

Oracle® Fusion Applications Information
Technology Management, Implement
Applications Developer Guide

11g Release 1 (11.1.2)

Part Number E23515-02

August 2011

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide

Part Number E23515-01

Copyright © 2011, Oracle and its affiliates. All rights reserved.

Author: Chitra Mitra

Contributors: Nihar Barik, Maneesha Damle, Angayarkanni Dhanapal, Patricia Perdomo, Jui Prabhudesai, Vivek
Ranjan, Yunjie Yu

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may create a risk
of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

Contents

Introduction

About Oracle Fusion Functional Setup Manager...1

Extending Oracle Fusion Applications Using Oracle Fusion Functional Setup
Manager ...1

Methodology for Extending Oracle Fusion Applications

Process Overview ...4

Designing New Functionality ..4

Creating Application Design Objects ..6

Developing Interface Programs for New Setup Tasks ...8

Defining Deployment Topology for New Programs ...9

Packaging and Delivering New Objects ..10

Business Processes

Design Considerations ...12

Viewing Lists of Business Processes ...13

Viewing and Editing Business Processes Details ..14

Creating Business Processes ..15

Business Process Details ..15

Deleting Business Processes ..16

Viewing and Editing Detailed Business Processes ..16

Creating Detailed Business Processes ...17

Detailed Business Process Details ...17

Deleting Detailed Business Processes ...19

Viewing and Editing Activities ..19

Creating Activities ...19

Activity Details ..20

Deleting Activities ...22

Viewing Business Process Hierarchy ..22

Offerings, Options, and Features

Design Considerations ...24

Viewing Lists of Offerings or Options ..29

Viewing and Editing Offering Details ...30

Creating Offerings ...31

Offering Details ...31

Deleting Offerings ...36

Exporting Offerings ...37

Importing Offerings ...38

Viewing and Editing Option Details ..38

Creating Options ..39

Option Details ..39

Deleting Options ..42

Viewing Lists of Features ..43

Viewing and Editing Feature Details ...43

Creating Features ...44

Feature Details ...44

Deleting Features ...47

Task Lists and Tasks

Design Considerations ...49

Viewing Lists of Task Lists and Tasks ..57

Viewing and Editing Task List Details ..58

Creating Task Lists ..58

Task List Details ..59

Finding Options and Features Associated with Task Lists ..63

Finding Parents of Task Lists ..63

Deleting Task Lists ..64

Viewing and Editing Task Details ...64

Creating Tasks ...65

Task Details ...65

Defining Predecessor Tasks ...70

Finding Options and Features Associated with Tasks ...71

Finding Parent Task Lists of Tasks ..72

Deleting Tasks ...72

Business Objects

Design Considerations ...73

Viewing Lists of Business Objects ..77

Viewing and Editing Business Objects ..78

Creating Business Objects ...78

Business Object Details ...79

Deleting Business Objects ...82

Finding Related Tasks..82

Task Execution Programs - FSM Requirements

Design Considerations ...84

Developing ADF Task Flows for Setup Tasks ..89

Developing Web Services to Execute Setup Tasks ...101

Web Services for Setup Export and Import
Design Considerations ...107

Developing ADF BC Object-Based Export and Import Services112

Developing Non ADF BC Object-Based Export and Import APIs134

Setting Up Export and Import of Larger Data Volume ...140

Recommended Testing of Setup Export and Import Services148

Integrating with FSM - Java APIs and Web Services

About Integrating with FSM ..153

Offerings, Options, and Features Integration ...155

Task Status Integration ..173

Setup Program Deployment Topology

About Setup Program Deployment Topology ...175

Oracle Fusion Application Pillars – Database Deployment Configurations177

Viewing Lists of Domains ...178

Editing Domains ..179

Creating Domains ..179

Viewing Lists of Enterprise Applications ..180

Viewing and Editing Enterprise Application Details...180

Registering New Enterprise Applications ..181

Enterprise Application Details ...181

Viewing Lists of Modules ..182

Viewing and Editing Module Details ..182

Registering New Modules..182

Module Details ...183

Preface

This Preface introduces the guides, online help, and other information
sources available to help you more effectively use Oracle Fusion
Applications.

Oracle Fusion Applications Help
You can access Oracle Fusion Applications Help for the current page,
section, activity, or task by clicking the help icon. The following figure
depicts the help icon.

With a local installation of help, you can add custom help files to replace
or supplement the provided content. Help content patches are regularly
made available to ensure you have access to the latest information.
Patching does not affect your custom content.

Oracle Fusion Applications Guides
Oracle Fusion Applications guides are a structured collection of the help
topics, examples, and FAQs from the help system packaged for easy
download and offline reference, and sequenced to facilitate learning. You
can access the guides from the Guides menu in the global area at the top
of Oracle Fusion Applications Help pages.

Note

The Guides menu also provides access to the business process models on
which Oracle Fusion Applications is based.

Guides are designed for specific audiences:

 User Guides address the tasks in one or more business processes.
They are intended for people who perform these tasks, and
managers looking for an overview of the business processes. They
are organized by the business process activities and tasks.

 Implementation Guides address the tasks required to set up an
offering, or selected features of an offering. They are intended for
implementers. They are organized to follow the task list sequence

of the offerings, as displayed in the Setup and Maintenance work
area provided by Oracle Fusion Functional Setup Manager.

 Concept Guides explain the key concepts and decisions for a
specific area of functionality. They are intended for decision
makers, such as chief financial officers, financial analysts, and
implementation consultants. They are organized by the logical
flow of features and functions.

 Security Reference Manuals describe the predefined data that is
included in the security reference implementation for one offering.
They are intended for implementers, security administrators, and
auditors. They are organized by role.

To supplement these guides, which cover specific business processes and
offerings, the following guides address common areas:

Guide Intended Audience Purpose

Common User Guide All users Explains tasks performed by most users.

Common Implementation
Guide

Implementers Explains tasks in the Define Common
Applications Configuration task list, which
is included in all offerings.

Information Technology
Management, Implement
Applications Guide

Implementers Explains how to use Oracle Fusion
Functional Setup Manager to plan,
manage, and track your implementation
projects, migrate setup data, and validate
implementations.

Technical Guides System administrators,
application developers, and
technical members of
implementation teams

Explain how to install, patch, administer,
and customize Oracle Fusion Applications.

Other Information Sources

My Oracle Support
Oracle customers have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Use the My Oracle Support Knowledge Browser to find documents for a
product area. You can search for release-specific information, such as
patches, alerts, white papers, and troubleshooting tips. Other services

include health checks, guided lifecycle advice, and direct contact with
industry experts through the My Oracle Support Community.

Oracle Enterprise Repository for Oracle Fusion Applications
Oracle Enterprise Repository for Oracle Fusion Applications provides
visibility into service-oriented architecture assets to help you manage the
lifecycle of your software from planning through implementation, testing,
production, and changes. In Oracle Fusion Applications, you can use the
Oracle Enterprise Repository for Oracle Fusion Applications for:

 Technical information about integrating with other applications,
including services, operations, composites, events, and integration
tables. The classification scheme shows the scenarios in which you
use the assets, and includes diagrams, schematics, and links to
other technical documentation.

 Publishing other technical information such as reusable
components, policies, architecture diagrams, and topology
diagrams.

The Oracle Fusion Applications information is provided as a solution pack
that you can upload to your own deployment of Oracle Enterprise
Repository for Oracle Fusion Applications. You can document and govern
integration interface assets provided by Oracle with other assets in your
environment in a common repository.

Oracle Fusion Applications
For an introduction to Oracle Fusion Applications, see the Oracle Fusion
Applications Concepts Guide.

Oracle JDeveloper and Application Development Framework
For information on Oracle JDeveloper and Application Development
Framework, see the Oracle Fusion Middleware Oracle Fusion Developer's
Guide for Oracle Application Development Framework.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Comments and Suggestions
Your comments are important to us. We encourage you to send us
feedback about Oracle Fusion Applications Help and guides. Please send
your suggestions to oracle_fusion_applications_help_ww@oracle.com.
You can use the Send Feedback to Oracle link in the footer of Oracle
Fusion Applications Help.

Audience
This document is intended for business analysts, implementers, and
application developers who will customize and extend the standard
functionality provided by Oracle Fusion Applications, and who use Oracle
Fusion Functional Setup Manager to configure the extended features.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 1

1
Introduction

About Oracle Fusion Functional Setup Manager
Oracle Fusion Functional Setup Manager (FSM) enables rapid and
efficient planning, implementation and deployment of Oracle Fusion
Applications through self-service administration. Using FSM, you can:

 Learn and analyze implementation requirements of Oracle Fusion
Applications

 Configure Oracle Fusion Applications to match your business
needs

 Get complete visibility to setup requirements through guided,
sequential task lists

 Enter setup data through user interfaces available directly from the
task lists

 Export and import to rapid-start functional setup at different
instances

 Validate setup by reviewing setup data reports

In addition, FSM allows application developers to manage application
design objects, which are the core components of Oracle Fusion
Applications, to add and modify Oracle Fusion Applications functionality.

Extending Oracle Fusion Applications Using Oracle Fusion
Functional Setup Manager

Although Oracle Fusion Applications deliver a complete suite of
enterprise applications that addresses all major business processes,
customers and partners have the ability to extend the applications, if
necessary, by adding new functionality to better satisfy their business
needs.

Adding or modifying Oracle Fusion Applications functions require
managing application design objects, which are the functional building
blocks of Oracle Fusion Applications, through FSM. These objects are:

 Business processes: A collection of related, structured activities or
tasks performed to achieve a particular business goal such as
fulfilling orders, procuring raw material, closing accounting

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 2

period, and so on. To business users, enterprise applications are
means to achieve the end goal of optimizing their business
processes. Oracle Fusion Applications use business processes as a
platform framework and deliver enterprise application functions in
context of business processes.

 Offerings: Groups of application functions representing one or
more typical business processes and subprocesses that are usually
implemented as a unit. Offerings are the core drivers of
provisioning and implementing Oracle Fusion Applications. They
often include optional business processes and alternative business
rules known as options and features respectively. A few examples
of offerings are Financials, Procurement, Order Orchestration,
Sales, Marketing, Workforce Deployment, and so on.

 Tasks: The logical representations of work performed to transact
various business processes and subprocesses.

 Setup tasks: Represent the work necessary to set up initial
configurations of offerings – and in turn, the business processes
and sub processes that those offerings support – to make them
ready for transactions. For example, Manage Reporting Currency,
Assign Balancing Segments to Ledger, and Manage Tax Regime,
are some of the setup tasks that are performed to make the
Financials offering ready for transactions.

Setup tasks are performed in FSM. They are associated with
interface programs such as user interfaces (UI) or web services that
are invoked by FSM when you perform those tasks.

 Setup task lists: Groupings of setup tasks that are often performed
together to set up a specific business process or subprocess in an
offering is called a setup task list.

 Business objects: Logical representation of real-world objects.
They represent the data entered by performing the Oracle Fusion
application tasks. Business objects used by setup tasks are also
required to have web services to facilitate export and import of
corresponding data. Some of the examples of business objects are
Ledgers, Items, Orders, Opportunities, Campaign, and Employees.

Roles with Permission to Extend Oracle Fusion Applications
The following roles that are provided by Oracle Fusion Applications have
appropriate permissions to create and modify application design objects
that are needed to extend Oracle Fusion Applications functionality. People
who are assigned to the roles inherit the privileges.

 Application Implementation Consultant

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 3

 Application Implementation Administrator

 Functional Setup Application Developer Duty

 Functional Setup Application Administrator Duty

Note

For detailed information on functional setup roles and permissions, see
Oracle Fusion Functional Setup Manager: Roles and Permissions and
Oracle Fusion Applications Security Reference Manuals.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 4

2
Methodology for Extending Oracle

Fusion Applications

Process Overview

Designing New Functionality
The typical design process follows a top-down approach and starts with
identifying what new functions you need to add to the existing
applications. The steps are:

 Identify gaps in existing offerings.

 Define all business requirements that should be addressed by the
new functions. These are your basis for determining relevant
business processes and deciding if you need to:

 Create new business processes or subprocesses

 Create new or modify existing offerings

 Evaluate whether any of the business requirements are optionally
performed or support alternative business rules. These are your
basis for defining options and features.

 Identify what initial setups are required for those business
requirements before you can start to transact. These are the basis
for defining setup tasks.

 Analyze what data should be captured for those setups. These will
be your basis for defining the business objects for the setup tasks.

 Determine how that data will be captured. These will be your basis
for defining interface programs (UI or web services) for the setup
tasks.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 5

 Identify in what sequence and in what logical grouping these setup
tasks should be performed. These are the basis for defining setup
task lists.

Once you complete defining the new functions you need, you are ready to
define the application design objects required to support the new
functions.

Tip

Define a new offering if the new functionality represents one or more
typical business processes and subprocesses. For example, you can create
Client Relationship Management for Law Firms as a new offering.

Define a new task if the new functionality represents a typical step in a
business process and subprocess. For example, you can create Configure
Knowledge Repository as a new task representing a step in a business
process such as Manage Service Requests.

Define a new task list if the new functionality is represented by a group of
tasks and the group of tasks will be reused in many different
implementations. For example, Define Security Clearance can be a new
task list comprised of multiple tasks if security clearance will be defined in
many different implementations.

Reusing Existing Design Objects
The existing application design objects, including those delivered by
Oracle, can also be reused if they meet your requirements. For example,
you can:

 Create a new offering that includes new and existing options and
features

 Create a new option or feature that uses new and existing setup
tasks and task lists

 Create a new setup task list that groups new and existing tasks and
task lists

 Create a new task that uses new or existing business objects

Tip

Reuse existing application design objects whenever possible instead of
creating new objects. This will simplify maintenance of the objects.

See also:

Business Processes – Design Considerations

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 6

Offerings, Options, and Features – Design Considerations

Task Lists and Tasks Design Considerations

Business Objects – Design Considerations

Creating Application Design Objects
After design is complete, start creating necessary application design
objects and relationships.

Common Attributes
A set of common attributes are always applicable to all design objects.
Define these attributes based on the following standards.

 Name: The display name of each instance of the object that you
will use to identify it. It is a required attribute for all objects and
must be unique in the same object. Name can include spaces.

 Code: A short code to uniquely identify an instance of an object.
A-Z, 0-9, and underscore (_) are the valid characters that can be
used in defining a code. When a new object is created, the value of
the code is defaulted to the name of the object with spaces replaced
by underscores and converting lowercase characters to uppercase.
You can change this default value, however, once an object is
created (saved in FSM), you cannot modify the code.

 Description: A brief description of the object. If no description is
entered when creating an object, the name of the object is defaulted
as the description. You can change the description of an object
even after the object is created and saved in FSM.

Note

In addition to these common attributes, each object has other object-
specific attributes. See respective chapters on application design objects
for more information on object-specific attributes.

Best Practices
 Reuse objects whenever possible. That is, before creating a new

object, find out if a similar object already exists which meets your
requirements. Follow the instructions for viewing list in chapters
on respective objects to find existing instances of that object.

 Keep names of the objects to less than 40 characters.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 7

 Use meaningful code for better identification when needed.

 Although not required, always provide a meaningful but brief
description of the object.

Recommended Naming Standards
The following naming standards are recommended, although not enforced
by FSM.

 Setup tasks: Start with an action verb followed by the business
entity for which the set up is performed. However, exclude Define,
Manage, and Maintain as the action verb. In a special case when
the setup task is performed to search and manage a list of business
entities, use Manage as the starting action verb. Setup task
examples are:

 Create Marketing Budget

 Transfer Intercompany Transactions

 Manage Sales Note Type
The verb Manage is used because a list of sales note types
is searched and new note types are added.

 Setup task lists: Start with the verb Define followed by the
functionality it represents. Optionally, append the term
Configuration to clarify that the task list is used to configure a
transactional flow rather than perform the actual transactional task.
Examples of setup task lists are:

 Define Sales Stages

 Define Budgetary Controls

 Define Expenses Configuration: The term Configuration is
added to clarify that the actual expenses are not defined
with this task list, but rather the configuration for expenses
is defined.

 Options and features: Use noun phrases for names. Do not begin
the phrase with a verb. Option and feature names should be concise
and appropriately communicate the functionality they represent.
Examples of options and features are:

 Sales Prediction Engine

 Intercompany Transaction

 Sub Ledger Accounting Rules

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 8

Tip

Use a bottom-up approach when creating new objects and defining
relationships. Although FSM allows you to create objects in any order,
creating the dependent associated objects before creating the parent
objects (the objects that will consume the other objects) will save you time
because you will not need to edit the parent objects multiple times.

See also:

Business Processes

Offerings, Options, and Features

Task Lists and Tasks

Business Objects

Developing Interface Programs for New Setup Tasks
If you create new setup tasks, then you must also build the programs that
you will use to enter setup data for those new tasks and to export and
import the setup data from one instance into another. FSM supports
entering data through UI or web services. To export and import setup data,
web services must be developed.

Special Case: Setup Tasks for Deployment Methods
New tasks for setting up deployment methods do not require building new
interface programs. Typically Oracle Fusion Application core objects
(such as profile options, lookups, and flexfields) fall under this category.
Standard UI and web services are used to enter data and export and import
their setup data. See Business Objects as Deployment Methods and Task
Execution Programs for Setting up Deployment Methods for more
information.

Note

If no interface programs are provided for entering or exporting and
importing setup data for any new tasks, except if the tasks are for setting
up deployment methods, then it is implied that data entry and export and
import of those tasks is performed outside of FSM.

See also:

Task Lists and Tasks

Task Execution Programs – FSM Requirements

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 9

Business Objects

Web Service for Setup Export and Import

Warning

JDeveloper and ADF are typically used to develop new programs for new
tasks. You should be knowledgeable in ADF and JDeveloper, and
experienced in developing applications on the Oracle platform. If you are
not familiar with them, consult the appropriate documentation and training
material.

Defining Deployment Topology for New Programs
Every new program (UI or web service) used in performing setup tasks or
setup export and import must have the applications server deployment
topology specified.

Deployment Topology: The deployment topology indicates where the
J2EE components of the setup programs are deployed on the application
servers, such as WebLogic Server (WLS), and consists of:

 Enterprise (J2EE) applications

 Set of modules in each enterprise application where the J2EE
components are deployed and executed

 Application sever domains to which the enterprise applications
belong

You specify the deployment topology by associating the programs with
the appropriate enterprise application modules. After the programs are
actually deployed on the application servers for execution, enterprise
topology definitions need to be updated with the endpoint URLs. When
you perform a setup task or initiate export and import of setup data, FSM
invokes the correct program by using the deployment topology
information.

Reuse or create new: For new setup-related programs, evaluate if an
existing enterprise application module can be reused or a new module is
needed.

 Reusing: If you can reuse an existing enterprise applications
module for a program, then proceed with associating the new
program and the relevant deployment topology information
(J2EE enterprise application and module) with the desired setup
task or business object.

 Creating new: If you need a new enterprise application module
for a program, then you must first define and register the new

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 10

module, enterprise application, and domain information. Once
they are registered, you can associate the program and new
enterprise application module with the desired setup task or
business object.

Note

New tasks are operational for data entry and setup export and import only
after the J2EE components are properly deployed to the appropriate
enterprise application modules, and Topology Manager is updated with the
correct location (endpoint URL).

See also:

Task Lists and Tasks: Task Execution Programs

Task Lists and Tasks: Entering Task Execution Programs

Business Objects: Role of Business Objects in Setup Export-Import

Business Objects: Defining Export and Import Services

Setup Program Deployment Topology

Warning

You are expected to be familiar with J2EE platform, WebLogic Server
(WLS), and Oracle Fusion Applications standards and guidelines for
defining deployment topology of enterprise (J2EE) applications. If you are
not familiar with them, then consult the appropriate documentation and
training material before defining deployment topology configurations.

Packaging and Delivering New Objects
If you plan to use Oracle Fusion Application design objects in the same
instance where they are created, then they do not require packaging and
delivery. Once created, they will automatically become available to use. If,
however, the new application design objects are developed in an instance
other than where they will be used, then you must package and deliver
them using one of the following methods:

 Offering export and import: New offerings can be exported from
the source instance (instance where they are developed) and then
imported at the target instance (instance where they will be used).

 Task list and task export and import: Use export and import of a
configuration package to deliver new task lists and tasks, which do
not belong to an offering, to a different instance.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 11

See also:

Offering Export and Importing Offering

Warning

Typically, application developers do not have the privilege to perform
export and import of configuration packages. If you need to perform
export and import, then either request the Oracle Fusion Applications
security administrators to grant you the appropriate privileges, or work
with someone who has the required privileges.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 12

3
Business Processes

Design Considerations

About Oracle Fusion Business Process Model
The term Business Process Management (BPM) refers to a set of activities
that organizations can perform to either optimize their business processes
or adapt them to new organizational needs. Important elements include
business process modeling and analysis (BPA), orchestration (BPEL), and
business activity monitoring (BAM).

For business users, enterprise applications are not products or
technologies, but rather a means to achieve the end goal of optimizing
business process operations. Oracle Fusion Applications use business
processes as a platform framework to deliver application functionality.
Each Oracle Fusion offering is mapped to one or more business processes.

The business process model used by Oracle Fusion Applications is
composed of four levels.

 Business processes: The highest level, conceptual representation
of major functional groups that describe an enterprise process.
Examples of business processes in Oracle Fusion Applications are
Asset Lifecycle Management, Compensation Management,
Financial Control and Reporting, Order Fulfillment, Procurement,
Sales, and Workforce Deployment.

 Detailed business processes: The next level decomposition of the
business processes to add more visibility to details of a business
process. Examples of detailed business processes for the business
process Order Fulfillment are Analyze Order Fulfillment, Bill
Customers, and Manage Accounts Receivable Balances.

 Activities: Under the conceptual levels of business processes and
detailed business processes, activities represent further
decomposition to more specific business activities. Example of the
activities for the detailed business process Bill Customers are
Create and Process Bill, Create Receivables Transaction, and
Process Billing Adjustments.

 Tasks: The final level of the Oracle Fusion Business Process
Model contains a set of tasks required to perform a given activity.
These tasks drive Oracle Fusion application flows and

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 13

functionality. Examples of tasks for the Create and Process Bill
activity are Calculate Transaction Taxes, Correct Receivables
Transaction Line Exceptions, and Create Receivables Invoice.

Offerings and Business Processes
To make a business process operational you must perform a set of setups,
usually grouped as an offering, to implement the corresponding business
process. An offering may support an entire business process or one or
more detailed business processes. Therefore, when creating a new
offering, you must associate the business processes or detailed business
processes that will be supported by the offering.

See also:

Offerings, Options, and Features

Sharable and Unsharable Activities
A sharable activity is a list of tasks that can be part of more than one
detailed business process. An unsharable activity typically represents a
subgroup of an activity and therefore, can belong to only one parent
activity.

Tip

By definition, activities are sharable. If you have an exception and need to
divide an activity, then create the subactivities as unsharable activities that
are only relevant in the context of the specified parent.

Viewing Lists of Business Processes
1. Go to the Setup and Maintenance work area.

2. Click Manage Business Processes from the Tasks pane to open a page
with the same name. This page shows a list of business processes,
detailed business processes, or activities based on the default search
setting. If no personalization was performed, the default search setting
for this page is to display all business processes.

3. If the page does not show a list of business processes, detailed
business processes, or activities when it opens, then perform one of the
following actions to return the desired list:

• Ad hoc search: In the Search region, select Business
processes, Detailed business processes, or Activities in the

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 14

Search field, enter the appropriate search criteria, and click
Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page you can:

• View and edit business process details

• Create business processes

• Delete business processes

• View and edit detailed business processes

• Create detailed business processes

• Delete detailed business processes

• View and edit activities

• Create activities

• Delete activities

• View business processes hierarchy

See also:

Business Process – Design Considerations

Viewing and Editing Business Processes Details
1. From the list of business processes on the Manage Business Processes

page, perform one of the following actions to open the Edit Business
Process page for the selected business process:

• Click the business process name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Action menu on
the table task bar.

2. View or edit the business process.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered business processes, but cannot edit or
delete them.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 15

See also:

Business Processes – Design Considerations

Viewing Lists of Business Processes

Creating Business Processes
1. From the list of business processes on the Manage Business Processes

page, perform one of the following actions to open the Create Business
Process page:

• Click Create > Business Process on the table task bar.

• Click Create > Business Process from the Action menu on the
table task bar.

4. Enter business process details.

5. Click Save or Save and Close to save changes.

Business Process Details
Enter or modify following fields to create a new business process or
editing an existing business process.

Basic Information
Field Field Type Required Description

Name Text Yes Use a unique name for the business process that you can
easily identify.

Code Text Yes Use a unique code to identify the business process. Once
created, code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the business process.

Note

Review best practices and standards and guidelines for defining the core
fields.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 16

Detailed Business Processes
This region is applicable only in View and Edit mode, not in Create mode.
It shows the detailed business processes that are associated with the given
business process. If collapsed, expand the region.

Column Description

Display Sequence The value in this column determines the relative sequence in which the
associated detailed business processes will appear in the application, and
therefore should correspond to the sequence in which the detailed
business processes are expected to be performed.

Name Name of the detailed business process.

Description Description of the detailed business process.

Changing Detailed Business Process Display Sequence

When a business process is specified as the parent of a detailed business
process, the newly associated detailed business process gets a higher
display sequence number than the existing associations. You will see the
newly associated detailed business process at bottom of the list. You can
change the display sequence number of the associated detailed business
processes as follows.

