)

man pages section 3: Basic Library Functions • Last Revised 23 Mar 20051042

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigprocmask-2

thr_stksegment – get thread stack address and size

cc –mt [flag...] file...[library...]

#include <thread.h>

#include <signal.h>

int thr_stksegment(stack_t *ss);

The thr_stksegment() function returns, in its stack_t argument, the address and size of the
calling thread's stack.

The stack_t structure includes the following members:

void *ss_sp

size_t ss_size

int ss_flags

On successful return from thr_stksegment(), ss_sp contains the high address of the caller's
stack and ss_size contains the size of the stack in bytes. The ss_flags member is always 0.
Note that the meaning of ss_sp is reversed from other uses of stack_t such as
sigaltstack(2) where ss_sp is the low address.

The stack information provided by thr_stksegment() is typically used by debuggers, garbage
collectors, and similar applications. Most applications should not require such information.

The thr_stksegment() function returns 0 if the thread stack address and size were
successfully retrieved. Otherwise, it returns a non-zero error value.

The thr_stksegment() function will fail if:

EAGAIN The stack information for the thread is not available because the thread's
initialization is not yet complete, or the thread is an internal thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sigaltstack(2), thr_create(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

thr_stksegment(3C)

Basic Library Functions 1043

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaltstack-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

thr_suspend, thr_continue – suspend or continue thread execution

cc –mt [flag...] file...[library...]

#include <thread.h>

int thr_suspend(thread_t target_thread);

int thr_continue(thread_t target_thread);

The thr_suspend() function immediately suspends the execution of the thread specified by
target_thread. On successful return from thr_suspend(), the suspended thread is no longer
executing. Once a thread is suspended, subsequent calls to thr_suspend() have no effect.

The thr_continue() function resumes the execution of a suspended thread. Once a
suspended thread is continued, subsequent calls to thr_continue() have no effect.

A suspended thread will not be awakened by any mechanism other than a call to
thr_continue(). Signals and the effect of calls tomutex_unlock(3C), rw_unlock(3C),
sema_post(3C), cond_signal(3C), and cond_broadcast(3C) remain pending until the
execution of the thread is resumed by thr_continue().

If successful, the thr_suspend() and thr_continue() functions return 0. Otherwise, a
non-zero value is returned to indicate the error.

The thr_suspend() and thr_continue() functions will fail if:

ESRCH The target_thread cannot be found in the current process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3C), thr_join(3C), attributes(5), standards(5)

The thr_suspend() function is extremely difficult to use safely because it suspends the target
thread with no concern for the target thread's state. The target thread could be holding locks,
waiting for a lock, or waiting on a condition variable when it is unconditionally suspended.
The thread will not run until thr_continue() is applied, regardless of any calls to
mutex_unlock(), cond_signal(), or cond_broadcast() by other threads. Its existence on a
sleep queue can interfere with the waking up of other threads that are on the same sleep queue.

The thr_suspend() and thr_continue() functions should be avoided. Mechanisms that
involve the cooperation of the targeted thread, such as mutex locks and condition variables,
should be employed instead.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Warnings

thr_suspend(3C)

man pages section 3: Basic Library Functions • Last Revised 22 Mar 20021044

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

thr_yield – yield to another thread

cc –mt [flag...] file...[library...]

#include <thread.h>

void thr_yield(void);

The thr_yield() function causes the current thread to yield its execution in favor of another
thread with the same or greater priority.

The thr_yield() function returns nothing and does not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_setprio(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

thr_yield(3C)

Basic Library Functions 1045

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

timeradd, timersub, timerclear, timerisset, timercmp – operations on timeval structures

#include <sys/time.h>

void timeradd(struct timeval *a, struct timeval *b,
struct timeval *res);

void timerclear(struct timeval *tvp);

int timercmp(struct timeval *a, struct timeval *b, CMP);

int timerisset(struct timeval *tvp);

void timersub(struct timeval *a, struct timeval *b,
struct timeval *res);

These macros are provided for manipulating timeval structures for use with
gettimeofday(3C) and settimeofday(3C) operands. The structure is defined in
<sys/time.h> as:

struct timeval {

long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */

};

The timeradd() macro adds the time information stored in a to b and stores the resulting
timeval in res. The results are simplified such that the value of res→tv_usec is always less than
1,000,000 (1 second).

The timersub() macro subtracts the time information stored in b from a and stores the
resulting timeval in res.

The timerclear() macro initializes tvp to midnight (0 hour) January 1st, 1970 (the Epoch).

The timerisset() macro returns true if tvp is set to any time value other than the Epoch.

The timercmp() macro compares a to b using the form a CMP b, where CMP is one of <, <=,
==, !=, >=, or >.

These macros are not available in function form. All of these macros evaluate their arguments
more than once. If parameters passed to these macros are expressions with side effects, the
results are undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with Exceptions

Name

Synopsis

Description

Usage

Attributes

timeradd(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Jun 20081046

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gettimeofday(3C), attributes(5)See Also

timeradd(3C)

Basic Library Functions 1047

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

timer_create – create a timer

#include <signal.h>

#include <time.h>

int timer_create(clockid_t clock_id,
struct sigevent *restrict evp, timer_t *restrict timerid);

The timer_create() function creates a timer using the specified clock, clock_id, as the timing
base. The timer_create() function returns, in the location referenced by timerid, a timer ID
of type timer_t used to identify the timer in timer requests. This timer ID will be unique
within the calling process until the timer is deleted. The particular clock, clock_id, is defined in
<time.h>. The timer whose ID is returned will be in a disarmed state upon return from
timer_create().

The evp argument, if non-null, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification that will occur when the timer expires (see
signal.h(3HEAD) for event notification details). If the evp argument is NULL, the effect is as if
the evp argument pointed to a sigevent structure with the sigev_notify member having the
value SIGEV_SIGNAL, the sigev_signo having the value SIGALARM, and the sigev_value
member having the value of the timer ID.

The system defines a set of clocks that can be used as timing bases for per-process timers. The
following values for clock_id are supported:

CLOCK_REALTIME wall clock

CLOCK_VIRTUAL user CPU usage clock

CLOCK_PROF user and system CPU usage clock

CLOCK_HIGHRES non-adjustable, high-resolution clock

For timers created with a clock_id of CLOCK_HIGHRES, the system will attempt to use an optimal
hardware source. This may include, but is not limited to, per-CPU timer sources. The actual
hardware source used is transparent to the user and may change over the lifetime of the timer.
For example, if the caller that created the timer were to change its processor binding or its
processor set, the system may elect to drive the timer with a hardware source that better
reflects the new binding. Timers based on a clock_id of CLOCK_HIGHRES are ideally suited for
interval timers that have minimal jitter tolerance.

Timers are not inherited by a child process across a fork(2) and are disarmed and deleted by a
call to one of the exec functions (see exec(2)).

Upon successful completion, timer_create() returns 0 and updates the location referenced
by timerid to a timer_t, which can be passed to the per-process timer calls. If an error occurs,
the function returns −1 and sets errno to indicate the error. The value of timerid is undefined
if an error occurs.

Name

Synopsis

Description

Return Values

timer_create(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 20081048

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

The timer_create() function will fail if:

EAGAIN The system lacks sufficient signal queuing resources to honor the request, or the
calling process has already created all of the timers it is allowed by the system.

EINVAL The specified clock ID, clock_id, is not defined.

EPERM The specified clock ID, clock_id, is CLOCK_HIGHRES and the
{PRIV_PROC_CLOCK_HIGHRES} is not asserted in the effective set of the calling
process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

exec(2), fork(2), time(2), clock_settime(3C), signal(3C), signal.h(3HEAD),
timer_delete(3C), timer_settime(3C), attributes(5), privileges(5), standards(5)

Errors

Attributes

See Also

timer_create(3C)

Basic Library Functions 1049

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

timer_delete – delete a timer

#include <time.h>

int timer_delete(timer_t timerid);

The timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create(3C) function. If the timer is armed when timer_delete() is called, the
behavior will be as if the timer is automatically disarmed before removal. The disposition of
pending signals for the deleted timer is unspecified.

If successful, the function returns 0. Otherwise, the function returns −1 and sets errno to
indicate the error.

The timer_delete() function will fail if:

EINVAL The timer ID specified by timerid is not a valid timer ID.

ENOSYS The timer_delete() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

timer_create(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

timer_delete(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 20081050

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

timer_settime, timer_gettime, timer_getoverrun – per-process timers

#include <time.h>

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_getoverrun(timer_t timerid);

The timer_settime() function sets the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value
member of value is non-zero. If the specified timer was already armed when timer_settime()

is called, this call resets the time until next expiration to the value specified. If the it_value
member of value is 0, the timer is disarmed. The effect of disarming or resetting a timer on
pending expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() behaves as if the
time until next expiration is set to be equal to the interval specified by the it_value member
of value. That is, the timer expires in it_value nanoseconds from when the call is made. If the
flag TIMER_ABSTIME is set in the argument flags, timer_settime() behaves as if the time until
next expiration is set to be equal to the difference between the absolute time specified by the
it_value member of value and the current value of the clock associated with timerid. That is,
the timer expires when the clock reaches the value specified by the it_value member of value.
If the specified time has already passed, the function succeeds and the expiration notification
is made.

The reload value of the timer is set to the value specified by the it_interval member of value.
When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is
specified.

Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified timer will be rounded up to the larger multiple of the resolution. Quantization
error will not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the location
referenced by ovalue, a value representing the previous amount of time before the timer would
have expired or 0 if the timer was disarmed, together with the previous timer reload value. The
members of ovalue are subject to the resolution of the timer, and they are the same values that
would be returned by a timer_gettime() call at that point in time.

The timer_gettime() function stores the amount of time until the specified timer, timerid,
expires and the reload value of the timer into the space pointed to by the value argument. The
it_value member of this structure contains the amount of time before the timer expires, or 0
if the timer is disarmed. This value is returned as the interval until timer expiration, even if the
timer was armed with absolute time. The it_interval member of value contains the reload
value last set by timer_settime().

Name

Synopsis

Description

timer_settime(3C)

Basic Library Functions 1051

Only a single signal will be queued to the process for a given timer at any point in time. When
a timer for which a signal is still pending expires, no signal will be queued, and a timer overrun
occurs. When a timer expiration signal is delivered to or accepted by a process, the
timer_getoverrun() function returns the timer expiration overrun count for the specified
timer. The overrun count returned contains the number of extra timer expirations that
occurred between the time the signal was generated (queued) and when it was delivered or
accepted, up to but not including an implementation-dependent maximum of
DELAYTIMER_MAX. If the number of such extra expirations is greater than or equal to
DELAYTIMER_MAX, then the overrun count will be set to DELAYTIMER_MAX. The value returned
by timer_getoverrun() applies to the most recent expiration signal delivery or acceptance
for the timer. If no expiration signal has been delivered for the timer, the meaning of the
overrun count returned is undefined.

If the timer_settime() or timer_gettime() functions succeed, 0 is returned. If an error
occurs for either of these functions, −1 is returned, and errno is set to indicate the error. If the
timer_getoverrun() function succeeds, it returns the timer expiration overrun count as
explained above.

The timer_settime(), timer_gettime() and timer_getoverrun() functions will fail if:

EINVAL The timerid argument does not correspond to a timer returned by
timer_create(3C) but not yet deleted by timer_delete(3C).

ENOSYS The timer_settime(), timer_gettime(), and timer_getoverrun() functions
are not supported by the system. The timer_settime() function will fail if:

EINVAL A value structure specified a nanosecond value less than zero or greater than or
equal to 1000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

time.h(3HEAD), clock_settime(3C), timer_create(3C), timer_delete(3C),
attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

timer_settime(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 20081052

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

tmpfile – create a temporary file

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile() function creates a temporary file in /var/tmp and opens a corresponding
stream. The file will automatically be deleted when all references to the file are closed. The file
is opened as in fopen(3C) for update (w+).

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, tmpfile() returns a pointer to the stream of the file that is
created. Otherwise, it returns a null pointer and sets errno to indicate the error.

The tmpfile() function will fail if:

EINTR A signal was caught during the execution of tmpfile().

EMFILE There are OPEN_MAX file descriptors currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

ENOSPC The directory or file system which would contain the new file cannot be expanded.

The tmpfile() function may fail if:

EMFILE There are FOPEN_MAX streams currently open in the calling process.

ENOMEM Insufficient storage space is available.

The stream refers to a file which is unlinked. If the process is killed in the period between file
creation and unlinking, a permanent file may be left behind.

The tmpfile() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

unlink(2), fopen(3C), mkstemp(3C), mktemp(3C), tmpnam(3C), lf64(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

tmpfile(3C)

Basic Library Functions 1053

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

tmpnam, tmpnam_r, tempnam – create a name for a temporary file

#include <stdio.h>

char *tmpnam(char *s);

char *tmpnam_r(char *s);

char *tempnam(const char *dir, const char *pfx);

These functions generate file names that can be used safely for a temporary file.

The tmpnam() function always generates a file name using the path prefix defined as P_tmpdir
in the <stdio.h> header. On Solaris systems, the default value for P_tmpdir is /var/tmp. If s is
NULL, tmpnam() leaves its result in a thread–specific data area and returns a pointer to that
area. The next call to tmpnam() by the same thread will destroy the contents of the area. If s is
not NULL, it is assumed to be the address of an array of at least L_tmpnam bytes, where L_tmpnam
is a constant defined through inclusion of <stdio.h>. The tmpnam() function places its result
in that array and returns s.

The tmpnam_r() function has the same functionality as tmpnam() except that if s is a null
pointer, the function returns NULL.

The tempnam() function allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is NULL or points to a
string that is not a name for an appropriate directory, the path prefix defined as P_tmpdir in
the <stdio.h> header is used. If that directory is not accessible, /tmp is used. If, however, the
TMPDIR environment variable is set in the user's environment, its value is used as the
temporary-file directory.

Many applications prefer that temporary files have certain initial character sequences in their
names. The pfx argument may be NULL or point to a string of up to five characters to be used as
the initial characters of the temporary-file name.

Upon successful completion, tempnam() uses malloc(3C) to allocate space for a string, puts
the generated pathname in that space, and returns a pointer to it. The pointer is suitable for
use in a subsequent call to free(). If tempnam() cannot return the expected result for any
reason (for example, malloc() failed), or if none of the above-mentioned attempts to find an
appropriate directory was successful, a null pointer is returned and errno is set to indicate the
error.

The tempnam() function will fail if:

ENOMEM Insufficient storage space is available.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3C) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It
is the user's responsibility to remove the file when its use is ended.

Name

Synopsis

Description

tmpnam()

tmpnam_r()

tempnam()

Errors

Usage

tmpnam(3C)

man pages section 3: Basic Library Functions • Last Revised 18 May 20041054

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2

If called more than TMP_MAX (defined in <stdio.h>) times in a single process, these functions
start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some other
process to create a file with the same name. This can never happen if that other process is using
these functions or mktemp(3C) and the file names are chosen to render duplication by other
means unlikely.

The tmpnam() function is safe to use in multithreaded applications because it employs
thread-specific data if it is passed a NULL pointer. However, its use is discouraged. The
tempnam() function is safe in multithreaded applications and should be used instead.

When compiling multithreaded applications, the _REENTRANT flag must be defined on the
compile line. This flag should be used only with multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability tmpnam() and tempnam() are Standard.

MT-Level Safe

creat(2), unlink(2), fopen(3C), free(3C), malloc(3C), mktemp(3C), mkstemp(3C),
tmpfile(3C), attributes(5), standards(5)

Attributes

See Also

tmpnam(3C)

Basic Library Functions 1055

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

toascii – translate integer to a 7-bit ASCII character

#include <ctype.h>

int toascii(int c);

The toascii() function converts its argument into a 7-bit ASCII character.

The toascii() function returns the value (c & 0x7f).

No errors are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

isascii(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

toascii(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021056

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

_tolower – transliterate upper-case characters to lower-case

#include <ctype.h>

int _tolower(int c);

The _tolower() macro is equivalent to tolower(3C) except that the argument c must be an
upper-case letter.

On successful completion, _tolower() returns the lower-case letter corresponding to the
argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

isupper(3C), tolower(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

_tolower(3C)

Basic Library Functions 1057

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

tolower – transliterate upper-case characters to lower-case

#include <ctype.h>

int tolower(int c);

The tolower() function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the argument is
returned unchanged. If the argument of tolower() represents an upper-case letter, and there
exists a corresponding lower-case letter (as defined by character type information in the
program locale category LC_CTYPE), the result is the corresponding lower-case letter. All
other arguments in the domain are returned unchanged.

On successful completion, tolower() returns the lower-case letter corresponding to the
argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

_tolower(3C), setlocale(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

tolower(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021058

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

_toupper – transliterate lower-case characters to upper-case

#include <ctype.h>

int _toupper(int c);

The _toupper() macro is equivalent to toupper(3C) except that the argument c must be a
lower-case letter.

On successful completion, _toupper() returns the upper-case letter corresponding to the
argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

islower(3C), toupper(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

_toupper(3C)

Basic Library Functions 1059

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

toupper – transliterate lower-case characters to upper-case

#include <ctype.h>

int toupper(int c);

The toupper() function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the argument is
returned unchanged. If the argument of toupper() represents a lower-case letter, and there
exists a corresponding upper-case letter (as defined by character type information in the
program locale category LC_CTYPE), the result is the corresponding upper-case letter. All other
arguments in the domain are returned unchanged.

On successful completion, toupper() returns the upper-case letter corresponding to the
argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

_toupper(3C), setlocale(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

toupper(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021060

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

towctrans – wide-character mapping

#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

The towctrans() function maps the wide character wc using the mapping described by desc.
The current setting of the LC_CTYPE category shall be the same as during the call to wctrans()

that returned the value desc.

The function call towctrans(wc, wctrans("tolower")) behaves the same as towlower(wc).

The function call towctrans(wc, wctrans("toupper")) behaves the same as towupper(wc).

The towctrans() function returns the mapped value of wc, using the mapping described by
desc; otherwise, it returns wc unchanged.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), wctrans(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

towctrans(3C)

Basic Library Functions 1061

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

towlower – transliterate upper-case wide-character code to lower-case

#include <wchar.h>

wint_t towlower(wint_t wc);

The towlower() function has as a domain a type wint_t, the value of which must be a
character representable as a wchar_t, and must be a wide-character code corresponding to a
valid character in the current locale or the value of WEOF. If the argument has any other value,
the argument is returned unchanged. If the argument of towlower() represents an upper-case
wide-character code, and there exists a corresponding lower-case wide-character code (as
defined by character type information in the program locale category LC_CTYPE), the result is
the corresponding lower-case wide-character code. All other arguments in the domain are
returned unchanged.

On successful completion, towlower() returns the lower-case letter corresponding to the
argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

iswalpha(3C), setlocale(3C), towupper(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

towlower(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021062

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

towupper – transliterate lower-case wide-character code to upper-case

#include <wchar.h>

wint_t towupper(wint_t wc);

The towupper() function has as a domain a type wint_t, the value of which must be a
character representable as a wchar_t, and must be a wide-character code corresponding to a
valid character in the current locale or the value of WEOF. If the argument has any other value,
the argument is returned unchanged. If the argument of towupper() represents a lower-case
wide-character code (as defined by character type information in the program locale category
LC_CTYPE), the result is the corresponding upper-case wide-character code. All other
arguments in the domain are returned unchanged.

Upon successful completion, towupper() returns the upper-case letter corresponding to the
argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe

iswalpha(3C), setlocale(3C), towlower(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

towupper(3C)

Basic Library Functions 1063

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

truncate, ftruncate – set a file to a specified length

#include <unistd.h>

int truncate(const char *path, off_t length);

int ftruncate(int fildes, off_t length);

The truncate() function causes the regular file named by path to have a size equal to length
bytes.

If the file previously was larger than length, the extra data is discarded. If the file was previously
shorter than length, its size is increased, and the extended area appears as if it were zero-filled.

The application must ensure that the process has write permission for the file.

This function does not modify the file offset for any open file descriptions associated with the
file.

The ftruncate() function causes the regular file referenced by fildes to be truncated to length.
If the size of the file previously exceeded length, the extra data is no longer available to reads on
the file. If the file previously was smaller than this size, ftruncate() increases the size of the
file with the extended area appearing as if it were zero-filled. The value of the seek pointer is
not modified by a call to ftruncate().

The ftruncate() function works only with regular files and shared memory. If fildes refers to
a shared memory object, ftruncate() sets the size of the shared memory object to length. If
fildes refers to a directory or is not a valid file descriptor open for writing, ftruncate() fails.

If the effect of ftruncate() is to decrease the size of a shared memory object or memory
mapped file and whole pages beyond the new end were previously mapped, then the whole
pages beyond the new end shall be discarded.

If the effect of ftruncate() is to increase the size of a shared memory object, it is unspecified if
the contents of any mapped pages between the old end-of-file and the new are flushed to the
underlying object.

These functions do not modify the file offset for any open file descriptions associated with the
file. On successful completion, if the file size is changed, these functions will mark for update
the st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and
S_ISGID bits of the file mode are left unchanged.

If the request would cause the file size to exceed the soft file size limit for the process, the
request will fail and a SIGXFSZ signal will be generated for the process.

Upon successful completion, ftruncate() and truncate() return 0. Otherwise, −1 is
returned and errno is set to indicate the error.

Name

Synopsis

Description

Return Values

truncate(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Apr 20021064

The ftruncate() and truncate() functions will fail if:

EINTR A signal was caught during execution.

EINVAL The length argument was less than 0.

EFBIG or EINVAL The length argument was greater than the maximum file size.

EIO An I/O error occurred while reading from or writing to a file system.

EROFS The named file resides on a read-only file system.

The truncate() function will fail if:

EACCES A component of the path prefix denies search permission, or write
permission is denied on the file.

EFAULT The path argument points outside the process' allocated address space.

EINVAL The path argument is not an ordinary file.

EISDIR The named file is a directory.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE The maximum number of file descriptors available to the process has been
reached.

ENAMETOOLONG The length of the specified pathname exceeds {PATH_MAX} bytes, or the
length of a component of the pathname exceeds {NAME_MAX} bytes.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENFILE Additional space could not be allocated for the system file table.

ENOTDIR A component of the path prefix of path is not a directory.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

The ftruncate() function will fail if:

EAGAIN The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file (see chmod(2)).

EBADF or EINVAL The fildes argument is not a file descriptor open for writing.

EFBIG The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes.

EINVAL The fildes argument references a file that was opened without write
permission.

Errors

truncate(3C)

Basic Library Functions 1065

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2

EINVAL The fildes argument does not correspond to an ordinary file.

ENOLINK The fildes argument points to a remote machine and the link to that
machine is no longer active.

