ORACLE

Oracle® Fusion Applications
Extensibility Guide

11gRelease 1 (11.1.2)

E16691-03

October 2011

Documentation for business analysts and developers that
describes how to customize and extend the standard
functionality provided by Oracle Fusion Applications.

Oracle Fusion Applications Extensibility Guide, 11g Release 1 (11.1.2)
E16691-03
Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: Chris Kutler (lead), Sarah Bernau, Shelly Butcher, Ralph Gordon, Peter Jew, Mark Kennedy,
Robin Whitmore, Steven Leslie, Landon Ott, Leslie Studdard, Marla Azriel

Contributing Author:
Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen iX
AN Lo 1= V< T SURSRRTT ix
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e iX
ReElated DOCUITIEIESeoveieeiieceeeeeeeeeee ettt eee et e et eae et e e ae e st e eteseseeenbeesseesnseesessnseensessnseenteesneesnees iX
(@03 4 T£<3 015 (o) 0 - I RR R ORPRRORPRRN X

What's New in This Guide for 11gRelease 1 (11.1.2) ... Xi

Part| Introduction to Customizing and Extending Oracle Fusion Applications

1 Customizing and Extending Oracle Fusion Applications

1.1 Understanding Customizing and Extending Oracle Fusion Applicationsc......... 1-1
1.2 Understanding Customization Layers...........ccccccvieuiiiiiiiiiiiiiiicicicciccieeeeecnns 1-6
1.3 Understanding the Business User and Developer Tools..........cccccccvciiceiiccenccceenenns 1-8
1.3.1 What You Can Customize and Extend and with Which Toolcccccceevinnnn 1-12
1.3.2 Installing Customization TOOIS..........cccccciiiiiiiriiiiiiiiis 1-16

2 Understanding the Customization Development Lifecycle

2.1 Understanding Typical Customization Workflows.............ccoeeeviiiniiiicne 2-1
2.1.1 Typical Runtime WOrkflow ..o 2-2
2.1.2 Typical Design Time Workflow ..o 2-4
2.2 Using the SandboX Managerccccccciiiiiiiiiiiiiiiicceesese s 2-5
2.2.1 Sandboxes and Concurrent USAgeccocrueiiiiiicieiicicicci s 2-7
22141 Guidelines for One Sandbox, Multiple Users...........c.cccocoeeiniiiniiiiiiiinciiceee, 2-9
2.21.2 Guidelines for Multiple Sandboxes, Multiple Users............ccccocoeeuiiiiiiiciiicnennns 2-9
2.2.2 Setting Up SaNdDOXESocueiiiiiiiic e 2-10
2.2.3 Publishing SandboOXesccc.oiirieieiiiice e 2-13
2.3 Using Customization Manager to Manage Runtime Customizations............cccceeevnenee. 2-14
2.3.1 Before You Begin Using Customization Managerc.cccocoeueveivicnieiniiciciciccnnen 2-14
2.3.2 Viewing Customizations Using Customization Manager..........ccccceeeeuneierevenennnn 2-14
2.3.3 Downloading and Uploading Customization Files..........cccccoooiiiiiiiiiinne. 2-16
2.3.4 Promoting a Customization to the Tipcccccoeiiiiiiiii 2-16

Part Il Business User Customizations and Extensions

3 Customizing Existing Pages

3.1 About Customizing Existing Pages..........c.cccooriiiiiiiiiiii 3-1
3.1.1 What You Can Do with Pages at RuUntime...........ccccocoeiiiiiiiiccecceeecceeenee 3-1
3.1.2 What You Cannot Do with Pages at RUntimeccooouoviiiiiiiiiie 3-2
3.1.3 Before You Begin Customizing Existing Pages............ccccooooiriieiicciiicccc 3-3
3.2 Editing a Page in Oracle COMPOSETccccccuiuimiuiuiiimiieiricieieieieeieieeeeeeeeteeseseeeeeee e 3-4
3.3 Editing Component Properties in Oracle COMPOSET.........cccovimivrmiiririninnieiiiiiieeeeieinens 3-12
3.4 Editing the UI Shell Template Used by All Pages..........cccccoeiiiiniiiiinniiiiciinn 3-13
3.5 Editing Pages in Oracle JDeveloper After Using Oracle Composer..........c.ccccceueueueunnee. 3-15

4 Customizing Objects

4.1 About Customizing and Extending Your Fusion Application with Objects 4-1
411 What You Can Customize and Create in the Runtime Environment.......................... 4-2
412 What You Cannot Customize in the Runtime Environment...........ccccccovvniinnnnns 4-2
4.1.3 Before You Begin Customizing and Extending Your Oracle Fusion Application
WL ODJECES e 4-3
4.2 Editing ObJECESvieieiieiiicie e 4-3
4.3 Editing a Page in CRM Application COMPOSETccccevrurueiiiiieieieiicie et 4-5
4.4 Creating Custom ODbJECtScciuiiiiiiiiiiiiici s 4-7
4.5 Creating and Editing Search Objects..........coooouiiiiiiiie 4-8
4.6 Editing Objects and Pages in Oracle JDeveloper After Using CRM Application
COMPOSET ...ttt 4-9

5 Using Flexfields for Custom Attributes

5.1 About Using Flexfields...........ccccooviiiiiiiiiiiiii s 5-1
5.1.1 What You Can Do with Flexfields at Runtime............ccccooooviiininiiiiinns 5-2
5.1.2 What You Cannot Do with Flexfields at Runtimecccccocovviiviniins 5-6
5.1.3 Before You Begin Using Flexfields to Create Custom Attributes............cccccoeoeeeinnn. 5-6
5.2 Planning Your FIeXfields..........cccocoiiiiiiiiiiccecce e 5-6
5.3 Creating Custom Value Sets...........cooiiiiiiiiiiiici 5-14
5.4 Configuring Flexfields..........ccccoviiiiiiiiiiiiicce s 5-20
5.4.1 Configuring Descriptive Flexfields ... 5-21
5.4.2 Configuring Extensible Flexfieldsccooioiiiiie 5-23
5.5 Validating Flexfield Configurations............cccccceeeiiiiiiiiniiiiiiiiiiiccccceceens 5-25
5.6 Deploying Flexfield Configurations...........c.cococueeeiiieciiiceieeciceeeeeeeeeeeneneeenenenenes 5-25
5.7 Integrating Custom Attributes...........oooiviiiiiicii 5-27

6 Customizing the Navigator Menu

6.1 About Navigator Menu Configuration...........cccoeieiiiniiiniiiie, 6-1
6.1.1 What You Can Do with the Navigator Menu..........cccccooeiiiiiiniiiiniiiicns 6-3
6.1.2 What You Cannot Do with the Navigator Menu..........cccccccoceeiiccicecceeeicceeenne 6-3
6.1.3 Before You Begin Customizing the Navigator Menu..........c.cccoeveeviiiiiicinniiniinnn, 6-3
6.2 AddING GIOUPS ..cvviiiiiiiiiici s 6-4
6.3 AddING TEEIMIS ...t 6-5
6.4 Hiding and Showing NOAES...........ccccceuiiiiiiiiiiiiiiiciicc s 6-6

7 Customizing and Extending BPMN Processes

71
711
71.2
7.1.21

7122
7.1.3
71.4
7.2

7.3

7.4

7.5

7.6

About Customizing BPMN Processes...........ccceuoirieieiniiiirieieiiccicie e 7-1
Oracle Tools for Customizing and Extending BPMN Processescccccccoeueucueunueunnne 7-2
What You Can Do with BPMN Processes at Runtimeccccooovviiiiiiiinnns 7-3

What You Can Customize Using Oracle SOA Composer and Oracle BPM

WOTKLSE oo 7-3

What You Can Customize Using Oracle Business Process Composer.................. 7-3
What You Cannot Do with BPMN Processes at Runtimeccccooovviiiiiiinnnnns 7-4
Before You Begin Customizing BPMN Processes...........ccccooeorurueieiicieisiiccicieccie e, 7-4

Creating an Oracle BPM Projectccccoccciuiiiiiiiiiicieiieicicieeeeieieeeieiereieneseeenesesenesenesenenenenas 7-5

Customizing BPMN PrOCESSES........c.covurueieiiiiiieiicicic i 7-6

Publishing Oracle BPM Projectscoocuiuiiiiiioiiiic e 7-8

Deploying an Oracle BPM Projectcccccocciuciiiiiiiiiiiiiicieieicceieieeeicicecieeeeeeeieeeeeeeeeeeeeseennas 7-9

Configuring BPMN Processes within an Oracle Fusion Applicationc.c.cccooceevnnie. 7-10

8 Customizing Reports and Analytics

8.1
8.2
8.2.1
8.2.1.1

8.2.1.2
8.2.1.3
8.2.1.4
8.2.1.5
8.2.2
8.2.2.1
8.2.2.1
8.2.2.2
8.2.3
8.2.3.1
8.2.3.2
8.2.4
8.2.5
8.2.6

8.2.6.1
8.2.6.2

8.2.7
8.2.8
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.2
8.3.3

About Customizing Reports and Analyticscooevoiiiiiiiiic 8-1
Customizing REPOTLSociiiiiiiiiiiiiiiiciei s 8-1
About Customizing REPOILS ... 8-2
About Tasks Required When Customizing Reports That Are Submitted by the
Oracle Enterprise Scheduler ..., 8-2
What You Can CUStOMIZe..........cccviviiiiiiiiiiiiiiiicc s 8-3
Related Report Customization Tasksc.cccccccueueciiiiiniiiiiceeeceeeeeeeenee 8-3
Tools for Customizing Reports..........cocceveiiiiiiiioiiiiicic 8-4
Before You Begin Customizing Reports...........ccooeeioiiiiiiiiii, 8-4
Customizing Layouts ..o 8-6
Customizing RTF Templatesc..ccooooeioiiiiiiii e, 8-11
A Customizing an RTF Template: Examplescccooooriiiiiiiciiic 8-13
Customizing Bl Publisher Templatescccccocevviviriirnniiirrccrrreceeenes 8-19
Customizing Data Models...........ccooiiiiiiiic e 8-21
Editing Existing Data Models...........cccccociuiiniiiiiiiiiiiiiiiiiccccccces 8-21
Creating a New Data Modelcccccciiiiiiiiiicccecceeeceeeeeeeeeeees 8-22
Creating Custom RePOrtsc.oviurviieiiiiiic e 8-23
Adding Translations..........c.ccccvceeiiiiiiiiiiic s 8-24
Tasks Required to Run Custom Reports with Oracle Enterprise Scheduler
SEIVICE 1.vvvieieteiete e 8-24
Creating a New Oracle Enterprise Scheduler Job Definition...........ccccccevuiuune. 8-25
Customizing Parameters for Reports Submitted Through Oracle Enterprise
SChedUler ..o 8-25
Securing Custom Reports and Related Components............cccoeeveveveverncnnccnincnccncnes 8-26
Making Reports Available to Users in the Reports and Analytics Pane................... 8-29
Customizing ANAlYtiCS......ccccoeiieiiiiiiiiiiiiiiic s 8-30
About Customizing ANaLYICScccccoeuiueiririiiiiiiiiererccerrre s 8-30
What You Can Customize in Analytics.......coooeuoiiiiiiiiiiiiiccc, 8-31
Before You Begin Customizing Analytics..........ccccoeevviinnnnniinnnniincnccnns 8-32
Customizing ANALYHICS....c.coccucuiuiuiiiiiiiceeccc s 8-32
Customizing the Oracle BI Repository (RPD)cccceuriiiieiiiiieieiicecce 8-33

9 Customizing Security for Custom Business Objects

9.1 About Defining Security POLICIes...........cccoviuiiiiiiiiiiiiiiiiicicccccces
9.1.1 About the Implementation of Security Policies in CRM Application Composer
9.1.2 What You Can Do With Security Policies at Runtime...........cccooooeieiiinieiiiniicne,
9.1.3 What You Cannot Do With Security Policies at Runtime...........cccooovoiiiiiiiiicnnne.
9.1.4 Before You Begin Customizing SECUTIYc.ccceeuieuiuiuicimiiieieiieeeceeeeieeeenennes
9.2 Defining Security Policies for Custom Business Objects.........c.cccooviuiiiiircieiiiicicine
9.3 Enabling End User Instance-Level Security Customization........c.c.cooooeieioiiiiiiininiceinaes
9.4 Preventing Corrupted Security Policies in CRM Application Composerc........

Part Il Developer Customizations and Extensions

10 Using JDeveloper for Customizations

10.1 About Using JDeveloper for Customization...........c.ccocoeeeiuiiiiccciicceceeeeeenenenennns
10.1.1 About Customizing Oracle ADF Artifacts........cccooooeeiiicieieiiicce
10.1.2 About Using JDeveloper to Customize SOA Composites.........cccovvviiiviininiiinnnnne
10.1.3 Before You Begin Using JDeveloper to Customize...........ccccccueucueuenieieiciceenveneceenenennn
10.2 Customizing Oracle ADF Artifacts with JDeveloper ..o
10.2.1 Creating the Customization Application Workspaceccooeueivirciniiiciciiicccnnn
10.2.2 Customizing the ATHACES.c.coociiiiiicicccceecceee s
10.2.3 Determining What ADF Artifacts You Need to Customize..........ccccoveueriiirnnnnne.
10.2.4 Importing Customizations into Your Workspace...........ccoceueiviorcininiiniciniice,
10.3 Customizing SOA Composites with JDeveloper ...
10.3.1 Before You Begin Using JDeveloper to Customize..........c.ccooveieieieiinciciiiicine
10.3.2 Setting Up the JDeveloper Workspace and Composite Project for MDS
CUStOMIZAION ..ot
10.3.3 Customizing the COMPOSILE.......c.cceuruririiiiiririiiirrer e
10.3.4 Customizing SOA Resource Bundles...........ccoooeviiiiiiiiii

11 Customizing and Extending ADF Application Artifacts

11.1 About Customizing Oracle ADF Application Artifacts.........cccoevveiiiiiniciiiccnnnn,
11.1.1 Before You Begin Customizing Oracle ADF Application Artifactscccccoceueuce
11.2 Editing Existing Business COMPONENLSccccvveeuiuiiiiieiiiiceeicceneneeereeeneneenenens
11.3 Editing Task FIOWSc.coviiiiiiiii e
114 Editing Pagescooiiiiiiiiiii s
11.5 Creating Custom Business Componentsccooviiiiiiiniiininniincccccnes
11.6 Creating Custom Task FIOWScccooiiiiiiiii e
11.7 Creating Custom Pages..........ccccoviiiniiiiiiiiniiii s
11.8 Customizing or Creating a Custom Search Object ...
11.9 Editing the UL Shell Template.........ccccooiieiiiiirii e
11.10 Customizing or Adding Resource Bundles.............ccccoiiiiiiiiiiiiiicicccee
11.11 Deploying ADF Customizations and EXtensions...........c.ccceviiiniicncciinccccncenenens

12 Customizing and Extending SOA Components

12.1 About Customizing and Extending SOA Componentscccccoceuceueuereeucuevneeneennenene
12.1.1 Before You Begin Customizing SOA Compositescococeviiicieieiiicieiiceee

vi

13

14

15

122 Customizing SOA COMPOSIESc.eviuriiiiiiiieieiiccie e 12-5
12.3 Merging Runtime Customizations from a Previously Deployed Revision into a New

REVISION ittt 12-14
12.4 Extending or Customizing Custom SOA COmpOSItesccccceueueremeueueuricrcucnieiciercnennne 12-17
125 Deploying SOA Composite Customizations and Extensionsccccceevreieiirnnnnen. 12-22
126 Extending a New Oracle SOA Suite Servicecooveueiiiiiciiieiiiciciiccieec 12-22
Customizing and Extending Oracle BPM Project Templates
13.1 About Customizing Project Templates..........cccoooiiiiiiiiiiic e 13-1
13.1.1 About the Business Catalogcccoceeuiucuiiiiiicieieiiiiieeeeeeeeeee s 13-2
13.1.2 Before You Begin Using JDeveloper to Customize Project Templates 13-2
13.2 Customizing or Extending a Project Template..........c.ccccooiiiiiiiiiiii 13-3
13.3 Publishing Project Templates.........ccciiiiiiiiiiiiiiccceceeeee e 13-4
Customizing and Extending Oracle Enterprise Scheduler Jobs
14.1 About Customizing and Extending Oracle Enterprise Scheduler Jobscccccc........ 14-1
14.11 Main Steps for Extending Oracle Enterprise Scheduler Jobscccccovvvinnninnn 14-2
14.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs...........c.cccccoeeiin 14-2
14.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs. 14-2
14.2 Extending Custom Oracle Enterprise Scheduler Jobs ... 14-2
14.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job..............ccccocoeeii. 14-4
14.2.2 Extending a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job............. 14-8
14.2.3 Extending a Custom Java Oracle Enterprise Scheduler Jobccccccocovvinnnn 14-8
14.2.4 Submitting Oracle Enterprise Scheduler Jobs..........ccccoooiiiii 14-12
14.3 Customizing Existing Oracle Enterprise Scheduler Jobsc.ccccooiiiiiiciiinnenne. 14-13
Customizing Security for ADF Application Artifacts
15.1 About the Oracle Fusion Security Approach...........ccccocociiiiiiiiccceeeeecceeeeeees 15-1
15.1.1 How to Proceed With This Chapter ... 15-2
15.1.2 Related Security DOCUMENLScccciuiuiiiiiiiiiiiiiciciic s 15-2
15.2 About Extending the Oracle Fusion Security Reference Implementation....................... 15-3
15.3 About Extending and Securing Oracle Fusion Applicationscccceeveiueieiiinicieininnne. 15-4
15.3.1 Oracle Fusion Security Customization Guidelines for New Functionality.............. 15-5
15.3.2 Oracle Fusion Security Customization Process Overviewcccccccevvvuvivecenunenes 15-6
15.3.3 Oracle Fusion Security Customization Scenariosccoceeveerieininicieieiniciciccce 15-8
15.3.4 Scenarios Related to Extending and Securing Data Model Components............... 15-11
15.3.5 Scenarios Related to Extending and Securing User Interface Artifacts.................. 15-14
15.3.6 What You Can Customize in the Data Security Policy Store at Design Time 15-16
15.3.7 What You Can Customize in the Data Model Project at Design Time.................... 15-19
15.3.8 What You Can Customize in the User Interface Project at Design Time 15-20
15.3.9 What You Can Customize in the Application Security Policy Store at Design

TIINE oo s 15-21

15.3.10 What You Cannot Do with Security Policies at Design Timeccccocoeeueiennen. 15-25
15.3.11 Before You Begin Customizing SECUTIYccccceeuvuriiirieininiiieirrcccrreeeeeeenes 15-26
15.4 Defining Data Security Policies on Custom Business Objects..........c..cccooeerrrieriiuririunnes 15-28
15.5 Enforcing Data Security in the Data Model Projectc.cccoeveiiiiiiiiiiiciiiicnnee. 15-31

vii

16

17

18

viii

15.6 Defining Function Security Policies for the User Interface Project...........ccccceevevevennnnn. 15-33

Translating Custom Text

16.1 About Translating Custom TeXtccccooiiiiiiiiiiiii s 16-1
16.2 Translating Resource Bundles from Metadata Services Metadata Repository............... 16-1
16.3 Translating Oracle Composer and CRM Application Composer Customizations........ 16-3
16.4 Translating Navigator Menu Customizations..........cccocovvviiiiiniiiiicciiicceee 16-5
16.5 Translating Flexfield and Value Set Configurations............cccceevviiiniiinnniinnnnnn, 16-5

Configuring End User Personalization

17.1 About Configuring End User Personalization...........c.c.cccooeueioiiiiiiiiic 17-1
17.1.1 Before You Begin Allowing Pages or Components to be Personalized.................... 17-2
17.2 Allowing Pages to be Personalized by End Users in Oracle Composercc......... 17-3
17.3 Configuring End User Personalization for Components...........c.cccooeueiniireieiiicicinincnne. 17-3

Customizing Help

18.1 About Customizing Help.......ccocooiiiiiiiiis 18-1
18.1.1 What You Can Do with Help ..o 18-3
18.1.2 Before You Begin Customizing Helpcccccoviiiiiiiiiiiiiiccce 18-4
18.2 Customizing or Extending Oracle Fusion Applications Help.........ccccccooooriiiiinnn. 18-4
18.3 Customizing or Adding Bubble Embedded Help........ccccccoeiiiiiiiiiiiiiiccccceene 18-5
18.4 Customizing or Adding Static Instructions, In-field Notes, and Terminology

DefiNItioNS ...cvoviveviiiiiiiiiiicicc e 18-5

Audience

Preface

Welcome to Oracle Fusion Applications Extensibility Guide.

This document is intended for business analysts and developers who want to
customize and extend the standard functionality provided by Oracle Fusion
Applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

You can also find information about Oracle Fusion Middleware and extending and
customizing Oracle Fusion Applications in the following documents:

» Oracle Fusion Applications Administrator and Implementor Roadmap
» Oracle Fusion Applications Common Implementation Guide

» Oracle Fusion Applications Developer’s Guide

» Oracle Fusion Applications Concepts Guide

» Oracle Fusion Applications CRM Extensibility Guide

» Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces
» Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

Conventions

Oracle Fusion Middleware Business Process Composer User’s Guide for Oracle Business
Process Management

Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management

Oracle Fusion Middleware Administrator’s Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

Oracle Fusion Middleware User’s Guide for Oracle Business Rules
Oracle Fusion Applications Security Guide

Oracle Fusion Applications Security Hardening Guide

Oracle Fusion Middleware Application Security Guide

Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s Guide
(Oracle Fusion Applications Edition)

Oracle Fusion Middleware User’s Guide for Oracle Identity Manager
Oracle Database Security Guide

Oracle Fusion Middleware Metadata Repository Builder’s Guide for Oracle Business
Intelligence Enterprise Edition (Oracle Fusion Applications Edition)

Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence
Publisher (Oracle Fusion Applications Edition)

Oracle Fusion Middleware Report Designer’s Guide for Oracle Business Intelligence
Publisher

Oracle Fusion Middleware User’s Guide for Oracle Business Intelligence Enterprise
Edition (Oracle Fusion Applications Edition)

Oracle Fusion Applications Developer’s Guide for Oracle Enterprise Scheduler
Oracle Fusion Applications Administrator’s Guide

Oracle Fusion Applications Patching Guide

Oracle Fusion Applications Installation Guide

Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for 11g Release 1

(11.1.2)

For 11g Release 1 (11.1.2), this guide has been updated in several ways. The following
table lists the sections that have been added or changed.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What's New page on the Oracle

Technology Network at

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index

.html.

Sections

Changes Made

Chapter 5 Using Flexfields for Custom Attributes

Section 5.6, "Deploying Flexfield Configurations"

Section revised to show how to deploy
the flexfield from the Actions menu. The
Deploy Flexfield button is no longer in the
user interface.

Chapter 8 Customizing Reports and Analytics

Section 8.2.1, "About Customizing Reports"

Section revised to discuss the tasks that
are required when customizing reports
that are submitted by the Oracle
Enterprise Scheduler and how to
understand the use of parameter view
objects with the Oracle Enterprise
Schedule Service.

Section 8.3.3, "Customizing the Oracle BI Repository (RPD)"

Section revised to include Task: Create BI
View Objects for Custom Fact and
Dimension Tables.

Chapter 12 Customizing and Extending SOA Components

Section 12.6, "Extending a New Oracle SOA Suite Service"

Section added to provide overview of
tasks for extending and consuming new
SOA services.

xi

Xii

Part |

Introduction to Customizing and
Extending Oracle Fusion Applications

Part I contains the following chapters:
s Chapter 1, "Customizing and Extending Oracle Fusion Applications"

» Chapter 2, "Understanding the Customization Development Lifecycle"

1

Customizing and Extending Oracle Fusion
Applications

This chapter provides an overview of how to customize and extend Oracle Fusion
applications and, introduces the design time and runtime tools used in the process,
such as Oracle Composer, CRM Application Composer, JDeveloper, Oracle SOA
Composer, Business Process Composer, Oracle Business Intelligence Publisher, Oracle
Business Process Management (BPM) Studio, Oracle BPM Worklist, Oracle Enterprise
Manager Fusion Applications Control, and the Setup and Maintenance work area.

Note: Before you begin to customize or extend Oracle Fusion
Applications, you first must install and implement them. For more
information, see Oracle Fusion Applications Administrator and
Implementor Roadmap.

This chapter includes the following sections:

= Section 1.1, "Understanding Customizing and Extending Oracle Fusion
Applications"

= Section 1.2, "Understanding Customization Layers"

= Section 1.3, "Understanding the Business User and Developer Tools"

1.1 Understanding Customizing and Extending Oracle Fusion
Applications

While Oracle Fusion applications provide robust out-of-the-box functionality, there
may be areas of one of the applications that you need to change to meet your business
needs. This book will guide you through the process of extending and customizing
Oracle Fusion applications. Note that you can also create a complete Java EE
application to supplement your Oracle Fusion applications. Refer to the Oracle Fusion
Applications Developer’s Guide for more information.

All Oracle Fusion applications are based on Oracle Fusion Middleware. Most user
interfaces are implemented using Oracle Application Development Framework
(Oracle ADF) and standard Java technologies. The foundation of the applications are
the Service Oriented Architecture (SOA) business processes. Business intelligence
frameworks provide a number of reporting capabilities. Identity management works
at every level to control access. Each of these areas of an application can be customized
and extended to suit your business needs.

Customizing and Extending Oracle Fusion Applications 1-1

Understanding Customizing and Extending Oracle Fusion Applications

Additionally, Oracle Fusion applications are built using s a common data model.
Because of this commonality, when you make a customization in one area, that
customization will be available to all objects in the application. For example, if you
add an attribute to an object, that attribute can easily be added to the web-based view
page, to an associated mobile page, and to any associated reports. And for the most
part, the tools and processes you use to customize one application will be the same
tools and processes to customize all of Oracle Fusion applications.

Note: If your Oracle Fusion applications are part of a multi-tenant
environment, or is deployed as a Software as a Service Solution (SaaS)
environment, then only a subset of customization capabilities will be
available to you. You need to refer to the SaaS documentation for your
customization procedures.

Within this guide, the term customizing means to change a standard (existing) artifact.
For example, you can add an attribute to a standard business object, or you can change
what is displayed on a standard view page. The term extending means to create a
completely new artifact, such as a custom business object or custom view page. For
customizations and extensions, there are three basic scenarios: personalization,
runtime customizations and extensions, and design time customizations and
extensions.

Personalization

Personalization refers to the changes that every end user of the Oracle Fusion
Application product suite can make to certain artifacts in the user interface (UI) at
runtime. These changes remain for that user each time that user logs into the
application. Personalization includes changes based on user behavior (such as
changing the width of a column in a table), changes the user elects to save, such as
search parameters, or composer-based personalizations, where an end user can
redesign aspects of a page.

For composer-based personalizations, Oracle Fusion Applications includes Oracle
Composer, which allows end users to change certain UI pages to suit their needs. For
example, they can rearrange certain objects on a page, add and remove designated
content, and save queries. Figure 1-1 shows the Partner Profile page in Oracle
Composer. An end user can add other content to this page, or change the order of the
current content.

Note: By default, only certain personalizations are allowed. You can
customize what can be personalized. For more information, see
Chapter 17, "Configuring End User Personalization."

1-2 Extensibility Guide

Understanding Customizing and Extending Oracle Fusion Applications

Figure 1-1 End Users Can Personalize Uls with Oracle Composer

Edit Layer: User - CHANNEL_ADMINISTRATOR

Iig a
op Add Content 99 Edit $3Delete W cut [[jPaste -
(DThis page is also being edited by: CHANNEL_ADMIN, CHANNEL_OPERATIONS_MANAGER.

W < panelStretchlayout
7 4% decorativeBox
¥ <> panelstretchlayout
¥ <> panelstretchlayout
7 <> group
% panelstretchLayout
¥ <> decorativeBox
7 <> panelStretchlayout
7 £¥ panelSpiitter: horizontal
< region [Edit Task Flow]
7 <4 panelstretchLayout N

Partner Center - Partners - Oradle Applications

ORACLE Fusion Applications Accessibiity Personalization ~ Administration ~ Help v Sign Ou

Partners
»| Tasks E— =
Edit Miller Enterprises: Profile
Partner Center
Actons + view v | g - ~|Basic Information
7 Partner Information Organization Name Miler Enterprises Primary Phone 3
g";"ﬁp " Primary Web Site (] Status Active
ublic Profile b ’
i W Address " 555 Telegraph Hil, 5AN FRANCISCO, CA 94133
Partner Account Team >| My Tasks
Partner Programs
Snapshot L ~|Key Details
Interactons 3
Tasks j Partner Type Partner; Telesales » Compliance Status
v Sales Partner Level Gold Compiiance Reviewed Date
Leads Location DU-N-5 Number
Opportunities

Company Description Currency

©
&
<}

Annual Revenue

Runtime customizations and extensions

Runtime customizations and extensions include those that a business analyst user at
your enterprise can make to an Oracle Fusion application at runtime using
browser-based composers. These customizations and extensions are surfaced to all or
to a subset of Oracle Fusion Applications users, and range from changing the look and
feel of a page, to customizing standard business objects, adding a new business object
and associated pages and application functionality, changing workflows, defining
security for new objects, and customizing reports. Figure 1-2 shows how you can
customize the fields on a standard business object using Oracle CRM Application
Composer, which is a runtime tool used to customize and extend certain CRM
applications.

Customizing and Extending Oracle Fusion Applications 1-3

Understanding Customizing and Extending Oracle Fusion Applications

Figure 1-2 CRM Application Composer Allows You to Customize Business Objects at Runtime

ORACLE’ Fusion Applications

Home MNavigator ~ Recent Items

Application Composer

Application |Interacﬁons

~|Objects

View -

i Q Standard Objects

» Tags Watdhlist v Group Spaces

Accessibility Personalization ~ Administration + Help v Sign Out SALES_ADMIN o

& |seacn N £

v Address
Ff Pages %
Buttons or Links
& Server Script
w Saved Searches
[Q Contact
[Q Interactions
[Q MNotes
[

~|Common Setup

‘ﬁ Relationships
Security Roles
Report Subject Areas

= E-Mail Templates

& Import and Export
Object Workflows

Translation Workbench

Biisimacs Drmraccas

Manage Fields
Standard Custom
Z | & % 7 | &
Display Label |Name Display Label |Name Type Description
Address Line 1 Address1 Al Mo data to display.
Address Line 2 Address2 3
Address Line 3 Address3 B
Address Line 4 Address4
Address Effective ... AddressEffectiv
Address Expiration... AddressExpirati
Address Lines Pho... AddressLinesPh
AddressStyle AddressStyle
Addressee Addressee
City City
CLLI Code CliCode
Comments Comments

Contact Preferences ContactPrefere

< |

1e

Customizing and extending Oracle Fusion applications using runtime tools are

covered in Part II, "Business User Customizations and Extensions".

Design time customizations and extensions

Design time customizations and extensions include more complex changes, such as
creating SOA composites or creating new batch jobs, and they require deployment into
the runtime environment. Design time customizations are most often done by Java
developers using Oracle JDeveloper (a comprehensive IDE), as shown in Figure 1-3, or
they may be done in other tools, such as SOA Composer. The customizations are then

uploaded or deployed to a running instance of Oracle Fusion Applications.

Developer-level extensions are covered in Part III, "Developer Customizations and

Extensions".

1-4 Extensibility Guide

Understanding Customizing and Extending Oracle Fusion Applications

Figure 1-3 Oracle JDeveloper IDE

F » Oracle JDeveloper 11g Release 1 - Application jws : Projectljpr I
File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help
Go@a b 9 XEE OQ-O- & Aildw- b -%-14 (@8-
|| @&lapplication x| @EF. % [& [C] (@start Page X) [EResource Palen
Applicationz - B @-._ éh-
~ Projects @ @@ v_ % . I My Catalogs
Prajectl IDE Connections
BB customizab)
: Bﬁ Base Ap|
Oracle JDeveloper 11g EF
racic eveioper g 3 0
» o - com
-3 depl
[Ears
b
Model Applications -3 MET:
3 oppe
Design Databases [T reter
- sale
-7 sale
[Application Resources Build Applications 7 sales
| Data Controls & [sales
[Recently Opened Files | Integrate Applications <[swep
-3 swep
ECuslnmizah\e Archive - Struc.. X |1 E]l | B sver
[swes
=& Darabase
{23 File System
Copyright @ 1997, 2011 Oracle and/or its affiliates. All rights reserved.
I
[ElMessages - Log *
T11E: (SCratcny rnT CMOr, Y1 en_STOrage, Ml Lo r_appLest atgpTys 1 ae_1 Tnes 1
file: scratch/rwhitmor/view_storage rwhitmor_apptest atgpfAde_1ink/s]
file: /scratch/rwhitmor/view_storage, rwhitnor_apptest/atgpfAde_1inks]
file: /scratch/rwhitmor/view_storage//rwhitnor_apptest/atgpfide_11ink/]

Tip: You can also extend an Oracle Fusion application by creating a
completely separate application and integrating it into Oracle Fusion
Applications. For more information about creating an Oracle Fusion

application, see the Oracle Fusion Applications Developer’s Guide.

Most customizations made to an Oracle Fusion application, whether a personalization
an end user makes, a change a business user makes using a runtime composer tool, or
a change a developer makes using JDeveloper to create new source code, are stored in
a business metadata repository. Because these customizations are kept separate from
the base code, you can safely upgrade your Oracle Fusion application without
overwriting or needing to redo your changes.

Customizations for the UI and for business components are created in layers, meaning
that you can create them for specific users (as in the case of personalization), or for
specific roles or sites, and the changes will be shown only when applicable. For more
information about the metadata dictionary and customization layers, see Section 1.2,
"Understanding Customization Layers."

Customizations made at runtime can be saved in a sandbox so that the changes can be
isolated and validated before being published into a full test environment. Changes
done at design time are done in a development environment, and can also be deployed
to a sandbox before being deployed into the full test environment. For more
information about sandboxes, see Section 2.2, "Using the Sandbox Manager."

Because most pages in an application consist of a number of different components
(some of them actually being another page), it can be difficult to discern what has been
customized, and for what layer. During customization of a page, you can use
Customization Manager to understand the state of each artifact on a page: whether it
has been customized, and if so, for what layer. You can import customizations that
others have done, or you can export your own customizations. For more information

Customizing and Extending Oracle Fusion Applications 1-5

Understanding Customization Layers

about using Customization Manager and sandboxes, see Chapter 2, "Understanding
the Customization Development Lifecycle."

1.2 Understanding Customization Layers

Oracle Fusion applications contain built-in customization layers that allow you to
make customizations that affect only certain instances of an application. For example,
the Sales application has a layer for job role. When you customize an artifact, you can
choose to make that customization available only to users of a specific job role, for
example, a sales representative.

Customizations you make are not saved to the base standard artifact. Instead, they are
saved to an XML file that is stored in the Metadata Services (MDS) repository. This
XML file acts like a list of instructions that determines how the artifact looks or
behaves in the application, based on the layer that is controlling the current context.
The MDS Customization Engine manages this process.

For example, say you want to customize the Sales home page by removing the Quick
Create panel, but only for users with the Sales Representative role. Before you make
your customization, you first select the layer to make your customization in, in this
case the role layer whose value is Sales Representative. When you make your
customization by removing that pane from the page, an XML file is generated with the
instructions to remove the pane, but only in the role layer, and only when the value is
Sales Representative. The original page file remains untouched. The MDS
Customization Engine then stores the XML file in the MDS repository.

Now, whenever someone logs into the application and requests an artifact, the MDS
Customization Engine checks the repository for XML files that match the requested
artifact and the given context, and if there is a match, it layers the instructions on top
of the base artifact. In this example, whenever the Sales home page is requested (the
artifact) by someone who is assigned the role of Sales Representative (the context),
before the page is rendered, the MDS Customization Engine pulls the corresponding
XML file from the repository and layers it on top of the standard Sales home page,
thereby removing that pane. Whenever someone who is not a Sales Representative
logs in (for example, someone with the role of Sales Manager), the XML file with your
changes is not layered on top, and so the Quick Create panel is displayed.

Figure 1-4 shows how the customization XML file is applied to the base document and
shown only to a sales representative.

1-6 Extensibility Guide

Understanding Customization Layers

Figure 1-4 One Customization Layer Handled by the MDS Customization Engine

- - =
O Mk + = @
2T A % > é// -+ > el -
£ = 7, A / #’w
227) -
Zlg 7 4 !
‘ gj:é . /xmlf Sales Representitive Sales Representitive’s
= Metadata / Role Customization Page
Repository - % ¢
File or DB //
g ~
Sales Home Page
Base Document ’
&

> e
No Customization ‘

Sales Manager’s
Page

All users of Oracle Fusion applications can personalize certain pages using the
Personalization menu. Users can move elements around on a page, hide elements, and
even add available elements to their page. When they do this personalization, the
MDS Customization Engine creates an XML file specific to that user.

For example, say User 1 (who has the role of Sales Representative) personalizes the
Sales home page. There will then be an XML file stored in the repository, noting the
changes that user made. When User 1 logs in, as in the previous example, the MDS
Customization Engine pulls the XML file with the sales representative customizations
from the repository and layers it on top of the standard Sales home page. In addition,
the engine pulls the XML file with User 1’s personalizations, allowing the user to see
the personalization changes along with the Sales Representative changes. When other
Sales Representatives log in, they do not see User 1’s personalization changes, as
shown in Figure 1-5.

Figure 1-5 Personalizations Are Also Handled by the MDS Customization Engine

ap. % == > N t—

£ = 7, A / 4’

e & g / . -

ZZ = <

‘ﬁ:é "/xlﬂ" o User 1's User 1's Page

7 Metadata % + % Personalization

Repository - y ?
File or DB // ~
Sales =
Base Representative
Document 4

No Personalization

User 2's Page

The exact customization layers available for an application depend on that application
family (refer to the product-specific documentation from Oracle Enterprise Repository
available from Oracle Support for details). However, all Oracle Fusion applications
have the following customization layers:

Customizing and Extending Oracle Fusion Applications 1-7

Understanding the Business User and Developer Tools

= Global: When customizations are made in this layer, they affect all users of the
application. This layer’s XML files are added for everyone, whenever the artifact is
requested. Customizations made to ADF Business Components in JDeveloper
must be made in the Global layer.

= Site: Customizations made in the Site layer affect users at a particular location.

= Enterprise: This layer is used to create customizations for all users of a specific
tenant in a multiple tenant deployment. Site and Enterprise are synonymous
unless the deployment is for multiple tenants.

s User: This is where all personalizations are made. Users do not have to explicitly
select this layer. It is automatically selected when you use the Personalization
menu.

These layers are applied in a hierarchy, and the highest layer in that hierarchy in the
current context is considered the tip. Within the default customization layers, the
Global layer is the base layer, and the User layer is the tip. If customizations are done
to the same object, but in different layers, at runtime, the tip layer customizations take
precedence. For example, if you customize the label for a field in the site layer using
Oracle Composer and customize the same label in the global layer using JDeveloper,
the site layer customization will be displayed at runtime.

Because customizations are saved in these XML files, when you patch or upgrade your
Oracle Fusion applications, the base artifacts can be updated without touching your
changes. The base artifact is replaced, and when the application is run after the patch
or upgrade, the XML files are simply layered on top of the new version. You do not
need to redo your customizations.

Before you create customizations, you will need to select the layer to which you want
your customizations to be applied. Most of the tools you use to create your
customizations provide a dialog where you can pick the layer for your customizations.

1.3 Understanding the Business User and Developer Tools

The user interfaces in Oracle Fusion applications are controlled by role based
authentication, meaning that the information presented in the UI, and what the user
can do in the Ul, depends on the role assigned to the currently logged in user. For
example, if you are assigned a role with administrative privileges, when you log into
Oracle Fusion Applications, you will see an Administration menu, as shown in
Figure 1-6. This menu allows you to do things like customize a page for all users, or
manage customizations.

Figure 1-6 Oracle Fusion Applications Menu Bar

ORACLE Fusion Applications Personalization v Administraton » Help » SianOut Gabrielle Lee

Navigator Recentltems Favorites Tags Watchiist Group Spaces E=E ©

Both personalization and customization use Oracle Composer to make changes to an
application page. Using personalization, any user can drag and drop fields, rearrange
regions, add approved external content and save their favorite queries.

Using administration customization, you also use Oracle Composer to customize
pages for other users. You can add fields, add validation, change defaults, rearrange
regions, and add external content. Oracle Composer allows you to work in either a
WYSIWYG view or source view, as shown in Figure 1-7.

1-8 Extensibility Guide

Understanding the Business User and Developer Tools

Figure 1-7 Oracle Composer

Editing: Sales Edit Layer: Site - SITE

View + | IIF: Customization Manager

ob AddContent 5 Edit $3Delete | M cut [[jPaste ~

|>

W £¥ panelGroupLayout; vertical
<> spacer: 2.5

W £¥ panelGroupLayout: horizontal
<> spacer
¥ panelGroupLayout: horizontal
£ commandLink: Home

¥ spacer
ol

<rsp
£ commandLink: Recent Items

<¥ spacer v
.

-+ > panelStretchLayout = panelGroupLayout: scroll = panelBorderLayout > panelGroupLayout: horizontal > commandLink: Navigator
ORACLE Fusion App"ca‘tions Accessility Personalization = Administration + Help Sign Out SALES_J

Mavigator v Recent Items + Favorites v Tags Watchlist ~ Group Spaces & | gear-r [N

Welcome

4 Change Layout

For more information about customizing pages, see Chapter 3, "Customizing Existing
Pages."

If you need to extend or customize the Sales, Marketing, Customer Center, Trading
Community Architecture (TCA), and Order Capture applications that are part of the
Customer Relationship Management (CRM) product family of Oracle Fusion
Applications, then you can use CRM Application Composer to customize your pages.

Note: Only certain pages are available for customization. For a
complete list, refer to product-specific documentation from Oracle
Enterprise Repository available from Oracle Support.

You access CRM Application Composer by clicking the Application Composer link
from the Navigator menu of Oracle Fusion Applications, as shown in Figure 1-8.

Customizing and Extending Oracle Fusion Applications 1-9

Understanding the Business User and Developer Tools

Figure 1-8 Navigator Menu

ORACLE’ Fusion Applications

Mavigator ~ RecentItems ~ Favorites~ Tags Watdhlist ~ Group Spaces

Marketing Workforce Management
A Customers Workforce Structures
Lead Processing Benefits
«|Ta Lead Qualification Plan Configuration
_ Sales Manager Resources
Mana Sales Dashboard My Information
Customers Expenses
Creat Opportunities Tools
Revie Territories and Forecasts Reports and Analytics

Crast Recommendations Application fomposer
Career Resource Dirdefory

Mana Profiles

Mzamama Farasast T DT A Blms B immbimm FARTETARA T

CRM Application Composer also allows business analysts to make more complex
runtime customizations. In addition to customizing pages, business analysts can
customize business objects and all the artifacts that support them (such as fields,
pages, buttons and links, security, server scripts, and saved searches), and can also
extend Oracle Fusion applications by creating completely new business objects and

artifacts, as shown in Figure 1-9. For more information, see Chapter 4, "Customizing
Objects."

Figure 1-9 CRM Application Composer

ORACLE Fusion App"ca‘tions Accessibiity Personalization » Administration v H

Home ~ Recent Item

Application Composer

Create Custom Object

Application | Interactions %

*Display Label
~|0bjects

View +

* Plural Label

*Record Name

- d M
i’ Q Standard Objects * Object Name - =

v Q éddress Description
3 “
Pages
Buttons or Lin
V Server Script -
w Saved Search Ok | Cancel il Templates
Jg _ Lage e-mail

= Q Contact - femplates

= Q Interactions
=2 Q MNotes
£

<

~|Common Setup

= =]
§ Object Workflows Translation Business Processes
Relationshi Configure business Workbench Manage end-to-end
= S logic and triggers Configure different business processes
Security Roles locales and languages

Report Subject Areas

When new business objects are created, you often also create associated Work Area
pages for those objects. You can add those pages to the Navigator menu so that they
can be accessed in the same way as standard objects. For more information, see
Chapter 6, "Customizing the Navigator Menu."

When you create a new top-level business object, you can also create a new object
workflow to manage any business processes associated with it. For example, say you
used CRM Application Composer to create a marketing object and you want to create
an associated approval flow. From within CRM Application Composer, you can access

1-10 Extensibility Guide

Understanding the Business User and Developer Tools

Oracle Business Process Composer and create the process that defines that flow. For
applications outside of CRM, you access Business Process Composer directly from the
Navigator menu. For more information about using the Business Process Composer,
see Chapter 7, "Customizing and Extending BPMN Processes."

When you create a new object in CRM Application Composer, you can define security
policies for it. Data security policies define the end user’s level of access to the data
records of the business object. Function security policies define the end user’s level of
access to the application resources that display the object (for example a page or a task
flow). Both types of security need to be defined for a security policy to be complete.
Security policies are not stored in MDS. Instead, they are stored in Oracle Fusion Data
Security database tables (for data security) and in an LDAP-based server running
Oracle Internet Directory (for function security). For more information about creating
security policies for custom CRM business objects, see Chapter 9, "Customizing
Security for Custom Business Objects."

If you need to add an attribute to an object in an application that is not one of the five
CRM applications, you can often use flexfields. Flexfields allow you to define object
attributes on objects and then apply business logic to them. For example, an airline
manufacturer might require very specific attributes for their orders that are not
provided by the out-of-the-box implementation of an order. Because a flexfield exists
for the order object, you can use it to create and configure the attribute you need. Once
configured, flexfields are stored in MDS, and so are safe during patching and
upgrading. You access flexfields from the Setup and Maintenance menu item from the
Administration menu. For more information about flexfields, see Chapter 5, "Using
Flexfields for Custom Attributes."

Oracle Fusion Applications come with a complete set of reports. You can customize
these reports (for example, change the layout) to fit your particular business needs.
Additionally, if you customize or create a business object, you can create a new report
for that object. For more information, see Chapter 8, "Customizing Reports and
Analytics."

When you need to customize or create business objects outside of the five CRM
applications, or when the customizations you need to make cannot be made in one of
the runtime composers, then you need to use JDeveloper to make those changes.
When you work in a JDeveloper environment, you create a workspace that will
contain your changes and additions. When you create this workspace, you do so in the
Oracle Fusion Applications Developer role. Like Oracle Fusion applications,
JDeveloper uses roles to shape what you see and can do in the IDE. Work done in a
developer role is stored in actual projects with code that gets deployed to an
environment. Once you create your project, if you are customizing an existing
standard object (as opposed to creating a new object), then you do that work in the
Oracle Fusion Applications Administrator Customization role. Work done in this role
is saved to an XML file that gets deployed into MDS, keeping your changes separate
from the base code. For more information about how to set up your JDeveloper
customization environment, see Chapter 10, "Using JDeveloper for Customizations."

Note: You cannot create your own roles to define what you see and
what you can do in JDeveloper.

Developers can use JDeveloper to create and customize view pages, business objects,
task flows (flows that control navigation and business logic within the application),
searches, and resource bundles. All customizations and extensions created in
JDeveloper must be deployed to an environment. For more information about using

Customizing and Extending Oracle Fusion Applications 1-11

Understanding the Business User and Developer Tools

JDeveloper to customize business objects and associated artifacts, see Chapter 11,
"Customizing and Extending ADF Application Artifacts."

SOA composites are the foundation on which Oracle Fusion applications are built:
they are the glue that holds all the different application artifacts together and they
allow the different applications to work in a unified manner. SOA composites for an
application contain artifacts like Business Process Execution Language (BPEL) process
flows. These flows provide communication between applications, additional
human-based workflows, and business rules that determine branching in those flows.
Developers can customize existing composites or create new ones using a mixture of
JDeveloper and browser-based tools. Customized and extended SOA composites are
all stored in MDS. For more information, see Chapter 12, "Customizing and Extending
SOA Components."

Some Oracle Fusion applications provide business process modeling (BPM) project
templates that you can use to create BPM projects. BPM projects consist of SOA
artifacts, such as business rules and human tasks, and Business Process Modeling
Notation (BPMN) processes. You can customize these project templates to suit your
business needs. For more information, see Chapter 13, "Customizing and Extending
Oracle BPM Project Templates."

Finally, when you create custom pages, you may want to make them personalizable, so
that end users can change the page for themselves. For more information, see

Chapter 17, "Configuring End User Personalization." Also, when you make any type of
customization or extension to Oracle Fusion applications, you will likely need to
change the embedded help that appears on the screen. For more information, see
Chapter 18, "Customizing Help." And all customizations can be translated. For more
information, see Chapter 16, "Translating Custom Text."

Tip: When you extend Oracle Fusion applications, you may want
those extensions to be configurable using Oracle Fusion Applications
Information Technology Management, Implement Applications
Guide. For more information about creating setup flows for
extensions, see the Oracle Fusion Applications Information
Technology Management, Implement Applications Guide.

For a more detailed description of the workflow you need to follow when customizing
and extending, see Chapter 2, "Understanding the Customization Development
Lifecycle."

1.3.1 What You Can Customize and Extend and with Which Tool

The following table shows the artifacts that you can customize or create in Oracle
Fusion Applications, what tool you use, the type of user that can make the change, and
whether the changes are stored in MDS.

Note: CRM Application Composer is only available if you want to
make changes in the following CRM applications:

= Marketing

= Sales

s Customer Center

» Trading Community Architecture (TCA)
s Order Capture

1-12 Extensibility Guide

Understanding the Business User and Developer Tools

Table 1-1

Note:

While you can customize view pages in Oracle Composer and

CRM Application Composer, only certain pages are configured to
allow it. If the customization you want to make is not available in
Oracle Composer, then you will need to use JDeveloper to make the

customization.

Customization Scenarios in Oracle Fusion Applications

Customization/

Extension Tool Type of User MDS? Where to Find Information
View Pages

Add, move, and Oracle Composer Business Analyst Yes Section 3.2, "Editing a Page in

delete components on Oracle Composer"

a page.

Add fields, buttons, CRM Application Business Analyst Yes Section 4.3, "Editing a Page in

links, to a standard Composer CRM Application Composer"

page (CRM)

Customize properties Oracle Composer Business Analyst Yes Section 3.3, "Editing Component

on UI components on Properties in Oracle Composer”

a standard page

Customize properties CRM Application Business Analyst Yes Section 4.2, "Editing Objects"

on Ul components on Composer

a standard page

(CRM)

Make UI components Oracle Composer Business Analyst Yes Section 17.3, "Configuring End

on a page User Personalization for

personalizable Components"

Customize the Ul JDeveloper Developer Yes Section 11.9, "Editing the UI Shell

Shell template Template"

Customize the Ul Oracle Composer Business Analyst Yes Section 3.4, "Editing the UI Shell

Shell template (CRM) Template Used by All Pages"

Define resource JDeveloper Developer Yes Section 11.10, "Customizing or

bundles Adding Resource Bundles"

Make a custom page JDeveloper JDeveloper Yes Section 17.2, "Allowing Pages to

personalizable be Personalized by End Users in

(custom pages created Oracle Composer"

in CRM Application

Composer are

customizable by

default)

Customize onscreen Oracle Composer Business Analyst Yes Section 18.3, "Customizing or

hoover help text Adding Bubble Embedded Help"

Customize onscreen JDeveloper Developer Yes Section 18.4, "Customizing or

help text Adding Static Instructions,
In-field Notes, and Terminology
Definitions"

Change the look and JDeveloper Developer No You can choose the skin you

feel of the entire want Oracle Fusion Applications

application to use. For more information, see

the "Implementing Skinning"
chapter in the Oracle Fusion
Applications Developer’s Guide.

Customizing and Extending Oracle Fusion Applications 1-13

Understanding the Business User and Developer Tools

Table 1-1 (Cont.) Customization Scenarios in Oracle Fusion Applications

Customization/

Extension Tool Type of User MDS? Where to Find Information

Translate custom text JDeveloper Developer Yes Chapter 16, "Translating Custom
Text"

Business Objects
Customize business ~ JDeveloper Developer Yes Section 11.2, "Editing Existing
objects Business Components"
Customize business ~ CRM Application Business Analyst Yes Section 4.2, "Editing Objects"
objects (CRM) Composer
Add an attributetoa Setup and Maintenance Business Analyst No Chapter 5, "Using Flexfields for
business object using work area Custom Attributes"
flexfields (not CRM)
Create business JDeveloper Developer Yes Section 11.5, "Creating Custom
objects Business Components"
Create business object CRM Application Business Analyst Yes Section 4.4, "Creating Custom
(CRM) Composer Objects"
Add business object ~ Setup and Maintenance Business Analyst No Chapter 6, "Customizing the
page to Navigator work area Navigator Menu"
menu
Add custom business CRM Application Business Analyst No Section 4.4, "Creating Custom
object work area Composer Objects"
pages to Navigator
menu (CRM)
Add validation toan JDeveloper Developer Yes Section 11.5, "Creating Custom
object Business Components"
Add validation toan ~ CRM Application Business Analyst Yes Section 4.2, "Editing Objects"
object (CRM) Composer
Customize saved CRM Application Business Analyst Yes Section 4.5, "Creating and
search for a custom Composer Editing Search Objects"
object (CRM)
Create search for an JDeveloper Developer Yes Section 11.8, "Customizing or
object Creating a Custom Search

Object"

Create saved search CRM Application Business Analyst Yes Section 4.5, "Creating and
for a custom object Composer Editing Search Objects"
(CRM)
Customize task flows JDeveloper Developer Yes Section 11.3, "Editing Task
for an object Flows"
Create task flows for JDeveloper Developer Yes Section 11.6, "Creating Custom
an object Task Flows"
Customize object CRM Application Business Analyst Yes Section 4.2, "Editing Objects"
workflows for an Composer
object (CRM)
Create object CRM Application Business Analyst Yes Section 4.4, "Creating Custom
workflows for an Composer Objects"
object (CRM)

Business Processes
Create BPMN process Business Process Business Analyst Yes Section 7.2, "Creating an Oracle
in a BPM project Composer BPM Project”

1-14 Extensibility Guide

Understanding the Business User and Developer Tools

Table 1-1 (Cont.) Customization Scenarios in Oracle Fusion Applications

Customization/

Extension Tool Type of User MDS? Where to Find Information
Create BPMN CRM Application Business Analyst Yes Section 7.2, "Creating an Oracle
approval processina Composer BPM Project”

BPM project (CRM)

Customize custom Business Process Business Analyst Yes Section 7.3, "Customizing BPMN

BPM projects Composer Processes"

Customize custom CRM Application Business Analyst Yes Section 7.3, "Customizing BPMN

BPM projects (CRM) Composer Processes"

Customize BPM Oracle BPM Studio Developer Yes Chapter 13, "Customizing and

project templates Extending Oracle BPM Project
Templates"

Customize BPEL JDeveloper Developer Yes Section 12.4, "Extending or
process or Mediator Customizing Custom SOA
component, or add Composites"”
additional SOA
components

Customize task Oracle BPM Worklist, Developer Yes Section 12.2, "Customizing SOA
routing rules, Oracle SOA Composer Composites"
business rules, DVM and Oracle Enterprise
and, composite Manager Fusion
properties Applications Control

Reports
Create report layout ~ Oracle Business Business Analyst No Section 8.2.2, "Customizing

Intelligence Publisher Layouts"
Customize report Oracle Business Business Analyst No Section 8.2.2, "Customizing
layouts Intelligence Publisher Layouts"
Customize style Oracle Business Business Analyst No Section 8.2.2, "Customizing
templates Intelligence Publisher Layouts"
Create a report Oracle Business Business Analyst No Section 8.2.4, "Creating Custom
Intelligence Publisher Reports"
Translate a report Oracle Business Business Analyst No Section 8.2.5, "Adding
Intelligence Publisher Translations"
Create report subject CRM Application Business Analyst No Section 4.4, "Creating Custom
area (CRM) Composer Objects"

Enterprise Scheduler Jobs
Create Jobs JDeveloper Developer No Chapter 14, "Customizing and

Extending Oracle Enterprise
Scheduler Jobs"

Security

Adding data security ~ Setup and Maintenance Developer No Section 15.4, "Defining Data

to custom object

work area

Security Policies on Custom
Business Objects" and
Section 15.5, "Enforcing Data
Security in the Data Model
Project”

Customizing and Extending Oracle Fusion Applications 1-15

Understanding the Business User and Developer Tools

Table 1-1 (Cont.) Customization Scenarios in Oracle Fusion Applications

Customization/

Extension Tool Type of User MDS? Where to Find Information
Adding function JDeveloper Developer No Section 15.6, "Defining Function
security to custom Security Policies for the User
object Interface Project"

Adding security to CRM Application Business Analyst No Section 9.2, "Defining Security

custom object (CRM) Composer Policies for Custom Business
Objects"

Enabling end users to CRM Application Business Analyst No Section 9.3, "Enabling End User

set instance level Composer Instance-Level Security

security Customization"

1.3.2 Installing Customization Tools

All the business analyst tools are available from the Navigator menu of Oracle Fusion
Applications. However, developers will need to install and configure JDeveloper.
Once installed, they will need to set up their environment for customization and
extending.

For procedures for installing JDeveloper and setting it up for extending (that is, for
creating new objects), see the "Setting Up Your Development Environment" and
"Setting Up for JDeveloper Workspace and Projects" chapters in the Oracle Fusion
Applications Developer’s Guide.

For procedures for setting up JDeveloper for customizations, see Chapter 10, "Using
JDeveloper for Customizations."

1-16 Extensibility Guide

2

Understanding the Customization
Development Lifecycle

This chapter discusses the typical workflow for customizing and extending Oracle
Fusion applications. It describes how to use sandboxes to perform customizations in a
segregated environment, publish the changes to a full testing environment, and export
the changes to other environments.

This chapter contains the following sections:
= Section 2.1, "Understanding Typical Customization Workflows"
m Section 2.2, "Using the Sandbox Manager"

ms Section 2.3, "Using Customization Manager to Manage Runtime Customizations"

2.1 Understanding Typical Customization Workflows

All customizations and extensions, whether done by analysts or developers should be
done in a testing environment. Typically, this environment contains one or more
Oracle Fusion Applications that will then be moved to a production environment,
once all customizations and extensions are complete and tested. Business analysts
using Oracle Composer and CRM Application Composer can do their customizations
in sandboxes that can be test only (that is, the code in the sandbox is for testing only,
and is never deployed), or they can be done in a sandbox that is then published to the
environment. Developers using design time tools, such as JDeveloper, deploy their
customizations either directly to that environment, or they can publish to a sandbox.
Project managers can monitor the customizations, and can also import and export
customizations. The entire environment with all customizations can then be tested, as
shown in Figure 2-1.

Understanding the Customization Development Lifecycle 2-1

Understanding Typical Customization Workflows

Figure 2-1 Customizations are Done in a Test Environment That Runs Oracle Fusion
Applications

Business

Analyst using
b | CRM Agplication
_+, Composer

Business Analyst

using Oracle
> Composer

T T?‘ﬂ;%'
Publish Fublish

Developer
using
JDeveloper

h

Full Testing Environment

Import
Customizations
using Customization

Manager

Froject >
Manager

QA

. Fusion
~~ Applications

Tip: When you extend Oracle Fusion applications, you may want
those extensions to be configurable using Oracle Fusion Functional
Setup Manager. For more information about creating setup flows for
extensions, see the Oracle Fusion Applications Information
Technology Management, Implement Applications Developer Guide.

2.1.1 Typical Runtime Workflow

CRM Application Composer and Oracle Composer make use of sandboxes. Sandboxes
allow customizers to make their changes in a segregated environment. Sandboxes
keep the customization XML files stored in an MDS repository that is only available
when you choose to work in that particular sandbox (this repository is separate from
the repository that holds customizations). For example, you might create a sandbox
named MySandbox. When you go to make your customizations, you would first
choose to do so within MySandbox. If you want other users to be able to see the
customizations, they can then also use MySandbox, and the customizations will be
there.

Note: There are restrictions for when more than one user is working
in a sandbox. For more information, see Section 2.2.1, "Sandboxes and
Concurrent Usage."

You can also create a sandbox when you create security policies for custom objects that
you have created using CRM Application Composer. These security sandboxes create
new database tables to store the security information, and these tables are only
available when you choose to work in that sandbox.

2-2 Extensibility Guide

Understanding Typical Customization Workflows

Once customizations in a sandbox are complete, the sandboxes can be reviewed and
approved by others, and once approved, published to the full test environment where
they become part of that repository. For more information about sandboxes, see
Section 2.2, "Using the Sandbox Manager."

For flexfields, if you want to test the flexfield configuration before deploying it to the
full test environment, you can deploy the flexfield to a flexfield sandbox. The changes
that you deploy to a sandbox are isolated from the full test environment and can only
be seen by those who make the flexfield sandbox active in their session. Once you are
satisfied with the changes in the sandbox, you can deploy the changes to the full test
environment.

When a sandbox is published, it is labeled. Labeling can act as a save point, meaning
that if a future customization causes issues, you can use Customization Manager to
promote the last known good label back to the tip (thereby removing all
customizations done after that point). You can also use Customization Manager to
view others’ customization metatdata files, and to download those files to manually
move them to another environment or to diagnose any issues. You can also upload
others’ customization metadata files to your environment. For more information, see
Section 2.3, "Using Customization Manager to Manage Runtime Customizations."

Figure 2-2 shows the flow for a typical runtime customization process. Note that
because customizing the Navigator menu, BPMN process flows, and reports does not
use the MDS repository, customization of those artifacts is not shown in the flow.
Refer to the corresponding chapters for those processes for more information.

Understanding the Customization Development Lifecycle 2-3

Understanding Typical Customization Workflows

Figure 2-2 Typical Runtime Customization Workflow

What

Page or objsct are you
customizing?

Data security

Create a metadata Create a security
sandbox (optional) sandbox (optional)

Use CRM
Yes Application
Composer to
make changes
Customize Yes Use Oracle
page? —»| Composer to
make changes
No
Mo
| Use JDeveloper to
customize object
or security
k.
Download all
customization files and
upload to production
environment

2.1.2 Typical Design Time Workflow

Flexfields

Configure
flexfields

Deploy to a flexfield
sandbox (optional)

|

No Download other
Customizations customizations?
complete?
Yes
If used, publish ves
sandbox to test
Tt rart Use Customization
Manager to view
customizations
and download
customization files
Issues l
with Yes
customizations?
Fix
issues
using tools? —
T Yes
Upload fixed
files to test No
environment
Fix customization
issues manually or
with help from
Oracle Support
Services

When your customizations cannot be done using a runtime tool, you often need to use
JDeveloper to make your changes. Once you create your customizations, you can test
them locally in JDeveloper, and when complete, deploy them directly into the full test
environment. You can also deploy your customizations to a sandbox (security
customizations done at design time are not saved to a sandbox). Additionally, you can
use source control software to manage these changes. For more information about
what source control software JDeveloper supports, see the "Versioning Applications
with Source Control" topic of the JDeveloper online help.

Because your changes (other than security changes) are stored in customization files in
MDS, these changes can also be viewed and managed using Customization Manager.
However, they cannot be promoted as the customizations made in Oracle Composer
can be. You need to undeploy changes that are causing issues, fix the issues, and then

redeploy to the test environment.

2-4 Extensibility Guide

Using the Sandbox Manager

Figure 2-3 shows the flow for a typical design time customization process.

Figure 2-3 Typical Design Time Customization Workflow

Start
What
are you Oracle ADF artifacts, help, personalization
customizing?
S0OA composite
Set up a JDeveloper Set up a JDeveloper
environment for environment for
customizing SOA customizing Oracle
composites ADF artifacts
v
Make
customizations
in JDeveloper
—
Test
customizations
locally in
JDeveloper
Deploy
customizations
to full test
environment
I Yes
Fix
Problems Use Customization e
with Oracle ADF Yes Manager to view using
customizations? *| customizations and > JDeveloper?
download
customizations files
No
No
Fix customization
issues with help
Move from Oracle —
customizations Support Services
to production
environment

2.2 Using the Sandbox Manager

You can make changes to an application at runtime in a sandbox so that the changes
are isolated from the mainline. The mainline is a branch of data that serves as a single
source of truth. Once you are satisfied with the changes in the sandbox and want to
commit the changes, you can publish the MDS or security-enabled sandbox to the
mainline. Flexfield sandboxes are for testing only and cannot be published. You make
flexfield configurations that are stored in a database and then you can deploy those
configurations to a sandbox to see the resulting deployment artifacts in a sandbox
environment. Flexfields are deployed directly to the mainline using the flexfield UL
For more information about flexfields, see Section 5.6, "Deploying Flexfield
Configurations."

You can use runtime tools to customize the application. The sandbox manager works
with CRM Application Composer and Oracle Composer to customize objects and

pages.

Understanding the Customization Development Lifecycle 2-5

Using the Sandbox Manager

s For information about using CRM Application Composer, see Chapter 4,
"Customizing Objects."

= For information about using the Oracle Composer, see Chapter 3, "Customizing
Existing Pages."

Oracle Business Process Composer and Oracle SOA Composer are also runtime
customization tools, but do not use the sandbox manager. They have their own
mechanisms for handling customization changes.

s For information about using Oracle Business Process Composer, see Chapter 7,
"Customizing and Extending BPMN Processes."

= For information about using SOA Composer, see Chapter 12, "Customizing and
Extending SOA Components."

To customize an Oracle Fusion application, you first create a sandbox and then use
Oracle Composer or CRM Application Composer to make the customizations. These
changes will be contained within the sandbox so they don’t affect the mainline. You
then test and validate the changes by publishing the sandbox to the full test
environment. After the application has been tested, it can then be moved to the
production environment where the customization changes will be available to users of
the system.

The sandbox manager is a tool for managing the different types of customization
changes that can be applied to an application. The different types of sandboxes are:

s Metadata

The metadata sandbox supports making changes to the application’s metadata
stored in the MDS.

= Security
The security-enabled sandbox supports making data security changes.
s Flexfield

The flexfield sandbox is not created in the sandbox manager. You would use the
flexfield UI to make changes to the flexfields and then deploy the flexfield to the
sandbox. The flexfield deployment process manages the creation of the sandbox.
For more information about flexfields, see Section 5.6, "Deploying Flexfield
Configurations."

With the exception of security, the sandboxes created using the sandbox manager are
also available in JDeveloper when you use JDeveloper to create and deploy
customizations intended for a deployed Oracle Fusion application in WebLogic Server.
The available sandboxes will appear in a selection list in JDeveloper during
deployment. For more information, see Section 11.11, "Deploying ADF Customizations
and Extensions."

In CRM Application Composer, when users want to customize security, they can do so
using a sandbox specifically for editing security policies. When the user enables the
security sandbox, the operation will duplicate the schema for Oracle Fusion Data
Security tables and is therefore a lengthy setup operation. Before users enable the
security sandbox, they should wait until they are ready to make security policy
customizations. The security policy customizations that users publish from a sandbox
will be merged into the Oracle Fusion security policy repository as part of the native
application and overwrite any previous customizations. Because inconsistencies can
result when multiple users edit the security policies associated with the same object in
different sandboxes, users should coordinate so they avoid editing the same object
concurrently.

2-6 Extensibility Guide

Using the Sandbox Manager

The metadata and security sandbox sessions can be saved and be downloaded as a file
to be imported into other Oracle Fusion applications.

2.2.1 Sandboxes and Concurrent Usage

In the customization runtime workflow, sandboxes are used to isolate the changes
from the mainline for testing and validating. After you are satisfied with the changes,
you can publish the changes back to the mainline. You can also create sandboxes for
testing purposes only, and not publish them.

There are two types of sandboxes:
= Sandboxes intended to be published.

These sandboxes will be merged back to the mainline code.
= Sandboxes intended for "test-only" purposes.

These "test-only" sandboxes will not be published and therefore produce no
concurrency conflicts between sandboxes. You can have many "test-only"
sandboxes at the same time. But if you have multiple users working on the same
"test-only" sandbox, they will still need to adhere to the guidelines described in
Section 2.2.1.1, "Guidelines for One Sandbox, Multiple Users."

Figure 2—4 illustrates the two types of sandboxes and their relationship to the mainline.

Figure 2-4 The Two Types of Sandbox Usages

Code mainline

%

Sandbox ot
intended for y\
publishing ,.‘f' 0 LS
o | ?;, O
<l 'F'N
i
‘,‘ Marge to
mainline
Create | . Customize and | . Publish j
Sandbox validate within sandbox Sandbox

Sandbox
intended
for testing

Create ‘ Customize and | Do not publish,

|
AE'
.f il ey
v Sandbox | validate within sandbox |_ ltesting only)

Sandbox
intended
for testing
h |

|

Create ‘ Customize and | Do net publish,

»
Ay "E\
v Sandbox | validate within sandbox | testing only)

An application artifact typically includes several metadata files. Therefore, creating or
editing an artifact usually means making changes, whether directly or indirectly, to
more than one file. Some of these metadata files may be shared between artifacts.

When multiple users can customize an application using sandboxes, there are two
types of concurrency conflicts:

» Conlflicts within a sandbox: Users overwriting changes created by other users,
either directly by changing the same artifact, or indirectly by affecting files that are
shared between the artifacts.

Understanding the Customization Development Lifecycle 2-7

Using the Sandbox Manager

= Conflicts between sandboxes (intended for publishing only): Multiple sandboxes
with the same customized artifact publishing to the mainline.

Note: Because many customization scenarios, including customizing
security policies, involve editing the same underlying artifacts, the
only way to be certain of eliminating the possibility of any
concurrency conflicts is to allow only one user at a time in an active
sandbox. If you must have multiple users or multiple sandboxes, you
should adhere to the usage guidelines described in Section 2.2.1.1,
"Guidelines for One Sandbox, Multiple Users," and Section 2.2.1.2,
"Guidelines for Multiple Sandboxes, Multiple Users."

Conflicts within a sandbox can arise when multiple users are customizing an
application using the same sandboxes at the same time, because more than one user
may be attempting to customize the same artifact, or performing a customization task
that indirectly affects other shared files. An example of a direct conflict is when
different users attempt to customize the same page, the same fragment, or the same
metadata file in the same layer. An example of an indirect conflict is when two users,
each creating their own object, cause a conflict in the metadata file that tracks which
new objects have been created by both saving their changes around the same time.

Conflicts may also arise when users are editing a shared artifact, such as when a user
performs an operation that adds or edits a translatable string. For example, a user edits
a field's display label or help text, or a validation rule's error message, while another
user performs an operation around the same time that similarly affects translatable
strings. Another example of a shared artifact conflict is when two or more users are
working in navigator menus which are shared across applications.

When you are using Oracle Composer, although you are not required to, you should
use a sandbox. Oracle Composer provides concurrency warning messages when there
is a potential customization conflict with another user. For Oracle Composer, these
warning messages help prevent conflicts. For more information, see the "Editing
Pages" section of the Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

When you are using CRM Application Composer, you should always use a sandbox.
CRM Application Composer provides error messages when a concurrency conflict is
encountered. If multiple users in a single sandbox attempt to edit the same artifact, an
error message is displayed. For example, if two users are editing the label of the same
attribute, CRM Application Composer will display an error message.

Conflicts between sandboxes can arise when there is more than one sandbox intended
for publishing in use. If two sandboxes contain customization changes to the same
artifact and both are being published, the sandbox that is being published last is given
an option (by the sandbox manager) to overwrite the changes for that artifact from the
sandbox that was published first. If the user working in the second sandbox decides to
force-publish the second sandbox, it will overwrite the changes published by the first
sandbox. These types of conflicts can also occur with shared metadata files such as
resource bundles that store translatable strings.

If there is a concurrent change made in the mainline code after the sandbox was
created and the user attempts to publish that sandbox, such conflicts are detected at
publish time and errors are raised.

2-8 Extensibility Guide

Using the Sandbox Manager

2.2.1.1 Guidelines for One Sandbox, Multiple Users

Regardless of whether the sandbox is intended for publishing or whether it is for
"test-only," if you need to have multiple users working in a single sandbox, you
should follow these usage guidelines:

Multiple concurrent users in the same sandbox should operate only on different
and unrelated objects.

For example, if userl updates objectl, then user2 can update object2 but
should not update object1. Be aware that if both modifications involve changes
to translatable strings, then saving changes to separate objects around the same
time may still cause a conflict in the resource bundle that stores the translatable
strings.

If multiple users do update the same artifact concurrently (either the same object
or the same underlying frequently modified file), they will get a concurrent update
error. In this case, the second user's changes will not be saved (the Save button
will be disabled) and one of the users will have to cancel and try again.

CRM Application Composer will retain any uncommitted changes in the UI. For
example, if the user were editing a groovy expression when the error was
encountered, the expression will be retained in the editor so the user can copy and
paste the expression to try customizing again. (No metadata corruption or partial
transaction commits will happen.)

Users in the same sandbox will see the changes created by one another. The latest
version of each object gets loaded on-demand the first time it is viewed in CRM
Application Composer. Users can refresh their view to the latest definition from
MDS and see the changes listed in the tree structure at the left side of the CRM
Application Composer UL However, if there are ADF Business Components
customizations, users may need to log out and log back in again to see those
changes reflected in the UL

2.2.1.2 Guidelines for Multiple Sandboxes, Multiple Users

If you need to have multiple users working in multiple sandboxes, you should follow
both the guidelines in Section 2.2.1.1, "Guidelines for One Sandbox, Multiple Users,"
and these usage guidelines:

There can be any number of "test-only" sandboxes operating concurrently. That is,
multiple users can use multiple sandboxes concurrently for testing if these
sandboxes will never be published. Sandboxes that are used for testing only, and
that are not published, cause no conflicts with each other. Be aware, however, that
all modifications will be lost when the sandboxes are destroyed.

Note: Even though sandboxes that are for "test-only" cause no
conflicts with each other because they are not published, multiple
users who work in the same "test-only" sandbox still need to follow
the guidelines in Section 2.2.1.1, "Guidelines for One Sandbox,
Multiple Users."

For sandboxes that are not for "test-only" and that will be published, you can have
multiple concurrent sandboxes only if they operate on mutually exclusive
artifacts. For example, you can have one sandbox that contains a page that is being
customized to add a task flow, and another sandbox that contains a different page
from a different application.

Understanding the Customization Development Lifecycle 2-9

Using the Sandbox Manager

Note: For CRM Application Composer, you should have only one
sandbox that is intended for publishing at a time. You cannot have
multiple concurrent sandboxes that are intended for publishing. You
can still have other sandboxes that are for "test-only."

= If an artifact is updated in both the mainline and in the sandbox (or two different
sandboxes), when the sandbox is published, such conflicts are detected and an
error is raised. At this point, administrators should cancel the publishing of the
sandbox to avoid overwriting previous changes.

Note: For a sandbox that contains ADF Business Components
customizations, you should log out and log back in again after
switching in or out of this sandbox to avoid any inconsistencies
between the runtime caches and the ADF Business Components
definitions.