1. If the Detailed Business Process region is collapsed, expand it.

2. Change the values in the Display Sequence column to the desired
values.

Deleting Business Processes
1. Select the desired row from the list of business processes on the

Manage Business Processes page.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

Viewing and Editing Detailed Business Processes
1. From the list of detailed business processes on the Manage Business

Processes page, perform one of the following actions to open the Edit
Detailed Business Process page:

• Click the detailed business process name.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 17

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Action menu on
the table task bar.

2. View or edit detailed business process details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered detailed business processes, but cannot
edit or delete them.

Creating Detailed Business Processes
1. From the list of detailed business processes on the Manage Business

Processes page, perform one of the following actions to open the
Create Detailed Business Process page.

• Click Create > Detailed Business Process on the table task bar.

• Click Create > Detailed Business Process from the Action
menu on the table task bar.

2. Enter detailed business process details.

3. Click Save or Save and Close to save changes.

Detailed Business Process Details

Basic Information
When creating new detailed business processes or editing an existing
detailed business process, enter or modify following fields. If the Basic
Information region is collapsed, expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the detailed business process that
you can easily identify.

Code Text Yes Use a unique code to identify the detailed business
process. Once created, code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the detailed business process.

Business
Process

List of
values

Yes Search and select the parent business process

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 18

Warning

A detailed business process can belong to only one business process. If a
new business process is selected, then the existing association is replaced
by the new association.

Note

Review best practices and standards and guidelines for defining the core
fields.

Associating Activities
When creating new detailed business processes or editing an existing
detailed business process, associate activities as follows.

1. Expand the Activities region, if it is collapsed.

2. Add or remove activities to detailed business processes associations by
performing the following steps.

Adding Activity Associations

1. To associate one or more activities, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate activities from the popup window.

3. Apply and close the window when complete.

Removing Activity Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 19

Changing Activity Display Sequence

• By default, the newly added activities are added to the bottom
of the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Deleting Detailed Business Processes
1. Select the desired row from the list of detailed business processes on

the Manage Business Processes page.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

Viewing and Editing Activities
1. From the list of activities on the Manage Business Processes page,

perform one of the following actions to open the Activity page:

• Click the activity name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Action menu on
the table task bar.

2. View or edit activity details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered activities, but cannot edit or delete them.

Creating Activities
1. From the list of activities on the Manage Business Processes page,

perform one of the following actions to open the Create Activity page.

• Click Create > Activity on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 20

• Click Create > Activity from the Action menu on the table task
bar.

2. Enter activity details.

3. Click Save or Save and Close to save changes.

Activity Details

Basic Information
When creating new activities or editing an existing activity, enter or
modify following fields. If the Basic Information region is collapsed,
expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the activity which you can easily
identify.

Code Text Yes Use a unique code to identify the activity. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the activity.

Unsharable Checkbox No Select this checkbox if this activity is a sub activity of
another activity and can be used only in the context of
the parent activity.

The DEFAULT setting of this field is UNCHECKED.

Parent Activity List of
Values

Yes
(conditional)

Search and select the name of the parent activity.

Note

Parent activity is applicable only if the activity is designated as
Unsharable. Therefore, the Parent Activity field becomes visible and
required if the Unsharable checkbox is selected.

Also, review best practices and standards and guidelines for defining the
core fields.

Associating Detailed Business Processes
When creating new activities or editing an existing activity, associate
detailed business processes as follows:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 21

1. Expand the Parent Detailed Business Processes region, if it is
collapsed.

2. Add or remove detailed business processes associations by performing
the following steps.

Adding Detailed Business Process Associations

1. To associate one or more detailed business processes, perform one of
the following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate detailed business processes from the
popup window.

3. Apply and close the window when complete.

Removing Detailed Business Process Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Note

This region is visible if the Unsharable checkbox is not selected. Every
unsharable activity, on the other hand, must be associated with one or
more detailed business processes.

Associating Tasks
When creating new activities or editing an existing activity, associate tasks
as follows.

1. Expand the Tasks region, if it is collapsed.

2. Add or remove task associations by performing the following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 22

Adding Task Associations

1. To associate one or more tasks, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate tasks from the popup window.

3. Apply and close the window when complete.

Removing Task Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Deleting Activities
1. Select the desired row from the list of activities on the Manage

Business Processes page.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

Viewing Business Process Hierarchy
You can also view the business processes in a hierarchical view.

1. From the list of business processes, detailed business processes, or
activities on the Manage Business Processes page, select the row that
contains child rows that you want to view.

2. Perform one of the following actions to open the View Hierarchy page.

• Click View Hierarchy on the table task bar.

• Click View Hierarchy from the Action menu on the table task
bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 23

3. The selected row that contains the children you want to view will be
the top node and the name will appear in the page title.

4. All successive children levels will be shown in a hierarchical view.
Expand and collapse as appropriate to see various levels in the
hierarchy.

5. Click Done to close the hierarchical view and return to the Manage
Business Processes page.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 24

4
Offerings, Options, and Features

Design Considerations

About Offerings, Options, and Features
They are various modules of Oracle Fusions Applications representing one
or more business processes and subprocesses.

Offerings: The highest level groupings of applications functions
representing one or more typical business processes and subprocesses that
are usually implemented as a unit. Offerings are the core drivers for
provisioning (installing) and implementing Oracle Fusion Applications.
Examples are Sales and Financials.

Options: Optional subprocesses in an offering. As the name indicates,
options are optionally implemented and are not core to standard
transaction of the offering. For example, Sale Catalog is an option of Sales
offering, and Intercompany Transaction is an option of Financials
offering.

Features

Features are alternative business methods or rules used to fine tune
business processes and subprocesses supported by an offering or an
option. For example:

• Customer Merge is a feature of the Sales offering since some
businesses may choose to merge their customers from all channels
while others may not.

• Similarly, Accounting Representation is a feature of the Oracle Fusion
Accounting Hub offering with choices of Currency, Accounting
Calendar, Chart of Accounts, and Accounting Method, where different
combinations of these choices may apply to different businesses.

Feature Choices: While offerings and options allow only Yes or No
selection, features can be defined with multiple choices. In addition,
features with multiple choices can be defined to allow you to choose only
one of the choices or to allow multiple selections.

Feature Choice Selection Types: One of the following three selection
types is specified for each feature, which then determines how you are
allowed to make selection of the choices of the feature.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 25

• Yes or No: When a feature is defined with this selection type, it gets
two default choices, Yes and No, and no other choices can be defined
for it. This type of feature is presented with a single checkbox. When
you select the checkbox, the Yes option for the feature is set.
Otherwise, the No option is set.

For example, when implementing Oracle Fusion Financials, if
customers are allowed to choose whether they will use subledger, then
a feature called Secondary Ledger can be defined as a Yes or No
selection type. You will be presented with a checkbox, which you can
either select to indicate that you will use Secondary Ledger in Oracle
Fusion Applications, or do not select the checkbox to indicate
otherwise.

• Single: A feature with this selection type will have multiple choices
but you are allowed to select only one of those choices, and therefore,
the choices are presented as radio buttons.

For example, if Oracle Fusion Financials supports two-way, three-way
and four-way matching methods in accounts payable, but only one of
those choices is applicable for an organization, then purchase order
matching methods can be defined as a feature with a selection type of
Single with the choices of two-way, three-way and four-way. You will
see the three choices presented as radio buttons allowing selection of
only one of the three choices.

• Multiple: A feature with this selection type has multiple choices, and
you are allowed to select any and all of those choices. The choices are
presented as check boxes.

For example, if Oracle Fusion Applications support accounting
representation by currency, accounting calendar, chart of accounts, and
accounting methods, and an organization can use any and all of the
four representation types, then accounting representation can be
defined as a feature with a selection type of Multiple. Each of the four
choices will have a checkbox, and any and all checkboxes can be
selected.

Role of Top Task List in Offerings

The top task list of an offering should contain the complete list of setup
tasks needed to implement the offering, including its dependent options
and features. This task list is used to auto-generate the implementation
task list when the offering is selected for implementation. Every offering
must be associated with only one top task list should be organized in the
sequence and groupings that is optimal for implementing the offering.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 26

Note

Get a copy of the Setup Task Lists and Tasks report from the FSM Getting
Started page to find more examples of top task lists. For each offering, the
report shows all task lists and tasks contained in the top task list of the
offering.

Dependent Options and Features

Offerings, options, and features are related to each other in hierarchical
manner, such as:

• Offerings can have dependent options and features

• Options can have dependent options and features

• Features can have dependent features

Assists in Progressive Decision Making: The dependent options and
features are presented to application implementers in the context of the
parent offering, option, and feature. This helps application implementers
progressively decide whether the corresponding application functions are
applicable to their business and make selections about implementation
accordingly.

For example, if you are implementing the Sales offering, you are
presented with the options and features belonging to Sales, such as
whether to use the Sales Catalog option or the Merge Sales Customers
feature. On the other hand, if you are implementing the Financials offering
instead, then Sales Catalog and Merge Sales Customers are irrelevant.

Note

Get a copy of the Associated Features report available from the FSM
Getting Started page to find more examples of hierarchical definitions of
Oracle-delivered offerings, options, and features.

Shared Options
Options can be shared, meaning they can have more than one parent. For
shared options, selections are maintained at the global context and not in
the context of a parent. This means if the option is selected as part of
selection of any of its parents, the option will be considered selected for all
its parents. For example, Absence Management is an option for both
Compensation Management and Workforce Deployment offerings. When
configuring the offerings, if you select Absence Management for
Compensation Management, then it is also selected for Workforce
Deployment offering, and vice versa.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 27

Tip

If you need to make different selections of the same option in the context
of each parent, then define different options instead of sharing the same
option. For example, in the case of Absence Management, define two
options, Absence Management for Compensation and Absence
Management for Workforce Deployment, and associate each of them to
the appropriate parent.

Setup Tasks for Options and Features
Tasks and task lists in the top task list of an offering that are used to set up
the dependent options and features of the offering should be identified and
associated with the appropriate options and features accordingly.

If setup tasks and task lists are associated with options and features, they
become optional when the corresponding offering is implemented. That is,
when an implementer chooses to implement the parent offering, the
implementation task list, which is auto-generated by FSM based on the top
task list, will include the optional setup tasks and task lists only if their
associated options and features are also selected by the implementer. In
the case of features with multiple choices, the selection of the choices will
determine which setup tasks are included or excluded from the
implementation task list.

Example

Consider the following example:

• The Oracle Fusion Accounting Hub offering has a dependent option
called Intercompany Transaction.

• The same offering also has a dependent feature called Accounting
Representation, which has multiple choices of Currency, Accounting
Calendar, Chart of Accounts, and Accounting Methods.

• The top task list of the offering, also called Oracle Fusion Accounting
Hub, contains the following list of tasks along with many others:

• Define And Maintain Intercompany Processing Rules

• Manage Reporting Currencies

• Define Secondary Ledgers

• The option and feature choices are associated as follows:

• The Intercompany Transaction option is associated with Define
and Maintain Intercompany Processing Rules task list.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 28

• The Currency choice of the Accounting Representation feature
is associated with the Manage Reporting Currency task list.

• The Accounting Calendar, Chart of Accounts, and Accounting
Methods choices of the Accounting Representation feature are
associated with the Define Secondary Ledgers task list.

In this case, when the Oracle Fusion Accounting Hub offering is
implemented, the auto-generated implementation task list will include the
setup tasks only if the implementer has selected the corresponding option
or feature choice. These optional tasks will otherwise be excluded, such
as:

• The Define and Maintain Intercompany Processing Rules task list will
be included in the implementation task list if you select the
Intercompany Transaction option.

• Similarly, the Manage Reporting Currency task list will be included if
the Currency choice of the Accounting Representation feature is
selected by you, while the Define Secondary Ledgers task list will be
included if any of the other choices are selected.

Note

Not all options and feature choices require association with setup tasks. If
no setup tasks are associated, then the selection of that option or feature
choice will not have any impact on the auto-generated implementation
task list.

Options and Feature Choices Without Associated Setup Tasks
The selection of option and feature choices can also be used to manipulate
UI and menu components such as expose or hide buttons or menu items,
and so on. Therefore, an option or feature choice could have no impact on
setup tasks but used only to control a UI or menu component. In such
cases, the option and feature choice should still be defined but will not
have any associated setup tasks.

FSM provides public web services which can be used to find the selection
status of option and feature choices and then use them to manipulate other
interface components. See Offering, Option, and Feature Choice
Integration for more information.

Note

An option or feature choice can be used to control both setup tasks and UI
menu components. The two outcomes are not mutually exclusive. That is,
if an option and feature choice is associated with setup tasks, then the

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 29

tasks will become optional for the corresponding offering. On the other
hand, any option and feature choices can be used in controlling interface
components irrespective of whether the same option and feature choice is
also used in defining one or more setup tasks as option for an offering.

Associating Related Documents with Offerings
When documents are associated with offerings, they become available to
you through Getting Started page. These documents are intended to help
you in planning successful implementation of the offerings.

For every new offering a default set of reports are automatically provide,
whose content or format cannot be modified. They are:

• Offering Content Guide: Shows detailed information on the business
processes and subprocesses supported by implementation of the
Offering.

• Setup Task Lists and Tasks: Shows the task lists and tasks that
should be performed to successfully implement the offering.

• Related Features: Shows the list of options and features associated
with the offering.

• Associated Business Objects: Gives visibility to all setup data needed
to implement the Offering by providing a list of all business objects
that are associated with the setup tasks belonging to the offering.

• Related Enterprise Applications: Shows the list of enterprise
applications used by the programs (UI and web services) for the
offering.

In addition to these reports, you may choose to add other custom reports
and related documents that help you during planning and implementation
or when performing the setup tasks.

Viewing Lists of Offerings or Options
1. Go to the Setup and Maintenance work area.

2. Click Manage Offerings and Options from the task pane, which will
display a page with the same name. This page will show a list of
offerings or options based on your default search setting. If no
personalization was performed, the default search setting of this page
is to display all offerings.

3. If the page does not show a list of offerings or options when first
displayed, then perform one of the following actions to return an
appropriate list:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 30

• Ad hoc search: In the Search region, select Offering or Option
in the Search field, enter the appropriate search criteria, and
click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page you can:

• View and edit offering

• Create offering

• Delete offering

• Export offering

• Import offering

• View and edit option

• Create option

• Delete option

See also:

Offering, Options, and Features – Design Considerations

Viewing and Editing Offering Details
Note

You should review design considerations to understand various design
implications before you start creating or editing offering, option, and
feature details, especially if you are doing so for the first time.

1. From the list of offerings on the Manage Offerings and Options page,
perform one of the following actions to open the Edit Offering page:

• Click the offering name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit offering details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered offerings, but cannot edit or delete them.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 31

See also:

Offering, Options, and Features – Design Considerations

Viewing Lists of Offerings and Options

Creating Offerings
1. From the list of offerings on the Manage Offerings and Options page,

perform one of the following actions to open the Create Offering page:

• Click Create Offering on the table task bar.

• Click Create Offering from the Actions menu on the table task
bar.

2. Enter offering details.

3. Click Save or Save and Close to save changes.

Offering Details
For a typical offering, you will define basic information, related business
processes, associated options, associated features, and associated
documents.

Missing Associations
Although associations are not required to define an offering, each affects
how you experience the offering usage.

• If business processes are not associated, then the Offering Content
Guide available through Getting Started page will be empty.

• If options and features are not associated, then the offering will not
allow you to choose optional feature functionality.

• If documents are not associated, then the list of related documents for
the offering available from the Getting Started page will be empty.
These documents help you plan offering implementation.

Entering Basic Information
When creating a new offering or editing an existing offering, enter or
modify the following fields. If the Basic Information region is collapsed,
expand it first.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 32

Field Field Type Required Description

Name Text Yes Use a unique name for the offering which you can easily
identify.

Code Text Yes Use a unique code to identify the offering. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the offering.

Offering Icon Text Yes Browse or enter fully qualified location of an image file.
Supported formats are: GIF, PNG, JPEG, and TIFF.

This image will be used as the icon representing the
offering on Getting Started page. For best result, see Tip.

Top Task List List of
Values

Yes Select the task list which represents the complete list of
tasks needed to implement the entire functionality of the
offering, including its dependent options and features.

Tip

Use an offering icon that is 64x64 in size. If the icon is larger than the
recommended size, it will be truncated when displayed on the Getting
Started page. On the other hand, if the icon is smaller than the
recommended size then, it will be expanded to the recommended size
using white as the background color.

Note

Also review best practices and standards and guidelines for defining these
core fields.

Associating Business Processes and Detailed Business
Processes

When creating a new offering or editing an existing offering, associate
business processes and detailed business processes as follows.

1. Expand the Business Processes region on the Enter Basic Information
page of an offering, if it is collapsed.

2. Add or remove offering to business processes and detailed business
processes associations by performing the following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 33

Adding Business Process and Detailed Business Process
Associations

1. To associate one or more business processes and detailed business
processes, perform one of the following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate business processes and detailed business
processes from the popup window.

3. Apply and close the window when complete.

Removing Business Process and Detailed Business Process
Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Associating Dependent Options
When creating a new offering or editing an existing offering, associate
dependent options as follows.

1. Click Associate Options, the second step of the guided process for
creating and editing an offering. This will display a page with the same
name.

2. Add or remove offering to option associations by performing the
following steps.

Adding Option Associations

1. To associate one or more options, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate options from the popup window.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 34

3. Apply and close the window when complete.

Removing Option Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Option Display Sequence

• By default, the newly added options are added to the bottom of
the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Associating Dependent Features
When creating a new offering or editing an existing offering, associate
dependent features as follows.

1. Click Associate Features, the third step of the guided process for
creating and editing an offering. This will display a page with the same
name.

2. Add or remove offering to feature associations by performing the
following steps.

Adding Feature Associations

1. To associate one or more features, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate features from the popup window.

3. Apply and close the window when complete.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 35

Removing Feature Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Feature Display Sequence

• By default, the newly added features are added to the bottom of
the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Associating Documents
When creating a new offering or editing an existing offering, associate
documents as follows.

1. Click Associate Documents, the fourth step of the guided process for
creating and editing an offering. This will display a page with the same
name.

2. Add or remove offering to document associations by performing the
following steps.

Adding Document Associations

1. To associate one or more documents, perform one of the following two
actions:

• Click Add Row on the table task bar.

• Click Add Row from the Action menu on the table task bar.

2. A new editable row will open up in the table. Enter data for the new
row.

Column Column

Type

Required Description

Type List of
Values

Yes Specifies what type of document is associated. The
documents could be any one of the Oracle-delivered
standard reports for Offerings or URL for one of your

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 36

own document.

Title Text Yes Use a brief descriptive title for the document, which is
how it will appear in through Getting Started page. The
title of the standard reports cannot be modified.

URL Text No Enter URL of the document. This field is enabled only if
you have selected the document type as URL.

Parameters Test No If the document accepts a parameter to generate dynamic
content, then specify the parameters in this field. When
passing multiple parameters, use & as delimiter, such as
param1=’X’¶m2=’Y’).

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the Offering. As with the title, the description
of the standard reports cannot be modified.

Display Seq Number Yes Specify the sequencing in which the related documents
will appear in the Getting Started page.

Removing Document Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Deleting Offerings
1. From the list of offerings on the Manage Offerings and Options page,

select the desired row.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

See also:

Viewing Lists of Offerings and Options

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 37

Exporting Offerings
You can export an offering to transfer it from one instance to another, or
to save a version of it. When exported, the current version of the offering
details, which includes the entire top task list, associated business
processes and detailed business processes, dependent options and features,
and related documents, are exported to a ZIP file. However, related setup
data is NOT exported. Download the export ZIP file and use it to import
the offering to another instance.

1. Select an offering from the list of offerings on the Manage Offerings
and Options page

2. Perform one of the following actions:

• Click Export on the table task bar.

• Click Export from the Action menu on the table task bar.

3. When the Offering export completes successfully, a date appears as a
link in the Download Published Version column, indicating when the
export file was published. You may have to refresh the page to see the
latest version in the column.

4. Download or delete the export file.

Downloading Export Files

To download an export file:

1. Review the Download Published Version column of the desired
offering and determine if the displayed version is the one you want.
Refresh the page if necessary to see the latest published version.

2. Click the date link in the column to download the export file.

Deleting Export Files

To delete a published version of an export file, select the desired offering
and click Delete Published Version from the Action menu on the table task
bar.

Note

You cannot export Oracle-delivered offerings.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 38

Importing Offerings
As an alternative to creating an offering from the start, you can import an
offering created at another instance. After the import completes
successfully, the imported offering will behave the same as an offering
that was created at the target instance.

1. Go to the Setup and Maintenance work area.

2. Click Manage Offerings and Options from the task pane, which will
display a page with the same name.

3. Perform one of the following actions:

• Click Import on the table task bar.

• Click Import from the Action menu on the table task bar.

4. In the popup window, browse or enter fully qualified location of the
ZIP file that you want to import. This is the file that you downloaded
after exporting an offering.

5. Click Import.

Note

The imported offering version will replace an offering with the same code
if one exists at the target instance.

Viewing and Editing Option Details
1. From the list of options on the Manage Offerings and Options page,

perform one of the following actions to open the Edit Option page:

• Click the option name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit option details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered options, but cannot edit or delete them.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 39

Creating Options
1. From the list of options on the Manage Offerings and Options page,

perform one of the following actions to open the Create Option page:

• Click Create Option on the table task bar.

• Click Create Option from the Actions menu on the table task
bar.

2. Enter option details.

3. Click Save or Save and Close to save changes.

Option Details
At a minimum you will define basic information and associated setup
tasks for every option. You may also define dependent options and
dependent features.

Entering Basic Information
When creating a new option or editing an existing option, enter or modify
following fields. If the Basic Information region is collapsed, expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the option which you can easily
identify.

Code Text Yes Use a unique code to identify the option. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the option.

Note

Review best practices, standards, and guidelines for defining these core
fields.

Associating Setup Tasks and Task Lists
When creating a new option or editing an existing option, associate setup
task and task lists as follows.

1. Click Associate Setup Tasks, the second step of the guided process for
creating and editing an option. This will display a page with the same
name.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 40

2. Add or remove setup task and task list associations by performing the
following steps.

Adding Setup Task and Task List Associations

1. To associate one or more setup tasks and task lists, perform one of the
following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate tasks and task lists from the popup
window.

3. Apply and close the window when complete.

Removing Setup Task and Task List Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Note

Not all options require an association with a setup task. See Option and
Feature Choices Without Associated Setup Tasks for more information.

Associating Dependent Options
When creating a new option or editing an existing option, associate
dependent options as follows.

1. Click Associate Options, the third step of the guided process for
creating and editing an option. This will display a page with the same
name.

2. Add or remove option to option associations by performing the
following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 41

Adding Option Associations

1. To associate one or more options, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate options from the popup window.

3. Apply and close the window when complete.

Removing Option Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Option Display Sequence

• By default, the newly added options are added to the bottom of
the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Associating Dependent Features
When creating a new option or editing an existing option, associate
dependent features as follows.

1. Click Associate Features, the fourth step of the guided process for
creating and editing an option. This will display a page with the same
name.

2. Add or remove option to feature associations by performing the
following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 42

Adding Feature Associations

1. To associate one or more features, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate features from the popup window.

3. Apply and close the window when complete.

Removing Feature Associations

To remove an existing association:

1. Select appropriate rows in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Feature Display Sequence

• By default, the newly added features are added to the bottom of
the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Deleting Options
1. From the list of options on the Manage Offerings and Options page,

select the desired row.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

See also:

Viewing Lists of Offerings and Options

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 43

Viewing Lists of Features
1. Go to the Setup and Maintenance work area.

2. Click Manage Features from the task pane, which will display a page
with the same name. This page will show a list of features based on
your default search setting. If no personalization was performed, the
default search setting of this page is to display all features.

3. Modify search results if desired.

• Ad hoc search: In the Search region, enter the appropriate
search criteria and click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page you can:

• View and edit feature

• Create feature

• Delete feature

Viewing and Editing Feature Details
1. From the list of features on the Manage Features page, perform one of

the following actions to open the Edit Feature page:

• Click the feature name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit feature details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered features, but cannot edit or delete them.

See also:

Offering, Options, and Features – Design Considerations

Viewing Lists of Features

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 44

Creating Features
1. From the list of features on the Manage Features page, perform one of

the following actions to open the Create Feature page:

• Click Create on the table task bar.

• Click Create from the Actions menu on the table task bar.

2. Enter offering details.

3. Click Save or Save and Close to save changes.

Feature Details
At minimum, primary details (basic information and feature choices) and
associated setup tasks should be defined for every feature. See Setup
Tasks for Options and Features for an exception case when setup tasks
may not be associated with a feature.

You can also define dependent features.

Entering Primary Details
When creating a new feature or editing an existing feature, enter or modify
the primary details of the feature as follows. If the Basic Information
region is collapsed, expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the feature that you can easily
identify.

Code Text Yes Use a unique code to identify the feature. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the feature.

Selection Type List of
Values

Yes This field indicates what type of selection you will be
able to make for this feature.

Note

Review best practices, standards, and guidelines for defining the core
fields, and About Offerings, Options, and Features for more details on the
Selection Type field.

Define the choices to be presented for this feature in the Feature Choices
region.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 45

Column Column

Type

Required Description

Display
Sequence

Text Yes Enter sequence numbers for the feature choices in which
they will be presented to you. This column in not
editable if the selection type of the feature is set to Yes
or No, in which case Yes is always listed with display
sequence as 1 and No is listed as 2.

Name Text Yes Use a brief, unique name that can be easily recognized to
understand the choice. This name appears in the
Configure Offering > Select Feature Choices page.

Code Text Yes Use a unique code to identify the feature choice. Once
created, the code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description.

Default Checkbox
or Radio
Button

No Specify which of the feature choices will be selected by
default.