The truncate() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

The truncate() and ftruncate() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

chmod(2), fcntl(2), open(2), attributes(5), lf64(5), standards(5)

Usage

Attributes

See Also

truncate(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Apr 20021066

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

tsearch, tfind, tdelete, twalk – manage binary search trees

#include <search.h>

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

void *tfind(const void *key, void * const *rootp,
int (*compar)(const void *, const void *));

void *tdelete(const void *restrict key, void **restrict rootp,
int (*compar)(const void *, const void *));

void twalk(const void *root, void(*action) (void *, VISIT, int));

The tsearch(), tfind(), tdelete(), and twalk() functions are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called with two arguments,
the pointers to the elements being compared. It returns an integer less than, equal to, or
greater than 0, according to whether the first argument is to be considered less than, equal to
or greater than the second argument. The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in addition to the values being compared.

The tsearch() function is used to build and access the tree. The key argument is a pointer to a
datum to be accessed or stored. If there is a datum in the tree equal to *key (the value pointed
to by key), a pointer to this found datum is returned. Otherwise, *key is inserted, and a pointer
to it returned. Only pointers are copied, so the calling routine must store the data. The rootp
argument points to a variable that points to the root of the tree. A null value for the variable
pointed to by rootp denotes an empty tree; in this case, the variable will be set to point to the
datum which will be at the root of the new tree.

Like tsearch(), tfind() will search for a datum in the tree, returning a pointer to it if found.
However, if it is not found, tfind() will return a null pointer. The arguments for tfind() are
the same as for tsearch().

The tdelete() function deletes a node from a binary search tree. The arguments are the same
as for tsearch(). The variable pointed to by rootp will be changed if the deleted node was the
root of the tree. tdelete() returns a pointer to the parent of the deleted node, or a null pointer
if the node is not found.

The twalk() function traverses a binary search tree. The root argument is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a walk below that node.) action
is the name of a routine to be invoked at each node. This routine is, in turn, called with three
arguments. The first argument is the address of the node being visited. The second argument
is a value from an enumeration data type

typedef enum { preorder, postorder, endorder, leaf } VISIT;

Name

Synopsis

Description

tsearch(3C)

Basic Library Functions 1067

(defined in <search.h>), depending on whether this is the first, second or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with the root being level
zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast
to type pointer-to-character. Similarly, although declared as type pointer-to-character, the
value returned should be cast into type pointer-to-element.

If the node is found, both tsearch() and tfind() return a pointer to it. If not, tfind()
returns a null pointer, and tsearch() returns a pointer to the inserted item.

A null pointer is returned by tsearch() if there is not enough space available to create a new
node.

A null pointer is returned by tsearch(), tfind() and tdelete() if rootp is a null pointer on
entry.

The tdelete() function returns a pointer to the parent of the deleted node, or a null pointer if
the node is not found.

The twalk() function returns no value.

No errors are defined.

The root argument to twalk() is one level of indirection less than the rootp arguments to
tsearch() and tdelete().

There are two nomenclatures used to refer to the order in which tree nodes are visited.
tsearch() uses preorder, postorder and endorder to refer respectively to visiting a node
before any of its children, after its left child and before its right, and after both its children. The
alternate nomenclature uses preorder, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root, the results are unpredictable.

These functions safely allows concurrent access by multiple threads to disjoint data, such as
overlapping subtrees or tables.

EXAMPLE 1 A sample program of using tsearch() function.

The following code reads in strings and stores structures containing a pointer to each string
and a count of its length. It then walks the tree, printing out the stored strings and their lengths
in alphabetical order.

#include <string.h>

#include <stdio.h>

#include <search.h>

struct node {

Return Values

Errors

Usage

Examples

tsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 20041068

EXAMPLE 1 A sample program of using tsearch() function. (Continued)

char *string;

int length;

};

char string_space[10000];

struct node nodes[500];

void *root = NULL;

int node_compare(const void *node1, const void *node2) {

return strcmp(((const struct node *) node1)->string,

((const struct node *) node2)->string);

}

void print_node(const void *node, VISIT order, int level) {

if (order == preorder || order == leaf) {

printf("length=%d, string=%20s\n",
(*(struct node **)node)->length,

(*(struct node **)node)->string);

}

}

main()

{

char *strptr = string_space;

struct node *nodeptr = nodes;

int i = 0;

while (gets(strptr) != NULL && i++ < 500) {

nodeptr->string = strptr;

nodeptr->length = strlen(strptr);

(void) tsearch((void *)nodeptr,

&root, node_compare);

strptr += nodeptr->length + 1;

nodeptr++;

}

twalk(root, print_node);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Attributes

tsearch(3C)

Basic Library Functions 1069

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bsearch(3C), hsearch(3C), lsearch(3C), attributes(5), standards(5)See Also

tsearch(3C)

man pages section 3: Basic Library Functions • Last Revised 6 Dec 20041070

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ttyname, ttyname_r – find pathname of a terminal

#include <unistd.h>

char *ttyname(int fildes);

char *ttyname_r(int fildes, char *name, int namelen);

cc [flag...] file ... -D_POSIX_PTHREAD_SEMANTICS [library ...]

int ttyname_r(int fildes, char *name, size_t namesize);

The ttyname() function returns a pointer to a string containing the null-terminated path
name of the terminal device associated with file descriptor fildes. The return value points to
thread–specific data whose content is overwritten by each call from the same thread.

The ttyname_r() function has the same functionality as ttyname() except that the caller must
supply a buffer name with length namelen to store the result; this buffer must be at least
_POSIX_PATH_MAX in size (defined in <limits.h>). The standard-conforming version (see
standards(5)) of ttyname_r() takes a namesize parameter of type size_t.

Upon successful completion, ttyname() and ttyname_r() return a pointer to a string.
Otherwise, a null pointer is returned and errno is set to indicate the error.

The standard-conforming ttyname_r() returns 0 if successful or the error number upon
failure.

The ttyname() and ttyname_r() functions may fail if:

EBADF The fildes argument is not a valid file descriptor. This condition is reported.

ENOTTY The fildes argument does not refer to a terminal device. This condition is reported.

The ttyname_r() function may fail if:

ERANGE The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

Name

Synopsis

Standard conforming

Description

Return Values

Errors

Attributes

ttyname(3C)

Basic Library Functions 1071

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

Intro(3), gettext(3C), setlocale(3C), attributes(5), standards(5)

When compiling multithreaded applications, see Intro(3),
Notes On Multithreaded Applications.

Messages printed from this function are in the native language specified by the LC_MESSAGES
locale category. See setlocale(3C).

The return value of ttyname() points to thread–specific data whose content is overwritten by
each call from the same thread. This function is safe to use in multithreaded applications, but
its use is discouraged. The ttyname_r() function should used instead.

Solaris 2.4 and earlier releases provided definitions of the ttyname_r() interface as specified
in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface as described above.
Support for the Draft 6 interface is provided for compatibility only and might not be
supported in future releases. New applications and libraries should use the
standard-conforming interface.

See Also

Notes

ttyname(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 20051072

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3

ttyslot – find the slot of the current user in the user accounting database

#include <stdlib.h>

int ttyslot(void);

The ttyslot() function returns the index of the current user's entry in the user accounting
database, /var/adm/utmpx. The current user's entry is an entry for which the utline member
matches the name of a terminal device associated with any of the process's file descriptors 0, 1
or 2. The index is an ordinal number representing the record number in the database of the
current user's entry. The first entry in the database is represented by the return value 0.

Upon successful completion, ttyslot() returns the index of the current user's entry in the
user accounting database. If an error was encountered while searching for the terminal name
or if none of the above file descriptors are associated with a terminal device, −1 is returned.

/var/adm/utmpx user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

getutent(3C), ttyname(3C), utmpx(4), attributes(5)

Name

Synopsis

Description

Return Values

Files

Attributes

See Also

ttyslot(3C)

Basic Library Functions 1073

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1utmpx-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

u8_strcmp – UTF-8 string comparison function

#include <sys/u8_textprep.h>

int u8_strcmp(const char *s1, const char *s2, size_t n,
int flag, size_t version, int *errnum);

s1, s2 Pointers to null-terminated UTF-8 strings

n The maximum number of bytes to be compared. If 0, the comparison is performed
until either or both of the strings are examined to the string terminating null byte.

flag The possible comparison options constructed by a bit-wise-inclusive-OR of the
following values:

U8_STRCMP_CS

Perform case-sensitive string comparison. This is the default.

U8_STRCMP_CI_UPPER

Perform case-insensitive string comparison based on Unicode upper case
converted results of s1 and s2.

U8_STRCMP_CI_LOWER

Perform case-insensitive string comparison based on Unicode lower case
converted results of s1 and s2.

U8_STRCMP_NFD

Perform string comparison after s1 and s2 have been normalized by using
Unicode Normalization Form D.

U8_STRCMP_NFC

Perform string comparison after s1 and s2 have been normalized by using
Unicode Normalization Form C.

U8_STRCMP_NFKD

Perform string comparison after s1 and s2 have been normalized by using
Unicode Normalization Form KD.

U8_STRCMP_NFKC

Perform string comparison after s1 and s2 have been normalized by using
Unicode Normalization Form KC.

Only one case-sensitive or case-insensitive option is allowed. Only one Unicode
Normalization option is allowed.

version The version of Unicode data that should be used during comparison. The
following values are supported:

U8_UNICODE_320

Use Unicode 3.2.0 data during comparison.

Name

Synopsis

Parameters

u8_strcmp(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Sep 20071074

U8_UNICODE_500

Use Unicode 5.0.0 data during comparison.

U8_UNICODE_LATEST

Use the latest Unicode version data available, which is Unicode 5.0.0.

errnum A non-zero value indicates that an error has occurred during comparison. The
following values are supported:

EBADF The specified option values are conflicting and cannot be supported.

EILSEQ There was an illegal character at s1, s2, or both.

EINVAL There was an incomplete character at s1, s2, or both.

ERANGE The specified Unicode version value is not supported.

The u8_stcmp() function internally processes UTF-8 strings pointed to by s1 and s2 based on
the corresponding version of the Unicode Standard and other input arguments and compares
the result strings in byte-by-byte, machine ordering.

When multiple comparison options are specified, Unicode Normalization is performed after
case-sensitive or case-insensitive processing is performed.

The u8_strcmp() function returns an integer greater than, equal to, or less than 0 if the string
pointed to by s1 is greater than, equal to, or less than the string pointed to by s2, respectively.

When u8_strcmp() detects an illegal or incomplete character, such character causes the
function to set errnum to indicate the error. Afterward, the comparison is still performed on
the resultant strings and a value based on byte-by-byte comparison is always returned.

EXAMPLE 1 Perform simple default string comparison.

#include <sys/u8_textprep.h>

int

docmp_default(const char *u1, const char *u2) {

int result;

int errnum;

result = u8_strcmp(u1, u2, 0, 0, U8_UNICODE_LATEST, &errnum);

if (errnum == EILSEQ)

return (-1);

if (errnum == EINVAL)

return (-2);

if (errnum == EBADF)

return (-3);

if (errnum == ERANGE)

return (-4);

Description

Return Values

Examples

u8_strcmp(3C)

Basic Library Functions 1075

EXAMPLE 2 Perform upper case based case-insensitive comparison with Unicode 3.2.0 date.

#include <sys/u8_textprep.h>

int

docmp_caseinsensitive_u320(const char *u1, const char *u2) {

int result;

int errnum;

result = u8_strcmp(u1, u2, 0, U8_STRCMP_CI_UPPER,

U8_UNICODE_320, &errnum);

if (errnum == EILSEQ)

return (-1);

if (errnum == EINVAL)

return (-2);

if (errnum == EBADF)

return (-3);

if (errnum == ERANGE)

return (-4);

return (result);

}

EXAMPLE 3 Perform Unicode Normalization Form D.

Perform Unicode Normalization Form D and upper case based case-insensitive comparison
with Unicode 3.2.0 date.

#include <sys/u8_textprep.h>

int

docmp_nfd_caseinsensitive_u320(const char *u1, const char *u2) {

int result;

int errnum;

result = u8_strcmp(u1, u2, 0,

(U8_STRCMP_NFD|U8_STRCMP_CI_UPPER), U8_UNICODE_320,

&errnum);

if (errnum == EILSEQ)

return (-1);

if (errnum == EINVAL)

return (-2);

if (errnum == EBADF)

return (-3);

if (errnum == ERANGE)

return (-4);

return (result);

}

u8_strcmp(3C)

man pages section 3: Basic Library Functions • Last Revised 12 Sep 20071076

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

u8_textprep_str(3C), u8_validate(3C), attributes(5), u8_strcmp(9F),
u8_textprep_str(9F), u8_validate(9F)

The Unicode Standard (http://www.unicode.org)

Attributes

See Also

u8_strcmp(3C)

Basic Library Functions 1077

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-strcmp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-textprep-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-validate-9f
http://www.unicode.org

u8_textprep_str – string-based UTF-8 text preparation function

#include <sys/u8_textprep.h>

size_t u8_textprep_str(char *inarray, size_t *inlen,
char *outarray, size_t *outlen, int flag,
size_t unicode_version, int *errnum);

inarray A pointer to a byte array containing a sequence of UTF-8 character bytes
to be prepared.

inlen As input argument, the number of bytes to be prepared in inarray. As
output argument, the number of bytes in inarray still not consumed.

outarray A pointer to a byte array where prepared UTF-8 character bytes can be
saved.

outlen As input argument, the number of available bytes at outarray where
prepared character bytes can be saved. As output argument, after the
conversion, the number of bytes still available at outarray.

flag The possible preparation options constructed by a bitwise-inclusive-OR
of the following values:

U8_TEXTPREP_IGNORE_NULL

Normally u8_textprep_str() stops the preparation if it encounters
null byte even if the current inlen is pointing to a value bigger than
zero.

With this option, null byte does not stop the preparation and the
preparation continues until inlen specified amount of inarray bytes
are all consumed for preparation or an error happened.

U8_TEXTPREP_IGNORE_INVALID

Normally u8_textprep_str() stops the preparation if it encounters
illegal or incomplete characters with corresponding errnum values.

When this option is set, u8_textprep_str() does not stop the
preparation and instead treats such characters as no need to do any
preparation.

U8_TEXTPREP_TOUPPER

Map lowercase characters to uppercase characters if applicable.

U8_TEXTPREP_TOLOWER

Map uppercase characters to lowercase characters if applicable.

U8_TEXTPREP_NFD

Apply Unicode Normalization Form D.

Name

Synopsis

Parameters

u8_textprep_str(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071078

U8_TEXTPREP_NFC

Apply Unicode Normalization Form C.

U8_TEXTPREP_NFKD

Apply Unicode Normalization Form KD.

U8_TEXTPREP_NFKC

Apply Unicode Normalization Form KC.

Only one case folding option is allowed. Only one Unicode
Normalization option is allowed.

When a case folding option and a Unicode Normalization option are
specified together, UTF-8 text preparation is done by doing case folding
first and then Unicode Normalization.

If no option is specified, no processing occurs except the simple copying
of bytes from input to output.

unicode_version The version of Unicode data that should be used during UTF-8 text
preparation. The following values are supported:

U8_UNICODE_320

Use Unicode 3.2.0 data during comparison.

U8_UNICODE_500

Use Unicode 5.0.0 data during comparison.

U8_UNICODE_LATEST

Use the latest Unicode version data available which is Unicode 5.0.0
currently.

errnum The error value when preparation is not completed or fails. The
following values are supported:

E2BIG Text preparation stopped due to lack of space in the output
array.

EBADF Specified option values are conflicting and cannot be
supported.

EILSEQ Text preparation stopped due to an input byte that does not
belong to UTF-8.

EINVAL Text preparation stopped due to an incomplete UTF-8
character at the end of the input array.

ERANGE The specified Unicode version value is not a supported
version.

u8_textprep_str(3C)

Basic Library Functions 1079

The u8_textprep_str() function prepares the sequence of UTF-8 characters in the array
specified by inarray into a sequence of corresponding UTF-8 characters prepared in the array
specified by outarray. The inarray argument points to a character byte array to the first
character in the input array and inlen indicates the number of bytes to the end of the array to
be converted. The outarray argument points to a character byte array to the first available byte
in the output array and outlen indicates the number of the available bytes to the end of the
array. Unless flag is U8_TEXTPREP_IGNORE_NULL, u8_textprep_str() normally stops when it
encounters a null byte from the input array regardless of the current inlen value.

If flag is U8_TEXTPREP_IGNORE_INVALID and a sequence of input bytes does not form a valid
UTF-8 character, preparation stops after the previous successfully prepared character. If flag is
U8_TEXTPREP_IGNORE_INVALID and the input array ends with an incomplete UTF-8 character,
preparation stops after the previous successfully prepared bytes. If the output array is not large
enough to hold the entire prepared text, preparation stops just prior to the input bytes that
would cause the output array to overflow. The value pointed to by inlen is decremented to
reflect the number of bytes still not prepared in the input array. The value pointed to by outlen
is decremented to reflect the number of bytes still available in the output array.

The u8_textprep_str() function updates the values pointed to by inlen and outlen
arguments to reflect the extent of the preparation. When U8_TEXTPREP_IGNORE_INVALID is
specified, u8_textprep_str() returns the number of illegal or incomplete characters found
during the text preparation. When U8_TEXTPREP_IGNORE_INVALID is not specified and the text
preparation is entirely successful, the function returns 0. If the entire string in the input array
is prepared, the value pointed to by inlen will be 0. If the text preparation is stopped due to any
conditions mentioned above, the value pointed to by inlen will be non-zero and errnum is set
to indicate the error. If such and any other error occurs, u8_textprep_str() returns
(size_t)-1 and sets errnum to indicate the error.

EXAMPLE 1 Simple UTF-8 text preparation

#include <sys/u8_textprep.h>

.

.

.

size_t ret;

char ib[MAXPATHLEN];

char ob[MAXPATHLEN];

size_t il, ol;

int err;

.

.

.

/*

* We got a UTF-8 pathname from somewhere.

*

* Calculate the length of input string including the terminating

Description

Return Values

Examples

u8_textprep_str(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071080

EXAMPLE 1 Simple UTF-8 text preparation (Continued)

* NULL byte and prepare other arguments.

*/

(void) strlcpy(ib, pathname, MAXPATHLEN);

il = strlen(ib) + 1;

ol = MAXPATHLEN;

/*

* Do toupper case folding, apply Unicode Normalization Form D,

* ignore NULL byte, and ignore any illegal/incomplete characters.

*/

ret = u8_textprep_str(ib, &il, ob, &ol,

(U8_TEXTPREP_IGNORE_NULL|U8_TEXTPREP_IGNORE_INVALID|

U8_TEXTPREP_TOUPPER|U8_TEXTPREP_NFD), U8_UNICODE_LATEST, &err);

if (ret == (size_t)-1) {

if (err == E2BIG)

return (-1);

if (err == EBADF)

return (-2);

if (err == ERANGE)

return (-3);

return (-4);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

u8_strcmp(3C), u8_validate(3C), attributes(5), u8_strcmp(9F), u8_textprep_str(9F),
u8_validate(9F)

The Unicode Standard (http://www.unicode.org)

After the text preparation, the number of prepared UTF-8 characters and the total number
bytes may decrease or increase when you compare the numbers with the input buffer.

Case conversions are performed using Unicode data of the corresponding version. There are
no locale-specific case conversions that can be performed.

Attributes

See Also

Notes

u8_textprep_str(3C)

Basic Library Functions 1081

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-strcmp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-textprep-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-validate-9f
http://www.unicode.org

u8_validate – validate UTF-8 characters and calculate the byte length

#include <sys/u8_textprep.h>

int u8_validate(char *u8str, size_t n, char **list, int flag,
int *errnum);

u8str The UTF-8 string to be validated.

n The maximum number of bytes in u8str that can be examined and validated.

list A list of null-terminated character strings in UTF-8 that must be additionally
checked against as invalid characters. The last string in list must be null to indicate
there is no further string.

flag Possible validation options constructed by a bitwise-inclusive-OR of the following
values:

U8_VALIDATE_ENTIRE

By default, u8_validate() looks at the first character or up to n bytes,
whichever is smaller in terms of the number of bytes to be consumed, and
returns with the result.

When this option is used, u8_validate() will check up to n bytes from u8str
and possibly more than a character before returning the result.

U8_VALIDATE_CHECK_ADDITIONAL

By default, u8_validate() does not use list supplied.

When this option is supplied with a list of character strings, u8_validate()
additionally validates u8str against the character strings supplied with list and
returns EBADF in errnum if u8str has any one of the character strings in list.

U8_VALIDATE_UCS2_RANGE

By default, u8_validate() uses the entire Unicode coding space of U+0000 to
U+10FFFF.

When this option is specified, the valid Unicode coding space is smaller to
U+0000 to U+FFFF.

errnum An error occurred during validation. The following values are supported:

EBADF Validation failed because list-specified characters were found in the
string pointed to by u8str.

EILSEQ Validation failed because an illegal byte was found in the string
pointed to by u8str.

EINVAL Validation failed because an incomplete byte was found in the string
pointed to by u8str.

Name

Synopsis

Parameters

u8_validate(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071082

ERANGE Validation failed because character bytes were encountered that are
outside the range of the Unicode coding space.

The u8_validate() function validates u8str in UTF-8 and determines the number of bytes
constituting the character(s) pointed to by u8str.

If u8str is a null pointer, u8_validate() returns 0. Otherwise, u8_validate() returns either
the number of bytes that constitute the characters if the next n or fewer bytes form valid
characters, or -1 if there is an validation failure, in which case it may set errnum to indicate the
error.

EXAMPLE 1 Determine the length of the first UTF-8 character.

#include <sys/u8_textprep.h>

char u8[MAXPATHLEN];

int errnum;

.

.

.

len = u8_validate(u8, 4, (char **)NULL, 0, &errnum);

if (len == -1) {

switch (errnum) {

case EILSEQ:

case EINVAL:

return (MYFS4_ERR_INVAL);

case EBADF:

return (MYFS4_ERR_BADNAME);

case ERANGE:

return (MYFS4_ERR_BADCHAR);

default:

return (-10);

}

}

EXAMPLE 2 Check if there are any invalid characters in the entire string.

#include <sys/u8_textprep.h>

char u8[MAXPATHLEN];

int n;

int errnum;

.

.

.

n = strlen(u8);

len = u8_validate(u8, n, (char **)NULL, U8_VALIDATE_ENTIRE, &errnum);

if (len == -1) {

Description

Return Values

Examples

u8_validate(3C)

Basic Library Functions 1083

EXAMPLE 2 Check if there are any invalid characters in the entire string. (Continued)

switch (errnum) {

case EILSEQ:

case EINVAL:

return (MYFS4_ERR_INVAL);

case EBADF:

return (MYFS4_ERR_BADNAME);

case ERANGE:

return (MYFS4_ERR_BADCHAR);

default:

return (-10);

}

}

EXAMPLE 3 Check if there is any invalid character, including prohibited characters, in the entire string.

#include <sys/u8_textprep.h>

char u8[MAXPATHLEN];

int n;

int errnum;

char *prohibited[4] = {

".", "..", "\\", NULL

};

.

.