2.2.2 Setting Up Sandboxes

When you create a sandbox, the currently available metadata is gathered into a
sandbox session. You designate a sandbox to be the active sandbox by choosing either
the newly created sandbox or select from a list of existing sandboxes in a table. The
active sandbox is the context for all changes. Once activated, you can make
customization changes to the application artifacts and these changes will be stored in
the sandbox. The sandbox uses a database to store the actual change information. After
you are satisfied with the changes, you can publish the sandbox, or deploy the
flexfield, and the changes will be merged into the mainline and the sandbox archived.

To set up a sandbox:
1. Access the sandbox manager.

For non-flexfield sandboxes, you can access the sandbox manager by selecting the
Manage Sandboxes menu item from the Administration menu in the global area
of Oracle Fusion Applications.

Figure 2-5 shows the Manage Sandboxes menu selection from the Administration
dropdown.

Figure 2-5 Accessing the Sandbox Manager

Accessibility Personalization « m Help = Sign Qut APPLICATION_IMPLEMENTATION,

Customize Setup and Maintenance Pages...
_ Customization Manager... _

Manage Sandboxes..,

Setup and I'v]aintenal%. "

For flexfields, you need to be in the flexfield UI and then select the Deploy
Flexfield to Sandbox menu item to deploy the customizations to a flexfield
sandbox. Flexfield changes are stored in flexfield metadata in the mainline
database and are only available to users when the flexfield is deployed, as
described in Section 5.6, "Deploying Flexfield Configurations." Thus for flexfields,
the remaining tasks in this procedure do not apply.

2. Inthe Manage Sandboxes dialog, you can create a new sandbox, select from a list
of sandboxes in the Available Sandboxes page, import a sandbox as a file, or

2-10 Extensibility Guide

Using the Sandbox Manager

perform other sandbox functions. Figure 2-6 shows a Manage Sandbox dialog

with one available sandbox.

Figure 2-6 Manage Sandboxes Dialog

Manage Sandboxes B
Available Sandboxes view Published Sandboxes Import
Actions = View v b4 Set as Active | Publish | d‘ Detach
|Sandb0x |Descripﬁ0n | Active | Data Security | Flexfield 2 |Last Modified |Last Modified By
L= ApplCoreLongSE_TestSandbaox L4 % 11311 sandbox creator
|

3. Create a new sandbox by clicking the New icon or selecting Actions > New.

4. In the Create Sandbox dialog, enter a name for the sandbox. If you want a

security-enabled sandbox, select Create Data Security Sandbox and click Save

and Close. Figure 2-7 shows the dialog with security enabled.

Note: Because setting up the security sandbox requires duplicating
the schema for Oracle Fusion Data Security tables, this will always be
a lengthy operation in CRM Application Composer. Be sure to allow
sufficient time for the process to complete and do not to terminate it
early. You may want to defer customizing security and enabling the
security sandbox until you are sure that you need to make
customizations.

Figure 2-7 Create Sandbox Dialog

Create Sandbox B

* Sandbox Mame ApplCorelongSB_ | Test2Sandbox

Description

Create Data Security Sandbox

Save and Close | Cancel |

You will see a confirmation dialog when the sandbox has been successfully
created. Click OK to dismiss the dialog.

5. Set the active sandbox. You can make the newly created sandbox or an existing

sandbox the active sandbox.

In the Manage Sandboxes dialog, in the Available Sandboxes page, select the

Close | |

sandbox you want to make active and click Set as Active as shown in Figure 2-8.

Understanding the Customization Development Lifecycle 2-11

Using the Sandbox Manager

Figure 2-8 Manage Sandboxes Dialog

Manage Sandboxes

Available Sandboxes |view Published Sandboxes Q Impart
Actions v View v b4 Set as Active | Publish | & Detach
|Sandb0x |Descriph’0n | Active | Data Security | Flexfield 2 |Last Modified |Last Modified By
> ApplCorelongSE_Test2Sand... W o b 1f13/11 sandbox creator
L= ApplCorelLongSE_TestSandbox o b 11311 sandbox creator

Only one sandbox can be active at one time. The customization changes are
captured in the active sandbox.

Export a sandbox.

A sandbox can be exported as a file for transporting, sharing, and other usages
where packaging it as a file is required. Consequently, a sandbox exported as a file
can be imported.

In the Sandbox Details dialog, click Download All. Enter the location and file
name for the exported sandbox.

Import a sandbox.
In the Manage Sandboxes dialog, click Import.

In the Import dialog, click Browse to navigate to the file or enter the fully qualified
file name.

Exit the sandbox.

Mouse over the sandbox name next to the Session Sandbox label in the global
area of the Oracle Fusion Applications to launch a popup dialog. Click Exit
Sandbox.

Figure 2-9 Sandbox Popup Dialog

Session Sandbox: ApplCorelonnSB dochox Accessibility Personalization = Administration -

Sandbox MName ApplCDrn%:vngSB_chth
Description
Last Modified 2/28/11

Last Modified By sandbox creator

Data Security Enabled |

More Details Exit Sandbox

In the Exit Sandbox dialog, click Yes.

2-12 Extensibility Guide

Close | |

Using the Sandbox Manager

Figure 2-10 Exit Sandbox Dialog

Exit Sandboax L)

You have requested to exit out of
sandbox ApplCoreLlongSB_docbhosx . Doing so wil
return you to a sandbox free session. |

Da you want to continue ? |

2.2.3 Publishing Sandboxes

If there are changes to the mainline from another source and you publish your
sandbox, the mainline is not overwritten. If there are conflicts, you will be warned and
will be given a choice to fix the conflicts.

To publish a sandbox:

1. Make the customization changes to the application by going to the various
customization environments. For example, you can create new objects and
customize the objects in CRM Application Composer.

You can make metadata changes in the sandbox. Metadata changes are normally
associated with MDS. These include making changes to a page, to ADF
customization, and to ADF business objects. For more information about making
changes to the page, see Chapter 3, "Customizing Existing Pages." For more
information about making changes to business objects, see Chapter 4,
"Customizing Objects."

You can make security changes by applying them to a security-enabled sandbox.
You can test your security changes and policies before you publish the sandbox to
commit the changes. For more information about customizing security policies,
see Section 9.2, "Defining Security Policies for Custom Business Objects." For more
information about custom business objects, see Chapter 15, "Customizing Security
for ADF Application Artifacts."

2. Test or validate the changes in runtime using test or production systems and any
combination of validation setups.

In the Manage Sandboxes dialog, click on the sandbox link to launch the Sandbox
Details dialog. You can view the layers and objects where you have made
customization changes, as shown in Figure 2-11.

Understanding the Customization Development Lifecycle 2-13

Using Customization Manager to Manage Runtime Customizations

Figure 2-11 Sandbox Details Dialog

Sandbox Details

Mame ApplCorelongSE_TestSandbox
Created By APPLICATION_ADMINISTRATOR
Creation Date 1/12/11
Creation Label Creation_ApplCoreLongSE_TestSandbox_07:12: 17

Description
Last Modified By sandbox creator
Last Modified Date 1/13f11

Change Detail: ApplCoreLongSB_TestSandbox
MDS Data Security

Actions = View = | 38 | HfiDetach = = 12 | Layer Names Layer Values |=#| | status B
Files

T 4l =
File: o |Laver Yalues | Al pate
b D,cracle,lap_:;,lI‘Wd.'aDD'CJ'E.I'J'cI'-Ie:,l'prcf":eEe"’i:e,lrrcs_l’Pr:vie\"C'.v.Tl undate
=5 E,Hﬁcir‘r‘]ﬂefpnrr..ac.ﬂq (JsFf dkte o

v [E]Reciorafier jsff

site <ITE 7]
ApplooreCasmal vt +
Applcoregagnal waLE +

=2 El,chicrES:.'\iccl'\lctfi::.i:I"'
' El,l—eglcr':f_'a:eLlst.;s"f

Apploar=tlarge WL *
Apploorsasmall WALZ +
site SITE @

Publish ﬂ Close J
3. Publish the sandbox to the mainline.

After you are satisfied with the changes, select the sandbox and click Publish in

the Manage Sandbox dialog or in the Sandbox Detail dialog to commit the changes
to the mainline.

2.3 Using Customization Manager to Manage Runtime Customizations

When you have the correct privileges, you can use Customization Manager to view
and diagnose customizations made for any page in an application. You can also use
Customization Manager to move customizations to another environment, for example
from one test environment to another.

Tip: For more information about privileges, contact your security
administrator.

2.3.1 Before You Begin Using Customization Manager

You need to do the following before you can use Customization Manager:

= You need to have specific privileges to access Customization Manager. Please
contact your security administrator for details.

s To access Customization Manager, from Administration menu in the global area
of Oracle Fusion Applications, choose Customization Manager

2.3.2 Viewing Customizations Using Customization Manager

Figure 2-12 shows Customization Manager with all artifacts related to the
CustomerCtrWorkarea. jspx file.

2-14 Extensibility Guide

Using Customization Manager to Manage Runtime Customizations

Figure 2-12 Customization Manager

I@ Customization Manager

Search foradafappsfcustomarcanberﬁnfrasj Eﬂ

Current Context All Layers

Name Layer Name | Site [=] Layer Name | External Or Internal [+

w7 [E Jorade fapps/customerCenter finfrastructure360 /i fpage /Customer CtriWorkarea.jsp
> [P Tasks
7 [Goverview

[,furadEfappsfcustomerCenberﬂnfrastrucmra36Dfu\fpageEmHmPgOvarwaw\ Page: Download Upload

Delete

1 [Create Contact

1~ [@ Create Customer

m

1 [F Create Consumer

1> [[@Manage Contacts

1 [F Manage References

1 [Import Customers

1 [Quick Create

1> [@search

1~ [Customer Center

1> [E] urshel Page Template [?;\:;nal Page: Donrload Upload

1~ [@Recent Items Flow

4 m L3
Download Customizations for All Layers
Close

As shown, there has been a customization made to a page fragment file in the Site
customization layer, and a customization made to the UIShell Page Template in the
external layer. The customizations in the Current Context column show the
customizations that the currently logged in user would see in a running version of the
application. All customizations, including those the currently logged in user might not
see (perhaps because of security policies), are listed in the All Layers column.

For example, say you are a customization developer. Because you as a user have been
assigned a particular role, the page that you see will only display customizations
appropriate for your role. Those customizations will be listed in the Current Context
column (provided you chose the proper layer from the Layer Name dropdown menu).
This helps you to determine what customizations are affecting what you are seeing.
There may, however, be customizations you do not see. You can view those
customizations from the All Layers column.

To view customizations:
1. Navigate to the page you wish to view customizations for.

2. From Administration menu in the global area of Oracle Fusion Applications,
choose Customization Manager.

Tip: Once you are in Customization Manager window, you can
change the page for which you are viewing customizations using the
Search field.

3. Change the layer values for the Current Context and All Layers columns as
needed. For more information about customization layers, see Section 1.2,
"Understanding Customization Layers."

The Current Context column shows customizations affecting the page as the
currently logged in user sees it. The All Layers column shows all customizations.

Understanding the Customization Development Lifecycle 2-15

Using Customization Manager to Manage Runtime Customizations

2.3.3 Downloading and Uploading Customization Files

As explained in Section 1.2, "Understanding Customization Layers," customizations
are stored in an XML file. You can download the XML file for a customization to your
local machine. You may need to do this for the following reasons:

= You need to diagnose issues seen in the test environment.
= You need to send files to Oracle Support for further diagnosing.

= You want to import a customization into another environment. For example, a
customization developer using JDeveloper may need to see customizations done
by someone else.

= Youneed to migrate a customization into a production environment.

Once you download customizations, you may then need to upload the revised files
back into the environment. Or you may need to upload customization files into a new
environment using Customization Manager.

Tip: Customization Manager allows you to upload and download
customization files for a given page at a time. If you need to upload or
download customization files for multiple pages, then you can use
WebLogic scripting tool commands or Fusion Middleware Control.
For more information, see Section 10.2.4, "Importing Customizations
into Your Workspace."

To download and upload customizations:
1. Navigate to the page for which you wish to download or upload customizations.

2. From Administration menu in the global area of Oracle Fusion Applications,
choose Customization Manager.

Tip: Once you are in the Customization Manager window, you can
change the page for which you are viewing customizations using the
Search field.

3. To download a file, click the Download link for the corresponding customization.
The file will be downloaded to your local machine.

4. To upload a file, click the Upload link for the corresponding customization. In the
Upload Customization dialog, click Choose File and navigate to and select the
appropriate file. Click OK to upload the file.

Note: The name of the file you upload must be the same as the name
of the file you are replacing.

5. To download all customizations of the page for all layers, click the Download
Customizations for All Layers link, located at the bottom of the window. This will
download the Al1Customization. zip file, which contains all the
customization XML files for the page.

2.3.4 Promoting a Customization to the Tip

When you save a customization in Oracle Composer, you can choose to save it to a
label. You can think of a label as a "save point," that is, a point at which you know the
customization works as expected. By having a label, if an issue occurs after the label,
you can revert back to that label. To revert back to a label, you promote it to the tip.

2-16 Extensibility Guide

Using Customization Manager to Manage Runtime Customizations

Note: You can only promote customizations done in Oracle
Composer. Customizations done in a sandbox are automatically
labeled when the sandbox is published. For more information about
using Oracle Composer, see Chapter 3, "Customizing Existing Pages."
For more information about sandboxes, see Section 2.2, "Using the
Sandbox Manager."

To promote a customization to the tip:
1. Navigate to the page you wish to view customizations for.

2. From Administration menu in the global area of Oracle Fusion Applications,
choose Customize page_name Pages to open the page in Oracle Composer.

3. In the tool bar, click Customizations Manager.

4. To promote a customization to the tip, click Promote for the corresponding
artifact.

5. In the Promote Documents dialog, select the label that you want to promote to the
tip and click OK.

Understanding the Customization Development Lifecycle 2-17

Using Customization Manager to Manage Runtime Customizations

2-18 Extensibility Guide

Part li

Business User Customizations and
Extensions

Part II contains the following chapters:

s Chapter 3, "Customizing Existing Pages"

» Chapter 4, "Customizing Objects"

» Chapter 5, "Using Flexfields for Custom Attributes"

» Chapter 6, "Customizing the Navigator Menu"

» Chapter 7, "Customizing and Extending BPMN Processes"
n Chapter 8, "Customizing Reports and Analytics"

» Chapter 9, "Customizing Security for Custom Business Objects"

3

Customizing Existing Pages

This chapter describes how administrative users can customize pages in Oracle Fusion
applications at runtime using Oracle Composer.

This chapter includes the following sections:

= Section 3.1, "About Customizing Existing Pages"

= Section 3.2, "Editing a Page in Oracle Composer"

= Section 3.3, "Editing Component Properties in Oracle Composer"

= Section 3.4, "Editing the UI Shell Template Used by All Pages"

= Section 3.5, "Editing Pages in Oracle JDeveloper After Using Oracle Composer"

3.1 About Customizing Existing Pages

The pages in Oracle Fusion applications provide content and functionality to users
that enable them to complete their tasks (for example, learning about a product or
service, keeping up with sales data, or submitting an order) as easily and efficiently as
possible. Because different users have different needs, Oracle Fusion Applications
enables you to customize pages to fit those needs using Oracle Composer. End users
can use Oracle Composer to personalize pages (for example, reorganize content in
dashboards to place the content they use most frequently at the top of the page).
Administrative users can use Oracle Composer to customize pages in any layer of the
application or to customize the Ul shell template used by CRM applications (for
example, to add a logo or contact information to the header and footer of the page).

3.1.1 What You Can Do with Pages at Runtime

Business users can perform the following tasks in a runtime environment with Oracle
Composer:

= Change a page layout

= Add task flows, portlets, documents, layout components, and other objects to a
page

= Provide values for the properties associated with pages and the objects they
contain

Customizing Existing Pages 3-1

About Customizing Existin

g Pages

Note: Flexfields exist for many pages in Oracle Fusion applications.
Flexfields allow you to add custom attributes to a page. However, you
do not use Oracle Composer to configure flexfields. For more
information using flexfields, see Chapter 5, "Using Flexfields for
Custom Attributes.".

Wire pages, task flows, and portlets to each other

3.1.2 What You Cannot Do with Pages at Runtime

Business users cannot perform the following tasks in a runtime environment with
Oracle Composer:

3-2 Extensibility Guide

Making a page personalizable

To make a page editable by end users, a developer must use Oracle JDeveloper to
enable personalization. For more information, see Section 17.2, "Allowing Pages to
be Personalized by End Users in Oracle Composer."

Editing user interface text that is part of a skin

To edit user interface text that is part of a skin, a developer must use JDeveloper to
change the resource bundle used by the skin. For more information, see “How to
Apply Skins to Text” in Oracle Fusion Middleware Web User Interface Developer’s
Guide for Oracle Application Development Framework.

Editing text that is part of the embedded help on the page

To edit text that is part of the embedded help on a page, a developer must use
JDeveloper. For more information, see Section 18.4, "Customizing or Adding Static
Instructions, In-field Notes, and Terminology Definitions."

Changing ADF taskflows

To edit ADF taskflows, a developer must use JDeveloper. For more information,
see Chapter 11, "Customizing and Extending ADF Application Artifacts."

Changing ADF Business Components objects

To edit the ADF Business Components objects (for example, to add validation to
an ADF Business Components object), a developer must use JDeveloper. For more
information, see Chapter 11, "Customizing and Extending ADF

Application Artifacts."

Changing the Ul shell template in a non-CRM application

For applications other than CRM, a developer must use JDeveloper to modify the
UI shell template. For more information, see Section 11.9, "Editing the UI Shell
Template."

Changing CRM administrative pages (such as Set Up and Look Up Management)
To edit the CRM administrative pages, a developer must use JDeveloper.
Adding a custom attribute to a page using the flexfield feature

If a flexfield exists on a page, you must use the appropriate manage flexfield task
to add the custom attributes to the page before you can work with them in Oracle
Composer. For more information, see Chapter 5, "Using Flexfields for Custom
Attributes."

About Customizing Existing Pages

Changing mobile web pages (pages built using Trinidad components for mobile
clients)

To edit mobile web pages, a developer must use JDeveloper. For more
information, see Section 11.4, "Editing Pages."

3.1.3 Before You Begin Customizing Existing Pages

Before you implement customizations in applications, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with runtime customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin customizing existing pages:

Confirm the page is customizable.

You can only customize pages if a developer has enabled customization for the
page.
Optionally, set up a sandbox.

Oracle Composer can use sandboxes to manage your customizations. For more
information, see Section 2.2, "Using the Sandbox Manager."

Access Oracle Composer.

— To access Oracle Composer, navigate to the page you want to edit, then, from
the Administration menu in the global area of Oracle Fusion Applications,
choose Customize page_name Pages.

- To customize existing pages, you will need the correct privileges. Contact your
security administrator for details.

If you have more than one layer available for customization, when you launch
Oracle Composer, the IDE displays the Layer Picker dialog (Figure 3-1), which
you use to specify the layer that you want to edit and its customization context.
The layer that is selected in the Edit column is the layer you want to edit. The
layers that are selected in the Include column will inherit any changes you make
to the layer you edit.

Customizing Existing Pages 3-3

Editing a Page in Oracle Composer

Figure 3—1 Layer Picker Dialog

Customize Pages B |

Select the laver you want to edit, Specify a value For the edit laver and any higher layver that is relevant
ko wour barget users, Cusktomizations From the included higher lavers are inherited when you customize,

| Edit |Layver |value Inchude | |
O Site '
® External Or Inkernal | Inkernal A '
O Job Role

(a] Zancel

For more information on customization layers, including selecting a layer and
customization context, see Section 1.2, "Understanding Customization Layers."

3.2 Editing a Page in Oracle Composer

This section provides an overview of the editing modes in Oracle Composer and
describes how to perform basic editorial tasks, such as editing page components,
changing the layout of the page, and the like.

Oracle Composer provides two views for working with page content:

» Design view provides a WYSIWYG rendering of the page and its content, where
controls are directly selectable on each component. Design view enables
administrators to:

- Change page layout
- Hide/show or move regions on a page
- Edit region properties

- Add content (such as task flows or components available through the resource
catalog) to the page

= Source view provides a combined WYSIWYG and hierarchical rendering of page
components, where controls are available on the header of the hierarchical list.
Source view enables advanced users (such as developers or users with knowledge
of ADF artifacts, JavaScript, and Expression Language (EL)) to:

- Hide/show components
- Move components using cut and paste

- Edit properties of components that are not otherwise selectable in Design view
(For example, many ADF Faces components can be edited only in Source
view.)

3-4 Extensibility Guide

Editing a Page in Oracle Composer

- Edit components within a task flow

For more information, see the section “Introducing Design View and Source View” in
Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

Task: Add Components to a Page

You can add page components in Design view or in Source view (where Ul widgets
are available). In Design view, you place content using controls directly on the
containing layout component. In Source view, you select the containing layout
component and use the same set of controls in every case. You add components by
selecting from the Resource Catalog, which provides access to a wide range of task
flows, portlets, layout components, and other types of resources. For more information
on adding components to a page, see the “Adding a Component to a Page” section in
Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

Note: If you want to display custom attributes, you may be able to
use a flexfield that has been defined for the page. Flexfields are
available for many pages in Oracle Fusion Applications, except for the
CRM applications. For more information, see Chapter 5, "Using
Flexfields for Custom Attributes."

Task: Show and Hide Components on a Page

You can control whether to show or hide a component on a page. For example, you
have a list of checkboxes, and if a user selects checkbox B, you want a button to
display. You could set the Show Component property on the button to be an EL
expression that says #{if checkboxB.selected = true}, meaning that if the selected value
of checkbox B is “selected” then display the button.

There are two ways to hide a component: by changing the properties of the component
or by changing the properties of the component’s container (such as a Box layout
component). The first method is useful if you want to hide one or more components
within a container, but want the container to show. The second method is useful if you
want to hide a container and all its components.

The components within a container, for example, components in a Box layout
component, are referred to as child components. You can hide the container and all its
child components by changing the Display Option properties of the container. For
more information, see the “Working with Component Display Options” section in
Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces

You can hide individual child components by changing the Child Components
properties of the container. For more information, see the “Hiding and Showing Child
Components” section in Oracle Fusion Middleware User’s Guide for Oracle WebCenter
Spaces.

Task: Move Components on a Page

You move components on a page by cutting and pasting them in Source View,
dragging and dropping them in Source or Design View, or, for components within a
container (such as a Box layout component), by rearranging them on the Child
Components tab in the Component Properties dialog for the container. You can move
components on a page-by-page basis by editing the child component properties for a
flexfield. For more information, see the “Rearranging Child Components” section in
Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

Customizing Existing Pages 3-5

Editing a Page in Oracle Composer

Task: Delete Components from a Page

WARNING: You should only delete a component if you are positive
that no other components or processes are dependent on the
component you delete. We strongly suggest you instead hide a
component if you are unsure.

If you are sure no other components or processes are dependent on a component, you
can delete the component from a page by clicking the Delete icon in the component
header.

Note: Some components might not be able to be deleted, such as
mandatory or indexed fields or components that are installed as part
of the Oracle Fusion Applications.

Furthermore, if you delete a layout component, such as a Box, all of the component's
children—that is, anything contained in the component—are also deleted. For
example, if you delete a Box that contains multiple task flows, the Box and all of the
task flow instances it contains are deleted. For more information, see the “Deleting
Layout Components” section in Oracle Fusion Middleware User’s Guide for Oracle
WebCenter Spaces.

Task: Change the Layout of a Page

Page layout is defined by the number, placement, and orientation of content regions
on a page. A page's initial layout style is selected when the page is created. Some style
selections can be switched, even after you have added content to the page. Other style
selections, notably the Blog and Web Page page styles, do not support mid-stream
layout changes. For more information, see the “Changing Everyone’s Page Layout”
section in Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

Task: Customize a Tasklist Menu

Task lists enable you to provide links to task flows in your application or Web pages
outside your application. For example, you can add links to frequently used task
flows, so that users can quickly perform the most common tasks.

Note: Task lists can be customized only at the site level.

1. If Source view is not already displayed, switch to Source view. From the View
menu, select Source.

2. In the Design region (at the bottom of the page), click the task list as shown in
Figure 3-2.

3-6 Extensibility Guide

Editing a Page in Oracle Composer

Figure 3-2 Selecting a Task List in the Design Region

Tasks
« Import F¥ners

Manage Partner Center Tree

1

¥

3. When asked to confirm that you want to edit the task flow, click Edit.

4. In the Source region, click Edit Task Flow next to the task list you want to edit as
shown in Figure 3-3.

Figure 3-3 Opening the Task Flow Editor

W ¥ region [Close]
W < panelfccordion: RAac
W L% showDetailltem: Tasks
W 4% panelGroupLayout: scroll

€ region [Edit Tazk Flow]
W ¥ showDetaillkem: Partne@enter
5. Again, when asked to confirm that you want to edit the task flow, click Edit.

6. In the Source region, right-click the panelFormLayout node, and select Edit as
shown in Figure 3—4.

Figure 3—-4 Editing the panelFormLayout Node

add Conkent Edit Delete Cut [Pa
T+ 57 b4 36 L]

T W ¥ region [Close]
W 4% panelGroupLayout: scroll

7 <3 panelList =7 Edit
¥ commandLink: 3& pel

£ commandLink: Tre]

Hide Component
<% popup

Zollapse

Expand all Below

Collapse All Below

Show as Top

[Y SO Y E [T S R -y ..__J

The Component Properties dialog for panelFormLayout is displayed.

7. Click the Tasks List Task Properties tab, as shown in Figure 3-5.

Customizing Existing Pages 3-7

Editing a Page in Oracle Composer

Figure 3-5 Component Properties — Tasks List Task Properties Tasklist

@ Component Properties: panelFormLayout B
« Tasks ListTask Properties (T T.
Main Menu
view> = 2 2 R W o 0o
[= Partners
Apply | QK | Cancel |

8. Expand the tree to display the current items in the tasklist, as shown in Figure 3-6.

3-8 Extensibility Guide

Editing a Page in Oracle Composer

Figure 3-6 Component Properties — Tasks List Task Properties Tasklist Items

@ Component Properties: panelFormLayout B

« rass st Task roperties QT

Main Menu

View ~ TEEE /SRR

Tasks
Import Partners

Manage Partner Center Tres
Pariner Center
Pariner Center

[E —

ﬁpplv|0l(|{hncel.|

9. Highlight an item in the tree hierarchy and customize the tasklist by inserting a
new item above, inserting a new item below, inserting a child item, or editing the
current item by clicking the required icon located above the tree hierarchy, as
shown in Figure 3-7.

Customizing Existing Pages 3-9

Editing a Page in Oracle Composer

Figure 3-7 Component Properties — Tasks List Task Properties Toolbar

@ Component Properties: panelFormLayout B

Tasks List Properties Tasks List Task Properties m

Main Menu

R # og 0o

il
i
piii
Y

Import Partners

Manage Partner Center Tres
Partner Center

Partner Center

D e

Apply | QK | Cancel |

— M

10. Enter or edit the following values:

3-10 Extensibility Guide

Web Application: Use the drop-down list to select the target web application.

This list contains web applications that are defined in the deployments tables.

Caution: If you enter a value for Web Application then you must
enter a value for Focus View Id.

Focus View Id: Enter the focusViewId of the target page. For example,
/ServiceRequest.

Caution: If you enter values for Web Application and Focus View
Id, do not enter a value for Destination and vice versa.

Action: Enter the action that is taken when this item is selected by the user.

Pages with actions are defined in the adfc-config.xml file, and these
actions can navigate the user to a particular page. If you specify an action here,
the Web Application and Focus View Id values are ignored. This Action
attribute is used in an ADF Controller navigation.

Label: Enter the label name for this new item. This is the name that appears on
the tasklist menu. This label name also appears on the Task tab when opened
if the page's isDynamicTabNavigation="true".

Rendered: Select to display the item in the tasklist. Uncheck to hide the item.

Editing a Page in Oracle Composer

Note: When unchecked, the item is displayed in italics on the
customization dialog. This allows you to identify items that are
currently hidden from users.

s Destination: Enter the full URL for this item, such as http://www.example.com.

The Destination attribute is used for navigation outside of the Oracle Fusion
Middleware UI Shell pages. It opens in a new window.

Note: Destination takes precedence over any specified Web
Application

» Task Type: Choose the required task type for newly created items. Use the
drop-down menu to select dynamicMain, defaultMain,
defaultRegional, or taskCategory.

Caution: The task type can be specified by the administrator for the
newly inserted item nodes only. It cannot be updated for an existing
item node.

Figure 3-8 lists the properties that are applicable based on the task type of the
currently edited item node.

Figure 3-8 Tasks List Task Properties — Task Types

Task type dynamicMain Task type defaultMain
Tool Tip value Create Expression taskFlowld value
taskFlowld value disclosed False [
Reuse Instance True v Reuse Instance (True [l
Parameters Map value Create Expression Farameters Map value Create Expression
Parameters List value Create Expression Parameters List value Create Expression
Force Refresh False K] Key List value Create Expression
Load Popup False |»| Contextual Area Width value Create Expression
Key List value Create Expression Contextual Area Collapsed False =l
Load Dependent Flow False]
Navigate View Id value Create Expression Task type defaultReglonal
Contextual Area Width (value Create Expression Inflexible Height. value Create Expression
Contextual Area Collapsed False ~ taskFlowld |value
File Path value Create Expression disclosed [Faise ~
e Reuse Instance True [
Farameters Map value Create Expression
Parameters List value Create Expression
Key List value Create Expression

Task type taskCategory
taskFlowld value
dischosed False

|<

11. Click Apply to save your changes, then click OK to save your changes and close
the Component Properties dialog.

Task: Customize Attributes for a Flexfield on a Page

After you deploy an extensible or descriptive flexfield, you can use Oracle Composer
to further control the custom attribute properties on a page-by-page basis. For
example, you can hide some custom attributes or reorder how they appear on the

page.

Customizing Existing Pages 3-11

Editing Component Properties in Oracle Composer

Note: For information on flexfields, see Chapter 5, "Using Flexfields
for Custom Attributes."

To customize flexfield values, edit the page in Source mode. In Source mode, navigate
through the tree and expand the flexfield component (for example
descriptiveFlexfield) to see the custom attributes. Click the flexfield component
to display the Component Properties dialog box, where you can edit the values for the
attributes.

Task: Customize Popup Content
You can use Oracle Composer to customize the content in pop-ups.

1. If Source view is not already displayed, switch to Source view. From the View
menu, select Source.

Select the button that brings up the popup.

Open the properties for the popup.

Click the Child Components tab in the Component Properties dialog.
Edit the popup content.

o g & 0 b

Click Apply to save your changes, then click OK to save your changes and close
the Component Properties dialog.

3.3 Editing Component Properties in Oracle Composer

Components, such as task flows, portlets, documents, and layout components, carry
with them a set of configurable properties that control the appearance and behavior of
a particular component instance. For more information, see the “Setting Properties on
Page Components” section in Oracle Fusion Middleware User’s Guide for Oracle
WebCenter Spaces.

Task: Edit Component Header and Other Display Options

Typically, the Display Options tab presents settings that affect the display elements
surrounding component content (that is, its chrome). Chrome includes the header, the
Actions menu, Expand and Collapse icons, and the like. For example, use the display
options on a task flow to hide or show a header, change the text in the header, enable
or disable menus, show a tooltip for the component, and other options. Use the
display options on an Image layout component to specify the image source URL and
its optional link target. For more information, see the “Working with Component
Display Options” section in Oracle Fusion Middleware User's Guide for Oracle WebCenter
Spaces.

Task: Edit Component and Content Style

Style and Content Style properties provide an opportunity to fine-tune your
application look-and-feel at the component level. You can specify color, style, and
margin settings on the selected component instance. For more information, see the
“Working with Style and Content Style Properties” section in Oracle Fusion Middleware
User’s Guide for Oracle WebCenter Spaces.

Task: Edit Component Parameters

Component parameters are settings, unique to the component type, that can control
such things as the source of the component's content. Component parameters vary

3-12 Extensibility Guide

Editing the Ul Shell Template Used by All Pages

from component to component. For example, on some components they provide the
opportunity to specify the source of task flow content; on other components they
present read-only, application-generated identifiers that are used in maintaining a task
flow instance's association with its customizations. For more information, see the
“Working with Component Parameters” section in Oracle Fusion Middleware User's
Guide for Oracle WebCenter Spaces.

Task: Reset a Page or Task Flow to a Previously Saved Version

Oracle Composer provides controls for resetting a page or task flow to a
previously-saved version or to its original out-of-the-box state.

The Reset Page button is available on the page in both Design view and Source view.
For more information, see the “Reset Page” section in Oracle Fusion Middleware
Developer’s Guide for Oracle WebCenter.

The Reset Task Flow button on the Source view toolbar is rendered only when editing
a task flow. For more information, see the “Reset Task Flow” section in Oracle Fusion
Middleware Developer’s Guide for Oracle WebCenter.

Task: Allow Certain Component Property Values to be Persisted Across
Sessions

Certain attribute values of ADF Faces components can be persisted for end users. For
example, on the column component, an end user can change the width of a column,
and that width will still be in effect when the user logs back into the application. For
information about which component properties can be persisted, see the “Introduction
to Allowing User Customizations” section of Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

To make a property persistable, list that property as a value for the persist parameter,
using the procedures in the “Working with Style and Content Style Properties” section
of Oracle Fusion Middleware User’s Guide for Oracle WebCenter Spaces.

For more information about user personalization of components, see Section 17.3,
"Configuring End User Personalization for Components."

3.4 Editing the Ul Shell Template Used by All Pages

If you are customizing a CRM application, you can use Oracle Composer to edit the UI
Shell template used by all Oracle Fusion applications. Otherwise you need to use
JDeveloper. For more information, see Section 11.9, "Editing the UI Shell Template."

You edit the UI Shell template in source mode. The only customizable parts are in the
global area (as shown in Figure 3-9) and a footer panel. Components can be added to
any of these areas using the task flow.

Figure 3-9 Ul Shell Template — Global Area

ORACLE" Fusion Applications Persomalizaton ¥ Adminktration Help ™ SgnOut OPERATIONS

Task: Customize the Ul Shell Template
1. Launch the UlShell Template task flow, as shown in Figure 3-10.

Customizing Existing Pages 3-13

Editing the Ul Shell Template Used by All Pages

Figure 3—-10 Edit UIShell Template

Editing: TemplatsCustomizationUIShell Edit Layer: UsercC

view » | T§: Customization Managst

op Add Content BP Ecit $@ Dekte M cut Tyron o

Customize UIShell Template > ayout > playout: vertical > ayout = ayout: horizontal > outputText: Fusion Applications
ORACLE" Fusion Applications Fersonalization * Administration ™ Help * Sign Oul OPERATIONS

Home Navigalor Recentlitems » Favorites . Tags Waichlst. Group Spaces

TemplateCustomizationUIShell

T
4 Change Layout

2. Add or edit components to the left or central portion of the global area (the header
area that contains the logo). For example, you can brand your application with
your company logo.

You can also add a new component to the footer panel. For example, you can add
company contact information. The footer panel is visible in edit mode even if no
footer component has been added.

Note: If you need to do further customization, you can do with
JDeveloper.

Task: Add a Component to the Global Area or the Footer

1. Select the portion of the global area to which you want to add a component, or
select the footer, and click Add Content to open the component catalog.

2. Select ADF Faces Components to display the list of available components, as
shown in Figure 3-11.

Figure 3-11 ADF Faces Components Catalog

[Eh catalog]
m | - |:| ADF Faces Components Search ﬂ m

Box o Add
A box in which content can flow vertically or horizontally .
HTML Markup dh Add
Raw HTML and JavaScript
Hyperlink dh Add
Link to a page or a Web site

. Image dp Acd
An image with £ hy perlink.

1 41 Movable Box o Add

1

I--lv-' A bow in which content can flow vertically or horizontally. It akso provides customization
options such as move, expand or collapse, and resize.
Text dp Add
Formatted text

E_j Web Page dp Add
Incluckes another Web page

3. Choose the component that you want to add and click the associated Add icon.

3-14 Extensibility Guide

Editing Pages in Oracle JDeveloper After Using Oracle Composer

The component is now displayed in the global area. You can now edit the
component. For example, if you added the Text component, you can enter the text
that you want displayed.

3.5 Editing Pages in Oracle JDeveloper After Using Oracle Composer

Using Oracle Composer, you can implement a variety of customizations on an
application’s pages. Pages that were created or customized in JDeveloper are further
customizable in Oracle Composer, and page customizations that were implemented in
Oracle Composer can be viewed in JDeveloper.

To see Oracle Composer customizations in JDeveloper, and potentially further
customize the pages, you will need to export the customizations from the runtime
environment and import them into the JDeveloper customization workspace. For more
information, see the “Viewing ADF Library Runtime Customizations from Exported
JARs” section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

It is important to note that you cannot customize a given artifact at the same layer in
both JDeveloper and Oracle Composer. You can, however, customize a given artifact
in both tools provided the customizations are made at different layers. At run time, the
tip layer customizations take precedence. For example, if you customize the label for a
field in the site layer using Oracle Composer and customize the same label in the
global layer using JDeveloper, the site layer customization will be displayed at run
time.

Customizing Existing Pages 3-15

Editing Pages in Oracle JDeveloper After Using Oracle Composer

3-16 Extensibility Guide

4

Customizing Objects

This chapter describes how to use CRM Application Composer to customize and
extend application artifacts in Oracle Fusion applications.

This chapter includes the following sections:

= Section 4.1, "About Customizing and Extending Your Fusion Application with
Objects"

= Section 4.2, "Editing Objects"

» Section 4.3, "Editing a Page in CRM Application Composer"
» Section 4.4, "Creating Custom Objects"

» Section 4.5, "Creating and Editing Search Objects"

» Section 4.6, "Editing Objects and Pages in Oracle JDeveloper After Using CRM
Application Composer"

4.1 About Customizing and Extending Your Fusion Application with

Objects

CRM Application Composer allows you to customize existing objects, attributes, and
rules and create new ones for the following CRM applications:

= Sales

= Marketing

s Customer Center

s Trading Community Architecture
s Order Capture

If you want to customize applications other than those listed here, then you will need
to use developer tools to create or change objects. For more information, see

Chapter 11, "Customizing and Extending ADF Application Artifacts." For more
information about the other types of object customizations that you cannot perform in
a runtime environment, see Section 4.1.2, "What You Cannot Customize in the Runtime
Environment."

Tip: If you want to customize objects in applications other than those
listed here, then you might be able to use flexfields. For more
information about flexfields, see Chapter 5, "Using Flexfields for
Custom Attributes."

Customizing Objects 4-1

About Customizing and Extending Your Fusion Application with Objects

4.1.1 What You Can Customize and Create in the Runtime Environment

CRM Application Composer allows you to create and customize objects for the Sales,
Marketing, Customer Center, Trading Community Architecture, and Order Capture
applications. Objects are high level artifacts that typically manage data that resides in a
corresponding database table.

Using CRM Application Composer, you can perform object customizations like the
following:

Edit existing objects.

For example, you can edit the object’s attributes or create custom attributes, add
server script, create validation rules, create object workflows, and add saved
searches.

Edit the searches over your objects or create new ones.
Create custom objects.

When using CRM Application Composer to create an object, you do not need to
create the corresponding table to store the data, the tool manages that for you.

Extend existing work areas or create new work areas.

You can edit pages for an existing object, or create pages for a custom object.

After you implement customizations on an object or create a custom object, you can
use other tools to do the following:

Add a custom object or a customized object to a report.
For more information, see Chapter 8, "Customizing Reports and Analytics."
Set security on custom objects.

For more information, see Chapter 9, "Customizing Security for Custom Business
Objects."

4.1.2 What You Cannot Customize in the Runtime Environment

While you can create objects using CRM Application Composer, the following are
more advanced use cases for which you will need to use development tools:

Customize or create an object contained in an application that is not Sales,
Marketing, Customer Center, Trading Community Architecture, or Order
Capture.

In those cases, you must use JDeveloper instead of CRM Application Composer to
implement customizations. For more information, see Chapter 11, "Customizing
and Extending ADF Application Artifacts."

Edit relationships between preconfigured objects.

You can use CRM Application Composer to create custom objects that are a child
object or related object of an existing object. However, you cannot modify the
relationships between preconfigured objects. To customize the relationships
between preconfigured objects, you must use JDeveloper. For more information,
see Chapter 11, "Customizing and Extending ADF Application Artifacts."

Create a new type of page for your new object. CRM Application Composer only
allows you to create a work area pages to expose the object in the application.

4-2 Extensibility Guide

Editing Objects

If you want to create a new type of page that does not fit the CRM Application
Composer design pattern, you must use JDeveloper. For more information, see
Chapter 11, "Customizing and Extending ADF Application Artifacts."

= Edit the Navigator menu.

To customize the navigator menu, you use the Manage Menu Customizations task
in the Setup and Maintenance work area. For more information, see Chapter 6,
"Customizing the Navigator Menu."

= Use managed beans to contain logic for a page.

For example, if you want to add logic in response to a component event, you need
to use JDeveloper. For more information, see the "Using a Managed Bean in a
Fusion Web Application" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

4.1.3 Before You Begin Customizing and Extending Your Oracle Fusion Application

with Objects

Before you customize or extend CRM applications using CRM Application Composer,
you should be familiar with the Oracle Fusion application architecture that enables
customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion
Applications." You should also understand the typical workflows for working with
runtime customizations and extensions, as described in Chapter 2, "Understanding the
Customization Development Lifecycle."

In addition, you will need to perform the following tasks before you can begin
customizing or extending objects:

= Optionally, set up a sandbox.

CRM Application Composer can use sandboxes to manage your customizations.
For more information, see Section 2.2, "Using the Sandbox Manager."

= Launch CRM Application Composer.

- You must have the necessary functional and data security privileges to access
CRM Application Composer. Contact your security administrator for details.

- You can enter the CRM Application Composer environment directly from the
application you want to customize. To launch CRM Application Composer,
log in as an administrator to the application you want to customize, and from
the Navigator menu, choose CRM Application Composer.

= Select the Application to Customize.

In addition to customizing the application you are logged in to, you can optionally
implement customizations in objects that are common to multiple applications. To
customize one of these common objects, select CRM Common from the
Application dropdown list.

4.2 Editing Objects

You can customize objects in a number of ways using CRM Application Composer.
Objects use metadata to store information about them, such as which attributes are
displayed and how they are labeled. When you modify an object using CRM
Application Composer, you are editing the object’s metadata. For more information
about how customizations are stored, see Chapter 1, "Customizing and Extending
Oracle Fusion Applications." Also, for an overview of extensibility in CRM

Customizing Objects 4-3

Editing Objects

Application Composer, see the "Extending CRM Applications: How It Works" section
in the Oracle Fusion Applications CRM Extensibility Guide.

Changes that you make to an object appear on the associated pages that display the
object, without requiring editing of the page. The only time you need to edit a page
after customizing a object is if you add or remove an attribute in the object and want to
add or remove that attribute on a page.

Before You Begin

If the object you want to edit is not displayed in the CRM Application Composer tree
when you select the application you want to customize, then you cannot use CRM
Application Composer. You will need to use JDeveloper, as described in Section 11.2,
"Editing Existing Business Components."

When you want to edit an existing object, expand that object in the Objects panel to
display the kinds of editors that are available for the object.

Task: Edit Attributes

You can change the properties of an attribute, such as changing the label or making it
required. In CRM Application Composer, open the object you want to customize and
use the Fields editor to make changes to the attribute. For more information, see the
"Editing Fields: Explained" section in the Oracle Fusion Applications CRM Extensibility
Guide.

For custom attributes, you can configure all properties pertaining to the field type and
the exposed properties in the taskflows. When you make changes to an existing
attribute, these changes are reflected in the pages that display the object.

For preconfigured attributes on standard objects and the system-generated attributes
on custom objects, the only properties you can configure in CRM Application
Composer are Display Label and Hint Text. For other changes to these kinds of
attributes, you will need to use JDeveloper, as described in Section 11.2, "Editing
Existing Business Components."

Task: Add Attributes

You can use CRM Application Composer to add a custom attribute to an object using
the Fields editor. Open the object you want to customize, and select Fields. For more
information, see the "Editing an Object: Explained" section in the Oracle Fusion
Applications CRM Extensibility Guide.

If you add an attribute and want that attribute to appear on a page, you will also need
to add it to the page. You can do this in CRM Application Composer using the Pages
editor. For more information, see Chapter 3, "Customizing Existing Pages."

Task: Add and Edit Business Rules

You can add validation rules, triggers, and object functions to an object in CRM
Application Composer using the Server Scripts editor. For example, you can add
snippets of Groovy script that are executed at specific points in the lifecycle (Create,
Modify, Remove, Beforelnsert, and so on). Open the object you want to customize, and
select Server Scripts. The Server Scripts editor contains an expression builder, which
helps you compose the script for your business rule. For more information, see the
"Groovy Scripting: Explained" section in the Oracle Fusion Applications CRM
Extensibility Guide.

4-4 Extensibility Guide

Editing a Page in CRM Application Composer

Task: Add Buttons and Links

You can use CRM Application Composer to create buttons and links for an object. This
can be accomplished from the Buttons and Links editor. Open the object you want to
customize, and select Buttons and Links. For more information, see the "Buttons and
Links: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.

Using CRM Application Composer, you define a button or link that can then be used
on a page for the object. If you add a button or link and want it to appear on a page,
you will also need to add it to the page. You can do this in CRM Application
Composer using the Pages editor. For more information, see Section 4.3, "Editing a
Page in CRM Application Composer."

Task: Edit the Web Service for the Object

You do not need to modify the web service for an object after adding or removing
attributes. The payload is managed for you by CRM Application Composer. However,
if you have client applications that use the service, you will need to regenerate the web
service proxy with the new WSDL to allow access to new attributes. For more
information, see the Oracle Fusion Applications CRM Extensibility Guide.

Task: Add Object Workflows

Object workflows connect changes in objects to subsequent actions, which allows you
to automate your commonly used business processes. You can use CRM Application
Composer to add an object workflow that conditionally responds to one of the
following record modification events for the object:

s When a record is created

s When a record is updated

s When a record is deleted

In response to these events, you can choose to take one of the following actions:
» Field Updates — update a field

= Email Notification — send an email

s Task Creation — create a task

s Outbound Message — post a message

= Business Process Flow — initiate a business process flow

To add an object workflow, open the appropriate object, select Object Workflows, and
click New. For more information, see the "Object Workflows: Explained" section in the
Oracle Fusion Applications CRM Extensibility Guide.

4.3 Editing a Page in CRM Application Composer

When you make changes to an object in CRM Application Composer, some kinds of
changes are automatically reflected on the pages for an object. For example, a change
to the label text for an attribute does not require you to edit the corresponding page.
However, for the kinds of changes described in this section (for example, adding
components and reordering fields), you will need to edit the pages that contain the
object, in order for the change to appear.

The Pages editor in CRM Application Composer allows you to create and edit the
three types of pages that are associated with an object.

= landing page

Customizing Objects 4-5

Editing a Page in CRM Application Composer

= creation page
s detail page

At runtime, these pages are displayed in the work area of the application. Each of
these pages has specific, preconfigured behaviors that are commonly associated with
the use of an object. For more information, see the "Creating a Work Area: Explained"
section in the Oracle Fusion Applications CRM Extensibility Guide.

CRM Application Composer allows administrative users to make specific types of
changes to the pages that expose objects. The actions that you perform in CRM
Application Composer follow a specific design pattern, and are limited to changes
associated with the object:

= adding and removing attributes
= reordering attributes

= adding buttons and links

= adding subtabs and tree nodes

For other modifications to pages (such as layout or look and feel), you can use Oracle
Composer, as described in Chapter 3, "Customizing Existing Pages."

Note: When you use CRM Application Composer to customize the
properties of attributes and other components of an object, your
customizations are applied to the object and are reflected in the
customized application on the pages in which that object appears.
There is no need to make subsequent modifications to the Ul
components that display them on the page. However, if you want to
modify a property of a component on a particular page (for example,
changing the tooltip for a field on a particular page), you can use
Oracle Composer to make this kind of change. For more information
about using Oracle Composer to edit the properties of Ul components,
see Section 3.3, "Editing Component Properties in Oracle Composer."

Before You Begin

In CRM Application Composer, you can create and edit only those pages that are
associated with an object. Therefore you must start with an object. Whether you are
customizing a preconfigured object or creating a custom object, the object must be
created first.

Before editing the page for an object, you must launch CRM Application Composer,
and select the application that contains the object you want to customize. For more
information, see Section 4.1.3, "Before You Begin Customizing and Extending Your
Oracle Fusion Application with Objects."

Task: Add Components to a Page

After you add a field or button to an object, you can use the Pages editor in CRM
Application Composer to add the corresponding components to the object’s pages.
Open the appropriate object, select Pages, and then click on the page you want to edit.
For more information about using CRM Application Composer to edit pages, see the
"Editing Pages: Explained" section in the Oracle Fusion Applications CRM Extensibility
Guide.

4-6 Extensibility Guide

Creating Custom Objects

To add other kinds of components to a page or to edit other types of pages, use Oracle
Composer. For information about using Oracle Composer, see Section 4.3, "Editing a
Page in CRM Application Composer."

Task: Remove Components from a Page

You can use the Pages editor in CRM Application Composer to remove components
associated with an object (such as, buttons and fields) from the object’s pages. Open
the appropriate object, select Pages, and then click on the page you want to edit. For
more information, see the "Editing Pages: Explained" section in the Oracle Fusion
Applications CRM Extensibility Guide.

Task: Reorder Fields on a Page

Using CRM Application Composer, you can change the order of fields on a page using
the Pages editor. Open the appropriate object, select Pages, and then click on the page
you want to edit. For more information, see the "Editing Pages: Explained" section in
the Oracle Fusion Applications CRM Extensibility Guide.

Task: Enable Instance-Level Grant Conveyance

When editing summary table on the landing page for a custom object, the Pages editor
in CRM Application Composer provides the Allow Access Grant checkbox. Select this
checkbox to allow the user of that page to give another user access to particular rows
in that object. This option is also available for subtab tables. For more information, see
Section 9.3, "Enabling End User Instance-Level Security Customization."

4.4 Creating Custom Objects

Objects are high level artifacts that manage data residing in a database table. When
you create a custom object, the underlying infrastructure to store the data is managed
by CRM Application Composer. You can also use CRM Application Composer to add
validation, child objects, and the pages that will display your custom object.

Task: Create Custom Objects

You can add custom objects to your CRM applications that allow you to expose and
capture additional data. To create a custom object in CRM Application Composer,
select Custom Objects and click New. This launches a dialog that allows you to name
and create the object. After creating the object, you can edit the details for the object.
For more information, see the "Extending CRM Applications: How It Works" section in
the Oracle Fusion Applications CRM Extensibility Guide.

Task: Create Relationships Between Objects

With CRM Application Composer you can configure a custom object to be a related or
child object of another object. To do this, click Relationships in the Common Setup
panel. The Relationships editor allows you to define a relationship by selecting the
source and target objects in the relationship.

You can also use CRM Application Composer to create custom objects that are a child
object or related object of an existing object. To do this, select the existing object, and
click New in the Child Objects or Related Objects area.

When you create an object as the child of another object, it will have cascading
properties and it can only be used in the context of the parent object. It cannot be used
as a standalone object or the child of another object. However, if you create a custom
object and subsequently configure it as the child of another object, it can be used
independently of the parent but it will not have cascading properties. For more

Customizing Objects 4-7

Creating and Editing Search Objects

information, see the "Object Relationships: Explained" section in the Oracle Fusion
Applications CRM Extensibility Guide.

Task: Add Business Rules

You can add validation rules, triggers, and object functions to an object in CRM
Application Composer using the Server Scripts editor. For example, you can add
snippets of Groovy script that are executed at specific points in the lifecycle (Create,
Modify, Remove, Beforelnsert, and so on). Open the object you want to customize, and
select Server Scripts. The Server Scripts editor contains an expression builder, which
helps you compose the script for your business rule. For more information, see the
"Groovy Scripting: Explained" section in the Oracle Fusion Applications CRM
Extensibility Guide.

Task: Create Pages for the Object

After you have created an object, you can use CRM Application Composer to generate
the pages (landing, creation, and detail) that expose the object in the work area of the
application. You do this using the Pages editor. Open the object, and select Pages. For
more information, see the "Creating a Work Area: Explained" section in the Oracle
Fusion Applications CRM Extensibility Guide.

Task: Add an Object Page to the Navigator menu

After you have created a custom object and the pages that display it, you might want
to add one or more of those pages to the Navigator menu. For information about
modifying the Navigator menu, see Chapter 6, "Customizing the Navigator Menu."

Task: Add Security for the Object

After you have created an object, you can use CRM Application Composer to
implement security for the object. If you want to customize security for an object
contained in an application that is not Sales, Marketing, or Customer Center, you will
need to use Functional Setup Manager. For more information about customizing
security, see Chapter 9, "Customizing Security for Custom Business Objects." For
information about using CRM Application Composer to implement security, see the
security chapter in the Oracle Fusion Applications CRM Extensibility Guide.

Task: Add an Object to an Existing Report

The Custom Subject Areas editor in the Common Setup area of CRM Application
Composer allows you create and customize subject areas that can be used in reports.
You can use this editor to add objects, child objects, fields, date measuring, rollups,
and aggregates to a subject area, as well as define which application roles can see
them. To define a custom subject area, click Custom Subject Areas in the Common
Setup panel, then click New.

After you define a custom subject area, a user of the application with the appropriate
role, while running the BI Report Composer from the client, can select the report
subject area and report on the objects and fields that were included as part of that
subject area. For information about custom subject areas, see the "Editing an Object:
Explained" section in the Oracle Fusion Applications CRM Extensibility Guide. For more
information about customizing reports, see Chapter 8, "Customizing Reports and
Analytics."

4.5 Creating and Editing Search Objects

You can create and edit searches for an object in CRM Application Composer using the
Saved Searches editor. Select an object and click Saved Searches. To edit an existing

4-8 Extensibility Guide

Editing Objects and Pages in Oracle JDeveloper After Using CRM Application Composer

search object, select the saved search you want to edit, and click the Edit icon. To
create a new custom search object, click the Create icon. For more information, see the
"Saved Searches: Explained" section in the Oracle Fusion Applications CRM Extensibility
Guide.

In addition to saved searches, the work area for an object contains a regional search
and the landing page contains a local search. Using the Pages editor, you can specify
which attributes from the object are used in the search. Select an object and click
Pages. Then click the search you want to edit, either Edit Regional Search or Edit
Local Search. For more information, see the Oracle Fusion Applications CRM
Extensibility Guide.

4.6 Editing Objects and Pages in Oracle JDeveloper After Using CRM
Application Composer

Using CRM Application Composer, you can extend the application with custom
objects, implement customizations on standard objects, and add and edit the pages
that display those objects.

To see these customizations and custom objects in JDeveloper, you will need to export
them from the runtime environment and import them into the JDeveloper
customization workspace. For more information, see Section 10.2.4, "Importing
Customizations into Your Workspace."

When using more than one tool to implement customizations and extensions, be aware
of the following:

= Only standard objects and custom objects created in CRM Application Composer
can be edited in CRM Application Composer.

= Only the pages associated with custom objects and customizable standard objects
are editable in CRM Application Composer.

= Extensions and customizations implemented in JDeveloper are not editable in
CRM Application Composer.

= Extensions and customizations implemented in CRM Application Composer are
viewable in JDeveloper.

For example, you can extend your application with a custom object created in
CRM Application Composer, and then import it into the JDeveloper customization
workspace. You can then use JDeveloper to create or customize a page or task flow
to use the runtime-generated object.

Important: Using JDeveloper to customize objects that are editable in
CRM Application Composer is not recommended, because you cannot
edit objects in CRM Application Composer that have been customized
in JDeveloper. If you customize such an object in JDeveloper and
subsequently open CRM Application Composer, the object will
appear in the list of objects you can edit. But if you attempt to edit it, it
can have an adverse impact on the application.

Customizing Objects 4-9

Editing Objects and Pages in Oracle JDeveloper After Using CRM Application Composer

4-10 Extensibility Guide

O

Using Flexfields for Custom Attributes

This chapter describes how to use descriptive and extensible flexfields to add custom
attributes in your Oracle Fusion applications. You create the custom attributes using
runtime tasks in the Setup and Maintenance work.

This chapter includes the following sections:

» Section 5.1, "About Using Flexfields"

= Section 5.2, "Planning Your Flexfields"

= Section 5.3, "Creating Custom Value Sets"

= Section 5.4, "Configuring Flexfields"

= Section 5.5, "Validating Flexfield Configurations"
= Section 5.6, "Deploying Flexfield Configurations"

= Section 5.7, "Integrating Custom Attributes”

5.1 About Using Flexfields

A flexfield is a set of placeholder fields (segments) that are associated with a business
object. There are three types of flexfields — descriptive, extensible, and key. This chapter
discusses how you can use descriptive and extensible flexfields to create custom
attributes. This chapter does not discuss key flexfields, which you use to define keys
such as part numbers, as explained in the product-specific documentation. In this
chapter, the term flexfield applies to descriptive and extensible flexfields only.

Descriptive and extensible flexfields enable you to configure your applications to
capture additional attributes without having to perform custom development. For
example, you can modify an application to capture additional company-specific
product information, such as voltage for electronic equipment, or size and color for
clothing.

The attributes that you configure using flexfields flow through the technology stack,
allowing custom attributes to be leveraged in user interface pages, incorporated into
the service-oriented architecture (SOA) infrastructure, and integrated with Oracle
Business Intelligence.

Note: For Sales, Marketing, Customer Center, Trading Community
Architecture, and Order Capture applications, you use CRM
Application Composer to add custom attributes instead of using
descriptive and extensible flexfields. For more information, see
Section 4.2, "Editing Objects."

Using Flexfields for Custom Attributes 5-1

About Using Flexfields

5.1.1 What You Can Do with Flexfields at Runtime

You

can use descriptive and extensible flexfields to create custom attributes for

flexfield-enabled business objects. The Oracle Fusion application developers decide

whi

ch business objects have flexfields and whether to use a descriptive flexfield or an

extensible flexfield (or both) for a business object. A descriptive flexfield is the more
basic of the two and is more commonly used. As explained later in this section,
extensible flexfields offer more advanced features, such as hierarchical configurations.

The

product-specific documentation from Oracle Enterprise Repository available from

Oracle Support lists the flexfield usages that are available for a user interface page. The
documentation also indicates whether the available flexfield is descriptive or
extensible. The flexfield type determines how you configure the custom attributes.

Descriptive flexfield configuration: A descriptive flexfield enables you to add two
types of custom attributes to a page — global and context sensitive. Global attributes
are always available as fields in the UI. Context-sensitive attributes are made
available to a UI page based on the value of a context attribute.

An example of where you would use context-sensitive attributes is a job, as
illustrated in Figure 5-1. Whereas some attributes are common to all jobs, such as
whether the job is off site, some job attributes depend upon the job category (the
context attribute). For example, you might want to store the service type for a
service technician, whereas for a driver you might want to store the required CDL
class.

Figure 5-1 Example of Descriptive Flexfield Global and Context-Sensitive Attributes

Descriptive Flexfield Attributes

I
Context Attribute

Job Attributes _{ Global

Category

Context Context

Service Technician Diriver
| |
Context-Sensitive Context-Sensitive
Attributes for Attributes tor

Context Context

Service Technician Diriver

5-2 Extensibility Guide

Extensible flexfield configuration: You configure categories, logical pages, and
contexts to make sets of custom attributes available to a user interface page.

All extensible flexfields have at least one category, and some extensible flexfields
enable you to configure a hierarchy of categories, where a given category can
inherit contexts from its parent categories. For more information about categories,
see Task: Determine How Categories Are Defined for the Extensible Flexfield.

Unlike the descriptive flexfield, where each entity has just one context, which is
determined by the context attribute, extensible flexfields enable you to configure
multiple contexts. You use logical pages to arrange how the contexts appear in the
user interface. For example, the extensible flexfield in Figure 5-2 has been
configured to include a Technical Specifications logical page in the user interface

About Using Flexfields

for all items in the Electronics and Computers category. The Technical
Specifications logical page contains the attributes for four contexts — Recovery
and Recycling, Compliance and Certification, Operating Conditions, and Materials
and Substances. Figure 5-3 shows the user interface for the Technical
Specifications logical page.

The user interface for items that are in the Furniture category includes a Furniture

Specifications logical page and an Assembly Instructions logical page. Note that
the two categories share the Materials and Substances context.

Figure 5-2 Example of Extensible Flexfield Categories, Pages, and Contexts

Product
Extensible —|
Flexfield
Category Category
Electronics & Furniture
Computers
— T
Page Page Page
Technical Furniture Assembly
Specifications Specifications Instructions
|
| | | |
Context Context Context Context Context
Recovery & Compliance & Operating Materials & Assembly
Recycling Certification Conditions Substances
| | | |
Context- Contendt- Context- Content-
Sensitive Sensitive Sensitive Sensitive Context-
Attributes for Attributes for Attributes for Attributes for Sensitive
Context Context Contaxt Contaxt Attributes for
Recovery & Compliance & Operating Materials & Context
Recycling Certification Conditions Substances Assembly

Another extensible flexfield feature is the ability to configure a context to store
multiple rows per entity. The Materials and Substances context in Figure 5-3 has
been configured for multiple rows, and is thus displayed as a table.

Figure 5-3 Technical Specifications Page with Associated Contexts

[= Technical Specifications
= Recovery and Recycling
Recovery Targeki%:)
Estimated Recovery Cost
Estimated Recycling Cost
=l Compliance and Certification

150 14001 [] Energy Star
Too [RoHS
Elue angel []

=l Dperating Conditions
Optimal Temp (Cel)
Hurnidity (%)

=l Materials and Substances

70 Overall Part Reuse(%:)
1 Crerall Part Recovery(%)

1 Civerall Material)Substance Reusel%s)

26| Wwet Bulb Temp (Cel) a2

95

Min Dew Paoink a4

60
75
g0

Actions = VYiew -

|Contained

Material/Substance {Recyclate(%:)

|Percertt of Unit

|Mass(rag)

Lead|Lead Corr (>

|Mass{%a)

3

z i 4

You use the Manage Descriptive Flexfields task, shown in Figure 54, and the Manage
Extensible Flexfields task, shown in Figure 5-5, to create your custom attributes. In
addition, some setup activities enable you to complete product-specific flexfield
configuration. For example, you can use the Manage Item Classes task in the Product

Using Flexfields for Custom Attributes 5-3

About Using Flexfields

and Catalog Management application to manage a hierarchy of custom attributes for
catalog items. For more information, see the product-specific documentation.

Figure 5-4 Manage Descriptive Flexfields Task

Manage Descriptive Flexfields
~|Gearch

Mame
Flexfield Code
Module =

Search Results

Follow Done

Search Reset

Actions = View » Format - / Freeze Detach erap Deploy Flexfield |

Marme ‘Type Todule Flexfield Code U?atétgs Description

Extract Definition Attributes Descriptive Extract Definitior PER_EXT_DEFIMITIONS_DFF E' Extract Definition Attributes -~
Citizenship Attributes Descriptive Personal Informe PER_CITIZEMSHIPS_DFF EI Citizenship Attributes

Addresses attributes Descriptive Personal Informs PER_ADDRESSES_DFF E' Addresses Attributes

Al People Attributes Descriptive Personal Informe PER_aLL_PECQPLE_DFF E' Al People Attributes

ContactRelships Attributes Descriptive Personal Informe PER,_CONTACT_RELSHIPS_DFE E' ContactRelships Attributes

Ctivers License Types Atkribute: Descripkive Persanal Informe PER_DRIVERS_LICEMSE_TYPES E Dwivers License Types Atkributes
Emailaddresses attributes Descriptive Personal Informe PER_EMAIL_ADDRESSES_DFF @ Emailaddresses Attributes

Ethnicity Attributes Descriptive Personal Informe PER,_ETHMICITIES_DFF E' Ethnicity Attributes

Mational Identifiers Attributes Descriptive Personal Informe PER_MATICNAL_IDEMTIFIERS. EI Mational Identifiers Attributes
Persons Aktributes Descriptive Personal Informs PER_PERSOMNS_DFF E' Persons Attributes i
= >

Figure 5-5 Manage Extensible Flexfields Task

Manage Extensible Flexfields
~|Search

Mame
Flexfigld Code ||
Module |

Search Results

Actions = Wiew » Format - / Freeze Detach

Marme ‘Type Todule

\Wrap

Flexfield Code

Foolloe Done

Search Reset

Deploy Flexfield | -

Enkity
Lsage:

Descripkion

Location Information EFF Extensible Fl Locations
Assignment EIT Infarmation EFF Extensible Fl: Emplaymant
Job EIT Information Extensible Fli Work Struckures Job

Position EIT Information

PER_LOCATION_IMFORMA (=]
PER_ASSIGNMENT_EIT_EF (=]
PER_IOBS_EIT_EFF &

Extensible FleWark Struckures Positions PER_POSITIONS_EIT_EFF E'

Pasition Legislative Information Extensible FleWork Struckures Paositions PER_POSITIONS_LEG_EFF EI

Extensible Fl Locations
Extensible Fli Work Struckures Job

Organization Information EFF Extensible Fle Grganizations

Location Legislative EFF
Job Leqislative Information

Person Contack EIT Information Extensible Fl: Personal Information
Person EIT Information Extensible Fl: Personal Information

<

PER_LOCATION_LEG_EFF |[=]
PER_JOBS_LEG_EFF &
PER_ORGANIZATION_INFC (=]
PER_PERSON_COMTACT E (=]
PER_PERSON_EXTRA_INFC (=]

Location Information

Assignment Extra Infarmation EFF
Job EIT Information

Position EIT Information

Pasition Legislative Information
Location Legislative

Job Leqislative Information
Crganization Information

Person Contack EIT Information

Person EIT Information

You will most likely want to specify validation rules for your custom attributes. For
example, you might want to specify a minimum and maximum value, or you might

5-4 Extensibility Guide

About Using Flexfields

want the end user to select from a list of valid values. You use the Manage Value Sets
task to specify validation rules, as shown in Figure 5-6.

Figure 5-6 Manage Value Sets Task

Manage Value Sets

~|Search
** Yalue Set Code
##* Yalidation Tyvpe w

** Yalue Data Type v

** Module

Search Results

Cone

Ak leask one is required

Search Reset

Actions - Wiew » Format - / Fresze ﬁ' Detach Manage Yalues

|value Set Code % |Description [Module |walidation Type
e e e e e
PER_FREQUENCY Frequency, eg. per week, per month Crganizations Table 3
PER_FIMAMCIAL_BUSINESS _UMIT Financial Business Unit Crganizations Table
PER_EMTP_‘WRKR_MUMEER_SEM_METHC Warker Mumber Generation Crganizations Table
PER_EMP_MUMEER_GEM_METHOD Employee number generation method Crganizations Independent
PER_EMPLOYMEMT _MODEL_TIERS_¥S Emplovment Model Crganizations Table
PER_EMPLOYMENT_MODEL_TIERS Ernplayment Model Crganizations Independant
PER_DATE Date value set Crganizations Format Only
PER_CHAR_L30 30 Characters, no validation Crganizations Format Cnly
PER_CHA&R_L150 Char{150) Organizations Farmak Only I
BFR Rl MANEL S Waliecak Frar calartinn bhe Fisinecs | inik Modsl Seaanizations Tahle

< >

Key Flexfield Usages Descriptive Flexfield Usages Extensible Flexfield Usages

View » Format « Freeze % Detach < Wirap

|npplication |Descriptive Fle:xfield Mame |Desu

Mo data ko display.
< >

As described in the remaining sections in this chapter, you perform the following steps

to configure custom attributes:

1. Plan the configuration.

2. Find or create the required value sets using the Manage Values Sets task and
optionally configure value set security privileges.

3. Define the attributes using the appropriate task — Manage Extensible Flexfields or

Manage Descriptive Flexfields.

4. Deploy the flexfield to display the custom attributes on the application pages and
to make them available for integration into the technology stack. The flexfield
artifacts that are generated during deployment are saved to the metadata
repository. You can optionally deploy to a sandbox for initial testing.

5. Perform the necessary steps to integrate into technology stack.

After your custom attributes are displayed on the application pages, you can
customize the attributes on a per-page basis using Oracle Composer, as described in

Chapter 3, "Customizing Existing Pages."

If you need to create translations of the value sets and the custom attributes for
different locales, see Chapter 16, "Translating Custom Text."

Using Flexfields for Custom Attributes 5-5

Planning Your Flexfields

5.1.2 What You Cannot Do with Flexfields at Runtime

You can use the flexfield feature to add attributes only to entities that have a
descriptive or extensible flexfield. For information about creating flexfields for other
entities, see the "Getting Started with Flexfields" chapter in the Oracle Fusion
Applications Developer’s Guide.

Note: You cannot use key flexfields to add custom attributes.

The following applications, which are part of the Customer Relationship Management
(CRM) product family, include CRM Application Composer for extending and
customizing applications. With those applications, you use CRM Application
Composer to add custom attributes. For all other applications, you use flexfields to
add custom attributes, as described in this chapter.

= Sales

= Marketing

n Customer Center

s Trading Community Architecture
s Order Capture

For more information, see Section 4.2, "Editing Objects."

5.1.3 Before You Begin Using Flexfields to Create Custom Attributes

Before you use flexfields to create custom attributes, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications.” You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

5.2 Planning Your Flexfields

The planning of your custom attribute additions is an important activity in
preparation for flexfield configuration. You begin by completing the steps in Task:
Determine Flexfield Code, Module, and Type to find out if flexfields are available for
the business objects for which you want to add attributes and, if so, whether they are
descriptive or extensible. The way in which you plan and configure a flexfield
depends on whether it is descriptive or extensible.

If you are configuring a descriptive flexfield, complete the following tasks:
s Determine existing context values

= Determine existing context segment setup

s Determine available parameters

= List custom attributes

= Plan the descriptive flexfield structure

= Map attributes to available table columns

» Define attribute properties

s Determine validation

5-6 Extensibility Guide

Planning Your Flexfields

If you are configuring an extensible flexfield, complete the following tasks:
s Determine how categories are defined for the flextfield

s Determine existing context values

= List custom attributes

= Plan categories

= Plan the extensible flexfield structure

= Map attributes to available table columns

= Define attribute properties

s Determine validation

Task: Determine Flexfield Code, Module, and Type

Before you begin planning the flexfield configuration, you must determine whether
descriptive or extensible flexfields are available for the user interface page for which
you want to add custom attributes, and, if so, you must obtain each flexfield’s code,
module, and type (extensible or descriptive). For an extensible flexfield, you also need
the usage name. Consult the product-specific documentation from Oracle Enterprise
Repository available from Oracle Support to obtain this information.

Note: Not all flexfields are available for creating custom attributes.
Consult the product-specific documentation to verify whether there
are any restrictions on the flexfield usage.

Task: Determine How Categories Are Defined for the Extensible Flexfield

Most extensible flexfields are configured with only one category, which is often
referred to as the root category. Some extensible flexfields, such as the Items Extended
Attributes flexfield, provide tasks for creating and managing categories. In these cases,
you can use the category hierarchy feature in your flexfield plan.

To view the categories for an extensible flexfield, access the Manage Extensible
Flexfields task by choosing Setup and Maintenance from the Administration menu in
the global area of Oracle Fusion Applications and searching for the task. Next, search
for and edit the flexfield to see its categories. For example, Figure 5-7 shows the
Category region for the Item Extended Attributes flexfield.

Figure 5-7 Category Region

Category
View ~ Format Freeze Eff Detach = E B Wrap

Display Name |Cnde Description
w7 Electronics and Computers PROD_ELECTROMICS Electronics and Computers

[TV and Video PROD_TV_VIDED Televisions and Video

[= Computers PROD_COMPUTERS Computers
[= Office Products and Supplies PROD_OFFICE_FRODUCTS_SUPPLIES Office Products and Supplies
[z Tools, Auto, and Industrial PROD_TOOLS_ALTO_INDUSTRIAL Tools, Automotive, and Industrial
[= Sports and Outdoors PROD_SPORTS_OUTDOCRS Sports and Qutdoors

Using Flexfields for Custom Attributes 5-7

Planning Your Flexfields

The Item Extended Attributes flexfield shown in Figure 5-7 has several categories,
including an Electronics and Computers category. The Electronics and Computers
category contains a TV and Video subcategory and a Computers subcategory. The
Electronics and Computers category has been customized to contain contexts for
compliance and certification, voltage, and materials and substances, as shown in
Figure 5-8. The TV and Video category and the Computers category inherit the
Electronics and Computer contexts in addition to having their own contexts.

Figure 5-8 Category Hierarchy

Electronics and Gomputer Products

Computer Compliance
Froducts Contaxt
Computer T
Context ﬂ&rhﬁcatll:rn
Context
" Tools, Auto and
Jiiand Video Voltage Industrial
Products Context
antex Products
TV and Video i y
Context Materials and Materials and
Substances Substances
Context Context

Contexts are reusable within a given extensible flexfield. For example, in Figure 5-8
the Materials and Substances context also belongs to the Tools, Auto, and Industrial
category.

Task: Determine Existing Context Values

To evaluate whether your attributes can be associated with any existing context
values, access the Manage Contexts page of the appropriate task — Manage
Descriptive Flexfields or Manage Extensible flexfields — to view the list of configured
context values.

Note that if context values have been pre-configured, you should consult the
product-specific documentation for information.

Tip: For extensible flexfields, look at the region headers in the user
interface page. The region header identifies the context of the fields in
that region. For example, the first region in Figure 5-3 contains the
attributes that belong to the Recovery and Recycling context value.

Task: Determine Existing Descriptive Flexfield Context Segment Setup

The context segment value for a descriptive flexfield might be derived from an
external reference. To determine whether the context segment is derived, look at the
Derivation Value field in the Context Segment region in the Edit Descriptive Flexfields
window for the flexfield. For more information about derived values, see Task:
Determine Available Descriptive Flexfield Parameters.

Task: Determine Available Descriptive Flexfield Parameters

Some descriptive flexfields provide parameters, which enable you to set the initial
value of an attribute from external reference data, such as a column value or a session

5-8 Extensibility Guide

Planning Your Flexfields

variable. For example if a customer case flexfield has a user email parameter, you can
configure the initial value for a customer email attribute to be derived from the
parameter. You can view the Derivation Value drop-down list in the Create Segment
window for the flexfield to determine what parameters are available for a descriptive
flexfield.

Task: List Custom Attributes

Once you have determined whether an extensible or descriptive flexfield is available,
and you have determined the codes, existing contexts, and, if applicable, categories,
you can begin planning for the flexfield configuration process. Start by listing all the
custom attributes that you want to add. Later, as described in Task: Define Attribute
Properties, you define the attribute details

Task: Plan the Descriptive Flexfield Structure

In addition to being able to define a set of attributes that can be stored for each entity
(global segments), you can also define a context, and create subsets of attributes that
vary by context value. Take, for example, the Manage Jobs user interface. You might
want to use the Job Attributes descriptive flexfield on the Manage Jobs page to display
different custom attributes depending on the job category. You can set the prompt for
the context segment to "Category"”, and you can define a subset of attributes for each
category value. The members of these subsets are called context-sensitive segments.