For Yes or No and Single selection types, you can set
only one choice as the default.

For the Multiple selection type, you can set more than
one choice as default.

Associating Setup Tasks
When creating a new feature or editing an existing feature, associate setup
task and task lists as follows.

1. Click Associate Setup Tasks, the second step of the guided process for
creating and editing a feature. This will display a page with the same
name, which will show two tables in a master-details format.

• Feature Choices: This is the master table. The defined feature
choices are in the order of display sequence.

• <Choice Name>: Associated Setup Tasks: This is the detail
table that shows the task and task lists that are associated with
selected feature choice in the master table.

2. Select a feature choice in the master table.

• The detail table shows tasks and task lists that are associated
with the feature choice selected in the master table.

3. Add or remove feature choices to setup task and task list associations
by performing the following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 46

Adding Setup Task and Task List Associations

1. To associate one or more setup tasks and task lists, perform one of the
following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate tasks and task lists from the popup
window.

3. Apply and close the window when complete.

Removing Setup Task and Task List Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Note

Not all features require an association with a setup task. See Option and
Feature Choices Without Associated Setup Tasks for more information.

See also:

Setup Tasks for Options and Features – Design Considerations

Associating Dependent Features
Dependent features of a parent feature are defined through the feature
choices of the parent. When creating a new feature or editing an existing
feature, associate dependent features as follows.

1. Click Associate Dependent Features, the third step of the guided
process for creating and editing a feature. This will display a page with
the same name, which will show two tables in a master-details format.

• Feature Choices: This is the master table. The defined feature
choices are in the order of display sequence.

• <Choice Name>: Dependent Features: This is the detail table
that shows the features that are associated with selected feature
choice in the master table.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 47

2. Select a feature choice in the master table.

• The detail table shows dependent features that are associated
with the feature choice selected in the master table.

3. Add or remove feature to feature associations by performing the
following steps.

Adding Feature Associations

1. To associate one or more features, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate features from the popup window.

3. Apply and close the window when complete.

Removing Feature Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Feature Display Sequence

• By default, the newly added features are added to the bottom of
the table with sequential display sequence numbers that are
higher than the existing highest number.

• To change the display sequence numbers, click the Display
Sequence column in the desired row and edit the existing
value.

Deleting Features
1. From the list of features on the Manage Features page, select the

desired row.

2. Perform one of the following actions:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 48

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 49

5
Task Lists and Tasks

Design Considerations

About Tasks
A task is the logical representation of work performed for business
processes and subprocesses supported by Oracle Fusion Applications. In
FSM, setup tasks represent the lowest units for work that needs to be
performed when implementing an Oracle Fusion offering. Tasks are often
related to entering offering-specific setup data, but may be other actions
needed to make the offering ready for a transaction. An example of a task
is installing a secured printer to print sales orders when implementing the
Sales offering.

About Task Lists
A setup task list is a logical grouping of setup tasks that are related to the
same business processes or subprocesses, and are often performed
together. Task lists are hierarchical, which means that a parent task list can
include children that are either tasks or other task lists.

For example, Define Sales Quotas is a setup task list that supports setting
up sales quotas when implementing the Sales offering. This task list
includes the following task lists and tasks as children:

• Quota Management Lookup task list

• Manage Sales Quota Spread Formulas task

• Manage Sales Territory Quota Formulas task

• Manage Sales Quota Plan task

• Manage Sales Quota Seasonality Groups task

Note

You can add Oracle-delivered task lists and Tasks to your custom-created
task lists; however, you cannot modify Oracle-delivered task lists.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 50

Tip

Consider defining a task list when a group of tasks are expected to be
performed together to complete implementation of any specific
applications functionality. The task lists will not only give better visibility
to full implementation requirements, but also help to easily reuse the same
set of tasks in many implementations.

Task Execution Programs
When you create a setup task, you typically associate a program to the task
that is executed when you perform the task. This program can be either a
UI or a web service.

User Interfaces (UI)

In the most common cases, setup tasks are associated with UIs, which you
use to enter setup data. In Oracle Fusion, typically ADF task flows are
used as UI programs.

Best Practices

For optimal user experience, setup task UIs should follow certain
standards and guidelines. These are:

• If the UIs are invoked from FSM, then the control should
return to FSM when you close the page.

• The UIs should be able to accept setup scope and task
parameters when applicable.

Special Case: Setting Up Deployment Methods

In FSM, certain business objects can be specified as deployment methods.
Tasks that are used to enter setup data for deployment methods do not
require developing and associating any programs with them. Instead, in
each task using the deployment method, you must specify the appropriate
value for the qualifying attribute of the deployment method. A common
UI and a common export and import service are used by all tasks using the
same deployment method for entering and exporting and importing
corresponding setup data. See Business Objects as Deployment Methods
for more information.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 51

Application Core Objects

Oracle-delivered deployment methods are typically the applications core
objects using Applications Core Setup UI. They are:

• Attachment category

• Attachment entity

• Common lookup

• Descriptive flexfield

• Document sequence

• Document sequence category

• Extensible flexfield

• Flexfield value set

• Key flexfield

• Message

• Profile category

• Profile option

• Profile value

• Set-enabled lookup

• Standard lookup

• Tree

• Tree label

• Tree structure

Warning

Explanation of various types of applications core setups, and standards
and guidelines for defining those setup tasks, are beyond the scope of this
document. If you are not familiar with them, consult the Oracle® Fusion
Applications Developer's Guide and related training material.

Web Services

Setup tasks can also be executed using web services. When you initiate
such tasks from FSM, the associated web services are invoked and the
data entry is processed in the background, without direct user interaction.
The web services can run a program immediately or may submit a
background process.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 52

Request ID: If the web service is submitting a background process, it
should return the Request Process ID of the background process.

Task Completion Status: The web service must return the task
completion status once the Task execution is finished.

Tasks Without Execution Programs (External Tasks)
If no program (UI or web service) is provided for a setup task and it is not
used for setting up any deployment method, then it is implied that those
are external tasks, meaning they will be performed outside of FSM.
Although you cannot perform the tasks directly from FSM, all other
functionality of setup tasks, such as assigning users and tracking progress
during implementation, are available for those tasks in FSM.

Business Object Associations with Setup Tasks
The business objects associated with a setup task represent the setup data
corresponding to the task. A setup task may be associated with multiple
business objects. In FSM, these associations are specifically used during
export and import to identify the setup data that will be migrated.

See also:

Role of Business Objects in Setup Export and Import

Required Tasks in a Task List
A required task in a task list indicates that the task is required to
successfully complete the implementation of the task list. Required tasks
can be defined only in the context of a task list. That is, if the same task
belongs to more than one task list, it can be required in one task list but
not in the others.

When a task is marked as required for a task list, an asterisk (*) appears in
front of the task name when viewing the same task list.

Note

The Required flag is only an indicator of the importance of the task in the
task list. FSM cannot enforce that the task is actually performed.

Task List Scope
If the tasks in a setup task list need to be performed iteratively to enter
context-sensitive setup data, then a scope may be defined for the task list.
As a result, you will have the ability to choose a context, a scope value,

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 53

before performing the tasks in the task list. When you perform the tasks in
the task list, FSM will pass the selected scope value to the tasks.

For example, Define Accounting Configuration is a setup task list with
multiple tasks used for such setups as specifying primary ledger options,
assigning balancing segments, and managing reporting currencies for a
primary ledger. However, setups of primary ledger options, balancing
segments, or reporting currencies are different for different primary
ledgers. Therefore, primary ledger is used as the scope for the Define
Accounting Configuration task list. This allows you to first select a
primary ledger and then enter setup data for the tasks in the task list
specific to the selected primary ledger.

In technical terms, a scope is a business object, which is part of the unique
identifier of setup data related to the tasks in a task list. Each instance of
the business object is known as scope value in FSM. For example, if legal
entity is the scope, then each of its values, such as InFusion USA,
InFusion Canada, InFusion UK, and InFusion China, are scope values.

Exception Case: Predefined Scope Values

If there is a business need to pass certain predefined business object values
to the tasks in a task list, similar to what scope enabled task list allows you
to achieve by selecting scope values, but not to allow you to select the
scope values, then you can use a special task parameter to specify
predefined scope values at design time. When you use this functionality,
you cannot select any scope values when performing any of the tasks in
the given task list. Only the predefined values are passed by FSM.

Search and Manage Tasks

When you specify a business object as the scope of a task list, you must
also specify a Search task, which is a task that allows you to search and
select the scope values, and a Manage task, which is a task that allows you
to create a scope value, for the business object. See Significance of Search
and Manage Tasks for more information.

Note

When you create a new instance of scope using Manage task, you first
create the value and return to FSM. Then you use Search task to search
and select the newly created value. Also, you must have the appropriate
permissions to create scope instances. Otherwise, you will not see the
option to create new scope instances.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 54

Task List Scope Dependencies

In some cases, a scope of a task list may have dependency on a scope
defined on one of its parent task lists. In such cases, the dependency must
be explicit by defining a parent-child relationship between the respective
business objects. FSM will not implicitly derive the dependencies based
on task list hierarchy. See Business Object Dependencies for more
information.

Task List Scope and Setup Data Export

All task list scopes are always available as filters for setup data during
setup export (setup data export scope). The scope values selected when
you perform the tasks in the task list are available as filter values that can
be used to filter exported setup data. However, setup data export scopes
(filters) can also be defined without defining task list scopes. See Business
Objects as Scopes for more information. Also see Implementing Export
API – Identifying Filter Criteria for more information on how setup export
and import web services should be programmed to use scope values for
setup data filter during export.

Note

The predefined scope values (the exception case), which are defined as
task list parameters, are not available as filters during setup data export.

See also:

Business Objects

Task Execution Programs – Scope Selection Enabled

Web Services for Setup Export and Import – Identifying Filter Criteria

Task Parameters
FSM supports defining parameters for tasks at two levels.

Parameter for a Task

In this case, the parameters are defined for a specific task and whenever
the task is performed, irrespective of the task list that is used, FSM will
pass the defined parameters to the corresponding task program.

In addition to the parameters you define, the following predefined
parameters are always available.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 55

• Task Name: FSM passes the task name as a parameter by default.
You do not need to explicitly define it. The parameter is called
pageTitle.

• ID of a Task in an Implementation Project: A task can belong in
(meaning it can be an item of) many task lists in many implementation
projects. FSM passes the ID that uniquely identifies a specific instance
of a task in a specific task list through a parameter called
iPTLItemKey. This parameter is passed by default. There is no need to
specifically define it.

• ID of Parent Task List in an Implementation Project: FSM also
passes the ID of the parent task list in an implementation project by
default. The parameter is called iPTLParentItemKey.

• Feature Selection: Although referred generically as a feature, FSM
supports passing current selection of offerings, options, and features as
parameters. You can pass the current setting of the features to setup
task programs by using the parameter called
FS_FEATURE_SHORT_NAME.

• Parent Feature Selection: FSM also supports the case of deriving the
selection of the dependent features by identifying the parent feature. In
this case, a combination of two parameters called
FS_PARENT_FEATURE and FS_FEATURE_LEVEL must be
defined. FS_FEATURE_LEVEL indicates how many levels of
dependent feature selections are passed to the task execution program.

Parameters for a Task in the Context of a Specific Task List

In these cases, if a task belongs to more than one task list, then FSM
passes these parameters to the corresponding task program only when the
task is performed from the given task list.

• Predefined Task List Scope Values: In this special case, application
designers and developers may decide not to let you select a scope
value, but instead define a specific scope value at design time and pass
it to the ADF task flows for any or all of the tasks in a setup task list.
In such cases, they will define a combination of parameters called
BOShortName, BOAttributeCode, and BOAttrbuteValue. When these
parameters are used, you do not get the option to selection scope
values when performing those tasks.

Task Parameters and Setup Export and Import

FSM will always pass all parameters defined at the task levels to setup
export and import web services. If and how the parameters are used by the
web services, however, is up to the programming of the web services. On

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 56

the other hand, FSM will not pass the parameters defined for a task within
the context of a specific task list to setup export and import web services.
See Web Services for Setup Export and Import for more information on
these web services.

Note

If parameters are defined, FSM will pass them to corresponding task
programs; however, the task programs must be able to accept the
parameters and take appropriate actions as desired.

If both levels of parameters are applicable to any given task, then
parameters from both levels are passed.

See also:

Business Objects

Task Execution Programs – Parameter Enabled

Task Dependencies (Predecessor Tasks)
Setup tasks may have dependencies on one another. That is, performing a
task successfully may depend on data entered via one or more other tasks.
In such cases, task dependencies can be defined using predecessor tasks to
make you aware of the dependency so that you can plan to perform the
tasks in the correct order. A task can have one or more predecessor tasks.

Warning Event: For each predecessor of a given dependent task, you can
define one of the following two conditions for performing the dependent
task:

• Start Status: This condition indicates that setup of the
predecessor task should at least be started but not necessarily
completed before the dependent task is performed.

• Completed Status: This condition indicates that setup of
predecessor task should be completed before performing the
dependent task.

If the status of the predecessor task does not meet that of the specified
condition, a warning appears in the application. In case a task has multiple
predecessors, if condition of any one of the predecessors is not met, the
warning will appear.

For example, if defining tax rates will have dependency on setting up tax
regimes, then Mange Tax Regimes could be defined as the predecessor
task of Manage Tax Rates. In addition, if all tax regimes must be defined
first before you attempt to create tax rates, then warning condition can be
defined as Completed Status. In this case, when you attempt to perform

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 57

Manage Tax Rates, if the status of Mange Tax Regimes is set at anything
other than Completed, a warning appears. If, on the other hand, the
warning status was defined as Start Status, then a warning appears if
Mange Tax Regimes status is Not Started. For all other statuses of Mange
Tax Regimes, no warning appears.

Note

Although a warning appears, you are not prevented from performing the
dependent task if the predecessor condition is not met. The programs used
for performing the dependent task is expected to ensure and prevent any
data integrity issues as a result of performing dependent task ahead of the
predecessor task.

Tip

Consider defining predecessors for any tasks that may have prerequisite
tasks, which you should be aware of before you attempt to perform those
tasks.

Viewing Lists of Task Lists and Tasks
1. Go to the Setup and Maintenance work area.

2. Click Manage Task Lists and Tasks from the task pane, which will
display a page with the same name. This page will show a list of task
lists or tasks based on your default search setting. If no personalization
was performed, the default search setting of this page is to display all
task lists.

3. If the page does not show a list of tasks or task lists when first
displayed, then perform one of the following actions to return an
appropriate list:

• Ad hoc search: In the Search region, select Task Lists or
Tasks in the Search field, enter the appropriate search criteria,
and click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page you can:

• View and edit task list

• Create task list

• Delete task list

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 58

• View and edit task

• Create task

• Delete task

• Define predecessor tasks

See also:

Task Lists and Tasks – Design Considerations

Viewing and Editing Task List Details
Note

You should review design considerations to understand various design
implications before you start creating or editing task list or task details,
especially if you are doing so for the first time.

1. From the list of task lists on the Manage Task Lists and Tasks page,
perform one of the following actions to open the Edit Task List page:

• Click the task list name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit task list details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered task lists, but cannot edit or delete them.

See also:

Task Lists and Tasks – Design Considerations

Viewing Lists of Task Lists and Tasks

Creating Task Lists
1. From the list of task lists on the Manage Task Lists and Tasks page,

perform one of the following actions to open the Create Task List
page.

• Click Create Task List on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 59

• Click Create Task List from the Actions menu on the table task
bar.

2. Enter task list details.

3. Click Save or Save and Close to save changes.

See also:

Task Lists and Tasks – Design Considerations

Viewing Lists of Task Lists and Tasks

Task List Details
All task lists must have basic information and associated tasks. You may
also specify required tasks, task parameters, and task list scopes.

Entering Basic Information
When creating a new task list or editing an existing task list, enter or
modify following fields. If the Basic Information region is collapsed,
expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the task list which you can easily
identify.

Code Text Yes Use a unique code to identify the task list. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the task list.

Use Only In
Task List

List of
Values

No Defining Non-Sharable Task Lists: Use this field to
identify that a task list cannot be shared. Search and
select the task list which can be the only parent of the
current task list.

By definition, all task lists are sharable, meaning they
can be included in multiple parent task lists. However, if
a task list must be included in only one parent, then
specify the only parent in this field.

Help Topic ID Text No Leave this field blank.

Note

Also review best practices and standards and guidelines for defining these
core fields.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 60

Associating Tasks
When creating a new task list or editing an existing task list, associate
tasks to task lists using the following steps.

Adding Task Associations

1. To associate one or more tasks, perform one of the following two
actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate tasks or task lists from the popup
window.

3. Apply and close the window when complete.

Removing Setup Task and Task List Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Changing Task Display Sequence

To change the display sequence, select the row with the sequence that you
want to change, and drag and drop the row onto the row after which you
want it to appear. For example, if you select T1, and drag and drop it onto
T2, then T1 will appear after T2.

Note

The items (or members) of a task list may be referred to as tasks, although
they may be tasks or other task lists.

Specifying Required Tasks
When creating a new task list or editing an existing task list, specify tasks
as required using the following steps.

1. If the Tasks region is collapsed, expand it.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 61

2. Select the row for the desired task or task list.

3. Select the corresponding checkbox in the Required Task column.

4. If the Required Task column is not visible:

• Select View > Columns from the table task bar.

• Enable the Required Task column.

Note

You can set the Required Task option only for the immediate children.

Defining Task Parameters
When creating a new task list or editing an existing task list, specify
parameter for an item in the task list using the following steps.

1. If the Tasks region is collapsed, expand it.

2. Select the row for the desired task or task list.

3. Enter parameter and value pairs in the corresponding Parameters
column. If defining multiple parameters, then use an ampersand (&) as
a separator.

• For example: param1=value1¶m2=value2

4. If the Parameter column is not visible:

• Select View > Columns from the table task bar.

• Enable the Parameter column.

Special Case: Predefined Scope Values

In this case, a scope value for specific tasks in a setup task list can be
defined at design time. A combination of three parameters needs to be
used in the following format:
BOShortName=<value>&BOAttributeCode=<value>
&BOAttributeValue=<value>

The values specified for these parameters should be as follows:

• BOShortName: The short name (code) of the business object used as
the scope of the task list. See Defining Task List Scope for more
information.

• BOAttributeCode: The code of the scope value to be passed.

• BOAttributeValue: The scope value to be passed.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 62

For example, subledger accounting rules are used by many different
Oracle Fusion Applications. The setups of the rules are different
depending on which application they apply to. Therefore, the Subledger
Application setup business object is defined as the scope for the Define
Subledger Accounting Rules task list and the scope attribute of the
business object is APPLICATION_ID. However, you are not permitted to
select the scope values because those are defined at the design time based
on various parent task lists of the Define Subledger Accounting Rules task
list. Therefore, the predefined scope values can be passed as task list
parameters as follows:
BOShortName=XLA_SUBLEDGER&BOAttributeCode=APPLICATION_ID
&BOAttributeValue=PAYROLL

Note

When these parameters are defined, if the same task list has a scope
defined with the same code as the specified value of BOShortName
parameter, you cannot select a scope value.

Defining Task List Scope
When creating a new task list or editing an existing task list, specify task
list scope by using the following steps.

1. If the Task List Scope region is collapsed, expand it.

2. Select a business object.

3. The Search Task and Manage Task fields are not editable. They are
populated based on the information defined on the selected business
object.

• If the selected business object does not have a Search Task and
Manage Task defined, a warning message appears.

See also:

Business Objects

Note

Ensure that Search Task and Manage Task are defined for business objects
that are selected as scope of a task list. Otherwise, scope will be unusable
because you will not be able to search and select or create any instances of
scope value.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 63

Tip

If you want to define the scope value of a task list at design time and pass
it to ADF task flows of specific tasks belonging to the task list, then use
the task parameter. In this case, you cannot select scope values.

Defining Scope Dependencies
Dependency or parent-child relationships between two scopes are defined
via parent-child relationships between their respective business objects.
See Defining Parent-Child Dependencies for Business Objects for more
information.

Finding Options and Features Associated with Task Lists
1. From the list of task lists on the Manage Task Lists and Tasks page,

select the desired row.

2. Click the icon in the Features column to open a page displaying the
associated options and features.

3. If the Features column is not visible:

• Select View > Columns from the table task bar.

• Enable the Features column.

Finding Parents of Task Lists
1. From the list of task lists on the Manage Task Lists and Tasks page,

select the desired row.

2. Click the number link in the Occurrences column to open a window
displaying the parent task lists.

3. If the Occurrences column is not visible:

• Select View > Columns from the table task bar.

• Enable the Occurrences column.

Note

If the Occurrences column contains a zero (0), it indicates that the task list
does not have any parents, and therefore there is no link to open the
window.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 64

Deleting Task Lists
1. From the list of task lists on the Manage Task Lists and Tasks page,

select the desired row.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

See also:

Viewing Lists of Task Lists and Tasks

Viewing and Editing Task Details
Note

You should review design considerations to understand various design
implications before you start creating or editing task list or task details,
especially if you are doing so for the first time.

1. From the list of tasks on the Manage Task Lists and Tasks page,
perform one of the following actions to open the Edit Task page:

• Click the task name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit task details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered tasks, but cannot edit or delete them.

See also:

Task Lists and Tasks – Design Considerations

Viewing Lists of Task Lists and Tasks

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 65

Creating Tasks
1. From the list of tasks on the Manage Task Lists and Tasks page,

perform one of the following actions to open the Create Task page.

• Click Create Task on the table task bar.

• Click Create Task from the Actions menu on the table task bar.

2. Enter task details.

3. Click Save or Save and Close to save changes.

See also:

Task Lists and Tasks – Design Considerations

Viewing Lists of Task Lists and Tasks

Task Details
Typically all tasks should have basic information, task program
information, and associated business objects. The only exceptions are the
tasks using deployment methods, which will not have associated business
objects, and will have deployment method attributes.

Entering Basic Information
When creating a new task or editing an existing task, enter or modify
following fields. If the Basic Information region is collapsed, expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the task list which you can easily
identify.

Code Text Yes Use a unique code to identify the task list. Once created,
code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the task list.

Deployment
Method

List of
Values

No Default setting is none, which indicates that the task uses
business objects for its setup data. Pick a value other
than none only if the task is for setting up data for one of
the deployment methods.

See Defining Tasks for Deployment Methods for more
information.

Uses user
interface

Checkbox No Indicates whether this task is performed via UI or web
service.

Checked: Associated task program is expected to be UI.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 66

This is the default setting.

Not Checked: Associated task program is expected to be
a web service.

Open In Radio
Button

No Standard View: The UI is displayed with standard
Oracle Fusion UI shell. This is the default setting

Full Screen View: The UI is displayed without standard
UI shell.

Help Topic ID Text No

Note

Review best practices and standards and guidelines for defining these core
fields.

If selected deployment method is none, then business objects should be
associated with the task. Otherwise, deployment method attributes may
need to be entered.

Associating Business Objects
When creating a new task or editing an existing task, associate business
objects using the following steps.

Adding Business Object Associations

1. To associate one or more business objects, perform one of the
following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select appropriate the business objects from the window.

3. Apply and close the window when complete.

Removing Business Object Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 67

Note

Business object associations are only applicable to those tasks with
deployment methods that are selected as none in the Basic Information
region. If a business object is not defined for such tasks, then FSM is not
able to identify the setup data during export and import process.

Entering Task Program Information
While the basic information fields are defined during design process, the
task program-specific information is typically added later after the
programs are developed. Once the programs are developed and related
information is available, edit an existing task, and enter the task program
specific information.

If the Basic Information region is collapsed, expand it.
Field Field Type Required Description

Program Text No Enter the program name (ADF task flow or web service
name) that will be used to perform the task.

For example: /WEB-
INF/oracle/apps/financials/tax/configuration/regime/ui/fl
ow/TransTaxSearchFlow.xml#TransTaxSearchFlow

Enterprise
Application

List of
Values

No Pick the enterprise application that will be used to
deploy the UI or web service program.

Module List of
Values

No Pick the module in the selected enterprise application
that will be used by the UI or web service program.

Warning

If any tasks are missing program information, then it is implied that you
will not perform those tasks from FSM.

See also:

Task Execution Program Requirements - Design Considerations

Task Execution Program – FSM Requirements

Testing Task Programs

Testing Task Programs
When application developer finishes developing task execution programs,
they often want to test their execution from FSM before deploying them to
the live environment. Edit an existing task to test the task program by
using the following steps.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 68

1. If the Basic Information region is collapsed, expand it.

2. Enter full path to access the task program including the host and port
information in Test URL text field.

• The path can point to any instance where the program is
available.

3. If the program is not secured, then append the following string at the
end of the URL: &secureFSProducer=N; that is:

• Secured Program:
http://rws65042fwks.us.oracle.com:8988/regime-ui-context-
root/

• Unsecured Program:
http://rws65042fwks.us.oracle.com:8988/regime-ui-context-
root/&secureFSProducer=N

4. Save changes.

5. Click Test Go to Task to test program execution.

Warning

If you enter a test URL, then enterprise application and module
information entered for the same task are ignored by FSM. It also adds
overhead when the task is executed. Make sure to remove value from the
Test URL field before making the task available for use.

Defining Web Services for Export and Import of Related Setup
Data

The web services necessary to export and import setup data related to a
setup task, must be defined for each of the business objects associated
with the task.

1. View task details to find associated business objects.

2. Define export and import services for each of the associated business
objects.

Defining Task Parameters
When creating a new task or editing an existing task, use the following
steps to define task parameters.