.

n = strlen(u8);

len = u8_validate(u8, n, prohibited,

(U8_VALIDATE_ENTIRE|U8_VALIDATE_CHECK_ADDITIONAL), &errnum);

if (len == -1) {

switch (errnum) {

case EILSEQ:

case EINVAL:

return (MYFS4_ERR_INVAL);

case EBADF:

return (MYFS4_ERR_BADNAME);

case ERANGE:

return (MYFS4_ERR_BADCHAR);

default:

return (-10);

}

}

See attributes(5) for descriptions of the following attributes:Attributes

u8_validate(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071084

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

u8_strcmp(3C), u8_textprep_str(3C), attributes(5), u8_strcmp(9F),
u8_textprep_str(9F), u8_validate(9F)

The Unicode Standard (http://www.unicode.org)

See Also

u8_validate(3C)

Basic Library Functions 1085

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-strcmp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-textprep-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1u8-validate-9f
http://www.unicode.org

ualarm – schedule signal after interval in microseconds

#include <unistd.h>

useconds_t ualarm(useconds_t useconds, useconds_t interval);

The ualarm() function causes the SIGALRM signal to be generated for the calling process after
the number of real-time microseconds specified by the useconds argument has elapsed. When
the interval argument is non-zero, repeated timeout notification occurs with a period in
microseconds specified by the interval argument. If the notification signal, SIGALRM, is not
caught or ignored, the calling process is terminated.

Because of scheduling delays, resumption of execution when the signal is caught may be
delayed an arbitrary amount of time.

Interactions between ualarm() and either alarm(2) or sleep(3C) are unspecified.

The ualarm() function returns the number of microseconds remaining from the previous
ualarm() call. If no timeouts are pending or if ualarm() has not previously been called,
ualarm() returns 0.

No errors are defined.

The ualarm() function is a simplified interface to setitimer(2), and uses the ITIMER_REAL
interval timer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Standard See standards(5).

alarm(2), setitimer(2), sighold(3C), signal(3C), sleep(3C), usleep(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

ualarm(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021086

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

uconv_u16tou32, uconv_u16tou8, uconv_u32tou16, uconv_u32tou8, uconv_u8tou16,
uconv_u8tou32 – Unicode encoding conversion functions

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/u8_textprep.h>

int uconv_u16tou32(const uint16_t *utf16str, size_t *utf16len,
uint32_t *utf32str, size_t *utf32len, int flag);

int uconv_u16tou8(const uint16_t *utf16str, size_t *utf16len,
uchar_t *utf8str, size_t *utf8len, int flag);

int uconv_u32tou16(const uint32_t *utf32str, size_t *utf32len,
uint16_t *utf16str, size_t *utf16len, int flag);

int uconv_u32tou8(const uint32_t *utf32str, size_t *utf32len,
uchar_t *utf8str, size_t *utf8len, int flag);

int uconv_u8tou16(const uchar_t *utf8str, size_t *utf8len,
uint16_t *utf16str, size_t *utf16len, int flag);

int uconv_u8tou32(const uchar_t *utf8str, size_t *utf8len,
uint32_t *utf32str, size_t *utf32len, int flag);

utf16str A pointer to a UTF-16 character string.

utf16len As an input parameter, the number of 16-bit unsigned integers in utf16str as
UTF-16 characters to be converted or saved.

As an output parameter, the number of 16-bit unsigned integers in utf16str
consumed or saved during conversion.

utf32str A pointer to a UTF-32 character string.

utf32len As an input parameter, the number of 32-bit unsigned integers in utf32str as
UTF-32 characters to be converted or saved.

As an output parameter, the number of 32-bit unsigned integers in utf32str
consumed or saved during conversion.

utf8str A pointer to a UTF-8 character string.

utf8len As an input parameter, the number of bytes in utf8str as UTF-8 characters to be
converted or saved.

As an output parameter, the number of bytes in utf8str consumed or saved during
conversion.

flag The possible conversion options that are constructed by a bitwise-inclusive-OR of
the following values:

Name

Synopsis

Parameters

uconv_u16tou32(3C)

Basic Library Functions 1087

UCONV_IN_BIG_ENDIAN

The input parameter is in big endian byte ordering.

UCONV_OUT_BIG_ENDIAN

The output parameter should be in big endian byte ordering.

UCONV_IN_SYSTEM_ENDIAN

The input parameter is in the default byte ordering of the current system.

UCONV_OUT_SYSTEM_ENDIAN

The output parameter should be in the default byte ordering of the current
system.

UCONV_IN_LITTLE_ENDIAN

The input parameter is in little endian byte ordering.

UCONV_OUT_LITTLE_ENDIAN

The output parameter should be in little endian byte ordering.

UCONV_IGNORE_NULL

The null or U+0000 character should not stop the conversion.

UCONV_IN_ACCEPT_BOM

If the Byte Order Mark (BOM, U+FEFF) character exists as the first character of
the input parameter, interpret it as the BOM character.

UCONV_OUT_EMIT_BOM

Start the output parameter with Byte Order Mark (BOM, U+FEFF) character to
indicate the byte ordering if the output parameter is in UTF-16 or UTF-32.

The uconv_u16tou32() function reads the given utf16str in UTF-16 until U+0000 (zero) in
utf16str is encountered as a character or until the number of 16-bit unsigned integers specified
in utf16len is read. The UTF-16 characters that are read are converted into UTF-32 and the
result is saved at utf32str. After the successful conversion, utf32len contains the number of
32-bit unsigned integers saved at utf32str as UTF-32 characters.

The uconv_u16tou8() function reads the given utf16str in UTF-16 until U+0000 (zero) in
utf16str is encountered as a character or until the number of 16-bit unsigned integers specified
in utf16len is read. The UTF-16 characters that are read are converted into UTF-8 and the result
is saved at utf8str. After the successful conversion, utf8len contains the number of bytes saved
at utf8str as UTF-8 characters.

The uconv_u32tou16() function reads the given utf32str in UTF-32 until U+0000 (zero) in
utf32str is encountered as a character or until the number of 32-bit unsigned integers specified
in utf32len is read. The UTF-32 characters that are read are converted into UTF-16 and the
result is saved at utf16str. After the successful conversion, utf16len contains the number of
16-bit unsigned integers saved at utf16str as UTF-16 characters.

The uconv_u32tou8() function reads the given utf32str in UTF-32 until U+0000 (zero) in
utf32str is encountered as a character or until the number of 32-bit unsigned integers specified

Description

uconv_u16tou32(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071088

in utf32len is read. The UTF-32 characters that are read are converted into UTF-8 and the result
is saved at utf8str. After the successful conversion, utf8len contains the number of bytes saved
at utf8str as UTF-8 characters.

The uconv_u8tou16() function reads the given utf8str in UTF-8 until the null ('\0') byte in
utf8str is encountered or until the number of bytes specified in utf8len is read. The UTF-8
characters that are read are converted into UTF-16 and the result is saved at utf16str. After the
successful conversion, utf16len contains the number of 16-bit unsigned integers saved at
utf16str as UTF-16 characters.

The uconv_u8tou32() function reads the given utf8str in UTF-8 until the null ('\0') byte in
utf8str is encountered or until the number of bytes specified in utf8len is read. The UTF-8
characters that are read are converted into UTF-32 and the result is saved at utf32str. After the
successful conversion, utf32len contains the number of 32-bit unsigned integers saved at
utf32str as UTF-32 characters.

During the conversion, the input and the output parameters are treated with byte orderings
specified in the flag parameter. When not specified, the default byte ordering of the system is
used. The byte ordering flag value that is specified for UTF-8 is ignored.

When UCONV_IN_ACCEPT_BOM is specified as the flag and the first character of the string
pointed to by the input parameter is the BOM character, the value of the BOM character
dictates the byte ordering of the subsequent characters in the string pointed to by the input
parameter, regardless of the supplied input parameter byte ordering option flag values. If the
UCONV_IN_ACCEPT_BOM is not specified, the BOM as the first character is treated as a regular
Unicode character: Zero Width No Break Space (ZWNBSP) character.

When UCONV_IGNORE_NULL is specified, regardless of whether the input parameter contains
U+0000 or null byte, the conversion continues until the specified number of input parameter
elements at utf16len, utf32len, or utf8len are entirely consumed during the conversion.

As output parameters, utf16len, utf32len, and utf8len are not changed if conversion fails for
any reason.

Upon successful conversion, the functions return 0. Upon failure, the functions return one of
the following errno values:

EILSEQ The conversion detected an illegal or out of bound character value in the input
parameter.

E2BIG The conversion cannot finish because the size specified in the output parameter is
too small.

EINVAL The conversion stops due to an incomplete character at the end of the input string.

EBADF Conflicting byte-ordering option flag values are detected.

Return Values

uconv_u16tou32(3C)

Basic Library Functions 1089

EXAMPLE 1 Convert a UTF-16 string in little-endian byte ordering into UTF-8 string.

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/u8_textprep.h>

.

.

.

uint16_t u16s[MAXNAMELEN + 1];

uchar_t u8s[MAXNAMELEN + 1];

size_t u16len, u8len;

int ret;

.

.

.

u16len = u8len = MAXNAMELEN;

ret = uconv_u16tou8(u16s, &u16len, u8s, &u8len,

UCONV_IN_LITTLE_ENDIAN);

if (ret != 0) {

/* Conversion error occurred. */

return (ret);

}

.

.

.

EXAMPLE 2 Convert a UTF-32 string in big endian byte ordering into little endian UTF-16.

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/u8_textprep.h>

.

.

.

/*

* An UTF-32 character can be mapped to an UTF-16 character with

* two 16-bit integer entities as a "surrogate pair."
*/

uint32_t u32s[101];

uint16_t u16s[101];

int ret;

size_t u32len, u16len;

.

.

.

u32len = u16len = 100;

ret = uconv_u32tou16(u32s, &u32len, u16s, &u16len,

UCONV_IN_BIG_ENDIAN | UCONV_OUT_LITTLE_ENDIAN);

Examples

uconv_u16tou32(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071090

EXAMPLE 2 Convert a UTF-32 string in big endian byte ordering into little endian UTF-16.
(Continued)

if (ret == 0) {

return (0);

} else if (ret == E2BIG) {

/* Use bigger output parameter and try just one more time. */

uint16_t u16s2[201];

u16len = 200;

ret = uconv_u32tou16(u32s, &u32len, u16s2, &u16len,

UCONV_IN_BIG_ENDIAN | UCONV_OUT_LITTLE_ENDIAN);

if (ret == 0)

return (0);

}

/* Otherwise, return -1 to indicate an error condition. */

return (-1);

EXAMPLE 3 Convert a UTF-8 string into UTF-16 in little-endian byte ordering.

Convert a UTF-8 string into UTF-16 in little-endian byte ordering with a Byte Order Mark
(BOM) character at the beginning of the output parameter.

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/u8_textprep>

.

.

.

uchar_t u8s[MAXNAMELEN + 1];

uint16_t u16s[MAXNAMELEN + 1];

size_t u8len, u16len;

int ret;

.

.

.

u8len = u16len = MAXNAMELEN;

ret = uconv_u8tou16(u8s, &u8len, u16s, &u16len,

UCONV_IN_LITTLE_ENDIAN | UCONV_EMIT_BOM);

if (ret != 0) {

/* Conversion error occurred. */

return (ret);

}

.

.

.

uconv_u16tou32(3C)

Basic Library Functions 1091

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5), uconv_u16tou32(9F)

The Unicode Standard (http://www.unicode.org)

Each UTF-16 or UTF-32 character maps to an UTF-8 character that might need one to
maximum of four bytes.

One UTF-32 or UTF-8 character can yield two 16-bit unsigned integers as a UTF-16 character,
which is a surrogate pair if the Unicode scalar value is bigger than U+FFFF.

Ill-formed UTF-16 surrogate pairs are seen as illegal characters during the conversion.

Attributes

See Also

Notes

uconv_u16tou32(3C)

man pages section 3: Basic Library Functions • Last Revised 18 Sep 20071092

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uconv-u16tou32-9f
http://www.unicode.org

ucred_get, ucred_free, ucred_geteuid, ucred_getruid, ucred_getsuid, ucred_getegid,
ucred_getrgid, ucred_getsgid, ucred_getgroups, ucred_getprivset, ucred_getpid,
ucred_getprojid, ucred_getzoneid, ucred_getpflags, ucred_getlabel, ucred_size – user
credential functions

#include <ucred.h>

ucred_t *ucred_get(pid_t pid);

void ucred_free(ucred_t *uc);

uid_t ucred_geteuid(const ucred_t *uc);

uid_t ucred_getruid(const ucred_t *uc);

uid_t ucred_getsuid(const ucred_t *uc);

gid_t ucred_getegid(const ucred_t *uc);

gid_t ucred_getrgid(const ucred_t *uc);

gid_t ucred_getsgid(const ucred_t *uc);

int ucred_getgroups(const ucred_t *uc, const gid_t **groups);

const priv_set_t *ucred_getprivset(const ucred_t *uc,
priv_ptype_t set);

pid_t ucred_getpid(const ucred_t *uc);

projid_t ucred_getprojid(const ucred_t *uc);

zoneid_t ucred_getzoneid(const ucred_t *uc);

uint_t ucred_getpflags(const ucred_t *uc, uint_t flags);

m_label_t *ucred_getlabel(const ucred_t *uc);

size_t ucred_size(void);

These functions return or act on a user credential, ucred_t. User credentials are returned by
various functions and describe the credentials of a process. Information about the process can
then be obtained by calling the access functions. Access functions can fail if the underlying
mechanism did not return sufficient information.

The ucred_get() function returns the user credential of the specified pid or NULL if none can
be obtained. A pid value of P_MYID returns information about the calling process. The return
value is dynamically allocated and must be freed using ucred_free().

The ucred_geteuid(), ucred_getruid(), ucred_getsuid(), ucred_getegid(),
ucred_getrgid(), and ucred_getsgid() functions return the effective UID, real UID, saved
UID, effective GID, real GID, saved GID, respectively, or -1 if the user credential does not
contain sufficient information.

Name

Synopsis

Description

ucred_get(3C)

Basic Library Functions 1093

The ucred_getgroups() function stores a pointer to the group list in the gid_t * pointed to
by the second argument and returns the number of groups in the list. It returns -1 if the
information is not available. The returned group list is valid until ucred_free() is called on
the user credential given as argument.

The ucred_getpid() function returns the process ID of the process or -1 if the process ID is
not available. The process ID returned in a user credential is only guaranteed to be correct in a
very limited number of cases when returned by door_ucred(3C) and ucred_get(). In all
other cases, the process in question might have handed of the file descriptor, the process might
have exited or executed another program, or the process ID might have been reused by a
completely unrelated process after the original program exited.

The ucred_getprojid() function returns the project ID of the process or -1 if the project ID
is not available.

The ucred_getzoneid() function returns the zone ID of the process or −1 if the zone ID is not
available.

The ucred_getprivset() function returns the specified privilege set specified as second
argument, or NULL if either the requested information is not available or the privilege set name
is invalid. The returned privilege set is valid until ucred_free() is called on the specified user
credential.

The ucred_getpflags() function returns the value of the specified privilege flags from the
ucred structure, or (uint_t)-1 if none was present.

The ucred_getlabel() function returns the value of the label, or NULL if the label is not
available. The returned label is valid until ucred_free() is called on the specified user
credential. This function is available only if the system is configured with Trusted Extensions.

The ucred_free() function frees the memory allocated for the specified user credential.

The ucred_size() function returns sizeof(ucred_t). This value is constant only until the
next boot, at which time it could change. The ucred_size() function can be used to
determine the size of the buffer needed to receive a credential option with SO_RECVUCRED. See
socket.h(3HEAD).

See DESCRIPTION.

The ucred_get() function will fail if:

EAGAIN There is not enough memory available to allocate sufficient memory to hold a user
credential. The application can try again later.

EACCES The caller does not have sufficient privileges to examine the target process.

EMFILE

ENFILE The calling process cannot open any more files.

Return Values

Errors

ucred_get(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Apr 20081094

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head

ENOMEM The physical limits of the system are exceeded by the memory allocation needed to
hold a user credential.

ESRCH The target process does not exist.

The ucred_getprivset() function will fail if:

EINVAL The privilege set argument is invalid.

The ucred_getlabel() function will fail if:

EINVAL The label is not present.

The ucred_geteuid(), ucred_getruid(), ucred_getsuid(), ucred_getegid(),
ucred_getrgid(), ucred_getsgid(), ucred_getgroups(), ucred_getpflags(),
ucred_getprivset(), ucred_getprojid(), ucred_getpid(), and ucred_getlabel()

functions will fail if:

EINVAL The requested user credential attribute is not available in the specified user
credential.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

getpflags(2), getppriv(2), door_ucred(3C), getpeerucred(3C), priv_set(3C),
socket.h(3HEAD), attributes(5), labels(5), privileges(5)

Attributes

See Also

ucred_get(3C)

Basic Library Functions 1095

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpflags-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getppriv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5

umem_alloc, umem_zalloc, umem_free, umem_nofail_callback – fast, scalable memory
allocation

cc [flag ...] file... -lumem [library ...]

#include <umem.h>

void *umem_alloc(size_t size, int flags);

void *umem_zalloc(size_t size, int flags);

void umem_free(void *buf, size_t size);

void umem_nofail_callback((int (*callback)(void));

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

The umem_alloc() function returns a pointer to a block of size bytes suitably aligned for any
variable type. The initial contents of memory allocated using umem_alloc() is undefined. The
flags argument determines the behavior of umem_alloc() if it is unable to fulfill the request.
The flags argument can take the following values:

UMEM_DEFAULT Return NULL on failure.

UMEM_NOFAIL Call an optional callback (set with umem_nofail_callback()) on failure.
The callback takes no arguments and can finish by:
■ returning UMEM_CALLBACK_RETRY, in which case the allocation will be

retried. If the allocation fails, the callback will be invoked again.
■ returning UMEM_CALLBACK_EXIT(status), in which case exit(2) is

invoked with status as its argument. The exit() function is called only
once. If multiple threads return from the UMEM_NOFAIL callback with
UMEM_CALLBACK_EXIT(status), one will call exit() while the other
blocks until exit() terminates the program.

■ invoking a context-changing function (setcontext(2)) or a non-local
jump (longjmp(3C) or siglongjmp(3C), or ending the current thread
of control (thr_exit(3C) or pthread_exit(3C). The application is
responsible for any necessary cleanup. The state of libumem remains
consistent.

If no callback has been set or the callback has been set to NULL,
umem_alloc(..., UMEM_NOFAIL) behaves as though the callback returned
UMEM_CALLBACK_EXIT(255).

Name

Synopsis

Description

umem_alloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081096

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setcontext-2

The libumem library can call callbacks from any place that a UMEM_NOFAIL
allocation is issued. In multithreaded applications, callbacks are expected
to perform their own concurrency management.

The function call umem_alloc(0, flag) always returns NULL. The function call umem_free(NULL,
0) is allowed.

The umem_zalloc() function has the same semantics as umem_alloc(), but the block of
memory is initialized to zeros before it is returned.

The umem_free() function frees blocks previously allocated using umem_alloc() and
umem_zalloc(). The buffer address and size must exactly match the original allocation.
Memory must not be returned piecemeal.

The umem_nofail_callback() function sets the process-wide UMEM_NOFAIL callback. See
the description of UMEM_NOFAIL for more information.

The malloc(), calloc(), free(), memalign(), realloc(), and valloc() functions are as
described in malloc(3C). The libumem library provides these functions for
backwards-compatibility with the standard functions.

See umem_debug(3MALLOC) for environment variables that effect the debugging features of
the libumem library.

UMEM_OPTIONS Contains a list of comma-separated options. Unrecognized options are
ignored. The options that are supported are:

backend=sbrk
backend=mmap Set the underlying function used to allocate memory.

This option can be set to sbrk (the default) for an
sbrk(2)–based source or mmap for an mmap(2)–based
source. If set to a value that is not supported, sbrk will
be used.

EXAMPLE 1 Using the umem_alloc() function.

#include <stdio.h>

#include <umem.h>

...

char *buf = umem_alloc(1024, UMEM_DEFAULT);

if (buf == NULL) {

fprintf(stderr, "out of memory\n");
return (1);

}

/* cannot assume anything about buf’s contents */

...

umem_free(buf, 1024);

Environment
Variables

Examples

umem_alloc(3MALLOC)

Basic Library Functions 1097

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sbrk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

EXAMPLE 1 Using the umem_alloc() function. (Continued)

...

EXAMPLE 2 Using the umem_zalloc() function

#include <stdio.h>

#include <umem.h>

...

char *buf = umem_zalloc(1024, UMEM_DEFAULT);

if (buf == NULL) {

fprintf(stderr, "out of memory\n");
return (1);

}

/* buf contains zeros */

...

umem_free(buf, 1024);

...

EXAMPLE 3 Using UMEM_NOFAIL

#include <stdlib.h>

#include <stdio.h>

#include <umem.h>

/*

* Note that the allocation code below does not have to

* check for umem_alloc() returning NULL

*/

int

my_failure_handler(void)

{

(void) fprintf(stderr, "out of memory\n");
return (UMEM_CALLBACK_EXIT(255));

}

...

umem_nofail_callback(my_failure_handler);

...

int i;

char *buf[100];

for (i = 0; i < 100; i++)

buf[i] = umem_alloc(1024 * 1024, UMEM_NOFAIL);

...

for (i = 0; i < 100; i++)

umem_free(buf[i], 1024 * 1024);

...

umem_alloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081098

EXAMPLE 4 Using UMEM_NOFAIL in a multithreaded application

#define _REENTRANT

#include <thread.h>

#include <stdio.h>

#include <umem.h>

void *

start_func(void *the_arg)

{

int *info = (int *)the_arg;

char *buf = umem_alloc(1024 * 1024, UMEM_NOFAIL);

/* does not need to check for buf == NULL */

buf[0] = 0;

...

/*

* if there were other UMEM_NOFAIL allocations,

* we would need to arrange for buf to be

* umem_free()ed upon failure.

*/

...

umem_free(buf, 1024 * 1024);

return (the_arg);

}

...

int

my_failure_handler(void)

{

/* terminate the current thread with status NULL */

thr_exit(NULL);

}

...

umem_nofail_callback(my_failure_handler);

...

int my_arg;

thread_t tid;

void *status;

(void) thr_create(NULL, NULL, start_func, &my_arg, 0,

NULL);

...

while (thr_join(0, &tid, &status) != 0)

;

if (status == NULL) {

(void) fprintf(stderr, "thread %d ran out of memory\n",

umem_alloc(3MALLOC)

Basic Library Functions 1099

EXAMPLE 4 Using UMEM_NOFAIL in a multithreaded application (Continued)

tid);

}

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For malloc(), calloc(), free(), realloc(), and valloc(), see standards(5).

exit(2), mmap(2), sbrk(2), bsdmalloc(3MALLOC), libumem(3LIB), longjmp(3C),
malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC), pthread_exit(3C),
thr_exit(3C), umem_cache_create(3MALLOC), umem_debug(3MALLOC),
watchmalloc(3MALLOC), attributes(5), standards(5)

Oracle Solaris Modular Debugger Guide

Any of the following can cause undefined results:

■ Passing a pointer returned from umem_alloc() or umem_zalloc() to free() or
realloc().

■ Passing a pointer returned from malloc(), calloc(), valloc(), memalign(), or
realloc() to umem_free().