To begin planning the flexfield’s structure, look at the attributes that you want to add
and determine whether you can utilize the context feature for any of the attributes.
Divide the list of attributes into two groups: the attributes for which you want to
always store data (global data), and the attributes that you want to store only for a
certain context segment value (context-sensitive data). If you have more than one case
where you could use the context feature, you must choose the most essential case.

Next, make a list of the context segment values for which you need to configure sets of
context-sensitive attributes. For each context segment value for which you want
additional attributes to appear, list the associated context-sensitive attributes in the
desired sequence. The following list shows an example of a plan for the Job Attributes
descriptive flexfield.

= Global segments
- OFFSITE
= Context segment
— Prompt: Category
— Value set: JOB_CATEGORIES
- Context values:
- Service Technician
- Engineer
— Driver
= Context-sensitive segments for Service Technician

- SERVICE_TYPE (appliance, HVAC, facilities maintenance, vehicle
maintenance)

= Context-sensitive segments for Engineer
- REGULATIONS (building codes, OSHA)

= Context-sensitive segments for Driver

Using Flexfields for Custom Attributes 5-9

Planning Your Flexfields

- CDL_CLASS (A or B)

Task: Plan Extensible Flexfield Categories

All extensible flexfields have at least one category, but some flexfields have been set
up with a hierarchy of categories, as described in Task: Determine How Categories Are
Defined for the Extensible Flexfield in Section 5.2, "Planning Your Flexfields."

How you structure the flexfield depends on how categories have been defined for the
flexfield. Most extensible flexfields are pre-configured with one category, and you
associate all your contexts and pages with that category. Other extensible flexfields are
pre-configured with several categories and you associate your contexts and pages with
those categories as instructed by the product-specific documentation. A small number
of extensible flexfields enable you to configure multiple categories through application
user interfaces. In these cases, you can take advantage of the inheritance feature to
associate a context with more than one category. For example, the Item Extended
Attributes flexfield might be set up with the following categories:

s Electronics and Computers
- TV and Video
- Computers

Suppose you want to store voltage information for all electronic and computer items.
If you associate a Voltage context with the Electronics and Computers category, then
both the TV and Video category and the Computers category will inherit the Voltage
context from the parent Electronics and Computers category. Figure 5-9 shows the
contexts that have been associated with a Computers category. Three of the contexts
are inherited from the parent category.

Figure 5-9 Contexts Associated with the Computer Category

Category
Wigw ~ Format + Freeze At Detach = TER wirap

Display Mame |CUE|E |Descriptiun
f Electronics and Computers PROD_ELECTROMICS Electronics and Computers

L= TY and Video PROD_TY_VIDED Televisions and Yideo

[Computers PROD_COMPUTERS Camputers
[Office Products and Supplies PROD_OFFICE_PRODUCT OFfice Products and Suppliss
[Tools, Auto, and Industrial PROD_TOOLS_AUTO_IMD Tools, Automative, and Industrial
[Sports and Outdoors PROD_SPORTS_OUTDOO! Sports and COutdaors

v|Category: Details

Associated Contexts

Actions + View - Format - E ® Freeze % Detach Whap
JDispIay Marne |Inherited '?iAssociated Category ? ‘Behavior |Description
l Processar Specifications D Compukers Single Row Processar Specifications
Materials and Substances Electranics and Computers Multiple Fiaws Materials and Substances
Yaltage Electranics and Computers Single Row Yalkage
Compliance and Certification Electranics and Computers Single Row Compliance and Certification
< 4

Task: Plan the Extensible Flexfield Structure

Extensible flexfields enable you to define multiple sets of attributes, where each set is
called a context. For example, the Item Extended Attributes flexfield might have the
following contexts:

s Materials and Substances

s Compliance and Certification

5-10 Extensibility Guide

Planning Your Flexfields

= Voltage

On the other hand, for the Position EIT Information flexfield, you might group your
custom attributes into the following contexts:

s Educational Requirements
n Certification and License Requirements
s Travel Requirements

To begin the planning process, group the custom attributes into contexts and
determine the order in which the attributes should appear.

A context can optionally store multiple rows of data for a single entity. For example,
with the Certification and License Requirements context for the Position EIT
Information flexfield, you might want to store values for all the certificates and
licenses that are required to perform the position. For contexts that store multiple
rows, determine whether a row requires a unique key. If it does, determine which
attributes form the key.

For each category (or for the single category if the flexfield was not set up with
multiple categories), group the category’s contexts into logical pages and determine
the sequence in which the logical pages should appear.

Note: For hierarchical categories, the child categories inherit the
logical pages that are defined for the parent categories.

The following list shows an example plan for custom computer attributes for the Item
Extended Attributes flexfield. In this example, the Electronics Information page is
inherited from the parent Electronics and Computers category.

= Page: Electronics Information

- Context: Compliance and Certification, single row

* 1SO_14001
* ENERGY_STAR
* ROHS

- Context: Voltage, single row
* MIN_VOLTAGE
* MAX_VOLTAGE
* CURRENT_TYPE

- Context: Materials and Substances, multiple rows
* MATERIAL
* CONTAINED_RECLYCATE
* PERCENT_UNIT_MASS

= Page: Computer Information

- Context: Processor Specifications, single row
* MANUFACTURER
* CPU_TYPE

Using Flexfields for Custom Attributes 5-11

Planning Your Flexfields

* PROCESSOR_INTERFACE
* PROCESSOR_CLASS
* PROCESSOR_SPEED
* CORES
The following list shows a sample plan for the Position EIT Information flexfield.
= Page: Additional Position Information
— Context: Educational Requirements, single row
* LEVEL (high school, bachelor, master, MD, Ph.D.)
— Context: Certification and License Requirements, multiple rows
* TYPE (certificate or license)
* NAME (for example, ASE, NACE Level II, CP Specialist)
— Context: Travel Requirements, single row
* OVERNIGHT_TRAVEL_REQUIRED
* INTERNATIONAL_TRAVEL_REQUIRED

Task: Define Attribute Properties

Once you have an overall structure, you can work on defining the attribute properties
that are listed in Table 5-1.

Table 5-1 Attribute Properties

Property Description

Sequence The order the attribute appears in relation to the other
configured attributes.

Enabled Whether the attribute can be used.

Data type Character, date, date and time, or number.

Indexed (Extensible flexfield only) Whether the attribute should be

marked as selectively required in search panels. That is, whether
it is one of the attributes for which an end user must enter a
value before conducting a search. Note that if you mark an
attribute as indexed, you must ask your database administrator
to create an index on the associated segment column.

Range type If the attribute is part of a range specification, whether the
attribute is the low value or the high value. For example, if
adding minimum height and maximum height attributes, the
minimum height attribute has a range type of low.

Required Whether the end user is required to provide a value.

Initial value The initial default value for an attribute when the row is created.
You can specify a constant value or, for descriptive flexfields,
you can specify a flexfield parameter, which provides a derived
value.

Derivation value The flexfield parameter from which to derive the attribute’s
value. Whenever the parameter value changes, the attribute’s
value is changed to match. If you derive an attribute from a
descriptive flexfield parameter, consider making the attribute
read-only, as user entered values are lost whenever the
parameter value changes.

5-12 Extensibility Guide

Planning Your Flexfields

Table 5-1 (Cont.) Attribute Properties

Property Description

Prompt String to be used for the attribute’s label in the user interface.
Note that for global and context-sensitive attributes, you store
the prompt string in the Short Prompt field in manage flexfield
task. The Prompt field is not utilized in the user interface and is
reserved for future use.

Display type The type of field the attribute should be displayed in, such as
text box, drop-down list, chooser (checkbox), list of values, radio
button group, or hidden.

Checked and unchecked If the display type is chooser (checkbox), the actual values to

values save. For example, Y and N or 0 and 1.

Display size The character width of the field.

Display height The height of the field.

Read only Whether the field should display as read-only (non-editable)
text.

Task: Map Attributes to Available Table Columns

Before you begin configuring a descriptive or extensible flexfield, you should compile
a list of available flexfield table columns and choose which column to use for each
custom attribute.

Tip: For descriptive flexfields, first map your global attributes. Then
you can allocate the remaining table columns to the context-sensitive
segments. You can allocate a table column to more than one
context-sensitive segment but a table column can be used only once
per context attribute value.

For extensible flexfields, if you do not have enough available
segments of a certain type (character or number) for a context, add
another context to the same category to hold the remaining attributes.

To see the available table columns for a data type, edit the flexfield in the Manage
Descriptive Flexfields task or the Manage Extensible Flexfields task, as appropriate,
and access the Create Segment window. Select the desired data type, view the Table
Column list as shown in Figure 5-10, and note the available columns for that data
type. Repeat for each data type for which you will be adding attributes and map the
custom attributes to available columns.

Figure 5—-10 Table Column List for the Character Data Type

Column Assignment

* Data Type | Character | % * Table Calumn | ATTRIBUTE_CHARS =]
ATTRIBUTE_CHAR.3 ~
ATTRIBUTE_CHAR3

ATTRIBUTE_CHAR4
ATTDTRI MF FHADO
* Value set = Range Type | & 5

Value Set Description

| Value Set
v

Validation

Search...

Task: Determine Validation

For every attribute that you define for an extensible or descriptive flexfield, you need
to determine its validation rules. For example one attribute might need to match a
specified format, while another attribute might be restricted to a list of values. You use
value sets to specify the validation rules for an attribute, as described in Section 5.3,

Using Flexfields for Custom Attributes 5-13

Creating Custom Value Sets

"Creating Custom Value Sets." Determine each attribute’s validation rules and check
whether value sets already exist or you need to create new ones.

Context-attribute value validation is somewhat different. While value sets are required
for global and context-sensitive attributes, a value set is optional for descriptive
flexfield context attributes. If a value set is not defined for a context attribute, the
application validates an input value against the context attribute’s values. For
example, if you created YES and NO context attribute values, you do not need an
associated value set if YES and NO are the only valid values. There can be situations
where a context attribute might also require a value set. Say, for example, that you
need custom context-sensitive attributes for a YES value, but you do not need any
custom attributes for a NO value. You only need to add a YES context attribute value.
Because you do not have a NO context value, the context attribute requires a value set
of YES and NO, as both values are valid. Another example is when the valid values
are a subset of the context values. For example, you might have contexts for several
countries, but the list of values from which the end user selects the context value
might be confined to the countries in the user’s region.

You only can use table and independent value sets to validate context values. If you
use a table value set, you cannot reference other flexfield segments in the value set’s
WHERE clause. That is, the WHERE clause cannot reference SEGMENT.segment_code
or VALUESET.value_set_code. For more information, see Task: Create a Table Value Set
in Section 5.3, "Creating Custom Value Sets."

When determining an attribute’s validation rules, consider the following questions:
= What is the data type — character, date, date and time, or number?
= Does the attribute require any validation beyond data type and maximum length?

» If the data type is character, should the value be restricted to digits, or are
alphabetic characters allowed? If a number, should the value be zero filled?

» If alphabetic characters are allowed, should they automatically be changed to
uppercase?

= For numeric values, what are the number of digits that can follow the radix
separator?

= Do you want to provide a list of values from which to select a valid value for the
attribute? If so, consider the following questions:

- Can you use an existing application table from which to obtain the list of valid
values, or do you need to create a custom list?

- If you are using an existing table, do you need to limit the list of values using a
WHERE clause?

— Does the list of valid values depend on the value in another flexfield attribute?
— Is the list of valid values a subset of another flexfield attribute’s list of values?

= Does the value need to fall within a range?

5.3 Creating Custom Value Sets

You use value sets to control the values that can be stored for the custom attributes. A
value set is a predefined group of values that you can use to validate the content of the
flexfield segment. Different segments in the flexfield can use the same value set, as
well as segments in other flexfields.

Value sets enable you to enforce the following types of data validation:

5-14 Extensibility Guide

Creating Custom Value Sets

List of values: You can use one of the following types of lists to specify the valid
values for an attribute:

— Table column: If the valid values already exist in a table column, you can use a
table value set to specify the list of values. You can use a SQL WHERE clause if
you need to limit the valid values to a subset of the values in the table. Table
value sets also provide some advanced features, such as enabling validation to
depend upon custom attributes in the same structure.

— Custom list: You can use an independent value set to specify a custom set of
valid values. For example, you can use an independent value set of Mon, Tue,
Wed, and so forth to validate the day of the week.

— Dependent custom list: You can use a dependent value set when the available
values in the list and the meaning of a given value depend on which
independent value was selected in a prior segment. For example the valid
state holidays depend on which state you are in. You can think of a dependent
value set as a collection of value subsets, with one subset for each value in a
corresponding independent value set.

You can further limit the valid values that an end user can select or enter by
specifying format, minimum value, and maximum value.

Subset: You can use a subset value set when you want to use a subset of values
from an existing independent value set. For example if you have an independent
value set for the days of the week, a weekend subset can be composed of its entries
for Saturday and Sunday.

Format: You can use a format-only value set when you want to allow end users to
enter any value so long as that value conforms to formatting rules. For example, if
you specify a maximum length of 3 and numeric-only, then end users can enter
456, but not 4567 nor 45A. You can also specify the minimum and maximum
values, whether to right-justify, and whether to zero-fill. With a format-only value
set, no other types of validation are applied.

Range of values: You can use either a format-only, independent, or dependent
value set to specify a range of values. For example, you might create a format-only
value set with format type of Number where the end user can enter only the
values between 0 and 100. Or, you might create a format-only value set with
format type of Date where the end user can enter only dates for a specific year (a
range of 01-JAN-93 to 31-DEC-93, for example). Since the minimum and
maximum values enforce these limits, you need not define a value set that
contains each of these individual numbers or dates

Note: You only can use table and independent value sets to validate
context values. The data type must be character and the maximum
length of the values being stored must not be larger than the context’s
column length. If you use a table value set, the value set cannot
reference flexfield segments in the value set’'s WHERE clause other
than the segment to which the value set is assigned.

If you are creating an independent, dependent, or subset value set, you must also
define the set of valid values. For table, independent, dependent, and subset value
sets, you can optionally implement value set security. If the Oracle Fusion
Applications are running in different locales, you might need to provide different
translations for the values and descriptions. For more information, see Section 16.5,
"Translating Flexfield and Value Set Configurations."

Using Flexfields for Custom Attributes 5-15

Creating Custom Value Sets

You use the Manage Value Sets task, as shown in Figure 5-11, to create and manage
value sets. For more information, see the "Manage Value Sets" section in the Oracle
Fusion Applications Common Implementation Guide.

Figure 5-11 Edit Value Set Page in the Manage Value Sets Task

Edit value Set: 2 Digits Save | save and Close | Cancel |

“alue Set Code 2 Digits
Description | 2 Digit positive nurmber

*# Module | Oracle Middleware Extensions For Applications |
Walidation Type Format Only
Value Data Type Mumber

Definition

% Predision z §|
? Scale 0

Minirum Value | 0

Maimum Yalue | 99

Note: You cannot create or manage value sets in a sandbox.

When you change an existing value set, you must redeploy all flexfields that use that
value set to make the flexfields reflect the changes. The Usages tabs show which
flexfields are affected by the value set changes.

Before You Begin
You will need to do the following before you can begin creating custom value sets:

= You must have the necessary function and data security privileges to access the
Manage Value Sets task. Contact your security administrator for details.

= Access the Manage Value Sets task by choosing Setup and Maintenance from the
Administration menu in the global area of Oracle Fusion Applications and
searching for the task.

Task: Define Format Specifications

Regardless of which type of validation you use for an attribute, the attribute will most
likely require some sort of format specification. Before you create a value set, consider
how you will specify the required format. Depending on the validation type and the
value data type, you will be able to specify one or more of the options shown in

Table 5-2.

Table 5-2 Format Options

Option Description
Value Data Type Character, Number, Date, Date Time
Value subtype The following options are available for the Character data type

for the Dependent, Independent, and Format validation types:
Text, Translated text, Numeric digits only, Time (20:08), Time
(20:08:08). See the caution following this table in regards to the
Text and Translated text subtypes.

Maximum Length Maximum number of characters or digits for Character data type

Precision Maximum number of digits the user can enter

5-16 Extensibility Guide

Creating Custom Value Sets

Table 5-2 (Cont.) Format Options

Option Description

Scale Maximum number of digits that can follow the decimal point
Uppercase only Lower-case characters automatically changed to uppercase

Zero fill Automatically right-justify and zero-fill entered numbers (affects

values that include only the characters 0-9)

Caution: When choosing between a value subtype of Text or
Translated text, choose Translated text if your application has more
than one language installed, or there is any possibility that you might
install additional languages, and you might want to translate the
display values into the other languages. Choosing the Translated text
subtype does not require you to provide translated values now, but
you cannot change this option if you decide to provide them later.

Task: Create a Format-Only Value Set

If you do not need to validate input against a list of valid values, then create a value
set with the Validation Type of Format. You can also use this validation type to create
a range specification, such as all numbers between 1 and 100.

Task: Create an Independent Value Set

If you need to validate the input against a custom list of values, where the list is not
stored in an application table and the values are not dependent upon or a subset of
another independent value set, then create a value set with a Validation Type of
Independent.

After you create the value set, define the set of valid values as described in Task:
Define the Set of Valid Values.

Note: If the independent value set will have dependent value sets,
you should not define individual independent values for the
independent value set before defining its dependent value sets.

Task: Create a Dependent or Subset Value Set

If you need to validate the input against a custom list of values where the values are
dependent upon or members of an independent value set, then create a value set with
a Validation Type of Dependent or Subset, as appropriate. You must specify the
Independent value set that it depends on.

After you create the value set, define the set of valid values as described in Task:
Define the Set of Valid Values.

Note: If you are defining a dependent value set, you should not
define individual independent values for the corresponding
independent value set before defining the dependent value set.

Task: Define the Set of Valid Values

Independent, dependent, and subset value sets require a customized list of valid
values. You use the Manage Values page, as shown in Figure 5-12, to create and

Using Flexfields for Custom Attributes 5-17

Creating Custom Value Sets

manage the valid values for a value set. To access the Manage Values page, select the

value set from the Manage Value Sets page and click Manage Values.

Figure 5-12 Manage Values Page

Manage Values

Value Set Code EGO_YES_MO_MUM
Drescription

v|Search

Yalug | %

Description

Done

Search Reset

Search Results

Actions » View » Format - / Freeze ﬁ' Detach Wrap

Value Translated Yalus Description Enabled |Start Dake
.1 es

z Ho

<

If you are adding a value to a dependent value set, you must associate it with a value

from the parent independent value set.

If you are adding a value to a subset value set, you must select it from the parent

independent set.

If the value set’s subtype is Translated text, one of the fields will be Translated Value.
This value is displayed instead of the value in the Value column for any end user who
signs into the application under the same locale as the one under which the translated
value was entered into the value set. If the Oracle Fusion applications are running in
different locales, log in with each of the different locales for which you want to
provide translations (or use the Personalization > Set Preferences menu item in the
global area to set the locale) and enter the translated values and descriptions for that
locale. If you do not provide a translation for a given locale, the value that was first

entered is used for that locale.

Task: Create a Table Value Set

If you need to validate the input against a list of values from an application table, then
create a value set with a Validation Type of Table. You define which table you want to
use and you specify the column that contains the valid value. You can optionally

specify the description and ID columns, a WHERE clause to limit the values to use for

your set, and an ORDER BY clause.

If you specify an ID column, the flexfield saves the ID value, instead of the value from

the value column, in the associated flexfield segment.

If the underlying table supports translations, you can enable the display of translated
text by basing the value set’s value column on a translated attribute of the underlying
table. You should also define an ID column that is based on an attribute that is not
language dependent so that the value’s invariant ID is saved in the transaction table.
This allows the runtime to display the corresponding translated text from the value
column for the runtime session’s locale. For more information, see "Using
Multi-Language Support Features" in the Oracle Fusion Applications Developer’s Guide.

You can use the following bind variables in the WHERE clause.

] : {SEGMENT . segment_code}

5-18 Extensibility Guide

Creating Custom Value Sets

This bind variable refers to the ID (if the value set is ID-validated) or value (if not
ID-validated) of a segment where segment_ code identifies the segment. The data
type of the bind value is the same as the data type of the segment's column.

The segment must have a sequence number that is less than the sequence number
of the segment with this bind. A matching segment must exist in the current
flexfield context.

This bind variable is useful when the set of valid values depends on the value in
another segment. For example, the values to select from a CITIES table might
depend upon the selected state. If SEGMENT1 contains the state value, the
WHERE clause for the CITIES table might be state_code =

: {SEGMENT . SEGMENT1}.

: {VALUESET.value set_code}

This bind variable refers to the ID (if the value set is ID-validated) or value (if not
ID-validated) of the segment that is assigned to the value set that is identified by
the value_set_code. The data type of the bind value is the same as the data
type of the segment's column.

The segment must have a sequence number that is less than the sequence number
of the segment with this bind. If more than one segment is assigned to the value
set, the closest prior matching segment will be used to resolve the bind expression.
A matching segment must exist in the current flexfield context.

This bind variable is useful when the set of valid values depends on the value in
another segment and that segment code can vary, such as when the value set is
used for more than one context or flexfield. For example, the values to select from
a CITIES table might depend upon the selected state. If the value set for the
segment that contains the state value is STATES, the WHERE clause for the CITIES
table might be state_code = :{VALUESET.STATES}.

: {FLEXFIELD. internal_ code}

This bind variable refers to an internal code of the flexfield in which the value set
is used, or a validation date. The internal_code must be one of the following;:

- APPLICATION_ID — the application ID of the flexfield in which this value set
is used. The data type of APPLICATION_ID and its resulting bind value is
NUMBER.

- DESCRIPTIVE_FLEXFIELD_CODE — the identifying code of the flexfield in
which this value set is used. The data type of DESCRIPTIVE_FLEXFIELD_
CODE and its resulting bind value is VARCHAR2. Note that you use this string
for both descriptive and extensible flexfields.

— CONTEXT_CODE — the context code of the flexfield context in which this value
set is used. The data type of CONTEXT_CODE and its resulting bind value is
VARCHAR2.

- SEGMENT_CODE — the identifying code of the flexfield segment in which this
value set is used. The data type of SEGMENT_CODE and its resulting bind value
is VARCHAR2.

- VALIDATION_DATE — the current database date. The data type of
VALIDATION_DATE and its resulting bind value is DATE.

: {PARAMETER . parameter_code}

This bind variable refers to the value of a flexfield parameter where parameter._
code identifies the parameter. The data type of the resulting bind value is the
same as the parameter's data type.

Using Flexfields for Custom Attributes 5-19

Configuring Flexfields

Note: You cannot assign a table value set to a context segment if the
WHERE clause uses VALUESET.value_set_code or SEGMENT.segment_
code bind variables.

Task: Implement Value Set Security

If you need to control end user access to the values in an independent, dependent,
subset, or table value set, you can create security policies for that value set. These
policies enable you to specify what values each end user can enter and view, based on
the users’ roles. End users will not be able to enter values for which they do not have
access, and only the values they have access to appear in the list of values for the
associated segments. Any security rules that you define for a value set affect every
segment that uses the value set.

A resource identifies the data that needs to be secured by the policies, which in this case
is the value set. Value set data security follows a "deny all, allow some" approach. This
means that access to all of a resource’s data is denied by default and, based on policies,
end users only have access to the data that is appropriate for their role.You use
conditions to define the data that can be accessed and you use policies to identify the
roles that have the authority to access the data that is identified by the condition.

You can implement value set security after you create the value set, or you can
implement it later by editing the value set. To implement security, select the Security
Enabled checkbox and then provide the Data Security Resource Name. You can enter
the name of an existing resource or type in the name of a data security resource that
you want to create. This will be the name used for the database resource in the data
security system. The name typically matches the name of the value set code.

Note: You cannot edit the data security resource name once you save
your changes.

Once you save your changes to the Data Security Resource Name, you can click the
Edit Data Security button to access the Edit Data Security page, provided that you
have access to the Manage Database Security Policies task. On the Edit Data Security
page, you can specify conditions, such as filters or SQL predicates, and you can define
policies where you associate roles with conditions. You can use a filter for simple
conditions. For more complex conditions, use a SQL predicate.

The data security conditions and policies that you define are similar to those that you
can define for business objects. Value set security policies differ in the following ways:

= You only can grant read access to end users.You cannot specify any other action.

s When defining a condition that is based on an SQL predicate, use VALUE, VALUE_
NUMBER, VALUE_DATE, VALUE_TIMESTAMP, or VALUE_ ID to reference the value
from a dependent, independent, or subset value set. For table value sets, use a
table alias to define the table, such as & TABLE_ALIAS.category_ 1id=70.

For more information data security resources, roles, conditions, and policies, see the
"Managing Data Security Policies" chapter in the Oracle Fusion Middleware Oracle
Authorization Policy Manager Administrator’s Guide (Oracle Fusion Applications Edition).

5.4 Configuring Flexfields

You use the Manage Descriptive Flexfields task or the Manage Extensible Flexfields
task, depending on the flexfield type, to configure a flexfield.

5-20 Extensibility Guide

Configuring Flexfields

5.4.1 Configuring Descriptive Flexfields

You use the Manage Descriptive Flexfields task shown in Figure 5-13 to configure a
descriptive flexfield.

When you configure a descriptive flexfield, you define the global segments, the
context segment, and the context-sensitive segments. For each segment, you define its
display properties and you specify how to validate its values.

Note: Some descriptive flexfields have more than one usage. That is,
the same flexfield might be associated with more than one application
table. For example, a user flexfield might be associated with a USER
table and a USER_HISTORY table. When you configure the user
flexfield, the configuration applies to all usages.

If the Oracle Fusion Applications are running in different locales, you might want to
provide different translations for the translatable text, such as prompts and
descriptions. To create the translations, log in with each of the different locales (or use
the Personalization > Set Preferences menu item in the global area to set the locale)
and change the text to the translated text for that locale. For more information, see
Section 16.5, "Translating Flexfield and Value Set Configurations."

Figure 5—-13 Edit Descriptive Flexfield Page in the Manage Descriptive Flexfields Task

Edit Descriptive Flexfield: Job Attributes Manage Contexts | Save | Save and Close | Cancel |
Mame Job Atkributes 7 SEgmEnt || e
Flexfield Code PER_JOBS_DFF Separatar

Application Global Human Resources
Module Work Struckures Job

Description | 1ob attributes

Global Segments

Actions = Yiew + Format « / Freeze Eﬂ' Detach Wrap
_|* Sequence |Name |Table Column |'v'a|ue Sek |Pr0mpt ?
5 Cffsite ATTRIBUTEL Yes/Mo Off Sike:
< ?

Columins Hidden &

Context Segment

* Prompt | Job Category [Jrequired

value Fet GORIES - Displayed

Diefault ¥ Derivation | | s
Type z Walue

Context Sensitive Segments
Specify segments based on the defined context value,

Conkext | Service Technician =

Actions = View » Format - / Freeze fﬂl Detach Wrap
J* Sequence |Mame | Table Column |value Set Prompt
I 10 Service Type ATTRIBUTES 20 Charackers Service T

Columns Hidden &

For more information, see the "Manage Descriptive Flexfields" section in the Oracle
Fusion Applications Common Implementation Guide.

Using Flexfields for Custom Attributes 5-21

Configuring Flexfields

Before You Begin
You will need to do the following before you can begin configuring the flexfield:

= Plan your flexfield configuration as described in Section 5.2, "Planning Your
Flexfields."

s Create the required value sets as described in Section 5.3, "Creating Custom Value
Sets."

» Compile a list of the Ul pages that are affected by the flexfield as well as other
artifacts in the technology stack. See Section 5.7, "Integrating Custom Attributes”
for more information about how flexfield configuration affects these artifacts.
Using this list, plan how you will integrate and test your flexfield configuration

= You must have the necessary function and data security privileges to access the
Manage Descriptive Flexfields task. Contact your security administrator for
details.

» Access the Manage Descriptive Flexfields task by choosing Setup and
Maintenance from the Administration menu in the global area of Oracle Fusion
Applications and searching for the task.

Task: Configure Global Segments

Using the information that you gathered in your planning stage, configure a global
segment for every attribute that applies to all entity instances, regardless of context.
For each segment, provide the identifying information, the column assignment, how
the value should be validated, the initial default value, and the display properties.

Tip: When you create segments for your attributes, you specify the
sequence number for the segment. This sequence affects the order in
which the attribute is displayed on the page. Before you begin
creating segments, you might want to plan how you will number
sequences. Consider numbering the segments in multiples, such as 4,
5, or 10, to make it easy to insert new attributes.

Task: Configure Contexts

On the Edit Descriptive Flexfield page, specify the prompt, whether the segment
should be displayed, and whether a value is required.

As explained in Task: Determine Validation in Section 5.2, "Planning Your Flexfields,"
you do not need to specify a value set if the set of valid values is the same as the set of
context values. If you need to associate a context with a value set, the value set must be
an independent or table value set. The data type must be character and the maximum
length of the values being stored must not be larger than the context’s column length.

Note: You cannot assign a table value set to a context segment if the
WHERE clause uses VALUESET.value_set_code or SEGMENT.segment_
code bind variables.

Using the list of valid context values that you prepared in the planning stage, access
the Manage Contexts page and create a context for each value. Create the
context-sensitive segments for each context and provide the identifying information,
the column assignment, how the value should be validated, and the display
properties.

5-22 Extensibility Guide

Configuring Flexfields

Tip: When you create segments for your attributes, you specify the
sequence number for the segment. This sequence affects the order in
which the attribute is displayed on the page. Before you begin
creating segments, you might want to plan how you will number
sequences. Consider numbering the segments in multiples, such as 4,
5, or 10, to make it easy to insert new attributes.

5.4.2 Configuring Extensible Flexfields

You use the Manage Extensible Flexfields task shown in Figure 5-14 to configure an
extensible flexfield.

When you configure an extensible flexfield, you define its contexts and associated
context-sensitive segments and usages, and you associate the context with categories
and pages. For each context-sensitive segment, you define its display properties and
you specify how to validate its values.

If the Oracle Fusion applications are running in different locales, you might want to
provide different translations for the translatable text, such as prompts and
descriptions. To create the translations, log in with each of the different locales (or use
the Personalization > Set Preferences menu item in the global area to set the locale)
and change the text to the translated text for that locale. For more information, see
Section 16.5, "Translating Flexfield and Value Set Configurations."

Figure 5-14 Edit Context Page in the Manage Extensible Flexfields Task

Edit Context: Capacitors_AG Save | SaveandClose | Cancel |
7
Flexfield Marme Irem Extended Attributes Flexfield Code EGO_ITEM_EFF
* Display Mame | Capacitors_aG o [ranslatable -~
Code Capacitors_AG Behavior Single Row
Description | Capacitors attribute Group for D0 [variant
Enabled
Context Sensitive Segments
Ackions - Wiew - Formak - Va Freeze & Detach Wrap
Sequence |Name |C0de |'v'a|ue Data Type 7 |Disp
10 Capacitor_case_size Capacitor_case_size YARCHARZ List |
20 Capacitor_package_size Capacitor_package_s WARCHARZ Lisk
30 Dielectric Dielectric YARCHARZ Lisk
40 Esr_bype Esr_bvpe VARCHARE List
50 Mounk Mount: WARCHARZ List
] Temp_coefficient Temp_coefficient VARCHARZ List
70 Capacitance MUMEER. Tex

For more information, see the "Manage Extensible Flexfields" section in the Oracle
Fusion Applications Common Implementation Guide.

Before You Begin
You will need to do the following before you can begin configuring the flexfield:

= Plan your flexfield configuration as described in Section 5.2, "Planning Your
Flexfields."

» Create the required value sets as described in Section 5.3, "Creating Custom Value
Sets."

Using Flexfields for Custom Attributes 5-23

Configuring Flexfields

= Compile a list of the UI pages that are affected by the flexfield as well as other
artifacts in the technology stack. See Section 5.7, "Integrating Custom Attributes"
for more information about how flexfield configuration affects these artifacts.
Using this list, plan how you will integrate and test your flexfield configuration

= You must have the necessary function and data security privileges to access the
Manage Extensible Flexfields task. Contact your security administrator for details.

= Access the Manage Extensible Flexfields task by choosing Setup and Maintenance
from the Administration menu in the global area of Oracle Fusion Applications
and searching for the task.

Task: Configure the Context

Using the list of contexts that you prepared in the planning stage, access the Manage
Contexts page and create the desired contexts. Create the context-sensitive segments
for each context and provide the identifying information, the column assignment, how
the value should be validated, the initial default value, and the display properties.

Some extensible flexfields have a Translatable option. If the context will be used to
store free-form user-entered text in the language of the user’s locale, and if different
translations of that text can be stored for other languages, select Translatable. If you
select Translatable, the context can only have format-only validated segments.

Tip: When you create segments for your attributes, you specify the
sequence number for the segment. This sequence affects the order in
which the attribute is displayed on the page. Before you begin
creating segments, you might want to plan how you will number
sequences. Consider numbering the segments in multiples, such as 4,
5, or 10, to make it easy to insert new attributes.

Task: Configure Context Usages

During the planning stage, you determined the flexfield usage for which you are
adding attributes. You can associate a context with several usages, but ensure that the
Associate checkbox is selected for the usages that you determined during the planning
stage. Consult the product-specific documentation to understand the purpose of each
usage.

Task: Configure Categories and Category Details

While most flexfields have a single category, some flexfields have multiple categories,
which enable you to further group the contexts into categories. Some flexfields
provide an activity or task for creating your own categories. Consult the
product-specific documentation to determine whether you can create categories for the
flexfield.

Task: Associate Contexts with a Category

Most flexfields have a single category which contains all the flexfield’s contexts. Some
flexfields enable you to work with multiple categories. To associate contexts with a
category, select the category on the Edit Extensible Flexfield page. Then, in the
Associated Contexts tab, add the desired contexts to the selected category.

Task: Create Logical Pages for a Category

Using the information from your plan, group the contexts into logical pages and
determine the sequence in which the logical pages should appear. To build the logical
pages, select the category on the Edit Extensible Flexfield page. Then, in the Pages tab,
add the desired contexts and specify their sequence.

5-24 Extensibility Guide

Deploying Flexfield Configurations

5.5 Validating Flexfield Configurations

You can verify that a flexfield’s metadata is complete and correctly configured by
choosing Actions > Validate Metadata in either the Maintain Extensible Flexfields
task or the Maintain Descriptive Flexfields task. The validations that this action
performs are the same validations that are performed when you deploy a flexfield.

5.6 Deploying Flexfield Configurations

You must deploy a flexfield before you can access the custom attributes from the user
interface and other parts of the technology stack. You use the appropriate flexfield
management task — Manage Descriptive Flexfields or Manage Extensible Flexfields —
to deploy a flexfield.

When you deploy a flexfield, the following occurs:

s The deployment process validates the flexfield metadata. If any errors are found, a
popup is displayed with a list of the errors that were encountered, and the
flexfield is not deployed. Note that the flexfield’s status is not changed if metadata
errors are encountered.

s The deployment process generates ADF Business Components and ADF Faces
runtime artifacts that are based on the flexfield configurations.

s The deployment process adds the custom attributes to the web service definition
language (WSDL) schemas that are exposed by ADF services and that are used by
SOA composites.

» If the flexfield is enabled for business intelligence, the deployment process
redeploys the flexfield’s business intelligence artifacts.

= The web services that expose the base entity data also expose flexfield segment
data.

= End users see the new custom attributes the next time they log into the
application. The custom attributes will appear on all user interface pages that
contain the flexfield, and in the search screens and desktop integration worksheets
in which they have been integrated.

If you want to test the flexfield configuration before deploying it to the full test
environment, you can deploy the flexfield to a flexfield sandbox. The changes that you
deploy to a sandbox are isolated from the full test environment and can only be seen
by those who make the flexfield sandbox active in their session. Once you are satisfied
with the changes in the sandbox, you can deploy the changes to the full test
environment.

After deployment, the custom attributes are available for incorporating into the SOA
infrastructure, such as business process and business rule integration. For example,
you can now write business rules that depend on the custom attributes.

Descriptive flexfields that are enabled for business intelligence are available for
integrating with business intelligence (BI) technology, such as Oracle BI Enterprise
Edition (BIEE) and Oracle Essbase.

For more information about flexfield deployment and flexfield sandboxes, see the
"Flexfield Deployment" section in the Oracle Fusion Applications Common Implementation
Guide. For more information about integrating the deployed flexfield into the
technology stack, see Section 5.7, "Integrating Custom Attributes."

Using Flexfields for Custom Attributes 5-25

Deploying Flexfield Configurations

Before You Begin
You will need to do the following before you can begin deploying the flexfield:

= Configure the flexfield as described in Section 5.4, "Configuring Flexfields."

= You must have the necessary function and data security privileges to access the
flexfield management task. Contact your security administrator for details.

» Access the appropriate flexfield management task — Manage Descriptive
Flexfields or Manage Extensible Flexfields — by choosing Setup and Maintenance
from the Administration menu in the global area of Oracle Fusion Applications
and searching for the task.

» Use the Search region to access the desired flexfield.

Task: Deploy a Flexfield to a Sandbox

If you want to test the flexfield configuration before deploying it to the production
environment, you can deploy the flexfield to a sandbox. To deploy a flexfield to a
sandbox, select the flexfield in the Search Results region, and choose Deploy Flexfield
to Sandbox from the Actions menu, as shown in Figure 5-15. A progress window
shows when the process has completed and the completion status.

Figure 5-15 Deploying a Flexfield to a Sandbox

Search Results

W View = Format - / Freeze ﬁ' Detach it ap »

Edit wpe |M0dule |Fle>c
- :]] A
Deploy Flexdield tescriptive Flexfield Trading Community Model HZ_
§ tescriptive Flexfield Personal Information FER
Deploy Flexfield ta Sandbox

tescriptive Flexfield Personal Infarmation FER
Walidate Flexfield I

R] [T S S e

The sandbox to which you deploy the flexfield is different from the standard
sandboxes that are described in Section 2.2, "Using the Sandbox Manager." Each
flexfield has its own sandbox. You do not need to create a flexfield sandbox, as the
deployment process manages flexfield sandbox creation. When you deploy to the
flexfield sandbox, a dialog box shows the name of the flexfield sandbox, and that
flexfield sandbox is set as your current active sandbox.

Note: When you deploy to the flexfield sandbox, the CreatedBy
value is set to FlexfieldDeployment.

When you next log into the application, you can see the updated flexfield
configurations (You must log out and log back in to see the changes). The Oracle
Fusion Applications global area displays your current session sandbox. When you
hover over the sandbox name, the sandbox details appear. To exit a sandbox, hover
over the sandbox name and click Exit Sandbox. To view additional details about the
sandbox, hover over the sandbox name and click More Details.

If you want to make an existing flexfield sandbox active for your session, access the
flexfield sandbox from the Manage Sandboxes page, select the flexfield sandbox, and
click Set as Active. For information about accessing this page, see Section 2.2, "Using
the Sandbox Manager."

Once you are satisfied with the changes, you can deploy the flexfield to the full test
environment as described in Task: Deploy a Flexfield to the Full Test Environment.

5-26 Extensibility Guide

Integrating Custom Attributes

Task: Deploy a Flexfield to the Full Test Environment
To deploy a flexfield to the full test environment, select the flexfield in the Search
Results region, and select Deploy Flexfield from the Actions menu.

A progress window shows when the process has completed and the completion status.
If a sandbox exists for the flexfield, this sandbox is deleted automatically after the
flexfield successfully deploys to the full test environment.

When you next log into the application, you can see the updated flexfield
configurations (You must log out and log back in to see the changes).

Task: Check Deployment Status

The Deployment Status column in the Search Results region shows the current status
for each flexfield.

If a deployment error occurs, the Deployment Error Message column in the Search
Results region provides details about the error, as shown in Figure 5-16.

Figure 5-16 Deployment Error Message

Search Results

Actions = Yiew - Format - / IEEE] ﬁ' Detach SWrap

Flexfield Code Iin;igtgs Description Dsiglt?;" Deployment Error Message
PER,_PERSONS_DFF =] Persons attributes [x] = ~
PER_PERSON_ADDR_USG_DFF Persons Attributes: Error Message m

PER._PERSON_CONTACT_EIT_DFF b . ; | h ‘]
oracle, jbo,NoDefException: JBO-25002; Definition oracle.apps.hem. people,core,prokectedMaodel, entity . PersonEC
FER_PERSOMN_DLVRY_METHOOS | o pyne Entity Definition is not Found, Detals : TABLE_NAME :PER_PERSONS ENTITY_OBJECT
PER._PERSON_EXTRA_IMFO_EIT | :oracle. apps.hcm.pecple.core. protectedModel. entity PersonED Exception Stack :JB0-25002! Definition

PER_PERSON_IMAGE_DFF oracle, apps.bem.people, core, prokectedModel entity, PersonED of bype Entity Definition is not Found,

PER_PERSON_LEGISLATIVE_DFF _O_'E_J
PER._PERSOMN_MAME_DFF == TFErSONS MaME ATHDUTES =
PER._PERSOMN_TYPE_IISG_DFF D Person Type Usage Attributes Ij

PER._PERSON_ALLOCATED _TASKS_DFF D Persan Allocated Task Attributes Ij b
< ¥

5.7 Integrating Custom Attributes

Once you have deployed a flexfield, you can begin incorporating its custom attributes
into the technology stack.

For information about the technology stack, see the "Oracle Fusion Middleware
Components" chapter in the Oracle Fusion Applications Concepts Guide.

Task: Customize Flexfield Pages

After you deploy an extensible or descriptive flexfield, the new attributes appear on all
pages that contain the flexfield. You can use Oracle Composer to configure the custom
attribute properties on a page-by-page basis. For example, you can hide some custom
attributes. For more information, see Chapter 3, "Customizing Existing Pages."

Note: The custom attributes only appear on pages that include the
flexfield. For information about adding flexfields to a page, see the
"Adding Descriptive Flexfield Ul Components to a Page" section or
the "Employing Extensible Flexfields on an Application Page" section
in the Oracle Fusion Applications Developer’s Guide.

Using Flexfields for Custom Attributes 5-27

Integrating Custom Attributes

Task: Incorporate Custom Attributes into the Business Intelligence Structure

Some descriptive flexfields are enabled for incorporating into the business intelligence
(BI) structure. Consult the product-specific documentation from Oracle Enterprise
Repository available from Oracle Support for information about which flexfields are
enabled for Oracle Business Intelligence.

If a descriptive flexfield is enabled for Oracle Business Intelligence, the Manage
Descriptive Flexfields task displays a BI Enabled checkbox for each global, context,
and context-sensitive segment. Select a segment’s BI Enabled checkbox to specify that
the segment is available for use in Oracle Business Intelligence.

When you deploy a flexfield with Bl-enabled segments, the deployment process
generates a set of flattened ADF Business Components in addition to the normal ADF
Business Components and ADF Faces runtime artifacts that are generated during
deployment. The flattened ADF Business components include a single attribute for the
context segment if it is Bl-enabled, as well as one attribute for each Bl-enabled global
segment. The flattened business components include a separate attribute for each
Bl-enabled context-sensitive segment for each context value. Context-sensitive
segments are not equalized across context values.

After you deploy a business intelligence enabled flexfield, you must import the
flexfield changes into the Oracle Bl repository to make use of the newly flattened
components in business intelligence and then propagate the flex object changes.

Note: When you import the metadata into the Oracle BI repository,
you must do so as the FUSION_APPS_BI_APPID user.

Tip: When you import a flexfield into the Oracle BI repository, you
see both name_ and name_c attributes for each segment, along with
some other optional attributes. The name_ attribute contains the value.
The name_c attribute contains the code of the value set that the value
comes from, and is used for linking to "value dimension." You must
import both attributes.

For more information about importing and propagating your flexfield changes, see
Task: Configuring Descriptive Flexfields and Key Flexfields for Oracle Business
Intelligence in Section 8.3.3, "Customizing the Oracle BI Repository (RPD)." For
information about adding flexfields to a BI Publisher data model, see the "Adding
Flexfields" chapter in the Oracle Fusion Middleware Data Modeling Guide for Oracle
Business Intelligence Publisher (Oracle Fusion Applications Edition).

Task: Incorporate Custom Attributes into Web Services and SOA Infrastructure
When an extensible or descriptive flexfield is deployed, the deployment process
regenerates the XML schema definition language (XSD), which makes the custom
attributes available to web services and the SOA infrastructure.

After deploying a flexfield configuration, you must synchronize the updated XSD files
in the SOA MDS repositories for each SOA application. For more information, see
Task: Synchronizing Customized Flexfields in the SOA MDS Repository in

Section 12.2, "Customizing SOA Composites."

For information about extending or customizing Business Process Execution Language
(BPEL) processes, see Part "Using the BPEL Process Service Component" of Oracle
Fusion Middleware Developer’s Guide for Oracle SOA Suite.

5-28 Extensibility Guide

Integrating Custom Attributes

For more information about service-oriented architecture, web services, BPEL
processes, and business rules, see the Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

Using Flexfields for Custom Attributes 5-29

Integrating Custom Attributes

5-30 Extensibility Guide

6

Customizing the Navigator Menu

This chapter describes how to customize the navigator menu in Oracle Fusion
Applications by using the Manage Menu Customizations task in the Setup and
Maintenance work area to add and delete menu groups and items.

This chapter includes the following sections:

» Section 6.1, "About Navigator Menu Configuration"
= Section 6.2, "Adding Groups"

= Section 6.3, "Adding Items"

= Section 6.4, "Hiding and Showing Nodes"

6.1 About Navigator Menu Configuration

The navigator menu is the global menu that is accessible from the Oracle Fusion
Applications global area. It allows an end user to navigate directly to pages inside of
Oracle Fusion Applications as well as to outside web pages. The menu is composed of
links (iterns) that are organized in a hierarchy of groups.

You can customize the navigator menu to address needs that are specific to your
organization. For example, you might want to add specialized groupings for
cross-functional teams or add links to web pages or external applications. You can add
groups and links to the navigator menu, as well as hide and show them.

The navigator menu typically appears when the end user clicks the Navigator link, as
shown in Figure 6-1. However, in some applications the page template can be
customized to present the top level groups and items as pull-down buttons, as shown
in Figure 6-2, in place of the single Navigator link. For information about how to
display the navigator menu as a series of pull-down buttons see "Rendering the
Navigator Menu as Pull-down Buttons" in the Oracle Fusion Applications Developer's
Guide.

Customizing the Navigator Menu 6-1

About Navigator Menu Configuration

Figure 6—1 Navigator Menu Example — Navigator Link

ORACLE’ Fusion Applications

Mavigator Recent Ikems Favorites Tags Wakchlist Group Spaces

Marketing Product Management
« P Product Management Dashboar, .
Customers Ikerns
Ha Audience Costing
Treatments Costing Dashboard
l Lead Processing Cosk Accounting
I Lead Qualification Receipt Accounting
Sales Procurement
% Sales Dashboard Procurernent Dashboard
Customers Purchasing
Opportunities Megotiations
Territaries and Forecasts Catalogs
Recommendations Suppliers
Collections Supplier Portal
Collections Supplier Portal

Figure 6—2 Navigator Menu Example — Navigator Pull-down Buttons

Partners = Programs

|
Registered Deals

In a multi-tenant environment, you customize the navigator menu at the enterprise
level and your changes affect the tenant at that enterprise level. Otherwise, you
customize the navigator menu at the site level and your customizations affect all end
users.

You use the Manage Menu Customizations task to customize the menu. This task is
available from the Setup and Maintenance work area, which is accessible from the
Administration menu in the Oracle Fusion Applications global area. The Manage
Menu Customizations page displays the menu groups as expandable nodes, as shown
in Figure 6-3, with which you can traverse the menu hierarchy.

Figure 6-3 Expandable Group Nodes in Manage Menu Customizations Page

Manage Menu Customizations Close
Actions » Wiew - | - / &g
=2 D Marketing A
=3 D Partner Management

v 3

Sales Dashboard
Cuskomers
Opportunities
Territaries and Guotas
Recommendations

t> B3 collections

=3 D Contract Management

Order Orchestration

I~ (3 Recsivables

=2 D Product Management

=3 D Costing

vl D Procuremnent v

Note: Not all Oracle Fusion Applications pages appear in the
navigator menu, as some pages are accessible from a work area or
from other links in the global area such as the Home link.

6-2 Extensibility Guide

About Navigator Menu Configuration

6.1.1 What You Can Do with the Navigator Menu

If you have the required privileges, you can perform the following tasks to customize
the menu:

= Add and delete custom groups

= Edit any group

= Add and delete custom items

= Edit any item

= Specify navigation for an item
- Specify navigation to a UI Shell page in an Oracle Fusion application
- Specify navigation to an external web page

= Hide or show groups and items

You can also localize your navigator menu customizations. For more information, see
Section 16.4, "Translating Navigator Menu Customizations."

6.1.2 What You Cannot Do with the Navigator Menu

You cannot make the following menu customizations:

= You cannot add menu items (links) as top level nodes. You only can add nodes to
the groups in the top level and to subgroups.

= You cannot delete nodes that are delivered with the product.

= You cannot move nodes. Instead, you must duplicate the node and hide the
original node.

Note: While you can customize the global navigator menu, you
cannot customize the global home menu or the global preferences
menu.

6.1.3 Before You Begin Customizing the Navigator Menu

Before you customize the navigator menu, you should be familiar with the Oracle
Fusion application architecture that enables customization, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications.” You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin customizing the navigator
menu:

s If you are making minor changes, you can hide the changes until you have
completed your customizations. However, if you are making more than minor
changes, you might want to instead create a sandbox. For more information see
Section 2.2, "Using the Sandbox Manager."

= You must have the necessary function and data security privileges to access the
Manage Menu Customizations task. Contact your security administrator for
details.

= Open the Manage Menu Customizations task. To access this task, choose Setup
and Maintenance from the Administration menu in the Oracle Fusion
Applications global area and search for the task.

Customizing the Navigator Menu 6-3

Adding Groups

6.2 Adding Groups

You arrange the menu by building a hierarchy of nested groups. For example, in
Figure 6-4 the Manager Resources group contains the Career group.

Figure 6—4 Menu Groups and Sub Groups

Manage Menu Customizations Close
Actions » View - | - 7

Compensation
[D Incentive Compensation
- [0 Benefits
" D Manager Resources
IManager Resources Dashboard
Mew Person
‘Workforce Compensation
v D Career
Goals
Performance
Talent Review
=3 D MMy Information

-3 Tooks

Person Gallery b

Task: Navigate the Menu Hierarchy

You can use the View menu to expand or collapse a group of nodes, scroll to the first
group, or scroll to the last group in the navigation tree. You can also right-click a node
and access similar actions to facilitate tree navigation.

Task: Add a Group

As shown in Figure 6-5, you can insert a group above or below a peer group or insert
a group child. You edit a group by defining a label and specifying whether the group
should be rendered. You typically hide the group until all changes have been
completed.

Figure 6-5 Action Menu

Manage Menu Customizations

ackions + Wigw - | - 7 g
=3 i
iy D

Insert Above

Insert Below
Insert Group Child
Insett Item Child

Sales Dashbc

Cuskomers

Opportunitie:

Tetritaries ar Duplicate
Sales Forecasts
Recommendations

=03 callections

[= D Conkract Managermenkt

= 0 order orchestration

> B3 Receivables

= D Product Management

[D Costing

= 3 Procurement

o

6-4 Extensibility Guide

Adding ltems

6.3 Adding ltems

Navigator menu items are URL links. There are two types of links — links to UI Shell
pages in Oracle Fusion applications and links to external applications and web sites.
Menu items can be added to the top level groups and their subgroups. Note that you
cannot add menu items as top level nodes.

Task: Adding an Item

To add an item, you navigate to the item’s group and insert the item above or below
another item, as shown in Figure 6-5. You can also choose to duplicate an existing
item. You must supply the menu label and either link to a UI Shell page or link to an
external web site or application, as described in the following tasks. The Create Item
Node page is shown in Figure 6-6.

Figure 6-6 Create Item Node Page
Create Item Node

* Required Label
[Jrendered
Focus View ID
Web &pplication |
Secured Resource Mame
Application Skripe
Destination

Page Parameters Lisk

Save | Cancel |

Task: Linking to a Ul Shell Page

If the new item points to a UI Shell page in an application, you must provide the name
of the web application and the view ID of the target page. The quickest way to obtain
the web application name and view ID is to copy them from an existing menu item
that links to the same page. Otherwise, the web application name is the same as the
context root for the application, and the view ID can be obtained from the id attribute
for the page’s <view> tag in the product’s public_
html/WEB-INF/adfc-config.xml file.

If you want to secure access to the target UI Shell page from the menu item, you will
need to provide the name of the secured resource and the name of the policy store’s
application stripe. When an end user clicks the link, Oracle Fusion Applications checks
the secured resource and Lightweight Directory Access Protocol (LDAP) policy store
to determine whether the user has permission to view the page.

If there is another menu item that points to the same page, you can get the secured
resource name and application stripe from that item. Otherwise, the application stripe
can be obtained from the jps.policystore.applicationid parameter in the
application’s weblogic-application.xml file. Examples of application stripes are
crm, £scm, and hem. The secured resource name is the name of the web page’s page
definition file. By default, the page definition files are located in the view.PageDefs
package in the Application Sources directory of the view project. If the corresponding
JSF page is saved to a directory other than the default (public_html), or to a
subdirectory of the default, then the page definition will also be saved to a package of

Customizing the Navigator Menu 6-5

Hiding and Showing Nodes

the same name. An example of a secured resource name is
oracle.apps.view.pageDefs.CaseList_Form_Attach_
UIShellPagePageDef.

A UI Shell page might take parameters and display or act differently based on the
parameters that are passed in. For example if accessing a page from one group in the
menu hierarchy, the parameter might be set to status="0pen" and if accessing the
page from a different group, the parameter might be set to status="Closed". If the
page takes parameters, you can use the Page Parameters List text box to provide a
semicolon-delimited string of name value pairs, such as org=ml; context=s1. You
can use expression language (EL) to specify the parameters. If the EL evaluates to an
Object, the toString value of that Object is passed as the value of the parameter.

Note: Do not enter a value in the Destination text box. If a
destination is provided, the menu item is treated as a link to an
external web page and the target view ID and web application values
are ignored.

Task: Linking to an External Web Site or Application

You can link a menu item to an external web site or application. Clicking on the menu
item displays the target in a new browser window or tab, depending on the browser
configuration.

To link to an external web site or application, provide the URL in the Destination text
box and provide the menu label. Do not enter information in any other fields. If you
need to pass parameters, put the parameters in the URL.

6.4 Hiding and Showing Nodes

While you are creating or working with a group or item, you might want to prevent
end users from accessing the node. You can hide the group or item while you are
working with it, and then show the node when you have completed the task.

Tip: For major changes that need to be tested and approved, you
might want to use the sandbox manager instead of hiding and
showing nodes. For more information, see Section 2.2, "Using the
Sandbox Manager."

The Manage Menu Customizations page shows all nodes. The nodes that appear in
italics are hidden from end users, as shown in Figure 6-7.

6-6 Extensibility Guide

Hiding and Showing Nodes

Figure 6-7 Hidden Node Shown in lItalics

Manage Menu Customizations

Actions v Wiew ~ | - 7 bg
= D IMarketing
[D Sales
= [collections
L= D Conkrack Management
-3
t-] Recaiabier
= D Product Managerent
= D Costing
=3 Procurement
=3 D Supplier Portal
= D Pavables
L= D ‘Warehouse Operations
= D Projects
L= D General Accounting
[D Inkercompanyy Accounting
f

Task: Hiding or Showing a Node

When you add a node, you can select the Rendered checkbox to display the node, or
clear the checkbox to hide it. You can edit the node later to change how it is rendered.

Customizing the Navigator Menu 6-7

Hiding and Showing Nodes

6-8 Extensibility Guide

7

Customizing and Extending BPMN
Processes

This chapter describes how to use Oracle Business Process Composer to customize and
extend Business Process Modeling Notation (BPMN) processes. Oracle Fusion
applications use BPMN processes to define process flows within the application. This
chapter also describes how to edit BPMN processes by creating and modifying BPM
projects based on project templates and deploying those projects to runtime.

This chapter includes the following sections:

= Section 7.1, "About Customizing BPMN Processes"
» Section 7.2, "Creating an Oracle BPM Project"

m Section 7.3, "Customizing BPMN Processes"

= Section 7.4, "Publishing Oracle BPM Projects"

= Section 7.5, "Deploying an Oracle BPM Project"

= Section 7.6, "Configuring BPMN Processes within an Oracle Fusion Application"

7.1 About Customizing BPMN Processes

The Customer Relationship Management (CRM) product family of Oracle Fusion
Applications uses Business Process Management Notation (BPMN) processes to define
some process flows used within the application. Specifically, some CRM applications
use BPMN processes to define approval workflows.

BPMN is a standard notation for modeling the behavior of business processes. See
"Modeling Business Processes with Oracle BPM" in the Oracle Fusion Middleware
Business Process Composer User’s Guide for Oracle Business Process Management for
general information on BPMN.

BPMN processes are contained within an Oracle BPM project. BPM projects contain all
of the resources required for a functioning BPM application, including BPMN
processes and SOA artifacts such as business rules and human tasks.

Using Oracle Business Process Composer, you can customize the BPMN processes
used within Oracle Fusion applications by creating, modifying and deploying an
Oracle BPM project created from a project template.

Oracle Fusion Applications provide default project templates that you can use to
create new process flows. See the product-specific documentation from Oracle
Enterprise Repository available from Oracle Support for a list of the default BPM
project templates provided by Oracle Fusion Applications.

Customizing and Extending BPMN Processes 7-1

About Customizing BPMN Processes

See "Introduction to Project Templates" in the Oracle Fusion Middleware Business Process
Composer User's Guide for Oracle Business Process Management for general information
on working with project templates.

A BPM project template is pre-populated with all of the required resources for
implementing BPMN processes within an Oracle Fusion application. This includes the
BPMN processes that define the process flow as well as the necessary technical
components that enable the processes to communicate with other parts of the
application. After customizing a BPM project, you can deploy it to runtime.

The technical components contained within a BPM project are called the business
catalog. The business catalog contains various reusable services that a BPMN process
can use to connect to other components of the application, including other processes,
systems, and databases.

The business catalog contains the following reusable components:

Table 7-1 Business Catalog Components Available in Business Process Composer

Business Catalog

Component Description

Services Services are used to connect a BPMN process with other
processes, systems, and services, including BPEL processes,
databases.

See "How to Create New Services in the Business Catalog" in the
Oracle Fusion Middleware Business Process Composer User’s Guide
for Oracle Business Process Management for more information.

Human tasks Human tasks enable you to define how end users interact with
your BPMN processes. Human tasks are implemented in a
BPMN process using the user task.

See "Adding User Interaction to Your Process" in Oracle Fusion
Middleware Business Process Composer User’s Guide for Oracle
Business Process Management.

Business rules Oracle business rules are statements that describe business
policies or describe key business decisions.

See "Introduction to the Business Rules Task" in Oracle Fusion
Middleware Business Process Composer User’s Guide for Oracle
Business Process Management for information on implementing
business rules within a BPMN process.

7.1.1 Oracle Tools for Customizing and Extending BPMN Processes

Oracle Fusion Applications provide multiple tools for customizing and extending
BPMN processes. These tools are described in Table 7-2.

Table 7-2 Oracle Tools for Customizing and Extending BPMN Processes

This tool... Allows you to...

Oracle SOA Composer Customize business rules, domain value maps, and approval
configuration and assignment rules at runtime. See Section 12.2,
"Customizing SOA Composites" for more information.

These customizations are performed directly on a running
application. They do not require redeployment of the BPM project
containing the BPMN process.

7-2 Extensibility Guide

About Customizing BPMN Processes

Table 7-2 (Cont.) Oracle Tools for Customizing and Extending BPMN Processes

This tool... Allows you to...

Oracle BPM Worklist Customize approval configuration and assignment rules. See
Section 12.2, "Customizing SOA Composites” for more information.

These customizations are performed directly to a running
application. They do not require redeployment of the BPM project
containing the BPMN process.

Oracle Business Process Customize BPMN processes by creating and deploying BPM projects
Composer based on project templates. This functionality is described in the
following sections.

Oracle BPM Studio Customize project templates. See Chapter 13, "Customizing and
(Oracle JDeveloper) Extending Oracle BPM Project Templates."

7.1.2 What You Can Do with BPMN Processes at Runtime

There are two types of runtime customization that you can make to BPMN processes.
These are described in the following sections.

7.1.2.1 What You Can Customize Using Oracle SOA Composer and Oracle BPM
Worklist

BPMN processes utilize multiple SOA components, including business rules and
approval workflow. Using the Oracle SOA Composer and Oracle BPM Worklist, you
can customize the following components used by the BPMN processes of a running
Oracle Fusion application:

s Oracle business rules
= Domain value maps

= Approval assignment rules in human workflows such as customizing the approval
flow for a specific customer.

These customizations can be made directly to a running Oracle Fusion application
without having to redeploy the BPM project. See Section 12.2, "Customizing SOA
Composites” for information on using Oracle SOA Composer or Oracle BPM Worklist
to make these customizations.

Note: Any changes you make to the deployed, running BPMN
processes of an Oracle CRM application will not be preserved if you
later redeploy the BPM project that contains them.

7.1.2.2 What You Can Customize Using Oracle Business Process Composer

Using Oracle Business Process Composer, you can make the following customizations
to a BPM project created from a project template:

= Customize an existing BPMN process.

s Create new BPMN processes.

» Create simple data objects.

» Create and modify some business catalog components.

Table 7-3 lists which business catalog components can be customized or created
using Business Process Composer

Customizing and Extending BPMN Processes 7-3

About Customizing BPMN Processes

Table 7-3 List of Business Catalog Components

Business Catalog Can be created using Can be customized using
Component Business Process Composer? Business Process Composer?
Business rules No Yes

Human tasks Yes Yes

You can create human tasks
using Oracle Business Process
Composer, however not all
functionality of a human task
can be customized.

Services Yes Yes

Errors No No

See Section 7.2, "Creating an Oracle BPM Project” for information on creating a
new BPM project based on a project template.

Changes to the business catalog that cannot be made using Business Process
Composer must be made to the project template using Oracle BPM Studio. See
Section 7.1.3, "What You Cannot Do with BPMN Processes at Runtime" for more
information.

7.1.3 What You Cannot Do with BPMN Processes at Runtime

Often, it is necessary to make changes to a BPMN process that cannot be performed
using Business Process Composer. The following tasks must be performed using
JDeveloper:

= Modify project templates
» Create or customize some business catalog components, including:
- Configuring advanced properties of web services
- Creating new adapters and mediators
- Creating new business rules
— Creating or customizing errors
- Configuring advanced features of human tasks, including:
* Complex assignment support
* Auto-generated task flow
* Business rules within human tasks
» Create complex data objects

To create or customize these components, process developers must modify the project
template and republish it to the Oracle BPM repository. After a project template is
revised, you can use Business Process Composer to create and deploy BPM projects.
See Chapter 13, "Customizing and Extending Oracle BPM Project Templates” for more
information.

7.1.4 Before You Begin Customizing BPMN Processes

Before customizing BPMN processes using Business Process Composer, you should be
familiar with the Oracle Fusion application architecture that enables customization, as
described in Chapter 1, "Customizing and Extending Oracle Fusion Applications."

7-4 Extensibility Guide

Creating an Oracle BPM Project

You should also understand the typical workflows for customization and extensibility,
as described in Chapter 2, "Understanding the Customization Development Lifecycle."

You should be familiar with how to model business processes using the Business
Process Modeling and Notation (BPMN) standard. See "Modeling Business Processes
with Oracle BPM" in the Oracle Fusion Middleware Business Process Composer User’s
Guide for Oracle Business Process Management.

To create and deploy projects based on project templates, you must be granted the
following applications roles:

s BPMCreateNewProject

s BPMCreateNewProjectFromTemplate
s BPMComposerDeveloper

s BPMComposerDesigner

s BPMComposerDocumentProject

Your security administrator must grant these application roles to you. See
"Introduction to Security Roles in Oracle Business Process Composer" in the Oracle
Fusion Middleware Business Process Composer User’s Guide for Oracle Business Process
Management. for more information.

7.2 Creating an Oracle BPM Project

You can use Oracle Business Process Composer to customize or extend BPMIN
processes. BPMN processes are contained within an Oracle BPM project. After
launching Oracle Business Process Composer the first step in modifying a BPMN
process is to create a new project based on a project template or to open an existing
BPM project.

Task: Access Oracle Business Process Composer

To customize BPMN processes within an Oracle CRM application, you must access
Business Process Composer from CRM Application Composer.

s Access CRM Application Composer

- To access CRM Application Composer, in the Navigator menu, click
Application Composer.

— To edit or create business processes, you will need the correct privileges.
Please contact your security administrator for details.

m Access Business Process Composer
- To access Business Process Composer from CRM Application Composer, click

Business Processes then perform one of the following as shown in Figure 7-1:

* To create a new business process select Create from the Actions menu.

* To modify an existing process select a business process from the list, then

select Update from the Actions menu.

Customizing and Extending BPMN Processes 7-5

Customizing BPMN Processes

Figure 7-1 Actions Menu of the CRM Application Composer

Business Processes 2]

P view - 8 7 | B | Hfipetach

Create
I Update
BPMTestChanges
CRMApprovalReadOnlyTest
CRMNewTestProcess
CRMProcessReadOnlyTest
CrmCommondpprovalProcess

After selecting one of the above, the Business Process Composer login screen
appears. See "Signing On to Oracle Business Process Composer" in the Oracle
Fusion Middleware Business Process Composer User’s Guide for Oracle Business
Process Management for more information.

- To customize BPMN processes, you must be assigned the correct security roles
within Business Process Composer. See Section 7.1.4, "Before You Begin
Customizing BPMN Processes" for more information.

Task: Create a New BPM Project Based on a Project Template

Oracle Fusion applications do not ship with running BPMN processes out-of-the-box.
In order to integrate BPMN processes within Oracle Fusion applications, you must
create a new BPM project based on a project template, deploy the project to runtime,
then configure the Oracle Fusion application to use the BPMN processes of the
deployed BPM project.

Business Process Composer enables you to create new BPM projects based on project
templates. For information on creating a new BPM project, see "How to Create a New
Project From a Project Template" in the Oracle Fusion Middleware Business Process
Composer User’s Guide for Oracle Business Process Management.

Refer to the product-specific documentation from Oracle Enterprise Repository
available from Oracle Support for a list of the default BPM project templates provided
by Oracle Fusion Applications. By default, project templates are stored in the
Templates folder of the BPM repository.

Task: Open an Existing BPM Project

If you have already created a new BPM project based on a template, you can continue
to customize the project before deploying it to runtime.

For information on opening an existing BPM project, see "How to Open a Project
Using the Project Browser" in the Oracle Fusion Middleware Business Process Composer
User’s Guide for Oracle Business Process Management.

7.3 Customizing BPMN Processes

After creating a new BPM project based on a project template, you can modify the
BPMN processes within the project. Additionally, you can customize the business
catalog components within the BPM project.

Task: Open a BPMN Process

See "How to Open a Business Process" of Oracle Fusion Middleware Business Process
Composer User’s Guide for Oracle Business Process Management for information on
opening a BPMN process.

7-6 Extensibility Guide

Customizing BPMN Processes

Task: Customize a BPMN Process
You can alter the flow of your BPMN process by adding, removing, or modifying
BPMN flow objects.

See "Working with Flow Elements" in the Oracle Fusion Middleware Business Process
Composer User’s Guide for Oracle Business Process Management for more information on
using the process editor to modify BPMN processes.

See "Modeling Business Processes with Oracle BPM" in the Oracle Fusion Middleware
Business Process Composer User’s Guide for Oracle Business Process Management for
specific information on BPMN flow objects.

Task: Assignh Business Catalog Components to a BPMN Flow Object

You can use Business Process Composer to assign reusable services from the business
catalog to different BPMN flow objects.

The business catalog components and their corresponding flow objects are shown in
Table 7-4.

Table 7-4 BPMN Flow Objects and Their Corresponding Services

BPMN Flow Object Business Catalog Component

User task Human tasks

Service task Services, including web services and adapters
Business rules task Business rules

Error events Errors

See "The Business Catalog" in the Oracle Fusion Middleware Business Process Composer
User’s Guide for Oracle Business Process Management for more information on working
with reusable services and the business catalog.

Task: Add Milestones to the Activity Guide

The activity guide of a BPM project defines a set of milestones. Each BPM project
contains one activity guide. An activity guide can contain multiple milestones.

A milestone is a specific set of tasks that the process participant has to complete. A
milestone is complete when the user successfully runs a specific set of tasks in the
milestone.

Each milestone is a defined by a set of human workflow tasks. Each human workflow
task is itself a task flow that may require the collaboration of multiple participants in
various roles.

See "Using Guided Business Processes to Set Project Milestones" in Oracle Fusion
Middleware Business Process Composer User's Guide for Oracle Business Process
Management. for information on creating milestones.

Task: Customize Business Rules

Business rules enable dynamic decisions to be made at runtime that allow you to
automate policies, computations, and reasoning while separating rule logic from
underlying application code.

Customizing and Extending BPMN Processes 7-7

Publishing Oracle BPM Projects

Note: You can use Oracle Business Process Composer to modify
business rules within an Oracle BPM project. These changes are made
to the runtime application when the project is deployed.

You can use the SOA Composer to make runtime changes directly to
the runtime environment, without deploying a project. See

Section 12.2, "Customizing SOA Composites" for more information
making runtime changes to a BPMN process.

For more information about customizing rules using Oracle Business Process
Composer, see "Using Oracle Business Rules" in the Oracle Fusion Middleware Business
Process Composer User’s Guide for Oracle Business Process Management.

Task: Create or Customize Human Tasks

Human tasks enable you to integrate human interaction with connectivity to systems
and services as part of an end-to-end process flow. Human tasks are responsible for
handling all interactions with the users or groups participating in the business process.

Using Business Process Composer, you can create and customize human tasks. See
"Working with Human Tasks" in Oracle Fusion Middleware Business Process Composer
User’s Guide for Oracle Business Process Management for information on creating and
configuring human tasks.

Task: Customize Expressions

Expressions are used to evaluate the data used within your process. Different flow
objects use expressions to determine which path within the process to follow.

Expressions are used to configure the following BPMN elements:
= Conditional Sequence Flows

s Complex Gateways

s Timer Events

s Data Associations

= Loop Markers

= Multi-Instance Markers

s User Task Advanced Properties

You can customize the expressions used within a BPMN process using Oracle Business
Process Composer.

See "Working with Expressions" in the Oracle Fusion Middleware Business Process
Composer User’s Guide for Oracle Business Process Management.

7.4 Publishing Oracle BPM Projects

In Oracle BPM, publishing a project refers to the process of saving it in the BPM
repository where projects and projects templates are stored. Process developers can
publish project templates to the repository where you can access them to create new
BPM projects.

The BPM repository can also be used to share BPM projects and project templates
between other Business Process Composer and JDeveloper users.

7-8 Extensibility Guide

Deploying an Oracle BPM Project

In the BPM repository, projects and project templates are stored in the following

default folder:

Table 7-5 Default Location of BPM Projects and Project Templates in the BPM
Repository

Type Location

BPM Projects /bpm/drafts

BPM Project Templates /bpm/templates

Within these default folders you can create additional subfolders to organize your
projects and project templates.

Task: Publish a Project

See "How to Save Changes to a Project” in the Oracle Fusion Middleware Business Process
Composer User’s Guide for Oracle Business Process Management for information on how to
publish a project to the BPM repository.

7.5 Deploying an Oracle BPM Project

After creating a new BPM project, you must deploy it to runtime in order for the
BPMN processes contained within it to be accessible to Oracle Fusion applications.

After customizing a project and publishing it, you must deploy the project to runtime.
After the project is deployed, the BPMN processes within it are accessible to the
Fusion applications that implement them.

Task: Deploy a BPM Project

The first time you deploy a new BPM project, you must export it as a SAR file. A SAR
file is an archive of a SOA composite application that, like a BPM project, contains all
of the required resources of a deployable application.

See "How to Export a Project as a SAR File" in the Oracle Fusion Middleware Business
Process Composer User’s Guide for Oracle Business Process Management.

After the project is exported as a SAR file, your system administrator must deploy it to
runtime using Oracle Enterprise Manager. See the Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite
for more information.

Task: Re-deploy a BPM Project

After the initial deployment of a BPM project, you can redeploy the BPM project
containing any additional customizations you need to make. You can redeploy the
BPM project to runtime directly from Business Process Composer.

Note: If you want to revise the BPMN processes within a previously
deployed BPM project, you must deploy the revised BPM project
using the identical name of the original deployed project.

Any changes you have previously made to a deployed, running
BPMN processes using Oracle SOA Composer or Oracle BPM
Worklist will not be preserved after redeploying the BPM project.

Customizing and Extending BPMN Processes 7-9

Configuring BPMN Processes within an Oracle Fusion Application

See "How to Deploy a Project to Run Time" in the Oracle Fusion Middleware Business
Process Composer User’s Guide for Oracle Business Process Management for information on
deploying a BPM project to runtime.

Business Process Composer uses the Deployer role to enable users to deploy projects
directly to Oracle BPM run time. This is a role used specifically by Business Process
Composer. When a user is assigned the Deployer security role, the Deploy Project
option is available from the Tools menu.

Note: You may want to deploy a BPM project using the same name
as the project and project template to make it easier to associate the
deployed project with its design time version.

Task: Configure Fusion Applications to Use Business Processes

After deploying a BPM project, you must use CRM Application Composer to add an
object workflow that conditionally responds to a record modification event for the
business object. This enables the business object to call the corresponding BPMN
process. See Section 7.6, "Configuring BPMN Processes within an Oracle Fusion
Application" for more information on integrating BPMN processes within an Oracle
CRM application.

7.6 Configuring BPMN Processes within an Oracle Fusion Application

After deploying a BPM project you must configure an Oracle Fusion application to use
the BPMN processes. After a BPM project is deployed, you must use CRM Application
Composer to add an object workflow that conditionally responds to a record
modification event for the business object. See Section 4.2, "Editing Objects" for more
information on adding object workflows.

7-10 Extensibility Guide

8

Customizing Reports and Analytics

This chapter describes how to use Oracle Business Intelligence to customize and
extend reports and analytics for Oracle Fusion Applications, including customizing
Oracle BI Publisher layouts and data models, customizing Oracle Bl EE analyses and
dashboards, and extending the Oracle BI Repository.

This chapter includes the following sections:
= Section 8.1, "About Customizing Reports and Analytics"
= Section 8.2, "Customizing Reports"

= Section 8.3, "Customizing Analytics"

8.1 About Customizing Reports and Analytics

In Oracle Fusion Applications, reports and analytics are built using Oracle Business
Intelligence:

= Reports are built with Oracle Business Intelligence Publisher (BI Publisher) and
are usually highly-formatted, detailed documents.