1. If the Basic Information region is collapsed, expand it.

2. In the Parameters field, and enter any parameter that you want FSM to
pass to the corresponding task program.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 69

3. Enter parameter and value pairs. If defining multiple parameters, then
use an ampersand (&) as a separator.

• For example: param1=value1¶m2=value2

Special Cases of Task Parameters

Offering, Option, and Feature Selection: If you want to pass the
offering, option, and feature selections made to the ADF task flow of a
setup task, then use name-value pairs as:
FS_FEATURE_SHORT_NAME=<value>. The value of
FS_FEATURE_SHORT_NAME should be the short name (or code) of
the offering, option, and feature whose selection you want to pass.

For example, FS_FEATURE_SHORT_NAME =
ZX_REGIME_REG_STATUS, where ZX_REGIME_REG_STATUS is
the short name (code) of a feature called Tax Regime Registration.

Dependent Option and Feature Selection: In this case, the parent
offering, option, or feature is specified as parameter but the ultimate goal
is to derive the selected choices of the dependents. Use name-value pairs
as follows:
FS_PARENT_FEATURE=<value>&FS_FEATURE_LEVEL=< 1, 2, 3, and
so on>

The value of FS_PARENT_FEATURE should be the short name (or code)
of the parent offering, option, or feature, and FS_FEATURE_LEVEL
should indicate how many levels of children should be returned. For
example, 1 indicates immediate children, 2 indicates immediate children
and their children, and so on.

Note

If parameters are specified, FSM will pass them to corresponding task
programs. However, the task programs must be able to accept the
parameters and take appropriate actions.

Defining Tasks for Deployment Methods
When creating a new task or editing an existing task, if the task is for
setting up data for one of the deployment methods, then use the following
steps.

1. If the Basic Information region is collapsed, expand it.

2. Select the deployment method.

3. If the Deployment Method region is collapsed, expand it.

4. Enter appropriate value for the deployment method attribute.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 70

Note

The Deployment Method attributes section is only visible and applicable if
deployment method of the task (in the Basic Information region) is a value
other than None.

See Special Case: Setting Up Deployment Methods under Task Execution
Programs - Design Considerations for more information.

Warning

Explanation of various types of Oracle-delivered deployment methods,
meaning applications core setups, and standards and guidelines for
defining those setup tasks, are beyond the scope of this document. If you
are not familiar with them, consult the Oracle® Fusion Applications
Developer's Guide and related training material.

Defining Predecessor Tasks
1. From the list of tasks on the Manage Task Lists and Tasks page, select

the desired row.

2. Click the number link in the Predecessor Tasks column to open the
Edit Predecessor Tasks page.

3. If the Predecessor Tasks column is not visible:

• Select View > Columns from the table task bar.

• Enable the Predecessor Tasks column.

4. Add or remove predecessor tasks by performing the following steps.

Adding Predecessor Task Associations

1. To associate one or more predecessor tasks, perform one of the
following two actions:

• Click Select and Add on the table task bar.

• Click Select and Add from the Action menu on the table task
bar.

2. Search and select the appropriate tasks from the window.

3. Apply and close the window when complete.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 71

Removing Predecessor Task Associations

To remove an existing association:

1. Select the appropriate row in the table.

2. Perform one of the following two actions:

• Click Remove on the table task bar.

• Click Remove from the Action menu on the table task bar.

Defining Warning Message Event

To apply the same event to all predecessor tasks:

1. Select the Apply Same Warning Message Event to All Tasks option at
the top of the page.

2. Select one of the two available options in Warning Message Event.

To apply different events to different predecessor tasks:

1. Deselect the Apply Same Warning Message Event to All Tasks option
if it is already selected.

2. Select the desired row in the table.

3. Select the value from the list of values in the corresponding Warning
Message Event column.

4. Click Save or Save and Close to save changes.

Note

Review Effect of Defining Task Dependencies - Design Considerations
for more information.

Finding Options and Features Associated with Tasks
1. From the list of tasks on the Manage Task Lists and Tasks page, select

the desired row.

2. Click the icon in the Features column to open a page displaying the
associated options and features.

3. If the Features column is not visible:

• Select View > Columns from the table task bar.

• Enable the Features column.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 72

Finding Parent Task Lists of Tasks
1. From the list of tasks on the Manage Task Lists and Tasks page, select

the desired row.

2. Click the number link in the Occurrences column to open a window
displaying the parent task lists.

3. If the Occurrences column is not visible:

• Select View > Columns from the table task bar.

• Enable the Occurrences column.

Note

If the Occurrences column contains a zero (0), it indicates that the task list
does not have any parents, and therefore there is no link to open the
window.

Deleting Tasks
1. From the list of tasks on the Manage Task Lists and Tasks page, select

the desired row.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

See also:

Viewing Lists of Task Lists and Tasks

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 73

6
Business Objects

Design Considerations

About Business Objects
Business objects are logical representation of real-world objects. They
represent Oracle Fusion Applications data. Some of the examples of
business objects are Ledger, Business Units, Taxes, Items, Orders,
Opportunities, Campaign, and Employees.

In ADF terminology, a business object involves one or more View Objects
(VO) mapped to underlying entity objects (EO), which are related through
composition (meaning that child entities cannot exist without their
parents).

Role of Business Objects in FSM Export and Import
FSM provides export and import functionality to move Oracle Fusion
Applications setup from one instance into another. Business objects are
used to read and write the correct set of setup data at the source and the
target instances respectively.

To export and import setup, you will first identify, at the source instance,
the implementation they want to move and then export it. FSM uses the
list of tasks used in the identified implementation as a template to
determine what setup data will be exported. It then finds the setup data
based on the associated business objects of those tasks. Similarly, during
import, FSM writes back the data according to the business objects.

Since web services are used to read and write setup data during export and
import, business objects associated with setup tasks must also have such
web services available.

Warning

Provide web services to read from and write to all setup business objects.
If web services are not registered for any business objects, it indicates that
the corresponding setup data will not be exported and imported by FSM.

See also:

Business Object associations with Setup Tasks

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 74

Web Services for Setup Export and Import

Business Objects as Scope
A business object can be a scope of a setup task list or of exported setup
data.

• Setup Task List Scope: If a business object is defined as the scope of
a setup task list, you have the option to enter setup data for the tasks
contained in the task list in the context of a scope value. For more
information see Task List Scope.

• Setup Data Export Scope: A business object can also be a scope
(setup data filter) during setup data export. For example, if Financials
is set up for multiple legal entities, different legal entities can be
exported at separate times by picking different scopes (different values
of legal entities) during setup data export.

While all task list scopes are automatically designated as setup data
export scopes as well, a business object can be setup data export scope
without being a task list scope.

Any business object intended to be used as a scope for either setup task
lists or setup data export must have a Search task specified for it. In case
of designated task list scope, the business object must also have a Manage
task specified for it. See Significance of Search and Manage Tasks for
more information.

Tip

Consider defining a business object as scope if the business object is often
used as a qualifier to uniquely identify data of other business objects. That
is, the business objects whose values often act as the foreign keys to data
of other business objects in the physical data model are good candidates
for defining as scope, especially if business processes and functions are
often segmented by them as well.

See also:

Task Execution Programs – Design Considerations for Scope Selection
Enabled

Task Execution Programs – Making Scope Selection Enabled

Web Services for Setup Export and Import – Identifying Filter Criteria

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 75

Business Objects as Deployment Methods
In Oracle Fusion Applications, certain business object may be designated
as deployment methods. If a business object is defined as deployment
method, then it implies that the business object represents a common
entity which is set up using a common interface. One or more attributes of
the business object must then be specified as the qualifying identifiers
whose values will typically identify specific instances of the object.

For example, Applications Profile Option is a deployment method where
the attribute, Profile Option Name, identifies a specific profile option for
which you may be setting profile values.

Many different setup tasks may be using a deployment method for their
setup data. However, for each of those setup tasks, the appropriate value
for the qualifying attribute must be specified, which will be used to
identify the specific instances of the deployment method as applicable to a
given setup task.

For example, Manage Calendar Profile Option setup task uses a
deployment method called Application Profile Option, as do many other
setup tasks such as Manage Currency Profile Option and Manage General
Ledger Profile Option. Since qualifying attribute of Application Profile
Option is defined as Profile Option Name, when Manage Calendar Profile
Option task is created, it requires that the value of Application Profile
Option be set to the appropriate code that identifies the Calendar Profile
Option (such as ZCA_COMMON_CALENDAR).

When setup tasks for deployment methods are performed, or the data is
exported or imported, a standard task execution program and export and
import web service, specified as the Manage task for deployment method,
are invoked by FSM. The qualifying attribute value specified for a given
task is passed as a parameter to the standard programs for the deployment
method to identify the applicable instance of the common entity. See
Significance of Search and Manage Tasks for more information.

See also:

Task Execution Program - Design Considerations

Web Services for Setup Export and Import – Identifying Filter Criteria

Significance of Search and Manage Tasks
A business object should be associated with a Search task and a Manage
task if it will be used in any of the following cases:

• As a task list scope.

• As a scope for setup data export.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 76

• As a deployment method.

Search Task

The Search task should allow you to find a list of existing values of the
business object. The Manage task should let you create, edit, or delete
business object values.

When you select a scope value, either to perform an iterative task in a task
list or to filter setup data during export process, FSM uses the task
execution program associated with the designated search task to enable
you to find and select an appropriate value.

 Manage Task

When you create a new scope value before making a scope selection, FSM
will present the corresponding Manage task program. The Manage task is
also important if the business object is designated as a deployment
method. Its associated program is used as the standard interfaces for
entering and exporting and importing data for any task using the
deployment method.

Tip

Task Execution Program and Export and Import web services for Search
and Manage tasks must be designed such that they provide you with the
ability to perform all expected data search and data management actions,
such as create, edit, and delete.

Note

The task execution program of a task designated as the search task of a
business object must not only support searching and selecting a value, but
also must support returning the value to FSM.

Business Object Dependencies
If there is data dependency between two business objects then parent-child
relationship can be defined between them. Typically this signifies that
parent business object is needed to fully qualify the child business object.
For example, Tax Regime is the parent business object while Tax Rate is
its child business object. This means, that to fully identify a tax rate one
needs to know the tax regime as well.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 77

In FSM, parent-child relationships between business objects are especially
important if you need to define hierarchical task list scopes. Those
relationships between the scopes must be defined through the parent-child
relationships of the respective business objects.

For example, Tax Regime is the scope for Define Tax Rate and if Legal
Entity is the scope for Define Tax Regime, then if you want to select both
scopes, Legal Entity and Tax Regime, when defining Tax Rate, Legal
Entity must be defined as the parent business object of Tax Regime.

A child or dependent business object can have only one parent, while a
parent may have multiple children.

Viewing Lists of Business Objects
1. Go to the Setup and Maintenance work area.

2. Click Manage Business Objects from the Tasks pane to open a page
with the same name. This page will show a list of business objects
based on your default search setting. If no personalization was
performed, the default search setting of this page is to display all
business objects.

3. If the page does not show a list of business objects when first
displayed, then perform one of the following actions to return an
appropriate list:

• Ad hoc search: In the Search region, select Business Objects
in the Search field, enter the appropriate search criteria, and
click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page you can:

• View and edit business objects

• Create business objects

• Delete business objects

• View related tasks

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 78

Viewing and Editing Business Objects
Note

You should review design considerations to understand various design
implications before you start creating or editing business object details,
especially if you are doing so for the first time.

1. From the list of business objects on Manage Business Objects page
perform one of the following actions to open the Edit Business Object
page:

• Click the business object name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit business object details.

3. Click Save or Save and Close to save changes.

Note

You can view Oracle-delivered business objects, but cannot edit or delete
them.

See also:

Business Object – Design Considerations

Viewing Lists of Business Objects

Creating Business Objects
1. From the list of business objects on the Manage Business Objects

page, perform one of the following actions to open the Create Business
Object page.

• Click Create Business Object on the table task bar.

• Click Create Business Object from the Actions menu on the
table task bar.

2. Enter business object details.

3. Click Save or Save and Close to save changes.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 79

See also:

Business Objects – Design Considerations

Viewing Lists of Business Objects

Business Object Details
At minimum, all business objects should have basic information and
associated web services for setup export and import. You may also specify
the parent-child relationship, supertype-subtype relationship, or define the
business object as deployment method.

Entering Basic Information
When creating a new business object or editing an existing business
object, enter or modify following fields. If the Basic Information region is
collapsed, expand it.

Field Field Type Required Description

Name Text Yes Use a unique name for the business object which you
can easily identify.

Code Text Yes Use a unique code to identify the business object. Once
created, code cannot be changed.

Description Text No Although not required, always provide a brief,
meaningful description that will help you understand the
purpose of the business object.

Search Task Text No If the business object is defined as scope for either a
setup task list or for filtering setup data during export,
then this field must include the task name which can be
performed to find an appropriate value.

Manage Task Text No If the business object is defined as scope for a setup task
list or as a deployment method, then this field must
include the task name which can be performed to create,
edit, and delete appropriate values.

Subtype
Discriminator

Text No This is only applicable if the business object is a super
type Business object. Enter the discriminating attribute
that identifies the subtypes in the super type business
object.

Note

Also review best practices and standards and guidelines for defining these
core fields.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 80

Defining Export and Import Services
While the basic information fields are defined during design process, the
export and import service specific information will be typically added later
after the web services are developed. Once the web services are developed
and related information is available, edit an existing business object, and
enter the web service specific information.

If the Service region is collapsed, expand it.
Field Field Type Required Description

Service Text No Enter full path name to the web service that will be used
to perform export and import of the business object.

For example:
oracle.apps.financials.tax.configuration.regime.regimeSe
rvice.TaxRegimeService

Enterprise
Application

List of
Values

No Pick the enterprise application that is used to deploy the
export and import web service.

Module List of
Values

No Pick the module in the selected enterprise application
that is used by the web service.

Warning

If any business objects are missing service information, then it is implied
that you will not export and import those setup data using FSM.

Note

You may want to test your web service before deploying it to the
appropriate applications server.

Testing Export and Import Services
When application developers finish developing setup export and import
services, they often want to test the web services from FSM before
deploying them to the live environment. Edit an existing business object to
test the web services by using the following steps.

1. If the Service region is collapsed, expand it.

2. Enter the full path to access the web service including the host and
port information in Test URL text field. The path can point to any
instance where the web service is available.

• For example:
http://ap6008fems.us.oracle.com:6033/finCommon/finSer

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 81

oracle.apps.financials.tax.configuration.regime.regimeService.
TaxRegimeService2

Warning

If you enter a test URL, then enterprise application and module
information entered for the same business object are ignored by FSM. It
also adds overhead when the task is executed. Make sure to remove value
from the Test URL field before making the task available for use.

Defining Parent-Child Dependencies
The parent-child relationship between two business objects is defined at
the child or dependent business object.

When creating a new business object or editing an existing business
object, enter or modify the associated parent business object using the
following steps.

1. If the Dependencies region is collapsed, expand it.

2. Select the parent business object from the Parent Business Object
field.

Defining Deployment Methods
When creating a new business object or editing an existing business
object, specify the business object as a deployment method using the
following steps.

1. If the Basic Information region is collapsed, expand it.

2. Select the Create as Deployment Method option.

3. If the Attributes region is collapsed, expand it.

4. Add or remove attribute names that uniquely identify each instance of
this business object, meaning the alternate key for the business object.

• For example, if the Application Profile Options business object
is specified as a deployment method, then Profile Option Name
is the attribute entered in this region because Profile Option
Name identifies each profile option, meaning it is the alternate
key.

Defining Supertype-Subtype Business Objects
These are special type of business object dependencies. Super type
business objects are the primary business objects, and the sub types

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 82

identify specific segments within them. For example, Person may be a
super type business object with subtypes of Employees, Contractors,
Partners, and Customers.

In technical terms, a super type business object often becomes the
database table in the physical data model, while the sub types are
identified using a discriminating attribute in the same database table.

When creating a new business object or editing an existing business
object, specify the business object as a super type or subtype business
object using the following steps.

Super Type Business Objects

1. If the Basic Information region is collapsed, expand it.

2. Enter the attribute that is used as subtype discriminator of its sub types
in the Subtype Discriminator text field.

• For example, when defining the Person business object, enter
Type, which is the attribute that will identify the subtypes.

Subtype Business Objects

1. If the Dependencies region is collapsed, expand it.

2. Select the super type business object in the Supertype Business Object
field.

3. Enter the subtype discriminator value of the supertype business object.

Deleting Business Objects
1. From the list of tasks on the Manage Business Objects page, select the

desired row.

2. Perform one of the following actions:

• Click Delete on the table task bar.

• Click Delete from the Action menu on the table task bar.

Finding Related Tasks
1. From the list of tasks on the Manage Business Objects page, select the

desired row.

2. Observe the corresponding Related Tasks column.

3. Find related tasks as follows:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 83

• If only one task is associated with the business object, then it
will appear in the column.

• If multiple tasks are associated with the business object, then
the first task appears in the column followed by (x more),
where x represents the additional number of associated tasks.

• Scroll the mouse cursor over (x more) to view up to eight
additional associated tasks.

• If more than eight additional associated tasks exist, then click
(x more) to view the entire list of tasks associated with the
business object.

4. If the Related Tasks column is not visible:

• Select View > Columns from the table task bar.

• Enable the Related Tasks column.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 84

7
Task Execution Programs - FSM

Requirements

Design Considerations
Warning

Application developers building task execution programs should be
knowledgeable and experienced in ADF and JDeveloper technologies and
their standards and guidelines.

About Setup Task Execution Programs
All setup tasks are expected to use either UI or web services to allow you
to enter and maintain corresponding setup data. Therefore, either an ADF
bounded task flow (in case of UI) or a web service should be associated
with each setup task, which, in turn, will be used to perform the task.

ADF Task Flows

FSM uses Portal to invoke ADF bounded task flows as a portlet. FSM
renders the ADF task flow as a dynamic region within an FSM page
fragment. Because of the current limitation of ADF, you must define the
task flows at design time and cannot call at runtime using Expression
Language (EL) to resolve document and ID information.

To provide consistent user experience, the following standards are
strongly recommended for setup task UIs.

• Must use UI Shell Main Area template

• Must include FSM Shared Library

• Must return control to FSM when executed from FSM

• Should be Task Parameter enabled, if applicable

• Should be Scope Selection enabled, if applicable

• Recommended to be Go To Next enabled

• Must be Security enabled

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 85

Web Services

Setup tasks can be performed using web services instead of a UI if the task
is performed using a programmatic process rather than requiring user
interaction. When a setup task execution program is a web service, it is up
to the developer of the service to decide the approach and technology to
use to build the web service. FSM only requires:

• A service API called lanuchProcess() is included in the web service.

• If the service submits a background process to execute setup of the
task, then the task status should be updated by the program when the
background process completes. FSM provides public web services to
update task status that can be used to set the completion status of the
background process.

See also:

Task Lists and Tasks: Design Considerations - Task Execution Programs

Warning

If a setup task does not have an associated ADF task flow or a web
service, then you cannot perform the task from FSM and must enter and
maintain corresponding setup data outside of FSM.

ADF Task Flow Template
You must use the UI Shell Main Area template to create the ADF bounded
task flows for the setup tasks. When a setup task is performed from FSM,
the FSM main area is replaced with the ADF task flow of the setup task.
Therefore, you must use the correct template to render the local and the
contextual areas of ADF task flows correctly in FSM main area.

FSM Shared Library
All ADF task flows that are used to perform setup tasks must include a
shared library called AdfFunctionalSetupPublicUI.jar provided by FSM.
The shared library will enable ADF task flows to:

• Be displayed as a portlet in the FSM main UI area. FSM uses Portal
and renders ADF task flows for setup tasks as portlets.

• Return scope selections to FSM.

• Get the next tasks from FSM when implementing Go to Next feature.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 86

Returning Control to FSM Task List
If an ADF task flow is invoked from FSM, then navigational control must
be returned to FSM once the ADF task flow is closed. This is required to
allow you to continue with performing the setup tasks (meaning to invoke
the corresponding ADF task flows) in the correct, logical sequence as
specified via a setup task list.

You can use one of the following two options provided by FSM to achieve
this functionality.

• Declarative component called setupButtonMenu

• API called setupBean.returnControlToSetup()

Parameter Enabled
FSM allows setup task designers and developers to define parameters. See
Task Parameters for more information. If you define parameters, FSM will
pass them to corresponding ADF task flow at runtime when task flows are
invoked. For those ADF task flows, you should ensure that the ADF task
flows are able to accept the passed parameters and use them to achieve the
intended outcome. Parameters can be passed from FSM to control a wide
range of functionality in setup task UIs such as setting default values for
certain fields, filter setup data, or use for validation, and so on.

Default Task Parameters

FSM always passes the following parameters without requiring them to be
defined explicitly.

• Task name: Since it is typically used to comply with the Oracle Fusion
page title standards, the parameter is often referred as page title as
well.

• ID of a task in a specific implementation project.

• ID of the parent of a task in a specific implementation project.

Offering, Option, and Feature Selections as Task Parameters

If you want to control how ADF task flow used by a setup task behave
based either selecting offerings, options, and features, or selecting the
parent of an option or feature, then you can use FSM parameters to
achieve it as well.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 87

Predefined Scope Value

Task parameters can also be used to predefine the Scope values during
design time. This functionality requires a specific combination of three
parameters to be defined. When defined, you cannot select a scope value
when you perform the task.

See also:

Defining Task Parameters

Entering Task Program Information

Scope Selection Enabled
This is applicable to ADF task flows of the setup tasks that are specified as
Search task of a business object. In case of scope enabled setup task lists,
this is also applicable to the consumer tasks in the task list, meaning the
tasks that will accept the selected scope value.

Search Task UI

The ADF task flow used by the Search task of a scope is used to search
and select a scope value either for a scope enabled task list or for filtering
data during setup export. Therefore, these ADF task flows must be able to
return the following to FSM:

• Scope (business object) attribute name

• The alternate key that identifies the scope instance

• The selected scope value

Target (Consumer) Task UI

In a scope enabled task list, when you select a scope and then invoke an
ADF task flow of a task in that task list, FSM passes the selected scope
value as a task flow parameter using key-value pair. The consumer (the
target ADF task flow), however, should be able to accept the parameter
and take desired actions as intended by the designer of the ADF task flow.
The target ADF task flow can either use an EL expression or HashMap.

See also:

Defining Task List Scope

Business Objects as Scope

Significance of Search and Manage Tasks

Business Object Details

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 88

Save and Go to Task Enabled
Although not required, we recommend that setup UIs implement the
ability to invoke another ADF task flow used by another setup task when
the first UI is closed. This feature enhances usability by providing
navigational shortcut to setup tasks without needing to return to FSM task
list to perform subsequent tasks.

If implemented, the Save and Close button on an ADF task flow will
include an option called Save and Go to Task when the ADF task flow is
invoked from FSM. The option will have a sub menu showing the next
three applicable setup tasks in the task list from where the ADF task flow
was invoked.

For example, Task1, Task2, Task7, and Task9 are four tasks in Tasklist1
assigned to Enduser1. If the declarative component is added to the ADF
task flows of the tasks, then when Enduser1 invokes Task1 from FSM, the
Save and Close button on ADF task flow for Task1 will have an addition
option called Save and Go to Task with a sub menu showing Task2,
Task7, and Task9.

Tip

Do not implement this functionality in the ADF task flows that are used as
the Search tasks for scope selection. You should be returned to FSM after
searching and selecting a scope value.

Security Enabled
ADF task flows used by setup tasks must be properly secured using Oracle
Fusion Security model. You should use the appropriate privileges, which
should roll up to a proper job roles that are expected to perform the setup
tasks. The same job roles will also require access to the Setup and
Maintenance work area to use FSM, and therefore, must inherit
ASM_FUNCTIONAL_SETUPS_ABSTRACT role.

FSM uses Portlet to invoke these ADF task flows. In Oracle Fusion,
portlets are implemented as web services for remote portlets (WSRP) and
are essentially web services. Therefore, they should be secured just like
any other web services. Since the ADF task flows for setup tasks are
considered the producer portlets, standards and guidelines for securing
producer portlets should be followed.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 89

API for Web Services Used in Executing Setup Tasks
If a setup task uses a web service for its execution, a method called
launchProcess() must be included in the Service. The method must be able
to:

• Accept the parameters passed by FSM and able to achieve the intended
outcome. These parameters are defined by the task and task list
designers and developers.

• Submit a background process (if applicable) or execute a program.

• Return a request process ID (for the submitted background process)
and task status.

• Return status details (optional).

Developing ADF Task Flows for Setup Tasks
Warning

You should be experienced in developing applications using Oracle
platforms and knowledgeable in ADF and JDeveloper. You should also be
familiar with Oracle Fusion Applications standard and guidelines.

Note

All instructions assume that you are using JDeveloper as your
development platform.

You must use the UI Shell Main Area template to build the ADF task
flows.

Follow all ADF and Oracle Fusion Applications standards and guidelines.

Adding the FSM Shared Library
Add the shared library provided by FSM by using the following steps. In
addition to adding the shared library to your project, which is required to
make the ADF task flows for setup tasks compliant with FSM
requirements, these steps will also create an entry in portlet.xml for FSM
portlet called FSGeneicTaskFlow.

1. Select the relevant UI project.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 90

2. Manually review web.xml, portlet.xml, and oracle-portlet.xml files, if
they exist.

3. Click the Project Properties for this project.

4. Navigate to Libraries and Classpath > ADF Library > Edit and then
delete the entry: adflibs/fs/AdfFunctionalSetupPublicUI.jar

• Click Yes if warning message is posted.

5. Highlight the project to which you want to add the library.

6. Right click on the project name and select Functional Setup > Add
Portlet Entries of FS Task Flow from the context menu.