■ Writing past the end of a buffer allocated using umem_alloc() or umem_zalloc()
■ Performing UMEM_NOFAIL allocations from an atexit(3C) handler.

If the UMEM_NOFAIL callback performs UMEM_NOFAIL allocations, infinite recursion can occur.

The following list compares the features of the malloc(3C), bsdmalloc(3MALLOC),
malloc(3MALLOC), mtmalloc(3MALLOC) , and the libumem functions.

■ The malloc(3C), bsdmalloc(3MALLOC), and malloc(3MALLOC) functions have no
support for concurrency. The libumem and mtmalloc(3MALLOC) functions support
concurrent allocations.

■ The bsdmalloc(3MALLOC) functions afford better performance but are space-inefficient.
■ The malloc(3MALLOC) functions are space-efficient but have slower performance.
■ The standard, fully SCD-compliant malloc(3C) functions are a trade-off between

performance and space-efficiency.

Attributes

See Also

Warnings

Notes

umem_alloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081100

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sbrk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MODDEBUG

■ The mtmalloc(3MALLOC) functions provide fast, concurrent malloc() implementations
that are not space-efficient.

■ The libumem functions provide a fast, concurrent allocation implementation that in most
cases is more space-efficient than mtmalloc(3MALLOC).

umem_alloc(3MALLOC)

Basic Library Functions 1101

umem_cache_create, umem_cache_destroy, umem_cache_alloc, umem_cache_free –
allocation cache manipulation

cc [flag ...] file... -lumem [library ...]

#include <umem.h>

umem_cache_t *umem_cache_create(char *debug_name, size_t bufsize,
size_t align, umem_constructor_t *constructor,
umem_destructor_t *destructor, umem_reclaim_t *reclaim,

void *callback_data, vmem_t *source, int cflags);

void umem_cache_destroy(umem_cache_t *cache);

void *umem_cache_alloc(umem_cache_t *cache, int flags);

void umem_cache_free(umem_cache_t *cache, void *buffer);

These functions create, destroy, and use an “object cache” An object cache is a collection of
buffers of a single size, with optional content caching enabled by the use of callbacks (see
Cache Callbacks). Object caches are MT-Safe. Multiple allocations and freeing of memory
from different threads can proceed simultaneously. Object caches are faster and use less space
per buffer than malloc(3MALLOC) and umem_alloc(3MALLOC). For more information
about object caching, see “The Slab Allocator: An Object-Caching Kernel Memory Allocator”
and “Magazines and vmem: Extending the Slab Allocator to Many CPUs and Arbitrary
Resources”.

The umem_cache_create() function creates object caches. Once a cache has been created,
objects can be requested from and returned to the cache using umem_cache_alloc() and
umem_cache_free(), respectively. A cache with no outstanding buffers can be destroyed with
umem_cache_destroy().

The umem_cache_create() function creates a cache of objects and takes as arguments the
following:

debug_name A human-readable name for debugging purposes.

bufsize The size, in bytes, of the buffers in this cache.

align The minimum alignment required for buffers in this cache. This parameter
must be a power of 2. If 0, it is replaced with the minimum required
alignment for the current architecture.

constructor The callback to construct an object.

destructor The callback to destroy an object.

reclaim The callback to reclaim objects.

callback_data An opaque pointer passed to the callbacks.

source This parameter must be NULL.

Name

Synopsis

Description

Creating and
Destroying Caches

umem_cache_create(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081102

cflags This parameter must be either 0 or UMC_NODEBUG. If UMC_NODEBUG, all
debugging features are disabled for this cache. See
umem_debug(3MALLOC).

Each cache can have up to three associated callbacks:

int constructor(void *buffer, void *callback_data, int flags);

void destructor(void *buffer, void *callback_data);

void reclaim(void *callback_data);

The callback_data argument is always equal to the value passed to umem_cache_create(),
thereby allowing a client to use the same callback functions for multiple caches, but with
customized behavior.

The reclaim callback is called when the umem function is requesting more memory from the
operating system. This callback can be used by clients who retain objects longer than they are
strictly needed (for example, caching non-active state). A typical reclaim callback might
return to the cache ten per cent of the unneeded buffers.

The constructor and destructor callbacks enable the management of buffers with the
constructed state. The constructor takes as arguments a buffer with undefined contents, some
callback data, and the flags to use for any allocations. This callback should transform the
buffer into the constructed state.

The destructor callback takes as an argument a constructed object and prepares it for return to
the general pool of memory. The destructor should undo any state that the constructor
created. For debugging, the destructor can also check that the buffer is in the constructed state,
to catch incorrectly freed buffers. See umem_debug(3MALLOC) for further information on
debugging support.

The umem_cache_destroy() function destroys an object cache. If the cache has any
outstanding allocations, the behavior is undefined.

The umem_cache_alloc() function takes as arguments:

cache a cache pointer

flags flags that determine the behavior if umem_cache_alloc() is unable to fulfill the
allocation request

If successful, umem_cache_alloc() returns a pointer to the beginning of an object of bufsize
length.

There are three cases to consider:

■ A new buffer needed to be allocated. If the cache was created with a constructor, it is
applied to the buffer and the resulting object is returned.

Allocating Objects

umem_cache_create(3MALLOC)

Basic Library Functions 1103

■ The object cache was able to use a previously freed buffer. If the cache was created with a
constructor, the object is returned unchanged from when it was freed.

■ The allocation of a new buffer failed. The flags argument determines the behavior:

UMEM_DEFAULT The umem_cache_alloc() function returns NULL if the allocation fails.

UMEM_NOFAIL The umem_cache_alloc() function cannot return NULL. A callback is
used to determine what action occurs. See umem_alloc(3MALLOC) for
more information.

The umem_cache_free() function takes as arguments:

cache a cache pointer

buf a pointer previously returned from umem_cache_alloc(). This argument must not
be NULL.

If the cache was created with a constructor callback, the object must be returned to the
constructed state before it is freed.

Undefined behavior results if an object is freed multiple times, if an object is modified after it
is freed, or if an object is freed to a cache other than the one from which it was allocated.

When a constructor callback is in use, there is essentially a contract between the cache and its
clients. The cache guarantees that all objects returned from umem_cache_alloc() will be in
the constructed state, and the client guarantees that it will return the object to the constructed
state before handing it to umem_cache_free().

Upon failure, the umem_cache_create() function returns a null pointer.

The umem_cache_create() function will fail if:

EAGAIN There is not enough memory available to allocate the cache data structure.

EINVAL The debug_name argument is NULL, the align argument is not a power of two or is
larger than the system pagesize, or the bufsize argument is 0.

ENOMEM The libumem library could not be initialized, or the bufsize argument is too large
and its use would cause integer overflow to occur.

EXAMPLE 1 Use a fixed-size structure with no constructor callback.

#include <umem.h>

typedef struct my_obj {

long my_data1;

} my_obj_t;

/*

Freeing Objects

Caches with
Constructors

Return Values

Errors

Examples

umem_cache_create(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081104

EXAMPLE 1 Use a fixed-size structure with no constructor callback. (Continued)

* my_objs can be freed at any time. The contents of

* my_data1 is undefined at allocation time.

*/

umem_cache_t *my_obj_cache;

...

my_obj_cache = umem_cache_create("my_obj", sizeof (my_obj_t),

0, NULL, NULL, NULL, NULL, NULL, 0);

...

my_obj_t *cur = umem_cache_alloc(my_obj_cache, UMEM_DEFAULT);

...

/* use cur */

...

umem_cache_free(my_obj_cache, cur);

...

EXAMPLE 2 Use an object with a mutex.

#define _REENTRANT

#include <synch.h>

#include <umem.h>

typedef struct my_obj {

mutex_t my_mutex;

long my_data;

} my_obj_t;

/*

* my_objs can only be freed when my_mutex is unlocked.

*/

int

my_obj_constructor(void *buf, void *ignored, int flags)

{

my_obj_t *myobj = buf;

(void) mutex_init(&my_obj->my_mutex, USYNC_THREAD, NULL);

return (0);

}

void

my_obj_destructor(void *buf, void *ignored)

{

my_obj_t *myobj = buf;

umem_cache_create(3MALLOC)

Basic Library Functions 1105

EXAMPLE 2 Use an object with a mutex. (Continued)

(void) mutex_destroy(&my_obj->my_mutex);

}

umem_cache_t *my_obj_cache;

...

my_obj_cache = umem_cache_create("my_obj", sizeof (my_obj_t),

0, my_obj_constructor, my_obj_destructor, NULL, NULL,

NULL, 0);

...

my_obj_t *cur = umem_cache_alloc(my_obj_cache, UMEM_DEFAULT);

cur->my_data = 0; /* cannot assume anything about my_data */

...

umem_cache_free(my_obj_cache, cur);

...

EXAMPLE 3 Use a more complex object with a mutex.

#define _REENTRANT

#include <assert.h>

#include <synch.h>

#include <umem.h>

typedef struct my_obj {

mutex_t my_mutex;

cond_t my_cv;

struct bar *my_barlist;

unsigned my_refcount;

} my_obj_t;

/*

* my_objs can only be freed when my_barlist == NULL,

* my_refcount == 0, there are no waiters on my_cv, and

* my_mutex is unlocked.

*/

int

my_obj_constructor(void *buf, void *ignored, int flags)

{

my_obj_t *myobj = buf;

(void) mutex_init(&my_obj->my_mutex, USYNC_THREAD, NULL);

(void) cond_init(&my_obj->my_cv, USYNC_THREAD, NULL);

myobj->my_barlist = NULL;

myobj->my_refcount = 0;

umem_cache_create(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081106

EXAMPLE 3 Use a more complex object with a mutex. (Continued)

return (0);

}

void

my_obj_destructor(void *buf, void *ignored)

{

my_obj_t *myobj = buf;

assert(myobj->my_refcount == 0);

assert(myobj->my_barlist == NULL);

(void) cond_destroy(&my_obj->my_cv);

(void) mutex_destroy(&my_obj->my_mutex);

}

umem_cache_t *my_obj_cache;

...

my_obj_cache = umem_cache_create("my_obj", sizeof (my_obj_t),

0, my_obj_constructor, my_obj_destructor, NULL, NULL,

NULL, 0);

...

my_obj_t *cur = umem_cache_alloc(my_obj_cache, UMEM_DEFAULT);

...

/* use cur */

...

umem_cache_free(my_obj_cache, cur);

...

EXAMPLE 4 Use objects with a subordinate buffer while reusing callbacks.

#include assert.h>

#include umem.h>

typedef struct my_obj {

char *my_buffer;

size_t my_size;

} my_obj_t;

/*

* my_size and the my_buffer pointer should never be changed

*/

int

my_obj_constructor(void *buf, void *arg, int flags)

{

size_t sz = (size_t)arg;

umem_cache_create(3MALLOC)

Basic Library Functions 1107

EXAMPLE 4 Use objects with a subordinate buffer while reusing callbacks. (Continued)

my_obj_t *myobj = buf;

if ((myobj->my_buffer = umem_alloc(sz, flags)) == NULL)

return (1);

my_size = sz;

return (0);

}

void

my_obj_destructor(void *buf, void *arg)

{

size_t sz = (size_t)arg;

my_obj_t *myobj = buf;

assert(sz == buf->my_size);

umem_free(myobj->my_buffer, sz);

}

...

umem_cache_t *my_obj_4k_cache;

umem_cache_t *my_obj_8k_cache;

...

my_obj_cache_4k = umem_cache_create("my_obj_4k", sizeof (my_obj_t),

0, my_obj_constructor, my_obj_destructor, NULL,

(void *)4096, NULL, 0);

my_obj_cache_8k = umem_cache_create("my_obj_8k", sizeof (my_obj_t),

0, my_obj_constructor, my_obj_destructor, NULL,

(void *)8192, NULL, 0);

...

my_obj_t *my_obj_4k = umem_cache_alloc(my_obj_4k_cache,

UMEM_DEFAULT);

my_obj_t *my_obj_8k = umem_cache_alloc(my_obj_8k_cache,

UMEM_DEFAULT);

/* no assumptions should be made about the contents

of the buffers */

...

/* make sure to return them to the correct cache */

umem_cache_free(my_obj_4k_cache, my_obj_4k);

umem_cache_free(my_obj_8k_cache, my_obj_8k);

...

umem_cache_create(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081108

See the EXAMPLES section of umem_alloc(3MALLOC) for examples involving the UMEM_NOFAIL
flag.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

setcontext(2), atexit(3C), libumem(3LIB), longjmp(3C), swapcontext(3C), thr_exit(3C),
umem_alloc(3MALLOC), umem_debug(3MALLOC), attributes(5)

Bonwick, Jeff, “The Slab Allocator: An Object-Caching Kernel Memory Allocator”,
Proceedings of the Summer 1994 Usenix Conference.

Bonwick, Jeff and Jonathan Adams, “Magazines and vmem: Extending the Slab Allocator to
Many CPUs and Arbitrary Resources”, Proceedings of the Summer 2001 Usenix Conference.

Any of the following can cause undefined results:
■ Destroying a cache that has outstanding allocated buffers.
■ Using a cache after it has been destroyed.
■ Calling umem_cache_free() on the same buffer multiple times.
■ Passing a NULL pointer to umem_cache_free().
■ Writing past the end of a buffer.
■ Reading from or writing to a buffer after it has been freed.
■ Performing UMEM_NOFAIL allocations from an atexit(3C) handler.

Per-cache callbacks can be called from a variety of contexts. The use of functions that modify
the active context, such as setcontext(2), swapcontext(3C), and thr_exit(3C), or functions
that are unsafe for use in multithreaded applications, such as longjmp(3C) and
siglongjmp(3C), result in undefined behavior.

A constructor callback that performs allocations must pass its flags argument unchanged to
umem_alloc(3MALLOC) and umem_cache_alloc(). Any allocations made with a different
flags argument results in undefined behavior. The constructor must correctly handle the
failure of any allocations it makes.

Object caches make the following guarantees about objects:
■ If the cache has a constructor callback, it is applied to every object before it is returned

from umem_cache_alloc() for the first time.
■ If the cache has a constructor callback, an object passed to umem_cache_free() and later

returned from umem_cache_alloc() is not modified between the two events.
■ If the cache has a destructor, it is applied to all objects before their underlying storage is

returned.

Attributes

See Also

Warnings

Notes

umem_cache_create(3MALLOC)

Basic Library Functions 1109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libumem-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1setcontext-2

No other guarantees are made. In particular, even if there are buffers recently freed to the
cache, umem_cache_alloc() can fail.

umem_cache_create(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 24 Mar 20081110

umem_debug – debugging features of the umem library

cc [flag...] file... -lumem [library...]

#include <umem.h>

The libumem library provides debugging features that detect memory leaks, buffer overruns,
multiple frees, use of uninitialized data, use of freed data, and many other common
programming errors. The activation of the run-time debugging features is controlled by
environment variables.

When the library detects an error, it writes a description of the error to an internal buffer that
is readable with the ::umem_status mdb(1) dcmd and then calls abort(3C).

UMEM_DEBUG This variable contains a list of comma-separated options. Unrecognized
options are ignored. Possible options include:

audit[=frames] This option enables the recording of auditing
information, including thread ID, high-resolution
time stamp, and stack trace for the last action
(allocation or free) on every allocation. If
transaction logging (see UMEM_LOGGING) is enabled,
this auditing information is also logged.

The frames parameter sets the number of stack
frames recorded in the auditing structure. The
upper bound for frames is implementation-defined.
If a larger value is requested, the upper bound is
used instead.

If frames is not specified or is not an integer, the
default value of 15 is used.

This option also enables the guards option.

contents[=count] If auditing and contents logging (see
UMEM_LOGGING) are enabled, the first count bytes of
each buffer are logged when they are freed. If a
buffer is shorter than count bytes, it is logged in its
entirety.

If count is not specified or is not an integer, the
default value of 256 is used.

default This option is equivalent to
audit,contents,guards.

guards This option enables filling allocated and freed
buffers with special patterns to help detect the use

Name

Synopsis

Description

Environment
Variables

umem_debug(3MALLOC)

Basic Library Functions 1111

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mdb-1

of uninitialized data and previously freed buffers. It
also enables an 8-byte redzone after each buffer that
contains 0xfeedfacefeedfaceULL.

When an object is freed, it is filled with 0xdeadbeef.
When an object is allocated, the 0xdeadbeef
pattern is verified and replaced with 0xbaddcafe.
The redzone is checked every time a buffer is
allocated or freed.

For caches with either constructors or destructors,
or both, umem_cache_alloc(3MALLOC) and
umem_cache_free(3MALLOC) apply the cache's
constructor and destructor, respectively, instead of
caching constructed objects. The presence of
assert(3C)s in the destructor verifying that the
buffer is in the constructed state can be used to
detect any objects returned in an improper state.
See umem_cache_create(3MALLOC) for details.

verbose The library writes error descriptions to standard
error before aborting. These messages are not
localized.

UMEM_LOGGING To be enabled, this variable should be set to a comma-separated list of
in-memory logs. The logs available are:

transaction[=size] If the audit debugging option is set (see
UMEM_DEBUG), the audit structures from previous
transactions are entered into this log.

contents[=size] If the audit debugging option is set, the contents
of objects are recorded in this log as they are freed.

If the "contents" debugging option was not set,
256 bytes of each freed buffer are saved.

fail[=size] Records are entered into this log for every failed
allocation.

For any of these options, if size is not specified, the default value of 64k is
used. The size parameter must be an integer that can be qualified with K,
M, G, or T to specify kilobytes, megabytes, gigabytes, or terabytes,
respectively.

Logs that are not listed or that have either a size of 0 or an invalid size are
disabled.

umem_debug(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 26 July 20021112

The log is disabled if during initialization the requested amount of storage
cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Uncommitted

MT-Level MT-Safe

mdb(1), abort(3C), signal(3C), umem_cache_create(3MALLOC), attributes(5)

Oracle Solaris Modular Debugger Guide

When libumem aborts the process using abort(3C), any existing signal handler for SIGABRT is
called. If the signal handler performs allocations, undefined behavior can result.

Some of the debugging features work only for allocations smaller than 16 kilobytes in size.
Allocations larger than 16 kilobytes could have reduced support.

Activating any of the library's debugging features could significantly increase the library's
memory footprint and decrease its performance.

Attributes

See Also

Warnings

Notes

umem_debug(3MALLOC)

Basic Library Functions 1113

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MODDEBUG

ungetc – push byte back into input stream

#include <stdio.h>

int ungetc(int c, FILE *stream);

The ungetc() function pushes the byte specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. The pushed-back bytes will be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening
call (with the stream pointed to by stream) to a file-positioning function (fseek(3C),
fsetpos(3C) or rewind(3C)) discards any pushed-back bytes for the stream. The external
storage corresponding to the stream is unchanged.

Four bytes of push-back are guaranteed. If ungetc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the operation
may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back bytes will be
the same as it was before the bytes were pushed back. The file-position indicator is
decremented by each successful call to ungetc(); if its value was 0 before a call, its value is
indeterminate after the call.

Upon successful completion, ungetc() returns the byte pushed back after conversion.
Otherwise it returns EOF.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

read(2), Intro(3), __fsetlocking(3C), fseek(3C), fsetpos(3C), getc(3C), setbuf(3C),
stdio(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

ungetc(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Sep 20031114

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ungetwc – push wide-character code back into input stream

#include <stdio.h>

#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

The ungetwc() function pushes the character corresponding to the wide character code
specified by wc back onto the input stream pointed to by stream. The pushed-back characters
will be returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning
function (fseek(3C), fsetpos(3C) or rewind(3C)) discards any pushed-back characters for
the stream. The external storage corresponding to the stream is unchanged.

One character of push-back is guaranteed. If ungetwc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the operation
may fail.

If the value of wc equals that of the macro WEOF, the operation fails and the input stream is
unchanged.

A successful call to ungetwc() clears the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back characters
will be the same as it was before the characters were pushed back. The file-position indicator is
decremented (by one or more) by each successful call to ungetwc(); if its value was 0 before a
call, its value is indeterminate after the call.

Upon successful completion, ungetwc() returns the wide-character code corresponding to
the pushed-back character. Otherwise it returns WEOF.

The ungetwc() function may fail if:

EILSEQ An invalid character sequence is detected, or a wide-character code does not
correspond to a valid character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

read(2), fseek(3C), fsetpos(3C), rewind(3C), setbuf(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

ungetwc(3C)

Basic Library Functions 1115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

unlockpt – unlock a pseudo-terminal master/slave pair

#include <stdlib.h>

int unlockpt(int fildes);

The unlockpt() function unlocks the slave pseudo-terminal device associated with the master
to which fildes refers.

Portable applications must call unlockpt() before opening the slave side of a pseudo-terminal
device.

Upon successful completion, unlockpt() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

The unlockpt() function may fail if:

EBADF The fildes argument is not a file descriptor open for writing.

EINVAL The fildes argument is not associated with a master pseudo-terminal device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

open(2), grantpt(3C), ptsname(3C), attributes(5), standards(5)

STREAMS Programming Guide

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

unlockpt(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

unsetenv – remove an environment variable

#include <stdlib.h>

int unsetenv(const char *name);

The unsetenv() function removes an environment variable from the environment of the
calling process. The name argument points to a string that is the name of the variable to be
removed. The named argument cannot contain an '=' character. If the named variable does
not exist in the current environment, the environment is unchanged and the function is
considered to have completed successfully.

If the application modifies environ or the pointers to which it points, the behavior of
unsetenv() is undefined. The unsetenv() function updates the list of pointers to which
environ points.

Upon successful completion, 0 is returned. Otherwise, -1 is returned, errno set to indicate the
error, and the environment is left unchanged.

The unsetenv() function will fail if:

EINVAL The name argument is a null pointer, points to an empty string, or points to a
string containing an '=' character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getenv(3C), setenv(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

unsetenv(3C)

Basic Library Functions 1117

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

usleep – suspend execution for interval in microseconds

#include <unistd.h>

int usleep(useconds_t useconds);

The usleep() function suspends the caller from execution for the number of microseconds
specified by the useconds argument. The actual suspension time might be less than requested
because any caught signal will terminate usleep() following execution of that signal's
catching routine. The suspension time might be longer than requested by an arbitrary amount
because of the scheduling of other activity in the system.

If the value of useconds is 0, then the call has no effect.

The use of the usleep() function has no effect on the action or blockage of any signal. In a
multithreaded process, only the invoking thread is suspended from execution.

On completion, usleep() returns 0. There are no error returns.

No errors are returned.

The usleep() function is included for its historical usage. The nanosleep(3C) function is
preferred over this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

nanosleep(3C), sleep(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

usleep(3C)

man pages section 3: Basic Library Functions • Last Revised 5 Feb 20081118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

vfwprintf, vswprintf, vwprintf – wide-character formatted output of a stdarg argument list

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwprintf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswprintf(wchar_t *restrict s, size_t n,
const wchar_t *restrict format, va_list arg);

int vwprintf(const wchar_t *restrict format, va_list arg);

The vwprintf(), vfwprintf(), and vswprintf() functions are the same as wprintf(),
fwprintf(), and swprintf() respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by <stdarg.h>.