= Analytics are analyses and dashboards built with Oracle Business Intelligence
Presentation Services. Analyses are queries based on real-time, transactional or
operational data that provide answers to business questions. Dashboards provide
personalized views of corporate and external information. A dashboard consists of
one or more pages that contain content, such as analyses, links to websites, BI
Publisher reports, and so on.

8.2 Customizing Reports

This section describes how to use Oracle Business Intelligence Publisher to customize
and extend reports for Oracle Fusion Applications. It includes the following sections:

= Section 8.2.1, "About Customizing Reports"
= Section 8.2.2, "Customizing Layouts"

= Section 8.2.3, "Customizing Data Models"

= Section 8.2.4, "Creating Custom Reports"

= Section 8.2.5, "Adding Translations"

= Section 8.2.6, "Tasks Required to Run Custom Reports with Oracle Enterprise
Scheduler Service"

= Section 8.2.7, "Securing Custom Reports and Related Components"

Customizing Reports and Analytics 8-1

Customizing Reports

= Section 8.2.8, "Making Reports Available to Users in the Reports and Analytics
Pane"

8.2.1 About Customizing Reports

Reports extract the data from your applications and present it in the formats required
for your enterprise. Reports provide the information you need for internal operations
and statutory compliance; reports also provide the business documents for
communicating with your customers. Many product-specific reports are provided
with Oracle Fusion Applications; for example, the invoice register, the pick slip report,
the payroll summary, the journals report, and the customer credit memo. To meet the
specific needs of your enterprise, you may need to customize the reports provided or
you may need to create new reports to capture and present different data.

Understanding the BI Publisher reporting architecture will help you to understand the
report customization scenarios and tasks. A report in BI Publisher consists of the
following components:

= A data model that defines the data source, data structure, and parameters for the
report. A data model can be used by multiple reports. Each report has one data
model.

= One or more layouts to define the presentation, formatting, and visualizations of
the data. A report may have multiple layouts of the data model.

= A set of properties that specify runtime and formatting options
Optionally, a report may also include:

s Translations to provide localized versions of a report

8.2.1.1 About Tasks Required When Customizing Reports That Are Submitted by
the Oracle Enterprise Scheduler

Many Oracle Fusion applications use the Oracle Enterprise Scheduler to submit report
requests to BI Publisher. For reports that require parameter value input from users, the
Oracle Enterprise Scheduler uses a parameter view object to collect and validate
parameter values to send to BI Publisher.

After you customize the report in BI Publisher, additional tasks are required to set up
the Oracle Enterprise Scheduler job definition to run your report from Oracle Fusion
applications. If your report customization includes customizing parameters that are
passed to BI Publisher, you will likely need to customize the parameter view object.

This chapter highlights the additional tasks required for these related components,
however, you must also reference the following documents for full descriptions of
how to customize them and how to configure the Oracle Enterprise Scheduler job
definition to integrate the parameter view object:

= For customizing Oracle Enterprise Scheduler job definitions, see Chapter 14,
"Customizing and Extending Oracle Enterprise Scheduler Jobs" and the chapter
"Working with Extensions to Oracle Enterprise Scheduler" in Oracle Fusion
Applications Developer’s Guide for Oracle Enterprise Scheduler

s For information on how to customize view objects in Oracle Fusion Applications,
see Chapter 11, "Customizing and Extending ADF Application Artifacts"

» For the full description of view objects and creating them in JDeveloper, see the
chapter "Defining SQL Queries Using View Objects" in the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

8-2 Extensibility Guide

Customizing Reports

8.2.1.2 What You Can Customize

In many cases, BI Publisher reports delivered with Oracle Fusion Applications will
contain the appropriate data elements you expect, but may not provide the
presentation of the data just as you would like it. BI Publisher enables you to
customize the layouts for reports leveraging the prebuilt data models. If the reports
provided by Oracle Fusion Applications do not include the data you require, you can
create a new report based on a custom data model.

Important: Do not edit the predefined report objects. If you change a
report and a subsequent patch includes a new version of the report,
the patch overwrites any customizations. If subsequent patches do not
include a new version of the report, the customizations are retained.
When customizing reports, always make a copy of the original object
and edit the copy.

Some common report customization scenarios are:

Customization Use Case Described in

Edit the layout of a report provided with an "Customizing Layouts" on page 8-6
application

For example: Add your company logo to the
Receivables Credit Memo report.

Add a new layout to a report provided with "Customizing Layouts" on page 8-6
an application

For example: Design a new form letter users
can select when they run the Receivables
Credit Memo.

Create a new report based on a data model "Creating Custom Reports" on page 8-23
provided with an application

Edit a data model provided with an "Editing Existing Data Models" on page 8-21
application

For example: Add a field to a data model
Create a new data model "Creating a New Data Model" on page 8-22

For example: Define a new query against
Oracle Fusion applications tables

Create a new report based on a custom data "Creating Custom Reports" on page 8-23
model

8.2.1.3 Related Report Customization Tasks

Depending on how a report is implemented in Oracle Fusion applications and the type
of customization you make you may also have to perform additional tasks to
implement your custom report in the system.

If you create a new report and you wish to schedule this report through Oracle
Enterprise Scheduler Service, you must create an Oracle Enterprise Scheduler Service
job for the report. If you require Oracle Enterprise Scheduler to send parameter values
to the BI Publisher report via a parameter view object, you must also create the view
object.

If you create a custom layout and you require translations of the layout, you must also
provide the translations. Oracle Business Intelligence Publisher provides a tool for

Customizing Reports and Analytics 8-3

Customizing Reports

extracting the translation file for some layout types. The translation file can be
translated into the required languages then uploaded to the report.

Table 8-1 Related Report Customization Tasks

Related Report Customization Task Described in

Create the Parameter View Object for Oracle "Customizing Parameters for Reports
Enterprise Scheduler Service Submitted Through Oracle Enterprise
Scheduler" on page 8-25

Create the Oracle Enterprise Scheduler "Tasks Required to Run Custom Reports

Service job definition and job with Oracle Enterprise Scheduler
Service" on page 8-24

Provide translations "Adding Translations" on page 8-24

Secure reports and related components "Securing Custom Reports and Related

Components" on page 8-26

8.2.1.4 Tools for Customizing Reports

Customize reports either within the Oracle BI Publisher application or using one of the
tools or applications listed in Table 8-2. For the list of certified versions of third-party
applications see "System Requirements and Certification" in the Oracle Fusion
Middleware Report Designer’s Guide for Oracle Business Intelligence Publisher.

Table 8-2 Tools for Customizing Report Components

Component Tool for Customizing

Report Data Model BI Publisher’s data model editor

Report properties BI Publisher’s report editor

Layout See Table 8-3, " Tools for Customizing Layouts"

The following table shows the tools required to customize each template type:

Table 8-3 Tools for Customizing Layouts

Layout Template Type Tool for Customizing

RTF template Microsoft Word with BI Publisher’s Template Builder
for Word

BI Publisher template (XPT) BI Publisher’s layout editor

PDF template Adobe Acrobat Professional

Excel template Microsoft Excel with BI Publisher’s Template Builder
for Excel

eText Template Microsoft Word

8.2.1.5 Before You Begin Customizing Reports

Before you customize reports, you should be familiar with the Oracle Fusion
application architecture that enables customization, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with runtime customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

In addition, be familiar with the following BI Publisher-specific requirements:

8-4 Extensibility Guide

Customizing Reports

Ensure that you have proper permissions for editing and creating Oracle
Business Intelligence Presentation catalog objects

An administrator must grant you the BIAdministrator role (or a role that includes the
BIAdministrator role) as well as write permissions on objects in the catalog that you
will be editing.

For more information about setting permissions in the catalog, see "Managing Objects
in the Oracle BI Presentation Catalog" in the Oracle Fusion Middleware User’s Guide for
Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).

Understand how the patching process for catalog objects impacts
customizations

If a patch includes an update to a catalog object that was delivered with an Oracle
Fusion application (for example, the Payables Invoice Register report) the patch will
overwrite any customizations applied to the original report. To avoid overwriting a
customization, do not customize a predefined Oracle Fusion application object in
place; create a copy of the object and customize the copy.

Understand how permissions are set for and inherited by catalog objects

For a user to view a report, the user’s role must have read permissions on every object
referenced by a report. Permissions can be inherited from the folder in which the
object resides.

For ease of maintenance, Oracle recommends that you place customized reports
within the same folder as the original; or, if creating a new report that you place it
within the same folder as other reports for the same job role.

If you choose to create new folders, bear in mind the catalog security permissions
required (see "Managing Objects in the Oracle BI Presentation Catalog" in the Oracle
Fusion Middleware User’s Guide for Oracle Business Intelligence Enterprise Edition (Oracle
Fusion Applications Edition)).

Be aware of any application-specific guidelines for customizing reports

See product-specific documentation from Oracle Enterprise Repository available from
Oracle Support.

Be aware of property settings that determine how the report can be run and
viewed

Some reports are configured to run only through an external application or through
the Oracle Enterprise Scheduler. While customizing a report, you may want to
configure it temporarily for viewing online to facilitate testing. See Task: Review
Report Settings for Online Viewing for information about these settings.

Know how to navigate to Oracle Business Intelligence Presentation catalog
objects

Navigate to the Oracle Bl Presentation catalog as follows:

On the Navigator, under Tools, click Reports and Analytics. In the Reports and
Analytics pane, click Browse Catalog.

Alternatively, log in to Oracle Business Intelligence directly (example:
http:/ /host:port/analytics /saw.dll).

Oracle Fusion Applications reporting objects are organized by product family in the
catalog typically as follows:

= Top Level: Shared Folders

Customizing Reports and Analytics 8-5

Customizing Reports

Product Family Folder (example: Financials)

* Product folder (example: Payables)

--Report group folders (example: Invoices)
-- Reports

-- Data Model folder

Figure 8-1 BI Presentation Catalog

ORACIE Business Intelligence

Catalog
User View ~ [@ B eh 7 (i~ i~ 38 [5] [| Leeation| fshared Folders/Financals/Payables/Invoices
|= Folders Tl i|Type Al ~ |sort |Name A-Z | [[] show Mare Details
& (23 Shared Folders ~ e m— i
. = Data Models | Last Modified 6/17/11 12:09 AM | Created By System Account Bl Publisher Data &
& [customer Data Management Model Folder
& [JEnterprise Contracts Expand | More v
& EDFinandals a
& [Subject Area Contents D Prompts | Last Modified 6/17/11 12:04 AM | Created By System Account
& [Dashboards 2 Expand | More
[Analytic Library
@ [Cash Management D Report Components | Last Modified 5/17/11 12:05 AM | Created By System Account
@ [Collections 9 Expand | More v
[)Expenses
& [Fixed Assets Payables Invoice Audit Listing | Last Modified 6/17/11 12:04 AM | Created By System Account Other Bl
[ZJFusion Accounting Hub 99 Expand | Open | Edit | More v Objects
@ [General Ledger
@ [Intercompany Accounting Payables Invoice Register | Last Modified 6/17/11 12:04 AM | Created By System Account
& [E3Payables S2) Expand | Open | Edit | More v
i [J)Data Models
i [Income Tax and Withh T Payables Negative Supplier Balance Report | Last Modified 6/17/11 12:04 AM | Created By System Account
Invoices Expand | Open | Edit | More v
Payables to Ledger Re
Payments v = Import Payables Invoices | Last Modified 6/17/11 12:09 AM | Created By System Account .
@ Import Payables Invoices Bl Publisher
i [Period Close R
& [Dprepayments Edit | More v eports
& [JPayments Payables Invoice Aging Report | Last Modified 5/17/11 12:03 AM | Created By System Account
[JJReceivables b

B

& Invoice Aging Report

T 1 Edit | More v
| Tasks | P | ted | "
. Payables Invoice Register | Last Modified 7/13/119:15 AM | Created By System Account
Invoices Lol . eg 713 y Sy
. . [T e 7] nvoiceRegister

123 Bxpan renve Open | Edit | More v

E)rss [E] unarchive

38 Delete B Upload

Copy % Properties

(=@ Rename (A Permissions

&P Create Shortcut

8.2.2 Customizing Layouts

The layout defines the presentation of the report data. All reports delivered with
Oracle Fusion Applications include at least one predefined layout template file that
defines the presentation components (such as tables and labeled fields) and maps the
elements from the data model to these components. The layout also defines font sizes,
styles, borders, shading, and can also include images, such as a company logo.

To customize a layout, you edit the layout template. BI Publisher supports several
types of templates to support different report layout requirements. Most of the
templates delivered with Oracle Fusion Applications are rich text format (RTF)
templates created using Microsoft Word. Some predefined templates are BI Publisher
layout templates created using BI Publisher’s layout editor. These are for interactive
and more visually appealing layouts. A third type is the eText template, which is used
specifically for electronic data interchange (EDI) and electronic funds transfer (EFT).

BI Publisher templates can also be created using Adobe PDF, Microsoft Excel, Adobe
Flash, and XSL-FO.

Some examples of layout customizations are:

L

Style changes only, no changes to data mapping

This is the simplest type of customization. Examples are removing the predefined
logo from the report and inserting your own or simply modifying colors and font
styles. For these changes you can download the predefined template and edit it.

8-6 Extensibility Guide

Customizing Reports

Because there are no changes to the data mapping, style changes do not require
sample data from your report, however, having sample data available will enable
testing of the template from your desktop.

s Changes to mapped data elements within the existing layout

An example of this type of customization is adding or removing a table column or
data field from the report layout. For these changes you must have sample data to
load to the layout editing tool. You can download the predefined template, load
your sample data, insert the required elements, preview your template, then
upload your customized template back to the report definition.

= New presentation of the data

To create a new layout, start by opening the layout editing tool and loading the
sample data to begin designing your custom layout.

Task: Generate Sample Data from the Report

The layout tools require sample data to enable the mapping of data fields to layout
components in the report. You can generate sample data in the following ways:

s From the report data model
» From the report viewer
To generate sample data from the data model:

1. Navigate to the report data model in the BI Presentation catalog and click Edit.

Tip: If you are not sure which data model is the source for a
particular report, click the report Edit link. The data model is
displayed in the upper left corner of the report editor.

2. In the data model editor, click Get XML Output as shown in Figure 8-2.

Figure 8-2 Getting XML Output from a Data Model

ORACLE Business Intelligent

@ Advanced signout O

Administration | Help ~

InvoiceRegisterDm Home | Catslog | Dashboards ~ | [Mew ~ | B® Open + | SignedIn As Provisioning Patch Application Identity +
MG
= Data Model pronerts 2
voperties st ovout
=1 Data Model ~ Get XML Output
Description
=| Data Sets
@ Q_invoice
= Event Triggers Default Data Source | ApplicationDB_FSCM + | Refresh Data Source List
¥ erReportTriggel
E"aﬂ_rR.pm riager Oracle DB Default Package |AP_APXINRIR_XMLP_PKG
eforeRenortTrigger
T veforeRenortTri

3. Enter values for any required parameters, select the Number of rows to return,
and click Run.

4. To save the sample data to the data model, click the Actions menu and then click
Save As Sample Data, as shown in Figure 8-3:

Customizing Reports and Analytics 8-7

Customizing Reports

Figure 8-3 Saving Sample Data to a Data Model

0 A Administration | Help + | Sign Out (@]
Signed In As Provisioning Patch Application Identity
P_MIN_PRECISION Return & |(2)
P_ENTRY_PERSOMN Export XML
JCOUNTING_PERIOD Save As Sample Data

I+
B Get Data Engine Log 't

DRT_BY_ALTERNATE

If you are designing an RTF template, you may also wish to Export the XML to
save the file to a local client for use with the Template Builder for Microsoft Word.

5. Click Return. Then save the data model.

To save sample data from the report viewer:

1. Navigate to the report in the Business Intelligence catalog.

2. Click Open to run the report in the report viewer with the default parameters.
3. On the Actions menu, click Export, then click Data.

4. Save the data file.

Task: Make a Copy of the Original Report
Navigate to the report in the BI Presentation catalog. To make a copy:

1. Select the report by clicking anywhere in the row. On the catalog toolbar, click
Copy as shown in Figure 8—4:

Figure 8—-4 Copying a Predefined Report in the Bl Presentation Catalog

ORACLE" Business Intelligence

Catalog

User View ~ @,E‘“ = Feh 2 e T R | | | Location /Shared Folders/Financia
=l Folders ’E@ Type | Al et bame A-Z ~ | [she
DMy Folders -~ ==

= (23 shared Folders Edit | More ~
D Customer Data Management

B Enterprize Contracts Import Payables Invoices | Last Modified 8/19/2011 5:4

EQ

o B Finandials Import Payables Invoices
[Subject Area Contents Sllss
[#% Dashboards T Payables Invoice Aging Report | Last Modified 8/19/20:
[analytic Library Invoice Aging Report
[Jcash Management Edit | Mare v

(2] Collections
B Expenses Payables Invoice Register | Last Modified 8/23/2011 2:5
[IFixed Assets Invoice Register
(23 Fusion Accounting Hub Edit | More
B 3 General Ledger

[Account Analysis

(23 Journals

[E) Setup

[rial Balances
Q Intercompany Accounting

EA

Payables Key Indicators Report | Last Modified 8/19/2C
Payables Key Indicators Report
Edit | More ~

EQ

Payables Matched and Modified Receipts Report | Lz
Matched and Modified Receipts Report

]

2. Click Paste to place the copy in the current folder. When you paste into the same
folder, the copy is created as "copy of original report”.

3. Rename the copied report. For example: Payables Invoice Register Custom, as
shown in Figure 8-5

8-8 Extensibility Guide

Customizing Reports

Figure 8-5 Renaming the Copied Report

Rename (]

Mame Payables Invoice Register Custom

[Preserve references to old name of this item,

| Help OK | Cancel |

4. (Optional) Update the report description. In the catalog, click the Edit link. In the
report editor, click the Properties link at the top of the page. Enter the Description
for your report, for example: "Payables invoice register report with custom

layout".

Task: Review Report Settings for Online Viewing

Some reports are configured to view only through an external application or through
the Oracle Enterprise Scheduler. If you wish to view your report online while you are

customizing it, ensure that the following properties are set as noted.

= Report Properties Settings

= Run Report Online - must be enabled

= Report is Controlled by External Application - must be disabled

To navigate to the report Properties dialog;:

1. Navigate to your report copy in the catalog and click Edit.

2. In the report editor, click the Properties link at the top of the page.

3. In the Properties dialog, select Run Report Online and clear Report is
Controlled by External Application. These properties are shown in

Figure 8-6.

Figure 8-6 Report Properties Dialog

Report Properties

Scnerﬂ\Cad’\'ng Formatting | FontMapping | Currency Format

Description

——— Run Report Online

Show Controls

Allow Sharing Report Links
Open Links in New Window
[] Asynchronous Mode

Auto Run

Excel Analyzer ¢ Offiine Mode
(& Online Mode
Advanced [Enaple Bursting | v

_.- [] reportis Controlled by External Application

Users cannot run or schedule report from catalog, can view history

Enterprise Scheduler Job Package Name

Enterprise Scheduler Job Definition Name

Customizing Reports and Analytics 8-9

Customizing Reports

= Layout Setting
The layout setting View Online must be enabled.
To view the layout settings:

In the report editor, click View a List. Ensure that the View Online property is
enabled.

Task: Edit or Create the Layout
To design an RTF layout, see Section 8.2.2.1, "Customizing RTF Templates."

To design a layout using the BI Publisher layout editor, see Section 8.2.2.2,
"Customizing BI Publisher Templates."

To design one of the other supported layout types, see the corresponding chapter in
the Oracle Fusion Middleware Report Designer’s Guide for Oracle Business Intelligence
Publisher:

n Creating PDF Templates
» Creating Excel Templates

» Creating eText Templates

Task: Upload the Template File to the Report Definition

If you created a layout using the layout editor, the layout is automatically saved to the
report definition and you can skip this step. For all other layout types upload the
template file to the report definition as follows:

1. Navigate to your custom report in the catalog and click Edit.

2. On the report definition page, click View a List. On the table that lists the layouts,
click Create (the "+" button).

3. Click Upload to upload the template file from your local directory.

4. Save the report definition.

Task: Configure the Layout Settings

Tip: To hide the original layout from users, clear the Active box.

To view or edit the current settings applied to a layout:

1. In the report editor, click View a List. The List View is shown in Figure 8-7

Figure 8-7 Report Layouts Shown in the List View

ORACLE Business Intelligence
Payables tnvowe iegiter Castom

[T S . |

Lanyoul

opiy Sty Tomplate a
[F

Hame Tempiate Fle Ty Dutput farmats e Defaut Layout Apoly Style Template Acive Vew Unne Locske

Inwgice Regiser Repor swocstegstmiepert et |rif | HIMLSDRATF Exon, v | [HTML - o u] O O g

Custom Invaice Reqiste| invoceRegstarfieport crtfrtf | HIMUPDFRTE Dol | HTML » o] = & | trgen

Set the following properties for your custom layout:

s Output Formats

8-10 Extensibility Guide

Customizing Reports

Output formats are the file formats available for the generated report, such as
PDF, HTML, RTF, Excel. Depending on the requirements of a report you may
want to limit the output formats available to users. The output formats available
will depend on the Template File Type.

s Default Output Format

If multiple output formats are available for the report, the default output format
will be generated by default when the report is run in the report viewer.

s Default Layout

If multiple layouts are available for the report, the default layout will be presented
first in the report viewer. One and only one layout must be selected as the default
layout.

= Apply Style Template

If a style template is assigned to this report, use this field to apply the style
template to the layout.

s Active

Active layouts are displayed to report consumers. Inactivate the layout to make it
unavailable to report consumers.

s View Online

Layouts that can be viewed online are available to report consumers from the
report viewer. If this property is not checked, the layout is available only for
scheduled jobs.

Task: Delete a Layout
To delete a layout from the report:

1. In the report editor, click View a List.

2. Locate the layout that you wish to delete in the table and click anywhere within its
row to select it.

3. Click the Delete toolbar button. Click OK in the confirmation dialog.

Task: (Conditional) Create the Oracle Enterprise Scheduler Job to Run the
Custom Report

If this report replaces a report that relies on an Oracle Enterprise Scheduler job for
submission, you must create a custom Oracle Enterprise Scheduler job to point to your
report copy. See Section 8.2.6, "Tasks Required to Run Custom Reports with Oracle
Enterprise Scheduler Service."

Task: (Conditional) Enable Access to the Report Through the Reports and
Analytics Pane

See Section 8.2.8, "Making Reports Available to Users in the Reports and Analytics
Pane."

8.2.2.1 Customizing RTF Templates

Most templates delivered with Oracle Fusion Applications are RTF templates. An RTF
template is a rich text format file that contains the layout instructions for BI Publisher
to use when generating the report. RTF templates are created using Microsoft Word.
BI Publisher provides an add-in to Microsoft Word to facilitate the coding of layout
instructions. For more information see the chapter "Creating RTF Templates Using the

Customizing Reports and Analytics 8-11

Customizing Reports

Template Builder for Word" in the Oracle Fusion Middleware Report Designer’s Guide for
Oracle Business Intelligence Publisher.

Note: If you are designing a new layout for the report, consider
using the BI Publisher layout editor. The layout editor is an online
layout editing tool launched from the report editor. See Section 8.2.2.2,
"Customizing BI Publisher Templates."

Before you begin:

Ensure that your local client has a supported version of Microsoft Word. BI Publisher
provides the Template Builder for Microsoft Word to facilitate RTF template design.
Download the tool from the Oracle Business Intelligence home page. For more
information see the chapter "Creating RTF Templates Using the Template Builder for
Word" in the Oracle Fusion Middleware Report Designer’s Guide for Oracle Business
Intelligence Publisher.

Task: Download the Template File
If you are creating a new layout, skip this step.

If you are modifying a predefined layout, navigate to the report in the catalog and
click Edit. In the report editor, click the Edit link of the layout to download the RTF
file to your local client, as shown in Figure 8-8:

Figure 8-8 Downloading the Predefined Layout

ORACLE" Busin E Help ~ | signout O
Payables Invoice Register Custom.xdo E new

Data Model InvoiceRegisterDm Q [at7] Parameters Properh‘es \ﬁew Report | % | '@

Search G

Dashboards

Home | Catalog

View Thumbnails | View a list

Eﬂ' Add MNew Layout

Invoice Register Report

% Properties | Delete

Task: Edit the RTF File in Microsoft Word

Open the downloaded RTF template file in Microsoft Word; or, if you are creating a
new template, open Microsoft Word.

Load the sample data to the Template Builder for Word Add-in.

Edit or create the layout following the guidelines in the Template Builder help or in
the chapter "Creating RTF Templates Using the Template Builder for Word" and
"Creating an RTF Template" in the Oracle Fusion Middleware Report Designer’s Guide for
Oracle Business Intelligence Publisher.

Ensure that you save the file as Rich Text Format (rtf).

8-12 Extensibility Guide

Customizing Reports

Task: Upload the Template File to the Report Definition

In the catalog, open the report in the report editor and click View a List. On the table
that lists the layouts, click Create (the "+" button). Click Upload to upload the RTF file
from your local directory as shown in Figure 8-9.

Figure 8-9 Uploading the Template File

Upload Template File (]

*Layout Name |custom Invoice Register

*Template File |C:\Document5 and Seﬂir” Browse_]

*Type [RTF Template v]
Tosle fEnglsh]

Upload Cancel

Task: Add Translations for the Layout
If this report requires translations, see Section 8.2.5, "Adding Translations.".

8.22.1.1 Customizing an RTF Template: Examples This section includes two examples of
RTF template customizations:

s Changing the Inserted Logo in a Predefined Template

s Customizing an RTF Template Using an Existing Data Model

Example 8—1 Changing the Inserted Logo in a Predefined Template

The Payables Invoice Register report layout includes a standard logo in the report
header. To change the inserted logo using Microsoft Word 2007:

1. In Microsoft Word, delete the Oracle logo as shown in Figure 8-10.

Figure 8—-10 Selecting the Oracle Logo Prior to Deletion

I.-’E;‘\-.._ H=-43 - temp.rtf [Compatibility Mode] - Microsoft Word Table Tox
W i)
—/ Home Insert Page Layout References Mailings Review View Acrobat BIPublisher Design
|5 Header - :: 1 [El Quick Parts ~ T E E Previous Section Different First Page
= Footer - — @ Picture 5 Ty Mext Section Different Odd & Even Pag
Date Goto Goto
|#] Page Number = || & Time |_§| Clip Art Header Footer 23 Link to Previous V| Show Document Text
Header & Footer Insert Mavigation Options
=
DRACLET Payables Invoice Register

ection 1- | ACPReport Parameters

Business Unit | COMPANY_NAME_PARAM
Supplier Name | SUPFLIER_MNAME_PARAM
Invoice Type | INVOICE_TYPE_PARAM
Invoice Group | BATCH_FARAM
Entered By | ENTRY_PERSON_PARAM
From Entered Date | START_DATE_PARAM [ToE
Accounting Period | ACCOUNTING_PERICD_PARAM
CanceledInvoices Only | CANCELLED_INVOICES_ONLY_PARAM
UnvalidatedInvoices Only | UNAPPROVED_INVOICES_ONLY_PARAM

2. On the Insert tab in the Illustrations group click Picture. Select your company
logo image file to insert it to the Word document. Resize the image as necessary.
An example is shown in Figure 8-11.

Customizing Reports and Analytics 8-13

Customizing Reports

Figure 8-11 Inserting the Logo in Microsoft Word

I'ﬁﬂ H®-wu = InvoiceRegisterReport.rtf [Compatibility Mode] - Microsoft Word Table Tot
il
- Home Insert Page Layout References Mailings Review View Acrobat EI Publisher Design
@ Egg Log Off Upload Template As ¥ giw XML Schema i jj ab| Field Conditiona
Cpen Save XML Data == | J Table/Form Conditiona
Log . Sample Table Pivot Chart X X
on :-_.'ﬂ Upload Template XML Wizard Table Repeating Group All Fields
Online Load Data Insert
+
My New LoYo Payables Invoice Register

=2C_COMPANY_NAME_HEADER?=

] ACPReport Parameters

Business Unit | COMPANY_NAME_PARAM
Supplier Name | SUPFLIER_MNAME_PARAM
Invoice Type | INVOICE_TYPE_PARAM
Invoice Group | BATCH_FARAM
Entered By | ENTRY_PERSON_PARAM
From Entered Date | START _DATE PARANM [ToE
Accounting Period | ACCOUNTING_PERIOD_PARANM
CanceledInvoices Only | CANCELLED_INVOICES_OMLY PARAM
UnyvalidatedInvoices Only | UNAPPROVED INVOICES OMLY PARAM

Tip: If the template file includes section breaks, you must insert the
new logo for each section header.

3. If you downloaded sample data, you can test the template on your desktop: On
the BI Publisher tab, in the Preview group click PDF. The Template Builder will
apply the sample data you loaded and generate a PDF output document, as shown
in Figure 8-12:

Figure 8—12 Preview of Custom Layout Template

FaportDate. 26-Mar-2011 0719
My New Loyo Payables Invoice Register
Page 1ol
Comuncy CAD
Ivics Geongp 2BLA INV GROUP 12
Swpplier Name Standard revicn Type Staretand e Pooenaioing 4,000.00
Irvoice Mumbbes 200 BIVS), 15 Irvoien Date 181302010 Cvighnal & MO0
Dvscaipticn Z84A_Sp Tesicasa 125
Vi B 1
Line Type hom

Line Amoent 1400000
Line Description 2BUA_Sp Testease 12.5

Datritaation Tistibaition Type == T Amourt. Tncome Tax Typs | Accousted
T Tem AT TA OO BRI | TH-Jan-0 T Frocessed
7 o 5 TR | 8-Jars 2070
T Tiom S TA 000000 TR | Tl 2010 Processed
T o TR | T8-Jars 2070
T o T TI00 TR | 8T 070
T Tiom T TA 000000 TR | Tl 2010 Processed
o T |
Tiom T TI-0000-000 TR | Tl 2010 Processed
o B T |
Tiom T TID000-000 TR | Tl 2010 Processed
o - T |
Tiom A TA 000000 TR | Tl 2010 Processed
o : T |
Tiom LT TA 000000 TR | Tl 2010 Processed
o T |
Tiom S TAT000000 TR | Tl 2010 Processed
o T |
Tiom AT TA 000000 TR | Tl 2010 Processed
3 o T |
p- Tiom S TA 000000 TR | Tl 2010 Processed
3 o B T | I
= Tiom L TA 000000 TR | Tl 2010 Processed y
b o By, T |
7 Tiom T TAT000000 TR | Tl 2010 Processed
7 o 0 TG00 T | 8-Jars 2070
[Sammmary

Example 8-2 Customizing an RTF Template Using an Existing Data Model

This example demonstrates the general steps for customizing an RTF template using
an existing data model. In this example, the Payables Invoice Register data model is
used to create a new layout to display a summary for each currency. This example
demonstrates general report layout concepts and features of the BI Publisher Template

8-14 Extensibility Guide

Customizing Reports

Builder for Microsoft Word. Follow the steps in this topic and the guidelines in Oracle
Fusion Middleware Report Designer’s Guide for Oracle Business Intelligence Publisher.

The final report layout is shown in the following figure:

Invoice Register Summary Report : Vision Operations 711712011
Currency: CAD
Supplier Invoice Date Invoice Amount Amount Remaining
Company 789 INVO0012398756 171472010 1,000.00 1,000.00
Company 123 CO123 INVSp 125 1/18/2010 14,000.00 14,000.00
Company 123 CO123 Inv 1 172212010 5,000.00 5,000.00
CV SuppA04 CO123 INVSp 084 1/8/2010 16,000.00 16,000.00
Curmrency Tatal Remaining: 36,000.00
Currency: EUR
Supplier Invoice Date Invoice Amount Amount Remaining
Company 789 INVO0012398756 171472010 1,000.00 1,000.00
Paper Supplier, Inc CO123 INVS 096 11712010 6,400.00 6,400.00
Currency Tatal Remaining: 7,400.00
Currency: GBP
Supplier Invoice Date Invoice Amount Amount Remaining
Company L KK Approval Test 2501 01 172812010 5,000.00 5.000.00
Company L KK Approval Test 2901 02 1/28/2010 2,500.00 2,500.00
Amenity Supplier 100000015121640 12/11/2009 1.00 1.00
Supplier C320 56812023 SuppC 171412010 1,000.00 1,000.00
Office Supplies, Inc. CO123 INVS 063 11712010 12,000.00 12,000.00

Currency Total Remaining: 20,500.00

To create this layout:

1. Download to your local client sample data from the Payables Invoice Register data
model (InvoiceRegisterDM).

2. In Microsoft Word, on the BI Publisher tab, in the Load Data group, click Sample
Data. Select your downloaded file and click OK.

3. Using Microsoft Word functionality, insert the page header. Type the text for the
header, and insert the field for the Business Unit as shown in Figure 8-13:

Figure 8-13 Inserting the Header to the RTF Template

‘/DD H9-0 rtrif - Microsoft Table Tools Header & Footer Tools - = x
a _— .
~ Home Insert Pagelayout References Mailings Review View Acrobat BlPublisher Design Layout Design @
E;j ;j % '3 ‘] = J IQ (54 Previous Section Different First Page 53+ Header fromTop: 037 z E
= = ® 9 = e T Next Section Different Odd & Even Pages | fhr Footer from Bottom: 0.5 :
Header Footer Page e Quitk Picture Clip || Goto Goto Close Header
= Number+ || & Time Parts~ § Header Footer 2% Linkto Frevious || [¥] Show Document Text H) Insert Alignment Tab and Faoter

Header & Footer Insert Navigation Options Position Close

|5l

2

| Invoice Register Summary Report : <?C_BUSINESS_UNIT?> | 7/17/20113

]

4. In this example, the report will repeat the table of invoices for each occurrence of
the currency code. To create this behavior, insert a repeating group based on the
element C_CURRENCY_CODE. To insert the repeating group:

a. On the BI Publisher tab, in the Insert group, click Repeating Group.

Customizing Reports and Analytics 8-15

Customizing Reports

b. In the BI Publisher Properties dialog, select the G_CURRENCY group as

shown in Figure 8-14:

Figure 8—14 Selecting a Repeating Group

Bl Publisher Properties le
Properties lSorting] Advanced]
Loop
For Each [G_CURRENCY E
~
LIST_G_BATCH =
G_BATCH
S LIST_G_VENDOR_BREAK
G_VENDOR_EREAK
Break: LIST_G_VENDOR -
G_VENDOR
v
- LIST_G_LINE
oK | Cancel |
c. To display the field value, type the text "Currency:" after the for-each tag. To

insert the element from the data: On the BI Publisher tab, in the Insert group,
click Field. The Field dialog will display. Select the C_CURRENCY_CODE
element, as shown in Figure 8-15

Figure 8-15 Inserting the Currency Code Field

(D) 96
o

Insert @

=) POF B Excel2000 = F Validate Template
(&), HTML fwj RTF Check Accessibility

— Field %
fx» Excel (i PowerPoint | growser Translation =

Home Fagelayout References Mailings

™ 4T XML Schema j
s

Table
Wizard

Review View Acrobat

ab|Field
i

[Table/Form
Chart
Repeating Group Al Fields

BIPublisher

Upload Template As =

1

Pivot
Table

+__, Oglog Off Conditional Format

/7 Open Save XML Data Conditianal Region

Log sample
on &y Upload Template XML

Online Load Data Insert Preview Tools

T 501

Invoice Register Summary Report: <?C_BUSINESS_UNIT?=

Field

for-eachCurrency: C_CURRENCY_CODE X
Find] Find Next
O P Flexdata
O Cp Start Date |
O Cp End Date
=5 ListGBu
EE3 GBu
O CBusiness Unt
=5 List G Cumency
=3 G Cumency
o
O C Lizb Accounting Flex
= (&5 ListG Batch
=5 GBatch
O CBatch Name

~

end

O C Upper Batch Name
< |

Example CAD

~| I~ On Grouping

™ Force LTR Direction

3

Caleulation

Help

Insert ‘ Close |

Use the table wizard to insert the table: On the BI Publisher tab in the Insert
group, click Table Wizard. Make the following selections:

» For the report format, select Table.
= For the Data Set select the VENDOR group.
= Select the fields to display in your table: C Vendor Name, C Invoice Num, C

Invoice Date, C Invoice Amount, and C Amount Rem, as shown in
Figure 8-16:

8-16 Extensibility Guide

Customizing Reports

Figure 8-16 Selecting Fields for the Table

Table Wizard

Which fields do you want to show in your report?

C Mls Invoice Type

C Voucher Num

C Line Number

C Line Type

C Line Description %

C Vendor Name ~ C Vendor Name
C Invoice Mum C Invoice Mum
C Vendor 5 C Invoice Date
C Invoice Amount C Invoice Amount .
C Invoice Date - C Amount Rem
C Amount Rem
N
C Invoice Type =
<

Cancel | Back | Next | Finish |

» Click Finish. The inserted table will display with the column names from the
data; also, if you preview the report, you will notice that no formatting is
applied to number and date fields.

6. Edit the column names by simply editing the text in the column header row.

7. Apply formatting to the date and number fields. To apply formatting to the date
field:

Note: This example shows simple number formatting. If your report
requires locale-driven number and date formatting, see the topic
"Number, Date, and Currency Formatting" in the Oracle Fusion
Middleware Report Designer’s Guide for Oracle Business Intelligence
Publisher.

a. Right-click the date field in the table and select BI Publisher then Properties
from the menu.

b. In the BI Publisher Properties dialog, update the following (shown in
Figure 8-17):

Set the Type to Date.
Select the date Format from the list.

Enter Text to display, for example: 8/7/2011.

Customizing Reports and Analytics 8-17

Customizing Reports

Figure 8-17 Formatting the Date Field

C Invoice Date
JoR el (e "V =B Bl Publisher Properties

Properties l Advanced]

General
Data Field |C_IN\«"OICE_DATE j
Texttodisplay |8/7/2011
Formatting
Type |Date j
Format [W/dAn] hd
dddd, MMMM dd, yyyy
Dtz Aggregation -|MMMM d, yyyy
) M/dAyy
Function yyyy-MM-dd
d-MMM-yy
Scops M/dAyyy h:mm am/pm
M/dAyyy homm:ss am/pm %

Word Properties QK | Cancel

To apply formatting to a number field:

a. Right-click the amount field in the table and select BI Publisher then
Properties from the menu.

b. In the BI Publisher Properties dialog, update the following (shown in
Figure 8-18):

Set the Type to Number
Select the number Format from the list.

Enter Text to display, for example: 999.00.

Figure 8-18 Formatting the Number Field

C Invoice Amount C Amount Rem
C_INVOICE_AMOUNT C_AMOUNT_REM E

Bl Publisher Properties

Properties]Ad\ranced]
General
Data Field |C_IN\«"OICE_:\MOUNT j

Texttodisplay [999.00

Formatting

Type

Format

Diata Aggregation
Function
Scope

Word Properties QK | Cancel |

8. To display the total for each currency, enter the text: "Currency Total Remaining:"
beneath the table, but inside the for-each / end tags. Insert the field as follows:

a. On the BI Publisher tab, in the Insert group, click Field.

8-18 Extensibility Guide

Customizing Reports

b. In the Insert Field dialog, click the "C Amount Rem" field (under the G
Vendor group).

c. Inthe Calculation field, select Sum from the list as shown in Figure 8-19

Figure 8-19 Inserting and Summing the Total Field

Currency Total Remaining: eld

Find ’7 Find Next

—-{Z= Lst G Vendor ~
=& G Vendor T

C Vendor Name

C Invoice Num

C Vendor

CInvoice Amount =

C Invoice Date

o

C Description
C Invoice Type
C Nis Invoice Type
C Vioucher Num
—-{Z= Lst G Line
--&5 G Line b
< |

Example 1000

Calculation Sum > | On Grouping

[~ Force LTR Direction

Oooooooooao

|

Insert | Close | Help

d. Click Insert.
e. Format the field as a number, as described in Step 7.

9. Perform any additional formatting of colors, fonts, borders, and text strings using
Microsoft Word functionality.

The completed template will appear as shown in Figure 8-20. To preview the template,
click the PDF button in the BI Publisher Preview group.

Figure 8-20 Finished RTF Template

(@a H9- v =
a -
- Home Insert Pagelayout References Mailings Review View Acobat | BIPublisher ©
___ g Log OFf Upload Template As 7 4ka XML Schema ﬁ jj i abl Field Conditional Format || %) PDF B Excel2000 F Validate Template
- /i1 Open Save XML Data - il [E Table/Form Conditional Region || (€}, HTML finj RTF Check Accessibility
Log Sample Table Pvot Chart = Field k
on 4 Upload Template XML Wizard Table Repeating Group Al Fields [k Excel (@ PowerPoint | growser Translation =
Online Load Data Insert Preview Tools
Ll

Invoice Register Summary Report : <?C_BUSINESS_UNIT?>

for-eachCurrency: C_CURRENCY_CODE

iSuppIier Invoice i Date i Invoice Amount | Amount Remaining
| FC_VENDOR_NAME | C_INVOICE_NUM | 8/7/2011 | 999.00 | 999.00 E

Currency Total Remaining: 899.00end

8.2.2.2 Customizing Bl Publisher Templates

BI Publisher templates are created using the BI Publisher Layout Editor - a design tool
that provides an intuitive, drag and drop interface for creating pixel perfect reports in
PDE RTE, Excel, PowerPoint, and HTML. It also provides dynamic HTML output that
supports lightweight interaction through a browser.

Customizing Reports and Analytics 8-19

Customizing Reports

BI Publisher layouts are best suited for reports of simple to medium complexity. The
interactive view is only available for BI Publisher layouts, therefore choose this layout
type when you want your report consumers to interact with the report (change
sorting, apply filters, and so on).

Before you begin:

The BI Publisher layout editor requires the data model to include sample data. To save
sample data to the data model, you must generate data according to the first option
described in "Task: Generate Sample Data from the Report".

Task: Launch the Layout Editor from the Report Definition

Navigate to the report and click Edit. Click Add New Layout. Under the Create
Layout region, click one of the Basic Templates or Shared Templates to launch the
layout editor, as shown in Figure 8-21.

Figure 8-21 Selecting a Boilerplate to Launch the Layout Editor

ORACLE" BI Publisher Enterprise

Home | Catalog

@ | Administration

E Mew Bs Open~ | SignedIn As asap~

Payables Invoice Register Custom.xdo

Data Model InvoiceRegisterDm Q Parameters Properties View Report | E | @ -
Cancel
Create Layout
Basic Templates
Blank Blank Header' and Header and
(Portrait) (Landscape) Footer Footer
(Portrait) (Landscape)
Shared Templates
1{]n..=.|. 1{]n..=.|. 1{]n..=.|. 1{]n..=.|. 1{]n..=.|.
Chart Chart and Dashboard Mobile Apple Table
Table iPhone
Upload or Generate Layout
Upload RTF, PDF, Excel, Flash, %5L Generate RTF layout based on
Stylesheet, or eText template file., selected Data Model,
Upload Generate

Task: Create and Save the Layout

Create the layout using the guidelines in the online help or in the chapter "Creating a
BI Publisher Layout Template" in the Oracle Fusion Middleware Report Designer’s Guide
for Oracle Business Intelligence Publisher. Click Save to save the layout to the report
definition.

Task: Add Translations for the Layout
If this report requires translations, see Section 8.2.5, "Adding Translations.".

8-20 Extensibility Guide

Customizing Reports

8.2.3 Customizing Data Models

A data model defines the source and structure of the data for a report. At runtime BI
Publisher executes the data model to supply the XML data for a report. Create a
custom data model when the data models supplied by your application do not
provide the data required in your report. If you need to customize the data that is
captured by the report data model, you can either edit an existing data model or create
a custom data model.

Before You Begin: Understand the Use of Parameter View Objects with Oracle
Enterprise Scheduler

If the report requires user input for parameter values and the report is submitted by
the Oracle Enterprise Scheduler to BI Publisher, the Oracle Enterprise Scheduler uses a
parameter view object to present and validate parameter values in the Oracle Fusion
application. The values are then sent by Oracle Enterprise Scheduler to BI Publisher
for execution of the data model.

In the parameter view object the parameters are defined as attributes and must be
named incrementally as ATTRIBUTE1, ATTRIBUTE2, and so on. In the BI Publisher
data model, you must define the parameters in the same order as they are defined in
the parameter view object. The mapping of the value passed by Oracle Enterprise
Scheduler to the BI Publisher data model is by order alone.

For example, in a BI Publisher data model assume you have defined the following
parameters in this order:

» P _BUSINESS_UNIT
= P_VENDOR_ID
= P _INVOICE_TYPE

In the parameter view object you must define ATTRIBUTE1 to retrieve the value for
P_BUSINESS_UNIT; ATTRIBUTE2 to retrieve the values for P_VENDOR_ID; and
ATTRIBUTES to retrieve the values for P_ INVOICE_TYPE.

Ensure that any edits you make to the ordering of parameters in the parameter view
object, the BI Publisher data model, or the Oracle Enterprise Scheduler job definition
are reflected in all places. See Section 8.2.6.2, "Customizing Parameters for Reports
Submitted Through Oracle Enterprise Scheduler."

8.2.3.1 Editing Existing Data Models

Do not directly edit a data model delivered with an Oracle Fusion application. Instead,
make a copy and edit the copy. To ensure that the proper privileges are inherited by
the copied object, maintain the copy in the same folder as the original.

Task: Copy the Existing Data Model
Navigate to the data model in the BI Presentation catalog. To make a copy:

1. Click anywhere in the object’s row to select the data model.

2. On the catalog toolbar, click the Copy toolbar button; then click the Paste toolbar
button to paste the copy into the same folder.

3. To rename the copy, click the More link, and then click Rename. Enter the new
name, for example: InvoiceRegisterDM Custom.

Customizing Reports and Analytics 8-21

Customizing Reports

Task: Customize the Data Model in the Data Model Editor

Click the Edit link in the catalog to open the data model in the data model editor. See
"Using the Data Model Editor" in the Oracle Fusion Middleware Data Modeling Guide for
Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition) for general
information about using the data model editor and the specific chapter for the
component you wish to edit, for example:

To add or delete a field from the SQL query, see the topic "Editing an Existing
Data Set" in the chapter "Creating Data Sets."

To add or delete a bursting definition, see the chapter "Adding Bursting
Definitions."

To edit parameters, see "Adding Parameters and Lists of Values."

Important: If the report will use the Oracle Enterprise Scheduler to
collect parameter values from end users, then the parameter logic, list
of values and display attributes that are presented in the application
interface are defined in a parameter view object and the Oracle
Enterprise Scheduler job definition. The parameter values are then
passed to BI Publisher when the job is submitted.

In this case, edit the parameters in the parameter view object then
ensure that the parameters in the BI Publisher data model are in the
same order as they are defined in the parameter view object. Do not
create the list of values in the BI Publisher data model for reports
submitted via Oracle Enterprise Scheduler.

8.2.3.2 Creating a New Data Model

To create a data model:

1.

Open the Data Model editor.

On the global header, click New, then click Data Model to open the data model
editor.

Configure the data model properties. For more information see "Setting Data
Model Properties" in the Oracle Fusion Middleware Data Modeling Guide for Oracle
Business Intelligence Publisher (Oracle Fusion Applications Edition).

If your data model will include event triggers you must enter the Oracle DB
Default Package.

Create the data set.

You will most likely create data sets from SQL queries against your Oracle Fusion
application data tables. The data model editor also supports using an Oracle BI
analysis as its source of data as well as entity view objects created in Oracle
JDeveloper. See "Creating Data Sets" in the Oracle Fusion Middleware Data Modeling
Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition) for
more information about all supported data set types and how to create them.
Figure 8-22 shows the menu of data set types available.

8-22 Extensibility Guide

Customizing Reports

Figure 8-22 Creating a SQL Data Set

ORACLE" BI Publisher Enterprise

() Administration

Help~ | Signcut O

Home l::"ataln:ng E New-~ | B Open~ | SignedIn As
= O]
= Data Model
&l Data Model Disurem) Strucire | Code
& |Data Sets L R
El Event Triggers SQL Query
[Flexfields EMDX Query {b ! =
= List of Values Orade BI Analysis I
El Parameters E\u‘iew Object
E Bursting HWeb Service
LDAP Query
[k XML File
Microsoft Excel File
HTTP (XML Feed)

5. Create the optional components.
A data model can include the following components:
= Event triggers
= Flexfields
= Lists of values

s Parameters

Important: See "Before You Begin: Understand the Use of Parameter
View Objects with Oracle Enterprise Scheduler" for information about
how to define parameters in the BI Publisher data model when the
report is submitted by the Oracle Enterprise Scheduler.

= Bursting definition

See the Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence
Publisher (Oracle Fusion Applications Edition) for details on creating these
components.

6. Add sample data to your data model. See "Task: Generate Sample Data from the
Report" for the steps for adding sample data to a data model.

8.2.4 Creating Custom Reports

Create a custom report when the reports delivered with your Oracle Fusion
application do not provide the data you need; or, if you want to use a predefined data
model but change other properties of the report.

Task: Create the Data Model
If you are using a predefined data model, skip this step.

To create a data model, see Section 8.2.3.2, "Creating a New Data Model."

Customizing Reports and Analytics 8-23

Customizing Reports

Task: Create the Report Definition in the Catalog and Choose the Data Model

On the global header, click New, then click Report. Select the data model to use for the
data source for this report.

Task: Create and Add the Layout

Follow the tasks described in the section "Creating Custom Layouts" beginning with
"Task: Edit or Create the Layout".

Task: Configure Report Properties

You can configure a variety of properties to set specific formatting, caching, and
processing options for your report. To access the Properties dialog, click Properties in
the report editor. For information on report properties see "Configuring Report
Properties" in the Oracle Fusion Middleware Report Designer’s Guide for Oracle Business
Intelligence Publisher.

Task: (Conditional) Create an Oracle Enterprise Scheduler Job to Run the
Custom Report

If you will need to schedule this report from an Oracle Fusion application, you must
create an Oracle Enterprise Scheduler job and job definition. This may also require
creating a parameter view object. See Section 8.2.6, "Tasks Required to Run Custom
Reports with Oracle Enterprise Scheduler Service."

Task: (Conditional) Enable Access to the Report Through the Reports and
Analytics Pane

See Section 8.2.8, "Making Reports Available to Users in the Reports and Analytics
Pane."

8.2.5 Adding Translations

Template translation is a feature of BI Publisher that enables the extraction of
translatable strings from a single RTF-based template or a single BI Publisher layout
template (.xpt file). Use this option when you need multiple translations of the final
report document; for example, you need to generate invoices for both German and
French customers.

For information on adding translations for your custom report layouts, see the chapter
"Translating Individual Templates" in the Oracle Fusion Middleware Report Designer’s
Guide for Oracle Business Intelligence Publisher.

8.2.6 Tasks Required to Run Custom Reports with Oracle Enterprise Scheduler Service

If you created a new report, to run it using Oracle Enterprise Scheduler, you must
create a new Oracle Enterprise Scheduler job definition. If you customized an existing
report (for example, added a custom layout) for which an Oracle Enterprise Scheduler
job definition was defined, you will need to create a new job definition to point to the
custom report.

Creating a custom Oracle Enterprise Scheduler job definition is described in

Chapter 14, "Customizing and Extending Oracle Enterprise Scheduler Jobs."
Information specific to creating a custom BI Publisher job is in the section: "Extending
a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job."

This section summarizes the tasks:

s Creating a New Oracle Enterprise Scheduler Job Definition

8-24 Extensibility Guide

Customizing Reports

s Customizing Parameters for Reports Submitted Through Oracle Enterprise
Scheduler

8.2.6.1 Creating a New Oracle Enterprise Scheduler Job Definition
To create an Oracle Enterprise Scheduler Job Definition:

Follow the instructions for creating a job definition in the "Extending Custom Oracle
Enterprise Scheduler Jobs" on page 14-2. Note the following for BI Publisher jobs:

= Job Type: Select BIPJobType

= ReportID: Enter the path to the report in the BI Presentation catalog, starting with
the folder beneath Shared Folders, for example: Financials/Payables/Payables
InvoiceRegisterCustom.xdo

Tip: Ensure that you include the .xdo extension for the report object.

s Default Output: Select a default output format.

= Bursting Job: If the output from this job is to be burst, select this box. The Bl
Publisher report must have a bursting definition to use this option. When the
report is executed, the output and delivery options are determined by the bursting
definition. For information on setting up a bursting definition, see "Adding
Bursting Definitions" in the Oracle Fusion Middleware Data Modeling Guide for Oracle
Business Intelligence Publisher (Oracle Fusion Applications Edition).

= Define the property parametersvo to point to the parameter view object you
defined, if your custom job requires parameter input.

8.2.6.2 Customizing Parameters for Reports Submitted Through Oracle Enterprise
Scheduler

The parameter view object is a view object used by Oracle Enterprise Scheduler to
collect user input for report parameters that the Oracle Enterprise Scheduler then
sends to BI Publisher. The parameter view object defines the display of the parameters
in the Oracle Enterprise Scheduler interface and performs validation of the input. Use
JDeveloper to edit the parameter view object.

Task: Create or Customize the Parameter View Object
To customize a parameter view object, see the following information:

» Chapter 11, "Customizing and Extending ADF Application Artifacts" for
information on how to customize view objects in Oracle Fusion Applications.

s "Defining SQL Queries Using View Objects" chapter in the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework
for the full description view objects and creating them in JDeveloper.

Task: Align Parameter Order in the Bl Publisher Data Model

Ensure that the attributes defined for the parameters in the view object are in the same
order as the parameters in the BI Publisher data model. See "Before You Begin:
Understand the Use of Parameter View Objects with Oracle Enterprise Scheduler" for
more information.

Customizing Reports and Analytics 8-25

Customizing Reports

Task: Integrate the Parameter View Object in the Oracle Enterprise Scheduler
Job Definition

Follow the instructions for creating a job definition in "Extending Custom Oracle
Enterprise Scheduler Jobs" on page 14-2.

8.2.7 Securing Custom Reports and Related Components

When you create a custom report you may wish to create a duty role to enable only
users that have been assigned the specific report duty role to run the report. If you
have also created an Oracle Enterprise Scheduler job to run the report, your users must
also be assigned execution permissions for the job. All the tasks in this section are
required when you create a custom duty role.

If you choose to enable the custom report for an existing duty role, ensure that this role
is assigned to the objects in the BI Presentation catalog and to the Oracle Enterprise
Scheduler job definition. In this case, you need only perform the tasks: Task: Configure
Permissions in the BI Presentation Catalog and Task: Grant Permissions to the Oracle
Enterprise Scheduler Job Definition.

Task: Create the Custom Report Duty Role in the OBI Stripe

To create the custom report duty role:

Only a system administrator can create a new role, and optionally include the role in
an existing role hierarchy. For information about creating application roles, see the

"Managing Security Artifacts" chapter in the Oracle Fusion Middleware Oracle
Authorization Policy Manager Administrator’s Guide (Oracle Fusion Applications Edition)

Task: Configure Permissions in the Bl Presentation Catalog

Read permissions must be granted in the BI Presentation catalog to every object that is
used in the report. This will always include at least two objects: the report and the data
model. If your report also references a subtemplate or a style template, you must also
grant read permissions on those objects. The report object requires additional grants to
run, schedule, and view output.

If you create the custom report within an existing product folder, for example
Payables/Invoices, the report will inherit permissions that are granted on all objects in
the folder. You may wish to delete permissions from your custom report.

See "Managing Objects in the BI Presentation Catalog" in the Oracle Fusion Middleware
User’s Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications
Edition) for more information about catalog permissions.

Configuring permissions in the BI Presentation catalog consists of the following
subtasks:

= "Grant the Role Permissions to the Report"
= "Grant the Role Permissions to the Data Model and Other Referenced Objects"

s "Delete Permissions"

Grant the Role Permissions to the Report
To grant permissions in the catalog;:

1. Navigate to the report in the catalog and click More and then click Permissions.
The Permissions dialog launches and the inherited permissions are shown.

2. In the Permissions dialog, click Add users/roles as shown in the following figure:

8-26 Extensibility Guide

Customizing Reports

Permission]
Location: fShared Folders/Finandials/Payables/Invoices/Custom Payables Report
Owner: FAAdmin
Permissions & B &J v %
Accounts Permission
| Add users/roles
(& submit Payables Invoice Register(OBI) Read, Traverse Va ®
[Payables Invoice Creation Duty(OBI) Read, Traverse 7 4]
[Payables Invoice Import Submission Duty(QBI) Read, Traverse 7 4]
= Payables Invoice Management Duty(OBI) Read, Traverse ra 4]
[&1 Platform Administrator Full Control
Apply permissions to sub-folders,
Apply permissions to items within folder.
_Help _OK || Cancel |
3. Inthe Add Application Roles, Catalog Groups and Users dialog, search for your

custom duty and use the shuttle buttons to move it to the Selected Members list.
In the Set Permission to list, select Custom, as shown in the following figure, and

then click OK.

Add Application Roles, Catalog Groups and Users

E]

Location: fShared Folders Financials/Payables,Invoices/Custom Payables Report
Available Members m & Selected Members
Name |payables | Accounts
__Search | (& custom Payables Report Duty(OBI)
List | Application Roles v |
Accounts
)) A &
@ Payables Invoice Creation Web Service L — Move
@ Payables Administration Duty(OBI)
Move All
@ Payables Balance Analysis Duty(OBI) Q
@ Payables Invoice Creation Duty(0BI) Remove
@ Payables Invoice Import Submission Duty * "
R
@ Payables Invoice Inguiry Duty(OBI)
@ Payables Invoice Management Duty(OBI,
= X
< | 4
Set Permission to EFuII Control
Full Control
Modify
Help Open
TTeet Modmed 871072011 5:87:57 AV | Created By System Account Schedule Publisher Report

4.

shown in the following figure:

View Publisher Qutput
Mo Access

In the Permissions dialog, locate the duty you added and click the Edit button as

Customizing Reports and Analytics 8-27

Customizing Reports

Permission]
Location: fShared Folders Financials/Payables/Invoices/Custom Payables Report
Owner: FAAdmin

Permissions o) H. v %
| Accounts Permission Owner
(& submit Payables Invoice Register (OBI) Custom “ | Read,Traverse v [4]
(& payables Inveice Creation Duty(0BI) Custom + | Read,Traverse v (4]
[# custom Payables Report Duty(OBI) Custom + | Read,Traverse % [4]
= Payables Balance Analysis Duty(OBI) Custom + | Read,Traverse Edit Custom Permissions]
[B1Platform Administrator Full Control ~| Ful Control

Apply permissions to sub-folders,
Apply permissions to items within folder.

Help OK || Cancel

5. In the Custom Permissions dialog, select the permissions to enable. Typically, you
will enable the following for a BI Publisher report:

= Read - gives authority to access, but not modify, the report

= Run Publisher Report - gives authority to read, traverse the folder that
contains the report, and run the report.

s Schedule Publisher Report - gives authority to read, traverse the folder that
contains the report, and schedule the report

= View Publisher Output - enables the user to view the report output generated
by the scheduler

The Custom Permissions dialog is shown in the following figure:

Custom Permissions |%]

Read

DTraverse

[Cwrite

[oelete

[change Permissions
[set Ownership

Run Publisher Report
Schedule Publisher Repart
View Publisher Qutput

Help |ﬂ!(v| Cancel

Grant the Role Permissions to the Data Model and Other Referenced Objects

1. Navigate to the data model in the catalog and click More and then click
Permissions. The Permissions dialog launches and the inherited permissions are
shown.

2. Follow the instructions in "Grant the Role Permissions to the Report” but in the
Custom Permissions dialog, enable only the Read permission, as shown in the
following figure:

8-28 Extensibility Guide

Customizing Reports

Custom Permissions |%]

Read

DTraverse

[write

[oelete

[l change Permissions
[]set Ownership

[Jrun Publisher Report

[schedule Publisher Report
[view Publisher Output

O¥ Cancel

Help

3. Repeat this procedure for any other referenced objects (subtemplates or style

templates).

Delete Permissions

If the custom report inherited permissions that you want to remove from the report,
you can delete permissions as follows:

1. Navigate to the object in the catalog and click More and then click Permissions.
The Permissions dialog launches and the inherited permissions are shown.

2. Select the permission to delete and click the delete toolbar button, as shown in the

following figure:

Permission [x
Location: fShared Folders Financials/Payables/Invoices/Custom Payables Report
Owner: FAAdmin
Permissions i + & (%
| Accounts Permission v
| Delete selected users/roles
@ Payables Balance Analysis Duty(OBI) Custom + | Read,Traverse v !
[& payables Inveice Creation Duty(0BI) Custom * | Read,Traverse ra (&
@ Payables Invoice Import Submission Duty(OBI) Custom * | Read,Traverse ra [
[& payables Invoice Management Duty(0BI) Custom * | Read,Traverse ra (&
== - . - " —_ - — b/
< >
Apply permissions to sub-folders,
Apply permissions to items within folder.
| Help | OK || Cancel

Task: Grant Permissions to the Oracle Enterprise Scheduler Job Definition

If this report is scheduled through the Oracle Enterprise Scheduler, execution
permissions must also be granted to enable users belonging to submit the job. See
Task: Grant Relevant Permissions in Chapter 14, "Customizing and Extending Oracle

Enterprise Scheduler Jobs."

8.2.8 Making Reports Available to Users in the Reports and Analytics Pane

To make a report available to users through the Reports and Analytics pane, map the
report to the work areas of the user roles that will need access. For information on
mapping reports to work areas, see "Define Application Toolkit Configuration” in the
Oracle Fusion Applications Common Implementation Guide.

To enable scheduling through the Reports and Analytics pane, configure the report

properties:

1. Navigate to the report in the Business Intelligence catalog and click Edit.

Customizing Reports and Analytics 8-29

Customizing Analytics

2. In the report editor, click Properties.
3. On the Properties dialog enter the following fields:
— Enterprise Scheduler Job Package Name

Enter the Path for the Job Definition. For example:
/oracle/apps/ess/financials/payables/invoices/transactions/Jobs

- Enterprise Scheduler Job Definition Name
Enter the Name for the Job Definition. For example: APXINRIR
The Report Properties dialog is shown in Figure 8-23:

Figure 8-23 Report Properties to Enable Scheduling Through the Reporting Pane

Report Properties (]
General\Cadﬂing Formatting Font Mapping Currency Format

Description | 1nygice Register

Run Report Online
Show Controls

Allow Sharing Report Links
Open Links in Mew Window
[asynchronous Mode

Auto Run

Excel Analyzer (& Offine Mode
() Online Mode

Advanced [] Enable Bursting| +

[] reportis Controlled by External Application
Users cannot run or schedule report from catalog, can view history

Enterprise Scheduler Job Package Name | /oracle/apps/ess/financials/pe

Enterprise Scheduler Job Definition Name | APXINRIR_CUSTOM

oK Cancel

8.3 Customizing Analytics

This section describes how to use Oracle Business Intelligence Enterprise Edition to
customize and extend analytics for Oracle Fusion Applications.

8.3.1 About Customizing Analytics

Analytics are analyses and dashboards built with Oracle Business Intelligence
Presentation Services, based on objects in the Oracle Bl repository. Analyses are
queries based on real-time, transactional or operational data that provide answers to
business questions. Dashboards provide personalized views of corporate and external
information. A dashboard consists of one or more pages that contain content, such as
analyses, links to Web sites, BI Publisher reports, and so on.

You can customize analyses using the Oracle BI Composer interface from within
Oracle Fusion Applications. You can customize dashboards using Oracle Business
Intelligence Enterprise Edition.

You can also customize objects in the Oracle Bl repository (RPD) using the
Administration Tool in either online or offline mode. Use online mode only for small
changes that do not require running consistency checks. Running consistency checks

8-30 Extensibility Guide

Customizing Analytics

against the full online repository can take a long time. Instead, make more complex
changes that require consistency checks in offline mode against a project extract of the

repository.

Table 84 provides guidelines for when to perform online and offline edits. See Oracle
Fusion Middleware Metadata Repository Builder’s Guide for Oracle Business Intelligence

Enterprise Edition (Oracle Fusion Applications Edition) for full information about how to
use the Administration Tool to edit RPD files.

Table 8-4 Guidelines for Online and Offline RPD Edits

Example Operations

Mode Use This Mode For: Example Use Cases Information
Online = Changes that do not require = Renaming Presentation | 1. Connect to the RPD in
running a consistency check Layer metadata online mode.
= Small changes that are = Reorganizing 2. Check out, modify, then
required to fix things in a Presentation Layer check in the appropriate
running system metadata objects.
= Changes that need to be 3. Ina clustered system,
deployed quickly restart all Oracle BI Servers
except for the master server
to propagate the changes.
You can use the Cluster
Manager in the
Administration Tool to
identify the master Oracle
BI Server.
Offline = Full-scale development or = Configuring 1. Copy the RPD from the

customization activities that
require running consistency
checks multiple times and
iterating

Descriptive Flexfields
and Key Flexfields for
Oracle Business
Intelligence

» Customizing existing
fact or dimension
tables

= Adding new fact or
dimension tables

production computer to the
Windows development
computer.

2. Open the RPD in offline
mode and make the
appropriate changes.

3. Upload the repository
using Fusion Applications
Control and restart all
Oracle Business Intelligence
system components.

8.3.1.1 What You Can Customize in Analytics
You can customize analyses and dashboards, as well as objects in the Oracle BI

repository (RPD).

Customizations to analyses and dashboards result in changes to the Oracle BI
Presentation Catalog. Be aware that some patches include updates to the Oracle BI
Presentation Catalog. All new objects are preserved during the patch process; in
addition, changes to existing objects are preserved when the patch does not include a

new version of that object.

If you change an existing presentation catalog object and subsequent patches do
include a new version of the object, the patch process detects and logs conflicts, and
patching will stop. The catalog administrator must resolve any conflicts manually
using Catalog Manager and then rerun the patch.

In the Oracle Bl repository, you can create new repository objects such as physical
columns, logical table sources, logical columns, and presentation columns. Be aware
that some patches include updates to the Oracle BI repository. New objects are

Customizing Reports and Analytics 8-31

Customizing Analytics

preserved during the patch process; in addition, changes to existing objects are
preserved when the patch does not include a new version of that object.

If you change an existing object and subsequent patches do include a new version of
the object, the Merge Wizard in the Administration Tool provides a method to merge
the changes. For most typical customizations, the merge process is straightforward.
The exception is when presentation columns have been moved across presentation
tables; in this situation, it is important to plan ahead and track the changes carefully to
ensure your changes are preserved during the merge.

See "Oracle BI Applications Patching" in Oracle Fusion Middleware Reference Guide for
Oracle Business Intelligence Applications for more information about patching the Oracle
BI Presentation Catalog and Oracle BI repository.

8.3.1.2 Before You Begin Customizing Analytics

Before you customize analytics, ensure you have proper permissions for editing and
creating Oracle Business Intelligence Presentation Catalog objects and understand
how to set permissions in the catalog. For more information about setting permissions
in the catalog, see "Managing Objects in the Oracle BI Presentation Catalog" in Oracle
Fusion Middleware User’s Guide for Oracle Business Intelligence Enterprise Edition (Oracle
Fusion Applications Edition).

In addition, you must have the BIAuthor role to customize analytics (either explicitly
granted, or inherited from another role).

Follow these guidelines when customizing analytics:

= When customizing referenced objects (such as embedded dashboards or targets of
navigation actions), consider customizing them in place using "Save." Note that
objects for Oracle Transactional Business Intelligence and Oracle Business
Intelligence Applications provide conflict detection so that your customizations
will not be overwritten during future patches.

= When customizing objects that are not referenced, consider using "Save As." You
have the following choices when using Save As:

- Existing folder structure (recommended)

Saving to the existing folder structure extends the organization of your
existing reports to include the custom reports. To use this approach, make
sure that an Oracle BI administrator (a user with the BIAdmin role) grants
Write permissions to the BIAuthor role for the given folders. Note that the
reports inherit folder permissions that control which roles have Read and
Write access.

— New folders under Shared Folders

To use this approach, an Oracle BI administrator must create these folders and
then grant Write permission to the BIAuthor role, as well as Read permission
to other application roles as needed.

- My Folders

Because nobody else can access My Folders, you do not typically save
analytics to that location except for testing purposes.

8.3.2 Customizing Analytics

You can customize analytics from the Reports and Analytics pane in Oracle Fusion
Applications.

8-32 Extensibility Guide

Customizing Analytics

Task: Customizing Analytics

To customize analytics, go to the Reports and Analytics pane and locate to the object
you want to customize. For analyses, click the object and then select Edit to use the
Oracle BI Composer to edit the object. For dashboards, click the object and then select
More to go to the Catalog page in Oracle Business Intelligence Enterprise Edition.

For information on customizing analyses using Oracle Bl Composer, see "Using BI
Composer to Work with Analyses" in Oracle Fusion Middleware User’s Guide for Oracle
Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).

For information on customizing dashboards in the Catalog page, see "Building and
Using Dashboards" in Oracle Fusion Middleware User’s Guide for Oracle Business
Intelligence Enterprise Edition (Oracle Fusion Applications Edition).

8.3.3 Customizing the Oracle Bl Repository (RPD)

You can customize and extend the Oracle Bl repository (RPD file).

Task: Create Bl View Objects for Custom Fact and Dimension Tables

Whenever you create a custom fact or dimension table, you must create a Bl view
object for that table and incorporate it into the Oracle Fusion application before you
can import it into the Oracle BI repository. To do this, follow these steps:

1. From a JDeveloper application workspace in the developer role, define the custom
view object for the custom table. You must follow the view object guidelines for
Oracle Transactional Business Intelligence as described in "Designing and
Securing View Objects for Oracle Business Intelligence Applications" in Oracle
Fusion Applications Developer’s Guide. For information about creating view objects
from an application workspace, see Section 11.5, "Creating Custom Business
Components."

Tip: When you create the custom table, you must grant the necessary
privileges (such as SELECT) to the FUSION_BI schema user in addition
to the FUSION_RUNTIME schema user. Otherwise, queries against
the new table will fail.

2. Create an application module (AM), as described in Section 11.5, "Creating
Custom Business Components,” and add the custom BI view object instance to the
application module.

3. Create an ADF Library JAR for the custom artifacts as described in Section 11.11,
"Deploying ADF Customizations and Extensions."

4. From a customization workspace, import the ADF Library JAR for the custom
artifacts into the Oracle Fusion application and restart the host server for the
application so that the customizations are picked up. For more information, see
Section 10.2, "Customizing Oracle ADF Artifacts with JDeveloper."

5. Continuing in the customization role, nest the BI application module in the root
application module as described in "Defining Nested Application Modules" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

6. In the customization role, create a MAR file and load the MAR file using WLST
commands or the WebLogic Server Administration Console as described in
Section 11.11, "Deploying ADF Customizations and Extensions," and restart the
host server for the application so that the customizations are picked up.

Customizing Reports and Analytics 8-33

Customizing Analytics

Task: Modifying Existing Fact or Dimension Tables

In some cases, you might want to modify existing fact or dimension tables in the
Oracle BI repository. For example, say you want to deploy Oracle Fusion Project
Portfolio Management, but use the PeopleSoft Procurement application as a source. In
this situation, you would set up a custom table in Fusion Applications that populates
Commitments data from PeopleSoft. Then, you would need to change the
Commitments fact table in the Oracle BI repository (RPD file) to point to the new
custom table.

To accomplish the task described in this example:

1. Create a custom BI view object for the custom table and incorporate it into the
application as described in Task: Create BI View Objects for Custom Fact and
Dimension Tables.

2. Use the Import Metadata Wizard in the Oracle BI Administration Tool to import
the new view object into the Physical layer of the RPD under the appropriate
database object. Then, join the new view object to the existing dimension view
objects. You must connect as the FUSION_APPS_BI_APPID user in the Select Data
Source screen of the Import Metadata Wizard.

See "Importing Metadata from ADF Business Component Data Sources" and
"Working with Physical Foreign Keys and Joins" in Oracle Fusion Middleware
Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition
(Oracle Fusion Applications Edition) for more information.

3. Create a new logical table source under the existing Commitment logical fact table,
and map all metrics to the physical columns from the new view object. Then,
deactivate the existing Commitments logical table source.

See "Managing Logical Table Sources (Mappings)" in Oracle Fusion Middleware
Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition
(Oracle Fusion Applications Edition) for more information.

Using this approach, all Presentation layer metadata, analyses, and dashboards will
continue to work with data coming from the new physical columns.

Task: Adding New Fact or Dimension Tables

In some cases, you might want to add new fact or dimension tables to your Oracle BI
repository. Possible sources include custom tables in Oracle Fusion Applications,
additional tables in the data warehouse, or new physical data sources.

To add new fact or dimension tables to your RPD:

1. For Oracle Fusion Applications sources, create a custom BI view object for the
custom table and incorporate it into the application as described in Task: Create BI
View Objects for Custom Fact and Dimension Tables.

2. Use the Import Metadata Wizard in the Oracle BI Administration Tool to import
the new view object (for Oracle Fusion Applications) or physical table (for
warehouse or other physical sources) into the Physical layer of the RPD. For
non-warehouse physical sources, you must create a new connection pool as part of
the import process. You must connect as the FUSION_APPS_BI_APPID user in the
Select Data Source screen of the Import Metadata Wizard.

For more information, see the following resources in Oracle Fusion Middleware
Metadata Repository Builder’s Guide for Oracle Business Intelligence Enterprise Edition
(Oracle Fusion Applications Edition):

s 'Importing Metadata from ADF Business Component Data Sources" for Oracle
Fusion Applications sources

8-34 Extensibility Guide

Customizing Analytics

s 'Importing Metadata and Working with Data Sources" for other physical

sources

3. Define new logical dimensions and measures to extend the semantic model, and

add physical and logical joins.

See "Working with Logical Tables, Joins, and Columns" and "Working with
Physical Foreign Keys and Joins" in Oracle Fusion Middleware Metadata Repository
Builder’s Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion
Applications Edition) for more information.

4. Add corresponding Presentation layer metadata.

See "Creating and Maintaining the Presentation Layer" in Oracle Fusion Middleware
Metadata Repository Builder’s Guide for Oracle Business Intelligence Enterprise Edition
(Oracle Fusion Applications Edition) for more information.

Task: Changing How Metadata Is Displayed in Answers Reports

In some cases, you might want to change how the names of facts and dimensions in
the Presentation layer appear in Answers reports, to comply with naming standards or
for other reasons. Table 8-5 summarizes considerations for different use cases.

Table 8-5 Use Cases for Changing How Metadata Is Displayed

Use Case

For More Information

For warehouse sources, display names
are typically externalized into a database
table. To customize the names, you can
change them in the externalized tables
with no impact to the metadata itself.