7. If successful, a success confirmation message is posted confirming that
FSGenericTaskFlow has been added successfully. Click OK on the
dialog box.

8. If not successful, and you get a message that the process failed to add
FSGenericTaskFlow, it typically means that FSM portlet entry already
exists in portlet.xml. Follow the instructions in the failure message to
verify.

9. Verify successful completion of adding FSM portlet entry:

• Ensure that all jar file references are removed.

• After all jar files references are removed and corresponding
library references are introduced, build all of your projects to
ensure they are building without errors.

• Merge in your changes.

10. Validate that FSGenericTaskFlow is part of your deployed enterprise
application.

• Copy the URL of your deployed enterprise application and
paste it as a browser URL.

• Use up to the context root in the URL of your deployment
enterprise application; for example:
http://adc60153fems.us.oracle.com:6129/commonComponents-
SuperWeb-context-root/

• You should see a page titled WSRP Producer Test Page and at
the top of the page it should show something similar to:
CommonComponents_FSGenericTaskFlow (2.0)

• The xx_FSGenericTaskFlow indicates that FS Shared Library
has been included and FSGenericTaskFlow portlet is available.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 91

Warning

If you do not add the shared library following these steps, your ADF task
flow cannot be invoked from FSM and the following error message
appears when you perform the task: OracleJSP error:
java.io.FileNotFoundException

Limitations of Using requestScope() Method
Many of the recommended procedures for integrating ADF task flows
used by setup tasks with FSM use Expression Language (EL), which in
turn, use requestScope method. However, information retrieve using
requestScope is available only in the scope of the current request.
Therefore, you can use the information on the landing task flow when
coming from FSM, but it will not be available to be used on other task
flows.

If you intend to use the information passed by requestScope() on other
task flows, retrieve the values using recommended EL and then store them
in your own pageFlowScope variables.

Example

1. Invoke the following bean method on the landing page:
SetupDynamicFlowBean setupDynamicFlowBean =
(SetupDynamicFlowBean)

this.evaluateEL(#{requestScope.setupDynamicFlowBean});

2. Store setupDynamicFlowBean object into the pageFlowScope using
the same name as setupDynamicFlowBean

3. Access the information on other pages of the task flow by using one of
the following:
EL #{pageFlowScope.setupDynamicFlowBean}

#{pageFlowScope.setupDynamicFlowBean.setupParametersBean
.source}

Determining if an ADF Task Flow is Invoked from FSM
The following EL can be used to determine whether an ADF task flow is
called from FSM:
#{requestScope.setupDynamicFlowBean.setupParameterBean.sour
ce}

If you call it from FSM, the returned value will be FS.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 92

Note

This EL uses requestScope method. See Limitations of requestScope
Method for more information.

Returning Control to FSM Task List
If an ADF task flow for a setup task is invoked from FSM, then the control
must return to FSM task list once the ADF task flow is closed. Use the
following steps to include this capability in your ADF task flow.

1. Determine if the ADF task flow was invoked from FSM.

2. Identify the controls (buttons, action menu items, and so on) that close
the ADF task flow used by a setup task.

3. Add the following APIs as part of your code for the control:
SetupDynamicFlowBean setupBean =
SetupDynamicFlowBean.getInstance();

setupBean.returnControlToSetup();

Sample Code
SetupDynamicFlowBean setupDynamicFlowBean =

SetupDynamicFlowBean.getInstance();

String fsSource = null;

if (setupDynamicFlowBean != null){
 fsSource =
setupDynamicFlowBean.getSetupParameterBean().getSource();

 if (fsSource == null || !FS.equals(fsSource)){
 return;
 }
 setupDynamicFlowBean.returnControlToSetup();
}

Note

These APIs are available to you through FSM Shared Library. See Adding
the FSM Shared Library for more information.

Reading Parameters Passed by FSM
Use the following steps to read parameters passed by FSM

1. Define input parameter names in your ADF task flows matching exact
names of the task parameters specified in FSM.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 93

2. Define the values of these input parameters according to ADF task
flow standards.

Example

• Assume parameters for a setup task, T1, are defined as
name1=value1&name2=value2

• In ADF task flow for T1, define two input parameters called
name1 and name2

• Use #{pageFlowScope.name1} and #{pageFlowScope.name2}
to read the values of name1 and name2 as passed by FSM

Note

When UI is invoked in full screen view, FSM passes all parameters –
defined implicitly or explicitly through the URL. See Task Details –
Entering Basic Information for more information on standard and full
screen views of an UI.

Special Cases

In each of the following cases, reading the parameter values requires the
same steps. However, each case passed the name-value pairs in a specific
format.

• Task Name: The parameter is always passed and does not require to
be explicitly defined on the tasks. The format used is: pageTitle=<task
name>. For example, For Manage Tax Regime task the parameter will
be, pageTitle=Manage Tax Regime.

• ID of Task in an Implementation Project: This is also a default
parameter which is always passed by FSM without requiring task
designers and developers to explicitly define it. The name-value pair
used is: iPTLItemKey=<taskListItemID>

• ID of Parent Task List in an Implementation Project: Another
default parameter passed by FSM without requiring task designers and
developers to explicitly define it. The name-value pair used is:
iPTLParentItemKey=<taskListItemID of the immediate parent>

• Predefined Scope Value: A combination of three parameters are
passed using the following format:
BOShortName=<value>&BOAttributeCode=<value>
&BOAttributeValue=<value>

The values are as follows:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 94

• BOShortName is the short name (code) or code of scope
(business object)

• BOAttributeCode is the short name (code) of the scope value

• BOAttributeValue is the actual scope value

• Feature Selection: Referred generically as feature, this functionality
applies to offerings, options, and features and works the same way for
all of them.

Although the task parameter is defined as
FS_FEATURE_SHORT_NAME=<Feature Short Name>, when the
task is performed, FSM passes name-value pair as: <Feature Short
Name>=<Selected Feature Choice Short Name>

If more than one value is selected for the given feature, then multiple
feature choice short names (codes) are passed using comma (,) as
separator.

For example, if FS_FEATURE_SHORT_NAME=
ZX_REGIME_REG_STATUS is defined as task parameter, then
ZX_REGIME_REG_STATUS = ZX_REGIME_REG_STATUS_YES
will be passed by FSM where ZX_REGIME_REG_STATUS_YES is
the actual short name (code) of the selected choice of
ZX_REGIME_REG_STATUS.

• Parent Feature Selection: Feature is referred as a generic term for
offering, option and features in this case as well and the functionality
applies to all of them in exactly the same way.

Although the task parameter is defined as
FS_PARENT_FEATURE=<Parent Feature Short
Name>&FS_FEATURE_LEVEL=<1, 2, 3, and so on>, when you
perform the task FSM converts the parameter to:

FS_PARENT_FEATURE=~@<Selected Child Feature Short
Name>@<Selected Child Feature Choice Short Name>

For example, if
FS_PARENT_FEATURE=PER_PAYROLL&FS_FEATURE_LEVE
L=1 is specified as task parameter, then FSM converts the parameter
as follows when you perform the task:

FS_PARENT_FEATURE=~@PER_PAYROLL_US@PER_PAYRO
LL_US_YES~PER_PAYROLL_UK@PER_PAYROLL_UK_NO

Here, PER_PAYROLL_US and PER_PAYROLL_UK are first level
children of PER_PAYROLL while PER_PAYROLL_US_YES is the
selected choice of PER_PAYROLL_US and
PER_PAYROLL_UK_NO is the selected choices of
PER_PAYROLL_UK

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 95

If the level specified in the parameter was two, then the children of
PER_PAYROLL_US and PER_PAYROLL_UK would have been
included as well.

Note

The characters ~ and @ at the beginning of the returned value of
FS_PARENT_FEATURE are important to notice. These two characters
are used as separators for feature short name (code) and feature choice
short name (code). Application developers must be careful in parsing the
string to get the right information on feature and its selected choices.

Sample Code

This is an example of how name-value pairs passed for
FS_PARENT_FEATURE can be parsed.

private void printFeatureChoices(String parameters) {
 System.out.println(parameters: + parameters);
 if (parameters != null && parameters.length() > 2) {
 String ampSep = parameters.substring(0, 1);
 System.out.println(ampSep: + ampSep);
 String eqSep = parameters.substring(1, 2);
 System.out.println(eqSep: + eqSep);
 String params = parameters.substring(2);
 System.out.println(params: + params);
 StringTokenizer st = new StringTokenizer(params, ampSep);
 String featureShortName = null, featureChoiceShortName =

null;
 while (st.hasMoreTokens()) {
 String param = st.nextToken();
 int eqPos = param.indexOf(eqSep);
 if (eqPos >= 0) {
 featureShortName = param.substring(0, eqPos);
 featureChoiceShortName = param.substring(eqPos + 1);
 System.out.println(featureShortName: +

featureShortName+ , featureChoiceShortName: +
featureChoiceShortName);

 }
 }
 }
}

See also:

Design Considerations – Parameter Enabled

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 96

Making Scope Selection Enabled
There are three types of ADF task flows that are impacted by FSM Scope.
Each type requires certain steps to make it scope enabled.

Search Tasks

These ADF task flows are used by tasks designated as the Search task of
an FSM scope.

1. Determine if the ADF task flow was invoked from FSM.

2. Make sure that the ADF task flow is invoked in MODE=SEARCH.

3. Read scope value passed from FSM.

• This is optional and is only needed if the Search task is
intended to search based on a qualifying attribute such as a
parent scope value. The task designer needs to provide that
information to the developer.

4. Append the scope value to the title of the page.

• For example, if the scope value selected is US Excise Tax
when you perform Manage Tax Statuses, then the page title
should be Manage Tax Statuses: US Excise Tax.

5. Disable all buttons except the Done button.

6. Allow selection of the scope value.

7. Return the selected value to FSM.

Manage Tasks

These ADF task flows are used by tasks designated as the Manage task of
an FSM Scope. Typically, they are for creating new instance of scope.

1. Determine if the ADF task flow was invoked from FSM.

2. Make sure that the ADF task flow is invoked in Manage mode.

3. Read the scope value passed from FSM.

• This is optional and is only needed if the Manage task is
intended to create a new value based on a qualifying attribute
such as a parent scope value. The task designer needs to
provide that information to the developer.

4. Append the scope value to the title of the page.

5. Allow the creation of new values.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 97

Target (Consumer) Tasks

These ADF task flows are used by tasks that belong to a task list with
Scope.

1. Determine if the ADF task flow was invoked from FSM.

2. Read scope value passed from FSM.

3. Return to FSM when task flow is closed.

Scope Enablement Related Functions
The following functions are used by one or more types of tasks that
require scope enablement.

Determining Invocation Method

To determine which mode is used in FSM to invoke your ADF task flow,
check the following parameter:
#{requestScope.setupDynamicFlowBean.setupParameterBean.mode
}

• If MODE = SEARCH, then Search task of a FSM scope has invoked
this ADF task flow

• If MODE = MANAGE, then Manage task of a FSM scope has invoked
this ADF task flow

• If MODE = NULL, then this ADF task flow is not invoked by scope
selection process in FSM

Note

This EL uses requestScope method. See Limitations of Using
requestScope Method for more information.

Reading Scope Values Passed By FSM

There are two ways to derive scope values passed by FSM.

Using EL Expression

Retrieve a combination of short name (code) of the scope business object
and the primary key attribute code of the scope value by using the
following expression. Note that it is one string but comma separated.
#{requestScope.setupDynamicFlowBean.scopeInfoParam['boShort
Name,attributeCode']}

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 98

For example, the following expression is used to retrieve scope value of
Tax Regime (Scope business object) passed by FSM.
#{requestScope.setupDynamicFlowBean.scopeInfoParam['ZX_TAX_
REGIME,CN-TaxAttribute1']}

If the returned value is null or an empty string, then no match was found.

Note

This EL uses requestScope method. See Limitations of Using
requestScope Method for more information.

Using HashMap

The following sample code illustrates how to read scope values from a
HashMap.

SetupDynamicFlowBean setupDynamicFlowBean =
SetupDynamicFlowBean.getInstance();

 String fsSource =
setupDynamicFlowBean.getSetupParameterBean().getSource();

 if (fsSource == null || !FS.equals(fsSource)){
 return;
 }
HashMap fsScopeInfoMap = null;
fsScopeInfoMap = setupDynamicFlowBean.getScopeInfoMap();

if (fsScopeInfoMap == null){
 return;
}
else if (fsScopeInfoMap.keySet() == null){
 return;
}
Iterator iter = fsScopeInfoMap.keySet().iterator();
 if (iter == null){
 return;
 }
String boShortName = ;
String attributeCode=;
String scopeValueCode=;

while (iter.hasNext()){
 boShortName = (String) iter.next();
 System.out.println(boShortName= + boShortName);

 ArrayList scopeValueParamsArray =

(ArrayList)fsScopeInfoMap.get(boShortName);

 int size = scopeValueParamsArray.size();

 if (size == 0){
 continue;
 }

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 99

 for (int i = 0; i < size; i++){
 ScopeValueParams scopeValueParams =

ScopeValueParams)scopeValueParamsArray.get(i);

 if (scopeValueParams == null){
 continue;
 }
 attributeCode = scopeValueParams.getAttributeCode();
 scopeValueCode = scopeValueParams.getScopeValueCode();
 System.out.println(attributeCode= + attributeCode +

scopeValueCode= + ScopeValueCode);
 }
}

Tip

EL expression is simpler to use. Use it if you need to retrieve only one
scope value. If you expect to retrieve more than one scope value, use
HashMap.

Returning Scope Values to FSM

The following API, available through the FSM Shared Library, can be
used to return a value selected on the ADF task flow for the Search task of
a scope to FSM:
setupDynamicFlowBean.setSelectedScopeInfo (String
selectedAttributeCode, String selectedScopeValueCode,
String selectedScopeValue);

It uses three parameters and their values can be up to 180 characters.

• selectedAttributeCode: Scope business object attribute name.

• scopeValueCode: Internal identifier of the scope value, which can be
an alternate key or system-generated surrogate key.

• selectedScopeValue: Scope value name in the language of the login
user performing the selection of the scope.

Note

Due to ADF limitations only one scope value can be returned to FSM at a
time.

Sample Code
public void rowSelectedAction(SelectionEvent selectionEvent) {
 // Add event code here...

ADFUtil.invokeEL(#{bindings.TaxRegimeVO.collectionModel.makeC

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 100

urrent}, new Class[]{SelectionEvent.class}, new
Object[]{selectionEvent});

//Get Scope values
 String taxRegimeCode = (String)

ADFUtil.evaluateEL(#{bindings.TaxRegimeCode.inputValue});
 String taxRegimeName = (String)

ADFUtil.evaluateEL(#{bindings.TaxRegimeName.inputValue});
//System.out.println(taxRegimeCode=+taxRegimeCode + taxRegimeName

= +taxRegimeName);
 SetupDynamicFlowBean setupDynamicFlowBean =

SetupDynamicFlowBean.getInstance();
//Pass Scope values to ASM
 //The following method can be called several times if the

selected rows contains
 //composite key for a scope value
 //setupDynamicFlowBean.setSelectedScopeInfo (String

selectedAttributeCode, String selectedScopeValueCode, String
selectedScopeValue);

 setupDynamicFlowBean.setSelectedScopeInfo(RegimeCode,
taxRegimeCode, taxRegimeName);

See also:

Design Considerations – Scope Selection Enabled

Save and Go to Task Enabled
FSM provides a declarative component to add the Save and Go To Task
option to the Save and Close button of an ADF task flow. The Save and
Close action on ADF task flows of any of the tasks in the Save and Go To
Task sub menu will return to the original task list in FSM from where the
first task was invoked.

Add the declarative component as follows.

1. Create an FND application panel with Save and Close button enabled

2. Select FunctionalSetup from Component Palette

3. Drag and drop SetupButtonMenu from Component Palette into Save
and Close commandToolbarButton of the fnd applicationsPanel

4. Bind a backing bean method to the ActionListener of
SetupButtonMenu

5. The backing bean method will save and commit the current transaction
and automatically invoke the same API as described in Returning
Control to FSM Task List to return to FSM.

See also:

Design Considerations – Save and Go To Task Enabled

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 101

Note

The declarative component and APIs needed to implement this features
are available through FSM shared library. See Adding the FSM Shared
Library for more information.

Although this declarative component can be added to any buttons, the
additional option shown on the button menu will always be called Save
and Go To Task, irrespective of what the main button is called.

Enabling Security for Setup ADF Task flows
Use the following steps to properly secure ADF task flows used by setup
tasks.

1. Add FSM Shared Library if not already done.

2. Secure ADF task flow with proper privilege as per Oracle Fusion
Security standards and guidelines.

• Ensure this privilege rolls up to the appropriate job roles that
will be assigned to the users who will perform the setup task.

• Ensure those job roles inherit
ASM_FUNCTIONAL_SETUPS_ABSTRACT role. Without
ASM_FUNCTIONAL_SETUPS_ABSTRACT role users will
not have access to FSM and will not be able to perform setup
tasks from FSM.

Warning

Understanding standards and guidelines of Oracle Fusion Security model
and how to secure portlets are beyond the scope of this document. If you
are not familiar with them, consult appropriate documentation and training
material.

Developing Web Services to Execute Setup Tasks
While most setup tasks will be performed using ADF task flows (UIs), a
setup task may also be executed by using web services. Typically, these
tasks will launch a background process to manage setup data.

If you are using a web service to execute setup tasks, FSM requires that
your web service includes an API called LAUNCHPROCESS() using the
following specification. The rest of the design and technical details are up
to the discretion of the web service designer and developer.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 102

When the web service is invoking a background process to execute a task,
it must also update the task status in FSM after the background process
completes. FSM provides public web services to set task status, which can
be used for this purpose.

launchProcess() Details

Java Specification

Interface.java

public interface LaunchProcessInterface {
public List<PropertyValue> launchProcess(List<PropertyValue>

processControl);
}

PropertyValue.java
public class PropertyValue implements Serializable{
 String propertyName = null;
 String propertyValue = null;
 public PropertyValue() {
 super();
 }

 public void setPropertyName(String propertyName) {
 this.propertyName = propertyName;
 }

 public String getPropertyName() {
 return propertyName;
 }

 public void setPropertyValue(String propertyValue) {
 this.propertyValue = propertyValue;
 }

 public String getPropertyValue() {
 return propertyValue;
 }
}

XSD Specification
<xs:schema version=1.0 targetNamespace=…>
 <xs:element name=launchProcess type=tns:launchProcess/>
 <xs:element name=launchProcessResponse

type=tns:launchProcessResponse/>
 <xs:complexType name=launchProcess>

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 103

 <xs:sequence>
 <xs:element name=arg0 type=tns:propertyValue minOccurs=0

 maxOccurs=unbounded/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=propertyValue>
 <xs:sequence>
 <xs:element name=propertyName type=xs:string

 minOccurs=0/>
 <xs:element name=propertyValue type=xs:string
 minOccurs=0/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=launchProcessResponse>
 <xs:sequence>
 <xs:element name=return type=tns:propertyValue minOccurs=0
 maxOccurs=unbounded/>

 </xs:sequence>
 </xs:complexType>
</xs:schema>

Properties Passed by FSM

Property Name Property Value

iPTLItemKey Unique identifier of the task in a given task list in an implementation project

iPTLParentItemKey Unique identifier of the immediate parent of the task in an implementation
project. If the task is a direct child of an implementation project, then the ID of
the implementation project.

FS_SOURCE FS

FS_SCOPEINFOS Selected scope value

FS_MODE Search, Manage, or null

See Making Scope Selection Enabled for more details.

Any explicitly defined
Task Parameters

Specified values of the explicitly defined parameters. See Task Parameters for
more details.

Properties Returned to FSM

Property Name Property Value

processId If the service submits a background process to execute the task, then process
(job) ID of the submitted process should be returned. On the other hand, if the
task execution process is completed as part of this service, then no value is
returned (meaning the process ID may be empty).

taskStatus Status of the task executing the service.

If a background process is submitted, then the status returned must be Submitted
(along with a process ID as specified).

Otherwise, one of the valid statuses is returned.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 104

statusDetails Use this property to return errors if desired. FSM will show these errors in log
files.

Task Status Description

Status Code UI Equivalent Description

NOT_STARTED Not Started User has not started performing the task

IN_PROGRESS In Progress User has started performing the task but the
activity has not completed yet

DONE Completed User has completed performing the task

SUBMITTED Submitted A request has been submitted to a
background process to perform the task.

COMPLETED_WITH_WARNIN
GS

Completed with
Warning

Task has been performed but completed with
Warnings.

COMPLETED_WITH_ERRORS Completed with
Error

Task has been performed but completed with
Errors

EXECUTE_ONLY_ONCE Execution Frozen The task cannot be performed anymore

Tip

Use the Submitted status only if a background process has been submitted
to execute a task. When a task is in Submitted mode, you cannot perform
the task from FSM until the status is set to another value.

On the other hand, if status of a task is not set to Submitted when a
background process has been submitted to perform the task, you may
perform the task multiple times. This will result in submitting multiple
background processes for the same task overlapping each other.

Coding Recommendation for Including launchProcess()
While it is ultimately the decision of the web service designer and
developer on how the Service to execute a setup task is built, here are
some guidelines that may be considered.

ADF BC Service Approach

These are the suggested steps if you are using ADF BC services.

1. Create a programmatic View Object (VO) called PropertyValueVO

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 105

2. Create two transient attributes of type String: PropertyName and
PropertyValue

3. Create an Application Module (AM)

4. Add the PropertyValueVO to the AM

• The View Object instance must be called PropertyValue

5. Go to the Java tab in your AM and select the option to generate
Application Module Class

6. Implement launchProcess() API

Sample Code
public List<PropertyValueVORowImpl> launchProcess(
 List<PropertyValueVORowImpl> processControl){

// Get the ProcessControl properties
String taskListItemId = null;
String parentTaskListItemId = null;
String propertyName = null
String propertyValue = null;

 for (int i = 0; i < processControl.size(); i++)
 PropertyValueVORowImpl prop = processControl.get(i);
 if (iPTLItemKey.equals(prop.getPropertyName()))
 taskListItemId = prop.getPropertyValue();
 else if (iPTLParentItemKey.equals(prop.getPropertyName()))
 parentTaskListItemId = prop.getPropertyValue();
 else{
 propertyName = prop.getPropertyName();
 propertyValue = prop.getPropertyValue();
 }
 }

 /**/
 /* Write Code to Submit Process */
 /**/

 // Return the status + process Id + status Details
 String status = SUBMITTED;
 String statusDetails = null;
 String processId = 9999;

 PropertyValueVORowImpl statusProp =

(PropertyValueVORowImpl)this.getPropertyValue().createRow();
 statusProp.setPropertyName(status);
 statusProp.setPropertyValue(status);

 PropertyValueVORowImpl statusDetailsProp =

(PropertyValueVORowImpl)this.getPropertyValue().createRow();
 statusDetailsProp.setPropertyName(statusDetails);
 statusDetailsProp.setPropertyValue(statusDetails);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 106

 PropertyValueVORowImpl processIdProp =
(PropertyValueVORowImpl)this.getPropertyValue().createRow();

 processIdProp.setPropertyName(processId);
 processIdProp.setPropertyValue(processId);

 List<PropertyValueVORowImpl> processReturn = new

ArrayList<PropertyValueVORowImpl>(2);
 processReturn.add(statusProp);
 processReturn.add(statusDetailsProp);
 processReturn.add(processIdProp);

 return processReturn;
}

Updating Task Status when Background Process Completes
If the web service for executing a setup task is submitting a background
process to perform the task, then the service must also update the task
status once the background process completes.

You can use FSM Public Service called setTaskStatus for this purpose.
See Task Status Integration for more details.

Tip

Although FSM does not prevent the web service from setting the task
status to any of the valid task statuses, when a background process
completes the task status should be set to one of the following statuses:
DONE, COMPLETED_WITH_WARNINGS,
COMPLETED_WITH_ERRORS, and EXECUTE_ONLY_ONCE.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 107

8
Web Services for Setup Export and

Import

Design Considerations
Warning

Application developers building setup export and import web services
should be knowledgeable and experienced in ADF, JDeveloper, and web
service technologies and their standards and guidelines.

About Setup Export and Import Services
FSM allows you to export and import implementation projects to move
setup data from one instance to another.

When an implementation project is selected for export and import process,
FSM will identify business objects associated with each setup task in the
implementation project. It will then use web services to read data from (at
the source instance) and write data to (at the target instance) those
business objects.

Therefore, you must provide setup export and import web service for each
setup business object if their data is expected to be exported and imported
using FSM. Each service must be atomic and self-sufficient, which means
it must manage dependencies, handle surrogate keys, order processing,
manage transaction, and so on.

Typically ADF Business Component (BC) View Objects are used to create
these services; however, FSM also supports services based on non ADF
BC objects.

If you are expecting larger volume of setup data to be migrated from one
instance to another, then export and import of all of that data in a single
batch may not be possible due to memory constraints and performance
degradation. FSM recommends and supports batch processing for such
cases, which allows invoking export and import services multiple times to
process data in batches.

See also:

Developing ADF BC Object-Based Export and Import Web Services

Developing Non ADF BC Object-Based Export and Import Web Services

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 108

Developing Export and Import Web Services of Larger Data Volume

FSM Export and Import Service Methods
To facilitate export and import capabilities, the web services must include
EXPORTDATA() and IMPORTDATA() methods provided by FSM. See
ADF BC based export and import services and non ADF BC based
services for more details.

Service Granularity
A service for each setup business object is desirable. However, a single
service can be developed to potentially handle multiple objects at a time. It
is up to the application developers to make their setup services as
coarsely-grained or granular as needed by their business requirements.