These functions do not invoke the va_end() macro. However, as these functions do invoke
the va_arg() macro, the value of ap after the return is indeterminate.

Refer to fwprintf(3C).

Refer to fwprintf(3C).

Applications using these functions should call va_end(ap) afterwards to clean up.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

fwprintf(3C), setlocale(3C), attributes(5), standards(5)

The vwprintf(), vfwprintf(), and vswprintf() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change the locale.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

vfwprintf(3C)

Basic Library Functions 1119

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

vlfmt – display error message in standard format and pass to logging and monitoring services

#include <pfmt.h>

#include <stdarg.h>

int vlfmt(FILE *stream, long flag, const char *format, va_list ap);

The vlfmt() function is identical to lfmt(3C), except that it is called with an argument list as
defined by <stdarg.h>.

The <stdarg.h> header defines the type va_list and a set of macros for advancing through a
list of arguments whose number and types may vary. The ap argument is of type va_list. This
argument is used with the <stdarg.h> macros va_start(), va_arg(), and va_end(). See
stdarg(3EXT). The example in the EXAMPLES section below demonstrates their use with
vlfmt().

Upon successful completion, vlfmt() returns the number of bytes transmitted. Otherwise, −1
is returned if there was a write error to stream, or −2 is returned if unable to log and/or display
at console.

EXAMPLE 1 Use of vlfmt() to write an errlog()routine.

The following example demonstrates how vlfmt() could be used to write an errlog()

routine. The va_alist() macro is used as the parameter list in a function definition. The
va_start(ap, . . .) call, where ap is of type va_list, must be invoked before any attempt to
traverse and access unnamed arguments. Calls to va_arg(ap, atype) traverse the argument
list. Each execution of va_arg() expands to an expression with the value and type of the next
argument in the list ap, which is the same object initialized by va_start(). The atype
argument is the type that the returned argument is expected to be. The va_end(ap) macro
must be invoked when all desired arguments have been accessed. The argument list in ap can
be traversed again if va_start() is called again after va_end().) In the example below,
va_arg() is executed first to retrieve the format string passed to errlog(). The remaining
errlog() arguments (arg1, arg2, ...) are passed to vlfmt() in the argument ap.

#include <pfmt.h>

#include <stdarg.h>

/*

* errlog should be called like

* errlog(log_info, format, arg1, ...);

*/

void errlog(long log_info, ...)

{

va_list ap;

char *format;

va_start(ap,);

format = va_arg(ap, char *);

(void) vlfmt(stderr, log_info|MM_ERROR, format, ap);

va_end(ap);

Name

Synopsis

Description

Return Values

Examples

vlfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 19961120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext

EXAMPLE 1 Use of vlfmt() to write an errlog()routine. (Continued)

(void) abort();

}

Since vlfmt() uses gettxt(3C), it is recommended that vlfmt() not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), lfmt(3C), attributes(5), stdarg(3EXT)

Usage

Attributes

See Also

vlfmt(3C)

Basic Library Functions 1121

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext

vpfmt – display error message in standard format and pass to logging and monitoring services

#include <pfmt.h>

#include <stdarg.h>

int vpfmt(FILE *stream, long flag, const char *format, va_list ap);

The vpfmt() function is identical to pfmt(3C), except that it is called with an argument list as
defined by <stdarg.h>.

The <stdarg.h> header defines the type va_list and a set of macros for advancing through a
list of arguments whose number and types may vary. The ap argument is of type va_list. This
argument is used with the <stdarg.h> macros va_start(), va_arg(), and va_end(). See
stdarg(3EXT). The example in the EXAMPLES section below demonstrates their use with
vpfmt().

Upon successful completion, vpfmt() returns the number of bytes transmitted. Otherwise, −1
is returned if there was a write error to stream.

EXAMPLE 1 Use of vpfmt() to write an error routine.

The following example demonstrates how vpfmt() could be used to write an error() routine.
The va_alist() macro is used as the parameter list in a function definition. The
va_start(ap, . . .) call, where ap is of type va_list, must be invoked before any attempt to
traverse and access unnamed arguments. Calls to va_arg(ap, atype) traverse the argument
list. Each execution of va_arg() expands to an expression with the value and type of the next
argument in the list ap, which is the same object initialized by va_start(). The atype
argument is the type that the returned argument is expected to be. The va_end(ap) macro
must be invoked when all desired arguments have been accessed. The argument list in ap can
be traversed again if va_start() is called again after va_end(). In the example below,
va_arg() is executed first to retrieve the format string passed to error(). The remaining
error() arguments (arg1, arg2, ...) are passed to vpfmt() in the argument ap.

#include <pfmt.h>

#include <stdarg.h>

/*

* error should be called like

* error(format, arg1, ...);

*/

void error(...)

{

va_list ap;

char *format;

va_start(ap,);

format = va_arg(ap, char *);

(void) vpfmt(stderr, MM_ERROR, format, ap);

va_end(ap);

(void) abort();

Name

Synopsis

Description

Return Values

Examples

vpfmt(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 19961122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext

EXAMPLE 1 Use of vpfmt() to write an error routine. (Continued)

}

Since vpfmt() uses gettxt(3C), it is recommended that vpfmt() not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), pfmt(3C), attributes(5), stdarg(3EXT)

Usage

Attributes

See Also

vpfmt(3C)

Basic Library Functions 1123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext

vprintf, vfprintf, vsprintf, vsnprintf, vasprintf – print formatted output of a variable argument
list

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

int vsnprintf(char *s, size_t n, const char *format, va_list ap);

int vasprintf(char **ret, const char *format, va_list ap);

The vprintf(), vfprintf(), vsprintf(), vsnprintf(), and vasprintf() functions are the
same as printf(), fprintf(), sprintf(), snprintf(), and asprintf(), respectively, except
that instead of being called with a variable number of arguments, they are called with an
argument list as defined in the <stdarg.h> header. See printf(3C).

The <stdarg.h> header defines the type va_list and a set of macros for advancing through a
list of arguments whose number and types may vary. The argument ap to the vprint family of
functions is of type va_list. This argument is used with the <stdarg.h> header file macros
va_start(), va_arg(), and va_end() (see stdarg(3EXT)). The EXAMPLES section below
demonstrates the use of va_start() and va_end() with vprintf().

The macro va_alist() is used as the parameter list in a function definition, as in the function
called error() in the example below. The macro va_start(ap, name), where ap is of type
va_list and name is the rightmost parameter (just before . . .), must be called before any
attempt to traverse and access unnamed arguments is made. The va_end(ap) macro must be
invoked when all desired arguments have been accessed. The argument list in ap can be
traversed again if va_start() is called again after va_end(). In the example below, the
error() arguments (arg1, arg2, …) are passed to vfprintf() in the argument ap.

Refer to printf(3C).

The vprintf() and vfprintf() functions will fail if either the stream is unbuffered or the
stream's buffer needed to be flushed and:

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset
maximum.

EXAMPLE 1 Using vprintf() to write an error routine.

The following demonstrates how vfprintf() could be used to write an error routine:

#include <stdio.h>

#include <stdarg.h>

. . .

/*

Name

Synopsis

Description

Return Values

Errors

Examples

vprintf(3C)

man pages section 3: Basic Library Functions • Last Revised 7 Jan 20091124

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext

EXAMPLE 1 Using vprintf() to write an error routine. (Continued)

* error should be called like

* error(function_name, format, arg1, ...);

*/

void error(char *function_name, char *format, ...)

{

va_list ap;

va_start(ap, format);

/* print out name of function causing error */

(void) fprintf(stderr, "ERR in %s: ", function_name);

/* print out remainder of message */

(void) vfprintf(stderr, format, ap);

va_end(ap);

(void) abort();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

Standard See below.

All of these functions can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See standards(5) for the standards conformance of vprintf(), vfprintf(), vsprintf(),
and vsnprintf(). The vasprintf() function is modeled on the one that appears in the
FreeBSD, NetBSD, and GNU C libraries.

printf(3C), attributes(5), stdarg(3EXT), attributes(5), standards(5)

The vsnprintf() return value when n = 0 was changed in the Solaris 10 release. The change
was based on the SUSv3 specification. The previous behavior was based on the initial SUSv2
specification, where vsnprintf() when n = 0 returns an unspecified value less than 1.

Attributes

See Also

Notes

vprintf(3C)

Basic Library Functions 1125

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stdarg-3ext
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

vsyslog – log message with a stdarg argument list

#include <syslog.h>

#include <stdarg.h>

void vsyslog(int priority, const char *message, va_list ap);

The vsyslog() function is identical to syslog(3C), except that it is called with an argument
list as defined by <stdarg.h> rather than with a variable number of arguments.

EXAMPLE 1 Use vsyslog() to write an error routine.

The following example demonstrates the use of vsyslog() in writing an error routine.

#include <syslog.h>

#include <stdarg.h>

/*

* error should be called like:

* error(pri, function_name, format, arg1, arg2...);

*/

void

error(int pri, char *function_name, char *format, ...)

{

va_list args;

va_start(args, format);

/* log name of function causing error */

(void) syslog(pri, "ERROR in %s.", function_name);

/* log remainder of message */

(void) vsyslog(pri, format, args);

va_end(args);

(void) abort();

}

main()

{

error(LOG_ERR, "main", "process %d is dying", getpid());

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Name

Synopsis

Description

Examples

Attributes

vsyslog(3C)

man pages section 3: Basic Library Functions • Last Revised 30 Aug 20061126

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

syslog(3C), attributes(5)See Also

vsyslog(3C)

Basic Library Functions 1127

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

wait3, wait4 – wait for process to terminate or stop

#include <sys/wait.h>

#include <sys/time.h>

#include <sys/resource.h>

pid_t wait3(int *statusp, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *statusp, int options, struct rusage *rusage);

The wait3() function delays its caller until a signal is received or one of its child processes
terminates or stops due to tracing. If any child process has died or stopped due to tracing and
this has not already been reported, return is immediate, returning the process ID and status of
one of those children. If that child process has died, it is discarded. If there are no children, −1
is returned immediately. If there are only running or stopped but reported children, the
calling process is blocked.

If statusp is not a null pointer, then on return from a successful wait3() call, the status of the
child process is stored in the integer pointed to by statusp. *statusp indicates the cause of
termination and other information about the terminated process in the following manner:

■ If the low-order 8 bits of *statusp are equal to 0177, the child process has stopped; the 8 bits
higher up from the low-order 8 bits of *statusp contain the number of the signal that
caused the process to stop. See signal.h(3HEAD).

■ If the low-order 8 bits of *statusp are non-zero and are not equal to 0177, the child process
terminated due to a signal; the low-order 7 bits of *statusp contain the number of the signal
that terminated the process. In addition, if the low-order seventh bit of *statusp (that is, bit
0200) is set, a ‘‘core image'' of the process was produced; see signal.h(3HEAD).

■ Otherwise, the child process terminated due to an exit() call; the 8 bits higher up from
the low-order 8 bits of *statusp contain the low-order 8 bits of the argument that the child
process passed to exit(); see exit(2).

The options argument is constructed from the bitwise inclusive OR of zero or more of the
following flags, defined in <sys/wait.h>:

WNOHANG Execution of the calling process is not suspended if status is not immediately
available for any child process.

WUNTRACED The status of any child processes that are stopped, and whose status has not yet
been reported since they stopped, are also reported to the requesting process.

If rusage is not a null pointer, a summary of the resources used by the terminated process and
all its children is returned. Only the user time used and the system time used are currently
available. They are returned in the ru_utime and ru_stime, members of the rusage structure,
respectively.

Name

Synopsis

Description

wait3(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Nov 20051128

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

When the WNOHANG option is specified and no processes have status to report, wait3() returns
0. The WNOHANG and WUNTRACED options may be combined by the bitwise OR operation of the
two values.

The wait4() function is an extended interface. If pid is 0, wait4() is equivalent to wait3(). If
pid has a nonzero value, wait4() returns status only for the indicated process ID, but not for
any other child processes. If pid has a negative value, wait4() return status only for child
processes whose process group ID is equal to the absolute value of pid. The status can be
evaluated using the macros defined by wait.h(3HEAD).

If wait3() or wait4() returns due to a stopped or terminated child process, the process ID of
the child is returned to the calling process. Otherwise, −1 is returned and errno is set to
indicate the error.

If wait3() or wait4() return due to the delivery of a signal to the calling process, −1 is
returned and errno is set to EINTR. If WNOHANG was set in options, it has at least one child
process specified by pid for which status is not available, and status is not available for any
process specified by pid, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

The wait3() and wait4() functions return 0 if WNOHANG is specified and there are no stopped
or exited children, and return the process ID of the child process if they return due to a
stopped or terminated child process. Otherwise, they return −1 and set errno to indicate the
error.

The wait3() and wait4() functions will fail and return immediately if:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The statusp or rusage arguments point to an illegal address.

EINTR The function was interrupted by a signal. The value of the location pointed to by
statusp is undefined.

EINVAL The value of options is not valid.

The wait4() function may fail if:

ECHILD The process specified by pid does not exist or is not a child of the calling process.

The wait3()and wait4() functions will terminate prematurely, return −1, and set errno to
EINTR upon the arrival of a signal whose SA_RESTART bit in its flags field is not set (see
sigaction(2)).

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

wait3(3C)

Basic Library Functions 1129

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

kill(1), exit(2), waitid(2), waitpid(3C), getrusage(3C), signal(3C), signal.h(3HEAD),
wait(3C), wait.h(3HEAD), proc(4), attributes(5)

If a parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

The wait3() and wait4() functions are automatically restarted when a process receives a
signal while awaiting termination of a child process, unless the SA_RESTART bit is not set in the
flags for that signal.

See Also

Notes

wait3(3C)

man pages section 3: Basic Library Functions • Last Revised 4 Nov 20051130

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

wait – wait for child process to stop or terminate

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *stat_loc);

The wait() function will suspend execution of the calling thread until status information for
one of its terminated child processes is available, or until delivery of a signal whose action is
either to execute a signal-catching function or to terminate the process. If more than one
thread is suspended in wait(), waitpid(3C), or waitid(2) awaiting termination of the same
process, exactly one thread will return the process status at the time of the target process
termination. If status information is available prior to the call to wait(), return will be
immediate.

If wait() returns because the status of a child process is available, it returns the process ID of
the child process. If the calling process specified a non-zero value for stat_loc, the status of the
child process is stored in the location pointed to by stat_loc. That status can be evaluated with
the macros described on the wait.h(3HEAD) manual page.

In the following, status is the object pointed to by stat_loc:

■ If the child process terminated due to an _exit() call, the low order 8 bits of status will be
0 and the high order 8 bits will contain the low order 7 bits of the argument that the child
process passed to _exit(); see exit(2).

■ If the child process terminated due to a signal, the high order 8 bits of status will be 0 and
the low order 7bits will contain the number of the signal that caused the termination. In
addition, if WCOREFLG is set, a “core image” will have been produced; see
signal.h(3HEAD) and wait.h(3HEAD).

One instance of a SIGCHLD signal is queued for each child process whose status has changed. If
wait() returns because the status of a child process is available, any pending SIGCHLD signal
associated with the process ID of that child process is discarded. Any other pending SIGCHLD
signals remain pending.

If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, and the process has
no unwaited children that were transformed into zombie processes, it will block until all of its
children terminate, and wait() will fail and set errno to ECHILD.

If a parent process terminates without waiting for its child processes to terminate, the parent
process ID of each child process is set to 1, with the initialization process inheriting the child
processes; see Intro(2).

When wait() returns due to a terminated child process, the process ID of the child is returned
to the calling process. Otherwise, −1 is returned and errno is set to indicate the error.

Name

Synopsis

Description

Return Values

wait(3C)

Basic Library Functions 1131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

The wait() function will fail if:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal.

Since wait() blocks on a stopped child, a calling process wanting to see the return results of
such a call should use waitpid(3C) or waitid(2) instead of wait(). The wait() function is
implemented as a call to waitpid(-1, stat_loc, 0).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), exec(2), exit(2), fork(2), pause(2), waitid(2), ptrace(3C), signal(3C),
signal.h(3HEAD), waitpid(3C), wait.h(3HEAD), attributes(5)

Errors

Usage

Attributes

See Also

wait(3C)

man pages section 3: Basic Library Functions • Last Revised 9 Jun 20041132

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pause-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

waitpid – wait for child process to change state

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The waitpid() function will suspend execution of the calling thread until status information
for one of its terminated child processes is available, or until delivery of a signal whose action
is either to execute a signal-catching function or to terminate the process. If more than one
thread is suspended in waitpid(), wait(3C), or waitid(2) awaiting termination of the same
process, exactly one thread will return the process status at the time of the target process
termination. If status information is available prior to the call to waitpid(), return will be
immediate.

The pid argument specifies a set of child processes for which status is requested, as follows:
■ If pid is less than (pid_t)−1, status is requested for any child process whose process group

ID is equal to the absolute value of pid.
■ If pid is equal to (pid_t)−1, status is requested for any child process.
■ If pid is equal to (pid_t)0 status is requested for any child process whose process group ID

is equal to that of the calling process.
■ If pid is greater than (pid_t)0, it specifies the process ID of the child process for which

status is requested.

One instance of a SIGCHLD signal is queued for each child process whose status has changed. If
waitpid() returns because the status of a child process is available, and WNOWAIT was not
specified in options, any pending SIGCHLD signal associated with the process ID of that child
process is discarded. Any other pending SIGCHLD signals remain pending.

If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN and the process has
no unwaited children that were transformed into zombie processes, it will block until all of its
children terminate, and waitpid() will fail and set errno to ECHILD.

If waitpid() returns because the status of a child process is available, then that status may be
evaluated with the macros defined by wait.h(3HEAD) If the calling process had specified a
non-zero value of stat_loc, the status of the child process will be stored in the location pointed
to by stat_loc.

The options argument is constructed from the bitwise-inclusive OR of zero or more of the
following flags, defined in the header <sys/wait.h>:

WCONTINUED The status of any continued child process specified by pid, whose status has
not been reported since it continued, is also reported to the calling process.

WNOHANG The waitpid() function will not suspend execution of the calling process if
status is not immediately available for one of the child processes specified by
pid.

Name

Synopsis

Description

waitpid(3C)

Basic Library Functions 1133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head

WNOWAIT Keep the process whose status is returned in stat_loc in a waitable state. The
process may be waited for again with identical results.

WUNTRACED The status of any child processes specified by pid that are stopped, and whose
status has not yet been reported since they stopped, is also reported to the
calling process. WSTOPPED is a synonym for WUNTRACED.

If waitpid() returns because the status of a child process is available, it returns a value equal
to the process ID of the child process for which status is reported. If waitpid() returns due to
the delivery of a signal to the calling process, −1 is returned and errno is set to EINTR. If
waitpid() was invoked with WNOHANG set in options, it has at least one child process specified
by pid for which status is not available, and status is not available for any process specified by
pid, then 0 is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The waitpid() function will fail if:

ECHILD The process or process group specified by pid does not exist or is not a child of the
calling process or can never be in the states specified by options.

EINTR The waitpid() function was interrupted due to the receipt of a signal sent by the
calling process.

EINVAL An invalid value was specified for options.

With options equal to 0 and pid equal to (pid_t)−1, waitpid() is identical to wait(3C). The
waitpid() function is implemented as a call to the more general waitid(2) function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Signal-Safe

Standard See standards(5).

Intro(2), exec(2), exit(2), fork(2), pause(2), sigaction(2), ptrace(3C), signal(3C),
siginfo.h(3HEAD), wait(3C), wait.h(3HEAD), attributes(5), standards(5)

Return Values

Errors

Usage

Attributes

See Also

waitpid(3C)

man pages section 3: Basic Library Functions • Last Revised 7 Dec 20071134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1waitid-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pause-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wait.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

walkcontext, addrtosymstr, printstack, backtrace, backtrace_symbols, backtrace_symbols_fd
– walk stack pointed to by ucontext

#include <ucontext.h>

int walkcontext(const ucontext_t *uptr,
int (*operate_func)(uintptr_t, int, void *), void *usrarg);

int addrtosymstr(uintptr_t addr, char *buffer, int len);

int printstack(int fd);

#include <execinfo.h>

int backtrace(void **buffer, int size);

char **backtrace_symbols(void *const *buffer, int size);

void backtrace_symbols_fd(void *const *buffer, int size, int fd);

The walkcontext() function walks the call stack pointed to by uptr, which can be obtained by
a call to getcontext(2) or from a signal handler installed with the SA_SIGINFO flag. The
walkcontext() function calls the user-supplied function operate_func for each routine found
on the call stack and each signal handler invoked. The user function is passed three
arguments: the PC at which the call or signal occurred, the signal number that occurred at this
PC (0 if no signal occurred), and the third argument passed to walkcontext(). If the user
function returns a non-zero value, walkcontext() returns without completing the callstack
walk.

The addrtosymstr() function attempts to convert a PC into a symbolic representation of the
form

objname’funcname+0xoffset[0xPC]

where objname is the module in which the PC is located, funcname is the name of the function,
and offset is the offset from the beginning of the function. The objname, funcname, and offset
values are obtained from dladdr(3C) and might not always be present. The resulting string is
written to the user-supplied buffer. Should the length of the string be larger than the
user-supplied buffer, only the portion of the string that will fit is written and null-terminated.

The printstack() function uses walkcontext() to print a symbolic stack trace to the
specified file descriptor. This is useful for reporting errors from signal handlers. The
printstack() function uses dladdr1() (see dladdr(3C)) to obtain symbolic symbol names.
As a result, only global symbols are reported as symbol names by printstack().

The backtrace() function uses walkcontext() to generate a stack's program counter values
for the calling thread and place these values into the array specified by the buffer argument.
The size argument specifies the maximum number of program counters that will be recorded.
This function is provided for compatibility with the GNU libc used on Linux systems, glibc.

Name

Synopsis

Description

walkcontext(3C)

Basic Library Functions 1135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getcontext-2

The backtrace_symbols() function translates the numerical program counter values
previously recorded by a call to backtrace() in the buffer argument, and converts, where
possible, each PC to a string indicating the module, function and offset of each call site. The
number of symbols present in the array must be passed in with the size argument.

The set of strings is returned in an array obtained from a call to malloc(3C). It is the
responsibility of the caller to pass the returned pointer to free(). The individual strings must
not be freed. Since malloc() is used to obtain the needed space, this function is MT-Safe
rather than Async-Signal-Safe and cannot be used reliably from a signal handler. This
function is provided for glibc compatibility.

The backtrace_symbols_fd() function translates the numerical program counter values
previously recorded by a call to backtrace() in the buffer argument, and converts, where
possible, each PC to a string indicating the module, function, and offset of each call site. These
strings are written to the file descriptor specified in the fd argument. This function is provided
for glibc compatibility.

Upon successful completion, walkcontext() and printstack() return 0. If walkcontext()
cannot read the stack or the stack trace appears corrupted, both functions return -1.

The addrtosymstr() function returns the number of characters necessary to hold the entire
string representation of the passed in address, irrespective of the size of the user-supplied
buffer.