Note that for situations where display
names are externalized into a database
table, changing the names of
Presentation layer objects in the RPD has
no impact on the names displayed in
Answers reports.

See "Localizing Metadata Names in the Repository"
in Oracle Fusion Middleware System Administrator’s
Guide for Oracle Business Intelligence Enterprise
Edition for more information about externalizing
display names.

For Oracle Transactional Business
Intelligence sources, display names are
typically customized using UI hints
(labels and tooltips) within Oracle
Fusion Applications. Changing the Ul
hint name does not impact metadata.

Note that for situations where display
names are customized using UI hints,
changing the names of Presentation
layer objects in the RPD has no impact
on the names displayed in Answers
reports.

See "Propagating Labels and Tooltips from ADF
Business Component Data Sources" in Oracle Fusion
Middleware Metadata Repository Builder’s Guide for
Oracle Business Intelligence Enterprise Edition (Oracle
Fusion Applications Edition) for more information
about how UT hints are propagated in the RPD.

For situations where Presentation layer
names are not externalized or tied to Ul
hints, display names must be modified
directly in the RPD. Existing reports will
continue to work because the old names
are stored as aliases.

See "Renaming Presentation Columns to
User-Friendly Names" in Oracle Fusion Middleware
Metadata Repository Builder’s Guide for Oracle
Business Intelligence Enterprise Edition (Oracle Fusion
Applications Edition) for more information.

Task: Reorganizing Presentation Layer Metadata
Note the following about reorganizing Presentation layer metadata in the RPD:

= Reordering presentation columns within a presentation table will not cause
existing reports to break. When subsequent patches are applied, the new custom

Customizing Reports and Analytics 8-35

Customizing Analytics

order is preserved when the patch does not include changes to the column order
for that table.

= Moving presentation columns across different presentation tables can cause
existing reports to break and is not recommended. If you do move presentation
columns across tables, it is important to plan ahead and track the changes
carefully.

Task: Configuring Descriptive Flexfields and Key Flexfields for Oracle Business
Intelligence

You can use the Import Metadata Wizard in the Administration Tool to incrementally
import flexfield changes to the Physical layer of the Oracle Bl repository (RPD).

Tip: See Chapter 5, "Using Flexfields for Custom Attributes" for
information about changing flexfields. In particular, see "Task:
Incorporate Custom Attributes into the Business Intelligence
Structure" for information about enabling flexfields for BI.

In addition, you can use the Map to Logical Model screen of the Import Metadata
Wizard to automatically propagate the flexfield changes to the Business Model and
Mapping layer.

Finally, for Oracle BI Applications customers, you can configure and enable the Bl
Extender functionality to propagate flexfield changes to the data warehouse.

See the following resources in Oracle Fusion Middleware Metadata Repository Builder's
Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications
Edition) for more information about these topics:

s "Using Incremental Import to Propagate Flex Object Changes"
= "Automatically Mapping Flex Object Changes to the Logical Model"
= "Using the BI Extender to Propagate Flex Object Changes"

Task: Moving RPD Changes to Production Systems

Typically, data source connection pool settings are different in production repositories.
You can use the Oracle BI Server XML API to programmatically update these settings
in the repository when moving changes to production systems. See "Moving from Test
to Production Environments" in Oracle Fusion Middleware Integrator’s Guide for Oracle
Business Intelligence Enterprise Edition for more information.

8-36 Extensibility Guide

10

Customizing Security for Custom Business
Objects

This chapter describes how to use CRM Application Composer to define and edit
role-based security policies on custom business objects at runtime in certain Oracle
Fusion Customer Relationship Management applications, limited to the Sales,
Marketing, Customer Center, Trading Community Architecture, or Order Capture
applications.

This chapter includes the following sections:

= Section 9.1, "About Defining Security Policies"

= Section 9.2, "Defining Security Policies for Custom Business Objects"

= Section 9.3, "Enabling End User Instance-Level Security Customization"

= Section 9.4, "Preventing Corrupted Security Policies in CRM Application
Composer"

9.1 About Defining Security Policies

Security for Oracle Fusion Applications is configured to protect the data and business
functions of the enterprise from unintended access. By default, new business objects
and the web pages that display them are inaccessible to any user other than the user of
CRM Application Composer. This means that when you create a security policy in
CRM Application Composer, you specifically grant access to resources that would
otherwise be protected. Additionally, security policies defined in CRM Application
Composer are enforced on all the data records of the business object. Controlling
access to individual data records is not supported for custom objects.

To enable access to the data records, you can use CRM Application Composer to create
security policies for new business objects that they add to the following CRM
applications:

= Sales (Partner Center)

= Marketing

s Customer Center

s Trading Community Architecture

s Order Capture

Customizing Security for Custom Business Objects 9-1

About Defining Security Policies

Note: For information about how to define security policies for
custom business objects in other Oracle Fusion applications, see
Chapter 15, "Customizing Security for ADF Application Artifacts."

In Oracle Fusion Applications, the business object defines the available operations that
may be performed over a particular set of data. The business object also encapsulates
the data as business object instances, corresponding to data records from a database
table. Typical operations are business functions like viewing, editing, or creating an
instance of the business object. A security policy essentially needs to specify "who can
perform what operations on what specific data."

Security policies in Oracle Fusion Applications provide role-based access control to the
data records encapsulated by the business object, as well as the application artifacts,
like web pages that interact with those data records. Role-based security ensures that
the person creating the security policy does not require information about the
individuals comprised by the enterprise at any given time. Rather, a security policy is
always associated with a predefined role that end users are anticipated to fill when
interacting with Oracle Fusion Applications.

For example, in a sales organization, duties such as Manage_Accounts and Manage_
Invoices exist for roles, such as Sales_Manager or Sales_Associate. A security
policy might give end users who belong to the Sales_Associate role the ability to
view and edit the data records exposed by a particular business object, such as a
customer invoice, but not to delete the records. Whereas, another security policy could
grant end users who belong to the Sales_Manager role, the right to view, edit, and
delete the same data records.

A security administrator for the enterprise completes the security configuration task
by provisioning end users of the enterprise with one or more roles, based on the
variety of duties the end user is expected to perform. The security policies defined for
that role, in turn, confer to its member end users specific access right, or privileges.

Note: Security-related configuration tasks such as configuring the
enterprise identity store, configuring roles, and provisioning end user
identities are not supported in CRM Application Composer. For
details about security configuration, see the "Securing Oracle Fusions
Applications" chapter in the Oracle Fusion Applications Administrator’s
Guide.

In summary, a security policy for Oracle Fusion Applications considers the duties end
users perform and then grants a role specific rights to:

» Access the page that supports the duty

= Access the specific data records, or instances of the business object, required to
complete the duty

» Perform only those operations on that data required by the duty.

9.1.1 About the Implementation of Security Policies in CRM Application Composer

Although CRM Application Composer does not implement the security policy directly
on the business object, the user interface focuses on business objects as a convenient
way to represent and manage the actual security policies of the enterprise. Specifically,
CRM Application Composer security policy screens simplify the task of choosing a

9-2 Extensibility Guide

About Defining Security Policies

business object and then creating a complete security policy to grant the level of access
needed by any role in Oracle Fusion Applications.

A complete security policy is one that controls access to the selected business object’s
operations, its instances, as well as the web pages that display the actual data records
exposed by the business object. In the background, when you create a security policy
for a custom business object and a role, CRM Application Composer interacts with the
Oracle Fusion Applications security repositories to create or update the specific
security artifacts that define the policy.

Specifically, the artifacts created in the Oracle Fusion security repositories by CRM
Application Composer correspond to Oracle Fusion Data Security policies and Oracle
Platform Security Service (OPSS) function security policies. A security policy that
defines the level of access to the data records of the business object is known as a data
security policy. A security policy that defines the level of access to the application
resources that display the object is known as a function security policy. To completely
specify access, both types of security policies must exist for the role.

While both types of security policies are conceptually similar, the repository for
storing the security artifacts, as well as the representation of the artifacts, differ. CRM
Application Composer defines the data security policy in Oracle Fusion Data Security
database tables and defines the OPSS function security policy as hierarchically
organized objects in an LDAP directory service.

For the user of CRM Application Composer, the distinctions of the type of security
policy and the specific repository used to store them are not relevant. CRM
Application Composer security policy screens do not label policies as data policies and
function policies. In CRM Application Composer, the security policy screens hide
these distinctions and instead allow you to focus on the business object. The security
policy screen lets you view the business objects by name and modify the privileges
granted to the various Oracle Fusion Applications roles to access the data records
exposed by the business object and to access the web page created to display those
records.

To understand the implementation details of data security and function security, you
can read about the tools developers use to interact directly with the security
repositories, as described in Chapter 15, "Customizing Security for ADF Application
Artifacts."

9.1.2 What You Can Do With Security Policies at Runtime

After you create a custom business object and then create the web page to display the
data records of the business object in CRM Application Composer, these application
artifacts will be secured in Oracle Fusion Applications by default. This means end
users will be denied access until you grant them access through a role-based security
policy that you define.

To enable access, you can use CRM Application Composer to create role-based
security policies for new business objects that are added to the following CRM
applications:

= Sales (Partner Center)

= Marketing

» Customer Center

s Trading Community Architecture

s Order Capture

Customizing Security for Custom Business Objects 9-3

About Defining Security Policies

Note: For information about how to define security policies for
custom business objects in other Oracle Fusion applications, see
Chapter 15, "Customizing Security for ADF Application Artifacts."

Figure 9-1 shows the Application Navigator in CRM Application Composer with the
Custom Object list expanded to display the Security option for a custom business
object. The Security option is displayed in the Application Navigator only for custom
business objects. Once selected, it opens the object-centric security policy screen and
displays the policies for the expanded business object (as shown in Figure 9-1).

Figure 9—1 Navigator Displays Security Customization Option for Custom Objects in
CRM Application Composer

| Application Composer

Application | Department e -
~| Objects
View

[= @ Standard Objects
v 962 Cuskom Objects

[B Customer East

Buttons and Links
Security
Server Scripks

Eb Saved Searches

Note: The term custom object is used in CRM Application Composer
to distinguish business objects that you create from standard objects
that are part of the Oracle Fusion Applications security reference
implementation. Security policies for standard objects are not exposed
in CRM Application Composer. For more information about
configuring security for the reference implementation, see

Section 15.2, "About Extending the Oracle Fusion Security Reference
Implementation."

Because security policies provide role-based access, in CRM Application Composer a
security policy specifies a role name, a custom business object name, and one or more
privileges that specify the level of access granted to the role. As described in

Section 9.1.1, "About the Implementation of Security Policies in CRM Application
Composer," when you use the security policy screens in CRM Application Composer,
you will not need to create the underlying security artifacts; the tool will create those
for you in the appropriate Oracle Fusion security repository.

The security screens in CRM Application Composer let you grant and revoke access
privileges to roles in one of two formats.

Figure 9-2 shows the screen that lets you display a single custom object and view all the
roles and the level of access that each one defines for that custom business object. In
this example, the object-centric security screen displays the custom business object

9-4 Extensibility Guide

About Defining Security Policies

CustomerWest and shows a default security policy defined on the CRM Application
Administrator Duty role (note the default role to use for testing security can be
configured for the Sales, Marketing, Customer Center, Trading Community
Architecture, and Order Capture applications). CRM Application Composer creates
this security policy by default so that you can view and customize the custom object in
CRM Application Composer. In this screen, no other policies have been defined.

Figure 9-2 Object-Centric Security Policy Screen: Viewing and Modifying All Security Policies for a Given
Custom Business Object

Define Policies: CustomerWest 2] save | saveandlose | gancel |

Roles

Use the First set of calumns to control the wisibility of an object on & page, and whether or nok users can access the icons to create, update, or delete a record for that abject. Use the last set of columns o
control whether or not users can view or update the actual data records For that object.

View + Format - Fresze Wrap
JRU|E | [Ccreate | [Cliew | [Cupdate | [Coelete | [Clview al | [Clupdate all | [Carant Access |
I Data Steward Manager Duty []]]] [] [] [] @

Partner Portal User Duky O O O O O O O

Sales Analyst Duty (| O O O O | O

CRM Application Administrator Doty O

Sales Catalog Adminiskrator Duky [|l] O O O O

Master Data Management Application Adrministr O O | O O O O

Sales Manager Duty O O O O O]]

Sales WP Duby] [l O O O]]

Customer Daka Steward Duky |:| D D D D D D

Sales Representative Duky |:| |:| |:| I:‘ |:| |:| |:| w

Figure 9-3 shows the alternative screen you can open to display a single role and view
the level of access it grants to all the custom objects in the Sales, Marketing, Customer
Center, Trading Community Architecture, or Order Capture applications. In this
example, the role-centric security screen displays the Sales Manager Duty role with
access granted to the CustomerEast business object.

Figure 9-3 Role-Centric Security Policy Screen: Business Viewing and Modifying All Security Policies for
a Given Role

Define Policies: Sales Manager Duty Save | saveandclose | gancel |

Objects

Use the first set of columns ko contral the visibility of an object an a page, and whether or nat users can access the icons to create, update, or delste a record Far that object. Use the last set of columns to
contral whether or not users can view or update the actual data records For that object.

Wiew = Format - Freeze Wrap
Wigw Update Create Delete
Object Related R Reld| Reld [lview al [Cupdate Al [Clarant Access
Dnccess Roles Dnccess Rol Dnccess Rale Dnccess Rald
CustomerEast_c O
Cuskomeriest_c |:| |:| D |:| |:| |:| D
< >

The selection choices presented by the columns of both security policies screens (the
object-centric screen and the role-centric screen) have the same meaning;:

» The first four columns View, Update, Create, and Delete correspond to the
privileges that confer rights to the web page that you create to display the data
records of the custom business object.

The column selections define a function security policy in the LDAP security
repository and determine whether the end user may view the web page, and then,
assuming the page is displayed, whether the buttons that enable operations to edit
a data record, create a new data record, or delete a data record will themselves
appear enabled or disabled (grayed out) in the page.

Customizing Security for Custom Business Objects 9-5

About Defining Security Policies

At runtime, in the Oracle Fusion application, the end user may have the right to
view the data records displayed by the web page, but unless their role also confers
the right for example to edit the page, the user interface displays the page with the
Edit button disabled to prevent this operation. Until View, Update, Create, and
Delete columns are selected for a role, no function security policy exists in the
LDAP security repository and the custom business object’s web page remain
protected by default, thus preventing all end users provisioned with that role from
accessing the page and, consequently, also the data.

s The next two columns, ViewAll and UpdateAll, confer rights to view and
manipulate the data records of the custom business object in the web page.

The column selections define a data security policy in the Oracle Fusion Data
Security security repository and determine whether the end user may view the
data records and, assuming the records are displayed in the web page, whether
the end user has the rights to edit or delete the data records exposed by the custom
business object. When you select UpdateAll, as a side-effect, CRM Application
Composer automatically enables the corresponding function security privileges to
give the end user the right to select the Edit buttons in the web page. Until
ViewAll or UpdateAll columns are selected for a role, no data security policy
exists in the repository and the data records remain protected by default, thus
preventing all end users provisioned with that role from accessing the data.

s The last column, Grant All, enables a runtime security configuration feature that
gives end users the ability to share their security entitlements with another end
user.

When you enable "sharing" of entitlements for a specific custom business object,
you allow one user to confer their privileges to another end user. The Grant All
option enables the feature at the level of the business object so it will be effective in
any page that displays the data records of the custom business object.

Figure 9-4 shows an alternative way to enable the entitlement sharing feature. When
you use the page creation screen that you display for the custom business object, the
option labeled Allow Access Grant lets you to enable the feature for the custom
business object at the level of a single page.

Figure 9-4 Create Work Area Flow: Enabling Entitlement Sharing

o =
Corfigure Configure Configure Configure
Mawigator Search Overview Details

Menu and Fage
Creation Summary
Pages

Create Work Area: Configure Overview an...[?] Back | Next Save and Close | Cancel

~

Object Name Customer'West_c

Configure Summary Table

Select the fields to appear as columns in the summary table,

* Drilldown Column | Custamer West Name |

allow Access Grant []

When you use CRM Application Composer, you can optionally elect to do your work
in a sandbox, and once you publish your sandbox, all business objects, pages, and the
security policies you define become part of the running application. When you are
ready to edit security policies, you can initiate the security sandbox setup operation.
This setup operation will duplicate the schema for Oracle Fusion Data Security tables
and is necessarily a lengthy one that must be allowed to complete before
customization can begin. After you complete the customizations, published security

9-6 Extensibility Guide

About Defining Security Policies

policies will be merged into the Oracle Fusion security policy repository as part of the
native application and they will overwrite any previous customizations.

Note: Because inconsistencies can result when multiple users edit
the security policies associated with the same object in different
sandboxes, users should coordinate so they avoid customizing the
same object concurrently. For more information about runtime
customization and the sandbox, see Chapter 2.2, "Using the Sandbox
Manager."

In summary, using CRM Application Composer, you can perform these tasks to define
security policies for a custom business object:

= Grant and revoke access privileges made to specific roles (such as Sales Manager
or Sale Representative). For details, see Section 9.2, "Defining Security Policies for
Custom Business Objects."

= Enable end users to elevate the privileges of other end users by conferring their
own rights to view, edit, or delete individual data records. For details, see
Section 9.3, "Enabling End User Instance-Level Security Customization."

9.1.3 What You Cannot Do With Security Policies at Runtime

CRM Application Composer does not expose the underlying implementation details of
the actual security policies created in the Oracle Fusion security repositories. Other
tools in the Oracle Fusion Applications environment provide the enterprise security
administrator and other appropriately authorized end users with complete control
over the creation and viewing of those security artifacts.

Because CRM Application Composer provides an abstracted view of the security
policy implementation, it also limits your ability to edit security policies. For example,
a developer may need to control access to specific records of the custom business
object that they implement, and they may use other tools to interact directly with the
security repository to make this type of customization. Whereas, in CRM Application
Composer, when you grant access privileges to a given role for a custom business
object, CRM Application Composer creates a global instance set that specifies all data
records of the business object. Therefore, no capability exists currently in CRM
Application Composer to stripe individual data records with specific access privileges.

While you can create role-based security policies using CRM Application Composer,
the following are more advanced use cases for which you will need to use
development and administration tools:

» Create custom roles or modify the role inheritance hierarchy provisioned by
Oracle Fusion Applications. In those cases where you will need to use a custom
role, consult a system administrator. Only a system administrator may create a
new role, and optionally include the role in an existing role hierarchy. For
information about creating application roles, see the "Managing Security Artifacts"
chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator’s Guide (Oracle Fusion Applications Edition).

= Define or edit a security policy contained in an application that is not Sales,
Marketing, Customer Center, Trading Community Architecture, or Order
Capture. In those cases, you will need to use other tools instead of CRM
Application Composer to define your security policies. For more information, see
Chapter 15, "Customizing Security for ADF Application Artifacts."

Customizing Security for Custom Business Objects 9-7

About Defining Security Policies

Define or edit a data security policy for the standard business objects defined by
any Fusion application. CRM Application Composer supports defining security
for custom business objects only. Only an authorized IT security manager can
manage the Oracle Fusion security reference implementation where they use other
tools to edit policies for standard objects. For more information, see Chapter 15.2,
"About Extending the Oracle Fusion Security Reference Implementation."

Define data security policies on individual business object instances or groups of
instances. Security policies that you define in CRM Application Composer are
enforced on the all the data records of the business object (referred to as a global
instance set). Controlling access to individual data records is not supported on
custom objects. Only customization developers and IT security managers can
manage data security policies. For more information, see Section 15.3.4, "Scenarios
Related to Extending and Securing Data Model Components.”

Enforce column-level security. Security policies that you define in CRM
Application Composer are enforced on the data records (or rows) of the business
object. Controlling access to columns of data requires using JDeveloper to create a
customization workspace for the application. For more information, see

Chapter 15.3.4, "Scenarios Related to Extending and Securing Data Model
Components."

Define function security policies on individual application artifacts. Security
policies that you define in CRM Application Composer will automatically be
enforced on the application resources that reference the custom business object
based on the View, Edit, Update, and Create privileges you select. Enforcing
security on specific application resources, such as a customized task flow and its
web pages or components in a web page, requires using JDeveloper to create a
customization workspace for the application. For more information, see
Chapter 15.3.5, "Scenarios Related to Extending and Securing User Interface
Artifacts."

9.1.4 Before You Begin Customizing Security

Before you begin customizing security in CRM Application Composer, you should be
familiar with the Oracle Fusion application architecture that enables customization, as
described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You
should also understand the typical workflows for working with customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

You

9-8 Extensibility Guide

will need to do the following before you can begin customizing security:

Obtain the privileges needed to define security policies in CRM Application
Composer.

If you will be defining or editing security policies in Oracle Fusion Applications,
you will need the correct privileges. When you have the correct privileges, CRM
Application Composer will give you access to the security customization user
interface. Please contact your security administrator for details.

Optionally, set up a sandbox.

CRM Application Composer can use sandboxes to manage your customizations.
For more information, see Section 2.2, "Using the Sandbox Manager."

Note: Because setting up the security sandbox requires duplicating the schema for
Oracle Fusion Data Security tables, this will always be a lengthy operation in CRM
Application Composer. Be sure to allow sufficient time for the process to complete
and do not to terminate it early. You may want to defer customizing security and

Defining Security Policies for Custom Business Objects

enabling the security sandbox until you are sure that you need to make
customizations.

Create the business object, as needed.

Unless the business object appears in the Application Navigator of CRM
Application Composer, you will not be able to define security policies using CRM
Application Composer. You can create custom business objects for Sales,
Marketing, Customer Center, Trading Community Architecture, or Order Capture
applications in CRM Application Composer, as described in Chapter 4,
"Customizing Objects." Business objects for all other applications must be created
by a developer, administrator, or security manager, as described in Chapter 15,
"Customizing Security for ADF Application Artifacts."

Consult the system administrator to create custom roles, as needed.

The access privileges specified by security policies you define for the custom
business object are granted to application roles. Oracle Fusion Applications
defines a large number of application roles based on the duties of its member end
users. When an application role does not exist that adequately describe the duties
pertaining to the custom business object, then a custom application role will need
to be created. In those cases where you will need to use a custom role, consult a
system administrator. Only a system administrator may create a new role, and
optionally include the role in an existing role hierarchy.

9.2 Defining Security Policies for Custom Business Objects

Until you define a security policy for a custom business object, the data records
exposed by that business object will be protected and end users will not have access to
the data. When you want to make the custom business object accessible, you define a
security policy using CRM Application Composer.

The security policy that you define in CRM Application Composer consists of the
following access privileges that you select to control access to the custom business
object by end users provisioned to particular roles:

Grant View, Update, Create, and Delete privileges on the web page that displays
the data records. Minimally, you must grant the View privilege to allow the end
user to open the web page. You can also grant Update, Create, and Delete
privileges to enable the buttons in the web page that the end user clicks to initiate
these operations on the data records.

Note: If an Update, Create, and Delete privilege is not granted, the corresponding
button will appear grayed out (disabled) in the web page.

Grant ViewAll and UpdateAll privileges on the data records themselves.
Minimally, you must grant the ViewAll privilege to populate the web page with
the data records for the end user. You can also grant the UpdateAll privilege to
enable the end user to modify the data contained in any data record exposed by
the custom business object.

Note: When you grant the UpdateAll privilege, CRM Application Composer
automatically grants the privileges for the edit operation button. You can enable or
disable individual buttons (including edit, new, and delete) in the web page and
thereby deny end users access to individual operations on the data record by
selecting or deselecting the corresponding Update, Create, and Delete privilege.

Customizing Security for Custom Business Objects 9-9

Defining Security Policies for Custom Business Objects

Before you begin:

Create the business object. You can only define security policies on custom business
objects that you create in CRM Application Composer. The custom business object
must exist before you define the security policy. For more information, see Chapter 4,
"Customizing Objects."

Task: Grant View and Update Access to Multiple Roles Using the Object-Centric
User Interface

The data records exposed by a custom business object can be accessed by members of
more than one application role. You can grant access privileges to the view, update,
create, or delete operations for a particular custom business object for each application
role. In the navigator for CRM Application Composer, you select the custom business
object and then you click Security. In the Define Policies screen, you grant access
privileges to any of the displayed application roles for the previously selected custom
business object as follows:

= When you want to grant view-only access, you select only the View and ViewAll
privileges.

= When you want to grant view and update access, you select the ViewAll and
UpdateAll privileges.

After you select the UpdateAll privilege, the security policy screen automatically
displays the Update privilege as selected.

= When you want to allow or deny access to individual operations to edit, create, or
delete data records, you can select or deselect the corresponding Update, Create,
and Delete privilege and leave the UpdateAll privilege selected.

For more information, see the "Securing Custom Objects: Explained" topic in the Oracle
Fusion Applications CRM Extensibility Guide.

Task: Grant View and Update Access to a Specific Role Using the Role-Centric
User Interface

Members of an application role may have access to multiple custom business objects.
You can grant access privileges to view, update, create, or delete operations for each of
the custom business objects for a particular application role. In CRM Application
Composer, you select Security Roles from the Common Setup panel. In the Security
Roles screen, you select a role and then you click the Define Policies button. In the
Security Policies screen, you grant access privileges to any of the displayed custom
business objects for the previously selected role as follows:

= When you want to grant view-only access, you select only the View and ViewAll
privileges.

= When you want to grant view and update access, you select the ViewAll and
UpdateAll privileges.

After you select the UpdateAll privilege, the security policy screen automatically
displays the Edit privilege as selected.

= When you want to allow or deny access to individual operations to edit, create, or
delete data records, you can select or deselect the corresponding Update, Create,
and Delete privilege and leave the UpdateAll privilege selected.

For more information, see the "Securing Custom Objects: Explained" topic in the Oracle
Fusion Applications CRM Extensibility Guide.

9-10 Extensibility Guide

Enabling End User Instance-Level Security Customization

9.3 Enabling End User Instance-Level Security Customization

In certain situations one end user may require temporary access to the data records of
another end user. In this scenario, Oracle Fusion Applications supports a runtime
security customization feature that lets end users elevate the privileges of another end
user by conferring their own rights to view, edit, or delete individual data records.
Because each data record corresponds to a business object instance, this type of
runtime customization is known as instance-level security.

In CRM Application Composer, this end user security configuration feature is enabled
on the custom business object during page customization. At runtime, the page that
displays the data records of the enabled custom business object will display a Manage
Permissions button that opens a dialog that displays the list of end users to whom
additional privileges may be granted. The privileges the dialog displays will be
limited to the privileges available to the conferring end user, as defined in CRM
Application Composer for the user’s provisioned roles and the currently the displayed
custom business object.

Additionally, to complete the configuration of this runtime security customization
feature in CRM Application Composer, you must grant sufficient privileges to the
roles which may be conferred a higher level of access by another end user in order to
enable the Edit and Delete buttons in the user interface so that the user with elevated
privileges can invoke edit or delete operations on the data record.

Before you begin:

Create the appropriate security policy on the custom business object for the conferring
end user. The end user can only confer the access privileges to a data record that they
already possess. This requirement means that the conferring end user’s role must have
the ViewAll or UpdateAll privileges granted in CRM Application Composer to be
able to confer the right to view, edit, and delete a particular data record.

Create the appropriate security policy on the custom business object to be accessed by
the target end user. At runtime, in Oracle Fusion application, the end user to whom
the rights are granted must also have the privileges needed to select the buttons the
web page displays to invoke the create, edit, or delete operations on the data records
of the custom business object. This requirement means at least one role of the target
end user must have the View, Update, and Delete privileges granted for the specific
custom business object in CRM Application Composer. Otherwise, without these
privileges, the Oracle Fusion application will display the web page with the Edit and
Delete buttons grayed out (disabled) for the business object.

Task: Enabling End Users to Elevate the Access Privileges of Other End Users
for a Business Object in a Specific Page

The data records of a custom business object represent instances of the object. You can
enable a runtime security configuration feature that allows one end user to elevate the
rights of another end user to access individual business object instances displayed in a
specific page. Instance-level security lets one end user confer their own access
privileges to other end users of the Oracle Fusion application in the enterprise. In the
navigator for CRM Application Composer, to enable this runtime security
configuration feature, you select the custom business object and then you click Page.
In either of the Pages panels, you click through the page creation workflow until you
reach the Configure Landing and Creation Pages task, and you then select Allow
Access Grant. For more information, see the "Securing Custom Objects: Explained"
topic in the Oracle Fusion Applications CRM Extensibility Guide.

Customizing Security for Custom Business Objects 9-11

Preventing Corrupted Security Policies in CRM Application Composer

Task: Enabling End Users to Elevate the Access Privileges of Other End Users
for a Business Object on Any Page

The data records of a custom business object represent instances of the object. You can
enable a runtime security configuration feature that allows one end user to elevate the
rights of another end user to access individual business object instances when they
appear in any page. Instance-level security lets one end user confer their own access
privileges to other end users of the Oracle Fusion application in the enterprise. In the
navigator for CRM Application Composer, to enable this runtime security
configuration feature, you select the custom business object and then you click
Security. In the object-centric Define Policies screen, you select Grant Access for the
desired application role. Alternatively, you can use the role-centric Define Policies
screen to enable the same runtime security configuration feature. For more
information, see the "Securing Custom Objects: Explained" topic in the Oracle Fusion
Applications CRM Extensibility Guide.

9.4 Preventing Corrupted Security Policies in CRM Application Composer

CRM Application Composer creates a variety of security artifacts, which together
provide security for the CRM application. Once you define or edit a security policy in
CRM Application Composer, authorized developers or security managers may be able
to access the security repository and view the security policy. However, in the current
release of Oracle Fusion Applications, even browsing the security policies for custom
objects in tools such as Oracle Authorization Policy Manager or Oracle Fusion
Functional Setup Manager may corrupt the security artifacts created in CRM
Application Composer.

Important: Security managers must not use Oracle Authorization
Policy Manager or Oracle Fusion Functional Setup Manager to browse
or edit the security policies that you create in CRM Application
Composer. Security policies created for custom objects, should
therefore only be edited within CRM Application Composer.

9-12 Extensibility Guide

Part lli

Developer Customizations and
Extensions

Part III contains the following chapters:

» Chapter 10, "Using JDeveloper for Customizations"

» Chapter 11, "Customizing and Extending ADF Application Artifacts"

» Chapter 12, "Customizing and Extending SOA Components"

» Chapter 13, "Customizing and Extending Oracle BPM Project Templates"

» Chapter 14, "Customizing and Extending Oracle Enterprise Scheduler Jobs"
» Chapter 15, "Customizing Security for ADF Application Artifacts"

n Chapter 16, "Translating Custom Text"

» Chapter 17, "Configuring End User Personalization"

» Chapter 18, "Customizing Help"

10

Using JDeveloper for Customizations

This chapter describes how to configure JDeveloper for implementing customizations
in Oracle Fusion applications. It also describes how to customize Service-Oriented
Architecture (SOA) composites with JDeveloper, including setting up the JDeveloper
workspace and composite project for Metadata Service (MDS) customization,
customizing the composite, and customizing SOA resource bundles.

This chapter includes the following sections:

= Section 10.1, "About Using JDeveloper for Customization"

= Section 10.2, "Customizing Oracle ADF Artifacts with JDeveloper"
= Section 10.3, "Customizing SOA Composites with JDeveloper"

10.1 About Using JDeveloper for Customization

You use JDeveloper when you need to customize or create business objects or security
outside of CRM applications, or when you need to make more sophisticated changes,
like changes to SOA composites, ESS jobs, BPM project templates, or embedded help.
While you use JDeveloper to both customize existing standard objects and to create
new custom objects, the procedures you use for each are different.

New custom objects created in JDeveloper are not saved into the MDS repository, and
so are done in a standard application workspace using the Oracle Fusion Applications
Developer role. However, when you customize standard objects, those customizations
are saved into the MDS repository, and so must be done using the Oracle Fusion
Applications Administrator Customization role. Doing the customizations using the
customization role ensures that your changes are saved to the upgrade-safe MDS
repository, and not written directly to the standard object. In the future, when you
patch or upgrade your Oracle Fusion Applications, your customizations held in these
metadata files will not be touched, and so, you will not have to redo them. For more
information about customizations and the MDS repository, see Chapter 1,
"Customizing and Extending Oracle Fusion Applications."

When customizing ADF artifacts, you create a special customization application
workspace, using the developer role. This workspace includes a connection to a
deployed Oracle Fusion Applications environment (normally a test environment),
which allows you to import the artifacts you want to customize into your workspace.
This customization workspace is automatically configured to work within Oracle
Fusion Applications, so that when you test and deploy your customizations, they will
behave as though they were native Oracle Fusion Applications. When customizing
SOA composite applications, you create a SOA Composite application workspace in
the developer role.

Using JDeveloper for Customizations 10-1

About Using JDeveloper for Customization

Once the workspace is created, you switch roles to the customization role and import
the ADF artifact or the SOA archive you want to customize. You then make your
customizations to the imported artifact. Once done, you package and deploy the
artifacts in the workspace to the Oracle Fusion Applications environment.

Often, you will need to perform both customizations (customizing an existing
standard object) and extensions (creating a new object). For example, say you want to
create a new entity object and expose that new object in an existing application
module. First, because you are creating a new custom entity object, you would create a
standard application workspace and then create your entity object. Once complete,
you would package the workspace as an ADF Library, and place it into the exploded
EAR directory for your test environment. Next, you would create a customization
application workspace, and import both the new entity object library and the library
that contains the application module to which you need to add the entity object. Once
both are imported, you log in using the customization role and make the
customizations to the application module. Once customizations are complete, you
would deploy the customizations to the test environment.

10.1.1 About Customizing Oracle ADF Artifacts

Oracle Fusion applications are built using Oracle ADF artifacts on Oracle Fusion
Middleware, including the following:

= Application modules: An application module is the transactional component that
Ul clients use to work with application data. It defines an updateable data model
along with top-level procedures and functions (called service methods) related to
a logical unit of work related to an end-user task.

= Entity objects: An entity object represents a row in a database table and simplifies
modifying its data by handling all data manipulation language (DML) operations
for you. It can encapsulate business logic to ensure that your business rules are
consistently enforced. You associate an entity object with others to reflect
relationships in the underlying database schema to create a layer of business
domain objects to reuse in multiple applications.

= View objects: A view object represents a SQL query and simplifies working with
its results. You use the SQL language to join, filter, sort, and aggregate data into
the shape required by the end-user task being represented in the user interface.
This includes the ability to link a view object with other view objects to create
master-detail hierarchies of any complexity. When end users modify data in the
user interface, your view objects collaborate with entity objects to consistently
validate and save the changes.

» Task flows: Task flows determine the flow of control throughout an application.
They also can be included in a page as a region, where users can navigate through
a series of page fragments, without leaving the original page.

= JSPX pages and page fragments: The view layer of Oracle Fusion Applications
consists of a small number of pages per application. These pages then contain task
flows, which in turn contain a number of page fragments.

For more information about Oracle ADF components, please refer to the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

When you customize Oracle ADF artifacts, you usually work in an overview editor
that allows you to make your customizations declaratively. For example, Figure 10-1
shows the editor for an entity object. Among other things, you can set validation or
change how the Ul displays the data.

10-2 Extensibility Guide

About Using JDeveloper for Customization

Figure 10-1 Overview Editor for Entity Object

LookupVaIuesMIsPEO.me x

Ceneral
Antributes Aftributes + / x
EUSIESS (s Entity attributes can be bazed upon columnsz inthe schema object or can be bazed upon transient
Java valugs,
Business Events
Wiew ACCessors “
Mame Type Column Column Type Extends
[mume y |
AppliesTo String APPLIES_TO WARCHARZ(I0)
LookupiZategory String LOOKUP_CATES.. WARCHARZ(ZO)
LookupCode string LOQKUP_CODE VARCHARZ{3D)
StartDatedctive Date START_DATE_A... DATE
EndDatedctive Diate EMD_DATE_ACT... DATE
Conflictld Long COMFLICT_ID MUMEBERLS, 0}
Createdby String CREMTED_EY WARCHARZ(E4)
CreationDate Timestamp CREATIOMN_DATE TIMESTAMP
LastUpdatedBy 5tring LAST_UPDATED... VARCHARZ(E4) |_@_|
LastUpdateDate Timestamp LAST_UPDATE_ ... TIMESTAMP |g|
LastUpdateLogin String LAST_UPDATE L. WARCHARZ(SZ)
ChjectVersionh... Integer OBECT_WERSIO... MUMEER{S, Oy
UserLastpdate.. Timestamp USER_LAST_UPD... TIMESTAMP
Meaning string MELMING WARCHARZ{BD)
Cescription string DESCRIPTICON WARCHARZ{Z40) |
LookupType String LOOKUP_TYFE WARCHARZ(3O)
EnabledFlag string EMABLED_FLAC WARCHARZ(1) .
[# Validation Rules: LookupWaluesid '+ / %
[# Custom Properties: LookupWaluesld + T / 2@
Ouerview | Source = T ﬁgé

For JSP pages, you work in a WYSIWYG environment using the Design tab in the
editor window, as shown in Figure 10-2.

Using JDeveloper for Customizations 10-3

About Using JDeveloper for Customization

Figure 10-2 Design Editor for JSP Pages

Sales Lookups Dashboard.jspx * l E]

m ™ ShOW'[Full Screen Size']@[None 'IDefauIt 'INone ']% & @ B ' u ;E E 5_3 £ad

jspiroot « » fiwiew » > afidocument#dl « : af:pagetemplate#ptl = > fifacet
I Design I Source I Bindings I Prnz\riemr|< H

10.1.2 About Using JDeveloper to Customize SOA Composites

Oracle Fusion applications are built using SOA composite artifacts on Oracle Fusion
Middleware, which include the following:

= Service components: Service components implement the business logic or
processing rules of a SOA composite. Available service components include the
following:

— BPEL processes that enable you to integrate a series of business activities and
services into an end-to-end business process flow.

— Business rules that enable you to create business decisions in your business
process flow based on rules.

— Human tasks that enable you to create human workflows that describe the
tasks for users or groups to act upon as part of an end-to-end business process
flow. You use the graphical interface tool Oracle BPM Worklist to act upon the
tasks during runtime.

- Mediators enable you to define services that perform message and event
routing, filtering, and transformations within the SOA composite.

» Binding components: Binding components establish the connection between a
SOA composite and the external world. There are two types of binding
components:

10-4 Extensibility Guide

Customizing Oracle ADF Artifacts with JDeveloper

- Services provide the outside world with an entry point to the SOA composite.
The WSDL file of the service advertises its capabilities to external applications.
These capabilities are used for contacting the SOA composite components. The
binding connectivity of the service describes the protocols that can
communicate with the service (for example, SOAP/HTTP or a JCA adapter).

— References enable messages to be sent from the SOA composite application to
external services in the outside world.

= Wires connect services, service components, and references into a complete SOA
composite.

For more information about SOA composites, see the Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

10.1.3 Before You Begin Using JDeveloper to Customize

Before you use JDeveloper to customize, you should be familiar with the Oracle
Fusion application architecture that enables customization, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications.” You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can use JDeveloper to customize:

s The application you are customizing must be deployed to a test environment, and
you must have access to the exploded EAR directory for that application.

= Download and install JDeveloper, and set up your development environment, as
documented in "Chapter 2 Setting Up Your Development Environment" of the
Oracle Fusion Applications Developer’s Guide.

10.2 Customizing Oracle ADF Artifacts with JDeveloper

To customize ADF artifacts, you first create a customization application workspace,
using the Oracle Fusion Applications Developer role in JDeveloper. Once the
workspace is created, you exit JDeveloper and then reenter, using the Oracle Fusion
Applications Administrator Customization role and import and customize your
artifacts.

10.2.1 Creating the Customization Application Workspace

You need to set up a customization workspace in JDeveloper to create the application
that will hold your customizations.

To create the Application Workspace

1. Start JDeveloper using the Oracle Fusion Applications Developer role, as shown in
Figure 10-3.

Using JDeveloper for Customizations 10-5

Customizing Oracle ADF Artifacts with JDeveloper

Figure 10-3 Oracle Fusion Applications Developer Role

|£>l Select Role L\\, B9
Select the role that matches vour requirements. You can also change roles using the Roles page in preferences, é
Rale:

() Java EE Edition —
Includes only features for core Java EE development.
() Java Edition
Includes only features for care Java develapment.

() Oracle Fusion Applications Administrator Custornization

Caonfigures |Developer for customizing metadata for Oracle Fusion Applications customers and administrators

() Oracle Fusion Applications Customization

Configures |Developer for customizing metadata for Oracle Fusion Applications developers

(%) Oracle Fusion Applications Developer

Cptimizes |Developer for Oracle Fusion Applications developers. -

Always prompt for role selection on startup

| Ok é| Cancel |

2. In]Developer, choose File > New to open the New Gallery. In the New Gallery,
select Applications > Fusion Applications Customization Application.

3. Inthe Step 1 page of the FA Customization Application dialog, enter the following
and click Next:

= Application Name and Directory: This will be the name and location of your
customization application, and can be anything you like.

= Fusion Database: Enter the connection to your Fusion database.

= Application Package Prefix: This can be anything, but must not start with
oracle.

= Deployed Application Ear: Browse to the exploded ear for the application
you want to customize.

= Policy Store Security Information: Browse to the imported jazn-data.xml
file. You only need to do this if you will be customizing security policies. For
more information, see Chapter 15, "Customizing Security for ADF Application
Artifacts."

4. Complete the wizard by changing any default settings as needed.

Once you complete the wizard, an application with a project is created for you. This
application is configured to be the same as a deployed Oracle Fusion application. For
example, it is connected to the same database, same metadata repository, and has
similar web . xmland weblogic.xml settings. This configuration allows it to work
correctly when deployed into your Oracle Fusion Applications environment, and also
ensures that when you test your customizations locally in the JDeveloper integrated
WebLogic server, the customizations will behave as they will in the full test
environment.

JDeveloper also creates a connection to the exploded EAR directory named
Customizable Archive, which is accessible from the Resource Palette. Figure 104
shows the connection to the exploded EAR directory for the Sales application.

10-6 Extensibility Guide

Customizing Oracle ADF Artifacts with JDeveloper

Figure 10-4 Resource Palette Connection to Exploded Ear Contents

.BBBQD*)(‘% B O-0O

i=lapplication x| B x |6

racle J g Release 1 - Application2,jws : ProjectLjpr N = @] =]
File Edit View Application Refactor Search Navigate Build Run Versigning Tools Window Help
iRl - A G
) (@ start Page x [EResowrce pPatene x| |
z l] SN ®)

'Apphcaunnz
= Projects

Projectl

Oracle JDeveloper 11g

Model Applications
Design Databases

I Application Resources
b Data Contrals @7
b Recently Opened Files

Build Applications

| Integrate Applications

= Customizable Archive - Struc...

L8

Copyright © 1987, 2011 Oracle and/ar its affiliates. All rights reserved

e Bememmion 5 L

|

UHUHUHUHU\

.Messages a0 | imustons

TR, PART IO P B _STOrade, Fih1 T F_appTesT, atdpT, 16e_1ThR/ D

e /scr‘atch/rwh1tmnr‘/\f1ew storage/ruhitnor_apptest/atgpt/ide_11nks]
file: /scratch/rah o r /vl ew_storage/rahi tnor_apprest/atgpt,/ide_11nk,/1
file: /scratch/rah o r /vl ew_storage/rahi tnor_apprest/atgpt,/ide_11nk,/1
file: /scratch/rah o r /vl ew_storage/rahi tnor_apprest/atgpt,/ide_11nk,/1
file: /scratch/rah o r /vl ew_storage/rahi tnor_apprest/atgpt,/ide_11nk,/1
file: /scratch/rah o r /vl ew_storage/rahi tnor_apprest/atgpt,/ide_11nk,/1
file: /seratch/rah tnor /vl ew_storage/rwhi tnor_apprest/atgpt/ide_11nk,/1

These are in the project as a result of your ADF jar inpores:
AuthorizationSerwice-Client.jar (f11e:/scratch/rhitnor/vien_storage,
. /ropologyManage r Topol ogyManage rC11ent,/Topol ogyMa

ADF Library from ..

b My Catalogs
+ IDE Connections
ER:
S-{ieg Base Apphcaunn Archive - Applicationz

3 adr

- APP-INF

[competitors-salesBaseSalesCom petit]
-7 deployinfo war

[Earsales.war

P ik

[0 META-INF

-] opportunities-salesOpptyMgmtOpp

[references-salesBaseSalesReference
-[7] sales-ZsfForecastodel-context-ro;

[salesCustomObjectService_MiddleTig
-] salesLookups-SalesbaseSalesCamm

[salesMethods-SalesOpptyMgmisales|
-] svcPartnerCenterPublicService_Middl|
[svcPartnerFinderPublicModel_Middle
-] swcProgramManagementCommanSe

[svcsalesOpptyMgmtOpportunitiesPul
- Database

{5 File System

10.2.2 Customizing the Artifacts

You need to switch to the Customization Developer role before you can begin

customizing.

1. Restart JDeveloper and select the Oracle Fusion Applications Administrator

Customization role, as shown in Figure 10-5.

Using JDeveloper for Customizations 10-7

Customizing Oracle ADF Artifacts with JDeveloper

Figure 10-5 Oracle Fusion Applications Administrator Customization Role

|£>' Select Role 2
..... 3 N
L
Select the role that matches vour requirements. You can also change roles using the Roles page in preferences, é
Rale:

(0 Java EE Edition =
Includes only features for core Java EE development.

() Java Edition
Includes only features for care Java develapment.

(%) Oracle Fusion Applications Administrator Customization
Caonfigures |Developer for customizing metadata for Oracle Fusion Applications customers and administrators

() Oracle Fusion Applications Customization

Configures |Developer for customizing metadata for Oracle Fusion Applications developers

() Oracle Fusion Applications Developer

Cptimizes |Developer for Oracle Fusion Applications developers. -

Always prompt for role selection on startup

2. In the Resource Palette, expand the IDE Connection section, expand the exploded
ear, and browse to find the artifact you want to customize.

Tip: you can use the Search field to find the artifact. Click the Search
icon to choose to search by name, file type, or description. To do an

advanced search, right-click the folder for search in and choose
Advanced Search.

For help in determining which artifacts you may need to customize, see
Section 10.2.3, "Determining What ADF Artifacts You Need to Customize."

3. Right-click the artifact, and choose Customize, and choose to add the associated
library to the project.

The artifacts from the imported library now display in the Application Navigator
pane, under the ADF Library Customizations node, and the artifact you selected
to customize opens in the editor window, as shown in Figure 10-6.

10-8 Extensibility Guide

Customizing Oracle ADF Artifacts with JDeveloper

Figure 10-6 JSPX Page Open in Editor and Ready to Customize

Orverview | Sour

[Security: LookupValues M Is PEO

Elog *

AUF L1BFary Trom
ADF Resource Library from
ADF Library from
ADF Resource Library from
AdTCrnConmonMabi1eTagLibUd
ADF Library from
ADF Resource Library from
ADF Library from

3

Jun 22, 2011 G:30:45 PH oracl
WARNTING: An exception has occ
Jun 22, 2011 G:30:46 PH null
WARNING: An exception has occ|.

Ll
Messages

Extenzions X

=+ = /BFONS B viewnithout Customizati...

(%) Edit with following Customization Con

m Application2 - Customizatio.. %
Lo Anobil

=, Oracle JDeveloper 11g Release 1 - Application2jws : ProjectLjpr =8 %
. I~
e A e
EcOa b 90 XBER QO O & &R da- p-%-14 (@8-)
iZlApplication * BPMPro.. % |63 x [0) (DstartPage * [ElLookupvaluesMIsPEO.xml % =) [SjRresource Palette * =
& oy s \
Application? - @ - »)
~ Projects Bl®Y-E Cereral I My Catalogs
=3 - Entity Object 7 IDE Cannections
i i AdfBasesalesC PublicEntityAnalytics,
{29 ADF Library Customizations Business Rules Entity objects are used to encapsulate the business logic W AdfBaseSalesCommondu \cEntitrAnalytics Jar
&1 oracle and database storage details for your business entities. Wl AdfbaseSalesCommonPublicEntity SalesLookups |
=1 apps i [META-INF L
& @ sales Business Events =03 oracle
=) basesales ViewAccessors LookupWaluesMisFEO &[0 apps
=@ common oracle.apps sales.basesales.common.salesLookups =[] sales
=1 salesLaokups <Hones &[0 basesales
B @@ publicEntil <None> =-[common
Lookul 3 2B5_LOOKUR_WALUES_yL &0 saleslookups
{3 &pplication Sources =[] publicEntity
it
[Resources Business Companents P.. BaseSalesCammonPublicEntit B3 asseciation
[Web Content [} Lookupvaluesmispl
.. LockmaecPED.
I Application Resources [LookupvaluesTran
I Data Controls 07 = Afternate Keys + /R @ AdffasesalesCommonPublicModelAuditTrail jar
pPecenthiOnenedilennnnnanaanaasll | = O | Rt e |
ST 1T ETuning | pe————————— e
*=Projectljpr - Structure X {3 & property Inspectar X 53]
[Custom Properties - AR 5 | rFag) $3)9

Tip la.. Mame Value
parti () ES5_CLO. <o Valuex

... /conte

[Ciobal (GLOBAL).

Custamization Cantext : Global /GLOBAL

Orverride global layer values

M=)

Note:

Controls panel, do the following;:

If imported data controls are not displaying in the Data

1. In the JDeveloper menu, go to Tools > Preferences to open the
Preferences dialog.

Select General.

Expand the Business Components node.

Select Display Imported ADF Libraries in Data Control Palette.

4.

In the Customization Context window (by default, displayed at the bottom of

JDeveloper), select the layer that you want the customizations written to.

All customizations for ADF business components must be done in the Global
layer. View layer customizations can be made in any other layer except User. For
more information about customization layers, see Section 1.2, "Understanding
Customization Layers."

You are now ready to begin customizing your artifact. For more information about
customizing specific artifacts, see the following chapters:

s Chapter 11,
s Chapter 14,
n Chapter 15,
s Chapter 17,

"Configuring End User Personalization"

Using JDeveloper for Customizations

"Customizing and Extending ADF Application Artifacts"
"Customizing and Extending Oracle Enterprise Scheduler Jobs"

"Customizing Security for ADF Application Artifacts"

10-9

Customizing Oracle ADF Artifacts with JDeveloper

s Chapter 18, "Customizing Help"

10.2.3 Determining What ADF Artifacts You Need to Customize

Most often, the customizations you want to make will be surfaced on an existing page.
For example, say you want to add a field to a page. So you first need to determine the
page to customize, which may actually be a page fragment within a task flow. You
then need to determine which business objects you'll need to customize to add the
field.

The easiest way to determine what artifacts you will need to customize is to follow this
path:

1. Inaruntime environment, access the page you want to customize and open it in
the Source view of Oracle Composer. The page’s structure is displayed, and from
here, you can determine the page name, or if the customization is actually on a
page fragment with in a task flow, you can determine the task flow name. For
more information about using Oracle Composer, see Chapter 3, "Customizing
Existing Pages."

2. If youneed to customize a page fragment (. jsff) file within a task flow, from
Oracle Composer, click Customization Manager, to open the page in
Customization Manager. From here, you can determine the . jsff file name.

3. In]JDeveloper, once you have created a connection to the exploded ear directory,
you can use the search field to search for the . jsff file or the task flow file.

Tip: you can use the Search field to find the artifact. Click the Search
icon to choose to search by name, file type, or description. To do an
advanced search, right-click the folder for search in and choose
Advanced Search.

4. Right-click the file and choose Customize to import the file and open it in
JDeveloper.

5. Right-click the file, and choose Go to Page Definition.

The page definition file will show you the view objects being used by the
components on the page to return the data.

6. Open the view object in JDeveloper.

The view object can be customized, or if needed, you can determine the associated
entity object and customize that. You can also determine the application module
from here.

10.2.4 Importing Customizations into Your Workspace

There may be occasions when you need to import other customizations into your
workspace. For example, someone else may have made customizations to an
application module to which you need to make changes as well. Before you make your
customization, you need to import that application module into your customization
workspace.

If you need to import customizations made to a single page or page fragment, you can
use Customization Manager to download the file, as described in Section 2.3.3,
"Downloading and Uploading Customization Files." Save the customization file(s) to a
zip or JAR file.

10-10 Extensibility Guide

Customizing SOA Composites with JDeveloper

If you need to import multiple customizations available in the metadata repository for
an application, you use the exportMetadata WebLogic scripting tool command. For
more information, see the "Application Metadata Management Commands" section of
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference. This command
saves the customization files in a JAR file that you can import into your workspace.
For procedures, see the "Viewing ADF Library Runtime Customizations from exported
JARs" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Tip: You can also use Fusion Middleware Control to import and
export customization files. For more information, see the "Transferring
Metadata Using Fusion Middleware Control" section of the Oracle
Fusion Middleware Administrator’s Guide.

If you want to use extensions (for example, if you want to add a custom entity object to
an existing application module), that extension must be deployed into the
environment to which you have a connection. For more information, see Section 11.11,
"Deploying ADF Customizations and Extensions."

10.3 Customizing SOA Composites with JDeveloper

Before you begin customizing, you must identify the SAR file to customize, retrieve
the configuration plan from the default composite in the MDS repository, and set up
the workspace and composite project for MDS customization in JDeveloper using the
Oracle Fusion Applications Developer role. Once the workspace is created, you must
exit and reenter JDeveloper using the Oracle Fusion Applications Administrator
Customization role.

10.3.1 Before You Begin Using JDeveloper to Customize

Perform the following tasks before you begin customizing SOA composites with
JDeveloper:

1. Identify the SAR file to customize, and locate it in the APPLICATIONS_
BASE/fusionapps/applications/product_family/deploy directory.
This directory includes the following files:

s Composite SAR (sca_*.jar)
= BPM template (bta_*.jar)
m List resource bundle classes (jar_*.jar)

2. Ensure that the SAR file is marked as customizable by Oracle Fusion Applications.
Otherwise, customizations do not survive patching or are not properly patched
and merged. For information about which SOA composites are customizable, see
the product-specific documentation from Oracle Enterprise Repository for Oracle
Fusion Applications.

If you encounter the following message when importing the SAR for
customization, it means that Oracle Fusion Applications did not mark the
composite for customizations in JDeveloper and your changes cannot survive
patching.

The composite from the archive was not created for
customization. If you import the composite for
customization, you can customize it but you will have
problems to merge your customizations to any new
versions of that composite.

Using JDeveloper for Customizations 10-11

Customizing SOA Composites with JDeveloper

Do you want to continue?
Otherwise, uncheck "Import for Customization" box, and
click "Finish" option.

Get the configuration plan from the default composite in the MDS repository
using the following WLST commands:

a. Determine the default revision of the composite with sca_
getDefaultCompositeRevision. For example:

wls:/mydomain/ServerConfig> sca_getDefaultCompositeRevision ("myhost",
"7001", "weblogic", "weblogic",
"FinGlCurrencyUserPreferredCurrencyComposite")

b. Export the full composite corresponding to the default revision with sca_
exportComposite. For example:

wls:/offline/mydomain/ServerConfig> sca_
exportComposite('http://myhost:8001', 'none', '/tmp/sca_
FinGlCurrencyUserPreferredCurrencyComposite.0.jar',
'FinGlCurrencyUserPreferredCurrencyComposite',

'1.0")

c. Extract the configuration plan used originally with the export action with
sca_extractPlan. For example:

wls:/mydomain/ServerConfig> sca_extractPlan("/tmp/sca_
FinGlCurrencyUserPreferredCurrencyComposite

revl.0.jar", "/tmp/FinGlCurrencyUserPreferredCurrencyComposite_
configPlan.xml")

For information about using these commands, see Oracle Fusion Middleware WebLogic
Scripting Tool Command Reference.

10.3.2 Setting Up the JDeveloper Workspace and Composite Project for MDS

Customization

To set up the JDeveloper workspace and composite project for MDS
customization:

1.
2.

Start JDeveloper using the Oracle Fusion Applications Developer role.

From the File main menu, select New > Applications > SOA Application > OK to
create a SOA application with an XX prefix in the application name.

The xX prefix identifies an artifact or object created by the customer and
distinguishes it from artifacts of Oracle Fusion Applications. You can delete the
SOA project named Project1 that was created by default.

The Oracle Fusion Applications composite references shared artifacts through the
SOA-shared repository stored in MDS instead of replicating the shared artifact
throughout the Oracle Fusion Applications code source. If the references to the
SOA shared repository are not resolved, you receive the error message shown in
Figure 10-7.

10-12 Extensibility Guide

Customizing SOA Composites with JDeveloper

Figure 10-7 WSDL Read Error Message

E

o

@ Failed to find WSDL definition and/or locate WsDL URL

= WSDLException: faultCode=PARSER_ERROR: Failed to read wedl file at:
"oramds:fapps/oraclefappsfinancials fgeneralledger,/currencies fmanageRate fmanageRatePublicService/ Currency APIService wsdl",
caused by: java.io DException. javaiol2Exception: oracle.mds.exceptionMDSException: MD5-00054: The file to be

loaded

aramds: fapps foraclefappsfinancialsfgeneralledger/ currencies/manageRate /manageRatePublicService fCurrency APIService wes dl
does not exist.

oracle jeeesswsdl LocalizedWSDLException: W5SDLException: faultCode=PARSER_ERROR: Failed to read wedl file at:
"oramds:fapps/oraclefapps/financials fgeneralledger,/currencies fmanageRate f/manageRatePublicServicef Currency APIService wsdl”,
caused by: javaio IOException. javaiolOException: oracle.mds.exception MDSException: MD5-00054: The file to be
loaded
oramds:fapps/foraclefapps/financials/generalledger/currenciesfmanageRate/manageRatePublicService /Currency APIService ws dl
does not exist.

Lok]

To resolve references to the SOA-shared repository (oramds : /apps), define an
MDS entry in the adf-config.xml file to point to the SOA Infrastructure MDS
partition in the MDS schema corresponding to the SOA cluster where you plan to
deploy the customized composite. Add a <namespace> attribute with
path="/apps" to <metadata-namespaces>:

<namespace metadata-store-usage="mstore-usage_2" path="/apps"/>

Add a <metadata-store-usage> attribute to <metadata-store-usages>
for a database-based MDS that points to the SOA Infrastructure MDS partition in
the SOA MDS schema.

Replace the database schema name, database server, database port, and database
name with actual values. To determine the user name, password, and database
connection information, see the configuration for the MDS-SOA data source in the
Oracle WebLogic Server Administration Console.

<metadata-store-usage id="mstore-usage_2">
<metadata-store class-name="oracle.mds.persistence.stores.db.
DBMetadataStore">
<property value="soa_mds_schema_name" name="jdbc-userid"/>
<property value="soa_mds_schema_password" name="jdbc-password"/>
<property value="jdbc:oracle:thin:@database_server:
database_port:database_name" name="jdbc-url"/>
<property value="soa-infra" name="partition-name"/>
</metadata-store>
</metadata-store-usage>

The following code shows an <adf-mds-config> example in
adf-config.xml. The mstore-usage_2 entry resolves references to the SOA
shared repository:

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="mstore-usage_l" path="/soa/shared"/>
<namespace metadata-store-usage="mstore-usage_2" path="/apps"/>
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage id="mstore-usage_1">
<metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
<property value="$\{oracle.home}/integration"
name="metadata-path"/>
<property value="seed" name="partition-name"/>

Using JDeveloper for Customizations 10-13

Customizing SOA Composites with JDeveloper

</metadata-store>
</metadata-store-usage>
<metadata-store-usage id="mstore-usage_2">
<metadata-store
class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
<property value="FIN_FUSION_MDS_SOA" name="jdbc-userid"/>
<property value="FIN_FUSION_MDS_SOA" name="jdbc-password"/>
<property
value="jdbc:oracle:thin:@database_server.us.example.com:1521:database_name"
name="jdbc-url"/>
<property value="soa-infra" name="partition-name"/>
</metadata-store>
</metadata-store-usage>
</metadata-store-usages>
</persistence-config>
</mds-config>
</adf-mds-config>

6. From the File main menu, select Import > SOA Archive Into SOA Project to
import the SAR, then click OK.

7. In the Project Name field, enter the name of the new SOA project with an XX
prefix and select a name to identify the base composite that you are extending. For
example, specify XXFinGlCurrencyUserPreferredCurrencyComposite if
you are customizing FinGlCurrencyUserPreferredCurrencyComposite.

8. Click Next.
9. In the Composite Archive field, perform the following steps:

a. Click Browse to select the SAR to customize that you identified in
Section 10.3.1, "Before You Begin Using JDeveloper to Customize."

b. Accept the default setting for the composite name.
c. Select the Import for Customization checkbox.
d. Click Finish.

You accept the default composite name to ensure that patching and SOA can
determine whether runtime customizations, JDeveloper customizations, or both
types have been applied to the composite. If the composite is renamed, patching
and SOA have no knowledge of the renamed composite.

You may see an error icon on a partner link in the composite.xml design view
that reports the following error:

Couldn't resolve classpath:/META-INF/wsdl/ServiceException.wsdl

This error is addressed in subsequent steps.

10. Right-click the composite project and go to Project Properties > Libraries and
Classpath.

11. Click Add Library, and select the BC4J Service Client library.
12. Click OK to close the Add Library dialog.
13. Click OK to close the Project Properties dialog.

By adding this library to your SOA project, you avoid the design time error you
may have received in Step 9d.

14. Click the Validate icon in the composite.xml design view. The error shown in
Step 9d that you may have received for the partner link should now be resolved.

10-14 Extensibility Guide

Customizing SOA Composites with JDeveloper

15. Make the customization classes and values available in your project.

There are two types of customization classes:

= Applications Core customizing classes are available from the Application Core
shared library. See Section 1.2, "Understanding Customization Layers" for the
list of Applications Core customization classes permitted in JDeveloper.

= Product team customization classes are available in the appropriate EAR file.
These customization classes are bundled in a JAR file in the EAR's
APP-INF/1ib directory. These JAR files follow a naming convention of
Ext...jar. Therefore, you must get these JAR files from the deployed area,
and perform the following steps:

— Put the customization class JAR file under $JDEV_
HOME/jdev/extensions.

— Add the JAR file in the new project's library and class path setting.

16. Right-click the composite project and go to Project Properties > Libraries and

Classpath.

17. Add the Applications Core library to the composite project, as shown in

Figure 10-8.

Figure 10-8 Applications Core Library

E

-

l

H- Project Source Paths
b ADF Model

----- ADF Wiew

ke At

th- Buzinezs Components
i Compiler

----- Dependencies

----- Deployment

- EJE Module

- Extenzion

[Javadoc

- |ava EE Application

J5P Tag Libraries
L JSPWisual Editor

Libraries and Clazzpath

----- (rganize Libraries
- Resource Bundle

- RunfDebugyfProfile
- Technology Scope

18.
19.

20.

Help |

Libraries and Classpath

() Use Custom Settings

(2) Use Project Settings

lava SEVerszion:

[1.6.0_11 ¢Defaul) | | Change... |
Clazspath Entries:
Export Deszcription | Add Library... |

[v] @l 504 Designtime

[v] @l 504 Runtime

[v] @I BPEL Runtime

] @A Mediator Runtime

[v] @ MDSRuntime

[¥] @ Applications Core

[¥] @ Commons Beanutils 1.6
[#] @ Commons Logging 1.0.4
[v] @l Commons Collections 3.1
[v] m Rezource Bundle Support
[v] m Rezource Bundle Variable Resolver

| AddaRrsDirectory... |

0K | | Cancel |

Go to Application Resources > Descriptors > ADF META-INF > adf-config.xml.

Add the appropriate customization class in the MDS Configuration, such as

oracle.apps.fnd.applcore.customization.SiteCC.

Classpath.

The following libraries have now been added:

= Application Core
s BC4J Service Client

Right-click the composite project and go to Project Properties > Libraries and

Using JDeveloper for Customizations 10-15

Customizing SOA Composites with JDeveloper

10.3.3 Customizing the Composite

To customize the composite:
1. Start JDeveloper with the Oracle Fusion Applications Administrator
Customization role.

2. Select the value for the layer in the Customization Context dialog that you want to
customize. Figure 10-9 provides details.

Figure 10-9 Customization Context Dialog

*CustomGlApplication - Customization Context E]
() Wiewwithout Customizations

(%) Edit with following Customization Context

Tip layer Mame Value
® Global | Global {GLOBALY. i |

Custamization Context : Global/ GLOBAL

3. See Chapter 12, "Customizing and Extending SOA Components" for instructions
on customizing the composite during design time in JDeveloper and runtime with
Oracle SOA Composer, Oracle BPM Worklist, and Oracle Enterprise Manager
Fusion Applications Control.

4. When introducing new components, partner links, and artifacts to the composite,
prefix the names with XX to prevent problems with existing and future
components that may be introduced in Oracle Fusion Applications patches.

5. Use the configuration plan that you extracted in Step 3 of Section 10.3.1, "Before
You Begin Using JDeveloper to Customize." If any new partner links were added
to your composite, add entries to the configuration plan, if needed. For
information about configuration plans, see Section "Customizing Your Application
for the Target Environment Prior to Deployment" of Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

6. Deploy the composite using the same revision you found in Section 10.3.1, "Before
You Begin Using JDeveloper to Customize."

10.3.4 Customizing SOA Resource Bundles

Table 10-1 describes how to customize SOA resource bundles.

Table 10-1 Customizing SOA Resource Bundles

To Modify or Add
Translatable Strings
For... Description

An existing human task, This feature is not supported in the first version of Oracle Fusion
activity guide, or BPEL Applications (for example, modifying the human task title).

process Runtime modifications do not support this functionality and the

.task, .ag, and .agdl files are not customizable in JDeveloper.

10-16 Extensibility Guide

Customizing SOA Composites with JDeveloper

Table 10-1 (Cont.) Customizing SOA Resource Bundles

To Modify or Add
Translatable Strings
For...

Description

Human task mapped
attributes

This feature is not supported in the first version of Oracle Fusion
Applications.

Translations for human task mapped attribute labels are defined in
the following resource bundle:

oracle.bpel.services.workflow.resource.WorkflowLabels

For this version, the WorkflowLabels resource bundle is
deployed to the SOA clusters in the Customer Relationship
Management (CRM) and Human Capital Management (HCM)
domains. Any customizations to the resource bundle are
overwritten with future patches.

Server name in Federated
Worklist on the Oracle
Fusion Applications
home page

The server names that appear in the Federated Worklist on the
Oracle Fusion Applications home page are defined in the
following file:

oracle/apps/common/acr/resource/ResourcesAttrBundle.x1iff

See Section 11.10, "Customizing or Adding Resource Bundles" for
instructions on overriding strings in XLIFF resource bundles.

Note: Oracle Fusion Applications automatically seed human
task-protected mapped attributes and labels, but do not seed public
mapped attributes. If you require human task mapped attributes, it is
recommended that you use the public mapped attributes. However, if
protected mapped attributes are required, then prefix your label
names with XX to prevent problems with Oracle Fusion Applications

seeded labels.

Using JDeveloper for Customizations 10-17

Customizing SOA Composites with JDeveloper

10-18 Extensibility Guide

11

Customizing and Extending ADF
Application Artifacts

This chapter describes how to use JDeveloper to customize and extend application
artifacts defined by Oracle Application Development Framework (Oracle ADF) in
Oracle Fusion applications.

This chapter includes the following sections:

= Section 11.1, "About Customizing Oracle ADF Application Artifacts"
= Section 11.2, "Editing Existing Business Components"

= Section 11.3, "Editing Task Flows"

= Section 11.4, "Editing Pages"

= Section 11.5, "Creating Custom Business Components"

= Section 11.6, "Creating Custom Task Flows"

m Section 11.7, "Creating Custom Pages"

= Section 11.8, "Customizing or Creating a Custom Search Object"
= Section 11.9, "Editing the UI Shell Template"

= Section 11.10, "Customizing or Adding Resource Bundles"

= Section 11.11, "Deploying ADF Customizations and Extensions"

11.1 About Customizing Oracle ADF Application Artifacts

With the customization features provided by Oracle Metadata Services (MDS),
developers can customize Oracle Fusion Applications using JDeveloper, making
modifications to suit the needs of a particular group, such as a specific country or site.

Using JDeveloper, you can implement customizations on existing artifacts that are
stored in a metadata repository and retrieved at run time to reveal the customized
application. You can also extend you application with new custom artifacts that are
packaged into a JAR file, and integrated using customizations on the existing
application.

Note that many kinds of customization can be performed in the runtime environment
using CRM Application Composer, which allows you to customize existing objects
and extend an application with new objects for the following CRM applications:

m Sales

= Marketing

Customizing and Extending ADF Application Artifacts 11-1

About Customizing Oracle ADF Application Artifacts

s Customer Center
s Trading Community Architecture
s Order Capture

For more information about using CRM Application Composer to customize these
applications, see Chapter 4, "Customizing Objects."

However some kinds of customization (including all customizations to applications
other than those listed above) require a lower level approach, for which you will need
to use JDeveloper.

11.1.1 Before You Begin Customizing Oracle ADF Application Artifacts

Before you customize application artifacts (such as entity objects, view objects,
application modules, and pages) using JDeveloper, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

Before you make any changes to the data model such as adding entity objects or
attributes, first check to see if there are existing flexfields that meet your needs. For
more information, see Chapter 5, "Using Flexfields for Custom Attributes."

In addition, you will need to perform the following tasks before you can begin
customizing your application:

= Setup a test environment.

All application artifact customizations should be deployed to a test environment.
For more information, see Chapter 2, "Understanding the Customization
Development Lifecycle."

s Determine which artifacts you want to customize.

Before you can implement customizations using JDeveloper, you must first
determine which business objects you want to customize, so that you can create a
workspace that imports the necessary parts of the application. For more
information, see Section 10.2, "Customizing Oracle ADF Artifacts with
JDeveloper."

s Create an application workspace.

Before you can implement customizations using JDeveloper, you must create a
workspace that imports the necessary parts of the application you want to
customize. For more information, see Section 10.2.1, "Creating the Customization
Application Workspace."

s Launch JDeveloper in the appropriate role.

If you are implementing customizations on existing application artifacts, you must
select the Oracle Fusion Applications Administrator Customization role when
you launch JDeveloper.

If you are creating new custom application artifacts (such as, entity objects, view
objects, and pages), you must select the Oracle Fusion Applications Developer
role when you launch JDeveloper.

= Select a layer value.

When customizing application artifacts in JDeveloper, you first need to select the
layer and layer value to work in. You use the Customization Context window to

11-2 Extensibility Guide

Editing Existing Business Components

make this selection. When customizing business components, such as entity
objects and view objects, you must use the global layer. For more information
about customization layers, see Section 1.2, "Understanding Customization
Layers."

11.2 Editing Existing Business Components

When customizing an application in JDeveloper, be aware that the layer in which you
choose to implement customizations has an impact on what kinds of customizations
you can perform. If you want to customize an ADF Business Components object, such
as an entity object or view object, you must use the global layer.

Before You Begin

Before you start customizing business objects, you'll need to determine which business
objects you want to customize and create an application customization workspace. For
more information, see Section 11.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

Then when customizing ADF artifacts, you need to launch JDeveloper in the Oracle
Fusion Applications Administrator Customization role, and select the global layer.

Task: Edit Database Tables

Using the SQL Worksheet in JDeveloper, you can issue commands to the database to
customize and extend it. When making changes to the database, you can add and
modify tables or columns to support the customizations and extensions you want to
implement in the application (such as, adding an attribute to an entity object).
However, do not remove tables or columns, as this can have adverse affects in other
parts of the application.

Also, when adding tables or columns to the database, prefix the name of the table or
column with a unique identifier (for example, XX_) to prevent collisions with existing
tables and columns.

To access the SQL Worksheet, right-click the database connection (under the
Connections node in the Application Resources panel of the Application Navigator),
and choose Database Navigator from the context menu. This will open the selected
database connection in the Database Navigator and display the SQL Worksheet.

Task: Edit Attributes

You can customize the properties of an attribute from an entity object or view object
using JDeveloper. When you open an entity object or view object in the overview
editor, you click the Attributes tab to see the attributes of the object. When you select
an attribute, its properties are displayed in the Property Inspector.

It is not necessary to modify the page after customizing the properties of an existing
attribute. Customizations to existing attributes are automatically reflected on the pages
that show them.

However, if you modify an attribute so that it requires a different UI component, you
must also update the page. For example, if you add a list of values (LOV) to an
attribute, you will need to edit the page to hide the existing Ul component that
displays the attribute, and add a new Ul component that can display the LOV.

Note that some attribute properties defined in the entity object can be overridden in
the view object. For example, you can define the label text for a field in an entity object
and subsequently give it a different label in the consuming view object. Then pages
that use the view object display the label from the view object.

Customizing and Extending ADF Application Artifacts 11-3

Editing Existing Business Components

For more information about attributes in entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Task: Add Attributes

You can add custom attributes to an entity object or view object using JDeveloper. To
do this, you must launch JDeveloper in the Oracle Fusion Applications Administrator
Customization role, and select the global layer. When you open an entity object or
view object in the overview editor, you click the Attributes tab to see the attributes of
the object. To add a custom attribute, click the Add icon.

If you want your custom attribute to be stored in the database, you must first create
the column that will be use to store it.

If you want your custom attributes to be displayed in the application, you must also
customize the pages to display them. For more information, see Section 11.4, "Editing
Pages."

For more information about attributes in entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Task: Edit Entity Objects

In JDeveloper, you edit entity objects using the overview editor. In the Application
Navigator, right-click an entity object, and choose Open. Then click on the navigator
tabs to view and edit the various features of the entity object.

For more information about entity objects, see the "Creating a Business Domain Layer
Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

For more information about using entity objects in Fusion applications, see the
"Getting Started with Business Services" chapter in the Oracle Fusion Applications
Developer’s Guide.

Task: Edit View Objects

In JDeveloper, you edit view objects using the overview editor. In the Application
Navigator, right-click a view object, and choose Open. Then click on the navigator tabs
to view and edit the various features of the view object.

For more information about view objects, see the "Defining SQL Queries Using View
Objects" chapter in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

For more information about using view objects in Fusion applications, see the "Getting
Started with Business Services" chapter in the Oracle Fusion Applications Developer’s
Guide.

Task: Edit Validation

In JDeveloper, you edit declarative validation rules for entity objects and view objects
using the overview editor. In the Application Navigator, right-click an entity object or
view object, and choose Open. Then click the Business Rules navigator tab to view and
edit the validation rules.

When implementing customizations on validation rules, you can add rules, modify the
error message, and make rules more restrictive. But you should avoid removing rules
or making rules less restrictive, because this can cause unpredictable results. Also, you

11-4 Extensibility Guide

Editing Task Flows

can edit only declarative validation rules; programmatic validation rules cannot be
customized.

For more information, see the "Defining Validation and Business Rules Declaratively"
chapter in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

Task: Edit Application Modules

In JDeveloper, you edit application modules using the overview editor. In the
Application Navigator, right-click an application module, and choose Open.