For example, application developers may choose to provide two separate
setup export and import services for business objects called Accounting
Periods and Accounting Period Types or combine them into one service.

Entity Object (EO) Association Types
There are two common types of EO associations that have impact on setup
export and import services.

Composite Associations

If a business object is implemented using more than one EOs that have
tightly coupled relationships, which means that child entities cannot exist
without the existence of the parent entity, then the relationships between
the parent and the children are known as composite associations.

For example, the Purchase Order business object may be comprised of a
header with one or more line items and each of the line items may have
one or more shipments. The shipments cannot exist without a line item,
and the line items cannot exist without a header. Therefore, Purchase
Order Header - Purchase Order Lines - Shipments is a composite
relationship. Purchase Order Lines and Shipments should be exposed in
the Purchase Order Header SDO and not separately.

Defining composite associations for entity objects provides the following
key behavior:

• Database changes are made in proper order guaranteeing parent
entity is inserted before child entities.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 109

• Child entities are protected from orphan rows. Deleting parents
can be prevented if any children exist or cascade delete of
parent can be implemented by deleting the children when a
parent is deleted.

When defining composite associations, applicable properties can be set as
follows:

• Cascade delete

• Cascade update of key attributes

• Locking of top-level container

• Update of top-level history columns

Non-Composite Associations

An entity may be referred in another entity to provide fuller context
(foreign key references). These relations are referred to as non-composite
associations.

For example, purchase orders may include relationships to suppliers to
signify which PO is for which supplier.

Role of Alternate Keys
Since FSM export and import moves setup data between different
instances, system-generated primary keys from the source instance cannot
be used to determine the existence of a row in the target instance. All
export Services must therefore exclude surrogate keys during export, and
provide functionality to restore these keys during the import process using
alternate keys.

Similarly, foreign keys also cannot be used between different instances.
Therefore, alternate keys of the foreign key references must also be
included in the export. The restoration of the surrogate foreign keys during
the import process can then be accomplished by using the List of Value
(LOV) feature in the View Object.

What to Consider When Defining Alternate Keys

Non-Translatable Attributes

A non-translatable, nonchangeable short name or code attribute is most
preferable as an alternate key. A translatable attribute is not prevented
from being part of an alternate key, however, may have the following
consequences:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 110

• If the translatable attribute value changes in between different import
processes, the same row may be duplicated at the target instance since
Setup import will not have any way to identify the link between the
old alternate key and the newly changed alternate key.

• Setup export and import has dependency on language. As a result, if
the languages of the source instance and the target instance are
different, then alternate keys will not match and therefore, setup
import may create duplicate rows at the target instance.

Global Unique Identifier as Alternate Key

The second best option to using user-defined, non-changeable attribute as
alternate key is to use an auto-generated global unique identifier (GUID).
GUID works best when data is always created at the source instance and
moved to target instance but never created at the target instance.

For example, consider the case when tax rates are always created at the
Test (source) instance and then migrated to Production (target) instance. In
this case, any new tax rate created in Test will be assigned a GUID and
conflicting GUID generation is avoided because no other instance creates
tax rates. On the other hand, if tax rates are created in both Test and
Production instances and moved back and forth between the two using
export and import, then same tax rates may be created at both instances
with two different GUIDs, preventing setup import from being able to
detect them as the same data.

Foreign Key as Part of Alternate Key

In case of non-composite associations, a foreign key can be part of an
alternate key of an associated object. In such cases, alternate key for the
foreign key ID is used first to completely resolve the alternate key of the
associated object and then it is used to resolve the primary key at the target
instance.

For example, if the alternate key for Tax Regime is NAME+ORGID, then
ORGID will be used first and then NAME+ORG CODE as the alternate
key to resolve the surrogate primary key of Tax Regime at the target
instance.

Alternate Key for Composite Associations

The parent object in the composite association will require an alternate
key following the same rules as specified. However, if a child object in a
composite association does not contain a surrogate primary key, then there
is no need to define an alternate key on the child. In these cases, the
primary key of the child object is typically defined as the primary key of

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 111

the parent object combined with an attribute of the child object. Since
primary key of the parent will be resolved using its alternate key, FSM
import will be able to use parent ID plus the child attribute to uniquely
identify proper children.

For example, Purchase Order Header is the parent object and has
PO_HEADER_ID as the surrogate primary key. Purchase Order Line
Items, the child object, has its primary key defined as PO_HEADER_ID +
PO_LINE_ITEM_NUM. Therefore, Purchase Order Line Items will not
require alternate key because PO_HEADER_ID will be resolved by using
the alternate key of Purchase Order Header object and then setup import
will use this newly resolved PO_HEADER_ID + PO_LINE_ITEM_NUM
to correctly match the children data.

Filtering Exported Setup Data
When a business object is defined as a scope of a task list or setup data
export, then you will have the option to filter setup data by scope values
during setup export. See Business Objects as Scope for more information.

The EXPORTDATA() API is able to accept a list of filter (scope) values
that can be used to filter the view objects as well as propagate filtering to
related view objects if needed.

Excluding Oracle Defined (Seeded) Data
Oracle-defined data, known as seed data, cannot be moved between two
instances by using FSM export and import processes. Oracle seed data
must be managed at different instances using the standard Oracle Fusion
patching process.

Multi-Language Support
The export and import APIs support retrieval and upload of all translations
along with the base data. Application developers, however, must add View
Objects for their translation tables and create View Links from their base
view objects to their translation view objects.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 112

Developing ADF BC Object-Based Export and Import
Services

Warning

You should be experienced in developing applications using Oracle
platforms and knowledgeable in ADF, JDeveloper, and web service
technologies. You should also be familiar with Oracle Fusion Applications
standard and guidelines.

In most typical cases, setup export and import services will be created
based on ADF BC objects. To develop these services the following steps
should be used.

1. Create ADF BC objects

2. Implement FSM export and import methods

3. Generate web services

Note

You should review Design Considerations to understand various design
implications before you start developing export and import web services,
especially if you are doing so for the first time.

Creating ADF BC Objects
Before web services for setup export and import can be created,
appropriate ADF BC objects needed by those services must be created.

Entity Object (EO) Requirements

1. Define entity associations and identify whether or not they are
composite associations. See EO Association Types for more
information.

2. Create alternate keys for Entity Objects (EO).

• Since setup export and import moves setup data across
different instances, system generated primary keys cannot be
used as identifiers. An entity constraint must therefore be
created for each setup related EO to generate unique alternate
keys. See Role of Alternate Keys for more information.

3. Enable bulk processing.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 113

• Go to the tuning panel of the EO wizard, and check Use
Update Batching option, which will enable to use bulk DML to
upload data into database.

• Specify an appropriate value for When Number of Entities to
Modify Exceeds parameter. Profiling may be needed to
determine the best value.

• Specify validation logic in EO using declarative validators,
which can be optimized for batch processing. Avoid
programmatic validation logic.

• Avoid the following cases as they disable bulk DML:

o EO with CLOB-BLOB

o EO with attributes marked as Retrieve-on-Insert or
Retrieve-on-Update

o EO with ROWID attribute

o Custom coding that overrides doDML method

View Object (VO) Requirements

1. Add alternate key to View Object (VO).

• In the General tab of the VO, go to the Alternate Keys section
and add an alternate key.

• In the Alternate Key popup, select one or more Entity Usages
and select the alternate key from the corresponding usage.

2. Define alternate keys for any foreign keys. See Role of Alternate Keys
for more information.

• Include alternate key of the object referenced by the foreign
key.

• Define a list of values (LOV) for the alternate key of the
referenced object.

• Make sure the foreign key is updated by the LOV.

3. Create View Links for master-detail relationships, if applicable.

• If master-detail relationships exist between two objects, then
View Links can be set up to automatically export detail object
when the master object is exported.

4. Enable for multi-language support (MLS) by creating VOs for
translation EOs and then creating view links between the VOs for the
base EO and the corresponding translation EO.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 114

• When setup data is moved from one instance into another,
corresponding translated version must also be moved.

5. Enable bulk processing.

• Go to the tuning panel of the VO and specify correct fetch size.
Profiling may be needed to determine the best value.

Exception Handling Requirements

If any errors occur during setup export and import, they must be reported
to the user. The error scenarios may include but not limited to: data
validation, primary key constraint violation, unique key constraint
violation, invalid foreign keys, business rule violation, and so on.

FSM will delegate all exception handling to the underlying ADF BC
objects and their methods. Application developers, therefore, must
implement all validation logic and business rules in BC4J Layer. They
must also define appropriate error messages either declaratively or
programmatically by throwing appropriate JboExceptions. The error
messages should identify the invalid rows.

Implementing Setup Export and Import APIs
Once the ADF BC objects are properly defined, application developers
will first prepare service application module and then implement
exportData() and importData() methods provided by FSM in the
Application Module class.

Preparing Service Application Module (AM)

Before implementing setup export and import APIs, prepare service
Application Module (AM) using the following steps.

1. Include the Functional Setup Model library in your project

• Create your AM

• Generate Application Module class

• Go to the Java tab in your AM and select the option to generate
the Application Module class

• Implement
oracle.apps.setupHub.remoteApp.publicModel.migrator.Migrat
or interface from your AMImpl

2. Add the following Setup VOs from
oracle.apps.setupHub.remoteApp.publicModel.view to your AM:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 115

• ExportCriteriaVO - Usage: ExportCriteria

• ExportControlVO - Usage: ExportControl

• ExportReturnVO - Usage: ExportReturn

• ImportDataVO - Usage: ImportData()

• ImportControlVO - Usage: ImportControl

• ImportReturnVO - Usage: ImportReturn

3. Also add your VOs that you want to be exported and imported via this
Service to the AM. Make sure to include in the AM the children VOs
in their respective parent VOs.

Implementing Export API

A method called exportData() must be implemented in Application
Module class as follows. See Export Algorithm at a Glance for an
overview, an example of an export API, and how to generate report on
exported metadata.

1. Implement exportData() method

2. Identify filter criteria

3. Apply filter criteria to the VOs that are applicable to export and import
of Setup data

4. Identify surrogate keys

5. Write VO data to XML file

6. Maintain a Hashtable for all XML files generated by export

7. Return collection of XML files from the Hashtable to FSM

8. Return export status and if there are any errors

Note

Use standards and guidelines provided in Oracle ADF API reference
manuals.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 116

Export Algorithm at a Glance

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 117

Implementing exportData()

Use exportData() method as follows:
public ExportReturnVORowImpl exportData(
 List<ExportCriteriaVORowImpl> exportCriteria,
 ExportControlVORowImpl exportControl)

View Object Method Description

ExportCriteriaVORowImpl getObjectKey() Gets CODE of setup business object

 getAttributeSet() Gets a set of attributes and values

 getAttributeName() Gets name of the attribute being used for
filtering a setup business object

 getAttributeValue() Gets the value of the filter attribute

ExportControlVORowImpl getExportMetadata() Used by FSM only

 getExportData() Used by FSM only

ExportReturnVORowImpl setDataFiles() Returns a list of XML files created by export

 setServiceVersion() Returns version of the Service API used in
export. If a Service API changes over time, this
information may help developers to take
appropriate actions based on versioning if
applicable.

 setMigratorStatus() Returns errors if any occurred during export

Identifying Filter Criteria

Setup Export Filter Parameters

FSM will pass filter parameters to the export services when configuration
packages are created if any of the following conditions are met.

Business Object Has Search Task Defined

When a business object with Search task is exported, when generating the
configuration package for setup export, you have the option to select
specific values of the business object, which in turn are passed as filter
parameters. See Business Object Details for more information of Search
tasks of business objects.

Task List Scopes Are Defined

Any scope value selected when executing the setup tasks are passed as
filter parameters unless you add or remove those selected scope values. If

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 118

changes are made, then the newly selected scope values are passed as filter
parameters. On the other hand, if a scope is defined as allow scope
selection only during export and import, then no scope values are selected
when tasks are performed, however, when performing setup export, you
can select scope values to be used as filtering exported data. See Task List
Scope for more information.

Task Parameters Are Defined

FSM will pass any and all parameters defined on a task to the
corresponding export service whether or not the parameter is applicable
for filtering data of associated business object. The export service may
choose to ignore the parameters that are not applicable to filter exported
data. Parameters defined for task lists, however, will not be passed to the
export service. See Task Parameters for more information.

Business Object Is Defined As Deployment Method

When business objects of type Deployment Method are exported, the
attribute values defined for the Deployment Method are passed as
parameters.

Note

Although FSM will pass filter parameters to the setup export services, it is
up to the service to use those parameters as necessary. If the parameters
are not utilized by the services to filter data then all data of that business
object will be exported and imported.

Finding Setup Export Filter Parameters

The filter parameters for setup export are available through exportCriteria
and are a list of business object values. For example:

Object Key Attribute Set Attribute Name Attribute Value

HR_LOCATIONS Set1 LocationId 101

FUN_BUSINESS_UNIT Set2 BuId 202

FUN_BUSINESS_UNIT Set2 LocId 1000

The object key represents the short name (or code) of the business object.
The export API should match the object keys with the objects it will
export and then match the attribute values. If matched, then attribute value
can be applied to the VOs as filter criteria. The attribute set is useful when
multiple attributes are used to specify a given filter condition.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 119

For example, if the filter condition needed is Location Name = ABC and
Country = US, then they can be grouped together in a set to specify a
single filter criteria. If the set is blank, then all attributes and their values
are considered as part of a default set.

The following helper method returns a HashMap of the attribute sets and
their corresponding filter criteria for a given business object.
Subsequently, it can be used to create ViewCriteria for the related VO and
with applyCriteriaToViewObject API.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static HashMap<String, List> getExportCriteriaValues(
 List<ExportCriteriaVORowImpl> exportCriteria,
 String objectKey)

Sample Code
HashMap<String, List> attributeCriteriaValues =
 MigratorHelper.getExportCriteriaValues(exportCriteria,

<XXX_BO_SHORT_NAME>);

Iterator iter = attributeCriteriaValues.keySet().iterator();
while (iter.hasNext()) {
 // Key = attribute set
 String key = (String) iter.next();
 List list = attributeCriteriaValues.get(key);
 // Export Criteria values for each attribute set
 for (int i = 0; i < list.size(); i++) {
 ExportCriteriaVORowImpl criteriaRow =
(ExportCriteriaVORowImpl)list.get(i);
 System.out.println(criteriaRow.getAttributeName());
 System.out.println(criteriaRow.getAttributeValue());
 }
}

Additional Helper Methods

The following helper methods are provided to achieve additional actions
that may be needed to properly identify filter criteria passed to the services
by FSM.

• Transforming Attribute Names: Use the following helper method to
transform the attribute names passed as filter parameter if they are
different from the corresponding attribute names of the VOs.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void transformExportCriteriaAttributeNames(
List< ExportCriteriaVORowImpl> exportCriteria,
String objectKey, HashMap<String, String> attributeNameChangeMap)

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 120

For example, OrgId can be changed to BuId by passing a HashMap as
shown to the API:

HashMap<String, String> attributeNameChangeMap=new HashMap<String,
String>(1);

attributeNameChangeMap.put(OrgId, BuId);

• Checking For Valid Filter Criteria: This helper method may be
relevant if the Service requires taking specific action if no valid filter
criteria are available.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static boolean
isValidCriteriaAttributeAvailable(ViewObjectImpl vo,

 HashMap<String, List> attributeCriteriaValues);

• Collecting Filter Criteria Details: This helper method returns a
HashMap of attribute sets, attributes and attribute values, which can be
used to apply where and how they are needed.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static HashMap<String, HashMap<String, List>>
getAttributeCriteriaValuesBySet (
 List<ExportCriteriaVORowImpl> exportCriteria,
 String objectKey)

Tip

Use the same attribute names that will be returned as filter parameters for
your service VOs. If different attribute names are used in the service VOs,
then the service must transform the attribute names properly so that the
names match and therefore, the filters are appropriately identified.

Applying Filter Criteria to VOs

Once the filter criteria passed by FSM are identified, they can be applied
to VOs to filter a subset of the data in the VOs. The following helper
method creates a dynamic ViewCriteria on a VO using the HashMap of
attributes for filter criteria and their values.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void applyCriteriaToViewObject(ViewObject vo,
HashMap<String, List> attributeCriteriaValues)

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 121

Special Case: VO Contains Both Oracle-Defined and User-Defined
Data

Seeded data, which is data defined and shipped by Oracle, is always
excluded from setup export and import process and must only be
maintained via standard Oracle patching process. However, if setup data is
exported for reporting purposes, then the export may need to extract both
seeded and unseeded data. In such cases, use the following helper method
to include the seeded data in the export process.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void applyCriteriaToViewObject(ViewObject vo,
HashMap<String, List> attributeCriteriaValues, Boolean

includeSeedData)

Sample Code
MigratorHelper.applyCriteriaToViewObject(this.get<XXXVO>(),
exportCriteriaValues, exportControl.getIncludeSeedData());

Note

exportControl.getIncludeSeedData() must be passed as a parameter to the
method and not True-False to include seeded data in export.

The columns CREATEDBY and LASTUPDATEDBY must be included
in the VOs that contain seeded data since LASTUPDATEDBY=
SEED_DATA_FROM_APPLICATION identifies the seeded data rows.

Adding Additional View Criteria to Filter Data

The following helper method can be used if there is a need to apply
additional criteria to VOs to filter data.

ViewCriteria vc1 =
 this.get<XXXVO>().getViewCriteria(YourCustomViewCriteriaName);
 // Get Criteria before applying
ViewCriteria vc2 =

MigratorHelper.getViewCriteria(this.get<XXXVO>(),
exportCriteriaValues, exportControl.getIncludeSeedData());
vc1.copyFrom(vc2);
this.get<XXXVO>().applyViewCriteria(vc1);

Identifying Surrogate Keys

Since setup data is migrated from one instance to another, surrogate keys
from the source instance is not applicable at the target instance. Therefore,

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 122

all surrogate keys must be identified and excluded from writing to the
XML file during setup export.

Surrogate keys must be identified in the VOs as well as in the view links.

The following HashMap may be used to maintain a list of VOs and an
array of excluded attributes for each of those VOs:

HashMap<String, String[]> excludedAttrMap

The following helper method may then be used to get a map of included
attributes.

public static HashMap<String, ViewAttributeDefImpl[]>
getViewObjectIncludedAttrMap(HashMap<String, String[]>
voExcludedAttrMap)

The helper method is found in:

 oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorHelper

Writing Setup Data to XML Files

Once appropriate filters are applied and the attributes for export are
determined, setup data is ready be written to XML. The View Link objects
are automatically exported and written to XML along with their parents
unless they are explicitly excluded in voExcludedAttrMap.

Although optional, it is also recommended that you set forwardOnly mode
to True by using MigratorControl to improve performance of your export.
If the export will involve larger data volume then batch processing is
better suited than forwardOnly mode. See Batch Processing of Large Data
Volume for more information.

The following helper method provides ability to write to XML:
Helper method in

oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static byte[] getViewObjectXML(MigratorStatus migStatus,
ViewObject vo, HashMap<String, ViewAttributeDefImpl[]>
voAttrMap, boolean debugMode, MigratorControl migControl)

MigratorControl is set as follows:
MigratorControl migControl = new MigratorControl();
migControl.setForwardOnly(true);

Tip

During development phase, you can set debugMode to True to print VO
XML and review correctness more easily. However, remember to set
debugMode to False once verified.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 123

Maintaining Hash Table for Export Related XML Files

A Hashtable should maintain all XML files related an export process and
XML filename should be used as the key.

The format of the XML filename must be <SetupEntityShortName>.xml
such as HR_LOCATIONS.xml, ASM_TASK.xml, and so on. This is
imperative for import process to identify the right XML file for right setup
data by using: Hashtable<String, byte[]> files.

Managing Multiple Business Objects in a Single Task or Service

If a single task or task flow manages data from multiple business objects,
then the corresponding service can also manage export and import of those
objects as a single unit.

This requires that the higher level export API follows one of the following
two approaches as best suited:

• Invokes export APIs of the related business objects from the nested
application modules

• Invokes export APIs at more granular VO level

All generated XMLs from multiple objects should then be added to file list
so that all related data is exported as one set. The following helper method
is provided to assist in appending files and statuses from nested export
APIs to file and status of the higher level export API.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void addAdditionalExport(Hashtable<String,
byte[]>fromList, Hashtable<String, byte[]>toList,
MigratorStatus fromStatus, MigratorStatus toStatus);

Note

If a setup task does not manage data for dependent objects, but just
depends on other tasks and business objects, then handling those related
objects in a single service is not recommended. Instead, let FSM use task
list hierarchy of the implementation project to invoke related business
objects services.

Returning XML File Collection Generated by Export Method

The collection of XML files generated must be returned to FSM as shown.
ExportReturnVORowImpl returnRow =
(ExportReturnVORowImpl)this.getExportReturn().createRow();
returnRow.setDataFiles(files);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 124

Returning Errors

The following method can be used to return errors to FSM, if applicable.
MigratorStatus migStatus = new MigratorStatus();

// If processing error/exception occurs
migStatus.setProcessingError(xxx);
returnRow.setMigratorStatus(migStatus);

Reporting on Exported Metadata

To generate BIP reports on XML files created from ADF view objects, the
following method can be used to pass the metadata as XSL-FO.

migStatus.getObjectReportMetadataMap().put(<xmlRootNodeName>,
<reportMetadata>);

The following method will retrieve XSL-FO metadata from the view
objects.

reportMetadata = getReportMetadata((ViewObjectImpl)vo);

Example of Export API
import

oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper;

public ExportReturnVORowImpl exportData (
List<ExportCriteriaVORowImpl> exportCriteria,
ExportControlVORowImpl exportControl){

ExportReturnVORowImpl returnRow = (ExportReturnVORowImpl)

this.getExportReturn().createRow();

MigratorStatus migStatus = new MigratorStatus();

 try {

 // Identify Filter Criteria
 HashMap<String, List> exportCriteriaValues =

MigratorHelper.getExportCriteriaValues(exportCriteria,<XXX_BO
_SHORT_NAME>);

 // Apply Filter Criteria to your business object VO
 MigratorHelper.applyCriteriaToViewObject(this.get<XXXVO>(),
 exportCriteriaValues);

 // Identify surrogate attributes to be excluded from the export

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 125

 HashMap<String, String[]> excludedAttrMap = new HashMap<String,
String[]>(1);

 String[] boExcludedAttributes =
{BusinessObjectId,ParentBusinessObjectId};

 excludedAttrMap.put(oracle.apps.xxx.view.XXXVO,
boExcludedAttributes);

 // Build included attributes using excluded attributes
 HashMap<String, ViewAttributeDefImpl[]> includedAttrMap =
 MigratorHelper.getViewObjectIncludedAttrMap(excludedAttrMap);

 // Write View Object XML using included attributes
 byte[] xmlDoc = MigratorHelper.getViewObjectXML(migStatus,

this.get<XXXVO>(),
 includedAttrMap, false);

 // Add XML to hashtable for XML files
 Hashtable<String, byte[]> files = new Hashtable<String,

byte[]>(1);
 files.put(<XXX_BO_SHORT_NAME> + .xml, xmlDoc);

 // Return data files to FSM
 returnRow.setDataFiles(files);
 }
 catch (Exception e){
 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 // Return any exceptions/errors to FSM
 returnRow.setMigratorStatus(migStatus);
 return returnRow;
}

Implementing Import API

A method called importData() must be implemented in Application
Module class as follows. See Import Algorithm at a Glance for an
overview and an example of import API.

1. Implement importData() method

2. Identify XML data elements being passed

3. Update primary keys based on alternate keys

4. Read XML

5. Commit transaction

6. Return import status and if there are any errors

Note

Use standards and guidelines provided in Oracle ADF API reference
manuals.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 126

Import Algorithm at a Glance

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 127

Implementing importData()

Use importData() method as follows:
public ImportReturnVORowImpl importData (
 ImportDataVORowImpl importData,
 ImportControlVORowImpl importControl)

View Object Method Description

ImportDataVORowImpl

getDataFiles() Gets a list of XML files to be processed during
import

 getServiceVersion() Returns version of the Service API used in
export. If a Service API changes over time, this
information may help developers to take
appropriate actions based on versioning if
applicable.

ImportControlVORowImpl getImportMetadata() Used by FSM only

 getImportData() Used by FSM only

ImportReturnVORowImpl setMigratorStatus() Returns errors if any occurred during export

Note

Foreign keys that are included with an alternate key must be resolved
within the import method. All other foreign key references should be
resolved using view object LOV option.

For business objects with parent-child relationships, the associated child
attribute is automatically updated with the parent primary key value when
updatePrimaryKeysInXML() method is used on the parent view object.

Identifying XML Data Files

The exported data can be retrieved as separate XML elements using the
following helper method.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

Hashtable<String, Element> files = importData.getDataXMLElements();
Element xmlRootElement = files.get(XXX_BO_SHORT_NAME + .xml);

Use following imports:

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 128

Updating Primary Keys in XML Data Elements

Since the primary keys of the business objects were excluded from XML
during setup export, they must be included again before setup import is
performed.

The following helper method will update the corresponding XML
elements based on their alternate keys provided in their VOs.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void updatePrimaryKeysInXML(Element rootElement,
 ViewObjectImpl vo, String altKeyName, boolean
skipWhere)

View Linked Objects

If there are view linked (which means dependent) business objects within
the XML, then the helper method must be invoked for each of the view
linked objects. The helper method will automatically update the associated
child attribute in all children VOs that are directly view linked to the
parent VO.

The skipWhere parameter used in ViewObjectImpl.findByAltKey() within
the helper method can be set to true for linked VOs. If set as such, the
alternate keys are searched using the entire row set.