The backtrace() function returns the number of stack frames captured.

The backtrace_symbols() function returns a pointer to an array containing string
representations of the calling sequence.

No error values are defined.

The walkcontext() function is typically used to obtain information about the call stack for
error reporting, performance analysis, or diagnostic purposes. Many library functions are not
Async-Signal-Safe and should not be used from a signal handler. If walkcontext() is to be
called from a signal handler, careful programming is required. In particular, stdio(3C) and
malloc(3C) cannot be used.

The walkstack(), addrtosymstr(), printstack(), backtrace(), and
backtrace_symbols_fd() functions are Async-Signal-Safe and can be called from a signal
handler. The string representation generated by addrtosymstr() and displayed by
printstack(), backtrace_symbols() and backtrace_symbols_fd() is unstable and will
change depending on the information available in the modules that comprise the stack trace.

Tail-call optimizations on SPARC eliminate stack frames that would otherwise be present. For
example, if the code is of the form

#include <stdio.h>

main()

Return Values

Errors

Usage

walkcontext(3C)

man pages section 3: Basic Library Functions • Last Revised 10 Apr 20071136

{

bar();

exit(0);

}

bar()

{

int a;

a = foo(fileno(stdout));

return (a);

}

foo(int file)

{

printstack(file);

}

compiling without optimization will yield a stack trace of the form

/tmp/q:foo+0x8

/tmp/q:bar+0x14

/tmp/q:main+0x4

/tmp/q:_start+0xb8

whereas with higher levels of optimization the output is

/tmp/q:main+0x10

/tmp/q:_start+0xb8

since both the call to foo() in main and the call to bar() in foo() are handled as tail calls that
perform a return or restore in the delay slot. For further information, see The SPARC
Architecture Manual.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See below.

The backtrace_symbols() function is MT-Safe. The remaining functions are
Async-Signal-Safe.

Intro(2), getcontext(2), sigaction(2), dladdr(3C), siginfo.h(3HEAD), attributes(5)

Weaver, David L. and Tom Germond, eds. The SPARC Architecture Manual, Version 9. Santa
Clara: Prentice Hall, 2000.

Attributes

See Also

walkcontext(3C)

Basic Library Functions 1137

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getcontext-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

watchmalloc – debugging memory allocator

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

void *memalign(size_t alignment, size_t size);

void *valloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

#include <malloc.h>

int mallopt(int cmd, int value);

struct mallinfo mallinfo(void);

The collection of malloc() functions in this shared object are an optional replacement for the
standard versions of the same functions in the system C library. See malloc(3C). They provide
a more strict interface than the standard versions and enable enforcement of the interface
through the watchpoint facility of /proc. See proc(4).

Any dynamically linked application can be run with these functions in place of the standard
functions if the following string is present in the environment (see ld.so.1(1)):

LD_PRELOAD=watchmalloc.so.1

The individual function interfaces are identical to the standard ones as described in
malloc(3C). However, laxities provided in the standard versions are not permitted when the
watchpoint facility is enabled (see WATCHPOINTS below):

■ Memory may not be freed more than once.
■ A pointer to freed memory may not be used in a call to realloc().
■ A call to malloc() immediately following a call to free() will not return the same space.
■ Any reference to memory that has been freed yields undefined results.

To enforce these restrictions partially, without great loss in speed as compared to the
watchpoint facility described below, a freed block of memory is overwritten with the pattern
0xdeadbeef before returning from free(). The malloc() function returns with the allocated
memory filled with the pattern 0xbaddcafe as a precaution against applications incorrectly
expecting to receive back unmodified memory from the last free(). The calloc() function
always returns with the memory zero-filled.

Entry points for mallopt() and mallinfo() are provided as empty routines, and are present
only because some malloc() implementations provide them.

Name

Synopsis

Description

watchmalloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 10 Jan 20071138

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ld.so.1-1

The watchpoint facility of /proc can be applied by a process to itself. The functions in
watchmalloc.so.1 use this feature if the following string is present in the environment:

MALLOC_DEBUG=WATCH

This causes every block of freed memory to be covered with WA_WRITE watched areas. If the
application attempts to write any part of freed memory, it will trigger a watchpoint trap,
resulting in a SIGTRAP signal, which normally produces an application core dump.

A header is maintained before each block of allocated memory. Each header is covered with a
watched area, thereby providing a red zone before and after each block of allocated memory
(the header for the subsequent memory block serves as the trailing red zone for its preceding
memory block). Writing just before or just after a memory block returned by malloc() will
trigger a watchpoint trap.

Watchpoints incur a large performance penalty. Requesting MALLOC_DEBUG=WATCH can cause
the application to run 10 to 100 times slower, depending on the use made of allocated
memory.

Further options are enabled by specifying a comma-separated string of options:

MALLOC_DEBUG=WATCH,RW,STOP

WATCH Enables WA_WRITE watched areas as described above.

RW Enables both WA_READ and WA_WRITE watched areas. An attempt either to read or
write freed memory or the red zones will trigger a watchpoint trap. This incurs even
more overhead and can cause the application to run up to 1000 times slower.

STOP The process will stop showing a FLTWATCH machine fault if it triggers a watchpoint
trap, rather than dumping core with a SIGTRAP signal. This allows a debugger to be
attached to the live process at the point where it underwent the watchpoint trap.
Also, the various /proc tools described in proc(1) can be used to examine the
stopped process.

One of WATCH or RW must be specified, else the watchpoint facility is not engaged. RW overrides
WATCH. Unrecognized options are silently ignored.

Sizes of memory blocks allocated by malloc() are rounded up to the worst-case alignment
size, 8 bytes for 32-bit processes and 16 bytes for 64-bit processes. Accessing the extra space
allocated for a memory block is technically a memory violation but is in fact innocuous. Such
accesses are not detected by the watchpoint facility of watchmalloc.

Interposition of watchmalloc.so.1 fails innocuously if the target application is statically
linked with respect to its malloc() functions.

Watchpoints

Limitations

watchmalloc(3MALLOC)

Basic Library Functions 1139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

proc(1), bsdmalloc(3MALLOC), calloc(3C), free(3C), malloc(3C), malloc(3MALLOC),
mapmalloc(3MALLOC), memalign(3C), realloc(3C), valloc(3C), libmapmalloc(3LIB),
proc(4), attributes(5)

Attributes

See Also

watchmalloc(3MALLOC)

man pages section 3: Basic Library Functions • Last Revised 10 Jan 20071140

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libmapmalloc-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1proc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

wcrtomb – convert a wide-character code to a character (restartable)

#include <stdio.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

If s is a null pointer, the wcrtomb() function is equivalent to the call:

wcrtomb(buf, L'\0', ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function determines the number of bytes needed to
represent the character that corresponds to the wide-character given by wc (including any
shift sequences), and stores the resulting bytes in the array whose first element is pointed to by
s. At most MB_CUR_MAX bytes are stored. If wc is a null wide-character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state. The resulting state
described is the initial conversion state.

If ps is a null pointer, the wcrtomb() function uses its own internal mbstate_t object, which is
initialized at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. Solaris will behave as if no function defined in the Solaris Reference
Manual calls wcrtomb().

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

The wcrtomb() function returns the number of bytes stored in the array object (including any
shift sequences). When wc is not a valid wide-character, an encoding error occurs. In this case,
the function stores the value of the macros EILSEQ in errno and returns (size_t)−1; the
conversion state is undefined.

The wcrtomb() function may fail if:

EINVAL The ps argument points to an object that contains an invalid conversion state.

EILSEQ Invalid wide-character code is detected.

If ps is not a null pointer, wcrtomb() uses the mbstate_t object pointed to by ps and the
function can be used safely in multithreaded applications, as long as setlocale(3C) is not
being called to change the locale. If ps is a null pointer, wcrtomb() uses its internal mbstate_t
object and the function is Unsafe in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

wcrtomb(3C)

Basic Library Functions 1141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

Standard See standards(5).

mbsinit(3C), setlocale(3C), attributes(5), standards(5), environ(5)See Also

wcrtomb(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031142

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

wcscoll, wscoll – wide character string comparison using collating information

#include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);

int wscoll(const wchar_t *ws1, const wchar_t *ws2);

The wcscoll() and wscoll() functions compare the wide character string pointed to by ws1
to the wide character string pointed to by ws2, both interpreted as appropriate to the
LC_COLLATE category of the current locale.

The wcscoll() and wscoll() functions do not change the setting of errno if successful.

An application wanting to check for error situations should set errno to 0 before calling
wcscoll() or wscoll(). If errno is non-zero on return, an error has occurred.

Upon successful completion, wcscoll() and wscoll() return an integer greater than, equal
to, or less than 0, depending upon whether the wide character string pointed to by ws1 is
greater than, equal to, or less than the wide character string pointed to by ws2, when both are
interpreted as appropriate to the current locale. On error, wcscoll() and wscoll() may set
errno, but no return value is reserved to indicate an error.

The wcscoll() and wscoll() functions may fail if:

EINVAL The ws1 or ws2 arguments contain wide character codes outside the domain of the
collating sequence.

The wcsxfrm(3C) and wcscmp(3C) functions should be used for sorting large lists.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability wcscoll() is Standard

MT-Level MT-Safe with exceptions

The wcscoll() and wscoll() functions can be used safely in multithreaded applications as
long as setlocale(3C) is not being called to change the locale.

setlocale(3C), wcscmp(3C), wcsxfrm(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

wcscoll(3C)

Basic Library Functions 1143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcsftime – convert date and time to wide character string

#include <wchar.h>

size_t wcsftime(wchar_t *wcs, size_t maxsize, const char *format,
const struct tm *timptr);

size_t wcsftime(wchar_t *restrict wcs, size_t maxsize,
const wchar_t *restrict format,
const struct tm *restrict timptr);

The wcsftime() function is equivalent to the strftime(3C) function, except that:

■ The argument wcs points to the initial element of an array of wide-characters into which
the generated output is to be placed.

■ The argument maxsize indicates the maximum number of wide-characters to be placed in
the output array.

■ The argument format is a wide-character string and the conversion specifications are
replaced by corresponding sequences of wide-characters.

■ The return value indicates the number of wide-characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

If the total number of resulting wide character codes (including the terminating null
wide-character code) is no more than maxsize, wcsftime() returns the number of
wide-character codes placed into the array pointed to by wcs, not including the terminating
null wide-character code. Otherwise, 0 is returned and the contents of the array are
indeterminate.

The wcfstime() function uses malloc(3C) and should malloc() fail, errno will be set by
malloc().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

malloc(3C), setlocale(3C), strftime(3C), attributes(5), standards(5)

Name

Synopsis

XPG4 and SUS

Default and other
standards

Description

Return Values

Attributes

See Also

wcsftime(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031144

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The wcsftime() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

Notes

wcsftime(3C)

Basic Library Functions 1145

wcsrtombs – convert a wide-character string to a character string (restartable)

#include <wchar.h>

size_t wcsrtombs(char *restrict dst,
const wchar_t **restrict src, size_t len,
mbstate_t *restrict ps);

The wcsrtombs() function converts a sequence of wide-characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion
state described by the object pointed to by ps. If dst is not a null pointer, the converted
characters are then stored into the array pointed to by dst. Conversion continues up to and
including a terminating null wide-character, which is also stored. Conversion stops earlier in
the following cases:

■ When a code is reached that does not correspond to a valid character.
■ When the next character would exceed the limit of len total bytes to be stored in the array

pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer
(if conversion stopped due to reaching a terminating null wide-character) or the address just
past the last wide-character converted (if any). If conversion stopped due to reaching a
terminating null wide-character, the resulting state described is the initial conversion state.

If ps is a null pointer, the wcsrtombs() function uses its own internal mbstate_t object, which
is initialized at program startup to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. Solaris will behave as if no function defined in the Solaris
Reference Manual calls wcsrtombs().

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5).

If conversion stops because a code is reached that does not correspond to a valid character, an
encoding error occurs. In this case, the wcsrtombs() function stores the value of the macro
EILSEQ in errno and returns (size_t)−1; the conversion state is undefined. Otherwise, it
returns the number of bytes in the resulting character sequence, not including the terminating
null (if any).

The wcsrtombs() function may fail if:

EINVAL The ps argument points to an object that contains an invalid conversion state.

EILSEQ A wide-character code does not correspond to a valid character.

Name

Synopsis

Description

Return Values

Errors

wcsrtombs(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031146

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

If ps is not a null pointer, wcsrtombs() uses the mbstate_t object pointed to by ps and the
function can be used safely in multithreaded applications, as long as setlocale(3C) is not
being called to change the locale. If ps is a null pointer, wcsrtombs() uses its internal
mbstate_t object and the function is Unsafe in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level See NOTES below

Standard See standards(5).

mbsinit(3C), setlocale(3C), wcrtomb(3C), attributes(5), environ(5), standards(5)

Usage

Attributes

See Also

wcsrtombs(3C)

Basic Library Functions 1147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcsstr – find a wide-character substring

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1, const wchar_t *restrict ws2);

#include <wchar.h>

const wchar_t *wcsstr(const wchar_t *ws1, const wchar_t *ws2);

#include <cwchar>

wchar_t *std::wcsstr(wchar_t *ws1, const wchar_t *ws2);

The wcsstr() function locates the first occurrence in the wide-character string pointed to by
ws1 of the sequence of wide-characters (excluding the terminating null wide-character) in the
wide-character string pointed to by ws2.

On successful completion, wcsstr() returns a pointer to the located wide-character string, or
a null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wschr(3C), attributes(5), standards(5)

Name

Synopsis

ISO C++

Description

Return Values

Errors

Attributes

See Also

wcsstr(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Nov 20031148

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstod, wcstof, wcstold, wstod, watof – convert wide character string to floating-point
number

#include <wchar.h>

double wcstod(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

float wcstof(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

double wstod(const wchar_t *nptr, wchar_t **endptr);

double watof(wchar_t *nptr);

The wcstod(), wcstof(), and wcstold() functions convert the initial portion of the
wide-character string pointed to by nptr to double, float, and long double representation,
respectively. They first decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace(3C))

2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide–character code of the input wide-character string.

Then they attempt to convert the subject sequence to a floating-point number, and return the
result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

■ A non-empty sequence of decimal digits optionally containing a radix character, then an
optional exponent part

■ A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character, then an optional binary exponent part

■ One of INF or INFINITY, or any other wide string equivalent except for case
■ One of NAN or NAN(n-wchar-sequenceopt), or any other wide string ignoring case in the

NAN part, where:

n-wchar-sequence:

digit

nondigit

n-wchar-sequence digit

n-wchar-sequence nondigit

Name

Synopsis

Description

wcstod(3C)

Basic Library Functions 1149

In default mode for wcstod(), only decimal, INF/INFINITY, and
NAN/NAN(n-char-sequence) forms are recognized. In C99/SUSv3 mode, hexadecimal strings
are also recognized.

In default mode for wcstod(), the n-char-sequence in the NAN(n-char-equence) form can
contain any character except ')' (right parenthesis) or '\0' (null). In C99/SUSv3 mode, the
n-char-sequence can contain only upper and lower case letters, digits, and '_' (underscore).

The wcstof() and wcstold() functions always function in C99/SUSv3-conformant mode.

The subject sequence is defined as the longest initial subsequence of the input wide string,
starting with the first non-white-space wide character, that is of the expected form. The
subject sequence contains no wide characters if the input wide string is not of the expected
form.

If the subject sequence has the expected form for a floating-point number, the sequence of
wide characters starting with the first digit or the radix character (whichever occurs first) is
interpreted as a floating constant according to the rules of the C language, except that the radix
character is used in place of a period, and that if neither an exponent part nor a radix character
appears in a decimal floating-point number, or if a binary exponent part does not appear in a
hexadecimal floating-point number, an exponent part of the appropriate type with value zero
is assumed to follow the last digit in the string. If the subject sequence begins with a minus
sign, the sequence is interpreted as negated. A wide-character sequence INF or INFINITY is
interpreted as an infinity. A wide-character sequence NAN or NAN(n-wchar-sequenceopt) is
interpreted as a quiet NaN. A pointer to the final wide string is stored in the object pointed to
by endptr, provided that endptr is not a null pointer.

If the subject sequence has either the decimal or hexadecimal form, the value resulting from
the conversion is rounded correctly according to the prevailing floating point rounding
direction mode. The conversion also raises floating point inexact, underflow, or overflow
exceptions as appropriate.

The radix character is defined in the program's locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character defaults to a
period ('.').

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

The wcstod() function does not change the setting of errno if successful.

The wstod() function is identical to wcstod().

The watof(str) function is equivalent to wstod(nptr, (wchar_t **)NULL).

wcstod(3C)

man pages section 3: Basic Library Functions • Last Revised 31 Mar 20031150

Upon successful completion, these functions return the converted value. If no conversion
could be performed, 0 is returned.

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL is returned (according to the sign of the value), a floating point overflow
exception is raised, and errno is set to ERANGE.

If the correct value would cause an underflow, the correctly rounded result (which may be
normal, subnormal, or zero) is returned, a floating point underflow exception is raised, and
errno is set to ERANGE.

The wcstod() and wstod() functions will fail if:

ERANGE The value to be returned would cause overflow or underflow.

The wcstod() and wcstod() functions may fail if:

EINVAL No conversion could be performed.

Because 0 is returned on error and is also a valid return on success, an application wishing to
check for error situations should set errno to 0 call wcstod(), wcstof(), wcstold(), or
wstod(), then check errno and if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability wcstod(), wcstof(), and wcstold() are Standard.

MT-Level MT-Safe

iswspace(3C), localeconv(3C), scanf(3C), setlocale(3C), wcstol(3C), attributes(5),
standards(5)

Return Values

Errors

Usage

Attributes

See Also

wcstod(3C)

Basic Library Functions 1151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstoimax, wcstoumax – convert wide-character string to integer type

#include <stddef.h>

#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

These functions are equivalent to the wcstol(3C), wcstoll(3C), wcstoul(3C), and
wcstoull(3C) functions, respectively, except that the initial portion of the wide string is
converted to intmax_t and uintmax_t representation, respectively.

These functions return the converted value, if any. If no conversion could be performed, 0 is
returned. If the correct value is outside the range of representable values, {INTMAX_MAX},
{INTMAX_MIN}, or {UINTMAX_MAX} is returned (according to the return type and sign of the
value), and errno is set to ERANGE.

These functions will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

These functions may fail if:

EINVAL No conversion could be performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wcstol(3C), wcstoul(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wcstoimax(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Dec 20031152

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstol, wcstoll, wstol, watol, watoll, watoi – convert wide character string to long integer

#include <wchar.h>

long wcstol(const wchar_t *restrict nptr, wchar_t **restrict endptr,
int base);

long long wcstoll(const wchar_t *restrict nptr, wchar_t **restrict endptr,
int base);

#include <widec.h>

long wstol(const wchar_t *nptr, wchar_t **endptr, int base);

long watol(wchar_t *nptr);

long long watoll(wchar_t *nptr);

int watoi(wchar_t *nptr);

The wcstol() and wcstoll() functions convert the initial portion of the wide character string
pointed to by nptr to long and long long representation, respectively. They first decompose
the input string into three parts:

1. an initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace(3C))

2. a subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. a final wide character string of one or more unrecognised wide character codes, including
the terminating null wide-character code of the input wide character string

They then attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant or hexadecimal constant, any of which may be preceded by a ‘+' or ‘−' sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix ‘0' optionally followed by a sequence of the digits ‘0' to ‘7'
only. A hexadecimal constant consists of the prefix ‘0x' or ‘0X' followed by a sequence of the
decimal digits and letters ‘a' (or ‘A') to ‘f' (or ‘F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally
preceded by a ‘+' or ‘−' sign, but not including an integer suffix. The letters from ‘a' (or ‘A') to
‘z' (or ‘Z') inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base are permitted. If the value of base is 16, the wide-character code
representations of ‘0x' or ‘0X' may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide character
string, starting with the first non-white-space wide-character code, that is of the expected

Name

Synopsis

Description

wcstol(3C)

Basic Library Functions 1153

form. The subject sequence contains no wide-character codes if the input wide character
string is empty or consists entirely of white-space wide-character code, or if the first
non-white-space wide-character code is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide-character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is used as
the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign (-), the value resulting from the conversion is negated. A pointer to
the final wide character string is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

These functions do not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned on error and
are also valid returns on success, an application wanting to check for error situations should
set errno to 0, call one of these functions, then check errno.

The wstol() function is equivalent to wcstol().

The watol() function is equivalent to wstol(str,(wchar_t **)NULL, 10).

The watoll() function is the long-long (double long) version of watol().

The watoi() function is equivalent to (int)watol().

Upon successful completion, these functions return the converted value, if any. If no
conversion could be performed, 0 is returned and errno may be set to indicate the error. If the
correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} is returned (according to the sign of the value), and errno is set
to ERANGE.

These functions will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

These functions may fail if:

EINVAL No conversion could be performed.

Return Values

Errors

wcstol(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031154

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability wcstol() and wcstoll() are Standard.

MT-Level MT-Safe

iswalpha(3C), iswspace(3C), scanf(3C), wcstod(3C), attributes(5), standards(5)

Truncation from long long to long can take place upon assignment or by an explicit cast.

Attributes

See Also

Notes

wcstol(3C)

Basic Library Functions 1155

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstombs – convert a wide-character string to a character string

#include <stdlib.h>

size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs, size_t n);

The wcstombs() function converts the sequence of wide-character codes from the array
pointed to by pwcs into a sequence of characters and stores these characters into the array
pointed to by s, stopping if a character would exceed the limit of n total bytes or if a null byte is
stored. Each wide-character code is converted as if by a call to wctomb(3C).

The behavior of this function is affected by the LC_CTYPE category of the current locale.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
between objects that overlap, the behavior is undefined. If s is a null pointer, wcstombs()
returns the length required to convert the entire array regardless of the value of n, but no
values are stored.

If a wide-character code is encountered that does not correspond to a valid character (of one
or more bytes each), wcstombs() returns (size_t)-1. Otherwise, wcstombs() returns the
number of bytes stored in the character array, not including any terminating null byte. The
array will not be null-terminated if the value returned is n.

The wcstombs() function may fail if:

EILSEQ A wide-character code does not correspond to a valid character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

mblen(3C), mbstowcs(3C), mbtowc(3C), setlocale(3C), wctomb(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wcstombs(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031156

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstoul, wcstoull – convert wide-character string to unsigned long

#include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

The wcstoul() and wcstoull() functions convert the initial portion of the wide-character
string pointed to by nptr to unsigned long and unsigned long long representation,
respectively. First they decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
the function iswspace(3C))

2. Asubject sequence interpreted as an integer represented in some radix determined by the
value of base

3. a final wide-character string of one or more unrecognized wide-character codes, including
the terminating null wide-character code of the input wide character string

They then attempt to convert the subject sequence to an unsigned integer and return the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
an octal constant, or a hexadecimal constant, any of which may be preceded by a ‘+' or a ‘−'
sign. A decimal constant begins with a non-zero digit, and consists of a sequence of decimal
digits. An octal constant consists of the prefix ‘0', optionally followed by a sequence of the
digits ‘0' to ‘7' only. A hexadecimal constant consists of the prefix ‘0x' or ‘0X', followed by a
sequence of the decimal digits and letters ‘a' (or ‘A') to ‘f' (or ‘F'), with values 10 to 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally
preceded by a ‘+' or a ‘−' sign, but not including an integer suffix. The letters from ‘a' (or ‘A') to
‘z' (or ‘Z') inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base are permitted. If the value of base is 16, the wide-character codes ‘0x' or ‘0X'
may optionally precede the sequence of letters and digits, following the sign, if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first wide-character code that is not a white space and is of the
expected form. The subject sequence contains no wide-character codes if the input
wide-character string is empty or consists entirely of white-space wide-character codes, or if
the first wide-character code that is not a white space is other than a sign or a permissible letter
or digit.