In JDeveloper, you can make the following kinds of customizations on an application
module:

= Add new custom properties. This is done on the General page of the overview
editor.

= Add new view object and application module instances. This is done on the Data
Model page of the overview editor.

= Add newly created subtype view objects. This is done on the Data Model page of
the overview editor.

= Add new application module configurations. This is done on the Configurations
page of the overview editor.

It is important to note that you cannot modify the web service interface for a
service-enabled application module. You can, for example, add an attribute in a view
object that is included in a service-enabled application module, but that attribute
cannot be added to the web service interface.

For more information about working with application modules, see the "Implementing
Business Services with Application Modules" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Task: Add Customizations to Existing Reports

After you have implemented customizations on your application, you can use Oracle
Business Intelligence Publisher to include these customizations in your reports. For
more information, see Chapter 8, "Customizing Reports and Analytics."

11.3 Editing Task Flows

You can use JDeveloper to implement customizations on the task flows that are used
in your application. A task flow is a set of ADF Controller activities, control flow rules,
and managed beans that interact to allow a user to complete a task. Although
conceptually similar, a task flow is not the same as a human task, a task in the
worklist, or a process flow.

A bounded task flow can be rendered in a JSF page or page fragment (. jsff) by
using an ADF region. This is typically done to allow reuse of the task flow, as
necessary, throughout the application. If you modify a bounded task flow, the changes
apply to any ADF region that uses the task flow. For more information, see the "Using
Task Flows as Regions" chapter in the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

Before You Begin

Before you start editing task flows, you'll need to determine which task flows you
want to customize, and create an application customization workspace. For more

Customizing and Extending ADF Application Artifacts 11-5

Editing Pages

information, see Section 11.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

When editing a task flow in JDeveloper, you must launch JDeveloper in the Oracle
Fusion Applications Administrator Customization role.

Task: Edit Task Flows

In JDeveloper, you use the task flow diagram editor to implement customizations on
existing task flows. In the Application Navigator, right-click the task flow you want to
customize, and choose Open. The page is displayed in the diagram editor, where you
can make changes to the existing activities and control flow cases, or create new
custom ones. For more information, see the "Getting Started with ADF Task Flows"
chapter in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

11.4 Editing Pages

You can use JDeveloper to implement customizations on the pages that are used in
your application. When editing a page in JDeveloper, you must launch JDeveloper in
the Oracle Fusion Applications Administrator Customization role.

Before You Begin

Before you start editing pages, you'll need to determine which pages you want to
customize, and create an application customization workspace. For more information,
see Section 11.1.1, "Before You Begin Customizing Oracle ADF Application Artifacts."

Task: Edit Pages

In JDeveloper, you use the visual editor to implement customizations on existing
pages. In the Application Navigator, right-click the page you want to customize, and
choose Open. The page is displayed in the visual editor (accessed by clicking the
Design tab). Then you can edit the page as you typically would using this editor. For
more information about editing pages in JDeveloper, see the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

11.5 Creating Custom Business Components

You can use JDeveloper to extend your application by creating custom business
components. When creating custom business components in JDeveloper, you must
launch JDeveloper in the Oracle Fusion Applications Developer role. This role is used
for creating new custom objects that you want to add to the application. You can use
the same workspace that you created for customization. Then after you have created
the custom business components, you switch to the Oracle Fusion Applications
Administrator Customization role, to make changes to existing artifacts to integrate
the new custom artifacts into the application.

Before You Begin

Before you start creating business objects, you'll need to determine which business
objects you want to create, and create an application customization workspace. For
more information, see Section 11.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

11-6 Extensibility Guide

Creating Custom Business Components

Task: Create Custom Database Tables

Using the SQL Worksheet in JDeveloper, you can issue commands to the database to
customize and extend it. When making changes to the database, you can add and
modify tables or columns to support the customizations and extensions you want to
implement in the application (such as, adding an entity object). However, do not
remove tables or columns, as this can have adverse affects in other parts of the
application.

Also, when adding tables or columns to the database, prefix the name of the table or
column with a unique identifier (for example, XX_) to prevent collisions with existing
tables and columns.

You can use the tool of your choice to create database objects in the Oracle Fusion
Applications schema. For example, in JDeveloper you can use the Database Navigator
to model database objects, and the SQL Worksheet to issue SQL statements.

To access the SQL Worksheet, right-click the database connection (under the
Connections node in the Application Resources panel of the Application Navigator),
and choose Database Navigator from the context menu. This will open the selected
database connection in the Database Navigator and display the SQL Worksheet. For
information about creating database objects in JDeveloper, see the "Creating Database
Objects" topic of the JDeveloper online help.

Task: Create Custom Entity Objects

An entity object represents a row in a database table, and encapsulates the business
logic and database storage details of your business entities.

In JDeveloper, you can create entity objects using the Create Entity Object wizard,
which you can launch from the New Gallery. In the Application Navigator, right-click
the project you want to add the entity object to, and choose New. Then in the New
Gallery, expand Business Tier, click ADF Business Components, choose Entity
Object, and click OK. Follow the prompts in the wizard to create an entity object.

For more information about creating entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

For more information about using entity objects and view objects in Fusion
applications, see the "Getting Started with Business Services" chapter in the Oracle
Fusion Applications Developer’s Guide.

Task: Create Custom View Objects

A view object represents a SQL query and also collaborates with entity objects to
consistently validate and save the changes when end users modify data in the UL

In JDeveloper, you can create view objects using the Create View Object wizard, which
you can launch from the New Gallery. In the Application Navigator, right-click the
project you want to add the view object to, and choose New. Then in the New Gallery,
expand Business Tier, click ADF Business Components, choose View Object, and
click OK. Follow the prompts in the wizard to create a view object.

For more information about creating view objects, see the "Defining SQL Queries
Using View Objects" chapter in the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

For more information about using entity objects and view objects in Fusion
applications, see the "Getting Started with Business Services" chapter in the Oracle
Fusion Applications Developer’s Guide.

Customizing and Extending ADF Application Artifacts 11-7

Creating Custom Business Components

Task: Create Custom Application Modules

An application module encapsulates an active data model and the business functions
for a logical unit of work related to an end-user task.

In JDeveloper, you can create application modules using the Create Application
Module wizard, which you can launch from the New Gallery. In the Application
Navigator, right-click the project you want to add the application module to, and
choose New. Then in the New Gallery, expand Business Tier, click ADF Business
Components, choose Application Module, and click OK. Follow the prompts in the
wizard to create an application module.

For more information about creating application modules, see the "Implementing
Business Services with Application Modules" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

For more information about using application modules in Fusion applications, see the
"Getting Started with Business Services" chapter in the Oracle Fusion Applications
Developer’s Guide.

Task: Create a Web Service Interface for a Custom Application Module

In JDeveloper, you can edit a custom application module to create a web service
interface that exposes the top-level view objects and defines the available service
operations it supports. To do this, open the application module in the overview editor,
click the Service Interface navigation tab, and click the Enable support for Service
Interface icon. Then use the Create Service Interface wizard to configure the desired
options.

It is important to note that the new web service cannot be deployed to the Fusion
application. You can deploy it only to a new application.

For more information about creating a web service interface for an application
module, see the "Integrating Service-Enabled Application Modules" chapter in the
Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

For more information about using application modules in Fusion applications, see the
"Getting Started with Business Services" chapter in the Oracle Fusion Applications
Developer’s Guide.

Task: Add Validation

In JDeveloper, you can create declarative validation rules for entity objects and view
objects to help ensure the integrity of the data. To do this, open the entity object or
view object in the overview editor, and click the Business Rules navigation tab. Then
select the attribute you want to provide validation for, click the Create new validator
icon, and use the Add Validation Rule dialog to configure the rule. For more
information, see the "Defining Validation and Business Rules Declaratively" chapter in
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Task: Enforce Data Security for a Custom Business Object

You can use JDeveloper to enforce row and attribute security for custom ADF Business
Components objects. This is done using data security policies to secure data from
business objects based on the grants made to roles.

When you need to expose data records in an extended application, you can use
JDeveloper to create entity objects based on secured database resources, and then opt
into data security policies by enabling row-level privilege checking for specific

11-8 Extensibility Guide

Creating Custom Pages

operations on the entity objects. For more information, see Section 15.5, "Enforcing
Data Security in the Data Model Project.”

Task: Add a Business Object to an Existing Report

After you have extended your application with custom business objects, you can use
Oracle Business Intelligence Publisher to include these extensions in your reports. For
more information, see Chapter 8, "Customizing Reports and Analytics."

11.6 Creating Custom Task Flows

You can use JDeveloper to create custom task flows that you can include in your
application. A task flow is a set of ADF Controller activities, control flow rules, and
managed beans that interact to allow a user to complete a task. Although conceptually
similar, a task flow is not the same as a human task, a task in the worklist, or a process
flow.

Before You Begin

Before you start creating custom task flows, you’ll need to determine which task flows
you want to create, and create an application customization workspace. For more
information, see Section 11.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

When extending your application with custom task flows in JDeveloper, you must
launch JDeveloper in the Oracle Fusion Applications Developer role.

Task: Create a Custom Task Flow

You can create a custom task flow in JDeveloper using the New Gallery, and then
define its activities using the task flow diagram editor. In the Application Navigator,
right-click the project you want to add the task flow to, and choose New. Then in the
New Gallery, expand Web Tier, and click JSF/Facelets. Then select ADF Task Flow,
and click OK. In the Create Task Flow dialog, you'll specify the details about the type
of task flow you want to create. When you click OK, the task flow is created and
displayed in the diagram editor.

For information about creating and designing task flows, see the "Getting Started with
ADF Task Flows" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

11.7 Creating Custom Pages

You can use JDeveloper to create custom pages that you can include in your
application. When creating custom pages in JDeveloper, you must launch JDeveloper
in the Oracle Fusion Applications Developer role.

When creating the page (or dropping a view activity onto a task flow), you can create
the page either as a JSF JSP or as a JSF JSP fragment. JSF fragments provide a simple
way to create reusable page content in a project, and are what you use when you want
to use task flows as regions on a page. When you modify a JSF page fragment, the JSF
pages that consume the page fragment are automatically updated.

After extending your application with custom pages, you will need to make sure that
security for the new pages is implemented appropriately and that the new pages are
deployed so that they are accessible from the application. For more information about
updating security, see Chapter 15, "Customizing Security for ADF Application
Artifacts." For more information about deployment, see Section 11.11, "Deploying ADF
Customizations and Extensions."

Customizing and Extending ADF Application Artifacts 11-9

Customizing or Creating a Custom Search Object

For more information about creating pages in JDeveloper, see the following resources:

» The Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle
Application Development Framework

s "Getting Started with Your Web Interface" in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework

s 'Implementing Uls in JDeveloper with Application Tables, Trees and Tree Tables"
in the Oracle Fusion Applications Developer’s Guide

= 'Implementing Applications Panels, Master-Detail, Hover, and Dialog Details" in
the Oracle Fusion Applications Developer’s Guide

» "Creating Customizable Applications" in the Oracle Fusion Applications Developer’s
Guide

Before You Begin

Before you start creating custom pages, you'll need to determine which pages you
want to create, and create an application customization workspace. For more
information, see Section 11.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

When creating custom pages in JDeveloper, you must launch JDeveloper in the Oracle
Fusion Applications Developer role.

Task: Create a Custom Page

In JDeveloper, you can create pages either by double-clicking a view activity in a task
flow or by using the New Gallery. In the Application Navigator, right-click the project
you want to add the page to, and choose New. Then in the New Gallery, expand Web
Tier, and click JSF/Facelets. Then select either Page or ADF Page Fragment, and click
OK.

Task: Add a Custom Page to a Task Flow

If you created the page by double-clicking a view activity in a task flow, it is already
added to the task flow. If you created it using the New Gallery, you can add it to a task
flow by dragging the page from the Application Navigator and dropping it in the task
flow diagram editor. Then you can connect the page using a control flow. For more
information, see the "Getting Started with ADF Task Flows" chapter in the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Task: Enable Runtime Customization for a Custom Page

To enable a custom page to be customized at runtime, you must make sure that the
page and the project that contains it are set to allow runtime customizations. For
information on how to do this, see the "Authorizing Runtime Customization of Pages
and Task Flows" section in the Oracle Fusion Applications Developer’s Guide.

11.8 Customizing or Creating a Custom Search Object

In JDeveloper, you can customize and create saved searches and search forms for your
application. To customize a search form or saved search in JDeveloper, you'll need to
set up an application workspace as described in Section 10.2.1, "Creating the
Customization Application Workspace." Then, locate and open the object you want to
customize. To create a new search form, you open or create the page that will display
the form and select a data collection from the Data Controls panel. For more
information, see the "Creating ADF Databound Search Forms" chapter in the Oracle

11-10 Extensibility Guide

Deploying ADF Customizations and Extensions

Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

11.9 Editing the Ul Shell Template

For CRM applications, you can use Oracle Composer to edit the Ul shell template, as
described in Section 3.4, "Editing the UI Shell Template Used by All Pages." For other
Oracle Fusion Applications, you will need to use JDeveloper.

To edit the UI Shell template in JDeveloper, you'll need to set up an application
workspace as described in Section 10.2.1, "Creating the Customization Application
Workspace." Then, in the Oracle Fusion Applications Administrator Customization
role, expand the contents of the Applications Core (ViewController) library and drill
down to the file oracle/apps/fnd/applcore/templates/UIShell.jspx. This is the UI Shell
templates, which you can customize as necessary.

11.10 Customizing or Adding Resource Bundles

One method of customizing text is defining a new key in the resource bundle. There is
a single override resource bundle for Oracle Fusion Applications. You can use this
resource bundle to override values for existing keys, but you cannot add new keys.

Because you cannot define a new key in the shipped resource bundle, you need to
create a new override bundle. You can accomplish this in JDeveloper by creating an
XLIFF file from the New Gallery. After the file is generated, you can then enter new
keys and their associated text in the XLIFF file.

To make the newly created resource bundle available for customization, you need to
register the resource bundle with the customization project. You can do this from the
Resource Bundle page of the Project Properties dialog.

You can also extend your application by creating a new resource bundle for a project
if, for example, you want to customize the text for a label and you don’t want to
change the value in the global override bundle. To do this, create an XLIFF file from
the New Gallery, package it into an ADF Library JAR file, and import the JAR file into
the customization project.

Note: All custom JAR file names must begin with the prefix Xx, for
example XxMyJar. jar

To test your customizations locally in the JDeveloper integrated WebLogic Server, you
must also include the ADF Library JAR file in the APP-INF/1ib directory.

For information about translating custom resource bundle strings, see Section 16.2,
"Translating Resource Bundles from Metadata Services Metadata Repository."

For more information about working with resource bundles, see the "Creating a
Business Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

11.11 Deploying ADF Customizations and Extensions

After you have customized existing artifacts, you can use JDeveloper to deploy the
customizations to a sandbox or to the Fusion application. For more information on
how to use sandboxes to isolate changes from the mainline so you can test and
validate the changes, see Section 2.2.2, "Setting Up Sandboxes."

Customizing and Extending ADF Application Artifacts 11-11

Deploying ADF Customizations and Extensions

When you create a customization workspace as described in Section 10.2.1, "Creating
the Customization Application Workspace," the wizard generates a MAR profile. By
default, the name of the MAR profile is application _name_customizations. It
will automatically include the customizations that you implement. You can use this
profile to package your customizations for deployment.

When you package customizations from the customization workspace, the MAR file
should include only library customizations. Make sure that the MAR profile does not
include the User Metadata or HTML Root Dir for Project.

If you extend your application with new custom artifacts, you can use JDeveloper to
package them into an ADF Library JAR and place them into the proper location within
the application directory structure.

Task: Deploy the Customizations

You can use JDeveloper to directly deploy the customizations directly or you can use
JDeveloper to create a MAR, and then load the MAR using WLST commands or the
WebLogic Server Administration Console. If you are using JDeveloper to deploy
directly, you have a choice to deploy to available sandboxes or into the already
deployed Fusion application.

When you deploy customizations on ADF Business Component objects (such as entity
objects and view objects), the server must be restarted for the customizations to be
picked up.

For instructions on deploying customizations, see the section on "How to Deploy New

Customizations Applied to ADF Llbrary" in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Task: Package New Artifacts into ADF Library

If you have extended your application with new custom artifacts (or you are supplied
with new artifacts), you must package these artifacts into an ADF library JAR and
place the JAR files in the proper location within the application.

Note: All custom JAR file must begin with the prefix Xx, for example
XxMyJar.jar

The ADF library JAR for the new model artifacts (such as entity objects and view
objects) should be placed into the ExplodedEarDirectory/APP-INF/1ib
directory. The ADF Library JAR for the new user interface artifacts (such as pages)
should be placed in the ExploadedWarDirectory/WEB-INF/1lib directory.

For instructions on creating ADF Library, see the section on "Packaging a Reusable
ADF Component into an ADF Library" in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

11-12 Extensibility Guide

12

Customizing and Extending SOA
Components

This chapter describes how to customize (edit) service-oriented architecture (SOA)
components during runtime in a deployed composite with a runtime tool such as
Oracle BPM Worklist, Oracle SOA Composer, or Oracle Enterprise Manager Fusion
Applications Control or customize and extend (create) SOA components during
design time in JDeveloper. It also provides recommendations for merging runtime
customizations from a previously deployed revision into a new revision and
instructions for synchronizing customized flexfields in the SOA MDS repository.

This chapter includes the following sections:

Section 12.1, "About Customizing and Extending SOA Components"
Section 12.2, "Customizing SOA Composites"

Section 12.3, "Merging Runtime Customizations from a Previously Deployed
Revision into a New Revision"

Section 12.4, "Extending or Customizing Custom SOA Composites"
Section 12.5, "Deploying SOA Composite Customizations and Extensions"

Section 12.6, "Extending a New Oracle SOA Suite Service"

For information about troubleshooting SOA issues, see Chapter "Troubleshooting
Oracle SOA Suite" of the Oracle Fusion Applications Administrator’s Guide.

Notes:

» This chapter does not describe customizing and extending Oracle
BPM Suite. Oracle BPM Suite is installed on top of Oracle SOA
Suite, and provides the ability to run Business Process
Management Notation (BPMN) processes. To accomplish this
task, there are extensions to JDeveloper for working with BPMN
(Oracle BPM Studio) and a web-based application for working
with BPMN processes (Oracle Business Process Composer). For
information about BPMN process flows, see Chapter 7,
"Customizing and Extending BPMN Processes." For information
about Oracle BPM project templates, see Chapter 13,
"Customizing and Extending Oracle BPM Project Templates."

» Oracle SOA Suite extensions cannot be used with the Integrated
WLS. If an application has references to Oracle SOA Suite shared
libraries, then customizations on the application cannot be tested
with the Integrated WLS.

Customizing and Extending SOA Components 12-1

About Customizing and Extending SOA Components

12.1 About Customizing and Extending SOA Components

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA enables you to develop
enterprise applications as modular business web services that can be integrated and
reused, resulting in a flexible, adaptable IT infrastructure. SOA separates business
functions into distinct units, or services.

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composites. A composite is an assembly of
services, service components, and references designed and deployed in a single
application. Wiring between the services, service components, and references enables
message communication.

Oracle SOA Suite consists of SOA components that comprise the business logic and
processing rules in a SOA composite. You can include components such as the
following in a SOA composite:

= Business rules:
The following categories of rules are available:

- Approval configuration (expirations, escalations, and notifications) and
assignment rules:

Define complex task routing slips for approval management by taking into
account business documents and associated rules to determine the approval
hierarchy for a work item. Additionally, approval management lets you define
multistage approvals with associated list builders based on supervisor or
position hierarchies. You can also define expiration, escalation, and
notification configurations. For example, an expense approval task may use
rules to define its approvers.

Approval configuration and assignment rules are within the context of a
human workflow.

- Nonapproval business rules:

Define a business decision based on rules that enables dynamic decisions to be
made at runtime that automate policies, computations, and reasoning while
separating rule logic from underlying application code. For example, you can
define a business rule to select a supplier with the lowest shipping price to
fulfill a shipping order.

Nonapproval business rules are in the context of Oracle SOA Suite, but
outside of human workflow.

- Rules in non-Oracle SOA Suite applications

Use of standalone rules in non-Oracle SOA Suite applications is supported.
You can completely control how the rule dictionaries are structured and how
these applications are patched. You may structure the rules as recommended
for Oracle SOA Suite rules, as described in this chapter.

= Domain value maps:

Operate on actual data values that move through the infrastructure at runtime.
Domain value maps enable you to map from one vocabulary used in a given
domain to another vocabulary used in a different domain. For example, one
domain can represent a city with a long name (Boston), while another domain can
represent a city with a short name (BO). In such cases, you can directly map the
values by using domain value maps.

12-2 Extensibility Guide

About Customizing and Extending SOA Components

s Human tasks:

Extend a workflow that describes the tasks for users or groups to perform as part
of an end-to-end business process flow. For example, a vacation request workflow
is assigned to a manager. The manager must act on the request task three days
before the vacation starts. If the manager formally approves or rejects the request,
the employee is notified with the decision. If the manager does not act on the task,
the request is treated as rejected. Notification actions similar to the formal rejection
are taken.

= BPEL processes:

Integrate a series of business activities and services into an end-to-end process
flow. For example, a BPEL process flow calls a credit rating service. When you run
this process, you enter a social security number into a user interface. The credit
rating service takes the number and returns a credit rating.

s Oracle Mediators:

Define services that perform message and event routing, filtering, and
transformations. For example, Oracle Mediator can accept data contained in a text
file from an application or service, transform it into a format appropriate for
updating a database that serves as a customer repository, and then route and
deliver the data to that database.

For more information about these components, see Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

Oracle SOA Suite supports the following types of customizations and extensions of
these components:

s Customizing several components during runtime
s Customizing and extending several components during design time

The tool to use depends on the component you are customizing or extending and
whether you are performing these tasks during runtime or design time. Table 12-1
provides details.

Note: If you are customizing approval configuration and assignment
rules or nonapproval business rules for a deployed project (either for
Oracle SOA Suite or Oracle BPM Suite), always use Oracle BPM
Worklist or Oracle SOA Composer. If you are customizing approval
configuration and assignment rules or nonapproval business rules as
part of a new Oracle BPM Suite project being extended in Oracle
Business Process Composer, then use Oracle Business Process
Composer. For information about using Oracle Business Process
Composer, see Chapter 13, "Customizing and Extending Oracle BPM
Project Templates."

Customizing and Extending SOA Components 12-3

About Customizing and Extending SOA Components

Table 12-1 Customization and Extension Tools for Oracle SOA Suite

To Perform These Tasks... Use This Tool... Use This Tool At... Tool User

Customize business rules:

= Approval configuration and = Oracle BPM Worklist (recommended) Runtime in a Technical
assignment rules or Oracle SOA Composer deployed composite analyst
= Nonapproval business rules " Oracle SOA Composer Runtime in a Business

Note: If you use Oracle SOA Composer to deployed composite analyst

customize approval configuration and
assignment rules during runtime, changes
in subsequent revision patches are not

applied successfully.
Customize domain value maps Oracle SOA Composer Runtime in a Business
deployed composite analyst
Customize composite endpoint Oracle Enterprise Manager Fusion Runtime in a System
properties such as the following: Applications Control deployed composite administrat
s Attached Oracle Web Services or
Manager (OWSM) security
policies
= Service and reference binding
component properties
s Customize or extend business JDeveloper (when logged in with the Design time (when System
rules Customization Developer role) complete, you must integrator
= Customize or extend BPEL deploy Fhe
composite)

processes

s Customize or extend human
tasks

s Customize or extend Oracle
Mediators

= Customize composite
components such as binding
components and wires

s Extend or customize
transformations

s Extend WSDLs or XSDs
s Extend business rules

= Extend JCA adapters

Notes:

= You cannot customize human tasks, BPEL processes, and Oracle
Mediators during runtime in a deployed composite.

= When using Oracle SOA Composer, you can save your
customizations in a sandbox environment without applying them
to a running instance and later return to the sandbox to make
additional customizations. These customizations are only applied
to the running instance when you click Commit.

12.1.1 Before You Begin Customizing SOA Composites

Before you customize SOA components, you should be familiar with the Oracle Fusion
application architecture that enables customizations, as described in Chapter 1,

12-4 Extensibility Guide

Customizing SOA Composites

"Customizing and Extending Oracle Fusion Applications.” You should also
understand the typical workflows for working with runtime customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

In addition, you will need to perform the following tasks before you can begin
customizing your application:

s Install JDeveloper and set up your development environment.

For more information, see Chapter "Setting Up Your Development Environment"
of the Oracle Fusion Applications Developer’s Guide.

= For customizations (changes to existing Oracle Fusion application artifacts),
extend a customization application workspace.

For more information, see Chapter 10, "Using JDeveloper for Customizations."
= Launch JDeveloper in the appropriate role.

For more information, see Chapter 10, "Using JDeveloper for Customizations."

12.2 Customizing SOA Composites

As described in Table 12-1, you can customize SOA components during runtime in a
deployed composite with a runtime tool. This section provides an overview of these
tasks and provides references to additional documentation for more specific
instructions.

Note: You cannot customize SOA components in CRM Application
Composer. However, you can extend a business event in CRM
Application Composer and use the Event notification action to notify
a SOA composite by email of the occurrence of the event. For
information about extending events in CRM Application Composer,
see Section 4.2, "Editing Objects."

Task: Launch the Runtime Customization Tool

Use a web browser to launch the tools shown in Table 12-2 for customizing approval
configuration and assignment rules, nonapproval business rules, domain value maps,
and composite endpoint properties at runtime:

Table 12-2 Launching the Customization Tool

For Customizing... Launch... By Entering...

Business rules

= Approval s Oracle BPM http://host:port/integration/worklistapp
configuration Worklist
and assignment (recommended)
rules = Oracle SOA http://host:port/soa/composer
Composer

Note: If you use Oracle
SOA Composer to
customize approval
configuration and
assignment rules during
runtime, changes in
subsequent revision
patches are not applied
successfully.

Customizing and Extending SOA Components 12-5

Customizing SOA Composites

Table 12-2 (Cont.) Launching the Customization Tool

For Customizing... Launch... By Entering...

= Nonapproval Oracle SOA Composer http://host:port/soa/composer
business rules

Domain value maps Oracle SOA Composer http://host:port/soa/composer

Composite Oracle Enterprise http://host:port/em
endpoint properties Manager Fusion

such as OWSM Applications Control

security policies

and binding

component

properties

Task: Select the Data to Customize
After accessing the runtime customization tool to use, select the data to customize.

= Oracle SOA Composer:

1. From the Open list in Oracle SOA Composer, select the data to customize, as
shown in Figure 12-1.

Figure 12-1 Open Menu of Oracle SOA Composer

ORACLE" 50A Composer

[EE) Open Rule: bt
[open Dvm
c% Open Task

7

Table 12-3 describes the options available for selection.

Table 12-3 Selecting the Data to Customize

For Customizing... Select...

Nonapproval business rules Open Rules

Domain value maps Open DVM

Approval configuration and Open Task

assignment rules Note: If you use Oracle SOA Composer to customize approval

configuration and assignment rules during runtime, changes in
subsequent revision patches are not applied successfully.

= Oracle BPM Worklist:
1. In the Administration section, click the Task Configuration tab.
2. Select a specific approval configuration and assignment rule task to customize.
The Event Driven and Data Driven tabs are now accessible.
3. Select a task to view or customize from the list of task types.
= Oracle Enterprise Manager Fusion Applications Control:

1. In the navigation pane in Oracle Enterprise Manager Fusion Applications
Control, expand the SOA folder.

12-6 Extensibility Guide

Customizing SOA Composites

2. Expand soa-infra.

3. Expand the partition in which the SOA composites are deployed (for example,
default).

4. Select the SOA composite to customize.

Task: Customize Business Rules
Two categories of rules are available:

= Approval configuration and assignment rules:

You can customize approval configuration and assignment rules included in a
deployed composite in Oracle BPM Worklist (recommended), as shown in
Figure 12-2, or in Oracle SOA Composer, as shown in Figure 12-3.

For more information, see the following:

= Section "Using Approval Management Features of the Oracle BPM Worklist
and Workspace" of Oracle Fusion Middleware Modeling and Implementation Guide
for Oracle Business Process Management (for Oracle BPM Worklist)

= Section "Working with Tasks at Run Time" of Oracle Fusion Middleware User’s
Guide for Oracle Business Rules (for Oracle SOA Composer)

Figure 12-2 Approval Configuration and Assignment Rule Customizations in Oracle BPM Worklist

ORACLE BPM Worklist e Faadmin Home Administration Reports Preferences Help Log
Administration Evidence Search Approval Groups Task Configuration
~| Tasks to be configured V4 =) Event Driven
- ®

7] simpleApprovalTask : Event Driven Configuration
[FintpHoldapproval (1.0) pleApp g

E FinspImageTransferkequestForaction (1.0

E FindpIrvoiceApproval (1,00

E FindrTremsCreditMenosapproyval (1,00

2] Findr TrxnsCreditMemasManualEntryRequestForAction
El FinExmInactiveEmplovesacceptResp (1,00

Task Aggregation Mone
On Error Motify

Allows all participants to invite other participants
Allow participants to edit fukure participants

EEl FinExmInactiveEmployeeSubmitExpensesFyi (1,07 Allow iritiator to add participants

B FinExmReimToCardlssuerFyi (1.0) Assignment and Routing Policy [Enable auto daim

[FinExmReimToEmpByCheckFyi (1.0 O Complete task when participant chooses

El FinExmReimToEmpEyDepositFyi (1.0 [Enatle early completion of parallel subtasks

El FinExmworkflowExpenseapproval (1,0 [Complete parent tasks of early completing subtasks

B FinFunEnterDistRequestForackion (1,01
E FinFunTransactionapproval (1,00

~|Expiration and Escalation Policy
E FinGllournalapproval (1,00

B Mewer Expire
< > ~|Motification Settings
®
Task Status Recipient | Matification Header |
Assign Assignees
Complete Initiator /
Errar Cner /

[Make natifications secure {exclude details)
[make notification actionable
[Send task attachments with email notifications

Customizing and Extending SOA Components 12-7

Customizing SOA Composites

Figure 12-3 Approval Configuration and Assignment Rule Customizations in Oracle
SOA Composer

ORACLE SOA Composer

Open a document to edit, celachalackliolnen L
Composite j é
Composite |Partition | Task File
Simpledpproval_rewl.0 default SimpleApprovalTask, task
I open | cancel |

How to customize the text in notifications in Oracle BPM Worklist is determined
by what you want to customize in the task detail page (the page rendered when
you click the task in Oracle BPM Worklist):

— Some strings are part of Oracle SOA Suite, other strings are part of the Oracle
Fusion Applications-owned ADF resource bundle, and other strings are part
of the Oracle Fusion Applications-owned SOA resource bundle.

- Task title, task outcome, approval reason, stage name, and participant type
strings are stored in the Oracle Fusion Applications-owned SOA resource
bundles. You cannot customize these because there is no support for that
functionality in Oracle SOA Suite.

— Business object-specific text and sections are implemented in ADF and
resource bundles are owned by Oracle Fusion Applications. These strings can
only be customized in JDeveloper.

— The Oracle SOA Suite-owned strings correspond to those in the Comments,
Attachment, and History sections in Oracle BPM Worklist. The actions along
the top of the page (excluding the custom actions defined in the . task file)
are also part of Oracle SOA Suite. These strings in the Oracle SOA
Suite-owned resource bundles can be customized by following the
instructions in Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

How text appears in email notifications for human tasks is also determined by
what you want to customize:

— The subject (derived from the task title) and custom outcomes are defined in
the Oracle Fusion Applications-owned SOA resource bundle. You cannot
customize these because there is no support for that functionality in Oracle
SOA Suite.

- You can customize the notification message (the first line of instructions in the
email) during runtime in Oracle BPM Worklist.

12-8 Extensibility Guide

Customizing SOA Composites

— The remaining email content is the same as customizing the text in
notifications in Oracle BPM Worklist.

= Nonapproval business rules:

You can view, customize, and commit changes to a rule dictionary included in a
deployed composite in Oracle SOA Composer, as shown in Figure 12—4.
Supported customizations consist of the following:

— Customizing dictionary bucketsets
— Customizing rules in a ruleset

- Customizing advanced rule settings
- Customizing conditions and actions
- Customizing advanced mode rules
- Customizing decision tables

- Validating rule dictionaries

Figure 12-4 Nonapproval Business Rule Customizations in Oracle SOA Composer

ORACLE’" SOA Composer

Bs Open <

Open a document to edit,

Select a dictionary to open]
Showe | &l * | Search composite ... il &
Composite |Prartition Dictionary |cantents |Rules File

FinFunIntercaTransactionsApproval Compe default
FinFunIntercoTransactionsApprovalCompe default
FinApIny TransactionsInvaoiceApprovalCom default
FinapIny TransactionsInvoiceApprovalCom default
FinExcmitor kflowE xpensedpproval_omposi def ault
FinExrmtorkflowExpensedpprovalComposi default
FinarTrxnsCreditMemos ApprovalComposit default
FinarTrxnsCreditMemos ApprovalComposit def ault
FinElIrnlEntriesapprovalComposite_rewl, C default
FinGlIrnlEntriesapprovalComposite_rewvl, Cdefault
FinApIny TransactionsImageTransferComp default
FinApIny TransactionsImageTransFerComp default
A [Ty

FinFunTransactionApprovs InboundTransactionParallel ApprovalRuleSet Mo FinFunTransactic
FinFunTransactionApprovs InboundTransactionParallel ApprovalRuleset Mo FinFunTransactic
FinApInvoicedpprovalfule: InvoicedpprovalRuleSet InvoiceRequestdppros Findplnvaicedpp
FinApInvoicespprovalRule: InvoiceapprovalRuleSet InvoiceRequestappros FindpInvoiceApp
FinExrmitorkflowExpensed Show all .. CostCenterRuleSet ExpenseReport FinExmin orkflom
FinExrm orkflowExpensed Show all .. CostCenterRuleSet ExpenseReport FinExm orkflowm
FinatTrznsCreditMemosap Collection_Agent_Ruleset ModificationRules Mo FindrTrxnsCredi
FinaAtTrxnsCreditMamosap Collection_Agent_Ruleset ModificationRules Mo FindrTrnsCredil
FinGallournaldpprovalfules JournaldpprovalRuleSet MadificationRules Sub: FinGllournaldpp
FinGlJournalapprovalRules JournalapprovalRuleSet ModificationRules Sub: Fingllournalapp
FinApImageTransferReque ImagedssignmentRuleset ModificationRules Sul FindpImageTran
FinAplmageTransferfeque ImagedssignmentRuleset ModificationRules Sul FindplmageTran
CrynamicRouting CrynamicR.oukingCreatar CrynamicRouting

For more information about customizing business rules in Oracle SOA Composer,
see Chapter "Using Oracle SOA Composer with Oracle Business Rules" of the

Oracle Fusion Middleware User’s Guide for Oracle Business Rules.

Task: Customize Domain Value Maps

You can customize domain value map rows included in a deployed composite in
Oracle SOA Composer, as shown in Figure 12-5. For more information, see Chapter
"Using Oracle SOA Composer with Domain Value Maps" of the Oracle Fusion
Middleware Developer’s Guide for Oracle SOA Suite.

Customizing and Extending SOA Components 12-9

Customizing SOA Composites

Figure 12-5 Domain Value Map Customizations in Oracle SOA Composer

ORACLE" S0A Composer

Open a document ko edit,
Select a D¥YM to open]
Showe | &l * | Search composite ... il é
Composite |Partiticn [cwmple
/8 M/a FusionCade. dvm ~
IS Mia mscCarrier, dvm T
/8 Mja mscCurr_ode. dwm
/8 M/a mscCurrCony Type. dvrm
/8 Mia mscCurrianme dvm
/8 Mja mscDOOACkyiEy Type . dvm
/8 M/a mscDemandClass, dvm
/8 Mia mscDocCategory, dyvm
/8 Mja mscFOBPDInG, dvim
/8 M/a mscInvoicedcctRule, dvm
/8 Mia mscPaymentMethod,dvm
/8 Mja mscPaymentTerm, dvm
/8 M/a mscReceiptMethad . dvm
/8 Mia mscReturnReason, dvm o
/8 Mja mscSalesCreditType.dvm
/8 M/a mscServiceLewvel dvm
/8 Mia mscShipModeTransport, dyvm
Bl Rt merShinraentPrinrite dhern A
Open |_Cancel |

Task: Customize Composite Endpoint Properties

You can customize endpoint address properties for an external reference such as
OWSM security policies and binding components included in a deployed composite in
Oracle Enterprise Manager Fusion Applications Control.

Figure 12-6 provides details about customizing OWSM security policies. For more
information, see Section "Managing SOA Composite Application Policies" of the Oracle
Fusion Middleware Administrator’s Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

12-10 Extensibility Guide

Customizing SOA Composites

Figure 12-6 Security Policy Customizations in Oracle Enterprise Manager Fusion Applications Control

ORACLE Enterprise Manager 11g Fusion Applications Control
gﬁ Farm E% SOA Infrastructure -

B~

1 [@] Financials
[Producks
=I [} Fusion &pplications

£

£

7

£

7

FinancialCommanapp(vz
@ FinancialsEssApp{vz .00
Fscmanalyticsappiyz.0)
@ Ledgerappiiz.0)
Payablesappivz.0)

] @ Receivablesappiy2.0)
1 B Farm_FinancialDamain
+ [Application Deployments

=l [504

¢ FinExmWorkflowExpenseApproval Composite [1.0] @

= %E soa-infra (soa_serverl)

=1 ({3 default

ol AppCmmnCompac 4
Dﬂg FindpInyTransacti
ol FindpIryTransacti
Dﬂg FindpInyTransacti
ol FindrTrensCredit
offd [FinExmWorkfloy
ol FinExmiworkFlowIr
affd FinExmiworkflowr

Setup » Help

2 Topology
Logged in as FAAdmin | Host

o} 504 Composite » Page Refreshed Feb 7, 2011 9:08:

Running Instances O | Tokal 161 | Active | Retire ... Shut Down, .. Test = Settings... = %, @R

Dashboard | Instances | Faults and Rejected Messages | Unit Tests | Policies

‘au can view and manage the list of policies attached to the web service bindings and components of this S04 composite application. Click 'attach
To/Detach From' to update the list of attached policies,

Wigw w Attach TojDetach From
Palicy Mame Attached Ta PolicysltR:tI:-tlasrence Categary Total Yiolations
oraclefwss11_saml_or_username_token_with %:AddnttachmentToExpenseRepo Disable Securiky 1}
oraclefwss_http_token_service_policy %:ExpenseApprovaIService_ep Disable Securiky 1}
oraclefwss11_username_token_with_messag %:ExpenseApprovalBCService Disable Securiky 1}
oraclefwss11_saml_token_with_message_pr %:ExpenseApprovalBCService:caIIl Disable Securiky 1}
oraclefwss11_saml_token_with_message_pr %:ApprovaIHistoryUtiIService Disable Securiky 1}
oraclefwss11_saml_token_with_message_pr %:ApprovaIHistDryUtiIService:callb. Disable Securiky 1}

Figure 12-7 provides details about customizing binding component properties for
services and references. For more information, see Chapter "Configuring Service and
Reference Binding Component Properties" of the Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

Figure 12-7 Binding Component Property Customizations in Oracle Enterprise Manager Fusion
Applications Control

ORACLE Enterprise Manager 11g Fusion Applications Control

% Farm Z% SOA Infrastructure

B~

= Financials
+ [Products
=] [Fusion Applications

+ FinancialCommonapp(v2 .00

£ Receivablesapp(vz .0

=1 52 Farm_FinancialDamain
+ [Application Deplovments
= £ soa

A o 508 Composite v

Setup » Help .

2, Topology

1 FinApInvTransactionsHoldsResolutionComposite [1.0] @ Logged in as FAadmin| Host

Page Refreshed Feb 9, 2011 8:19:2¢

Fin&plry TransactionsHoldsResalutionCompasite [1.0] = Service Home
@4 HoldsApprovalService_ep (Web Service) @
Dashboard

& Rel:

Policies | Faults and Rejected Messages | Properties

Apply

General Maximum Request Size

REST Enabled | False Maximum Request Size | -1

= %E s0a-infra (soa_serverl)

=1 [default

W3DL Enabled
Metadata Exchange Enabled
Endpoint Test Enabled

True

True

SRS

True

Unit of Maximum Reguest Size

Bvtes v

o[AppCmmnCompactivic
Dﬂjg FinApInyTransacki
o[FintpInyTransactions
Dﬂjg FindpInyTransactions
o3 Finr TransCreditienn
o3 FinExmiwarkFlowE xper
o[FinExmwarkFlowlnact
o3 FinEsxmiwarkFlowReimt
o[FinFunlntercoTransac
Dﬂjg FinGlCurrencyllserPre
o3 FinlarmlEntries Appros
o Sirmnlednnrawal 1101

Logging Level | puLL L

Schema validation | False |+
Atomic Transaction Yersion | Default |w

Akornic Transackion Flow Option | peyver w

Customizing and Extending SOA Components 12-11

Customizing SOA Composites

Task: Synchronizing Customized Flexfields in the SOA MDS Repository

SOA composites in Oracle Fusion Applications reference copies of the original XSD
schema files included in the SOA Metadata Services (MDS) repository. When you
customize and deploy Oracle Fusion Applications flexfields (or upgrade the base table,
after which the flexfields are automatically re-applied), which result in a new XSD
being generated in the Oracle Fusion Applications MDS, the updated XSD files must
be synchronized in SOA MDS for use in the fact models in business rules.

To perform this synchronization, a special SOA composite named UpdateSOAMDS is
included with Oracle Fusion Applications. By default, the UpdateSOAMDS
composite is automatically deployed. When a synchronization is required, you
manually invoke an instance of this composite to synchronize the updated XSD files in
SOA MDS. You can view the results of this synchronization in the audit trail in Oracle
Enterprise Manager Fusion Applications Control.

1. Invoke the UpdateSOAMDS composite.
a. Log in to Oracle Enterprise Manager Fusion Applications Control.
b. In the navigation pane, expand soa-infra and the domain.
c. Select the UpdateSOAMDS composite.
d. At the top of the Dashboard page for UpdateSOAMDS, click Test.

e. In the Operation list, select the operation to perform, as shown in Figure 12-8.

Figure 12-8 Operations to Perform

I {3 UpdateSOAMDS [1.0] Logged in as

% Farm_Financiak Bﬂg SOA Composite v Page Refresh

[Application Deploy ments

= [0 soa WSDL | ity .com:20111/sca-infralservices/default’'Update SOAMD S/updatescamds _
= E% soa-infra (sca_serverl)

@ Q, | Parse WSDL
= default

#f[§ CRMDemaTest [1.0]
o SimpleApproval [1.0]
ol lupdatesSOAMDS [1
+ 3 Weblogic Domain Operation

HTTF Basic Auth Option for WSDL Access

Service updatescamds_client_esp

Fort UpcateSOAMDS_pt

+# [Metachta Repositories Enclpoint URL u;xhurlng +com:20111/sca-infrasserv ices/default/U poateS0 AMD S/updatesoamck
[User Messaging Service Mﬁk

Request Response

Table 12—4 describes the operations available for selection.

Table 12-4 Operations

Operation Description

updateDuring Select to specify how far back in time to go to get flexfield updates for
synchronizing in SOA MDS.

updateSince Select to specify the time from which you want to get flexfield updates for

synchronizing in SOA MDS.

f. In the Value field of the Input Arguments section, enter a value, as shown in
Figure 12-9.

12-12 Extensibility Guide

Customizing SOA Composites

Figure 12-9 Value Field

—lInput Argume nts

Tres View d
Mame Type Value
* paylcad duration FEOD

Table 12-5 provides details about the value to specify.

Table 12-5 Operation Values

If You Selected... Description

updateDuring This operation uses the xsd: duration type as input to obtain the data.
For example:

= Enter P50D to go back fifty days to get flexfield updates that occurred.

= Enter P1IM2DT3H to go back one month, two days, and three hours to
get flexfield updates that occurred.

updateSince This operation uses the xsd: dateTime type as input to obtain the data.

For example, entering 2011-02-10T00:00: 00 gets flexfield updates that
have occurred since February 10, 2011.

g. Click Test Web Service.

The list of XSD schema files synchronized in SOA MDS is returned as output
in the Response tab, as shown in Figure 12-10.

Figure 12-10 Test Output

A new composits instance was gensrated. | Launch Flow Trace

Mame Type Value
= paylcad paylad

result string

mo'flexicases [

All rule dictionaries in SOA MDS that use the impacted XSD schemas are
altered. The data model of the rule dictionaries is modified and the fact types
are re-imported. After re-importing the XSD schemas, the rule dictionary is
saved in SOA MDS.

The JAXB 2.0 classes for the fact type model of the rule dictionaries that have
been altered are regenerated and compiled into the appropriate composite
SCA-INF/gen-classes directories.

Other SOA instances in the cluster are notified of the flexfield customizations.

The composite class loader for the SOA composites where the rule dictionary
was altered is invalidated and a new class loader is extended with the next
request for the composite.

The SOA instances not involved in updating the rule dictionary in SOA MDS
regenerate the JAXB 2.0 classes for the composites that comprise a rule
dictionary where the fact type model was altered.

2. View the results in the audit trail.

a. Inthe Recent Instances section of the Dashboard page, click the instance ID.

Customizing and Extending SOA Components 12-13

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

b. In the Trace section of the Flow Trace page, click the UpdateSOAMDS BPEL
service component.

c. View the list of XSD schema files synchronized in SOA MDS in the audit trail,
as shown in Figure 12-11.

Figure 12-11 Audit Trail Results

“iion Message (64)
= Received "updateDuring” call from partner 'updatescamds_client'
* =paylads

= }_)_7 Java_Embedding1
'& sy nched fike: /apps/indiappleore’crmcemofiex/cases/CasesDFF xsd

sy nched fike: /apps/fndapplcors’crmdemofliexicases/Cases DFF Computer.xsd
sy nched fike: /apps/findiapplcore/crmcemoifiexicases/CasesDFFFaper__Mill xsd
sy nched file: /apps/findiappleore/crmcemoifiexicases/CasesDFFOffice_ Chair.xsd
sy nched file: /apps/findiappleore/crmcemoifiexicases/CasesDFF Rolier__Skate.xsd
sy nched file: /apps/fndiapplore/crmcdemoiflexicases/CasesDFF Supercomputer.xsd
sy nched file: /apps/findiapplore/crmcemoifiexicases/CasesDFFIndustrial__Anvilxsd
bpebexec executed

= 3 Assign1

Updated variable "outputVariable”

Completed assign

Note: In previous releases, Oracle BPM Worklist included a feature
known as flex fields. Starting with Release 11g R1 (11.1.1.4), flex fields
are now known as mapped attributes. Do not confuse Oracle BPM
Worklist flex fields with Oracle Fusion Applications flexfields; they
are completely different features.

12.3 Merging Runtime Customizations from a Previously Deployed
Revision into a New Revision

After using a composite customized at runtime for a period of time, a new patch
revision of the composite may become available. Repeating the process of customizing
the new revision of the composite at runtime can be cumbersome and
time-consuming. To avoid these challenges, use the OPatch tool. The OPatch tool is an
Oracle-supplied, Java-based utility that enables you to merge customizations made
during runtime in a previously deployed composite into a new patch revision of the
composite. OPatch preserves your runtime customizations and prevents you from
having to re-enter the customizations again for the next patch revision.

OPatch merges a new patch revision into a composite that was previously customized
during both design time in JDeveloper and runtime in Oracle SOA Composer, Oracle
BPM Worklist, or Oracle Enterprise Manager Fusion Applications Control. For specific
procedures on patching SOA composites with OPatch, see Oracle Fusion Applications
Patching Guide.

12-14 Extensibility Guide

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

Task: Merge Runtime Customizations from a Previously Deployed Revision into
a New Revision

Before using the OPatch tool to merge runtime customizations from a previously
deployed revision into a new revision, review the recommendations in Table 12—6 to
ensure that you merge customizations successfully.

Table 12-6 Recommendations on Merging Patch Revision Customizations and
Extensions

Component Recommendation

Deletion of base ~ Delete only components you added as part of the customization, and not

components components that are part of the base revision. This is because the deletion
of base components does not survive the move to the new revision, but the
deletion of the wiring does. If you delete an existing base component, it
comes back again when you get the new revision, which still has the
component. However, the wire deletion survives the upgrade because the
composite.xml file is customizable.

Customizing and Extending SOA Components 12-15

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

Table 12-6 (Cont.) Recommendations on Merging Patch Revision Customizations and

Extensions

Component

Recommendation

Business rules

If business rules are customized at runtime, and those runtime
customizations must be preserved in subsequent revisions of the base
version of the composite, it is recommended that the rules dictionaries be
split into two dictionaries and linked using the dictionary linking
functionality.

The base rule, linked dictionary contains the data model of the dictionary
and the custom rules dictionary contains all the rules customized at
runtime. The OPatch process preserves the customized dictionary when it
merges the customized application with subsequent versions of the
application. Business rules are used in different scenarios and the
following information identifies how to handle each situation.

= Approval configuration and assignment rules

These rules are used within human tasks to determine approvers and
the routing of human tasks. Approval rules are always generated as
base and custom dictionaries at design time. No further configuration
is necessary at design time.

Runtime customizations:

If you must customize approval configuration and assignment rules
during runtime, use only Oracle BPM Worklist to perform this task.
Using Oracle BPM Worklist enables:

-) Approval assignment and configuration rules to automatically be
stored in a custom rules dictionary (Rule.rules). The custom rules
dictionary is initially shipped with only sample, preseeded rules. The
custom rules dictionary is separate from the base rule, linked
dictionary (RuleBase.rules). The base rule, linked dictionary
contains Oracle Fusion Applications fact definitions. Revision patches
are applied to the base rule, linked dictionary.

-) Changes in subsequent revision patches to be applied successfully
to the base rule, linked dictionary.

If you use Oracle SOA Composer to customize approval configuration
and assignment rules during runtime, changes in subsequent revision
patches are not applied successfully.

Design time customizations:

You cannot customize existing rules that are part of the base version
of the composite at design time in JDeveloper. However, you can
extend new rules that you later customize.

= Nonapproval business rules

These rules are used directly in processes like BPEL and BPMN
outside of the context of a human task. These dictionaries are not
generated as linked dictionaries in JDeveloper and must be manually
split as linked dictionaries.

Runtime customizations:

If the dictionaries are split as linked dictionaries, ensure that only the
linked dictionaries are customized from Oracle SOA Composer.
Identification of the base rule and linked rule dictionary is up to you
to develop.

Design time customizations:

You cannot customize existing rules that are part of the base version
of the composite at design time in JDeveloper. However, you can
extend new rules that you later customize.

12-16 Extensibility Guide

Extending or Customizing Custom SOA Composites

Table 12-6 (Cont.) Recommendations on Merging Patch Revision Customizations and

Extensions

Component Recommendation

Default URLs for Use default URLs for service binding components. If the revision is used in

service binding the URL for service binding components, when the SOA composite is

components patched using OPatch, the revision of the composite is customized. In this
case, the reference to URLSs for service binding components fails to work.
In this scenario, you must manually update all the URL references for
service binding components.

Oracle BPEL If a base composite team removes the scope activity in the next revision of

Process Manager
scope activity

the composite, when a vertical composite team or customer runs the
OPatch utility to apply the new revision of the composite to their
customized version, all customizations they performed on that scope
activity in the first revision are lost.

Renaming of a
composite whose
SOA archive
(SAR) file is
imported in
JDeveloper

When importing a SAR file for customization in JDeveloper, the composite
must not be renamed. In addition, if you rename a composite, OPatch
cannot detect runtime customizations made in Oracle SOA Composer,
Oracle BPM Worklist, and Oracle Enterprise Manager Fusion Applications
Control. You must manually re-apply those customizations.

Base revision of a
composite with
JDeveloper
customizations

Assume you customize the base revision of a composite with the
Customization Developer role in JDeveloper, and then deploy the
composite. When the base revision is updated and a newer revision is
made available, the customer uses OPatch to apply the patch revision.
OPatch may then fail because there are JDeveloper customizations in the
deployed composite.

To resolve this issue, perform the following steps:
1. Open the customized composite with the Default Role in JDeveloper.

2. Import the patched base version 2 SAR file into this composite project
extended in Section 10.3, "Customizing SOA Composites with
JDeveloper."

3. Restart JDeveloper with the Customization Developer role.

4. Open the above customized composite. Error messages are shown in
case of conflicts.

5. Resolve the conflicts in the composite.

6. Deploy the composite to the SAR file. The new SAR file should be
replaced by the patched base version 2 SAR file.

7. Proceed with the OPatch process.
Note: Ensure that the backup of the SAR files is taken properly.

12.4 Extending or Customizing Custom SOA Composites

You can customize or extend some SOA components during design time in JDeveloper
when logged in with the Customization Developer role. Components that are
extended in JDeveloper can be further customized in JDeveloper when again logged in
with the Customization Developer role. Customization changes are maintained in
separate .xml files from the base component files. Note that you cannot make
customizations in Source view in JDeveloper; only customizations made in Design
view are supported.

Customizing and Extending SOA Components 12-17

Extending or Customizing Custom SOA Composites

Notes:
= New artifacts extended in the composite survive patching.

» Ensure that you provide unique names for any new components
and artifacts that you extend. For example, prefix each component
and artifact name with a unique identifier.

Table 12-7 describes which existing base composite artifacts in a composite can be
customized and which new artifacts can be extended when logged in to JDeveloper
with the Customization Developer role.

Table 12-7 Customizable and Extendable Artifacts in Customization Developer Role

Existing Artifact in Base Composite Artifact is Extendable with
is Customizable with Customization Customization Developer

Artifacts Developer Role? Role?
Composite Yes Yes
Components

BPEL process Yes Yes
Oracle Mediator Yes Yes
Human task No Yes
Business rule No Yes
XSLT Map No Yes
Cross references No No
(XREFs)

Domain value maps No No
XSD No Yes
WSDL No Yes
Business events No Yes
JCA Adapters No Yes

Table 12-8 provides more specific details about which artifacts can be extended when
logged in to JDeveloper with the Customization Developer role.

Table 12-8 Artifact Extensibility in JDeveloper with Customization Developer Role

Artifact Extendable? Description

Composite No Only one composite per Oracle SOA Suite project is
permitted.

BPEL process Yes Can drag a BPEL process from the Component Palette
into the SOA Composite Editor or Oracle BPEL
Designer.

Oracle Mediator Yes Can drag an Oracle Mediator from the Component
Palette into the SOA Composite Editor or Oracle BPEL
Designer.

Human task Yes Can drag a human task from the Component Palette into

the SOA Composite Editor or Oracle BPEL Designer.

12-18 Extensibility Guide

Extending or Customizing Custom SOA Composites

Table 12-8 (Cont.) Artifact Extensibility in JDeveloper with Customization Developer

Artifact Extendable? Description

Business rule Yes Can drag a business rule from the Component Palette
into the SOA Composite Editor or Oracle BPEL
Designer.

XSLT Map Yes Can extend a transformation in a transform activity in
Oracle BPEL Designer or the Mediator Editor.

Domain Value Maps No The New Gallery dialog is disabled with the
Customization Developer role.

Cross References No The New Gallery dialog is disabled with the

(XREFs) Customization Developer role.

XSD Yes Right-click an Oracle SOA Suite project and select SOA,
or as the result of extending other SOA artifacts.

WSDL Yes Right-click an Oracle SOA Suite project and select SOA,

or as the result of extending other SOA artifacts.

Business events Yes Subscribe to or publish events for a BPEL process or
Oracle Mediator component in the SOA Composite
Editor, Oracle BPEL Designer, or Mediator Editor.

JCA adapters Yes Drag adapters from the Component Palette into the SOA
Composite Editor or Oracle BPEL Designer.

Task: Customize a Base Composite in JDeveloper

This section provides an overview of the steps for customizing a base composite of
Oracle Fusion Applications in JDeveloper. These steps assume you know how to set
up the customization layer through the adf-config.xml editor and know the
customization classes defined by Oracle Fusion Applications. For more information,
see Chapter "Customizing SOA Composite Applications" of the Oracle Fusion
Middleware Developer’s Guide for Oracle SOA Suite.

Note: See Section 10.3.2, "Setting Up the JDeveloper Workspace and
Composite Project for MDS Customization" for instructions on setting
up the JWS workspace and composite project when customizing
Oracle Fusion Applications composites.

1. Install Oracle Fusion Applications with a SOA composite that you want to
customize in JDeveloper.

2, In Oracle Enterprise Manager Fusion Applications Control, go to the home page of
the SOA composite to export.

3. From the SOA Composite menu at the top of the page, select Export.
4. Obtain the base SAR file for initially customizing from other locations, including:

s Checking out the base composite project from the source control system where
the base composite project was checked in by the base development team. This
way, no SAR file deployment, export command, or import command is
involved.

= Importing the base composite SAR file that was deployed from the base
composite project.

= Importing the base composite SAR file that was exported (without runtime
changes) from the Export Composite page of the Oracle Enterprise Manager

Customizing and Extending SOA Components 12-19

Extending or Customizing Custom SOA Composites

Fusion Applications Control installation from which the SOA server is
managed.

5. Extend layer values for customization to the CustomizationLayerValues.xml
file (can perform this task in JDeveloper or from the directory structure).

6. Start JDeveloper in the Default Role.
7. Extend a new composite application.

8. From the File main menu, select Import > SOA Archive Into SOA Project to
import the exported SAR into the new composite in JDeveloper.

9. In the Import Composite Archive wizard, select the Import For Customization
checkbox.

10. From the Tools main menu, select Preferences > Roles > Customization
Developer.

11. Restart JDeveloper, and customize the layers of the composite.

12. Right-click the project and select Deploy to extend a customized SAR of the SOA
composite in Oracle Fusion Applications.

Note: After performing the initial customizations described in these
procedures, you can no longer export the composite from the runtime.
This is because the composite is a merged composite, and no longer
the original base composite.

For more information on exporting SAR files, see Section "Exporting a Running SOA
Composite Application" of Oracle Fusion Middleware Administrator’'s Guide for Oracle
SOA Suite and Oracle Business Process Management Suite.

Task: Extend or Customize Custom Business Rules

You can extend business rules in a composite during design time in JDeveloper when
logged in with the Customization Developer role. After extending these business
rules, you can further customize them in JDeveloper when again logged in with the
Customization Developer role. You cannot customize existing business rules that are
part of the base version of the composite.

For information on customizing business rules during runtime, see Section 12.2,
"Customizing SOA Composites."

Task: Extend or Customize Custom BPEL Processes

You can extend or customize BPEL processes in a composite during design time in
JDeveloper when logged in with the Customization Developer role. For example, you
can perform the following tasks:

= Extend or delete a new scope or other activity
s Customize an activity

= Extend a partner link

» Extend a transformation

For more information about extending or customizing BPEL processes, see Part "Using
the BPEL Process Service Component” of Oracle Fusion Middleware Developer’s Guide for
Oracle SOA Suite.

12-20 Extensibility Guide

Extending or Customizing Custom SOA Composites

Task: Extend or Customize Custom Human Tasks

You can extend human tasks in a composite during design time in JDeveloper when
logged in with the Customization Developer role. After extending these human tasks,
you can further customize them in JDeveloper when again logged in with the
Customization Developer role. You cannot customize existing human tasks that are
part of the base version of the composite.

For more information on extending human tasks, see Part "Using the Human
Workflow Service Component" of Oracle Fusion Middleware Developer’s Guide for Oracle
SOA Suite.

Task: Extend or Customize Custom Oracle Mediators

You can extend or customize Oracle Mediators in a composite during design time in
JDeveloper when logged in with the Customization Developer role. For example, you
can perform the following tasks:

= Extend a routing rule
s Customize an XPath condition

= Make any other changes, except those that impact files such as XSLs (for
transformations), WSDLs, EDLs (for business events), or XSDs. Note that new
artifacts can be extended or customized.

For more information, see Part "Using the Oracle Mediator Service Component" of
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

Task: Customize Composite Components

You can customize composite endpoint properties in a composite during design time
in JDeveloper when logged in with the Customization Developer role. For example,
you can perform the following tasks:

= Extend and delete a reference binding component
= Extend and delete a service binding component (entry point)
= Extend, customize, and delete a wire between components

For more information, see Chapter "Developing SOA Composite Applications with
Oracle SOA Suite" of Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

Task: Extend or Customize Transformations (in a Transform Activity)

You cannot customize existing transformations that are part of the base composite in
JDeveloper. However, you can extend a new transform activity in a BPEL process or in
the Transformation Map dialog of an Oracle Mediator during design time in
JDeveloper when logged in with the Customization Developer role. After extending
the transformation, you can further customize it in JDeveloper when again logged in
with the Customization Developer role. For example, you can perform the following
tasks:

= Specify the mapper file (. xs1) to which the transform activity points from the
Mapper File field of a transform activity in a BPEL process or the Transformation
Map dialog of an Oracle Mediator. However, you cannot extend or customize
mappings. The mappings are defined in the XSL file (not in the transform activity),
which is not customizable.

= Copy an out-of-the-box XSL file into a custom XSL artifact, add the custom logic to
the custom XSL, and customize the transform activity to reference the custom XSL.
Additionally, you must copy the contents of the XSL file in the base composite into
the custom XSL file.

Customizing and Extending SOA Components 12-21

Deploying SOA Composite Customizations and Extensions

Task: Extend XSD or WSDL Files

You can extend an XSD schema or WSDL document in JDeveloper when logged in
with the Customization Developer role.

1. Right-click the Oracle SOA Suite project in the Application Navigator.
2. Select SOA.
3. Select the artifact to extend:

s Create XML Schema

Invokes the Create XML Schema dialog for extending a new XML schema file
in the project. When complete, the new schema file automatically opens.

s Create WSDL Document
Invokes the Create WSDL dialog to extend a new WSDL file in the project.

Task: Extend Business Events
You can extend business events in JDeveloper when logged in with the Customization
Developer role.

For more information, see Chapter "Using Business Events and the Event Delivery
Network" of Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

Task: Extend JCA Adapters
You can extend JCA adapters in JDeveloper when logged in with the Customization
Developer role.

For more information, see Oracle Fusion Middleware User’s Guide for Technology
Adapters.

12.5 Deploying SOA Composite Customizations and Extensions

You must redeploy a customized or extended composite after making changes in
JDeveloper. The development and deployment phase is as follows:

s During base composite development, you create a customizable SOA project from
the Default role in JDeveloper, set up customization layers, and deploy the
composite to a base SAR file.

= During customization, you import (for customization) the base composite SAR file
to extend a new SOA project, change from the Default role to the Customization
Developer role, perform customizations, and deploy the composite to create a
customized SAR file.

For more information, see Chapter "Customizing SOA Composite Applications” of the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

12.6 Extending a New Oracle SOA Suite Service

12-22

You can extend new SOA composite services to integrate with Oracle Fusion
Applications. This section provides an overview of tasks for extending and consuming
new services and provides references to documentation that more specifically
describes these tasks.

Extensibility Guide

Extending a New Oracle SOA Suite Service

Task: Setting Up a Development Environment

You must set up and configure a development environment in JDeveloper to create
new Oracle SOA Suite services. For more information, see Part "Getting Started
Building Your Oracle Fusion Applications" of Oracle Fusion Applications Developer’s
Guide.

Task: Using JDeveloper to Create Applications, Projects, and Services

Whenever you create new projects, you must first create an application using
templates provided by JDeveloper. For more information, see Chapter "Setting Up
Your JDeveloper Workspace and Projects" of Oracle Fusion Applications Developer'’s
Guide.

You can select an Oracle SOA Suite project template when creating a JDeveloper
application. For more information about creating Oracle SOA Suite projects, see
Chapter "Developing SOA Composite Applications with Oracle SOA Suite" of Oracle
Fusion Middleware Developer’s Guide for Oracle SOA Suite.

You can extend an Oracle Application Development Framework (ADF) Business
Component service to be consumed by the SOA composite. The Oracle ADF Business
Component service is used for connecting Oracle ADF applications using service data
object (SDO) data formats with the SOA composite. For more information, see Chapter
"Getting Started with Binding Components" of Oracle Fusion Middleware Developer’s
Guide for Oracle SOA Suite.

Task: Understanding Common Service Use Cases and Design Patterns

There are fundamental patterns for Oracle Fusion Applications developers to follow
when building applications involving Oracle ADF and Oracle SOA Suite. These
patterns fall into three main categories:

» Using business events to initiate business processes

» Orchestrating over business logic implemented with Oracle ADEF, Java, PL/SQL,
and SOA composite applications

= Modeling human task flows in Oracle ADF applications

For more information about these and other design categories, see Part "Common
Service Use Cases and Design Patterns" of Oracle Fusion Applications Developer’s Guide.

Task: Using Oracle SOA Suite with the Oracle Metadata Services Repository

The Oracle Metadata Services (MDS) Repository contains metadata for certain types of
deployed applications, such as SOA composites. You can store Oracle Fusion
Applications artifacts and custom artifacts in the MDS repository. You connect to the
repository to consume these artifacts.

For more information about MDS, see Chapter "Managing the Metadata Repository" of
Oracle Fusion Middleware Administrator’s Guide.

For more information about creating a connection from Oracle SOA Suite to MDS,
using the Oracle SOA Suite MDS repository to store custom artifacts, and connecting
to and consuming artifacts from the Oracle SOA Suite MDS repository, see Section
"Creating a SOA-MDS Connection" of Oracle Fusion Middleware Developer’s Guide for
Oracle SOA Suite.

Task: Discovering Oracle Fusion Application Services

Oracle Fusion Applications includes web services that are available for public
consumption. These web services are defined in Oracle Enterprise Repository and
available for discovery. When extending Oracle Fusion Applications and building

Customizing and Extending SOA Components 12-23

Extending a New Oracle SOA Suite Service

SOA composites to invoke services built by Oracle Fusion Applications, you can use
Oracle Enterprise Repository to perform the following tasks:

» Use Oracle Enterprise Repository to discover the service.
= Follow the link provided by Oracle Enterprise Repository to access the WSDL file.

s When building the client, have JDeveloper download the WSDL file locally so that
the client is not accessing the runtime WSDL file.

For more information about Oracle Enterprise Repository, see Oracle Fusion Middleware
User Guide for Oracle Enterprise Repository.

Task: Securing Oracle Fusion Applications and Services

You must secure Oracle Fusion Applications and services to be consumed by SOA
composites.

For more information about Oracle Fusion Applications security, see Oracle Fusion
Applications Security Guide.

For more information about ADF Application Artifacts security, see Chapter 15,
"Customizing Security for ADF Application Artifacts."

For more information about web services security, see Chapter "Securing Web Services
Use Cases" of Oracle Fusion Applications Developer’s Guide.

Task: Deploying SOA Composites and Services
You must deploy SOA composites and the services to be consumed.

For more information about deploying SOA composites, see Chapter "Deploying SOA
Composite Applications" of Oracle Fusion Middleware Developer’s Guide for Oracle SOA
Suite.

For more information about deploying external references such as web services, see
Chapter "Deploying Web Services Applications" of Oracle Fusion Middleware Security
and Administrator's Guide for Web Services.

Task: Understanding Fusion Applications Deployment Topology

An enterprise deployment is an Oracle guidelines blueprint based on proven Oracle
high-availability and security technologies and recommendations for Oracle Fusion
Applications. For more information about deployment in an enterprise environment,
see Oracle Fusion Applications Enterprise Deployment Guide.

12-24 Extensibility Guide

13

Customizing and Extending Oracle BPM
Project Templates

This chapter describes how to use Oracle JDeveloper to customize and extend Oracle
BPM project templates. BPM projects contain the Business Process Modeling Notation
(BPMN) processes used by Fusion Applications. Oracle Fusion applications use BPMN
processes to define process flows within the application...

This chapter includes the following sections:
m Section 13.1, "About Customizing Project Templates"
= Section 13.2, "Customizing or Extending a Project Template"

= Section 13.3, "Publishing Project Templates”

13.1 About Customizing Project Templates

BPM project templates are be used to create new BPM projects. Project templates are
created by developers and contain all of the elements necessary to create a new BPM
project that can be deployed to runtime. This includes all of the necessary BPMN
processes and business catalog components.

Oracle Fusion Applications provide default project templates containing the required
BPMN processes and business catalog components. Refer to the product-specific
documentation from Oracle Enterprise Repository available from Oracle Support for a
list of the default BPM project templates provided by Oracle Fusion Applications.

Developers can customize and extend these project templates. Project templates are
customized or extended by developers using Oracle BPM Studio. Oracle BPM Studio
is an extension to JDeveloper that provides additional editors for creating and
customizing BPMN processes and related components. For more information on
Oracle BPM Studio see the Oracle Fusion Middleware Modeling and Implementation Guide
for Oracle Business Process Management.

In the context of Oracle Fusion Applications, developers can customize project
templates when it is necessary to customize or extend business catalog components
that are part of the default project templates. Refer to the product-specific
documentation from Oracle Enterprise Repository available from Oracle Support for a
list of the default BPM project templates provided by Oracle Fusion Applications.

After customizing or extending a project template, it can be published to the Oracle
BPM repository. Project templates are shared between Oracle BPM Studio and Oracle
Business Process Composer using the Oracle BPM MDS repository. Additionally, BPM
projects can be shared between Business Process Composer and JDeveloper users via
the BPM repository.

Customizing and Extending Oracle BPM Project Templates 13-1

About Customizing Project Templates

Note: When customizing a project template, you should first make a
copy of the existing template using JDeveloper. This enables you to
avoid overwriting project templates previously published to the BPM
repository.

After a template is published to the repository; it is available to Oracle Business
Process Composer users. Business Process Composer users can create and deploy BPM
projects created using these templates directly to the runtime test environment
without having to reedit and deploy a project using JDeveloper. Using Oracle Business
Process Composer business users can customize and extend BPMN process flows
based on project template.

See "Workflow: Creating Project Templates” in the Oracle Fusion Middleware Modeling
and Implementation Guide for Oracle Business Process Management for information on the
typical workflow for sharing project templates between Oracle BPM Studio and
Business Process Composer.

13.1.1 About the Business Catalog

The business catalog is a set of reusable components that contain all of the necessary
technical implementation to create a BPMN process flow that can be deployed as part
of a running Oracle Fusion application.

The business catalog contains the following components:
= Business rules

Define a business decision based on rules that enables dynamic decisions to be
made at runtime that automate policies, computations, and reasoning while
separating rule logic from underlying application code.

s Human tasks

Create a workflow that describes the tasks for users or groups to perform as part
of an end-to-end business process flow.

s Services

Define how a BPMN process connects to other business processes and systems,
including databases and web services.

Some elements of the business catalog can be customized using Oracle Business
Process Composer. See Section 7.1.2.2, "What You Can Customize Using Oracle
Business Process Composer" for information on those elements.

13.1.2 Before You Begin Using JDeveloper to Customize Project Templates

Before you customize the artifacts within a project template, including business
catalog components, business processes, SOA components using JDeveloper, you
should be familiar with the Oracle Fusion application architecture that enables
customization, as described in Section 1, "Customizing and Extending Oracle Fusion
Applications."

You should also understand the typical workflows for working with customizations,
as described in Section 2, "Understanding the Customization Development Lifecycle."

In addition, you will need to do the following before you can use JDeveloper to
customize BPM project templates:

13-2 Extensibility Guide

Customizing or Extending a Project Template

= Download and install JDeveloper, and set up your development environment, as
documented in "Chapter 2 Setting Up Your Development Environment" of the
Oracle Fusion Applications Developer’s Guide.

= Launch JDeveloper in the appropriate role.

13.2 Customizing or Extending a Project Template

This section outlines the general tasks you must perform to customize or extend an
Oracle BPM project template.

Task: Open a Project Template
You can open a project template with Oracle BPM Studio.

= For information on opening a project template, see "Working with Project
Templates" in the Oracle Fusion Middleware Modeling and Implementation Guide for
Oracle Business Process Management.

The specific project or project template you need to open depends on which Oracle
Fusion application you are customizing. Refer to the product-specific documentation
from Oracle Enterprise Repository available from Oracle Support for a list of the
default BPM project templates provided by Oracle Fusion Applications.

Task: Create or Customize BPMN Processes

BPMN processes are accessible using the BPM Project Navigator. For information on
using the BPM Project Navigator, see "Oracle BPM Project Navigator" in the Oracle
Fusion Middleware Modeling and Implementation Guide for Oracle Business Process
Management.

For information on opening a BPMN process, see "How to Open a Business Process" in
the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management.

See "Working with Flow Objects in Your Process" of the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management for more
information on working with flow objects in your process.

See "Modeling Business Processes with Oracle BPM" of the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management for general
information on BPMN flow objects.

Task: Create or Modify Business Catalog Components

Using Oracle BPM Studio, you can create or modify business catalog components
within a project template.

s Services
s Human tasks

m Business Rules

Task: Customize SOA Components

Oracle Fusion applications BPM projects are based on technology provided by the
Oracle SOA Suite. This includes reusable components and services that are included as
part of a project template.

In addition to customizing business catalog components, you can customize
applications by customizing SOA components, including the following:

Customizing and Extending Oracle BPM Project Templates 13-3

Publishing Project Templates

= Domain value maps
= BPEL processes
= Oracle Mediators

See Section 12.4, "Extending or Customizing Custom SOA Composites” for more
information.

13.3 Publishing Project Templates

In Oracle BPM, publishing a project template refers to the process of saving it in the
Oracle BPM MDS repository. You can publish project templates to the repository to
make them available to Oracle Business Process Composer users.

The repository can also be used to share BPM projects between Oracle Business
Process Composer and JDeveloper users as part of the process development life-cycle.

Publishing a project template to the BPM MDS repository makes them available to
Oracle Business Process Composer users who can use them to create new BPM
projects, which can be deployed to runtime. Before publishing a project template, you
should ensure that the project has been tested and functions correctly.

Task: Configure an Oracle BPM MDS Connection

Before publishing a project template to the Oracle BPM MDS repository, you must
configure an MDS connection.

See "How to Configure a Connection to the Oracle BPM Metadata Service Repository"
in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management for more information on creating a connection to the repository.

Task: Publish a Project Template

See "How to Publish a Project or Project Template to Oracle BPM MDS" of the Oracle
Fusion Middleware Modeling and Implementation Guide for Oracle Business Process
Management for information on publishing a project template.

After publishing a project template, it is available to Oracle Business Process
Composer users who can use it to create new BPMN process flows. See Chapter 7,
"Customizing and Extending BPMN Processes" for more information.

13-4 Extensibility Guide

14

Customizing and Extending Oracle
Enterprise Scheduler Jobs

This chapter describes how to use JDeveloper or Oracle Enterprise Manager Fusion
Applications Control to create and extend scheduled jobs using Oracle Enterprise
Scheduler.