Tip

For better performance, use VOs without any view links.

Foreign Key IDs as Part of Alternate Keys

If VOs that are not view linked, has alternate keys which include a
surrogate foreign key ID, then those foreign key references must be
resolved before calling updatePrimaryKeysInXML(). The following
helper method will find the surrogate ID of the Foreign Key and appended
it to the XML using the alternate key of the foreign key ID provided
during export.

Helper methods in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static Row findByAltKey(ViewObjectImpl vo, String
altKeyName, Object[] values)

public static void updateElementAttribute(Element element, String
attribute, String value)

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 129

Reading XML

The following helper method is used to import XML elements once all
surrogate IDs are resolved.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void readXML(MigratorStatus migStatus, ViewObjectImpl
vo, Element xmlRootElement, int depthCount, boolean
bundledExceptionMode, boolean debugMode);

• depthCount: This parameter represents how many levels of VIEW
LINKS will be traversed during processing. For example:

• 0 (zero) indicates no view links will be traversed

• 1 (one) indicates the direct view links of the object will be
traversed

• 2 (two) indicates two successive levels of view links will be
traversed, and so on…

• (-1) (minus one) indicates all levels will be traversed

• bundledExceptionMode: When this flag is set to True, all attribute
level validations are run. On the other hand, if this is set to False,
validation is stopped after the first failed attribute level validation.
ADF, however, will try all attribute validations no matter what.

• debugMode: Set it to True to print the XML being imported for easier
debugging of code during development. Once verified, the flag should
be set to False.

Managing Multiple Business Objects in a Service

FSM supports creating a single web service to export data from multiple
business objects. If an export API is created to process multiple business
objects, then the corresponding XMLs must also be imported via a single
import API.

This means that the import API of the parent business object needs to
support one of the following approaches and match whichever approach
was followed by the corresponding export API:

• Invokes import APIs of the related Business objects from the nested
application modules

• Invokes import APIs at more granular VO level

The following helper method appends the status from a nested import API
to the import status of a parent.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 130

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static void addAdditionalImport(
MigratorStatus fromStatus, MigratorStatus toStatus);

Note

If a setup task does not manage data for dependent objects, but just
depends on other tasks and business objects, then handling those related
objects within a single service is not recommended. Instead, let FSM use
task list hierarchy of the implementation project to invoke related business
objects services.

Committing Transactions

Once the data is imported, the transactions can then be committed. When
importing multiple business objects, the transaction may be committed
after all objects have been processed.
this.getTransaction().commit();

The decisions on transaction management are left to the application
developers based on their requirements. They may use the
MigratorStatus.isErrorFound() to check if any errors occurred during
import. In addition, isObjectErrorFound(ViewObjectImpl VO) is available
to check errors encountered in a specific VO. The second method is
particularly relevant when import API processes multiple VOs together.

In either case, it is up to the application developers to decide if they wish
to commit a transaction to save a partially successful set of objects and
rows.

Returning Errors

Any error encountered during import of an individual row is available
within MigratorStatus that is returned by readXML method. Any other
errors may be reported using the following method.

// If processing error/exception occurs
migStatus.setProcessingError(xxx);

// Return the status using ImportReturnVORowImpl
returnRow.setMigratorStatus(migStatus);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 131

Returning Errors When Using Custom Programmatic Validations

If additional programmatic validations are used in import API and any
rows failing those validations should be excluded from
Migrator.readXML(), then return the errors to FSM using MigratorStatus.

// Get a list of your XML elements
NodeList xmlElements =

 parentRootElement.getElementsByTagName(<vo>.getXMLRowElemen
tTag());

ArrayList<MigratorRowStatus> migRowStatusList = new
 ArrayList<MigratorRowStatus>(1);

// Loop through each row in your XML, and capture errors
for (int i = 0; i < xmlElements.getLength(); i++) {
Element element = (Element)boElements.item(i);

// Add your validation code

// If row validation is successful, then continue

// If row validation fails, then remove the row element & capture

error
 // Remove the row element from the XML
 parentRootElement.removeChild(element);

 // Capture information about the error
 StringWriter rowXML = new StringWriter();
 ((XMLNode)element).print(rowXML);

MigratorRowStatus migRowStatus = new
MigratorRowStatus(<rowXML>, // Row that caused the error
<errorMessage>, // Detailed Error message
<errorCode>, // Error Code, if any
<errorSeverity>, // Error Severity, if any
<alternateKey> // Use of alternate key is preferable instead of an

Id, since it is visible to user
));

 migRowStatusList.add(migRowStatus);
}

// Invoke readXML for remaining rows
MigratorHelper.readXML(…);

// Append errors from above to any errors that may have occurred

within readXML()
if (migRowStatusList.size() > 0){
ArrayList errorList =

 migStatus.getObjectErrorMap().get(<vo>.getName());
if (errorList != null)
 errorList.addAll(migRowStatusList);
else

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 132

migStatus.getObjectErrorMap().put(<vo>.getName(),migRowStatus
List);

}

Note

It is recommended that ALL validations are captured at the EO layer and
triggered within readXML() rather than having different sets of validations
in the import API. Use custom validation in import API only on an
exception basis.

Handling Special Cases of Export and Import APIs

Date Effective Business Objects

The recommended approach for handling primary keys in setup export and
import services is to:

• Suppress the primary key ID at the source instance during export and
to use alternate key instead.

• Retrieve the primary key ID at the target instance during import by
using the exported alternate keys.

With date effective business objects, the alternate key approach for
determining the surrogate primary key ID will not work because multiple
rows can share the same surrogate ID with different effective dates.

Consider the following example:
ID Start Effective Date End Effective Date User Key

10 1-Feb-2009 10-Feb-2009 ABC

10 11-Feb-2009 ABC

If the standard alternate key approach is used to import at a target instance
where none of these rows existed before, each of these rows would be
inserted with a different ID, which will not be the desired result.

To circumvent this problem, the application developers should use view
criteria to determine the surrogate ID based on the user key. That is:

• Apply the view criteria to the VO to determine the surrogate ID (for
each XML row) based on its corresponding user key that is available
in the exported XML.

• After the surrogate ID is retrieved, append it to the XML. See the
section called Foreign Key IDs as Part of Alternate Keys under
Updating Primary Keys in XML Data Elements for details on how this

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 133

can be done. The only difference is, instead of using an alternate key
to locate a row you will use the view criteria.

Once the primary key attributes , the surrogate ID and effective dates, are
retrieved, readXML() can be performed as per usual process.

Note

Do not use updatePrimaryKeysInXML() for parents because the primary
key ID is already determined using the view criteria.

Propagating Primary Keys To Children: If there are children VOs that
need the parent primary key ID to be propagated to resolve their alternate
keys, then use propagatePrimaryKeysInXML(Element, ViewObjectImpl)
to propagate primary keys to the underlying view object tree.

Custom Validation: If custom validation needs to be performed during
the import process, application developers must implement them within
the EO validation as per their requirements. Consider the following
guidelines:

• EO layer should contain all date effective validations.

• No special handling is required during the export process.

• The target instance should be treated as the source of the truth and
conflicting records that violate date effective principles should be
rejected during import.

Generating Web Services
Once the setup export and import methods are properly implemented,
application developers should generate web services and expose those
methods.

Generating Web Services from Application Modules

Using the Application Module Editor, enable a service interface for the
application module.

1. Go to the Service Interface tab and add a new service interface.

2. Add MTOM annotation

• Add @MTOM to <xxx>ServiceImpl.java

• Add it just above: public class <xxx>ServiceImpl extends
ServiceImpl implements <xxx>Service {

• Use import javax.xml.ws.soap.MTOM;

3. Generate asynchronous web service methods.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 134

• Go to the Service Interface

• Click Edit

• Check Generate Asynchronous Web Service methods

Expose exportData() and importData() Methods in the Service

Use Service Interface Custom Methods section in the Service Interface tab
in your Application Module and click Edit to expose the custom methods.

Expose exportData() Method

1. Select exportData() by moving it from Available to Selected

2. Expand exportData() node

3. Expand Return node and select View Object: ExportReturn

4. Expand Parameters node and select the following:

• View Object: ExportCriteria

• View Object: ExportControl

Expose importData() Method

1. Select importData() by moving it from Available to Selected

2. Expand importData() node

3. Expand Return node and select View Object: ImportReturn

4. Expand Parameters node and select the following:

• View Object: ImportCriteria

• View Object: ImportControl

Web Service Security
All setup export and import web services should be secured using the
Oracle Fusion standards and guidelines. FSM does not have any special
requirements.

Developing Non ADF BC Object-Based Export and Import
APIs

Setup export and import service APIs, as described for ADF BC view
objects, can also support data that are not based on ADF BC view objects

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 135

when appropriately customized. For example, to migrate MDS content, a
service can be created which invokes MBean export and import APIs of
MDS within the setup export and import APIs.

Use the following steps to develop these services.

1. Create Service Application Module (AM) that implements Migrator
interface

2. Implement FSM export and import methods

3. Generate web services

Implementing Export API
A custom method called exportData() must be implemented in Application
Module class as follows.

Identifying Filter Criteria

The following helper method returns a HashMap of attribute sets and their
respective criteria in terms of attributes and their values.

Helper method in
oracle.apps.setupHub.remoteApp.publicModel.migrator.MigratorH
elper

public static HashMap<String, HashMap<String, List>>
getAttributeCriteriaValuesBySet (
 List<ExportCriteriaVORowImpl> exportCriteria,
 String objectKey)

Note

If Search task is defined for the object, then when creating the
configuration package for setup export, you can search and select values
which can then be used to filter exported data. See Business Object Details
for more information of Search tasks of business objects.

Implementing Custom Export API for Non ADF BC Objects

Any logic necessary to export non ADF BC objects should be
implemented. For example, when exporting MDS content, MBean export
APIs of MDS should be invoked.

If multiple objects are processed during export, the following helper
methods can be used to track the start and the end times of each object.

migStatus.setObjectStartTime(Object1, Calendar.getInstance());
// Process object….
migStatus.setObjectEndTime(Object1, Calendar.getInstance());

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 136

// If any error occurs for a specific object, it can also be
tracked as follows:

migStatus.setObjectProcessingError(Object1, Some error occurred for
Object1.);

Maintaining Hash Table for Export Related XML Files

Once XML files are generated by setup export, they must be added to a
Hashtable. The keys will be the filenames, which can be of the following
format: <ObjectName>.txt, <ObjectName>.xml, and so on.

As a standard, the file extensions can be used to represent the type of the
content.

During import, the filenames will be used to identify the data being
imported.

Hashtable<String, byte[]> files

Returning XML File Collection Generated by Export

The collection of XML files generated by export must be returned to FSM
as shown.

migStatus.getObjectReportMetadataMap().put(node.getNodeName(),
getReportMetadata((ViewObjectImpl)vo));ExportReturnVORowImpl
returnRow =

(ExportReturnVORowImpl)this.getExportReturn().createRow();

returnRow.setDataFiles(files);

Returning Errors

If there are any errors, they can be returned to FSM as follows.
MigratorStatus migStatus = new MigratorStatus();

// General Processing error maybe reported as follows:
migStatus.setProcessingError(xxx);

// Additional detail object errors may be reported as follows:
migStatus.getObjectProcessingErrorMap().put(Object1, error);

// Additional detail object row errors may be reported as follows:
ArrayList<MigratorRowStatus> migRowStatusList = new
 ArrayList<MigratorRowStatus>(1);

MigratorRowStatus migRowStatus = new
MigratorRowStatus(<rowXML>, // Row that caused the error
<errorMessage>, // Detailed Error message
<errorCode>, // Error Code, if any
<errorSeverity>, // Error Severity, if any

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 137

<alternateKey> // Use of alternate key is preferable instead of an
Id, since it is visible to user

));

migRowStatusList.add(migRowStatus);

migStatus.getObjectErrorMap().put(Object1, migRowStatusList);

// Return status
returnRow.setMigratorStatus(migStatus);

Reporting on Exported Metadata

To generate BIP reports on exported XML data, the same method should
be used as specified for Reporting on Exported XML data for ADF BC
based Objects.

However, for custom XML files, application developers need to generate
report metadata themselves in XSL-FO format.

Warning

Detailed information on BIP and XSL-FO standards are beyond the scope
of this document. Consult appropriate documentation and training material
to learn about BIP technology and recommended standards and guidelines.

Example of Export API
public ExportReturnVORowImpl exportData

(List<ExportCriteriaVORowImpl>
 exportCriteria, ExportControlVORowImpl

exportControl) {

 ExportReturnVORowImpl returnRow = (ExportReturnVORowImpl)
 getExportReturn().createRow();
 MigratorStatus migStatus = new MigratorStatus();

 try {
 // Get Filter Criteria
 HashMap<String, List> attributeCriteriaValues =

MigratorHelper.getExportCriteriaValues(exportCriteria,
 MigratorConstants.CFG_PACKAGE_BO_SHORT_NAME);

 // Perform custom export of objects using criteria that is

passed in
 Hashtable<String, byte[]> files = new Hashtable<String,

byte[]>(1);

 // Process Object 1 – this can be any custom process
 migStatus.setObjectStartTime(Object1, Calendar.getInstance());
 String object1 = Object1 content.;

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 138

 // Save the file bytes to the hashtable
 files.put(Object1.txt, object1.getBytes());
 migStatus.setObjectEndTime(Object1, Calendar.getInstance());

 // Process Object 2 – this can be any custom process
 migStatus.setObjectStartTime(Object1, Calendar.getInstance());
 String object2 = Object2 content.;
 // Save the file bytes to the hashtable
 files.put(Object2.txt, object2.getBytes());
 migStatus.setObjectEndTime(Object2, Calendar.getInstance());

 // If any error occurred for a specific object, track it
 migStatus.setObjectProcessingError(Object2, Error occurred for

object2.);

 returnRow.setDataFiles(files);
 }
 catch (Exception e){
 // If any general processing error occurred, track it
 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 // Return Status + Data
 returnRow.setMigratorStatus(migStatus);
 return returnRow;
}

Implementing Import API
A custom method called importData() must be implemented in
Application Module class as follows.

Identify XML Data Files

The following helper method retrieves the XML files generated during
export:

Hashtable<String, Element> files = importData.getDataFiles();
byte[] object1 = files.get(Object1.txt);

Implementing Custom Validation

Similar to export process, any custom validation that is required for proper
data import should be implemented. If multiple objects are processed
during import, the following helper method can be used to track the start
and the end times of each object.

migStatus.setObjectStartTime(Object1, Calendar.getInstance());
// Process object….
migStatus.setObjectEndTime(Object1, Calendar.getInstance());

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 139

// If any error occurs for a specific object, it can also be
tracked as follows:

migStatus.setObjectProcessingError(Object1, Some error occurred for
Object1.);

Returning Errors

Same as in export process. See Returning Errors during Export for more
details.

Reporting on Imported Metadata

Same as in export process. See Reporting on Exported Metadata for more
details.

Example of Import API
public ImportReturnVORowImpl importData (ImportDataVORowImpl

importData,
 ImportControlVORowImpl

importControl) {
 ImportReturnVORowImpl returnRow = (ImportReturnVORowImpl)
 getImportReturn().createRow();
 MigratorStatus migStatus = new MigratorStatus();

 try {
 Hashtable<String, byte[]> files = importData.getDataFiles();

 // Retrieve the file data the way it was exported
 byte[] object1 = files.get(Object1.txt);

 // Process Object 1 – this can be any custom process
 migStatus.setObjectStartTime(Object1, Calendar.getInstance());
 if (object1 != null)
 System.out.println(new String(object1));
 migStatus.setObjectEndTime(Object1, Calendar.getInstance());

 // Retrieve the file data the way it was exported
 byte[] object2 = files.get(Object2.txt);

 // Process Object 2 – this can be any custom process
 migStatus.setObjectStartTime(Object2, Calendar.getInstance());

 if (object2 != null)
 System.out.println(new String(object2));
 migStatus.setObjectEndTime(Object2, Calendar.getInstance());

 // If any error occurred for a specific object, track it
 migStatus.setObjectProcessingError(Object2, Error occurred for

object2.);
 }
 catch (Exception e){
 // If any general processing error occurred, track it

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 140

 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 // Return Status
 returnRow.setMigratorStatus(migStatus);
 return returnRow;

}

Setting Up Export and Import of Larger Data Volume
When larger volume of setup data needs to be exported and imported,
handling all data in a single batch may not be possible due to memory
constraints and performance degradation. For such cases, FSM provides
ability to invoke a setup export and import Service multiple times and
process data in batches.

When to Consider Batch Processing
While it is impossible to provide the exact parameters when batch
processing is preferable, application developers may consider factors such
as:

• Number of View Objects to be exported or imported

• Number of columns in the View Objects

• Column types and sizes

• Number of estimated rows to be exported or imported in typical cases

Tip

Follow the performance guidelines for Oracle Fusion ADF BC Services.

Configurable Batching Properties
The following properties can be configured when using batch processing
for setup export and import.

Property Required Used
By

Description

setBatchMode(boolean) Yes Export Indicates if batch processing will be used

setRangeSize(int) No Export Specifies the number of rows to be
processing in one batch. The default value is
set to 500.

setBatchImportSequence(ArrayList) No Export Specifies the order in which the exported
view objects will be imported. The default

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 141

setting is to use the same order in which the
view objects were exported.

setStopBatchProcess(boolean) No Export Indicates whether or not to use batch
processing, meaning to invoke the
corresponding service again.

setStopBatchProcess(boolean) No Import Indicates whether or not to use batch
processing, meaning to invoke the
corresponding service again.

How Batch Processing Works
When setBatchMode() is set to True indicating the batch processing will
be used, FSM invokes the export and import Service as many times as
needed to process all data or an error is encountered.

During export, FSM uses specified batch size and creates as many data
files needed to export all data.

During import, each exported batch is returned to the service until all
batches are processed. Each batch is committed separately.

Please note that data for each batch is stored in its own ZIP file, and every
batch of data is committed separately. It is important that batching set is
designed keeping these facts in mind.

For example, consider a view object called TablePerf for setup business
object called TEST_BO which is exported in batches with batch size of
500. The result after an export is:

• TEST_BO.zip contains:

• TablePerf/1_BATCH.zip

• TablePerf/2_BATCH.zip

• TablePerf/3_BATCH.zip

• TablePerf/4_BATCH.zip

• TablePerf/5_BATCH.zip

• TablePerf/6_BATCH.zip

• TablePerf/7_BATCH.zip

• TablePerf/8_BATCH.zip

• TablePerf/9_BATCH.zip

• TablePerf/10_BATCH.zip

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 142

Since TEST_BO had 5000 rows, the service was invoked ten times during
export. Although separate zip file is created for each batch, each
<n>_BATCH.zip will contain TEST_BO.xml. Similarly, during import,
FSM will invoke the service ten times, processing each of the batches
separately.

Note

If a setup object contains very large volume of data (for example, has
millions of rows or contains BLOB), then services are not recommended
for exporting and importing the data. A loader program may be more
appropriate in such cases. Follow standard and guidelines of ADF BC
services to determine when a loader program is a better approach.

Implementing Batch Processing
To enable batch processing, add the following steps to setup export and
import APIs.

Exporting API Modification

Exporting Single View Object

To enable batch processing of a single view object:

Initialize migratorControl(); for example:
MigratorControl migControl = new MigratorControl(exportControl);
migControl.setBatchMode(true);
migControl.setRangeSize(500);

Pass migControl to getViewObjectXML() API
public static byte[] getViewObjectXML(MigratorStatus migStatus,

ViewObject vo, HashMap<String, ViewAttributeDefImpl[]>
voIncludedAttrMap, boolean debugMode, MigratorControl
migControl)

This API exports data per the specified range size and start of the next
range if more data is found. The stopBatchProcess is set to True when all
rows in the view object are processed.

Application developers can optionally use setStopBatchProcess() method
in their export services any time to stop batch processing (such as when an
error is encountered) and consequently stop FSM from invoking the
service again during the processing.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 143

Sample Code
public ExportReturnVORowImpl

exportData(List<ExportCriteriaVORowImpl> exportCriteria,
 ExportControlVORowImpl

exportControl) {

 ExportReturnVORowImpl returnRow =
 (ExportReturnVORowImpl)getExportReturn().createRow();

 MigratorStatus migStatus = new MigratorStatus();

 // 1. Initialize Batching
 MigratorControl migControl = new MigratorControl(exportControl);
 migControl.setBatchMode(true);

 try {
 boolean debugMode = false;
 Hashtable<String, byte[]> files = new Hashtable<String,

byte[]>(1);

 HashMap<String, String[]> excludedAttrMap1 = new

HashMap<String,
 String[]>(2);
 String[] tableAExcludedAttributes1 = { };

excludedAttrMap1.put(oracle.apps.setup.test.model.view.TableL
ookupVO,

 tableAExcludedAttributes1);

 // 2. Include MigratorControl
 byte[] xmlDoc1 = MigratorHelper.getViewObjectXML(migStatus,
 getTableLookup(),

MigratorHelper.getViewObjectIncludedAttrMap(excludedAttrMap1)
,

 debugMode, migControl);
 files.put(TABLE_LOOKUP_SHORT_NAME + .xml, xmlDoc1);

 returnRow.setDataFiles(files);
 this.getTableA().applyViewCriteria(null);

 } catch (Exception e) {
 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 System.out.println(migStatus.gand so ononsolidatedErrors());
 returnRow.setMigratorStatus(migStatus);

 return returnRow;
}

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 144

Exporting Multiple View Objects

To enable batch processing of a multiple view objects:

• Initialize MigratorControl
MigratorControl migControl = new MigratorControl(exportControl);
migControl.setBatchMode(true);
migControl.setRangeSize(500);

• Check batch name before processing the first view object
if (migControl.gand so onurrentBatch() == null ||
getVO1().equals(migControl.gand so onurrentBatch()))

• Pass migControl to existing getViewObjectXML() API
public static byte[] getViewObjectXML(MigratorStatus migStatus,

ViewObject vo, HashMap<String, ViewAttributeDefImpl[]>
voIncludedAttrMap, boolean debugMode, MigratorControl
migControl)

• If processing of current view object is complete, but there are view
objects to be processed in the next batch, then specify the next batch
name, and indicate that batch processing should continue.

if (migControl.isStopBatchProcess()){
 migControl.setNextBatch(getVO2().getName());
 migControl.setStopBatchProcess(false);
 }

• Check batch name before processing next view object
if (getVO2().equals(migControl.gand so onurrentBatch()))

• Specify the sequencing of batches to be used during import. FSM will
send data in the specified sequence to import processing. By default,
the import sequence is the same in which the view objects were
exported.

ArrayList<String> list = new ArrayList<String>(2);
list.add(this.getVO2().getName());
list.add(this.getVO1().getName());
migControl.setBatchImportSequence(list);

Sample Code
public ExportReturnVORowImpl

exportData(List<ExportCriteriaVORowImpl> exportCriteria,
 ExportControlVORowImpl

exportControl) {

 ExportReturnVORowImpl returnRow =
 (ExportReturnVORowImpl)getExportReturn().createRow();

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 145

 MigratorStatus migStatus = new MigratorStatus();

 // 1. Initialize Batching
 MigratorControl migControl = new MigratorControl(exportControl);
 migControl.setBatchMode(true);

 try {
 boolean debugMode = false;
 Hashtable<String, byte[]> files = new Hashtable<String,

byte[]>(1);

 //2. Export VO 1 in first batch set
 if (migControl.gand so onurrentBatch() == null ||

 getTableLookup().equals(migControl.gand so
onurrentBatch())){

 HashMap<String, String[]> excludedAttrMap1 = new
HashMap<String,

 String[]>(2);
 String[] tableAExcludedAttributes1 = { };

excludedAttrMap1.put(oracle.apps.setup.test.model.view.TableL
ookupVO,

 tableAExcludedAttributes1);

 // 3. Include MigratorControl
 byte[] xmlDoc1 =

MigratorHelper.getViewObjectXML(migStatus,
 getTableLookup(),

MigratorHelper.getViewObjectIncludedAttrMap(excludedAttrMap1)
,

 debugMode, migControl);
 files.put(TABLE_LOOKUP_SHORT_NAME + .xml, xmlDoc1);

 // 4. If batching processing of this VO is complete but

you need to
 process next VO
 // Set the next VO and indicate that batch processing is

not complete yet
 if (migControl.isStopBatchProcess()){
 migControl.setNextBatch(getTableA().getName());
 migControl.setStopBatchProcess(false);
 }
 }

 // Export VO 2 in next batch
 if (getTableA().getName().equals(migControl.gand so

onurrentBatch())){
 // TableA
 HashMap<String, List> attributeCriteriaValues =
 MigratorHelper.getExportCriteriaValues(exportCriteria,
 TABLE_A_SHORT_NAME);

MigratorHelper.applyCriteriaToViewObject(this.getTableA(),

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 146

 attributeCriteriaValues);

 HashMap<String, String[]> excludedAttrMap = new

HashMap<String,
 String[]>(2);
 String[] tableAExcludedAttributes = { ABC, Id1, ParentId

};

excludedAttrMap.put(oracle.apps.setup.test.model.view.TableAV
O,

 tableAExcludedAttributes);

 // 5. Include MigratorControl
 byte[] xmlDoc =

MigratorHelper.getViewObjectXML(migStatus, getTableA(),

MigratorHelper.getViewObjectIncludedAttrMap(excludedAttrMap),
 debugMode, migControl);

 files.put(TABLE_A_SHORT_NAME + .xml, xmlDoc);

 }
 returnRow.setDataFiles(files);
 this.getTableA().applyViewCriteria(null);

 } catch (Exception e) {
 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 System.out.println(migStatus.gand so ononsolidatedErrors());
 returnRow.setMigratorStatus(migStatus);

 return returnRow;
}

Import API Modification

During import, FSM sends data to the import services in batches if the
same data was exported through batch processing. As in the case export,
setStopBatchProcess() method can be optionally used at any time in the
import service to stop batch processing (such as if an error is
encountered), and consequently stop FSM from invoking the service again
during the processing.