Name

Synopsis

Description

wcstoul(3C)

Basic Library Functions 1157

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide-character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is used as
the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated. A pointer to the
final wide character string is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

The wcstoul() function does not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid return on
success, an application wanting to check for error situations should set errno to 0, then call
wcstoul() or wcstoull(), then check errno.

The wcstoul() and wcstoull() functions do not change the setting of errno if successful.

Upon successful completion, wcstoul() and wcstoull() return the converted value, if any. If
no conversion could be performed, 0 is returned and errno may be set to indicate the error. If
the correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX},
respectively, is returned and errno is set to ERANGE.

The wcstoul() and wcstoull() functions will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The wcstoul() and wcstoull() functions may fail if:

EINVAL No conversion could be performed.

Unlike wcstod(3C) and wcstol(3C), wcstoul() and wcstoull() must always return a
non-negative number; using the return value of wcstoul() for out-of-range numbers with
wcstoul() or wcstoull() could cause more severe problems than just loss of precision if
those numbers can ever be negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Return Value

Errors

Usage

Attributes

wcstoul(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031158

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

isspace(3C), iswalpha(3C), scanf(3C), wcstod(3C), wcstol(3C), attributes(5),
standards(5)

See Also

wcstoul(3C)

Basic Library Functions 1159

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcstring, wcscasecmp, wcsncasecmp, wcscat, wscat, wcsncat, wsncat, wcscmp, wscmp,
wcsncmp, wsncmp, wcscpy, wscpy, wcsncpy, wsncpy, wcpcpy, wcpncpy, wcsdup, wcslen,
wslen, wcsnlen, wcschr, wschr, wcsrchr, wsrchr, windex, wrindex, wcspbrk, wspbrk, wcswcs,
wcsspn, wsspn, wcscspn, wscspn, wcstok, wstok – wide-character string operations

#include <wchar.h>

int wcscasecmp(const wchar_t *ws1, const wchar_t *ws2);

int wcsncasecmp(const wchar_t ws1*, const wchar_t ws2*, size_t n);

wchar_t *wcscat(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcsncat(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wchar_t *wcscpy(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcscpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

wchar_t *wcsncpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

wchar_t *wcsdup(const wchar_t *s);

size_t wcslen(const wchar_t *ws);

size_t wcsnlen(const wchar_t *ws, size_t maxlen);

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcswcs(const wchar_t *ws1, const wchar_t *ws2);

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcstok(wchar_t *restrict ws1, const wchar_t *restrict ws2);

wchar_t *wcstok(wchar_t *ws1, const wchar_t *ws2, wchar_t **ptr);

#include <widec.h>

wchar_t *wscat(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wsncat(wchar_t *ws1, const wchar_t *ws2, size_t n);

int wscmp(const wchar_t *ws1, const wchar_t *ws2);

Name

Synopsis

XPG4, SUS, SUSv2,
SUSv3

Default and other
standards

wcstring(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 20101160

int wsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wchar_t *wscpy(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wsncpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

size_t wslen(const wchar_t *ws);

wchar_t *wschr(const wchar_t *ws, wchat_t wc);

wchar_t *wsrchr(const wchar_t *ws, wchat_t wc);

wchar_t *wspbrk(const wchar_t *ws1, const wchar_t *ws2);

size_t wsspn(const wchar_t *ws1, const wchar_t *ws2);

size_t wscspn(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wstok(wchar_t *ws1, const wchar_t *ws2);

wchar_t *windex(const wchar_t *ws, wchar_t wc);

wchar_t *wrindex(const wchar_t *ws, wchar_t wc);

#include <wchar.h>

const wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

const wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

const wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

#include <cwchar>

wchar_t *std::wcschr(wchar_t *ws, wchar_t wc);

wchar_t *std::wcspbrk(wchar_t *ws1, const wchar_t *ws2);

wchar_t *std::wcsrchr(wchar_t *ws, wchar_t wc);

These functions operate on wide-character strings terminated by wchar_t NULL characters.
During appending or copying, these routines do not check for an overflow condition of the
receiving string. In the following, ws, ws1, and ws2 point to wide-character strings terminated
by a wchar_t NULL.

The wcscasecmp() function is the wide-character equivalent of the strcasecmp(3C) function.
It compares the wide-character string pointed to by ws1 to the wide-character string pointed
to by ws2, ignoring case differences. It returns 0 if the wide-character strings at ws1 is equal to
ws2 except for case differences. It returns a positive integer if ws1 is greater than ws2 and a
negative integer if ws1 is smaller than ws2, ignoring case.

The wcsncasecmp() function is the wide-character equivalent of the strncasecmp(3C)
function. It compares at most n wide-characters from the wide-character string pointed to by
ws1 to the wide-character string pointed to by ws2, while ignoring differences in case. It
returns 0 if the wide-character strings at ws1 and ws2, truncated to at most length n, are equal

ISO C++

Description

wcscasecmp(),
wcsncasecmp()

wcstring(3C)

Basic Library Functions 1161

except for case distinctions. It returns a positive integer if truncated ws1 is greater than ws2
and a negative integer if truncated ws1 is smaller than ws2, ignoring case.

The wcscat() and wscat() functions append a copy of the wide-character string pointed to
by ws2 (including the terminating null wide-character code) to the end of the wide-character
string pointed to by ws1. The initial wide-character code of ws2 overwrites the null
wide-character code at the end of ws1. If copying takes place between objects that overlap, the
behavior is undefined. Both functions return s1; no return value is reserved to indicate an
error.

The wcsncat() and wsncat() functions append not more than n wide-character codes (a null
wide-character code and wide-character codes that follow it are not appended) from the array
pointed to by ws2 to the end of the wide-character string pointed to by ws1. The initial
wide-character code of ws2 overwrites the null wide-character code at the end of ws1. A
terminating null wide-character code is always appended to the result. Both functions return
ws1; no return value is reserved to indicate an error.

The wcscmp() and wscmp() functions compare the wide-character string pointed to by ws1 to
the wide-character string pointed to by ws2. The sign of a non-zero return value is determined
by the sign of the difference between the values of the first pair of wide-character codes that
differ in the objects being compared. Upon completion, both functions return an integer
greater than, equal to, or less than zero, if the wide-character string pointed to by ws1 is greater
than, equal to, or less than the wide-character string pointed to by ws2.

The wcsncmp() and wsncmp() functions compare not more than n wide-character codes
(wide-character codes that follow a null wide character code are not compared) from the array
pointed to by ws1 to the array pointed to by ws2. The sign of a non-zero return value is
determined by the sign of the difference between the values of the first pair of wide-character
codes that differ in the objects being compared. Upon successful completion, both functions
return an integer greater than, equal to, or less than zero, if the possibly null-terminated array
pointed to by ws1 is greater than, equal to, or less than the possibly null-terminated array
pointed to by ws2.

The wcscpy(), wscpy(), and wcpcpy() functions copy the wide-character string pointed to by
ws2 (including the terminating null wide-character code) into the array pointed to by ws1. If
copying takes place between objects that overlap, the behavior is undefined.

The wcscpy() and wscpy() functions return ws1. The wcpcpy() function returns a pointer to
the terminating null wide-character code copied into ws1.

The wcsncpy(), wsncpy(), and wcpncpy() functions copy not more than n wide-character
codes (wide-character codes that follow a null wide character code are not copied) from the
array pointed to by ws2 to the array pointed to by ws1. If copying takes place between objects
that overlap, the behavior is undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by ws1, until

wcscat(), wscat()

wcsncat(), wsncat()

wcscmp(), wscmp()

wcsncmp(), wsncmp()

wcscpy(), wscpy(),
wcpcpy()

wcsncpy(), wsncpy(),
wcpncpy()

wcstring(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 20101162

a total n wide-character codes are written. The wcsncpy() and wsncpy() functions return ws1.
The wcpncpy() function returns a pointer to the last wide character written.

The wcsdup() function is the wide-character equivalent of the strdup(3C) function. It returns
a pointer to a new wide-character string whose initial contents is a duplicate of the
wide-character string pointed to by s. Memory for the new wide-character string is allocated
with malloc(3C) and can be freed with a call to free(3C). A null pointer is returned and errno
set to ENOMEM if there is insufficient memory available for the duplicate string.

The wcslen() and wslen() functions compute the number of wide-character codes in the
wide-character string to which ws points, not including the terminating null wide-character
code. Both functions return ws; no return value is reserved to indicate an error.

The wcsnlen() is the wide-character equivalent of the strnlen(3C) function. It returns the
number of wide-characters in the string pointed to by ws, not including the terminating null
wide-character code but at most maxlen, while never looking beyond the first maxlen
characters. It returns maxlen if there is no terminating null wide-character code among the
first maxlen wide characters pointed to by ws.

The wcschr() and wschr() functions locate the first occurrence of wc in the wide-character
string pointed to by ws. The value of wc must be a character representable as a type wchar_t
and must be a wide-character code corresponding to a valid character in the current locale.
The terminating null wide-character code is considered to be part of the wide-character string.
Upon completion, both functions return a pointer to the wide-character code, or a null
pointer if the wide-character code is not found.

The wcsrchr() and wsrchr() functions locate the last occurrence of wc in the wide-character
string pointed to by ws. The value of wc must be a character representable as a type wchar_t
and must be a wide-character code corresponding to a valid character in the current locale.
The terminating null wide-character code is considered to be part of the wide-character string.
Upon successful completion, both functions return a pointer to the wide-character code, or a
null pointer if wc does not occur in the wide-character string.

The windex() and wrindex() functions behave the same as wschr() and wsrchr(),
respectively.

The wcspbrk() and wspbrk() functions locate the first occurrence in the wide character string
pointed to by ws1 of any wide-character code from the wide-character string pointed to by
ws2. Upon successful completion, the function returns a pointer to the wide-character code,
or a null pointer if no wide-character code from ws2 occurs in ws1.

The wcswcs() function locates the first occurrence in the wide-character string pointed to by
ws1 of the sequence of wide-character codes (excluding the terminating null wide-character
code) in the wide-character string pointed to by ws2. Upon successful completion, the
function returns a pointer to the located wide-character string, or a null pointer if the
wide-character string is not found. If ws2 points to a wide-character string with zero length,
the function returns ws1.

wcsdup()

wcslen(), wslen(),
wcsnlen()

wcschr(), wschr()

wcsrchr(), wsrchr()

windex(), wrindex()

wcspbrk(), wspbrk()

wcswcs()

wcstring(3C)

Basic Library Functions 1163

The wcsspn() and wsspn() functions compute the length of the maximum initial segment of
the wide-character string pointed to by ws1 which consists entirely of wide-character codes
from the wide-character string pointed to by ws2. Both functions return the length ws1; no
return value is reserved to indicate an error.

The wcscspn() and wscspn() functions compute the length of the maximum initial segment
of the wide-character string pointed to by ws1 which consists entirely of wide-character codes
not from the wide-character string pointed to by ws2. Both functions return the length of the
initial substring of ws1; no return value is reserved to indicate an error.

A sequence of calls to the wcstok() and wstok() functions break the wide-character string
pointed to by ws1 into a sequence of tokens, each of which is delimited by a wide-character
code from the wide-character string pointed to by ws2.

The third argument points to a caller-provided wchar_t pointer into which the wcstok()
function stores information necessary for it to continue scanning the same wide-character
string. This argument is not available with the XPG4 and SUS versions of wcstok(), nor is it
available with the wstok() function. See standards(5).

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from
call to call.

The first call in the sequence searches the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If
no such wide-character code is found, then there are no tokens in the wide-character string
pointed to by ws1, and wcstok() and wstok() return a null pointer. If such a wide-character
code is found, it is the start of the first token.

The wcstok() and wstok() functions then search from that point for a wide-character code
that is contained in the current separator string. If no such wide-character code is found, the
current token extends to the end of the wide-character string pointed to by ws1, and
subsequent searches for a token will return a null pointer. If such a wide-character code is
found, it is overwritten by a null wide character, which terminates the current token. The
wcstok() and wstok() functions save a pointer to the following wide-character code, from
which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

Upon successful completion, both functions return a pointer to the first wide-character code
of a token. Otherwise, if there is no token, a null pointer is returned.

See attributes(5) for descriptions of the following attributes:

wcsspn(), wsspn()

wcscspn(), wscspn()

wcstok(), wstok()

Default and other
standards

Attributes

wcstring(3C)

man pages section 3: Basic Library Functions • Last Revised 11 Oct 20101164

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe

Standard See below.

For wcscat(), wcsncat(), wcscmp(), wcsncmp(), wcscpy(), wcsncpy(), wcslen(), wcschr(),
wcsrchr(), wcspbrk(), wcswcs(), wcsspn(), wcscspn(), and wcstok(), see standards(5).

malloc(3C), string(3C), wcswidth(3C), wcwidth(3C), attributes(5), standards(5)See Also

wcstring(3C)

Basic Library Functions 1165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcswidth – number of column positions of a wide-character string

#include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

The wcswidth() function determines the number of column positions required for n
wide-character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

The wcswidth() function either returns 0 (if pwcs points to a null wide-character code), or
returns the number of column positions to be occupied by the wide-character string pointed
to by pwcs, or returns −1 (if any of the first n wide-character codes in the wide-character string
pointed to by pwcs is not a printing wide-character code).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), wcwidth(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wcswidth(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021166

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcsxfrm, wsxfrm – wide character string transformation

#include <wchar.h>

size_t wcsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

size_t wsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wcsxfrm() and wcsxfrm() functions transform the wide character string pointed to by
ws2 and place the resulting wide character string into the array pointed to by ws1. The
transformation is such that if either the wcscmp(3C) or wscmp(3C) functions are applied to two
transformed wide strings, they return a value greater than, equal to, or less than 0,
corresponding to the result of the wcscoll(3C) or wscoll(3C) function applied to the same
two original wide character strings. No more than n wide-character codes are placed into the
resulting array pointed to by ws1, including the terminating null wide-character code. If n is 0,
ws1 is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

The wcsxfrm() and wsxfrm() functions do not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm() or wsxfrm(), then check errno.

The wcsxfrm() and wsxfrm() functions return the length of the transformed wide character
string (not including the terminating null wide-character code). If the value returned is n or
more, the contents of the array pointed to by ws1 are indeterminate.

On error, wcsxfrm() and wsxfrm() may set errno but no return value is reserved to indicate
an error.

The wcsxfrm() and wsxfrm() functions may fail if:

EINVAL The wide character string pointed to by ws2 contains wide-character codes outside
the domain of the collating sequence.

The transformation function is such that two transformed wide character strings can be
ordered by the wcscmp() or wscmp() functions as appropriate to collating sequence
information in the program's locale (category LC_COLLATE).

The fact that when n is 0, ws1 is permitted to be a null pointer, is useful to determine the size of
the ws1 array prior to making the transformation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability wcsxfrm() is Standard

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

wcsxfrm(3C)

Basic Library Functions 1167

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

MT-Level MT-Safe with exceptions

The wcsxfrm() and wsxfrm() functions can be used safely in multithreaded applications as
long as setlocale(3C) is not being called to change the locale.

setlocale(3C), wcscmp(3C), wcscoll(3C), wscmp(3C), wscoll(3C), attributes(5),
standards(5)

See Also

wcsxfrm(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031168

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wctob – wide-character to single-byte conversion

#include <stdio.h>

#include <wchar.h>

int wctob(wint_t c);

The wctob() function determines whether c corresponds to a member of the extended
character set whose character representation is a single byte when in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale. See
environ(5)

The wctob() function returns EOF if c does not correspond to a character with length one in
the initial shift state. Otherwise, it returns the single-byte representation of that character.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

btowc(3C), setlocale(3C), attributes(5), environ(5), standards(5)

The wctob() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

wctob(3C)

Basic Library Functions 1169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wctomb – convert a wide-character code to a character

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

The wctomb() function determines the number of bytes needed to represent the character
corresponding to the wide-character code whose value is wchar. It stores the character
representation (possibly multiple bytes) in the array object pointed to by s (if s is not a null
pointer). At most MB_CUR_MAX bytes are stored.

A call with s as a null pointer causes this function to return 0. The behavior of this function is
affected by the LC_CTYPE category of the current locale.

If s is a null pointer, wctomb() returns 0 value. If s is not a null pointer, wctomb() returns −1 if
the value of wchar does not correspond to a valid character, or returns the number of bytes
that constitute the character corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

No errors are defined.

The wctomb() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe with exceptions

mblen(3C), mbstowcs(3C), mbtowc(3C), setlocale(3C), wcstombs(3C), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

wctomb(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021170

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wctrans – define character mapping

#include <wctype.h>

wctrans_t wctrans(const char *charclass);

The wctrans() function is defined for valid character mapping names identified in the
current locale. The charclass is a string identifying a generic character mapping name for
which codeset-specific information is required. The following character mapping names are
defined in all locales − "tolower" and "toupper".

The function returns a value of type wctrans_t, which can be used as the second argument to
subsequent calls of towctrans(3C). The wctrans() function determines values of wctrans_t
according to the rules of the coded character set defined by character mapping information in
the program's locale (category LC_CTYPE). The values returned by wctrans() are valid until a
call to setlocale(3C) that modifies the category LC_CTYPE.

The wctrans() function returns 0 if the given character mapping name is not valid for the
current locale (category LC_CTYPE), otherwise it returns a non-zero object of type wctrans_t
that can be used in calls to towctrans(3C).

The wctrans() function may fail if:

EINVAL The character mapping name pointed to by charclass is not valid in the current
locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), towctrans(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wctrans(3C)

Basic Library Functions 1171

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wctype – define character class

#include <wchar.h>

wctype_t wctype(const char *charclass);

The wctype() function is defined for valid character class names as defined in the current
locale. The charclass is a string identifying a generic character class for which codeset-specific
type information is required. The following character class names are defined in all locales:

alnum alpha blank

cntrl digit graph

lower print punct

space upper xdigit

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

The function returns a value of type wctype_t, which can be used as the second argument to
subsequent calls of iswctype(3C). wctype() determines values of wctype_t according to the
rules of the coded character set defined by character type information in the program's locale
(category LC_CTYPE). The values returned by wctype() are valid until a call to setlocale(3C)
that modifies the category LC_CTYPE.

The wctype() function returns 0 if the given character class name is not valid for the current
locale (category LC_CTYPE); otherwise it returns an object of type wctype_t that can be used in
calls to iswctype().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

MT-Level MT-Safe with exceptions

iswctype(3C), setlocale(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wctype(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021172

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wcwidth – number of column positions of a wide-character code

#include <wchar.h>

int wcwidth(wchar_t wc);

The wcwidth() function determines the number of column positions required for the wide
character wc. The value of wc must be a character representable as a wchar_t, and must be a
wide-character code corresponding to a valid character in the current locale.

The wcwidth() function either returns 0 (if wc is a null wide-character code), or returns the
number of column positions to be occupied by the wide-character code wc, or returns −1 (if
wc does not correspond to a printing wide-character code).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Committed

MT-Level MT-Safe with exceptions

Standard See standards(5).

setlocale(3C), wcswidth(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wcwidth(3C)

Basic Library Functions 1173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wmemchr – find a wide-character in memory

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

#include <wchar.h>

const wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

#include <cwchar>

wchar_t *std::wmemchr(wchar_t *ws, wchar_t wc, size_t n);

The wmemchr() function locates the first occurrence of wc in the initial n wide-characters of
the object pointed to be ws. This function is not affected by locale and all wchar_t values are
treated identically. The null wide-character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is 0, ws must be a valid pointer and the function behaves as if no valid occurrence of wc is
found.

The wmemchr() function returns a pointer to the located wide-character, or a null pointer if
the wide-character does not occur in the object.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wmemcmp(3C), wmemcpy(3C), wmemmove(3C), wmemset(3C), attributes(5), standards(5)

Name

Synopsis

ISO C++

Description

Return Values

Errors

Attributes

See Also

wmemchr(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021174

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wmemcmp – compare wide-characters in memory

#include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemcmp() function compares the first n wide-characters of the object pointed to by ws1
to the first n wide-characters of the object pointed to by ws2. This function is not affected by
locale and all wchar_t values are treated identically. The null wide-character and wchar_t

values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the two objects
compare equal.

The wmemcmp() function returns an integer greater than, equal to, or less than 0, accordingly as
the object pointed to by ws1 is greater than, equal to, or less than the object pointed to by ws2.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wmemchr(3C), wmemcpy(3C), wmemmove(3C), wmemset(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wmemcmp(3C)

Basic Library Functions 1175

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wmemcpy – copy wide-characters in memory

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemcpy() function copies n wide-characters from the object pointed to by ws2 to the
object pointed to be ws1. This function is not affected by locale and all wchar_t values are
treated identically. The null wide-character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero
wide-characters.

The wmemcpy() function returns the value of ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wmemchr(3C), wmemcmp(3C), wmemmove(3C), wmemset(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wmemcpy(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021176

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wmemmove – copy wide-characters in memory with overlapping areas

#include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemmove() function copies n wide-characters from the object pointed to by ws2 to the
object pointed to by ws1. Copying takes place as if the n wide-characters from the object
pointed to by ws2 are first copied into a temporary array of n wide-characters that does not
overlap the objects pointed to by ws1 or ws2, and then the n wide-characters from the
temporary array are copied into the object pointed to by ws1.

This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated
specially.

If n is 0, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

The wmemmove() function returns the value of ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wmemchr(3C), wmemcmp(3C), wmemcpy(3C), wmemset(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wmemmove(3C)

Basic Library Functions 1177

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wmemset – set wide-characters in memory

#include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

The wmemset() function copies the value of wc into each of the first n wide-characters of the
object pointed to by ws. This function is not affected by locale and all wchar_t values are
treated identically. The null wide-character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is 0, ws must be a valid pointer and the function copies zero wide-characters.

The wmemset() functions returns the value of ws.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

wmemchr(3C), wmemcmp(3C), wmemcpy(3C), wmemmove(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

wmemset(3C)

man pages section 3: Basic Library Functions • Last Revised 14 Aug 20021178

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wordexp, wordfree – perform word expansions

#include <wordexp.h>

int wordexp(const char *restrict words, wordexp_t *restrict pwordexp,
int flags);

void wordfree(wordexp_t *pwordexp);

The wordexp() function performs word expansions, subject to quoting, and places the list of
expanded words into the structure pointed to by pwordexp.