This chapter includes the following sections:

= Section 14.1, "About Customizing and Extending Oracle Enterprise Scheduler
Jobs"

= Section 14.2, "Extending Custom Oracle Enterprise Scheduler Jobs"

= Section 14.3, "Customizing Existing Oracle Enterprise Scheduler Jobs"

14.1 About Customizing and Extending Oracle Enterprise Scheduler Jobs

Enterprise applications require the ability to respond to many real-time transactions
requested by end users or web services. However, they also require the ability to
offload larger transactions to run at a future time, or automate the running of
application maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL and spawned processes, distributed across nodes in a server cluster.
Oracle Enterprise Scheduler runs these jobs securely, and provides monitoring and
management through Fusion Applications Control.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:
= Distributing job request processing across a cluster of servers,

= Running Java, PL/SQL and binary jobs,

= Scheduling job requests based on recurrence,

= Managing job requests with Fusion Applications Control.

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

= Support sophisticated scheduling and workload management,
= Automate the running of administrative jobs,
= Schedule the creation and distribution of reports,

= Schedule a future time for a step in a business flow for business process
management.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-1

Extending Custom Oracle Enterprise Scheduler Jobs

14.1.1 Main Steps for Extending Oracle Enterprise Scheduler Jobs

Extending Oracle Enterprise Scheduler jobs involves the following main steps:
1. Develop the code that implements the job logic.
2. Create a metadata file for the job definition.

3. Grant permissions to the job, such that only those with the proper permissions can
request job submission.

4. Enable job request submission, using an existing hosting application, a
pre-configured user interface or a new customized application.

14.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs

Customizing Oracle Enterprise Scheduler jobs involves editing job properties using
Oracle Enterprise Manager Fusion Applications Control. The job properties that you
can modify are described in Table 14—4.

14.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs

Before you extend and customize Oracle Enterprise Scheduler jobs, you should be
familiar with the Oracle Fusion application architecture that enables customization, as
described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You
should also understand the typical workflow for working with customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin extending Oracle Enterprise
Scheduler jobs:

» For developers:

Set up JDeveloper. For more information, see Section 1.3.2, "Installing
Customization Tools."

s For administrators:

- Install Oracle Fusion Applications, making sure to provision Oracle Enterprise
Scheduler services. For more information, see the Oracle Fusion Applications
Installation Guide.

- Start Fusion Applications Control. For more information about starting up and
using Fusion Applications Control, see the chapter "Getting Started with
Managing Oracle Fusion Applications" in Oracle Fusion Applications
Administrator’s Guide.

14.2 Extending Custom Oracle Enterprise Scheduler Jobs

There are two main use cases for creating Oracle Enterprise Scheduler jobs.

Oracle Enterprise Scheduler Administrator

Administrators can create a new job definition using Oracle Enterprise Manager
Fusion Applications Control console, using an existing hosting application. Scheduled
jobs typically required by administrators include database maintenance tasks using
PL/SQL or running spawned jobs or scripts such as SQL*Plus scripts to load data into
the database. Once you have defined the job, use Oracle Enterprise Manager Fusion
Applications Control to submit the job request.

14-2 Extensibility Guide

Extending Custom Oracle Enterprise Scheduler Jobs

Developer or System Integrator

When using an existing hosting application, use Fusion Applications Control to create
Oracle Business Intelligence Publisher, PL/SQL and spawned jobs. Use JDeveloper to
create Java jobs and develop a new hosting application that executes a set of jobs. A
Java job might invoke an Oracle ADF Business Components service or a SOA
composite, for example.

In cases where there is no need to repackage the hosting application, PL/SQL, binary,
Oracle BI Publisher and Java jobs can be added to any hosting application. Optionally,
you can execute Java jobs from a custom hosting application.

System integrators may want to use Fusion Applications Control to develop a job,
while developers may prefer JDeveloper. Jobs are typically submitted using the
scheduled request submission Ul. Alternatively, it is possible to develop an Oracle
ADF application with screens for submitting Oracle Enterprise Scheduler jobs.

Task: Implement the Logic for the Oracle Enterprise Scheduler Job

An Oracle Enterprise Scheduler job is a request to execute a specific task written in
code or a script, such as Java, PL/SQL, spawned jobs, and so on.

An example of logic to be implemented by a scheduled job is writing particular data to
a database under certain conditions, for example, daily shift schedules for a given
sub-set of employees.

Task: Create a Job Definition Metadata File

An Oracle Enterprise Scheduler job definition specifies the type of job to be run (such
as Java, PL/SQL type jobs, and so on), the hosting application that will run the job,
and any additional required or optional parameters and properties for the job.

It is possible to create a job definition in Oracle Enterprise Manager Fusion
Applications Control or JDeveloper.

The minimum required properties and parameters for each job type are as follows:

» Oracle BI Publisher jobs: Specify the reportid parameter. Specify Oracle BI
Publisher parameters as job parameters with required validation. These can be
entered by end users during request submission using the request submission user
interface.

If the report is a bursting report, identify it as such by selecting the bursting check
box.

= PL/SQL jobs: In the job definition, specify the PL/SQL procedure that includes
the job logic implementation.

All input arguments to the PL/SQL procedure can be specified as parameters with
required validation. These can be entered by end users during request submission
using the request submission user interface.

= All other job types: Specify the name of the implementation logic and parameters
in the job definition.

For more information about creating a job definition in Oracle Enterprise Manager
Fusion Applications Control, see the chapter "Managing Oracle Enterprise Scheduler
Service and Jobs" in Oracle Fusion Applications Administrator’s Guide.

For more information about creating a job definition in JDeveloper, see the chapter
"Working with Extensions to Oracle Enterprise Scheduler" in Oracle Fusion Applications
Developer’s Guide for Oracle Enterprise Scheduler.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-3

Extending Custom Oracle Enterprise Scheduler Jobs

Task: Grant Relevant Permissions

Grant the appropriate permissions for the application using the Oracle Authorization
Policy Manager.

An example of the use of relevant permissions is to grant execution permissions to a
role so that users belonging to that role can submit the job.

For more information about granting relevant permissions to a deployed application,
see Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s Guide
(Oracle Fusion Applications Edition).

Task: Enable Job Request Submission

You can enable job request submissions through an Oracle ADF user interface using
JDeveloper or Fusion Applications Control.

When using JDeveloper to enable job request submissions through an Oracle ADF user
interface, you must define a view object to capture properties filled in by end users.

If a job is defined with properties that must be filled in by end users, the user interface
allows end users to fill in these properties prior to submitting the job request. For
example, if the job requires a start and end time, end users can fill in the desired start
and end times in the space provided by the user interface.

The properties that are filled in by end users are associated with a view object, which
in turn is associated with the job definition itself. When the job runs, Oracle Enterprise
Scheduler accesses the view object to retrieve the values of the properties.

You could, alternatively, submit job requests using Fusion Applications Control. Using
Fusion Applications Control to enable job request submissions through an Oracle ADF
user interface does not require you to create a view object for capturing end user data.

Note: Suppose a parameter view object is VLinked to another view
object (VO1). If you customize the view object using JDeveloper, then
the Oracle Enterprise Scheduler job submission Ul list of values
reflects this customization, if the customization is in the MDS runtime
database.

For more information about submitting job requests using Fusion Applications
Control, see the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in
Oracle Fusion Applications Administrator’s Guide.

For more information about defining a view object for use with a job submission
interface, see the chapter "Working with Extensions to Oracle Enterprise Scheduler" in
Oracle Fusion Applications Developer’s Guide for Oracle Enterprise Scheduler.

14.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job

Extending a custom PL/SQL Oracle Enterprise Scheduler job involves creating a
PL/SQL package and defining job metadata.

Task: Implement the Logic for the PL/SQL Job

Implementing a PL/SQL scheduled job involves creating a PL/SQL package and
defining the job metadata using the PL/SQL job type.

To implement the logic for a PL/SQL job:

1. Create a PL/SQL package, including the required errbuf and retcode
arguments. A sample PL/SQL package is shown in Example 14-1.

14-4 Extensibility Guide

Extending Custom Oracle Enterprise Scheduler Jobs

Example 14-1 Sample PL/SQL package
CREATE OR REPLACE PACKAGE XxSamplePkg AUTHID CURRENT_USER AS

Procedure SampleJob (
errbuf out NOCOPY varchar2,
retcode out NOCOPY varchar?,
name in varchar?2);

END XxSamplePkg;
/

CREATE OR REPLACE PACKAGE BODY XxSamplePkg AS

Procedure Sampledob (

errbuf out NOCOPY varchar2,
retcode out NOCOPY varchar2,
name in varchar2)

IS
begin
-- Write log file content using the FND_FILE API.
FND_FILE.PUT_LINE (FND_FILE.LOG, 'Running Stored procedure
SampleJob.......... ')

FND_FILE.PUT_LINE(FND_FILE.LOG, 'FND USERNAME : ' || FND_GLOBAL.USER_NAME) ;

-- Write log file content using the FND_FILE API.
FND_FILE.PUT_LINE (FND_FILE.OUTPUT,' Name : ' |‘ name) ;
FND_FILE.PUT_LINE (FND_FILE.OUTPUT, 'Job Request id : ' ‘| FND_JOB.REQUEST_ID

errbuf := fnd_message.get_string('FND', 'COMPLETED NORMAL') ;
retcode := 0;

end SampleJdob;

END XxSamplePkg;
/

2. Deploy the package to Oracle Database.

3. Grant the required permissions, and perform any other necessary tasks in the
database.

grant execute on xxSampleJob to FUSION_APPS_EXECUTE;

For more information about granting permissions for the execution of a PL/SQL
job, see the section "Performing Oracle Database Tasks for PL/SQL Stored
Procedures” in the chapter "Creating and Using PL/SQL Jobs" in Oracle Fusion
Applications Developer’s Guide for Oracle Enterprise Scheduler.

4. Test the package.

Task: Create a Job Definition Metadata File for the PL/SQL Job

Use Functional Setup Manager to define a job definition metadata file for the PL/SQL
job. The job definition metadata file may also include user properties for the PL/SQL
job as well as Ul parameters to be displayed at runtime.

For more information about creating an Oracle Enterprise Scheduler metadata file, see
the section "Creating a Job Definition" in the chapter "Managing Oracle Enterprise
Scheduler Service and Jobs" in Oracle Fusion Applications Administrator’s Guide.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-5

Extending Custom Oracle Enterprise Scheduler Jobs

To create a job definition metadata file for a PL/SQL job:

1. Login to Functional Setup Manager as a user with the role ASM_
IMPLEMENTATION_MANAGER_DUTY. For example, you can login with the
username APPLICATION_IMPLEMENTATION_CONSULTANT.

The URL for Functional Setup Manager is as follows.

https://<HOST>/setup/faces/TaskListManagerTop

2. In Functional Setup Manager, select the Setup and Maintenance work area and
click the All Tasks tab. Search for all tasks.

3. From the list of tasks that displays, select the relevant UI application you will use
to host the job definitions and parameter view objects. This Fusion application is
the portlet producer application for the job.

Click the Go to Task button.
The Manage Job Definitions tab displays, as shown in Figure 14-1.

Figure 14-1 The Manage Job Definitions tab

Manage Job Definitions Manage List of Values Sources
Manage Job Definitions 2]
Actions ~ View - B3 7 i Detach
Next
Name 4.~ |Display Name Description Path # Execution Type Job Type
[l *AgingSevenBucket Collections Aging 7 Bucket Report Identifies ‘s, joradefappsfess/fina Java BIPJobType
*AgingSevenBucketd' Collections Aging by Collector 7 Bucket Report Identifies customer's Jforacle/apps/ess/fina Java BIPJobType
*BorrowedLentProces: Distribute Borrowed and Lent Amounts Creates borrowed an foradle/apps/ess/fproj PL SQL Pl=gllobType
*BuildNewOrganizatic Build Mew Organization Burden Multipliers Adds burden multiplie joracle /apps/ess/proj Java BIPJobType
*ContractsBulkImpori Import Contract from External Systems Imports contracts in b jorade apps/ess/fcon Java JavalobType
*ContractsBulkImpori Purge Contract Import Interface Tables Purges error records foradle (apps fess/con’ Java JavalobType
*DraftPDFGenerator Generate Contract PDFs for Text Search Generates PDFs for a joracle fapps/fess/fcon Java JavalobType
*DraftPDFGeneratort Generate Contract PDFs for Text Search: Subprocess Generates PDFs for a joracle /apps/essfcon Java JavalobType
*GenerateBurdenTral Generate Burden Transactions Summarizes burden o jorade fapps/ess/proj Java BIPJobType
*GenerateBurdenTral Generate Burden Transactions Summarizes burden o foradle fappsfess/proj PL SQL PlsgllobType
*TdentifyTransaction: Identify Cross-Charge Transactions Identifies eligible expr forade/apps/ess/proj PL SQL PlsgllobType
*FKeywordOptimizeJot Optimize Keyword Search Index for Contract Clauses Optimizes the dause * foradle/apps/ess/con PL SQL Pl=gllobType
*KeywordSynclob Build Keyword Search Index for Contract Clauses Enables dause seard joradle/apps/ess/fcon PL SQL PlsgllobType
*OrgDenormJob Denormalize Organization Hierarchies: Generate Exception Report Prints the summary in joradle fapps/ess/proj Java BIPJobType
i *OrgDenormProcessh Denormalize Organization Hierarchies Converts all hierarchii jorade (apps fess/proj PL SQL PlsglJobType
:] *pifRbsRefreshResol Refresh Resource Breakdown Structure Element Names Refreshes the names oracle/apps/ess/proj PL SQL PlsgllobType
*RecalculateBurdenC Recalculate Burden Cost Amounts Identifies expenditure joracle fapps/ess(proj Java BIPJobType
*RecalculateBurdenC Recalculate Burden Cost Amounts Identifies expenditure foracle/apps/ess/proj PL SQL PlsgllobType
*ReceivablesOpenAc Receivables Open Accounting Period Opens receivables ac jorade apps fess/fina PL SQL PlsglJobType
*StatusMogmtMainR.ec Update Contract Status Updates the status o’ forade/apps/ess/con PL SQL PlsgllobType
*StatusMgmtSubReq. Update Contract Status: Subprocess Updates the status o foracle/apps/ess/fcon PL SQL PlsgllobType
*TemplateKeywordOy Optimize Keyword Search Index for Contract Terms Templates Optimizes the contrac foracle/apps/fess/fcon PL SQL PlsgllobType
*TemplateKeywordSy Build Keyword Search Index for Contract Terms Templates Enables contract tern foradle fapps/ess/fcon PL SQL PlsglJobType
“WorkTypeUpgradeB Update Work Type: Generate Success Report Provides a summary ¢ joracle /apps/ess/proj Java BIPJobType
“WorkTypeUpgrade Update Work Type Updates work type or foracle/apps/ess/proj PL SQL PlsgllobType

4. In the Manage Job Definitions tab, click the New button.

5. In the Create Job Definition tab, click Show More to display all parameters and
enter the values for the job shown in Table 14-1.

14-6 Extensibility Guide

Extending Custom Oracle Enterprise Scheduler Jobs

Table 14-1 PL/SQL Job Definition Values

Field Description

Display Name Enter a display name for the job.

Name Enter a name for the job definition.

Path Specify the trailing package name for the job definition metadata. The default
namespace or path for custom job definitions begins with
oracle/apps/ess/custom. For example, when entering test in the Path text
field, the job definition is stored in the globalEss MDS namespace as
oracle/apps/ess/custom/test.

Job Application Name From the dropdown list, select the name of the hosting application running the Oracle
Enterprise Scheduler job.

Job Type Select the job type from the dropdown list, namely the PlsqlJobType.

Procedure Name

Enter the name of the stored procedure to run as part of the PL/SQL job execution.

Standard request
submission flag

Check this box to indicate that the job request is to be submitted in the standard
manner.

6. At the bottom of the pane, click the User Properties tab. Define the following user
properties by clicking the New button, as shown in Table 14-2.

Table 14-2 PL/SQL User Properties

Name Data Type Default Value Read Only
EXT String For the default value, enter the name of the web N/A
PortletContaineriebModul e module which Functional Setup Manager will use

as a portlet when submitting the job request.
numberOfArgs String Set the number of job submission arguments, N/A

including errbuf and retcode.

Note: Typically, the web context is registered as the web module
name. Verify with your applications administrator the value of the
registered web module name in the Topology Manager of Functional
Setup Manager. Registering the correct web module name enables the
correct remote rendering of the Fusion application job request
parameters from the Oracle Enterprise Scheduler central UL

7. Click the <Job Definition Name>: Parameters tab and specify Ul parameters as
required. The Ul parameter fields are described in Table 14-3.

Table 14-3 PL/SQL Job Ul Parameters

Field Description

Prompt Enter the text to be displayed at the prompt that displays during run
time.

Data Type From the dropdown list, select the relevant data type.

Page Element From the dropdown list, select the UI page element you want to use to

display the parameter, for example, a text box.

8. Click Save and Close to create and save the new Oracle Enterprise Scheduler
PL/SQL job definition.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-7

Extending Custom Oracle Enterprise Scheduler Jobs

14.2.2 Extending a Custom Oracle Bl Publisher Oracle Enterprise Scheduler Job

Implementing a Oracle BI Publisher scheduled job involves creating a Oracle BI
Publisher report on the Oracle BI Publisher Server and defining the Oracle Enterprise
Scheduler job metadata.

Task: Implement the Logic for the Oracle Bl Publisher Job

For information about implementing an Oracle BI Publisher job, see the chapter "Using
BI Publisher with Oracle JDeveloper" in the Oracle Fusion Middleware Developer’s Guide
for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition).

Task: Create a Job Definition Metadata File for the Oracle Bl Publisher Job
Using Functional Setup Manager, create an Oracle BI Publisher type job definition.

To create a job definition metadata file for an Oracle BI Publisher job:

1. Follow the instructions in "Task: Create a Job Definition Metadata File for the
PL/SQL Job".

2. From the Job Type dropdown list, select BinaryJobType.

3. In the User Properties tab, define only the EXT_PortletContainerWebModule
property.

14.2.3 Extending a Custom Java Oracle Enterprise Scheduler Job

Implementing a Java scheduled job involves implementing the Java business logic and
defining the relevant Oracle Enterprise Scheduler job metadata. Use JDeveloper to
implement a Java job and deploy the job as a shared library. Modify the deployment
descriptor of the deployed user interface or hosting application EAR file so that it
points to the shared library. Redeploy the file.

Deploying the job as a shared library allows you to add additional jobs in the future
without having to redeploy the hosting application. For more information about
deploying Oracle ADF applications, see the chapter "Deploying Fusion Web
Applications" in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Task: Implement the Logic for the Java Job

In order to develop an application that runs a Java class under Oracle Enterprise
Scheduler, you must define the Java class that implements the Oracle Enterprise
Scheduler executable interface. The executable interface defines the contract that
enables using Oracle Enterprise Scheduler to invoke a Java class.

To create a Java class for an existing Oracle Enterprise Scheduler Fusion application,
take the following steps:

s Create an application in JDeveloper.

s Create a project in JDeveloper.

= Develop the application code that uses the Oracle Enterprise Scheduler Java APIs.
To implement the logic for an Oracle Enterprise Scheduler Java job:

1. In]Developer, create an application and project. Make sure to include EJB and
Java technologies in the project.

2. Add the Oracle Enterprise Scheduler extensions to the project.

14-8 Extensibility Guide

Extending Custom Oracle Enterprise Scheduler Jobs

3.

4.

a. In the Application Navigator, right-click the project you just created. Select
Project Properties and then select Libraries and Classpath.

b. Inthe Libraries and Classpath pane, click Add Library.

c. Inthe Add Library window, in the Libraries field, select Enterprise Scheduler
Extensions and click OK.

Create a Java class using the Oracle Enterprise Scheduler package.

a. In the project overview tab, click the Java Files link.

b. In the Java Files pane, click the New button. From the Create New in Project

menu, select Project Name and then select Java Class.
The Create Java Class window displays.

c. In the Create Java Class window, enter a name for the Java class and the
package name oracle.apps.financials.ess.program in the fields provided.

Accept the remaining default values.

In the Java class, develop the code that will do the work of the Java job.

Example 14-2 shows sample code which illustrates the use of an Oracle Enterprise
Scheduler job request file handle and writes a job request parameter submitted to
the request log and output files.

Example 14-2 Sample Java code

package oracle.apps.financials.ess.program;

import
import
import

import
import
import
import
import

import
import

import
import

import

public

java.io.IOException;

oracle.as.scheduler

oracle.
oracle.
oracle.
oracle.
oracle.

oracle.
oracle.

oracle.
oracle.
oracle.

as

as.
as.
as.
as.

as.

as

as.
as.
as.

.scheduler.
scheduler.
scheduler.
scheduler.

scheduler

scheduler.
.scheduler.

scheduler.
scheduler.
scheduler.

.Cancellable;
oracle.as.scheduler.

Executable;

ExecutionCancelledException;
ExecutionErrorException;
ExecutionPausedException;
ExecutionWarningException;

.RequestExecutionContext;

RequestParameters;
SystemProperty;

cp.exec.ProcessHelper;
cp.file.LogFile;
cp.file.OutputFile;

class XxSampleJob implements Executable, Cancellable

private OutputFile requestOutput;
private LogFile requestLog;

private boolean m_isCancelled = false;

private long request_id = 0L;
private String requestParameterl = null;

public XxSampledob() {
super () ;

public void execute(RequestExecutionContext ctx,

RequestParameters params)

Customizing and Extending Oracle Enterprise Scheduler Jobs

throws ExecutionErrorException,

14-9

Extending Custom Oracle Enterprise Scheduler Jobs

ExecutionWarningException,
ExecutionCancelledException,
ExecutionPausedException {

request_id = ctx.getRequestId();

System.out.println("XxSampleJob Running, Request ID: " +
ctx.getRequestId());

try {

String userFileDir =
(String)params.getValue (SystemProperty.USER_FILE_DIR) ;

String sysPropUserName =
(String)params.getValue (SystemProperty.USER_NAME) ;

// Read the job request parameter.
requestParameterl = (String) params.getValue("submit.argumentl");

requestOutput = ProcessHelper.getOutputFile();
requestOutput.writeln("Sample ESS Java job execution OUTPUT");
requestOutput.writeln ("USER_NAME as SystemProperty: " +
sysPropUserName) ;
requestOutput.writeln("ESS Job requestID: " + request_id);
requestOutput.writeln("ESS Job request parameter: "
+ requestParameterl) ;

requestLog = ProcessHelper.getLogFile();
requestLog.writeln("Sample ESS Java job execution LOG");
requestLog.writeln ("ESS requestFileDirectory: " + userFileDir);
requestLog.writeln("ESS Job requestID: " + request_id);
requestLog.writeln("ESS Job request parameter: "

+ requestParameterl);

} catch (Exception ex) {
System.out.println("Exception running XxSampleJob: " +
ex.getMessage()) ;
ex.printStackTrace();
} finally {

try {

// Close all open job request log and output files.
ProcessHelper.closeAllFiles();

} catch (IOException ioe) {
System.out.println("Exception closing files: " +

ioe.getMessage());
ioe.printStackTrace();

@Override

14-10 Extensibility Guide

Extending Custom Oracle Enterprise Scheduler Jobs

public void cancel() {
m_isCancelled = true;

)

Task: Deploy the Java Business Logic

In order to deploy the Java logic of an Oracle Enterprise Scheduler Java job, identify an
existing Fusion application as the target hosting application.

Next, update the Java business logic for an existing Fusion application as follows:

= Package the Java application in a JAR file.

= Update JAR module in the Fusion application classpath.

= Bounce the server instance to load the Java program logic in the Fusion application
class loader.

To deploy the Java business logic:

1. Create a deployment profile for the project.

In JDeveloper, from the Application Navigator, select the project you created.
Build the project to ensure that the Java class successfully compiles.

Right-click the project, select Project Properties and Deployment.

In the Deployment Profiles field, click New to create a deployment profile for
the JAR file.

The Create Deployment Profile window displays.

In the Create Deployment Profile window, enter a name for the deployment
profile and click OK.

In the Edit JAR Deployment Profile Properties window, verify that the Java
job class is included in the JAR module output and click OK.

2. Package the Oracle Enterprise Scheduler Java class into a JAR file and deploy it.

From the Application Navigator, right-click the project you created. Select
Deploy and then select the JAR file you just created.

The Deployment Action window displays.

In the Deployment Action window, click Finish to create a packaged JAR
archive.

The archive module is deployed to the default project deployment path, for
example, $JDEV_HOME / <PROJECT_NAME>/deploy/<JAR_NAME>. jar.

Note: All custom JAR files must begin with the prefix Xx, for
example XxMyJar . jar.

3. Update the JAR module in the application classpath of the Oracle Enterprise
Schedulerhosting application.

a.

Locate the expanded deployment directory of the EAR file for the existing
Fusion application, for example $MW_

HOME/ fusionapps/applications/fin/deploy/EarFinancialsEss.e
ar/APP-INF/1lib.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-11

Extending Custom Oracle Enterprise Scheduler Jobs

b. Copy the deployed custom jar file to the expanded directory.

4. In the domain to which the Oracle Enterprise Scheduler hosting application is
deployed, restart Oracle Enterprise Scheduler.

The Oracle Enterprise Scheduler job executes the updated Java class once the
application class loader successfully loads the updated class.

For more information about restarting the Oracle Enterprise Scheduler, see the
section "Starting and Stopping an Oracle Enterprise Scheduler Service Instance" in
the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in Oracle
Fusion Applications Administrator’s Guide.

Task: Create a Job Definition Metadata File for the Java Job
Using Functional Setup Manager, create a Java type job definition.

To create a job definition metadata file for a Java job:

1. Follow the instructions in "Task: Create a Job Definition Metadata File for the
PL/SQL Job".

2. In the Create Job Definition window, from the Job Type dropdown list, select
JavaJobType.

3. In the Create Job Definition window, in the Class Name field, enter the fully
qualified class name of the Java business logic.

4. In the Create Job Definition window, In the User Properties tab, define only the
EXT_PortletContainerWebModule property.

5. Click the <Job Definition Name>: Parameters tab and specify Ul parameters as
required. The Ul parameter fields are described in Table 14-3.

6. Click Save and Close to create and save the new Oracle Enterprise Scheduler Java
job definition.

14.2.4 Submitting Oracle Enterprise Scheduler Jobs

You can use Oracle Fusion Applications to submit Oracle Enterprise Scheduler jobs.
To submit Oracle Enterprise Scheduler jobs:

1. Inthe main area of Oracle Fusion Applications, access the Schedule Processes page
by clicking the Navigator menu and then selecting Tools and Schedule Processes.

2. Click Schedule New Process.
The Search and Select: Process Name window displays.

3. In the Process Name field, enter the name of the Oracle Enterprise Scheduler job
you want to schedule and click Search.

The job name displays in the search results table.
4. From the search results table, select the job name and click OK.
The Process Details page displays.

5. In the Process Details page, in the Parameters field, specify any required
parameters.

6. Click Submit to request that the Oracle Enterprise Scheduler instance execute the
job. Click Close to return to the Scheduled Processes page.

14-12 Extensibility Guide

Customizing Existing Oracle Enterprise Scheduler Jobs

7. In the Scheduled Processes page, refresh the Search Results table to monitor the
status of submitted job.

14.3 Customizing Existing Oracle Enterprise Scheduler Jobs

You can customize Oracle Enterprise Scheduler jobs that are associated with Fusion
applications. Customizing existing Oracle Enterprise Scheduler jobs involves editing
job properties using Oracle Enterprise Manager Fusion Applications Control.

An example of a customization is to set the time-out value for a scheduled job to be
run asynchronously. When the job takes longer than the time-out, you can find the job
that timed out in Fusion Applications Control and manually complete the job.

The job properties that can be edited are shown in Table 14—4.

For more information about editing scheduled job properties, see the chapter
"Managing Oracle Enterprise Scheduler Service and Jobs" in Oracle Fusion Applications
Administrator’s Guide.

Table 14-4 Job Properties

API

Description

oracle.as.scheduler.
SystemProperty.PRIOR
ITY

This property specifies the request processing priority, from 0 to 9, where 0 is the
lowest priority and 9 is the highest. If this property is not specified, the system default
value used is oracle.as.scheduler.RuntimeService#DEFAULT PRIORITY.

oracle.as.scheduler.
SystemProperty.RETRI
ES

This property defines the numerical value that specifies the retry limit for a failed job
request. If job execution fails, the request retries up to the number of times specified
by this property until the job succeeds. If the retry limit is zero, a failed request will
not be retried. If this property is not specified, the system default used is
oracle.as.scheduler.RuntimeService#DEFAULT RETRIES.

oracle.as.scheduler.
SystemProperty.REQUE
ST_CATEGORY

This property specifies an application-specific label for a request. The label, defined
by an application or system administrator, allows administrators to group job
requests according to their own specific needs.

oracle.as.scheduler.
SystemProperty.ASYNC
_REQUEST_TIMEOUT

This property specifies the time in minutes that the job request processor waits for an
asynchronous request after it has begun execution. After the time elapses, the job
request times out.

enableTrace

The property specifies a numerical value that indicates the level of tracing control for
the job. Possible values are as follows:

= 1: Database trace

= 5: Database trace with bind

= 9: Database trace with wait

= 13: Database trace with bind and wait

= 16: PL/SQL profile

s 17: Database trace and PL/SQL profile

= 21: Database trace with bind and PL/SQL profile

= 25: Database trace with wait and PL/SQL profile

= 29: Database trace with bind, wait and PL/SQL profile

enableTimeStatistics

This property enables or disables the accumulation of time statistics.

Customizing and Extending Oracle Enterprise Scheduler Jobs 14-13

Customizing Existing Oracle Enterprise Scheduler Jobs

14-14 Extensibility Guide

15

Customizing Security for ADF Application
Artifacts

This chapter describes how to customize security for custom and extended business
objects and related custom and extended application artifacts defined by Oracle
Application Development Framework (Oracle ADF) in Oracle Fusion applications
using Oracle Authorization Policy Manager and JDeveloper.

Security customization in the production environment is typically restricted to the IT
security manager using Oracle Authorization Policy Manager; however, during the
development phase of application customization, you can perform similar security
customization tasks using Oracle Authorization Policy Manager and JDeveloper.

This chapter includes the following sections:
= Section 15.1, "About the Oracle Fusion Security Approach"

= Section 15.2, "About Extending the Oracle Fusion Security Reference
Implementation”

= Section 15.3, "About Extending and Securing Oracle Fusion Applications"
= Section 15.4, "Defining Data Security Policies on Custom Business Objects"
= Section 15.5, "Enforcing Data Security in the Data Model Project"”

= Section 15.6, "Defining Function Security Policies for the User Interface Project"

15.1 About the Oracle Fusion Security Approach

Oracle Fusion Applications is secure as delivered. The Oracle Fusion security
approach tightly coordinates various security concerns of the enterprise, including:

= The ability to define security policies to specify the allowed operations on
application resources, including viewing and editing data and invoking functions
of the application.

= The ability to enforce security policies by roles assigned to end users, and not
directly enforced on the end users of the system.

For example, when an end user attempts to access a task flow, whether or not the end
user has the right to enter the flow and view the contained web pages is determined
by the roles provisioned to the end user and the security policies defined for those
roles.

In the enterprise, the IT security manager ensures end users are provisioned with
sufficient access rights to perform the duties of their various jobs. These provisioning
tasks involve Oracle Fusion Middleware tools that integrate with Oracle Fusion

Customizing Security for ADF Application Artifacts 15-1

About the Oracle Fusion Security Approach

Applications and allow IT personnel to extend the Oracle Fusion security reference
implementation, which consists of predefined security policies and roles used in Oracle
Fusion Applications. These tools directly update a copy of the reference
implementation in the deployed application’s security policy store and identity store.

From the standpoint of the application developer who seeks to apply the Oracle
Fusion security approach to an Oracle Fusion application that they extend, the security
implementation process overlaps with tasks performed by IT personnel. You may or
may not need to extend the Oracle Fusion security reference implementation,
depending upon how end users will interact with the new resource. At the end of the
process, you must ensure that any new resource you create, such as a business object
in the data model project or a task flow in the user interface project, has sufficient
security policies to grant access privileges and suitable roles to receive the access
privileges.

15.1.1 How to Proceed With This Chapter

Customizing security is a complex process that involves working with several tools,
familiarity with diverse technologies, and coordination between the application
developer and IT security manager. For a concise summary of the security
customization scenarios and corresponding tasks, see Table 15-1 in Section 15.3.3,
"Oracle Fusion Security Customization Scenarios."

After familiarizing yourself with the types of security customizations performed by
the application developer, read the following sections to gather a more complete
understanding of the security customization process.

= For an overview of the Oracle Fusion security reference implementation, see
Section 15.2.

= For a list of Oracle Fusion security guidelines that dictate which security artifacts
in the Oracle Fusion security reference implementation you may or may not
modify, see Section 15.3.1.

s For an overview of the steps you follow to secure a new resource, see
Section 15.3.2.

= For additional background about the type of resource customizations that require
customizing security, see Section 15.3.4 and Section 15.3.5.

= For details about the security artifacts that you define to create security policies,
see Section 15.3.6 through Section 15.3.9.

s For a list of prerequisite tasks to be completed before customizing security, see
Section 15.3.11.

» For information about the tools involved in customizing security, see Section 15.4
through Section 15.6.

15.1.2 Related Security Documents

The following related documents contain important information specific to
customizing security in Oracle Fusion Applications. References to these documents
appear throughout this chapter. Please consult these documents for complete details.

» Oracle Fusion Applications Security Guide

Describes the concepts and best practices of the Oracle Fusion security approach.
This is the main document addressing the Oracle Fusion security approach.

» Oracle Fusion Applications Security Hardening Guide

15-2 Extensibility Guide

About Extending the Oracle Fusion Security Reference Implementation

Describes how the IT security manager proceeds to implement the Oracle Fusion
security reference implementation for their enterprise.

» Oracle Fusion Applications security reference manuals

Describes the segregation of duties in the Oracle Fusion security reference
implementation. Each Oracle Fusion application has its own reference manual.

» Oracle Fusion Applications Developer’s Guide

Describes how to secure new custom resources in Oracle Fusion Applications.
Includes chapters describing how to implement data security and function
security for new resources.

» Oracle Fusion Applications Administrator’s Guide
Summarizes available security administration tasks in a single chapter.

» Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s Guide
(Oracle Fusion Applications Edition)

Describes how to create and modify data security policies and data role templates.
» Oracle Fusion Middleware Application Security Guide

Describes the concepts and best practices of Oracle Platform Security Services
(OPSS) upon which Oracle Fusion security is based. This is the main document
addressing the architecture of Oracle security services.

» Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

Describes ADF Security, through which Oracle ADF components interact with
oprss.

» Oracle Fusion Middleware User’s Guide for Oracle Identity Manager
Describes role provisioning and other identity management tasks.
» Oracle Database Security Guide
Describes implementing security policies at the level of the database.
= JDeveloper online help topics

Describes the tools used to create database objects using JDeveloper.

15.2 About Extending the Oracle Fusion Security Reference
Implementation

The Oracle Fusion security approach is embodied in the Oracle Fusion security
reference implementation which delivers predefined roles and security policies that
address the common business needs of the enterprise. The reference implementation
can be extended to adjust to the needs of a specific enterprise. The predefined security
policies implement role-based access control: a set of roles recognizable as jobs, a role
hierarchy that contains the duties for those jobs, and a set of role provisioning events
and workflows. The Oracle Fusion security reference implementation represents the
security guidelines of what Oracle considers to be the general case for jobs, roles,
duties, and segregation of duties.

In general, the Oracle Fusion security reference implementation is designed to require
only small changes to adjust Oracle Fusion security for a specific enterprise. The
reference implementation provides a comprehensive set of predefined security policies
and predetermined data role templates that may be customized to generate security

Customizing Security for ADF Application Artifacts 15-3

About Extending and Securing Oracle Fusion Applications

policies. From the standpoint of the IT security manager who addresses the specific
security concerns of their organization, typical tasks include changing or extending
role definitions and role hierarchies and managing security policies and data role
templates. For example, enterprise IT security personnel eventually review the duties
and access defined in the reference implementation and determine how that matches
with the job titles and tasks the enterprise expects to be performed in the deployed
Oracle Fusion application.

Provisioning of end users with role membership is defined in the application's identity
store and is a configuration task to be performed by the IT security manager
independent of security customization. The reference implementation contains four
types of roles: abstract, job, duty, and data roles and implements hierarchies between
these roles to streamline provisioning access to end users. Each of the Oracle Fusion
Applications roles is implemented in Oracle Fusion Middleware as one of these roles:

= Internal roles are roles that are not assigned directly to end users, also called
application roles because they are specific to an application.

Note that, in Oracle Fusion Applications, application roles are called duty roles.
The Oracle Fusion security reference implementation defines a large number of
duty roles that correspond to the duties of individual job roles. Duty roles are
specific to applications, stored in the policy store, and shared within an Oracle
Fusion Applications instance.

= External roles are roles associated with a collection of end users and other groups,
also called enterprise roles because they are shared across the enterprise.

In Oracle Fusion Applications, enterprise roles include job roles, data roles, and
abstract roles.

The job role is a role that corresponds to a job title defined in Human Resources (HR).
The duty role is a role that corresponds to a line on a job description for that job. For
example, in your enterprise, the job of an Application Developer may also
include Project Management Duties. The data role is a role that authorizes a
person with a job to a particular dimension of data on which they can work: for
example, AP Manager - US Commercial Business Unit identifies who should
access the accounts specific to the US division of the enterprise. The abstract role is a
role that is not a job title, but is a means to group end users without respect to specific
jobs: for example, Employee or Line Manager.

The division between internal roles and external roles is an important principle of the
Oracle Fusion security approach. The principle, called least privilege, ensures that the
end user only acquires privileges specific to the job they perform rather than a variety
of miscellaneous duties. Therefore, in adherence of the principle of least privilege,
duty roles are defined by Oracle Platform Security Services (OPSS) as internal roles
and cannot be assigned directly to end users.

To understand the Oracle Fusion security approach in detail and to learn more about
using the Oracle Fusion security infrastructure to implement and administer security
for the enterprise, see the "Introduction” chapter in the Oracle Fusion Applications
Security Guide.

15.3 About Extending and Securing Oracle Fusion Applications

Oracle Fusion Applications is configured by default to deny end users access to the
data of the application domain and the web pages that display the data. An important
principle of Oracle Fusion security ensures that end users do not have unintended
access to data and application artifacts exposed in the extended application.

15-4 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

To enable access to custom resources in the extended application, you may create
security policies to specify "who can perform what operations on what specific data
and on what specific application artifacts."

Note: The term protected in this chapter refers to the default Oracle
Fusion Applications condition that denies end users access to
database resources and application artifacts. In contrast, the term
secured refers to resources that have been made accessible to end users
through security policies created for this purpose. Therefore, a
security policy specifically enables access to the resource based on the
access rights it confers to the end user.

To create the security policy, you must consider the additional duties the end users of
the extended application will perform and then grant the desired roles specific rights
to:

= Access the web pages of a custom task flow that supports the duty

= Access the specific data records, or instances of a custom business object, required
to complete the duty

» Perform only those operations on that data required by the duty

When you need to secure new resources, you should expect to work with two different
types of security policies: data security policies that control access to the data records of
database tables or views in the Oracle Fusion Applications schema and function
security policies that control access to the Oracle Fusion application artifacts used to
display the data. Because the representation of data security policies and function
security policies differ, the environment you will use to define security policies
depends on whether data security or function security is being implemented.

In the case of access to data records, a custom business object may be secured either
implicitly or implicitly. For example, the AP Manager is authorized to an explicit list of
business units specified by a data role, whereas the Project Manager is implicitly
authorized to the projects that he manages. When you need to secure data records,
then you can:

= Implicitly grant data access to abstract and job roles through data security policies
you define on custom duty roles inherited by the abstract or job role.

You can create custom duty roles to support a new duty introduced by a custom
application resource.

= Explicitly grant data access to a data role through a data security policy you apply
directly to the inherited job or abstract role through a data role template.

You can customize the data role template before running the template to generate
the data roles.

15.3.1 Oracle Fusion Security Customization Guidelines for New Functionality

In general, when creating new functionality, not supported by Oracle Fusion
Applications, you should not include authorization to that functionality from within
the security artifacts that Oracle Fusion Applications delivers in the reference
implementation.

Specifically, Oracle Fusion security guidelines suggest customization developers and
IT security managers should not modify the following security artifacts in the reference

Customizing Security for ADF Application Artifacts 15-5

About Extending and Securing Oracle Fusion Applications

implementation when introducing new functionality, through custom or extended
business objects.

s Predefined duty roles, specifically:

— Do not change the role hierarchy by removing member duty roles assigned to
parent duty roles or job roles.

- Do not remove (also called revoke) existing privileges granted to duty roles.
— Do not add (also called grant) new privileges to duty roles.

= Predefined security policies (including data and function), specifically:
- Do not remove existing instance sets from predefined data security policies.

— Do not remove existing member resources from predefined function security
policies.

— Do not revoke existing actions (mapped by Oracle Fusion security to resource
operations) granted on each resource or instance set.

Customization developers and IT security managers may modify security artifacts in
the reference implementation in the following ways.

= Do modify job roles to add a custom duty role (permissible by IT security manager
only).

= Do modify data role templates to add a new job role as the base role or to add
access privileges to a custom business object.

Customization developers and IT security managers may create the following security
artifacts and add them to the reference implementation.

s Do create custom duty roles when a custom application resource requires a new
duty role to support the segregation of duties or when a custom application
resource introduces new privileges to a predefined business object.

= Do create data role templates when a custom business object is used as a data
stripe and explicit data security policies grant access to the data stripe. For
example, when data roles grant access to a specific business unit or organization.

Note: You should not modify predefined duty roles, and you should
always add custom duty roles to grant access rights. Only the IT
security manager can add or remove duty roles associated with an
existing job role. If a predefined job role does not exist that adequately
describes the duties performed by a job, then the IT security manager
can also create a new job role.

15.3.2 Oracle Fusion Security Customization Process Overview

Creating a new, custom business object and exposing it in the extended application is
one of the main customization tasks that you may perform. Although you may also
extend existing business objects to introduce new functionality or to introduce
additional data, the security customization process for new and existing business
objects follows a similar pattern.

To security a new business object in the extended Oracle Fusion application:

1. Create a custom duty role to serve as the grantee of the security policy privileges.

15-6 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

10.

For details about creating duty roles, see the "Managing Security Artifacts" chapter
in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s
Guide (Oracle Fusion Applications Edition).

Define a database resource in the Oracle Fusion Data Security repository to protect
the data records of a database table that you intend to expose in the application.

For details about registering a database table as a database resource, see
Section 15.3.6, "What You Can Customize in the Data Security Policy Store at
Design Time."

This step causes Oracle Fusion security to protect the database table records, thus
rendering the data inaccessible to the end user of the application. A data security
policy will be required to grant access to the data defined by the database resource
and a function security policy will be required to grant access to the application
artifacts that display the data in the extended application.

Define data security policies for the previously defined database resource to grant
access to specific data records for a given role.

For details about securing data, see Section 15.3.6, "What You Can Customize in
the Data Security Policy Store at Design Time."

Extend the data model project (in the extended application) with a new entity
object to expose the database table that you defined as an Oracle Fusion Data
Security database resource.

For details about creating custom business components to represent a database
table, see Chapter 11, "Customizing and Extending ADF Application Artifacts."

Opt into the previously defined data security policies by enabling OPSS
authorization checking on the operations of individual data model objects in the
data model project.

For details about enabling security, see Section 15.3.7, "What You Can Customize
in the Data Model Project at Design Time."

Consult an IT security manager to export all predefined function security policies
of the application that you are customizing into a jazn-data .xml file.

For details about how the security manager exports the application policy store,
see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator’s Guide.

Copy the exported jazn-data.xml file into your application workspace.

For details about adding the file to your application, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer’s Guide.

Customize the Oracle ADF application artifacts in the user interface project to
display the data records exposed by the extended data model.

For details about creating securable custom application artifacts, see Chapter 11,
"Customizing and Extending ADF Application Artifacts."

Define function security policies for the custom Oracle ADF application artifacts to
specify the access rights of end users.

For details about securing application functions, see Section 15.3.9, "What You Can
Customize in the Application Security Policy Store at Design Time."

Opt into the previously defined function security policies by running the ADF
Security wizard to enable OPSS authorization checking.

Customizing Security for ADF Application Artifacts 15-7

About Extending and Securing Oracle Fusion Applications

For details about enabling security on the user interface project, see Section 15.3.8,
"What You Can Customize in the User Interface Project at Design Time."

15.3.3 Oracle Fusion Security Customization Scenarios

You do not need to customize security for every type of customization that you may
make in the extended application. Whether or not a security policy is needed will
depend on the application resource and the type of customization performed.

Table 15-1 summarizes the security customization scenarios that Oracle Fusion
security supports. The "Application Developer Tasks" column of the table provides a
brief description of the security artifacts involved in each scenario, but presumes some
familiarity with the Oracle Fusion security approach (for guidance see Section 15.1.1,
"How to Proceed With This Chapter").

Note:

For simplicity, Table 15-1 does not make a distinction between

explicit and implicit data security policies. You may also need to
customize data role templates when a custom business object is used
as a data stripe and explicit data security policies grant access to that
data stripe. For more details about customizing data role templates,
see Section 15.3.6, "What You Can Customize in the Data Security
Policy Store at Design Time."

Table 15-1 Oracle Fusion Applications Security Customization Use Cases

Security Customization Goal

Security Policy Requirement

Application Developer Tasks

Control whether the end user
associated with a particular role
may access a new task flow and
view all the web pages of the
flow.

Create a new security policy.

The new task flow will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

Enable ADF Security on the user interface
project to protect all task flows (and the
web pages they contain). Then, in the
file-based policy store, create a resource
definition for the task flow and assign the
definition as a member of an entitlement
(defined in the policy store as a permission
set) that you name. Then, create the
security policy by granting the
entitlement to a custom application role
that you either created or consulted with
an IT security manager to create for you.

As a security guideline, do not modify a
predefined function security policy by
granting additional entitlements to an
predefined duty role.

Control whether the end user
associated with a particular role
may access a customized task
flow and view the new or
customized web pages of the
flow.

Do not create a security policy.

The customized Oracle Fusion
application task flow will have an
predefined function security policy
defined by the Oracle Fusion security
reference implementation; since this
type of change should not introduce
new duties, there is no need to grant
access to a new duty role.

Consult the IT security manager who can
make a customized task flow accessible
to additional end users through role
provisioning. If the same group of end
users should have access to the
customized task flow, then no change to
the provisioned end users is required.

15-8 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

Table 15-1 (Cont.) Oracle Fusion Applications Security Customization Use Cases

Security Customization Goal Security Policy Requirement Application Developer Tasks

Control whether the end user ~ Create a new security policy. Enable ADF Security on the user interface
associated with a particular role project to protect all top-level web pages
may access a new top-level backed by ADF page definition files.
web page. Then, in the file-based policy store, create
a resource definition for the web page
and assign the definition as a member of
an entitlement (defined in the policy
The ability to secure individual web store as a permission set) that you name.
pages in Oracle Fusion Applications = Then, create the security policy by
is reserved for top-level web pages granting the entitlement to a custom
backed by an ADF page definition application role that you either created or
file only. consulted with an IT security manager to
create for you.

The new top-level web page will be
inaccessible by default (also called
protected) and will require a new

In Oracle Fusion Applications,a function security policy to grant end
top-level web page is one thatis users access.

not contained by a task flow.

As a security guideline, do not modify a
predefined function security policy by
granting additional entitlements to an
predefined duty role.

Control whether the end user Do not create a security policy. Consult the IT security manager who can
associated with a particular role make customized top-level web pages
may access a customized accessible to additional end users
top-level web page. through role provisioning. If the same
group of end users should have access to
the web page, then no change to the
provisioned end users is required.

The customized top-level web page
will have an predefined function
security policy defined by the Oracle
In Oracle Fusion Applications,a Fusion security reference

top-level web page is one thatis implementation; since this type of
not contained by a task flow. change should not introduce new
duties, there is no need to grant
access to a new duty role.

Determine whether the end Do not create a security policy. Conditionally render the component by
user associated with a entering ADF Security Expression
particular role has the right to Language (EL) utility methods on the
select create, edit, or delete rendered attribute of the button to test
button in the displayed web whether the end user has membership in
a particular role.

Access to user interface components,
such as buttons, is not controlled by
a security policy, but can be

ave controlled by rendering the button in
page. the user interface based on the end
user’s role.

Control whether the end user =~ Create a new security policy. Enable authorization checking on the
associated with a particular role appropriate operations of the ADF entity
may view or update a specific object (read, update, and

set of data records for an all removeCurrentRow) that maps to a
new business object in the specific database table. Then, in the
displayed web page. Oracle Fusion Data Security repository,
add a custom duty role as the grantee of
access privileges and create a named
instance set of data records. Then, create
the security policy by granting Oracle
Fusion Data Security view or update
privileges to the custom duty role for the
data records.

After an Oracle Fusion Database
Security database resource is defined
for the data, the data records
exposed by the new business object
will be inaccessible by default (also
called protected) and will require a
new data security policy to grant end
users read or update access on one or
more specific sets of data records.

As a security guideline, do not modify a
predefined data security policy by
granting additional privileges to an
predefined duty role.

Customizing Security for ADF Application Artifacts 15-9

About Extending and Securing Oracle Fusion Applications

Table 15-1 (Cont.) Oracle Fusion Applications Security Customization Use Cases

Security Customization Goal

Security Policy Requirement

Application Developer Tasks

Control whether the end user
associated with a particular role
may view or update new set of
data records for an existing
business object in the
customized web page.

Create a new security policy.

Although an existing Oracle Fusion
business object will have an existing
data security policy; you should not
modify privileges granted to
predefined duty roles (those defined
by the Oracle Fusion security
reference implementation) and
should instead grant only to custom
duty roles that they define.

In the Oracle Fusion Data Security
repository, add a custom duty role as the
grantee of access privileges and create a
named instance set for the new data
records. Then, create the security policy
by granting Oracle Fusion Data Security
view or update privileges to the custom
duty role for the data records.

As a security guideline, do not modify a
predefined data security policy by
granting additional privileges to an
predefined duty role.

Control whether the end user
associated with a particular role
may view or update new
sensitive data exposed on a
new attribute of an existing
business object in the
customized web page.

Sensitive data is defined as any
personally identifiable
information (PII) that is
considered "public within the
enterprise" (also called
"internally public"). Internally
public PII data is secured from

access external to the enterprise.

Create a new security policy.

Sensitive PII data exposed by a new
attribute that is added to an existing
Oracle Fusion application business
object will be secured by the business
object’s data security policies and
will require a new data security
policy to grant end users read or
update access on a specific column of
data.

Column-level OPSS authorization
checking is not supported for ADF entity
objects. Instead create a custom OPSS
permission to control access to the
column read or update operation, and
then, in the Oracle Fusion Data Security
repository, map the operation to a
custom privilege and grant the privilege
to the custom duty roles for the sensitive
data records.

Last, conditionally render the attribute by
testing whether the end user has the
custom privilege either 1.) by entering an
ADF Security Expression Language (EL)
utility method using an EL expression on
the user interface component that
displays the attribute or 2.) by entering a
groovy expression on the ADF view
object to which the user interface
component is bound.

Control whether the end user
associated with a particular role
may view or update new
confidential data exposed on
an all new business object in the
customized web page.

Confidential data is defined as
any personally identifiable
information (PII) that is
considered "private within the
enterprise". Exposure of such
information outside the
enterprise could result in harm,
such as loss of business, benefit
to a competitor, legal liability,
or damaged reputation.
Confidential PII data is secured
from access external to the
enterprise and is secured
additionally to prevent access
within the enterprise by highly
privileged end users (such as
database administrators).

Create a new security policy.

In Oracle Database, the Virtual
Private Database (VPD) feature only
supports securing a set of data
records and therefore will require a
new table in the Oracle Fusion
database schema. The confidential
PII data exposed by the new business
object will be inaccessible by default
(also called protected) and will require
a new data security policy to grant
end users read or update access on a
specific set of data records.

Column-level policies are not supported
by Virtual Private Database (VPD).
Instead the database administrator must
create a new table in the Oracle Fusion
database schema, create a view for that
table, and then define a VPD policy to
filter the PII data records by associating a
PL/SQL function with that view.

Then, in the Oracle Fusion Data Security
repository, create an action with the same
name as the database view and create the
security policy by granting Oracle Fusion
Data Security view or update privileges
to the custom duty role for the
confidential data records.

Last, in the data model project, enable
OPSS authorization checking on the
appropriate operations of the ADF entity
object (read, update, and
removeCurrentRow) that maps to the
new PII database table.

15-10 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

15.3.4 Scenarios Related to Extending and Securing Data Model Components

In Oracle Fusion Applications, when you want to extend the application to expose
additional data, you create an ADF entity object and implement the operations that
may be performed over a particular set of data records. The ADF entity object you
create encapsulates the data as business object instances, corresponding to data
records from a database table or view, such as an invoice or a purchase order. Typical
operations are business functions like viewing, editing, or creating an instance of the
business object.

Security concerned with controlling the operations that can be performed against
specific data is called data security. Data security policies involve granting an end user,
by means of the end user's membership in a role, the ability to perform operations on
specific sets of data. For example, an accounts payable manager in the enterprise’s
western regional office may be expected to view and edit invoice data records but only
for the customers in the western region. The Accounts Payable Manager role
provisioned to the accounts payable manager authorizes access to the business
functions required to view and edit invoices instances, and, in this case, the specific
instances of the invoices business object striped for the western region.

Data security policies are implemented using Oracle Fusion Data Security, which is the
technology that implements the security repository for data security policies. Oracle
Fusion Data Security is implemented as a series of Oracle Fusion Applications
database tables, sometimes referred to as FND tables (note that FND refers to resources
in foundation tables) and includes tables like FND_OBJECTS that defines the protected
database resource and FND_GRANTS that defines the access privileges for those
database resources.

To protect the business object in the extended application, where it has been exposed
as an ADF entity object, a database resource definition in the FND_OBJECTS table
identifies the same table or view backing the ADF entity object. The database resource in
Oracle Fusion Data Security is the data resource on which data security is enforced.
Once the business object is defined as an Oracle Fusion Data Security database
resource, then a security policy must be created to grant access to the data records. The
security policies for the database resource specify access privileges such as read,
update, and delete privileges on specific sets of data records exposed by the business
object.

Note: When an ADF entity object exposes a business object that does
not require security, then no database resource for that business object
should be defined in the Oracle Fusion Data Security repository. For
complete details about Oracle Fusion Data Security, see the
"Implementing Oracle Fusion Data Security" chapter in the Oracle
Fusion Applications Developer’s Guide.

As an Oracle Fusion security guideline, a new data security policy should be created
instead of modifying predefined data security policies of the Oracle Fusion security
reference implementation. For example, a new data security policy is required to
expose additional data records or operations for an existing business object.
Additionally, a custom duty role must be created as the recipient of the new data
security access privileges since granting privileges to a predefined duty role would
alter the segregation of duties defined by the reference implementation.

Customizing Security for ADF Application Artifacts 15-11

About Extending and Securing Oracle Fusion Applications

Note: Developers are not entitled to modify the role hierarchy
defined by the Oracle Fusion security reference implementation.
Therefore, whenever you create a new duty role, you must consult the
IT security manager to assign the custom duty role to a job role or
data role.

Additionally, the Oracle Fusion security reference implementation uses database-level
security policies to protect most of the confidential personally identifiable information
(PII), also called internally private data, that exists in the Oracle Fusion database
schema. This type of security is implemented in Virtual Private Database (VPD)
policies directly on the PII tables. In general, database administrators and other
personnel with access to the database schema should not modify VPD policies
implemented for Oracle Fusion Applications. However, when you create a business
object that introduces confidential data and that data should be treated as internally
private within the enterprise, then certain roles may be granted access to the
confidential data for valid business reasons. For example, a human resources
representative may require access to the employee’s home addresses, while a
dispatcher may require access to the home phone numbers of on-call staff.

Whether or not you will need to define a data security policy to grant access to data
records depends on the type of customization, as summarized in Table 15-1. The
scenarios for defining data security policies include the following.

When a new business object is introduced and it needs to be secured:

When you seek to secure additional data records in the extended application because a
new ADF entity object is introduced, then an Oracle Fusion Data Security database
resource must be defined to protect the data records and a new data security policy
must be created to grant end users access to the data records exposed by the business
object that the ADF entity object defines. The data records exposed by the business
object will be unprotected (accessible to all end users) until a database resource
identifying the business object is defined in the Oracle Fusion Data Security
repository.

Note that the operations to be secured on the new business object will also require
enabling OPSS authorization checking for those operations on the ADF entity object in
the data model project, as described in Section 15.3.7, "What You Can Customize in the
Data Model Project at Design Time."

When a new business object attribute is introduced and it maps to sensitive
data:

When you modify an existing ADF entity object to include a new attribute that maps
to data that not all end users should be able to view, then a new data security policy
must be defined to grant end users access to the sensitive data. This is accomplished
through a combination of a data security policy that grants a custom privilege and
enforcement of the privilege in the application source.

Because Oracle Fusion Data Security does not support automatic enforcement of
custom data security privileges, column-level security is not supported by default.
You enforce the custom privilege in the application source by enabling OPSS
authorization checking at the level of the user interface component or its databound
ADF view object. Otherwise, without the custom data security privilege and custom
privilege check, the data records (including the sensitive fields) exposed by the
business object would be secured by the data security policy that already exists for the
business object.

15-12 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

Important: Oracle Fusion Data Security alone will not prevent
sensitive data from being accessed by highly privileged end users,
such as database administrators. If the data needs to be treated as
internally private (confidential data), then consider implementing
additional security using Virtual Private Database (VPD) policies.
However, do not implement column-level VPD policies to protect
sensitive data exposed by attributes, as security for attributes is not
supported by VPD in Oracle Fusion Applications.

When a new business object attribute is introduced and it maps to confidential
data:

When you create an ADF entity object that introduces data that should be treated as
confidential to the enterprise, then row-level VPD policies may be defined to control
access to PII data by privileged users, including database administrators.
Implementing VPD policies requires saving the confidential information in a new table
in the Oracle Fusion database schema.

In this case, the database administrator first creates the database table and the VPD
policy to secure the PII data records. The VPD policy the database administrator
creates associates a policy function (a PL/SQL function) with a particular database
view or synonym. The policy function filters the rows for any query made against the
PII data. Finally, you can proceed to create the actual data security policies by granting
to an action that has been created with same name as the database view where the
policy is defined.

For information about creating VPD policies, see the "Using Oracle Virtual Private
Database to Control Data Access" chapter in the Oracle Database Security Guide.

When new operations or new data records are introduced from an already
secured business object:

When you introduce new operations or additional data records exposed by an existing
ADF entity object into the extended application, you should not modify the predefined
data security policies or data role templates that already exist for that business object.
Instead you should create a new data security policy to grant end users access to the
operations or data records that had previously remained protected.

Note that the operations to be secured on the business object may also require
enabling OPSS authorization checking for those operations on the ADF entity object in
the data model project, as described in Section 15.3.7, "What You Can Customize in the
Data Model Project at Design Time."

When already exposed operations or data records should be accessible by
additional end users:

When you introduce functionality into the extended application that changes the
access requirements of the operations and data records exposed by an existing
business object, then those end users may be provisioned by existing job roles or data
roles. You should consult the IT security manager to make the data accessible to
additional end users through role provisioning. This type of customization does not
require modifying the access privileges or the duty roles of an associated data security

policy.

Customizing Security for ADF Application Artifacts 15-13

About Extending and Securing Oracle Fusion Applications

15.3.5 Scenarios Related to Extending and Securing User Interface Artifacts

When you want to extend an Oracle Fusion application user interface to support
particular end user duties, you may either create a new ADF bounded task flow or
customize an existing bounded task flow. The bounded task flow specifies the control
flow that the end user is expected to follow when interacting with the web pages
contained by the task flow. Similarly, top-level web pages (ones that are not contained
by a bounded task flow) may be introduced or customized.

Security concerned with controlling access to a bounded task flow or top-level web
page is called function security. Function security policies involve granting an end user,
by means of the end user's membership in a role, the ability to access task flows and
perform operations in the contained web pages. For example, the accounts payable
manager must be granted access privileges to the task flow that provides the functions
to manage the invoice data records. If the manager is authorized to access the task
flow, then a data security policy governing the invoice records will determine the
manager’s right to access the actual data.

Function security is implemented at the most fundamental level as resource / action
pairs which may be granted to secure specific application artifacts. Oracle ADF defines
the actions needed to secure certain Oracle ADF application artifacts, including ADF
bounded task flows and, in the case of top-level web pages, ADF page definitions files.

In the Oracle Fusion Applications environment, function security policies aggregate
one or more resource /action pairs into an entitlement definition. The entitlement is
the entity that is granted to a duty role. The function security policy for the Oracle
ADF application artifact, confers the end user with function access rights, such as a
such as view or manage, through a specific duty role.

The function security policies for all the resources of the Oracle Fusion application
form the function security repository, which is implemented as an OPSS application
policy store. The OPSS policy store in a test or production environment is an LDAP
server running Oracle Internet Directory (OID). At runtime, OPSS performs
authorization checks against the application policy store to determine the end user’s
access privileges.

Note: For more information about how Oracle Platform Security
Services implements function security, see the "Understanding
Security Concepts" part in the Oracle Fusion Middleware Application
Security Guide.

The IT security manager for the enterprise exports the LDAP-based application policy
store for a particular Oracle Fusion application into an XML file-based policy store that
allows you to add security policies using the tools provided by JDeveloper. As an
Oracle Fusion security guideline, you must create a new function security policy
rather than modify the predefined function security policies of the Oracle Fusion
security reference implementation. Additionally, a custom duty role must be created
as the recipient (also called the grantee) of the new function security access privileges
since granting privileges to a predefined duty role would alter the segregation of
duties defined by the reference implementation.

Note: Developers are not entitled to modify the role hierarchy
defined by the Oracle Fusion security reference implementation.
Therefore, whenever you create a new duty role, you must consult the
IT security manager to assign the custom duty role to a job role.

15-14 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

Whether or not you will need to create a function security policy to grant access to a
task flow or top-level web page depends on the type of customization, as summarized
in Table 15-1. The scenarios for defining function security policies include the
following.

When a new task flow or top-level web page is introduced:

When you expose new functionality in the extended application through a new ADF
bounded task flow or top-level web page that you create, then a new function security
policy must be created to grant end users access to the application artifact.

The new ADF bounded task flow or top-level web page are the only use cases that
require a new function security policy for the extended application.

When a new web page is introduced into an existing task flow:

When you modify an existing task flow to include new web pages, those web pages
will be secured by the containing task flow’s existing security policy. In this case,
because all web pages contained by a bounded task flow are secured at the level of the
task flow, there is no no need to add additional function security privileges specifically
for the new page. You will, however, need to create a new data security policy to grant
end users access to any new data records that were introduced by the customization.

When a web page is modified to display a new field of sensitive data:

When you modify a web page to display sensitive data for a single data record field
(for example, by adding a column to a table component to display salary information),
access to the field displayed by the component cannot be controlled by a function
security policy (authorization checking is not implemented by OPSS at the level of
ADF Faces user interface components in the web page). Instead, you enter ADF
Security Expression Language (EL) utility methods on that part of the databound ADF
Faces component responsible for rendering the field and test the end user’s associated
role.

Note that using EL expressions to conditionally render a portion of a user interface
component does not control access to the actual data; truly sensitive data should be
secured on the business object with a data security policy, as described in

Section 15.3.4, "Scenarios Related to Extending and Securing Data Model
Components."

When a web page is modified to display components that should not be
viewable by all end users:

When you modify a web page to display components that not all end users should by
able to view (for example, a button that deletes data records), access to the
components cannot be controlled with a function security policy (authorization
checking is not implemented by OPSS at the level of ADF Faces user interface
components in the web page). Instead, you enter ADF Security Expression Language
(EL) utility methods on the rendered property of the ADF component in order to
hide or render the entire component based the end user’s associated role.

Note that using EL expressions to conditionally render a user interface component
does not control access to the actual data (if that component displays data); truly
sensitive data should be secured on the business object with a data security policy, as
described in Section 15.3.4, "Scenarios Related to Extending and Securing Data Model
Components."

Customizing Security for ADF Application Artifacts 15-15

About Extending and Securing Oracle Fusion Applications

When existing task flows or top-level web pages should be accessible by
additional end users:

When you introduce functionality into the extended application that changes the
access requirements of an existing bounded task flow or top-level web page, then you
should consult the IT security manager to make the resource accessible to additional
end users through role provisioning. This type of customization does not require
changing the access privileges associated with the resource or the duties it defines.

15.3.6 What You Can Customize in the Data Security Policy Store at Design Time

Data security policies are stored in the Oracle Fusion Data Security repository and are
defined and edited using Oracle Authorization Policy Manager, which you access
through Oracle Fusion Functional Setup Manager, from the Manage Data Security
task available in the Setup and Maintenance area of any Oracle Fusion Setup
application.

Note: After you select the Manage Data Security task in Oracle
Fusion Functional Setup Manager, the environment redirects to the
data security customization user interface provided by Oracle
Authorization Policy Manager. In this document, although the data
security customization tool is identified as Oracle Authorization
Policy Manager, be aware that the tool must be accessed through
Oracle Fusion Functional Setup Manager.

Data security policies control access to the database resources of an enterprise.
Database resources in the Oracle Fusion security reference implementation include
database tables and views and are predefined standard business objects that should
not be changed. However, for cases where custom database resources must be secured
business objects (defined by ADF entity objects in the data model project), you can be
entitled to create custom duty roles, manage database resources, and create new data
security policies using Oracle Authorization Policy Manager.

Important: As an Oracle Fusion security guideline, the privileges
granted by predefined data security policies assigned to duty roles of
the reference implementation should not be changed by customization
developers. You should always create new data security policies to
confer additional access privileges. Details about the Oracle Fusion
security reference implementation can be found in the Oracle Fusion
Applications security reference manuals.

The data security policy consists of privileges conditionally granted to a role in order
to control access to instance sets of the business object. A privilege is a single action
corresponding to an end user’s intended operation on a single business object. A data
security policy therefore is a grant of a set of privileges to a role on a business object
for a given instance set. You can define the instance sets as a single row of data,
multiple rows of a single table, or all rows of a single table.

The following security artifacts are recorded in the Oracle Fusion Data Security
repository for a new data security policy:

= A database resource that references a primary key corresponding to the database
table or view of the business object on which data security will be enforced.

15-16 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

After the database resource is defined in the data security repository, the Oracle
Fusion Data Security implementation protects the data records and operations
exposed by the business object by default, and a data security policy must be
defined to grant end users access to the business object.

= One or more roles that will be assigned to the end users who can perform the
granted actions.

For more details about the roles used by Oracle Fusion Applications, see
Section 15.2, "About Extending the Oracle Fusion Security Reference
Implementation."

= A rule (also called a named condition) to define the available row instance sets in
the form of a SQL predicate or simple filter (stored as XML) defined on the rows of
the database resource.

Instance sets may be a single row of data, multiple rows of a single table, or all
rows of a single table. Only instance sets with multiple rows requires creating a
named condition.

= One or more actions (such as view, edit, and delete) performed on database
records that correspond to the operations supported by the business object (which
may include custom operations).

At runtime, data security policies make data available to end users based on their
provisioned roles according to the following means:

= Action grants that determine whether the end user has the right to perform the
intended operation

s Condition evaluation for individual actions (and its corresponding operation) that
specify the which data records from the database resource may be accessed

Note: The application developer does not enforce data security
policies when creating the policies. In the case of data security, you
must enable OPSS authorization checking on each business object that
needs data security. This enforcement is implemented in JDeveloper,
as described in Section 15.3.7, "What You Can Customize in the Data
Model Project at Design Time."

Related to data security is an Oracle Fusion security feature called the data role
template. Oracle Fusion Applications supplies data role templates to anticipate typical
Oracle Fusion security scenarios and to allow the enterprise to generate data security
policies based on information that is specific to the enterprise, such as the names of
business units on which to apply the data security policies. Typically, the
implementation manager for Oracle Fusion Applications enters the template
information and then runs the templates to generate data security policies and the
supporting data roles.

When you create a new business object or expose a new set of data records in the
extended application, you should confirm whether a data role template exists to
generate data security policies for that business object. If a data role template exists,
you can update the template to supply information pertaining to the business object,
such as the data records to secure and the data dimensions to express stripes of data,
such as territorial or geographic information used to partition enterprise data.

Using Oracle Authorization Policy Manager, you may perform the following data
security-related customization tasks:

Customizing Security for ADF Application Artifacts 15-17

About Extending and Securing Oracle Fusion Applications

= Manage database resources.

An existing database resource should not have its primary key altered, but you
can define new named conditions and add new actions to map any new
operations that you implement. If you create a new business object for a database
table or view, you can create an all new database resource with named conditions
(see below) and actions.

= Create named conditions to filter the rows of the business object. (Optional)

The database resource conditions are specified as SQL queries that, when added to
a security policy, filter the data and generate an instance set of available data
records. Conditions determine the entitlements available to the end user for
specific business objects. Conditions may be static or they may be parameterized
to allow instance sets to be specified generically but granted specifically. Note a
condition is only required when the data security policy does not secure either a
single data record or all data records: both of these cases may be defined without
named conditions when creating the security policy.

Note that instance sets generated with parameters cannot be used for data security
that is enforced declaratively, rather you need to write code to enforce OPSS
authorization checking.

= Create data security policies consisting of privileges for a specific application role,
named condition (optional), and business object.

A privilege can map a standard action to a standard operation: read, update, and
delete on a condition of a business object. The standard actions and the standard
operations are named similarly.

Alternatively, a privilege can map a custom action to a custom operation on a
condition of a business object. The custom privilege, for example ApprovePO, is
useful to secure a custom operation in the data model project or to secure any
operation for row sets at the level of the individual ADF view object. The custom
privilege also supports securing operations on columns through ADF Security
Expression Language (EL) utility methods in the user interface project or Groovy
scripting language expressions in the data model project.

As an alternative to specifying a named condition, the data security policy can
secure an instance set defined by a single data record or defined by all data
records. Both of these cases may be selected when creating the data security

policy.
= Generate data security policies by updating a data role template with data
dimensions and data sets required to support the business object.

A data role template generates data security policies for a business object based on
supplied data dimensions to partition the data records into sets of data security
policies. The template also maps instance sets for the data security policies it will
generate to a particular data dimension. Instance sets are authored at the time the
business object is registered as a database resource. Data dimensions and instance
sets are specified as SQL clauses.

Note that the SQL clauses cannot be modified after running the template.

For an overview of these tasks, see Section 15.4, "Defining Data Security Policies on
Custom Business Objects." For detailed documentation, see the "Managing Oracle
Fusion Applications Data Security Policies" and "Oracle Fusion Applications Data Role
Templates" chapters in Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator’s Guide (Oracle Fusion Applications Edition).

15-18 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

15.3.7 What You Can Customize in the Data Model Project at Design Time

You create a data model project in JDeveloper to map custom business objects to ADF
entity objects. At runtime, the ADF entity object creates a row set of data records
exposed by the business object and simplifies modifying the data by handling create,
read, update, and delete operations. In the data model project, you then define one or
more ADF view objects on top of the ADF entity object to shape the data to the row set
require by the tasks of the application, such as populating a form that displays a
customer’s sales invoice.

After you map the business object to an ADF entity object, enforcement of data
security policies does not occur automatically on the data records of the exposed
business object. The Oracle Fusion security approach protects the business object that
has been registered as an Oracle Fusion Data Security database resource to ensure that
end users do not have unintended access to sensitive data. In adherence of the security
principle of protected by default, Oracle Fusion security separates defining policies
and enforcing policies. Thus, by default, data security policies for a business object will
remain ineffective until you enable OPSS authorization checking on the operations of
the ADF business component. Enforcement of OPSS authorization checking can be
specified either declaratively, at the level of ADF entity objects or ADF view objects, or
programmatically, on any related code.

You can modify the data model project to opt into data security in two ways:

= At thelevel of the ADF entity object, to enable OPSS authorization checking on
standard operations. Standard operations supported by ADF entity objects
include, read, update, and delete current row. In this case, all ADF view objects
based on the ADF entity object will have the same level of authorization checking
enabled. The applicable data security policies will filter the data for each row set
produced by these ADF view objects in exactly the same way.

= At thelevel of the ADF view object, to enable OPSS authorization checking on
standard operations for a collection of rows. This provides a way to filter the data
in the data model project based on an individual row set that the ADF view object
defines. This level of authorization checking also supports defining a custom
privilege (corresponding to the ADF view object read operation) in the data
security policy store.

Using JDeveloper, you can perform the following security-related customization tasks
in the data model project:

= Enforce row-level security for standard operations.

Standard operations that you can secure are read, update, and remove current
row. OPSS authorization checking is enabled directly on the ADF entity object to
be secured. Although the ADF entity object maps to all instances of the business
object, the data security policy defines conditions to filter the rows displayed to
the end user.

= Enforce row-level security for custom operations.

You may wish to enforce security for custom operations that are specific to the
custom business object. Custom operations are not supported by ADF Business
Components on the ADF entity object. When a data security policy defines a
custom operation, you must enable it using a view criteria set on an ADF view
object. The view criteria identifies the data security policy and business object.

= Enforce security for individual attributes of business objects.

Column-level OPSS authorization checking is not supported on the attributes of
ADF entity objects or ADF view objects. You must create a custom OPSS

Customizing Security for ADF Application Artifacts 15-19

About Extending and Securing Oracle Fusion Applications

permission for the column-level read or update operation and then map that to a
custom privilege. Whether or not the user interface displays the column is
determined by testing that custom privilege in the user interface using an EL
expression on the secured attribute displayed by the user interface component.

For an overview of these tasks, see Section 15.5, "Enforcing Data Security in the Data
Model Project." For detailed documentation, see the "Implementing Oracle Fusion
Data Security" chapter in the Oracle Fusion Applications Developer’s Guide.

15.3.8 What You Can Customize in the User Interface Project at Design Time

Before you create function security policies, you will use JDeveloper to create a user
interface project with the custom ADF bounded task flows or top-level web pages that
you intend to secure.

To simplify the task of securing the functions of the extended application, ADF
Security defines a containment hierarchy that lets you define a single security policy
for the ADF bounded task flow and its contains web pages. In other words, the
security policy defined at the level of the bounded task flow, secures the flow’s entry
point and then all pages within that flow are secured by the same policy. For example,
a series of web pages may guide new end users through a registration process and the
bounded task flow controls page navigation for the process.

Specifically, the Oracle ADF application artifacts that you may secure in the user
interface project of the extended Oracle Fusion application are:

= ADF bounded task flow protects the entry point to the task flow, which in turn
controls the end user’s access to the pages contained by the flow

The ADF unbounded task flow is not a securable application artifact and thus
does not participate in OPSS authorization checks. When you need to secure the
constituent pages of an unbounded task flow, you define policies for the page
definition files associated with the pages instead.