The wordfree() function frees any memory allocated by wordexp() associated with
pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded.
The expansions will be the same as would be performed by the shell if words were the part of a
command line representing the arguments to a utility. Therefore, words must not contain an
unquoted NEWLINE or any of the unquoted shell special characters:

| & ; < >

except in the context of command substitution. It also must not contain unquoted parentheses
or braces, except in the context of command or variable substitution. If the argument words
contains an unquoted comment character (number sign) that is the beginning of a token,
wordexp() may treat the comment character as a regular character, or may interpret it as a
comment indicator and ignore the remainder of words.

The structure type wordexp_t is defined in the header <wordexp.h> and includes at least the
following members:

size_t we_wordc Count of words matched by words.

char **we_wordv Pointer to list of expanded words.

size_t we_offs Slots to reserve at the beginning of pwordexp−>we_wordv.

The wordexp() function stores the number of generated words into pwordexp−>we_wordc
and a pointer to a list of pointers to words in pwordexp−>we_wordv. Each individual field
created during field splitting is a separate word in the pwordexp−>we_wordv list. The words
are in order. The first pointer after the last word pointer will be a null pointer.

It is the caller's responsibility to allocate the storage pointed to by pwordexp. The wordexp()
function allocates other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function frees any memory associated with pwordexp
from a previous call to wordexp().

Name

Synopsis

Description

words Argument

pwordexp Argument

wordexp(3C)

Basic Library Functions 1179

The flags argument is used to control the behavior of wordexp(). The value of flags is the
bitwise inclusive OR of zero or more of the following constants, which are defined in
<wordexp.h>:

WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is
used to specify how many NULL pointers to add to the beginning of
pwordexp−>we_wordv. In other words, pwordexp−>we_wordv will point to
pwordexp−>we_offs NULL pointers, followed by pwordexp−>we_wordc
word pointers, followed by a NULL pointer.

WRDE_NOCMD Fail if command substitution is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result will be the
same as if the application had called wordfree() and then called
wordexp() without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a
previous call to wordexp(). The following rules apply when two or more calls to wordexp()

are made with the same value of pwordexp and without intervening calls to wordfree():

1. The first such call must not set WRDE_APPEND. All subsequent calls must set it.
2. All of the calls must set WRDE_DOOFFS, or all must not set it.
3. After the second and each subsequent call, pwordexp−>we_wordv will point to a list

containing the following:
a. zero or more NULL pointers, as specified by WRDE_DOOFFS and pwordexp−>we_offs.
b. pointers to the words that were in the pwordexp−>we_wordv list before the call, in the

same order as before.
c. pointers to the new words generated by the latest call, in the specified order.

4. The count returned in pwordexp−>we_wordc will be the total number of words from all of
the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it must
reset them to the original value before a subsequent call, using the same pwordexp value, to
wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

If words contains an unquoted:

NEWLINE | & ; < > () { }

flags Argument

wordexp(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031180

in an inappropriate context, wordexp() will fail, and the number of expanded words will be
zero.

Unless WRDE_SHOWERR is set in flags, wordexp() will redirect stderr to /dev/null for any
utilities executed as a result of command substitution while expanding words.

If WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
while expanding words. If WRDE_DOOFFS is set, then pwordexp−> we_offs must have the same
value for each wordexp() call and wordfree() call using a given pwordexp.

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters:

NEWLINE | & ; < > () { }

appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated string.

On successful completion, wordexp() returns 0.

Otherwise, a non-zero value as described in <wordexp.h> is returned to indicate an error. If
wordexp() returns the value WRDE_NOSPACE, then pwordexp−>we_wordc and
pwordexp−>we_wordv will be updated to reflect any words that were successfully expanded. In
other cases, they will not be modified.

The wordfree() function returns no value.

No errors are defined.

This function is intended to be used by an application that wants to do all of the shell's
expansions on a word or words obtained from a user. For example, if the application prompts
for a filename (or list of filenames) and then uses wordexp() to process the input, the user
could respond with anything that would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
prevent a user from executing shell command. Disallowing unquoted shell special characters
also prevents unwanted side effects such as executing a command or writing a file.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Usage

Attributes

wordexp(3C)

Basic Library Functions 1181

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

fnmatch(3C), glob(3C), attributes(5), standards(5)See Also

wordexp(3C)

man pages section 3: Basic Library Functions • Last Revised 1 Nov 20031182

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

wsprintf – formatted output conversion

#include <stdio.h>

#include <widec.h>

int wsprintf(wchar_t *s, const char *format, /* arg */ ...););

The wsprintf() function outputs a Process Code string ending with a Process Code
(wchar_t) null character. It is the user's responsibility to allocate enough space for this
wchar_t string.

This returns the number of Process Code characters (excluding the null terminator) that have
been written. The conversion specifications and behavior of wsprintf() are the same as the
regular sprintf(3C) function except that the result is a Process Code string for wsprintf(),

and on Extended Unix Code (EUC) character string for sprintf().

Upon successful completion, wsprintf() returns the number of characters printed.
Otherwise, a negative value is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wsscanf(3C), printf(3C), scanf(3C), sprintf(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsprintf(3C)

Basic Library Functions 1183

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

wsscanf – formatted input conversion

#include<stdio.h>

#include <widec.h>

int wsscanf(wchar_t *s, const char *format, /* pointer */ ...);

The wsscanf() function reads Process Code characters from the Process Code string s,
interprets them according to the format, and stores the results in its arguments. It expects, as
arguments, a control string format, and a set of pointer arguments indicating where the
converted input should be stored. The results are undefined if there are insufficient args for the
format. If the format is exhausted while args remain, the excess args are simply ignored.

The conversion specifications and behavior of wsscanf() are the same as the regular
sscanf(3C) function except that the source is a Process Code string for wsscanf() and on
Extended Unix Code (EUC) character string for sscanf(3C).

Upon successful completion, wsscanf() returns the number of characters matched.
Otherwise, it returns a negative value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wsprintf(3C), printf(3C), scanf(3C), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

wsscanf(3C)

man pages section 3: Basic Library Functions • Last Revised 29 Dec 19961184

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

wstring, wscasecmp, wsncasecmp, wsdup, wscol – Process Code string operations

#include <widec.h>

int wscasecmp(const wchar_t *s1, const wchar_t *s2);

int wsncasecmp(const wchar_t *s1, const wchar_t *s2, int n);

wchar_t *wsdup(const wchar_t *s);

int wscol(const wchar_t *s);

These functions operate on Process Code strings terminated by wchar_t null characters.
During appending or copying, these routines do not check for an overflow condition of the
receiving string. In the following, s, s1, and s2 point to Process Code strings terminated by a
wchar_t null.

The wscasecmp() function compares its arguments, ignoring case, and returns an integer
greater than, equal to, or less than 0, depending upon whether s1 is lexicographically greater
than, equal to, or less than s2. It makes the same comparison but compares at most n Process
Code characters. The four Extended Unix Code (EUC) codesets are ordered from lowest to
highest as 0, 2, 3, 1 when characters from different codesets are compared.

The wsdup() function returns a pointer to a new Process Code string, which is a duplicate of
the string pointed to by s. The space for the new string is obtained using malloc(3C). If the
new string cannot be created, a null pointer is returned.

The wscol() function returns the screen display width (in columns) of the Process Code
string s.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

malloc(3C), string(3C), wcstring(3C), attributes(5)

Name

Synopsis

Description

wscasecmp(),
wsncasecmp()

wsdup()

wscol()

Attributes

See Also

wstring(3C)

Basic Library Functions 1185

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

1186

	man pages section 3: Basic Library Functions
	Preface
	Overview

	Basic Library Functions
	a64l(3C)
	abort(3C)
	abs(3C)
	addsev(3C)
	addseverity(3C)
	aio_cancel(3C)
	aiocancel(3C)
	aio_error(3C)
	aio_fsync(3C)
	aio_read(3C)
	aioread(3C)
	aio_return(3C)
	aio_suspend(3C)
	aiowait(3C)
	aio_waitn(3C)
	aio_write(3C)
	assert(3C)
	atexit(3C)
	atomic_add(3C)
	atomic_and(3C)
	atomic_bits(3C)
	atomic_cas(3C)
	atomic_dec(3C)
	atomic_inc(3C)
	atomic_ops(3C)
	atomic_or(3C)
	atomic_swap(3C)
	attropen(3C)
	basename(3C)
	bsdmalloc(3MALLOC)
	bsd_signal(3C)
	bsearch(3C)
	bstring(3C)
	btowc(3C)
	catgets(3C)
	catopen(3C)
	cfgetispeed(3C)
	cfsetispeed(3C)
	clearenv(3C)
	clock(3C)
	clock_nanosleep(3C)
	clock_settime(3C)
	closedir(3C)
	closefrom(3C)
	cond_init(3C)
	confstr(3C)
	crypt(3C)
	crypt_genhash_impl(3C)
	crypt_gensalt(3C)
	crypt_gensalt_impl(3C)
	cset(3C)
	ctermid(3C)
	ctime(3C)
	ctype(3C)
	cuserid(3C)
	daemon(3C)
	decimal_to_floating(3C)
	difftime(3C)
	directio(3C)
	dirfd(3C)
	dirname(3C)
	div(3C)
	dladdr(3C)
	dlclose(3C)
	dldump(3C)
	dlerror(3C)
	dlinfo(3C)
	dl_iterate_phdr(3C)
	dlopen(3C)
	dlsym(3C)
	door_bind(3C)
	door_call(3C)
	door_create(3C)
	door_cred(3C)
	door_getparam(3C)
	door_info(3C)
	door_return(3C)
	door_revoke(3C)
	door_server_create(3C)
	door_ucred(3C)
	door_xcreate(3C)
	drand48(3C)
	dup2(3C)
	econvert(3C)
	ecvt(3C)
	enable_extended_FILE_stdio(3C)
	encrypt(3C)
	end(3C)
	err(3C)
	euclen(3C)
	exit(3C)
	fattach(3C)
	__fbufsize(3C)
	fclose(3C)
	fdatasync(3C)
	fdetach(3C)
	fdopen(3C)
	ferror(3C)
	fflush(3C)
	ffs(3C)
	fgetattr(3C)
	fgetc(3C)
	fgetpos(3C)
	fgetwc(3C)
	floating_to_decimal(3C)
	flockfile(3C)
	fmtmsg(3C)
	fnmatch(3C)
	fopen(3C)
	fpgetround(3C)
	fputc(3C)
	fputwc(3C)
	fputws(3C)
	fread(3C)
	freopen(3C)
	fseek(3C)
	fsetpos(3C)
	fsync(3C)
	ftell(3C)
	ftime(3C)
	ftok(3C)
	ftw(3C)
	fwide(3C)
	fwprintf(3C)
	fwrite(3C)
	fwscanf(3C)
	getauthattr(3C)
	getcpuid(3C)
	getcwd(3C)
	getdate(3C)
	getdtablesize(3C)
	getenv(3C)
	getexecattr(3C)
	getexecname(3C)
	getgrnam(3C)
	gethostid(3C)
	gethostname(3C)
	gethrtime(3C)
	getline(3C)
	getloadavg(3C)
	getlogin(3C)
	getmntent(3C)
	getnetgrent(3C)
	get_nprocs(3C)
	getopt(3C)
	getopt_long(3C)
	getpagesize(3C)
	getpagesizes(3C)
	getpass(3C)
	getpeerucred(3C)
	getpriority(3C)
	getprofattr(3C)
	getprogname(3C)
	getpw(3C)
	getpwnam(3C)
	getrusage(3C)
	gets(3C)
	getspnam(3C)
	getsubopt(3C)
	gettext(3C)
	gettimeofday(3C)
	gettxt(3C)
	getuserattr(3C)
	getusershell(3C)
	getutent(3C)
	getutxent(3C)
	getvfsent(3C)
	getwc(3C)
	getwchar(3C)
	getwd(3C)
	getwidth(3C)
	getws(3C)
	getzoneid(3C)
	glob(3C)
	grantpt(3C)
	hsearch(3C)
	iconv(3C)
	iconv_close(3C)
	iconvctl(C)
	iconv_open(3C)
	iconvstr(3C)
	imaxabs(3C)
	imaxdiv(3C)
	index(3C)
	initgroups(3C)
	insque(3C)
	isaexec(3C)
	isastream(3C)
	isatty(3C)
	isnand(3C)
	is_system_labeled(3C)
	iswalpha(3C)
	iswctype(3C)
	killpg(3C)
	kva_match(3C)
	lckpwdf(3C)
	lfmt(3C)
	lio_listio(3C)
	localeconv(3C)
	localelist(3C)
	lockf(3C)
	_longjmp(3C)
	lsearch(3C)
	madvise(3C)
	makecontext(3C)
	makedev(3C)
	malloc(3C)
	malloc(3MALLOC)
	mapmalloc(3MALLOC)
	mblen(3C)
	mbrlen(3C)
	mbrtowc(3C)
	mbsinit(3C)
	mbsrtowcs(3C)
	mbstowcs(3C)
	mbtowc(3C)
	membar_ops(3C)
	memory(3C)
	mkfifo(3C)
	mkstemp(3C)
	mktemp(3C)
	mktime(3C)
	mlock(3C)
	mlockall(3C)
	monitor(3C)
	mq_close(3C)
	mq_getattr(3C)
	mq_notify(3C)
	mq_open(3C)
	mq_receive(3C)
	mq_send(3C)
	mq_setattr(3C)
	mq_unlink(3C)
	msync(3C)
	mtmalloc(3MALLOC)
	mutex_init(3C)
	nanosleep(3C)
	ndbm(3C)
	nl_langinfo(3C)
	offsetof(3C)
	opendir(3C)
	perror(3C)
	pfmt(3C)
	plock(3C)
	popen(3C)
	port_alert(3C)
	port_associate(3C)
	port_create(3C)
	port_get(3C)
	port_send(3C)
	posix_fadvise(3C)
	posix_fallocate(3C)
	posix_madvise(3C)
	posix_memalign(3C)
	posix_openpt(3C)
	posix_spawn(3C)
	posix_spawnattr_destroy(3C)
	posix_spawnattr_getflags(3C)
	posix_spawnattr_getpgroup(3C)
	posix_spawnattr_getschedparam(3C)
	posix_spawnattr_getschedpolicy(3C)
	posix_spawnattr_getsigdefault(3C)
	posix_spawnattr_getsigignore_np(3C)
	posix_spawnattr_getsigmask(3C)
	posix_spawn_file_actions_addclose(3C)
	posix_spawn_file_actions_addclosefrom_np(3C)
	posix_spawn_file_actions_adddup2(3C)
	posix_spawn_file_actions_destroy(3C)
	printf(3C)
	priv_addset(3C)
	priv_set(3C)
	priv_str_to_set(3C)
	pset_getloadavg(3C)
	psignal(3C)
	pthread_atfork(3C)
	pthread_attr_getdetachstate(3C)
	pthread_attr_getguardsize(3C)
	pthread_attr_getinheritsched(3C)
	pthread_attr_getschedparam(3C)
	pthread_attr_getschedpolicy(3C)
	pthread_attr_getscope(3C)
	pthread_attr_getstack(3C)
	pthread_attr_getstackaddr(3C)
	pthread_attr_getstacksize(3C)
	pthread_attr_init(3C)
	pthread_barrierattr_destroy(3C)
	pthread_barrierattr_getpshared(3C)
	pthread_barrier_destroy(3C)
	pthread_barrier_wait(3C)
	pthread_cancel(3C)
	pthread_cleanup_pop(3C)
	pthread_cleanup_push(3C)
	pthread_condattr_getclock(3C)
	pthread_condattr_getpshared(3C)
	pthread_condattr_init(3C)
	pthread_cond_init(3C)
	pthread_cond_signal(3C)
	pthread_cond_wait(3C)
	pthread_create(3C)
	pthread_detach(3C)
	pthread_equal(3C)
	pthread_exit(3C)
	pthread_getconcurrency(3C)
	pthread_getschedparam(3C)
	pthread_getspecific(3C)
	pthread_join(3C)
	pthread_key_create(3C)
	pthread_key_delete(3C)
	pthread_kill(3C)
	pthread_mutexattr_getprioceiling(3C)
	pthread_mutexattr_getprotocol(3C)
	pthread_mutexattr_getpshared(3C)
	pthread_mutexattr_getrobust(3C)
	pthread_mutexattr_gettype(3C)
	pthread_mutexattr_init(3C)
	pthread_mutex_consistent(3C)
	pthread_mutex_getprioceiling(3C)
	pthread_mutex_init(3C)
	pthread_mutex_lock(3C)
	pthread_mutex_timedlock(3C)
	pthread_once(3C)
	pthread_rwlockattr_getpshared(3C)
	pthread_rwlockattr_init(3C)
	pthread_rwlock_init(3C)
	pthread_rwlock_rdlock(3C)
	pthread_rwlock_timedrdlock(3C)
	pthread_rwlock_timedwrlock(3C)
	pthread_rwlock_unlock(3C)
	pthread_rwlock_wrlock(3C)
	pthread_self(3C)
	pthread_setcancelstate(3C)
	pthread_setcanceltype(3C)
	pthread_setschedprio(3C)
	pthread_sigmask(3C)
	pthread_spin_destroy(3C)
	pthread_spin_lock(3C)
	pthread_spin_unlock(3C)
	pthread_testcancel(3C)
	ptrace(3C)
	ptsname(3C)
	putenv(3C)
	putpwent(3C)
	puts(3C)
	putspent(3C)
	putws(3C)
	qsort(3C)
	raise(3C)
	rand(3C)
	random(3C)
	rctlblk_set_value(3C)
	rctl_walk(3C)
	readdir(3C)
	realpath(3C)
	reboot(3C)
	re_comp(3C)
	regcmp(3C)
	regcomp(3C)
	remove(3C)
	rewind(3C)
	rewinddir(3C)
	rwlock(3C)
	scandir(3C)
	scanf(3C)
	schedctl_init(3C)
	sched_getparam(3C)
	sched_get_priority_max(3C)
	sched_getscheduler(3C)
	sched_rr_get_interval(3C)
	sched_setparam(3C)
	sched_setscheduler(3C)
	sched_yield(3C)
	seekdir(3C)
	select(3C)
	semaphore(3C)
	sem_close(3C)
	sem_destroy(3C)
	sem_getvalue(3C)
	sem_init(3C)
	sem_open(3C)
	sem_post(3C)
	sem_timedwait(3C)
	sem_unlink(3C)
	sem_wait(3C)
	setbuf(3C)
	setbuffer(3C)
	setcat(3C)
	setenv(3C)
	setjmp(3C)
	setkey(3C)
	setlabel(3C)
	setlocale(3C)
	shm_open(3C)
	shm_unlink(3C)
	sigfpe(3C)
	siginterrupt(3C)
	signal(3C)
	sigqueue(3C)
	sigsetops(3C)
	sigstack(3C)
	sigwaitinfo(3C)
	sleep(3C)
	smt_pause(3C)
	ssignal(3C)
	stack_getbounds(3C)
	_stack_grow(3C)
	stack_inbounds(3C)
	stack_setbounds(3C)
	stack_violation(3C)
	stdio(3C)
	str2sig(3C)
	strcoll(3C)
	strerror(3C)
	strfmon(3C)
	strftime(3C)
	string(3C)
	string_to_decimal(3C)
	strptime(3C)
	strsignal(3C)
	strtod(3C)
	strtoimax(3C)
	strtol(3C)
	strtoul(3C)
	strtows(3C)
	strxfrm(3C)
	swab(3C)
	sync_instruction_memory(3C)
	sysconf(3C)
	syslog(3C)
	system(3C)
	tcdrain(3C)
	tcflow(3C)
	tcflush(3C)
	tcgetattr(3C)
	tcgetpgrp(3C)
	tcgetsid(3C)
	tcsendbreak(3C)
	tcsetattr(3C)
	tcsetpgrp(3C)
	td_init(3C_DB)
	td_log(3C_DB)
	td_sync_get_info(3C_DB)
	td_ta_enable_stats(3C_DB)
	td_ta_event_addr(3C_DB)
	td_ta_get_nthreads(3C_DB)
	td_ta_map_addr2sync(3C_DB)
	td_ta_map_id2thr(3C_DB)
	td_ta_new(3C_DB)
	td_ta_setconcurrency(3C_DB)
	td_ta_sync_iter(3C_DB)
	td_thr_dbsuspend(3C_DB)
	td_thr_getgregs(3C_DB)
	td_thr_get_info(3C_DB)
	td_thr_lockowner(3C_DB)
	td_thr_setprio(3C_DB)
	td_thr_setsigpending(3C_DB)
	td_thr_sleepinfo(3C_DB)
	td_thr_tsd(3C_DB)
	td_thr_validate(3C_DB)
	tell(3C)
	telldir(3C)
	termios(3C)
	thr_create(3C)
	thr_exit(3C)
	thr_getconcurrency(3C)
	thr_getprio(3C)
	thr_join(3C)
	thr_keycreate(3C)
	thr_kill(3C)
	thr_main(3C)
	thr_min_stack(3C)
	thr_self(3C)
	thr_sigsetmask(3C)
	thr_stksegment(3C)
	thr_suspend(3C)
	thr_yield(3C)
	timeradd(3C)
	timer_create(3C)
	timer_delete(3C)
	timer_settime(3C)
	tmpfile(3C)
	tmpnam(3C)
	toascii(3C)
	_tolower(3C)
	tolower(3C)
	_toupper(3C)
	toupper(3C)
	towctrans(3C)
	towlower(3C)
	towupper(3C)
	truncate(3C)
	tsearch(3C)
	ttyname(3C)
	ttyslot(3C)
	u8_strcmp(3C)
	u8_textprep_str(3C)
	u8_validate(3C)
	ualarm(3C)
	uconv_u16tou32(3C)
	ucred_get(3C)
	umem_alloc(3MALLOC)
	umem_cache_create(3MALLOC)
	umem_debug(3MALLOC)
	ungetc(3C)
	ungetwc(3C)
	unlockpt(3C)
	unsetenv(3C)
	usleep(3C)
	vfwprintf(3C)
	vlfmt(3C)
	vpfmt(3C)
	vprintf(3C)
	vsyslog(3C)
	wait3(3C)
	wait(3C)
	waitpid(3C)
	walkcontext(3C)
	watchmalloc(3MALLOC)
	wcrtomb(3C)
	wcscoll(3C)
	wcsftime(3C)
	wcsrtombs(3C)
	wcsstr(3C)
	wcstod(3C)
	wcstoimax(3C)
	wcstol(3C)
	wcstombs(3C)
	wcstoul(3C)
	wcstring(3C)
	wcswidth(3C)
	wcsxfrm(3C)
	wctob(3C)
	wctomb(3C)
	wctrans(3C)
	wctype(3C)
	wcwidth(3C)
	wmemchr(3C)
	wmemcmp(3C)
	wmemcpy(3C)
	wmemmove(3C)
	wmemset(3C)
	wordexp(3C)
	wsprintf(3C)
	wsscanf(3C)
	wstring(3C)