= ADF page definition files associated with top-level web pages

For example, a page may display a summary of products with data coordinated by
the ADF bindings of the page’s associated ADF page definition file.

For details about creating bounded task flows and databound top-level web pages, see
the "Introduction to Building Fusion Web Applications with Oracle ADF" chapter in
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Although you can create function security policies for the custom resources of the user
interface project, enforcement of function security does not occur automatically. The
Oracle Fusion security approach protects securable Oracle ADF application resources
to ensure that end users do not have unintended access. In adherence of the security
principle of protected by default, Oracle Fusion security separates defining policies
and enforcing policies. Thus, by default, function security policies will remain
ineffective until you enable OPSS authorization checking by running the ADF Security
wizard in JDeveloper on the user interface project.

15-20 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

Important: After you run the ADF Security wizard, OPSS
authorization checking is enforced on the bounded task flows and
top-level pages. These application artifacts will be inaccessible when
testing the application in JDeveloper. To enable access, you must
create function security policies on the protected application artifacts,
as described in Section 15.3.9, "What You Can Customize in the
Application Security Policy Store at Design Time."

Using JDeveloper, you can perform the following security-related customization tasks
in the user interface project:

= Enable OPSS authorization checking to protect Oracle ADF application artifacts.

Oracle ADF application artifacts in the user interface project, including ADF
bounded task flows and the top-level web pages (with a backing ADF page
definition) will be protected when you configure ADF Security by running the
ADF Security wizard with the Authentication and Authorization option selected.
This ensures that end users do not have unintended access to sensitive work flows
of the extended application.

= Conditionally display or hide components in the web page.

ADF Security implements utility methods for use in EL expressions to access
Oracle ADF application artifacts in the security context. For example, you can use
the ADF Security utility methods to determine whether the end user is allowed to
access create, edit, or delete buttons. Good security practice dictates that your
application should hide user interface components and capabilities for which the
end user does not have access. For example, if the end user is not allowed access to
a particular task flow, you can use the EL expression to evaluate the role
membership of the end user to determine whether or not to render the navigation
components that initiate the task flow.

For an overview of these tasks, see Section 15.6, "Defining Function Security Policies
for the User Interface Project." For detailed documentation, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer’s Guide.

15.3.9 What You Can Customize in the Application Security Policy Store at Design

Time

You can use JDeveloper to add application security policies to a file-based policy store
that the IT security manager creates by exporting policies from the LDAP-based
application security policy store. The file containing the exported policy store is the
jazn-data.xml file.

As a security development guideline, you should only use JDeveloper tools to work on
the exported file-based policy store, and you should not edit the security definitions
directly. JDeveloper supports iterative development of security so you can easily
create, test, and edit security policies that you create for Oracle ADF application
artifacts. In JDeveloper, you can also create end user identities for the purpose of
running and testing the application in JDeveloper’s Integrated WebLogic Server. You
provision a few test end user identities with roles to simulate how the actual end users
will access the secured application artifacts.

After testing in JDeveloper using Integrated WebLogic Server, you must consult with
the IT security manager to merge the LDAP-based application policy store in the
staging environment with the security policies that you added to the exported XML
file. Initially, the staging environment allows further testing using that server's

Customizing Security for ADF Application Artifacts 15-21

About Extending and Securing Oracle Fusion Applications

identity store before deploying to the production environment. Thus, end user
identities created in JDeveloper are not migrated to standalone Oracle WebLogic
Server and are used only in Integrated WebLogic Server to test the extended
application.

Note: For details about implementing and testing security using
JDeveloper, see the "Implementing Function Security" chapter in the
Oracle Fusion Applications Developer’s Guide.

The basic security artifact for function security is the JAAS (Java Authentication and
Authorization Service) permission, where each permission is specific to a resource
type and maps the resource with an allowed action. In general, the JAAS permission
determines the allowed operations that the end user may perform on a particular
application artifact. However, from the standpoint of Oracle Fusion Applications, end
users typically need to interact with multiple resources to complete the duties
designated by their provisioned roles. To simplify the task of creating function
security policies in the Oracle Fusion Applications environment, you work with OPSS
entitlements to grant privileges for a variety of securable resources, including ADF
task flows, web services, and SOA work flows to a role.

Function security policies that comprise entitlement grants with multiple application
artifacts are called entitlement-based policies. Example 15-1 shows the Oracle Fusion
Applications entitlement policy Maintain Purchase Orders which groups the OPSS
permissions for ADF task flows, a web service, and a SOA work flow.

Example 15—-1 Entitlement-Based Policy Groups OPSS Permissions as a Set that May Be
Granted to a Role

Resource Type: ADF Taskflow
Resource: PO Summary
Action: view

Resource Type: ADF Taskflow
Resource: PO Details
Action: view

Resource Type: ADF Taskflow
Resource: Supplier Details
Action: view

Resource Type: Web Service
Resource: SpendingLimitCheckWs
Action: invoke

Resource Type: Workflow
Resource: POApproval
Action: submit

You use the security policy editor in JDeveloper to create the entitlement-based policy.
JDeveloper modifies the source in the exported XML file. As Example 15-2 shows,
entitlement-based policies in Oracle Fusion applications are defined in the
<jazn-policies> element. The policy store section of the file contains a
<resource-type> definition (that identifies the actions supported for resources of
the selected type), a <resource> definition (to identify the resource instance that you
selected from your application and mapped to a resource type), a
<permission-set> definition (to define the resources and actions to be granted as

15-22 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

an entitlement), and a <grant> definition with one or more entitlements (defined in
the XML as a permission set) granted to the desired application roles (the grantee).

Example 15-2 Entitlement-Based Security Policy Definition in jazn-data.xml File

<?xml version="1.0" ?>
<jazn-data>
<policy-store>
<applications>
<application>
<name>MyApp</name>

<app-roles>

<app-role>
<name>AppRole</name>
<display-name>AppRole display name</display-name>
<description>AppRole description</description>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>

</app-role>

</app-roles>

<role-categories>
<role-category>
<name>MyAppRoleCategory</name>
<display-name>MyAppRoleCategory display name</display-name>
<description>MyAppRoleCategory description</description>
</role-category>
</role-categories>

<!-- resource-specific OPSS permission class definition -->
<resource-types>
<resource-type>
<name>APredefinedResourceType</name>
<display-name>APredefinedResourceType display name</display-name>
<description>APredefinedResourceType description</description>
<provider-name>APredefinedResourceType provider</provider-name>
<matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
<actions-delimiter>,</actions-delimiter>
<actions>write, read</actions>
</resource-type>
</resource-types>

<resources>
<resource>
<name>MyResource</name>
<display-name>MyResource display name</display-name>
<description>MyResource description</description>
<type-name-ref>APredefinedResourceType</type-name-ref>
</resource>
</resources>

<!-- entitlement definition -->
<permission-sets>
<permission-set>
<name>MyEntitlement</name>
<display-name>MyEntitlement display name</display-name>
<description>MyEntitlement description</description>
<member-resources>
<member-resource>

Customizing Security for ADF Application Artifacts 15-23

About Extending and Securing Oracle Fusion Applications

<type-name-ref>APredefinedResourceType</type-name-ref>
<resource-name>MyResource</resource-name>
<actions>write</actions>
</member-resource>
</member-resources>
</permission-set>
</permission-sets>

<!-- Oracle function security policies -->
<jazn-policy>
<!-- function security policy is a grantee and permission set -->
<grant>
<!-- application role is the recipient of the privileges -->
<grantee>
<principals>
<principal>
<class>
oracle.security.jps.service.policystore.ApplicationRole
</class>
<name>AppRole</name>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>
</principal>
</principals>
</grantee>
<!-- entitlement granted to an application role -->
<permission-set-refs>
<permission-set-ref>
<name>MyEntitlement</name>
</permission-set-ref>
</permission-set-refs>
</grant>
</jazn-policy>
</application>
</applications>
</policy-store>
<jazn-policy></jazn-policy>
</jazn-data>

While OPSS permissions granted for a single resource are not typically defined in the
Oracle Fusion Applications environment, function security policies that use OPSS
permissions for a single resource are called resource-based policies. Ultimately, a
function security policy may have either one or more OPSS permissions, one or more
OPSS permission sets (entitlements), but not both.

Note: Granting access to web pages in Oracle Fusion Applications is
enforced at the level of ADF Controller components called bounded
task flows. Task flows in Oracle Fusion Applications are ADF
Controller components that assemble the application's web pages (or
regions within a web page) into a work flow that supports the tasks to
be performed by application end users. Defining security policies on
task flows instead of individual web pages is a security best practice
that blocks end users from directly accessing the pages of a task flow.
Web pages that are not contained in a task flow, are top-level pages
and may have security policies defined individually.

15-24 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

Provisioning of end users with role membership is defined in the application's identity
store and is a configuration task to be performed by the IT security manager
independent of security customization.

Using JDeveloper, you may perform the following function security customization
tasks:

Create an entitlement-based policy for all other application roles.

An entitlement-based policy is a set of resource grants (set of OPSS permissions)
that will be required by the end user to complete a task.

Create a resource-based policy specifically for the built-in OPSS application role
authenticated-role.

A resource-based policy sets an OPSS permission on a single application resource
and grants that permission to an application role. This type of function security is
typically not used by securable resources in Oracle Fusion Applications. However,
the resource-based policy should be used to make a custom resource accessible
only to authenticated end users (ones who visit the site and logs in). For example,
granting a view action permission to the built-in OPSS application role
authenticated-role is the way to make an employee registration task flow
accessible to all employees within the enterprise.

For an overview of these tasks, see Section 15.6, "Defining Function Security Policies
for the User Interface Project." For detailed documentation, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer’s Guide.

15.3.10 What You Cannot Do with Security Policies at Design Time

After you create the security policies, you should work with an IT security manager to
migrate the policies to the staging environment.

The security manager is responsible for the following tasks.

After testing is completed in JDeveloper, the IT security manager must merge the
file-based policy store with the application policy store in the staging
environment.

For information about how the IT security manager merges the policies using
Oracle Authorization Policy Manager, see the "Upgrading Oracle Fusion
Applications Policies" chapter in the Oracle Fusion Middleware Oracle Authorization
Policy Manager Administrator’s Guide (Oracle Fusion Applications Edition).

The IT security manager must provision enterprise users by mapping enterprise
roles (defined in the staging environment identity store) to the custom application
roles.

For information about how the IT security manager provisions enterprise users
using Oracle Authorization Policy Manager, see the "Managing Security Artifacts"
chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator’s Guide (Oracle Fusion Applications Edition).

Before running the application in the staging environment, the IT security
manager must reconcile the application roles GUIDs of any data security policies
that were created based on new custom application roles.

When the file-based policy store is merged, the GUIDs of application roles are not
preserved. For information about how the IT security manager reconciles GUIDs
using a WLST command, see the "Securing Oracle Fusion Applications” chapter in
the Oracle Fusion Applications Administrator’s Guide.

Customizing Security for ADF Application Artifacts 15-25

About Extending and Securing Oracle Fusion Applications

Before running the application in the staging environment, the IT security
manager must modify the application to use the LDAP-based policy store
provided by the testing environment.

For more information, see the "Implementing Function Security" chapter in the
Oracle Fusion Applications Developer’s Guide.

After testing is completed in the staging environment, the IT security manager can
deploy the application to the production environment and must again reconcile
the application roles GUIDs of any data security policies that were created based
on custom application roles, before merging the application policy store from the
staging environment with the policy store in production.

Whenever the policy store merge is performed, the GUIDs of application roles are
not preserved. For information about how the IT security manager reconciles
GUIDs using a WLST command, see the "Securing Oracle Fusion Applications"
chapter in the Oracle Fusion Applications Administrator’s Guide.

For information about how the IT security manager merges the policies using
Oracle Authorization Policy Manager, see the "Upgrading Oracle Fusion
Applications Policies" chapter in the Oracle Fusion Middleware Oracle Authorization
Policy Manager Administrator’s Guide (Oracle Fusion Applications Edition).

15.3.11 Before You Begin Customizing Security

Before you begin customizing security, you should be familiar with the Oracle Fusion
application architecture that enables customization, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications.” You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin customizing security:

1.

Install JDeveloper and set up your development environment.

For more information, see the "Setting Up Your Development Environment"
chapter in the Oracle Fusion Applications Developer’s Guide.

Create an application workspace.

Before you can implement customizations using JDeveloper, you must create a
workspace that imports the necessary parts of the application you want to
customize. For more information, see Section 10.2.1, "Creating the Customization
Application Workspace."

Launch JDeveloper in the appropriate role.

If you are implementing customizations on existing application artifacts, you must
select the Oracle Fusion Applications Administrator Customization role when
you launch JDeveloper.

If you are creating new custom application artifacts (such as, entity objects, view
objects, and pages), you must select the Oracle Fusion Applications Developer
role when you launch JDeveloper.

Create the database resources in the Oracle Fusion Applications database tables.

The database table exposes the data in your application. You are free to use any
tool you wish to create database objects in the Oracle Fusion Applications schema.
For example, you may choose to work with the Database Navigator in JDeveloper
to model database objects. For information about creating database objects, see the
Designing Databases topics in the JDeveloper online help.

15-26 Extensibility Guide

About Extending and Securing Oracle Fusion Applications

10.

When securing confidential personally identifiable information (PII) create a new
table for the data records in the Oracle Fusion Applications schema, a view
corresponding to the new table, and a VPD policy to associate a PL/SQL filter
function with the view.

The VPD policy filters the view to expose the data for which data security policies
may be created. For information about creating VPD policies, see the "Using
Oracle Virtual Private Database to Control Data Access" chapter in the Oracle
Database Security Guide.

In Oracle Authorization Policy Manager, create custom application roles.

Data security and function security permit granting access privileges to Oracle
Fusion Applications duty roles (also called OPSS application roles). Although
Oracle Fusion Applications ships with standard duty roles, as an Oracle Fusion
security guidelines, you must create new duty roles rather than grant privileges to
predefined duty roles.

For information about creating application roles, see the "Managing Security
Artifacts” chapter in the Oracle Fusion Middleware Oracle Authorization Policy
Manager Administrator’s Guide (Oracle Fusion Applications Edition).

In HCM core application, create job roles, as needed.

Job roles (also called OPSS enterprise roles) provide access to application
resources through the Oracle Fusion Applications role inheritance hierarchy which
specifies the inherited duty roles. Although Oracle Fusion Applications ships with
standard job roles, the IT security manager can create a new job role when one
does already exist that defines the new duties.

The IT security manager uses integrated Oracle Identity Management pages to
create and manage job roles in Oracle Fusion Applications. For information about
creating job roles, see the "Managing Roles" chapter in the Oracle Fusion Middleware
User’s Guide for Oracle Identity Manager.

Determine the business components in your application’s data model project that
you want to create or customize.

You can create or customize ADF entity objects and ADF view objects using
JDeveloper to expose business objects in your application and opt into data
security policies. For information about creating these business components, see
Chapter 11, "Customizing and Extending ADF Application Artifacts."

Determine the application artifacts in your user interface project that you want to
create or customize.

The following application artifacts that you create or customize using JDeveloper
may be secured: ADF bounded task flows and ADF page definition files for
top-level web pages. For information about creating these artifacts, in Chapter 11,
"Customizing and Extending ADF Application Artifacts."

In JDeveloper, run the ADF Security wizard on your application.

When you run the ADF Security wizard it configures your application to enable
authorization checking so that Oracle Platform Security Services (OPSS) running
in Oracle WebLogic Server (and in JDeveloper’s test environment, Integrated
WebLogic Server) will utilize the security policies to authorize access to
application resources by the end user. OPSS determines whether the end user
(represented by the JAAS subject) has the privileges necessary to access the
resources they intend.

Customizing Security for ADF Application Artifacts 15-27

Defining Data Security Policies on Custom Business Objects

For information about running the wizard, see the "Implementing Function
Security" chapter in the Oracle Fusion Applications Developer’s Guide.

15.4 Defining Data Security Policies on Custom Business Objects

In Oracle Authorization Policy Manager, the general process for defining a data
security policy is as follows.

1.
2

Register the custom business object as a database resource.

Define the instance set of data records that you want to associate with specific
securable operations of the business component.

An instance set in Oracle Fusion Data Security is a security artifact called a
condition. The policy identifies conditions from the security repository to
determine the row instance set available to the end user provisioned to the role
with the right to perform the intended business component operation.

In Oracle Authorization Policy Manager, a condition you create defines an
instance set of multiple rows specified either by simple filters (XML defined) or
complex SQL queries whose values can be parameterized. No condition definition
is needed in the case of a single row instance or all the row instances of the
database resource.

Define the list of actions that you want to be able to grant to the role.

Action are database equivalent CRUD operations and correspond to the names of
securable operations of the business object that the end user may invoke. The data
security policy you define will associate one or more actions with an instance set.

If the custom business object is not supported by a data role template, define the
data security policy:

a. Enter a name and start date for the data security policy.

b. Select one or more job roles or duty roles to which the policy grants access.
The roles you select entitle all end users assigned to those roles with access to
the data.

In Oracle Authorization Policy Manager, duty role names that you enter are
identified as OPSS internal roles called application roles. Similarly, job role
names are identified as OPSS external roles called enterprise roles.

c. Specify an instance set on the database resource for which the policy will
control access. This may be a single row, all rows, or multiple rows (specified
by a previously defined named condition).

d. Specify one or more actions to secure on the database resource for the
currently specified instance set.

e. Repeat the steps to grant actions access to additional instance sets for the
current data security policy and roles.

Figure 15-1 illustrates the Actions tab in the Edit Data Security page after
several actions have been selected. Available actions will be limited to the
actions that had been defined for the database resource.

15-28 Extensibility Guide

Defining Data Security Policies on Custom Business Objects

Figure 15-1 Creating a Data Security Policy - Selecting Actions

Edit Data Security: FND_DEMO_DOC_CATEGORIES Save | Submit [Cancel
General Information Conditions Actions Policies)
Actions = View » Format ~ 7 R Freeze £ Detach Wrap e
|Pnlicy ‘Rn\e |Attinns |Cnnditinn
DM3 Global Instance Access for Global Doc Role superAdminRole FMD_DEMO_ATTACHMENT _WIEW LIS, FND_DEMO_ATTACH Al Yalues ~
DMS Elobal Admin Instance Access For Global Doc Role superfdminfole FMD_DEMO_ATTACHMEWT _DEL US, FRL_DEMS_ATTACHN All Values
DMS Arcess Instance FHD_DEMO_ATTACHMENT _YIEW US, FND_DEMO_ATTACHFor a Fnd Doc Categori
DMS Access Instance For Regular User Role requlatlserfale FRD_DEMO_ATTACHMENT _WIEW US, FRD_DEMO_ATTACHFor a Fnd Doc Cakegati
DMS Access Instance 85 For Regular User Rale requlatlserfale FHD_DEMO_ATTACHMENT _WIEW US, FRD_DEMO_ATTACHFor a Fnd Doc Cakegati
DMS Access Instance 52 For Regular User Rale requlatlserfale FHD_DEMO_ATTACHMENT WIEW US, FND_DEMO_ ATTACHFor a Fnd Doc Cakegati
DMS Access static IS For Regular User Role requlatUserRaole FMD_DEMO_ATTACHMENT _WIEW US, FMD_DEMO_ATTACHDMS_STATIC_IMSTAMC
DMS Access Parameter IS5 For Reqular User Rale requlatlserfale FHD_DEMO_ATTACHMENT _WIEW US, FND_DEMO ATTACHDMS_PARAMETERIZED
DMS Access Parameter IS for Super User Role adminserRaole FMD_DEMOC_ATTACHMENT _DEL US, FND_DEMO_ATTACHNY DMS_PARAMETERIZED
DM3 Access Parameter I51 for parami value of 68 for ReguregularlserRole FMD_DEMO_ATTACHMENT _WIEW LS, FND_DEMO_ATTACH DMS_PARAMETERIZED w
hd »

DMS Access Parameter Filter1 for paraml value of 55 for Regular User Role: Details
General Information Roles Rule
* Available Actions Selected Actions
FRD_DEMO_ATTACHMENT _DEL LIS FHD_DEMO_ATTACHMENT _VIEW LS
FRD_DEMO_ATTACHMENT _UPD US FHD_DEMO_ATTACHMENT _VIEWL US
update demo attachment LS read dema attachment US
2
»|
] w

If the custom business object is supported by a data role template, then update the

data role template with the following information:

a.

When the job role grantee of the data security policies generated by the
template are not already defined by the existing data role template, add a new
external role.

The data role template specifies which base roles to combine with which
dimension values for a set of data security policies.

When the custom business object expresses a new stripe of data to apply to the
generated data security policies, modify the SQL code that identifies the
dimension of the template.

Note that the SQL code cannot be modified after running the template.

When the data role grantee of the data security policies generated by the
template are not already defined by the existing data role template, configure
a new data role name.

The data role template constrains the data roles with access privileges for
specific data records with particular actions. The data role provides
provisioned end users with access to a dimensional subset of the data granted
by a data security policy.

Select the database resource that you registered for the custom business object.

Optionally, select one or more data sets that you specified as named
conditions when you created the database resource.

Alternatively, the template can generate policies based on the primary key of
the database resource.

Specify one or more actions to secure on the database resource for the
currently specified instance set.

Customizing Security for ADF Application Artifacts 15-29

Defining Data Security Policies on Custom Business Objects

Before you begin:

If you will be creating or editing Oracle Fusion Data Security security policies in
Oracle Fusion Applications, you will need the correct privileges. When you have the
correct privileges, Oracle Authorization Policy Manager allows you to access the
security data security customization user interface.

The Oracle Fusion security reference implementation defines the job role IT
Security Manager with a duty role hierarchy that includes the Application
Data Security Administration Duty duty role. This duty role is entitled to
manage data security policies (the entitlement is Manage Data Security Policy)
and provides the access necessary to perform the Manage Data Security Policies task
in Oracle Authorization Policy Manager. Please contact your security administrator for
details.

Additionally, collect the following information that you will use to define the data
security policy in Oracle Authorization Policy Manager:

s The primary key of the database table or view that the custom business object
represents.

You specified the primary key of the database table or view when you registered
the database resource.

= The names of the conditions for which you want the policy to control access.

When you registered the database resource, you may have created named
conditions to control access to instance sets comprised of multiple rows (Oracle
Fusion Data Security does not require that you create a named condition when
you want to grant access to instance sets comprised either of a single row or of all
rows of the database resource).

= The names of the actions for which you want to associate with a particular named
condition (or instance set) to control access.

When you registered the database resource, you named actions to identify the
securable operations of the custom business object. Action names must be
identical to the names of the operations the business object supports. For example,
the names of actions corresponding to the supported standard operations are
view, edit, and delete. However, if your data model project defines custom
operations, actions may have names corresponding to operations named, for
example, as view_US_ONLY, edit_US_ONLY, or delete_US_ONLY .

= The names of the custom duty roles for which you want to grant access to the
conditions and actions of the database resource associated with the custom
business object.

As an Oracle Fusion security guideline, predefined duty roles defined by the
reference implementation should not be modified. You must use Oracle
Authorization Policy Manager to create a new duty role rather than grant data
security privileges to predefined duty roles. For information about creating roles,
see the "Managing Security Artifacts" chapter in the Oracle Fusion Middleware
Oracle Authorization Policy Manager Administrator’s Guide (Oracle Fusion Applications
Edition).

Task: Creating Conditions on a Business Object

A business object can define securable instance sets of data records called conditions.
The data security policy you create may identify a specific data record, all data records
of the object, or multiple data records. When you want to secure specific sets of
records, then conditions must be created on the business object. From any Oracle
Fusion Setup application, you select Setup and Maintenance in the Administration

15-30 Extensibility Guide

Enforcing Data Security in the Data Model Project

menu, you then you select Manage Data Security Policies. After you register the
business object as a database resource in the General Information tab, click the
Conditions tab and click New. In the Create Database Resource Condition dialog,
enter the SQL predicate consisting of a query on the table named by the database
resource. For more information, see the "Managing Oracle Fusion Applications Data
Security Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy
Manager Administrator’s Guide (Oracle Fusion Applications Edition).

Task: Granting Access for a Privilege to a Specific Role and Object Condition

A business object can define conditions that query only the set of data records that are
relevant to the members of a particular enterprise role or application role (also called
job roles or duty roles, respectively). You can secure these sets of data records by
making grants on conditions of the business object for a particular application role and
privilege that you define. Condition-level security lets you secure any number of
subsets of the business instances defined by the business object. As an alternative to
standard privileges, you can define a custom privilege to create a security policy for
operations that may be specific to a particular group of end users. Custom privileges
also let you enforce security in the data model project at the level of the ADF view
object and perform authorization checking to secure individual business object
attributes. From any Oracle Fusion Setup application, you select Setup and
Maintenance in the Administration menu, you then select Manage Data Security
Policies. After you register the business object as a database resource (using the
General Information, Conditions, and Actions tabs), click the Policies tab and click
New. You then use the policy workflow at the bottom of the Edit Data Security page
(Roles, Rule, and Action tabs) to create the data security policy. For more information,
see the "Managing Oracle Fusion Applications Data Security Policies" chapter in the
Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator’s Guide
(Oracle Fusion Applications Edition).

Task: Granting Access to a Specific Data Role and Dimension Values

A business object can be mapped to a set of dimension values and data role naming
rules defined by data role templates. A data role for a defined set of data describes the
job an end user does within that defined set of data. A data role inherits job or abstract
roles and grants entitlement to access data within a specific dimension of data based
on data security policies. The dimension expresses stripes of data, such as territorial or
geographic information you use to partition enterprise data. You use data role
templates to generate data roles and the template applies the values of the dimension
and participant data security policies to the group of base roles. From any Oracle
Fusion Setup application, you select Setup and Maintenance in the Administration
menu, you then select Manage Data Role Templates. In the data role template
workflow, you use the tabbed pages (External Role, Dimension, Naming, and
Policies tabs) to create a data role template or revise an existing one. For more
information, see the "Oracle Fusion Applications Data Role Templates" chapter in the
Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide
(Oracle Fusion Applications Edition).

15.5 Enforcing Data Security in the Data Model Project

Data security policies secure data from business objects based on the grants made to
roles. The business object participating in data security defines a database resource (a
database table or view) that has been registered in the Oracle Fusion Applications
FND_OBJECTS table. When you need to expose data records in the extended
application you can use JDeveloper and Oracle ADF to create a data model project
with ADF entity objects based on secured database resources. However, it is not

Customizing Security for ADF Application Artifacts 15-31

Enforcing Data Security in the Data Model Project

sufficient to register the business object in FND_OBJECTS and define data security
policies, additionally, you must opt into those data security policies by enabling
row-level OPSS authorization checking for specific operations on ADF entity objects in
the data model project.

By default, once the database table or view backing the ADF entity object has been
registered as a database resource in the FND_OBJECTS table, Oracle Fusion Data
Security denies end users access to the business object data. Enabling OPSS
authorization checking for the operations (such as view, edit, delete) by setting
metadata on the ADF entity object of the data model project, ensures that only end
users with sufficient privileges are authorized to perform the actions on the database
resources corresponding to the ADF entity object.

JDeveloper saves the security metadata that you define on the data model project into
the MDS repository.

Before you begin:

If the ADF entity object does not appear in the data model project, then you cannot opt
into data security policies that may exist for the business object. You must use
JDeveloper to create the ADF entity object based on a database table or database view
that you intend to register in the Oracle Fusion Data Security schema. For more
information, see Chapter 11, "Customizing and Extending ADF Application Artifacts."

In order for OPSS to enforce security, the database table or view backing the ADF
entity object must be registered as a business object with the FND_OBJECTS table
provisioned by Oracle Fusion Data Security (the registered business object is also
called a database resource of the Oracle Fusion Data Security schema). You will need to
use Oracle Authorization Policy Manager to register the custom business object
corresponding to the ADF entity object data source. For more information, see the
"Managing Oracle Fusion Applications Data Security Policies" chapter in the Oracle
Fusion Middleware Oracle Authorization Policy Manager Administrator’s Guide (Oracle
Fusion Applications Edition).

Enabling security for custom operations in the data model project requires a custom
privilege in the data security policy defined on the business object. You will need to

create the custom privilege in the data security repository. For more information, see
Section 15.4, "Defining Data Security Policies on Custom Business Objects."

Task: Enforcing Row Security for the Standard Operations of a Business Object

The ADF entity object in a data model project defines metadata that enables OPSS
authorization checking against data security policies for view, update, or delete
operations (also called standard operations) of the registered business object. You
enable row-level security for standard operations by selecting the operation on the
ADF entity object that maps to the business object upon which data security policies
exist. Although the ADF entity object maps to all instances of the business object, the
data security policy defines business object conditions to filter the records available to
the end user. Filtering of the business object for standard operations supports only
row-level security. In JDeveloper, you display the ADF entity object in the overview
editor and, in the editor, click the General navigation tab and expand the Security
section, and then you select the list of standard operations for which you want to
enforce authorization checking against data security policies. For more information,
see the "Implementing Oracle Fusion Data Security” chapter in the Oracle Fusion
Applications Developer’s Guide.

15-32 Extensibility Guide

Defining Function Security Policies for the User Interface Project

Task: Enforcing Row Security for a Custom Operation of a Business Object

The ADF entity object in a data model project does not support OPSS authorization
checking against data security policies for custom operations of the registered business
object. You enable row-level security for custom operations by mapping a view criteria
you create in the data model project to a custom privilege in the data security policy
defined on the business object. The view criteria creates a row set filter by naming the
custom privilege and business object. Filtering of the business object by view criteria
works only with custom operations. In JDeveloper, you display the ADF view object in
the overview editor and, in the editor, click the Query navigation tab and expand the
View Criteria section, and then you click the Add button to create a view criteria to
enforce authorization checking for a custom operation. For more information, see the
"Implementing Oracle Fusion Data Security" chapter in the Oracle Fusion Applications
Developer’s Guide.

Task: Enforcing Security for Attributes of a Business Object

The ADF entity object in a data model project does not support authorization checks
against data security policies for columns of the registered business object. You enable
security for attributes by creating a custom OPSS permission to control access to the
column read or update operation, and then, in the Oracle Fusion Data Security
repository, you map the operation to a custom privilege and grant the privilege to
specify the roles that are authorized to view or update the data records. Last, in the
user interface, you enter an ADF Security Expression Language (EL) utility method to
test that custom privilege using an EL expression on the user interface component
displaying the attribute. For more information, see the "Implementing Oracle Fusion
Data Security" chapter in the Oracle Fusion Applications Developer’s Guide.

15.6 Defining Function Security Policies for the User Interface Project

You can use JDeveloper to define function security policies directly in an exported
version of the Oracle Fusion application security repository. The IT security manager
exports the policies that exist in the LDAP-based application security policy store
(residing in a test environment) into an XML file that can be loaded in JDeveloper and
edited using the provided security policy editor.

After editing the XML file, you must consult the IT security manager to merge the
security policies into the test environment.

In JDeveloper, the general process for defining function security policies is as follows:

1. Consult an IT security manager to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

For details about how the security manager exports the application policy store,
see the "Securing Oracle Fusion Applications” chapter in the Oracle Fusion
Applications Administrator’s Guide.

2. Copy the exported jazn-data.xml file into your application workspace.

This is the file that JDeveloper will update when you create function security
policies. In order for JDeveloper to use the file, copy the file to your application
workspace in the <JDevAppHome>/src/META-INF folder.

3. Create an entitlement to group one or more custom resources and their
corresponding actions that together entitle end users to access the resource when
needed to complete a specific duty.

Customizing Security for ADF Application Artifacts 15-33

Defining Function Security Policies for the User Interface Project

In the Oracle Fusion Applications environment, the basic security artifact for
entitlement-based security polices is the entitlement (an entitlement is defined by
an OPSS permission set).

4. Grant the entitlement to a custom duty role that was added to the Oracle Fusion
application policy store.

The entitlement grant to the role specifies that the end user must be a member of
the role to access the resources specified by the entitlement. You should use
custom duty roles and you should not grant entitlements to predefined duty roles.

In JDeveloper, duty role names that you select are identified as OPSS internal roles
called application roles.

5. Enable ADF Security for the application by running the Configure ADF Security
wizard.

The wizard configures files that integrate ADF Security with OPSS on Integrated
WebLogic Server.

After you run the ADF Security wizard, any web page associated with a bounded
ADF task flow will be protected. Therefore before you can run the application and
test security, you must define the security policies that grant end users access.

Before you begin:

Consult the IT security manager to obtain the file-based application policy store in the
form of a jazn-data.xml file. The IT security manager can run an Oracle WebLogic
Script Language (WLSL) script to export the LDAP-based application policy store to
the XML file. For more information about how the security manager exports the
application policy store, see the "Securing Oracle Fusion Applications" chapter in the
Oracle Fusion Applications Administrator’s Guide.

If the custom bounded task flows or top-level web pages do not appear in the user
interface project of the extended application, then you cannot define application
security policies. You must use JDeveloper to create the securable Oracle ADF
application artifacts. For more information, see Chapter 11, "Customizing and
Extending ADF Application Artifacts.”

As an Oracle Fusion security guideline, predefined duty roles defined by the reference
implementation should not be modified. You must use Oracle Authorization Policy
Manager to create a new duty role rather than grant function security privileges to
predefined duty roles. For information about creating duty roles, see the "Managing
Security Artifacts" chapter in the Oracle Fusion Middleware Oracle Authorization Policy
Manager Administrator’s Guide (Oracle Fusion Applications Edition).

Task: Defining Entitlement Grants for a Specific Application Role

An entitlement grant is a set of resource grants (set of OPSS permissions) that will be
required by the end user to complete a task. Each permission in the entitlement grant
names an OPSS permission class, a resource, and an action. Entitlements must be
granted to custom application roles. In JDeveloper, when you want to define the
privileges needed to perform a task, you choose Application > Security > Entitlement
Grants, and then you name the entitlement, add member resources and the actions
that you want to secure. Then you grant the entitlement to a custom application role.
For more information, see the "Implementing Function Security" chapter in the Oracle
Fusion Applications Developer’s Guide.

15-34 Extensibility Guide

Defining Function Security Policies for the User Interface Project

Task: Defining Resource Grants for the Authenticated User Role

A resource grant sets an OPSS permission on a single application resource and grants
that permission to an application role. In JDeveloper, when you want to make the
resource publicly accessible, you choose Application > Security > Resource Grants,
and then you select the Oracle ADF artifact, the built-in OPSS role authenticated-role
(or anonymous-role) as the grantee, and the action that you want to make public. For
more information, see the "Implementing Function Security" chapter in the Oracle
Fusion Applications Developer’s Guide.

Customizing Security for ADF Application Artifacts 15-35

Defining Function Security Policies for the User Interface Project

15-36 Extensibility Guide

16

Translating Custom Text

This chapter describes how to localize the changes that you make to Oracle Fusion
applications using Oracle Composer and CRM Application Composer. It also
describes how to localize your navigator menu customizations and your flexfield and
value set configurations.

This chapter includes the following sections:
= Section 16.1, "About Translating Custom Text"

= Section 16.2, "Translating Resource Bundles from Metadata Services Metadata
Repository”

= Section 16.3, "Translating Oracle Composer and CRM Application Composer
Customizations"

= Section 16.4, "Translating Navigator Menu Customizations"

» Section 16.5, "Translating Flexfield and Value Set Configurations"

16.1 About Translating Custom Text

If your Oracle Fusion Applications are running in different locales, you can localize
your customizations such that end users see the custom text in the language of their
locale. End users set their locale when they log in. Users can also set their locale
through the Personalization > Set Preferences menu item in the Oracle Fusion
Applications global area.

You use XML Localization Interchange File Format (XLIFF) documents stored in the
Metadata Services (MDS) metadata repository to provide locale translations for your
Oracle Composer, CRM Application Composer, and navigator menu changes. For
flexfield and value set configurations, you provide locale translations using the
appropriate maintenance tasks.

For information about XLIFF documents, see the "Manually Defining Resource
Bundles and Locales" section in the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

16.2 Translating Resource Bundles from Metadata Services Metadata

Repository

You can use the WebLogic Server Tool (WLST) exportMetadata command to obtain
XLIFF documents and you can use the WLST importMetadata command to import
XLIFF documents into the metadata repository. For information about the metadata
repository and the exportMetadata and importMetadata commands, see the

Translating Custom Text 16-1

Translating Resource Bundles from Metadata Services Metadata Repository

Managing the Metadata Repository chapter in the Oracle Fusion Middleware
Administrator’s Guide.

Tip: You can also use Oracle Enterprise Manager Fusion Middleware
Control to import and export the XLIFF documents from the metadata
repository. For more information, see the "Transferring Metadata
Using Fusion Middleware Control" section in the Oracle Fusion
Middleware Administrator’s Guide.

For specific information about localizing Oracle Composer and CRM Application
Composer customizations, see Section 16.3, "Translating Oracle Composer and CRM
Application Composer Customizations." For specific information about localizing
navigator menu customizations, see Section 16.4, "Translating Navigator Menu
Customizations."

Task: Define Translations for MDS Metadata Repository
To localize the custom text, complete the following steps.

1. Use the WLST exportMetadata command shown in Example 16-1 to export XLIFF
documents from the metadata repository to a directory of your choice.

Example 16-1 WLST exportMetadata Command

exportMetadata (application="'application', server='gerver',
toLocation="'directory-path',
docs="x1f-classpath', applicationVersion='version')

Set the docs attribute to the class path for the XLIFF file. For example, use
/oracle/apps/resourcebundles/x1iffBundle/FusionAppsOverrideBundle.x1f
for the base file for Oracle Composer and CRM Application composer custom text.
Use /oracle/apps/menu/CustResourceBundle.x1f for the base file for navigator
menu custom text. Use the following format for the names of locale documents:

basename_Ilanguage[_country] .x1f

Replace language with the ISO 639 lowercase language code, such as fr for France.
When applicable, replace country with the ISO 3166 uppercase country code.
Country codes are necessary when one language is used by more than one
country. For example, use CustResourceBundle_zh_CN.x1f for custom translations
for Chinese in the People’s Republic of China.

Because all Oracle Fusion Applications use the same MDS partition, you can use
any Oracle Fusion application as an argument for the application attribute when
you export an XIFF file for text customizations.

2. Synchronize the entries in the XLIFF documents and provide the translated text in
the <target> tags, as shown in Example 16-2.

Example 16-2 Sample Translation

<trans-unit i1d="ACCOUNTING_DISTRIBUTION">
<source>Accounting Distribution</source>
<target>Ventilation comptable</target>
<note>Accounting Distribution</note>
</trans-unit>

3. Use the WLST importMetadata command shown in Example 16-2 to import the
modified documents into the metadata repository.

16-2 Extensibility Guide

Translating Oracle Composer and CRM Application Composer Customizations

Example 16-3 WLST importMetadata Command

importMetadata (application="'application', server='server',
fromLocation="'directory-path',
docs="'x1f-classpath', applicationVersion='version')

Because all Oracle Fusion Applications use the same MDS partition, you can use
any Oracle Fusion application as an argument for the application attribute when
you import an XIFF file for text customizations.

For more information about naming and editing XLIFF files, see the "Manually
Defining Resource Bundles and Locales" section in the Oracle Fusion Middleware Web
User Interface Developer’s Guide for Oracle Application Development Framework.

16.3 Translating Oracle Composer and CRM Application Composer
Customizations

All Oracle Composer and CRM Application Composer customizations are stored in
the customizations XLIFF document for the locale of the session in which you made
the customizations. After you customize a page using Oracle Composer or CRM
Application Composer, you might want to define translations for the custom text in
the base customizations file as well as the customizations files for the other supported
locales. For example, you might want to define French and Chinese translations of
new prompts.

As shown in Figure 16-1, when an end user accesses the customized objects, the
application loads the translated custom text for the locale’s language and, if applicable,
country. If the user’s locale is for a language in a specific country and customized text
is not available for that locale, the application loads the text for the locale’s language. If
no translated text is found, the application loads the text from the base customizations
document.

Translating Custom Text 16-3

Translating Oracle Composer and CRM Application Composer Customizations

Figure 16—-1 Process for Retrieving Translated Text

Translation
e s found in XLIFF
forlanguage Yes 4o iment for local
and country? poas
and country? Yes
Mo Mo
Translation Translation
found in XLIFF No found in base
document for * XLIFF
language? document?
Yes Yas

Display text from
XLIFF document

Note that if no entries exist in the locale and base documents, the text that is displayed
varies. For example, for a field label, the application displays the attribute name. In
other cases, no text is displayed.

To define translations for custom text, follow the steps in Task: Define Translations for
MDS Metadata Repository in Section 16.2, "Translating Resource Bundles from
Metadata Services Metadata Repository." Export the base document
/oracle/apps/resourcebundles/x1iffBundle/FusionAppsOverrideBundle.x1f and
the documents for all the locales for which you want to define translations. The locale
XLIFF documents are named
/oracle/apps/resourcebundles/x1iffBundle/FusionAppsOverrideBundle_
language[_country] .x1f. Replace language with the ISO 639 lowercase language code,
such as fr for France. When applicable, replace country with the ISO 3166 uppercase
country code. Country codes are necessary when one language is used by more than
one country. For example, use
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideBundle_zh_
CN.x1f for custom translations for Chinese in the People’s Republic of China.

Note: The
/oracle/apps/resourcebundles/x1iffBundle/FusionAppsOverrideB
undle.x1f base document is automatically generated the first time
that a string is inserted or customized using Oracle Composer or CRM
Application Composer. Ensure that the bundle exists by inserting or
customizing at least one string.

Copy the new and changed entries from the document for the locale with which you
made the customizations into the base document and into the other locale documents.
Provide the translations and import the modified documents into the metadata
repository.

16-4 Extensibility Guide

Translating Flexfield and Value Set Configurations

16.4 Translating Navigator Menu Customizations

All navigator menu customizations are stored in the
/oracle/apps/menu/CustResourceBundle.x1f base XLIFF document regardless of
your locale setting when you customized the menu. After you customize the navigator
menu, you might want to define translations for your changes in the locales that you
support, including the locale for the session in which you entered the custom text. For
example, you might want to define French and Chinese translations of new menu
items.

The process for retrieving translated text is the same as for Oracle Composer and CRM
Application Composer, as shown in Figure 16-1, with the exception that if no entries
exist in the locale and base documents, no text is displayed.

To create locale translations for your navigator menu changes, follow the steps in Task:
Define Translations for MDS Metadata Repository in Section 16.2, "Translating
Resource Bundles from Metadata Services Metadata Repository." Export the base
document /oracle/apps/menu/CustResourceBundle.x1f and export the documents
for all the locales for which you want to define translations. The locale XLIFF
documents are named /oracle/apps/menu/CustResourceBundle_language[_
country] .x1f. Replace language with the ISO 639 lowercase language code, such as fr
for France. When applicable, replace country with the ISO 3166 uppercase country
code. Country codes are necessary when one language is used by more than one
country. For example, use /oracle/apps/menu/CustResourceBundle_zh CN.x1f for
custom translations for Chinese in the People’s Republic of China.

Copy the new and changed entries from the base document into the locale documents
and provide the translations. Then import the modified locale documents into the
metadata repository.

16.5 Translating Flexfield and Value Set Configurations

When you first configure a flexfield or segment, the translatable text that you enter,
such as prompts and descriptions, is stored as the text for all installed locales. To
translate the text for a particular locale, log in with that locale or use the
Personalization menu in the global area to set the locale. Then update the translatable
text in the flexfield using the appropriate task, as described in Section 5.4.1,
"Configuring Descriptive Flexfields" and Section 5.4.2, "Configuring Extensible
Flexfields." Your modifications only change the translated values for the current
session’s locale.

After you complete the translations, deploy the flexfield as described in Section 5.6,
"Deploying Flexfield Configurations."

You can define translations for Dependent and Independent value sets of type
Character that have a subtype of Translated text. You define the translations by setting
the current session to the locale for which you want to define the translation and using
the Manage Value Sets task as described in Section 5.3, "Creating Custom Value Sets"
to enter the translated values and descriptions for that locale.

For Table value sets for which the underlying table supports multiple languages and
for which the value set’s value column is based on a translated attribute of the
underlying table, you can define translated values using the maintenance task for the
underlying table. For more information about enabling localization for Table value
sets, see Section 5.3, "Creating Custom Value Sets." For information about
multi-language support for tables, see "Using Multi-Language Support Features" in the
Oracle Fusion Applications Developer’s Guide.

Translating Custom Text 16-5

Translating Flexfield and Value Set Configurations

16-6 Extensibility Guide

17

Configuring End User Personalization

This chapter describes how you can make pages in your Oracle Fusion application
personalizable by the end user. Note that mobile applications cannot be personalized
by the end user.

This chapter contains the following sections:
= Section 17.1, "About Configuring End User Personalization"

= Section 17.2, "Allowing Pages to be Personalized by End Users in Oracle
Composer"

= Section 17.3, "Configuring End User Personalization for Components"

17.1 About Configuring End User Personalization

Oracle Fusion applications allow end users to personalize certain pages using the
Personalize menu. End users can set preferences, edit the current page, and reset the
page to the default.

You can control what pages in an application can be personalized, including any new

pages you may create.

Tip: If you created a page using CRM Composer, then that page is
personalizable by default.

Note: For a list of pages that end users can personalize, refer to the
product-specific documentation.

Figure 17-1 shows the Personalize menu available in all Oracle Fusion Applications.

Figure 17-1 Personalization Menu in Oracle Fusion Applications

Accessibility m Help + SignOut SALES_ADMIN O
Set Preferences
[R

Edit Current Page...

Reset to Default Contént and Layout ...

When end users choose the Edit Current Page menu item, Oracle Composer is
launched. From here, they can change certain aspects of the page, such as moving or

Configuring End User Personalization 17-1

About Configuring End User Personalization

deleting components. Figure 17-2 shows the Partner Profile application home page in
Oracle Composer, ready for the end user to personalize.

Figure 17-2 Home Page Ready for Personalization

Editing: Partners Edit Layer: User - CHANNEL_OPERATIONS MANAGER

B Manz

Phe ts0 being edied by CHANMEL_ADHIN, CHANNEL_OPERATIONS_MGR.

ORACLE" Fusion Applications Acosssblty Personslzanon « Admnewaten « Heb < SonDut CHANNIL_OPIRATIONS_MamaGiR O

. 1 o |
Partners
B
Partner Center Edit Data Morphosols Inc: Profile 1) _Smve | Swve and Cese | Gareed |
fetors ©_Yen - | P e B0
7 Partner Informanen
Profie | Basic Information

Pubile rofie
Partrr Mambers
Fartner Acoount Team
Farmer Fragrams
Snapshot
Interactions
Tasks Fl
Contracts -

Data Morphasos Inc primary @@

Leade

Oppertunities

Along with using Oracle Composer to personalize pages, end users can change certain
aspects of components, and then have those changes saved so that they remain each
time the user logs into the application. For example, end users can change the width of
columns in many of the tables in Oracle Fusion applications. However, by default,
when they change the width, that new width size is only saved for the current session.
You can configure that column so that when the user changes the width size, it will
remain at that size whenever the user logs back into the application. For more
information about configuring persistence, see "Chapter 35 Allowing User
Customizations at Runtime" of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

17.1.1 Before You Begin Allowing Pages or Components to be Personalized

Before you configure pages to be personalizable, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will also need to do the following:

s Install JDeveloper and set up your development environment. For more
information, see "Chapter 2 Setting Up Your Development Environment" of the
Oracle Fusion Applications Developer’s Guide.

» Create a customization application workspace. For more information, see
Chapter 10, "Using JDeveloper for Customizations."

= Launch JDeveloper in the Oracle Fusion Applications Administrator
Customization role.

= Select a layer value. When customizing application artifacts in JDeveloper, you
first need to select the layer and layer value to work in. You use the Customization
Context window to make this selection. For more information about customization
layers, see Section 1.2, "Understanding Customization Layers.""

17-2 Extensibility Guide

Configuring End User Personalization for Components

17.2 Allowing Pages to be Personalized by End Users in Oracle

Composer

You use JDeveloper to set certain attributes that allow a page to be personalized.

Task: Enable or Disable Personalization on Existing Standard Pages

Many pages in Oracle Fusion applications allow personalization by default. You can
either disable it or enable it using the isPersonalizableInComposer property on
a page. Set it to true to allow personalizations, set it to false to disallow
personalizations. For instructions, see the "Preparing your Page for End-User
Personalizations" section of the Oracle Fusion Applications Developer’s Guide.

Task: Enable Oracle Composer Personalization on Custom Pages

In order for end users to be able to use Oracle Composer to personalize custom pages,
you'll need to enable your pages to work with Oracle Composer by doing the
following:

s Set the isPersonalizableInComposer property to true.

For instructions, see the "Preparing your Page for End-User Personalizations"
section of the Oracle Fusion Applications Developer’s Guide.

Note: If a page is currently available for personalizations, and you
don’t want it to be, change the value to false.

» Create a corresponding page definition file, if one does not exist.

For instructions, see the "Ensuring Customizable Pages Have Page Definitions"
section of the Oracle Fusion Applications Developer’s Guide.

= Use Oracle WebCenter components that define areas that can be customizable.

For instructions, see the "Making a JSPX Document Editable at Runtime" section of
the Oracle Fusion Applications Developer’s Guide.

17.3 Configuring End User Personalization for Components

Certain attribute values that affect how an ADF Faces component displays can be
persisted to the MDS repository. Application-wide component attribute persistence to
the MDS repository is controlled by configuration in the adf-config.xml file.
However, customizing this file is not allowed, as doing so is not upgrade-safe. Instead,
you can override the application-wide persistence at the page level by setting the
persist and dontPersist attributes for component instances.

For example, by default, table column attribute values are not persisted. But you can
configure a column in a table so that when the user changes the width, reorders
columns, or selects a column, those changes will still be in effect when the user logs
back into the application, by adding those attributes to the value of the persist
attribute on the column component. For more information about what attribute values
can be persisted, see the "Introduction to Allowing User Customizations" section of the
Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Configuring End User Personalization 17-3

Configuring End User Personalization for Components

Note: You cannot change the settings in the adf-config.xml file,
as these changes will be overwritten anytime you apply a patch or an
upgrade. Therefore, you must change the values on the individual
components on a page.

Task: Persist Attribute Values on JSPX Pages

You need to add the attributes you want to persist to the persist attribute on the
component. For more information, see the "Controlling User Customizations in
Individual JSF Pages" section of the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework. You can set this attribute using Oracle
Composer. For more information about setting attributes on components, see
Section 3.3, "Editing Component Properties in Oracle Composer."

17-4 Extensibility Guide

18

Customizing Help

This chapter describes how you can customize or extend user assistance help in your
Oracle Fusion application to match your runtime and design time customizations.

This chapter contains the following sections:

= Section 18.1, "About Customizing Help"

= Section 18.2, "Customizing or Extending Oracle Fusion Applications Help"
= Section 18.3, "Customizing or Adding Bubble Embedded Help"

= Section 18.4, "Customizing or Adding Static Instructions, In-field Notes, and
Terminology Definitions"

18.1 About Customizing Help

When you customize an Oracle Fusion application, you may find you also need to
customize or extend the existing help to match your changes. Oracle Fusion
applications provide two different types of help.

s Oracle Fusion Applications Help

This type of help includes help topics, FAQs, examples, demonstrations and PDF
guides, and is delivered with the Oracle Fusion Applications Help, as shown in
Figure 18-1.

Customizing Help 18-1

About Customizing Help

Figure 18-1 Oracle Fusion Applications Help

ORACLE" Fusion Applications Help Oracle Forums Oracle University My Oracle Support Sign Out Gabrielle Lee O
|
| Home g5 Guides+ UFK
! Search Saved Searches: Expl... Getting Started Expl...
| Search by Common Tasks Oracle Fusion Applications Help A Getting Started
= Search by Business Process e (2] Advanced + Getting Started Explained

+ Keyboard Shortcuts Explained

S m |2 Navigating in Oracle Fusion
Rl 0uonece Processes | _products Aopications
- + Saved Searches: Explained
& How can I get help?

Asset Lifecycle Management
Compensation Management
Customer Service
Enterprise Information

* s 0.
] »

| Management me to Oracle Fusion Applications Hi + What's the difference between the
| « Enterprise Planning and X various searches on the page?
Performance Management N — =
| + Financial Control and Reporting
| 4 Tnfarmatian Tarhnalame i
I © search by Product = How can I get help?
-
« Applications Technology - » Keyboard Shortcuts Explained
« Common = Navigating in Orade Fusion Applications
| » Customer Relationship A
Management =
| Financials
Human Capital Management L T T T

Incentive Compensation
Frocurement i

groncte Automated test

a .
Esapchibyllmclional cabmy Hew help content for financial administrators
« Financial Control and Reporting Oracle Fusion Middleware
+ Functional Setup Manager oracle Fusion Applications’ Unique Design Principles
+ Fusion Setup ATG Bundle # 10 Will be available to Apps on
o @i 02/04/2011
» Offerings

‘Welcome to the ATK Help Portal for Fusion Apps

| e— — - |

Site Map | Legal Notice | Send Feedback to Oracle |

= Embedded static page-level help

This type of help is displayed directly on a page, using attributes of a component.
The help text is included in the application.

Tip: Help text is stored in resource bundles, and so can be translated.
For more information, see Chapter 16, "Translating Custom Text."

Embedded help includes the following:

- Static instruction text: displayed by panel components that normally contain
forms or tables. This instruction guides the user in filling out the form or using
the table, as shown in Figure 18-2.

Figure 18-2 Static Help Text in an Oracle Fusion application

Contacts

Before updating benefits elections, ensure that your family profile
information is current and correct.

View v Format v | o Create 7 Edit Freeze »
Contact

Full Name Relationshi Effective Start Date shares
address

- In-field help note: displayed by input components and guides the user in
entering data into the component. Figure 18-3 shows an in-field note.

18-2 Extensibility Guide

About Customizing Help

Figure 18-3 In-field Note in an Oracle Fusion Application

Example: 11/29/98

Select and Add Beneficiary Organization Enter the earliest date that you plan to designate this
organization or frustee as a benefidary
*Start Date | 3/25/11 E"(_L) 7 Irustee
Registrati
*Benefidary Type | Existing organization IS egistration
E| Trustee Executor
*Name
Trustee Additional
Trustee Name Details

Trustee Description

Save Cancel

Terminology definition: displayed by input components and defines terms
used on the page, as shown in Figure 18—4.

Figure 18-4 Terminology Definition in an Oracle Fusion Application

Select and Add Beneficiary Organization

=

*Start Date | 3/25/11 E"(B w |Trustee -
Relptrati
*Benefidary Type | Existing organization El S =ten
TrusteE[Registration number used to identify the trust h.
*Name El - g
Trustee Additional

Trustee Name Details

Trustee Description

Save Cancel Lhw

Bubble help: displayed when the end user mouses over a button or link
component, as shown in Figure 18-5.
Figure 18-5 Bubble Help in an Oracle Fusion Application

Primary Care Physician Information

Review and Update Rrimary Care Physidans

Your Cost Comp{ View, create, or change primary care physician
designations

Help window: displayed when a user clicks the help icon, as shown in

Figure 18-6. This type of help is generally brief context-sensitive help, and can
also provide links to help files in Oracle Fusion Applications Help.

Figure 18-6 Help Window in an Oracle Fusion Application

rhanna Ranafit Flartinne Contacts |7
Help & Hel fits elections, ens
P L-nd correct.
Contacts

rmat v | = Create

Add all contacts that you plan to designate as dependents or
benefidaries. Contact information is used to determine eligibility
and must be provided before you can designate benefidaries or

dependents for spedific benefit offerings during benefit
selection.

Relationshi

m

splary.

(2) More Help

Beneficiary Organizations

18.1.1 What You Can Do with Help

In Oracle Fusion Applications Help, you can change the content in existing help
windows or you can create new help windows. Within a page of an application, you

Customizing Help 18-3

Customizing or Extending Oracle Fusion Applications Help

can customize or create bubble help, static instructions, in-field notes, terminology
definitions, and help windows. This help text is stored either as a value for an
attribute, or in translatable resource bundles.

18.1.2 Before You Begin Customizing Help

Before you customize help, you should be familiar with the Oracle Fusion application
architecture that enables customization, as described in Chapter 1, "Customizing and
Extending Oracle Fusion Applications.” You should also understand the typical
workflows for working with customizations, as described in Chapter 2,
"Understanding the Customization Development Lifecycle."

You will also need to do the following before you can begin customizing help:

s If you will be adding or customizing Oracle Fusion Applications Help, you will
need the correct privileges. Please contact your security administrator for details.

s Install JDeveloper and set up your development environment. For more
information, see the "Setting Up Your Development Environment" chapter in the
Oracle Fusion Applications Developer’s Guide.

s Create a customization application workspace. For more information, see
Chapter 10, "Using JDeveloper for Customizations."

= Launch JDeveloper in the Oracle Fusion Applications Administrator
Customization role.

= Select a layer value. When customizing application artifacts in JDeveloper, you
first need to select the layer and layer value to work in. You use the Customization
Context window to make this selection. For more information about customization
layers, see Section 1.2, "Understanding Customization Layers.""

18.2 Customizing or Extending Oracle Fusion Applications Help

You can customize existing help files in Oracle Fusion Applications Help, or you can
extend Oracle Fusion Applications Help by adding custom topics.

Once created, custom help files are distinguished by an icon in search results, and they
are displayed at the top of help listings when you navigate.

Task: Customize Oracle Fusion Applications Help Windows

When you have the correct privileges, help windows in Oracle Fusion Applications
Help display a Manage Custom Help link, which allows you to change the content
and specify in which help windows in the application your custom help will appear,
and where it will appear in the help site navigators. For more information, see the
"Define Help Configuration" section in the Oracle Fusion Applications Common
Implementation Guide.

Task: Add Custom Help Files to Oracle Fusion Applications Help

You can add new custom help files to Oracle Fusion Applications Help. Custom help
files will appear like standard help files and can be searched and included in help
windows and navigators. For more information, see the "Define Help Configuration"
section in the Oracle Fusion Applications Common Implementation Guide.

18-4 Extensibility Guide

Customizing or Adding Static Instructions, In-field Notes, and Terminology Definitions

18.3 Customizing or Adding Bubble Embedded Help

For bubble help, you can use CRM Application Composer or Oracle Composer to
customize or create the help text.

The following components use bubble help.
= Butcon

= Button

= Link

n Tab

Task: Customize or Add Bubble Help

The text displayed in bubble help is the value of the component’s shortDesc
attribute. Normally, the value resolves to a key in a resource bundle. If your are
customizing a CRM application, you can use CRM Application Composer to
customize the value of the attribute. For more information, see Section 4.2, "Editing
Objects." For other applications, you use Oracle Composer to customize the attribute.
For more information, see Section 3.3, "Editing Component Properties in Oracle
Composer."

18.4 Customizing or Adding Static Instructions, In-field Notes, and

Terminology Definitions

Oracle Fusion Applications embedded help (aside from bubble help) uses two types of
ADF Faces help: instruction and definition. Instruction-type help displays static text,
either in a specified area on a component (like static instruction help, shown in
Figure 18-2), or in a note window, as in-field notes do, shown in Figure 18-3.
Definition-type help displays a help icon, and is what terminology definition
embedded help uses, as shown in Figure 18-4. When the user mouses over the help
icon, the help text displays in a message box. Ul components display the instruction
and definition help text using the helpTopicId attribute. For more information
about the ADF Faces help framework, see the "Displaying Help for Components"
section of the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle
Application Development Framework.

It is important that for the type of help you want to add or customize, you understand
which component actually displays the help, and which type of ADF Faces help is
being used. Table 18-1 shows the different types of Oracle Fusion Applications
embedded help, the corresponding ADF Faces help, and the components that display
that type of help.

Table 18—-1 Oracle Fusion Applications Help and Corresponding ADF Faces Help and Ul
Components

Oracle Fusion
Application ADF Faces Help

Help Type Type Component
Static instruction instruction Page header
Subheader

Sub-subheader

Customizing Help 18-5

Customizing or Adding Static Instructions, In-field Notes, and Terminology Definitions

Table 18-1 (Cont.) Oracle Fusion Applications Help and Corresponding ADF Faces Help
and Ul Components

Oracle Fusion
Application ADF Faces Help
Help Type Type Component

In-field note instruction Multiselect check box group
Single-select choice list
Multiselect choice list
Single-select list box
Multiselect list box
Text box
Single-select radio groups
Items in true/false radio groups
Items in true/false check box groups
Color picker
Date/time picker
Flexfield
LOV
Spin box
Slider
File upload
Shuttle
Rich Text Editor

Terminology definition Check box prompt
definition Check box group prompt
Single-select choice list
Multiselect choice list
Single-select list box
Multiselect list box

Text box

Radio group prompt
Color picker

Date/time Picker
Flexfield

LOV

Column headers

Spin box

Slider

File upload

Shuttle

Rich Text Editor

You perform the following tasks in JDeveloper in the Oracle Fusion Applications
Administrator Customization role.

18-6 Extensibility Guide

Customizing or Adding Static Instructions, In-field Notes, and Terminology Definitions

Note: You cannot directly customize the existing help text strings. If
you want to change text that currently appears, you need to create a
new text string and associate the component with that new text.

Task: Add Help Strings to Resource Bundle

Add custom help text strings to an existing custom resource bundle or create a new
resource bundle to hold your customized help text (Oracle Fusion applications use
XLIFF files for resource bundles). If you create a new resource file, you must register
that file with the project. For information about creating and using resource bundles
for an Oracle Fusion application, see Section 11.10, "Customizing or Adding Resource
Bundles."

The help text must use the following syntax:

<trans-unit>: Enter the topic ID. This must contain a unique prefix, the topic
name, and the help type, either INSTRUCTION or DEFINITION.

Note: You prefix must unique. You must use this prefix for all your
custom help strings.

For example:

MYCUSTHELP_NEWHELPTOPIC_DEFINITION

In this example, MYCUSTHELPis the prefix used to access the XLIFF file.
NEWHELPTOPIC is the topic name, and DEFINITION is the type of ADF Faces
help.

UI components access the help content based on the topic name. Therefore, if you
use the same topic name for two different types of help (instruction and
definition), then both types of help will be displayed by the UI component.

<source>: Create as a direct child of the <trans-unit> element and enter the
help text.

<target>: Create as a direct child of the <trans-unit> element and leave it
blank. This will hold translated text populated by translation tools.

<note>: Create as a direct child of the <trans-unit> element and enter a
description for the help text.

Example 18-1 shows an example of a resource file that contains two topics.

Example 18-1 XLIFF Resource Bundle

<?xml version="1.0" encoding="UTF-8" ?>
<x1iff version="1.1" xmlns="urn:oasis:names:tc:xl1iff:document:1.1">

<file source-language="en" original="this" datatype="xml">
<body>

<trans-unit 1id="MYCUSTHELP_NEWHELPTOPIC_DEFINITION">
<source>Credit Card Definition</source>
<target/>
<note>This is the credit card definition text.</note>

</trans-unit>

<trans-unit i1d="MYCUSTHELP_NEWTOPIC2_INSTRUCTIONS">
<source>Credit Card Instructions</source>
<target/>
<note>This is the credit card instruction text.</note>

Customizing Help 18-7

Customizing or Adding Static Instructions, In-field Notes, and Terminology Definitions

</trans-unit>
</body>
</file>
</x1iff>

Task: Associate the Component with the Help Strings

In JDeveloper, select the component to display the help. Associate that component
with the <trans-unit> element in the resource bundle, using the component’s
helpTopicID attribute. Ensure that the component supports the type of help (that is,
definition or instruction) defined in the trans-unit id. For instructions, see the "How to
Access Help Content from a Ul Component" section of the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

18-8 Extensibility Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for 11g Release 1 (11.1.2)
	Part I Introduction to Customizing and Extending Oracle Fusion Applications
	1 Customizing and Extending Oracle Fusion Applications
	1.1 Understanding Customizing and Extending Oracle Fusion Applications
	1.2 Understanding Customization Layers
	1.3 Understanding the Business User and Developer Tools
	1.3.1 What You Can Customize and Extend and with Which Tool
	1.3.2 Installing Customization Tools

	2 Understanding the Customization Development Lifecycle
	2.1 Understanding Typical Customization Workflows
	2.1.1 Typical Runtime Workflow
	2.1.2 Typical Design Time Workflow

	2.2 Using the Sandbox Manager
	2.2.1 Sandboxes and Concurrent Usage
	2.2.1.1 Guidelines for One Sandbox, Multiple Users
	2.2.1.2 Guidelines for Multiple Sandboxes, Multiple Users

	2.2.2 Setting Up Sandboxes
	2.2.3 Publishing Sandboxes

	2.3 Using Customization Manager to Manage Runtime Customizations
	2.3.1 Before You Begin Using Customization Manager
	2.3.2 Viewing Customizations Using Customization Manager
	2.3.3 Downloading and Uploading Customization Files
	2.3.4 Promoting a Customization to the Tip

	Part II Business User Customizations and Extensions
	3 Customizing Existing Pages
	3.1 About Customizing Existing Pages
	3.1.1 What You Can Do with Pages at Runtime
	3.1.2 What You Cannot Do with Pages at Runtime
	3.1.3 Before You Begin Customizing Existing Pages

	3.2 Editing a Page in Oracle Composer
	3.3 Editing Component Properties in Oracle Composer
	3.4 Editing the UI Shell Template Used by All Pages
	3.5 Editing Pages in Oracle JDeveloper After Using Oracle Composer

	4 Customizing Objects
	4.1 About Customizing and Extending Your Fusion Application with Objects
	4.1.1 What You Can Customize and Create in the Runtime Environment
	4.1.2 What You Cannot Customize in the Runtime Environment
	4.1.3 Before You Begin Customizing and Extending Your Oracle Fusion Application with Objects

	4.2 Editing Objects
	4.3 Editing a Page in CRM Application Composer
	4.4 Creating Custom Objects
	4.5 Creating and Editing Search Objects
	4.6 Editing Objects and Pages in Oracle JDeveloper After Using CRM Application Composer

	5 Using Flexfields for Custom Attributes
	5.1 About Using Flexfields
	5.1.1 What You Can Do with Flexfields at Runtime
	5.1.2 What You Cannot Do with Flexfields at Runtime
	5.1.3 Before You Begin Using Flexfields to Create Custom Attributes

	5.2 Planning Your Flexfields
	5.3 Creating Custom Value Sets
	5.4 Configuring Flexfields
	5.4.1 Configuring Descriptive Flexfields
	5.4.2 Configuring Extensible Flexfields

	5.5 Validating Flexfield Configurations
	5.6 Deploying Flexfield Configurations
	5.7 Integrating Custom Attributes

	6 Customizing the Navigator Menu
	6.1 About Navigator Menu Configuration
	6.1.1 What You Can Do with the Navigator Menu
	6.1.2 What You Cannot Do with the Navigator Menu
	6.1.3 Before You Begin Customizing the Navigator Menu

	6.2 Adding Groups
	6.3 Adding Items
	6.4 Hiding and Showing Nodes

	7 Customizing and Extending BPMN Processes
	7.1 About Customizing BPMN Processes
	7.1.1 Oracle Tools for Customizing and Extending BPMN Processes
	7.1.2 What You Can Do with BPMN Processes at Runtime
	7.1.2.1 What You Can Customize Using Oracle SOA Composer and Oracle BPM Worklist
	7.1.2.2 What You Can Customize Using Oracle Business Process Composer

	7.1.3 What You Cannot Do with BPMN Processes at Runtime
	7.1.4 Before You Begin Customizing BPMN Processes

	7.2 Creating an Oracle BPM Project
	7.3 Customizing BPMN Processes
	7.4 Publishing Oracle BPM Projects
	7.5 Deploying an Oracle BPM Project
	7.6 Configuring BPMN Processes within an Oracle Fusion Application

	8 Customizing Reports and Analytics
	8.1 About Customizing Reports and Analytics
	8.2 Customizing Reports
	8.2.1 About Customizing Reports
	8.2.1.1 About Tasks Required When Customizing Reports That Are Submitted by the Oracle Enterprise Scheduler
	8.2.1.2 What You Can Customize
	8.2.1.3 Related Report Customization Tasks
	8.2.1.4 Tools for Customizing Reports
	8.2.1.5 Before You Begin Customizing Reports

	8.2.2 Customizing Layouts
	8.2.2.1 Customizing RTF Templates
	8.2.2.1.1 Customizing an RTF Template: Examples

	8.2.2.2 Customizing BI Publisher Templates

	8.2.3 Customizing Data Models
	8.2.3.1 Editing Existing Data Models
	8.2.3.2 Creating a New Data Model

	8.2.4 Creating Custom Reports
	8.2.5 Adding Translations
	8.2.6 Tasks Required to Run Custom Reports with Oracle Enterprise Scheduler Service
	8.2.6.1 Creating a New Oracle Enterprise Scheduler Job Definition
	8.2.6.2 Customizing Parameters for Reports Submitted Through Oracle Enterprise Scheduler

	8.2.7 Securing Custom Reports and Related Components
	8.2.8 Making Reports Available to Users in the Reports and Analytics Pane

	8.3 Customizing Analytics
	8.3.1 About Customizing Analytics
	8.3.1.1 What You Can Customize in Analytics
	8.3.1.2 Before You Begin Customizing Analytics

	8.3.2 Customizing Analytics
	8.3.3 Customizing the Oracle BI Repository (RPD)

	9 Customizing Security for Custom Business Objects
	9.1 About Defining Security Policies
	9.1.1 About the Implementation of Security Policies in CRM Application Composer
	9.1.2 What You Can Do With Security Policies at Runtime
	9.1.3 What You Cannot Do With Security Policies at Runtime
	9.1.4 Before You Begin Customizing Security

	9.2 Defining Security Policies for Custom Business Objects
	9.3 Enabling End User Instance-Level Security Customization
	9.4 Preventing Corrupted Security Policies in CRM Application Composer

	Part III Developer Customizations and Extensions
	10 Using JDeveloper for Customizations
	10.1 About Using JDeveloper for Customization
	10.1.1 About Customizing Oracle ADF Artifacts
	10.1.2 About Using JDeveloper to Customize SOA Composites
	10.1.3 Before You Begin Using JDeveloper to Customize

	10.2 Customizing Oracle ADF Artifacts with JDeveloper
	10.2.1 Creating the Customization Application Workspace
	10.2.2 Customizing the Artifacts
	10.2.3 Determining What ADF Artifacts You Need to Customize
	10.2.4 Importing Customizations into Your Workspace

	10.3 Customizing SOA Composites with JDeveloper
	10.3.1 Before You Begin Using JDeveloper to Customize
	10.3.2 Setting Up the JDeveloper Workspace and Composite Project for MDS Customization
	10.3.3 Customizing the Composite
	10.3.4 Customizing SOA Resource Bundles

	11 Customizing and Extending ADF Application Artifacts
	11.1 About Customizing Oracle ADF Application Artifacts
	11.1.1 Before You Begin Customizing Oracle ADF Application Artifacts

	11.2 Editing Existing Business Components
	11.3 Editing Task Flows
	11.4 Editing Pages
	11.5 Creating Custom Business Components
	11.6 Creating Custom Task Flows
	11.7 Creating Custom Pages
	11.8 Customizing or Creating a Custom Search Object
	11.9 Editing the UI Shell Template
	11.10 Customizing or Adding Resource Bundles
	11.11 Deploying ADF Customizations and Extensions

	12 Customizing and Extending SOA Components
	12.1 About Customizing and Extending SOA Components
	12.1.1 Before You Begin Customizing SOA Composites

	12.2 Customizing SOA Composites
	12.3 Merging Runtime Customizations from a Previously Deployed Revision into a New Revision
	12.4 Extending or Customizing Custom SOA Composites
	12.5 Deploying SOA Composite Customizations and Extensions
	12.6 Extending a New Oracle SOA Suite Service

	13 Customizing and Extending Oracle BPM Project Templates
	13.1 About Customizing Project Templates
	13.1.1 About the Business Catalog
	13.1.2 Before You Begin Using JDeveloper to Customize Project Templates

	13.2 Customizing or Extending a Project Template
	13.3 Publishing Project Templates

	14 Customizing and Extending Oracle Enterprise Scheduler Jobs
	14.1 About Customizing and Extending Oracle Enterprise Scheduler Jobs
	14.1.1 Main Steps for Extending Oracle Enterprise Scheduler Jobs
	14.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs
	14.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs

	14.2 Extending Custom Oracle Enterprise Scheduler Jobs
	14.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job
	14.2.2 Extending a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job
	14.2.3 Extending a Custom Java Oracle Enterprise Scheduler Job
	14.2.4 Submitting Oracle Enterprise Scheduler Jobs

	14.3 Customizing Existing Oracle Enterprise Scheduler Jobs

	15 Customizing Security for ADF Application Artifacts
	15.1 About the Oracle Fusion Security Approach
	15.1.1 How to Proceed With This Chapter
	15.1.2 Related Security Documents

	15.2 About Extending the Oracle Fusion Security Reference Implementation
	15.3 About Extending and Securing Oracle Fusion Applications
	15.3.1 Oracle Fusion Security Customization Guidelines for New Functionality
	15.3.2 Oracle Fusion Security Customization Process Overview
	15.3.3 Oracle Fusion Security Customization Scenarios
	15.3.4 Scenarios Related to Extending and Securing Data Model Components
	15.3.5 Scenarios Related to Extending and Securing User Interface Artifacts
	15.3.6 What You Can Customize in the Data Security Policy Store at Design Time
	15.3.7 What You Can Customize in the Data Model Project at Design Time
	15.3.8 What You Can Customize in the User Interface Project at Design Time
	15.3.9 What You Can Customize in the Application Security Policy Store at Design Time
	15.3.10 What You Cannot Do with Security Policies at Design Time
	15.3.11 Before You Begin Customizing Security

	15.4 Defining Data Security Policies on Custom Business Objects
	15.5 Enforcing Data Security in the Data Model Project
	15.6 Defining Function Security Policies for the User Interface Project

	16 Translating Custom Text
	16.1 About Translating Custom Text
	16.2 Translating Resource Bundles from Metadata Services Metadata Repository
	16.3 Translating Oracle Composer and CRM Application Composer Customizations
	16.4 Translating Navigator Menu Customizations
	16.5 Translating Flexfield and Value Set Configurations

	17 Configuring End User Personalization
	17.1 About Configuring End User Personalization
	17.1.1 Before You Begin Allowing Pages or Components to be Personalized

	17.2 Allowing Pages to be Personalized by End Users in Oracle Composer
	17.3 Configuring End User Personalization for Components

	18 Customizing Help
	18.1 About Customizing Help
	18.1.1 What You Can Do with Help
	18.1.2 Before You Begin Customizing Help

	18.2 Customizing or Extending Oracle Fusion Applications Help
	18.3 Customizing or Adding Bubble Embedded Help
	18.4 Customizing or Adding Static Instructions, In-field Notes, and Terminology Definitions