Use the following steps to enable batch processing during setup import.

• Initialize MigratorControl
MigratorControl migControl = new MigratorControl(importControl);

• Identify data that was exported in batches
Element vo1Element = files.get(VO1.xml);
 if (vo1Element!= null) {
 // Process that XML

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 147

 }

• Pass migControl to existing readXML() API
public static void readXML(MigratorStatus migStatus, ViewObjectImpl

vo, Element element, int depthCount, boolean
bundledExceptionMode, boolean debugMode, MigratorControl
migControl)

Sample Code
public ImportReturnVORowImpl importData(ImportDataVORowImpl

importData,
 ImportControlVORowImpl

importControl) {

 ImportReturnVORowImpl returnRow =
 (ImportReturnVORowImpl)getImportReturn().createRow();
 MigratorStatus migStatus = new MigratorStatus();

 // 1. Initialize MigratorControl
 MigratorControl migControl = new

MigratorControl(importControl);

 try {
 Hashtable<String, Element> files =

importData.getDataXMLElements();

 Element lookupRootElement =

files.get(TABLE_LOOKUP_SHORT_NAME + .xml);

 // 2. Check for each element
 if (lookupRootElement != null) {
 boolean partialFailureAllowed = false;
 boolean debugMode = true;
 // 3. Include MigratorControl
 MigratorHelper.readXML(migStatus,
 this.getTableLookup(),lookupRootElement, -1,

partialFailureAllowed,
 debugMode, migControl);
 }

 Element parentRootElement =

files.get(TABLE_A_SHORT_NAME + .xml);
 // 4. Check for each element
 if (parentRootElement != null) {
 boolean partialFailureAllowed = false;
 boolean debugMode = false;

MigratorHelper.updatePrimaryKeysInXML(parentRootElement,
 this.getTableAFind(), AltKey,

partialFailureAllowed);
 // 5. Include MigratorControl
 MigratorHelper.readXML(migStatus, this.getTableA(),

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 148

 parentRootElement, -1,
partialFailureAllowed, debugMode,

 migControl);

 }
 returnRow.setMigratorStatus(migStatus);

 if

(this.getName().equals(this.getRootApplicationModule().getNam
e()))

 this.getTransaction().commit();
 }
 catch (Exception e) {
 e.printStackTrace();
 migStatus.setProcessingError(e.getLocalizedMessage());
 }

 return returnRow;
}

Recommended Testing of Setup Export and Import Services

Testing Export Services

AM Tester

Launch the AM Tester by right clicking on Application Module (AM),
select View Object, and verify that all view object data including that of
children view objects exist.

Direct AM Call

FSM has provided the following method in MigratorHelper class to verify
export within AM. This method can be used as a sample and added to your
test method in your test class or can be added to your main() method in
your AMImpl class.

public static void main (String[] args) {
testExport();
}

private static void testExport() {

 // Create your application module
 XXXAMImpl am =

(XXXAMImpl)Configuration.createRootApplicationModule(oracle.a
pps.xxx.XXXService.applicationModule.

 XXXAM, XXXAMLocal);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 149

 // Populate any scope values to use as criteria
List<ExportCriteriaVORowImpl> exportCriteria = new

ArrayList<ExportCriteriaVORowImpl>(1);

 ExportCriteriaVORowImpl criteriaRow =

(ExportCriteriaVORowImpl)am.getExportCriteria().createRow();
 criteriaRow.setObjectKey(<XXX_BO_SHORT_NAME>);
 criteriaRow.setAttributeName(XXXXShortName);
 criteriaRow.setAttributeValue(ABC);
 exportCriteria.add(criteriaRow);

 // Create the Export Control
 ExportControlVORowImpl exportControl =

(ExportControlVORowImpl)am.getExportControl().createRow();

 // Provide a name to save the exported zip
 String exportFileName = /home/mdamle/temp/testExport.zip;

 // Invoke the testExport() method that saves the exported file to

provided location
 MigratorStatus migStatus = MigratorHelper.testExport(am,

exportFileName, exportCriteria,
 exportControl);

 // Check MigratorStatus methods for additional processing

errors if any
 System.out.println(Error found (Check migStatus object for

details): +
 migStatus.isErrorFound());

 Configuration.releaseRootApplicationModule(am, true);

}

Junit Test

Use the following export APIs for your Junit tests. This test will let you
verify export functionality without specifying the physical location of an
export file.

AM Layer Test

Use as follows:
public static MigratorStatus testExport(Migrator m,

OutputStream outputStream, List<ExportCriteriaVORowImpl>
exportCriteria, ExportControlVORowImpl exportControl)

Sample Code
List<ExportCriteriaVORowImpl> exportCriteria = new

ArrayList<ExportCriteriaVORowImpl>(1);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 150

ExportCriteriaVORowImpl criteriaRow =
(ExportCriteriaVORowImpl)am.getExportCriteria().createRo
w();

 ByteArrayOutputStream baos = new

ByteArrayOutputStream();
 ExportControlVORowImpl exportControl =

(ExportControlVORowImpl)am.getExportControl().createRow(
);

 MigratorStatus migStatus =
MigratorHelper.testExport(am, baos, exportCriteria,
exportControl);

 System.out.println(migStatus.gand so

ononsolidatedErrors());

Testing Import Services

AM Tester

Launch the AM Tester by right clicking on Application Module (AM),
select View Object, and verify that all view object data including that of
children view objects exist.

Direct AM Call

FSM has provided the following method in MigratorHelper class to verify
import within AM. This method can be used as a sample and added to
your test method in your test class or can be added to your main() method
in your AMImpl class.

public static void main (String[] args) {
testImport();
}

private static void testImport() {

 // Create your application module
 ConfigurationTemplateCategoryAMImpl am =
(ConfigurationTemplateCategoryAMImpl)Configuration.createRootApplic

ationModule(oracle.apps.setup.commonSetup.configurationTempla
tes.ConfigurationTemplateCategoryService.applicationModule.Co
nfigurationTemplateCategoryAM,
ConfigurationTemplateCategoryAMLocal);

 // Create Import Control
ImportControlVORowImpl importControl =

(ImportControlVORowImpl)am.getImportControl().createRow();

 // Provide name of zip to import
String importFileName = /home/mdamle/temp/testExport.zip;
try {

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 151

 // Invoke the testImport() method to import the zip file
 MigratorStatus migStatus = MigratorHelper.testImport(am,

importFileName, importControl);
 // Check MigratorStatus methods for additional processing

errors if any
 System.out.println(Error found (Check migStatus object for

details): +
 migStatus.isErrorFound());
}
catch (Exception e) {
 e.printStackTrace();
}

Configuration.releaseRootApplicationModule(am, true);

}

Junit Test

Use the following import APIs for your Junit tests. This test will let you
verify import functionality without specifying the physical location of an
import file.

AM Layer Test

Use as follows:
public static MigratorStatus testImport(Migrator m,

InputStream inputStream, ImportControlVORowImpl
importControl)

Sample Code
List<ExportCriteriaVORowImpl> exportCriteria = new

ArrayList<ExportCriteriaVORowImpl>(1);

ExportCriteriaVORowImpl criteriaRow =

(ExportCriteriaVORowImpl)am.getExportCriteria().createRo
w();

 ByteArrayOutputStream baos = new

ByteArrayOutputStream();
 ExportControlVORowImpl exportControl =

(ExportControlVORowImpl)am.getExportControl().createRow(
);

 MigratorStatus migStatus =
MigratorHelper.testExport(am, baos, exportCriteria,
exportControl);

 BlobDomain blob = new BlobDomain(baos.toByteArray());

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 152

 ImportControlVORowImpl importControl =
(ImportControlVORowImpl)am.getImportControl().createRow(
);

 migStatus = MigratorHelper.testImport(am,

blob.getBinaryStream(), importControl);
 System.out.println(migStatus.gand so

ononsolidatedErrors());

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 153

9
Integrating with FSM - Java APIs and

Web Services

About Integrating with FSM
FSM provides public Java APIs and web services which can be used to set
or retrieve information of offerings, options, and features (collectively also
known as features) selections and task statuses of an implementation
project. In some of these cases, EL expression can also be used to achieve
the same results.

Warning

Application developers who are using FSM public Java APIs and web
services should be proficient in ADF, JDeveloper, and web service
technologies, terminologies, standards, and guidelines.

FSM Java APIs
FSM Java APIs are available in an ADF library called
AdfFeaturePublicModel.jar located in $ADE_HOME/Oracle
Fusionapps/jlib/.

Currently APIs are available for offering, option, and feature-related
information only.

Invoking Java APIs

To access these APIs, use the following steps:

1. Include the library in your project.

2. Embed FeatureAM in data model.

3. Access methods using the FeatureAM instance.

About FSM Public Web Services
FSM web services are available in FunctionalSetupServiceClient.jar.
Currently, they are available in two different packages as follows:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 154

• Feature Related:
oracle.apps.setup.commonSetup.filters.FeatureService.FeatureService

• Task Status Related:
oracle.apps.setup.commonSetup.implementationProjects.Implementati
onProjectService.TaskStatusService

Invoking Web Services

You can use two types of approaches to invoke FSM web services.

ADF Standards

This approach is recommended for integrating ADF business component
services with ADF applications. Use the following steps:

1. Modify CONNECTIONS.XML by adding the following snippet and
replacing [PACKAGE] and [SERVICE] variables with FEATURE or
TASK STATUS Package and Service names.

<Reference name={http://xmlns.[PACKAGE]/}[SERVICE]
className=oracle.jbo.client.svc.Service xmlns=>

 <Factory
className=oracle.jbo.client.svc.ServiceFactory/>

 <RefAddresses>
 <StringRefAddr addrType=serviceInterfaceName>
 <Contents>[PACKAGE]</Contents>
 </StringRefAddr>
 <StringRefAddr addrType=serviceEndpointProvider>
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType=jndiName>
 <Contents>[SERVICE]Bean#[PACKAGE]</Contents>
 </StringRefAddr>
 <StringRefAddr addrType=serviceSchemaName>
 <Contents>[SERVICE].xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType=serviceSchemaLocation>
 <Contents>[PACKAGE/SERVICE DIR]</Contents>
 </StringRefAddr>
 <StringRefAddr addrType=jndiFactoryInitial>

<Contents>weblogic.jndi.WLInitialContextFactory</Content
s>

 </StringRefAddr>

 <StringRefAddr addrType=jndiProviderURL>
<Contents>t3:[URL OF YOUR FSM INSTANCE]</Contents>
 </StringRefAddr>
 </RefAddresses>
 </Reference>

2. Invoke the services as follows:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 155

[SERVICE] svc = ([SERVICE]) ServiceFactory.getServiceProxy
([SERVICE].NAME);

where [SERVICE] is either FeatureService or TaskStatusService

3. Once you get the service object, all methods can be called with
appropriate input parameters and exceptions can be caught in try/catch
block. For example,

Result = svs.getFeatureChoice(newList, FeatureShortName);
svc.getTaskStatus(id);
svc.setTaskStatus(id,REQUEST_INFORMATION);

Industry Standards

You can also invoke these services by creating web service proxy or using
SOAP.

To get WSDL, append the following after host:port information in the
URL of your FSM instance:
Setup-SetupModel-context-root/BusinessProcessService?WSDL.
For example, http://[HOST:PORT]/Setup-SetupModel-context-
root/BusinessProcessService?WSDL

Note

For more detailed understanding on how to use these web services, you
should be familiar with and follow the recommended approach for
integrating web services into an Oracle Fusion web application and
synchronously invoking an ADF business components service from an
ADF application as specified in Oracle Fusion Applications Developer’s
Guide.

Offerings, Options, and Features Integration
Integration is available in the following categories:

• Retrieving or setting implementation status of an offering or option

• Retrieving or setting feature choices

• Retrieving offering, option, and feature hierarchy

• Retrieving lists of associated objects for enabled offerings and options

Implementation Status Integration
Each offering and option has a property called Implementation Status
which indicates whether or not the offering and option has been
implemented.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 156

While FSM UI allows implementation managers to set its value, Java APIs
and web services are also available to retrieve and set the property
programmatically. EL expressions can also be used to retrieve the current
settings.

Retrieving Implementation Status

Use EL expression or getStatus API or web services to retrieve
implementation status of an offering or option.

Using EL Expression

Use the following steps to retrieve implementation status of an offering or
option.

1. Define a managed bean called
oracle.apps.setup.commonSetup.features.Offerings with the
VARIABLE called OFFERINGS at REQUESTSCOPE LEVEL in
adfc-config.xml file.

2. Refer to implementation status of an offering or option by using:
#{Offerings.implementationStatus.OFFERING_SHORT_NAME},
where OFFERING_SHORT_NAME is the actual short name (code) of
the desired offering or option.

Using getStatus Java API

See Invoking Java APIs for more information on how to invoke the API.
Name getStatus

Purpose To retrieve implementation status of an offering or option

Definition public String getStatus(String featureShortName)

Parameters featureShortName - Offering or option identifier as a string

Results returned The status of the specified Offering or option returned as a String

Valid values are one of the following:

NOT_IMPLEMENTED - If no match for the input value is found

NOT_STARTED_FEATURE

IN_PROGRESS_FEATURE

IMPLEMENTED

Exception condition N/A

Sample code Constructing Input

String featureShortName = PAY_LEGISLATION;

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 157

Call Method

 FeatureService svc = (FeatureService) ServiceFactory.getServiceProxy
(FeatureService.NAME);

 try {

 String status = svc.getStatus(featureShortName);

 } catch(Exception e) {

 e.printStackTrace();

 }

Using getStatus Web Service

See Invoking Web Services for more information on how to invoke the
web services.

Name getStatus

Purpose To retrieve implementation status of an Offering or Option

Definition public String getStatus(String featureShortName)

Parameters featureShortName – The identifier of an Offering or option as a String

Results returned The status of the specified Offering or option returned as a String

Valid values are one of the following:

NOT_IMPLEMENTED – If no match for the input value is found

NOT_STARTED_FEATURE

IN_PROGRESS_FEATURE

IMPLEMENTED

Exception condition N/A

Sample code Constructing Input

String featureShortName = PAY_LEGISLATION;

Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 String status = featureAM.getStatus(featureShortName);

 } catch(Exception e) {

 e.printStackTrace();

 }

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 158

Setting Implementation Status

Use setStatus Java API or web service to set implementation status of an
offering or option. EL expression cannot be used to set implementation
status.

Using setStatus Java API

Name setStatus

Purpose To set the implementation status of a Feature

Definition public void setStatus(String featureShortName, String status)

Parameters featureShortName – The identifier (or Code) of an Offering or option as a String

Status – the implementation status of the Offering or option as a String. Valid
values are:

NOT_STARTED_FEATURE

IN_PROGRESS_FEATURE

IMPLEMENTED

Results returned N/A

Exception condition Invalid Feature short name (code) and Status is specified

Sample code Constructing Input

String featureShortName = PAY_LEGISLATION;

String status =IMPLEMENTED;

Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 featureAM.setStatus(featureShortName, status);

 } catch(Exception e) {

 e.printStackTrace();

 }

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 159

Using setStatus Web Service

Name setStatus

Purpose To set the implementation status of a Feature

Definition public void setStatus(String featureShortName, String status)

Parameters featureShortName – The identifier of an Offering or option as a String

Status – the implementation status of the Offering or option as a String. Valid
values are:

NOT_STARTED_FEATURE

IN_PROGRESS_FEATURE

IMPLEMENTED

Results returned N/A

Exception condition Invalid Feature short name (code) and Status is specified

Sample code Constructing Input

String featureShortName = PAY_LEGISLATION;

String status =’IMPLEMENTED’;

Call Method

 FeatureService svc = (FeatureService) ServiceFactory.getServiceProxy
(FeatureService.NAME);

 try {

 svc.setStatus(featureShortName, status);

 } catch(Exception e) {

 e.printStackTrace();

 }

Feature Choice Integration
Each offering, option, or feature has two or more choices. Implementation
managers make appropriate selection of these choices to configure their
implementations as applicable to their business needs.

In addition to UI, feature choices can be set, current setting can be
retrieved or current setting can be locked programmatically by using Java
APIs and web services.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 160

Retrieving Current Feature Choice Settings

Use getFeatureChoices Java API or web service to retrieve current settings
of a specific offering, option, or feature.

Using getFeatureChoices Java API

Name getFeatureChoices

Purpose To get a list of Feature Choices and their values for a given Scope

Definition public java.util.List<String> getFeatureChoices(

java.util. List<
oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValueParamVORowIm
pl> scopeValueParams, java.lang.String featureShortName)

throws oracle.jbo.JboException

Parameters featureShortName – Offering, option, or feature identifier as a String

scopeValueParams – List of Scope values identified by pairs of scope attribute
name and short name (Code) of the Scope value. The list of Scope values could be
NULL.

Results returned A list of Feature choice short name (code); an empty list is returned if no match is
found.

Exception condition Invalid Feature short name (code) is used.

Sample code Constructing Input

 FeatureAMImpl featureAM =
(FeatureAMImpl)<originalAM>.getFeatureAM();

 /*create a list of ScopeValueParamVORowImpl Objects */

 ViewObject scopeVO = featureAM.getScopeValueParam();

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =
(ScopeValueParamVORowImpl)scopeVO.createRow();

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

Constructing Output

 /* construct a list of String */

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 161

 List<String> result = new ArrayList<String>();

Call Method

 try {

 result = featureAM.getFeatureChoices(newList,FeatureShortName);

 } catch(JboException e) {

 e.printStackTrace();

 }

Parsing Output

 if(result != null) {

 for(int i = 0; i < result.size(); i++)

 /* get the result of Feature option short name */

 System.out.println(The result is + result.get(i));

 }

Using getFeatureChoices Web Service

Name getFeatureChoices

Purpose To get a list of Feature Choices and their values for a given Scope

Definition public java.util.List<String> getFeatureChoices(

java.util. List<
oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValueParamVORowIm
pl> scopeValueParams, java.lang.String featureShortName)

throws oracle.jbo.JboException

Parameters featureShortName – Offering, option, or feature identifier as a String

scopeValueParams – List of Scope values identified by pairs of scope attribute
name and short name (code) of the Scope value. The list of Scope values could be
NULL.

Results returned A list of Feature choice short name (code); an empty list is returned if no match is
found.

Exception condition Invalid Feature short name (code) is used.

Sample code Constructing Input

 /*create a list of ScopeValueParamVORowImpl Objects */

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =
(ScopeValueParamVORowImpl)scopeVO.createRow();

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 162

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

Constructing Output

 /* construct a list of String */

 List<String> result = new ArrayList<String>();

Call Method

FeatureService svc = (FeatureService) ServiceFactory.getServiceProxy
(FeatureService.NAME);

 try {

 result = svc.getFeatureChoices(newList,FeatureShortName);

 } catch(JboException e) {

 e.printStackTrace();

 }

Parsing Output

 if(result != null) {

 for(int i = 0; i < result.size(); i++)

 /* get the result of Feature option short name */

 System.out.println(The result is + result.get(i));

 }

Setting Feature Choices

Use setFeatureChoices Java API or web service to set feature choices of a
specific offering, option, or feature.

Using setFeatureChoices Java API

Name setFeatureChoices

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 163

Purpose Set the Feature Choice value for a given Feature and Scope

Definition public void setFeatureChoices (

java.util.List<oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValuePar
amVORowImpl> scopeValueParams, java.lang.String
featureShortName, java.util.List<java.lang.String> featureChoice)

throws oracle.jbo.JboException

Parameters featureShortName – Offering, Option or Feature identifier as a String

scopeValues – List of Scope values; they are of ScopeValueParam object type.
The list of Scope values could be NULL.

featureChoice - list of Feature Choices to be set via this method

Results returned N/A

Exception condition Invalid Feature short name (code) is used.

Feature Choices used are not valid for Feature short name (code) used.

More than one Feature Choices are used when the Feature type of the Feature
short name (code) used is ‘Single Selection’.

Sample code Constructing Input

 FeatureAMImpl featureAM =
(FeatureAMImpl)<originalAM>.getFeatureAM();

 /*create a list of ScopeValueParamVORowImpl Objects */

 ViewObject scopeVO = featureAM.getScopeValueParam();

 /*create a list of ScopeValueParamVORowImpl Objects */

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =
(ScopeValueParamVORowImpl)scopeVO.createRow();

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

 List<String> result = new ArrayList<String>();

 result.add(PAY_LEGISLATION_US);

Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 164

 try {

 featureAM.setFeatureChoices(newList,featureShortName,result);

 } catch(JboException e) {

 e.printStackTrace();

 }

Using setFeatureChoices Web Service

Name setFeatureChoices

Purpose Set the feature choice value for a given feature and scope

Definition public void setFeatureChoices (

java.util.List<oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValuePar
amVORowImpl> scopeValueParams, java.lang.String
featureShortName, java.util.List<java.lang.String> featureChoice)

throws oracle.jbo.JboException

Parameters featureShortName – Offering, Option or Feature identifier as a String

scopeValues – List of scope values; they are of ScopeValueParam object type.
The list of scope values could be null.

featureChoice - list of feature choices to be set via this method

Results returned N/A

Exception condition Invalid feature short name (code) is used.

Feature choices used are not valid for feature short name (code) used.

More than one feature choice is used when the feature type of the feature short
name (code) used is Single Selection.

Sample code Constructing Input

 /*create a list of ScopeValueParamVORowImpl Objects */

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =
(ScopeValueParamVORowImpl)scopeVO.createRow();

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

 List<String> result = new ArrayList<String>();

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 165

 result.add(PAY_LEGISLATION_US);

Call Method

 FeatureService svc = (FeatureService) ServiceFactory.getServiceProxy
(FeatureService.NAME);

 try {

 svc.setFeatureChoices(newList,featureShortName,result);

 } catch(JboException e) {

 e.printStackTrace();

 }

Freezing Current Feature Choice

Use freezeFeatureChoice Java API or web service to lock current settings
of a specific offering, option, or feature.

Using freezeFeatureChoice Java API

Name freezeFeatureChoice

Purpose Locks feature choice settings of the specified feature . The choice selections
cannot be updated anymore.

Definition public void freezeFeatureChoice(List<
java.util.List<oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValuePar
amVORowImpl> scopeValueParams,

 String featureShortName) throws oracle.jbo.JboException

Parameters featureShortName – Offering, Option, Feature identifier as String

scopeValues – List of Scope values; they are of ScopeValueParams object type.
The list of Scope values could be NULL.

Results returned N/A

Exception condition Invalid Feature short name (code) is used.

Sample code Constructing Input

FeatureAMImpl featureAM = (FeatureAMImpl)<originalAM>.getFeatureAM();

/*create a list of ScopeValueParamVORowImpl Objects */

 ViewObject scopeVO = featureAM.getScopeValueParam();

 /*create a list of ScopeValueParamVORowImpl Objects */

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 166

(ScopeValueParamVORowImpl)scopeVO.createRow();

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 result = featureAM.freezeFeatureChoice(newList,featureShortName);

 } catch(JboException e) {

 e.printStackTrace();

 }

Using freezeFeatureChoice Web Service

Name freezeFeatureChoice

Purpose Locks Feature Choice settings of the specified Feature. The Choice selections
cannot be updated anymore.

Definition public void freezeFeatureChoice(List<
java.util.List<oracle.apps.setupHub.remoteApp.publicModel.view.ScopeValuePar
amVORowImpl> scopeValueParams,

 String featureShortName) throws oracle.jbo.JboException

Parameters featureShortName – Offering, Option, Feature identifier as String

scopeValues – List of Scope values; they are of ScopeValueParams object type.
The list of Scope values could be NULL.

Results returned N/A

Exception condition Invalid Feature short name (code) is used.

Sample code Constructing Input

 /*create a list of ScopeValueParamVORowImpl Objects */

 List<ScopeValueParamVORowImpl> newList = new
ArrayList<ScopeValueParamVORowImpl>();

 ScopeValueParamVORowImpl newRow =

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 167

(ScopeValueParamVORowImpl)scopeVO.createRow();

 /*set each element of the object with appropriate value */

 newRow.setattributeValue(BE-TaxAttribute1);

 newRow.setscopeValue(BE-Tax);

 newRow.setscopeValueCode(BE-Tax);

 /* Add to the list */

 newList.add(newRow);

 String featureShortName = PAY_LEGISLATION;

Call Method

 FeatureService svc = (FeatureService) ServiceFactory.getServiceProxy
(FeatureService.NAME);

 try {

 result = svc.freezeFeatureChoice(newList,featureShortName);

 } catch(JboException e) {

 e.printStackTrace();

 }

Retrieving Feature Hierarchy
Feature hierarchy can be defined by associating dependent Features
through Feature Choices of a parent. See Dependent Options and Features
for more information.

Use getFeatureHierarchyChoices Java API to retrieve the feature hierarchy
starting with a specific feature that includes feature choices for each level
of the hierarchy. See Invoking Java APIs for more information on how to
invoke the API.

No web service is available for this method.
Name getFeatureHierarchyChoices

Purpose Retrieves all subsequent levels of Features and their choices starting with the
Feature specified as input parameter.

Definition public List<FeatureTransVORowImpl> getFeatureHierarchyChoices(String
featureShortName) throws JboException

Parameters featureShortName – Offering, Option, Feature identifier as String

Results returned A list of children Features and their choices.

See (transient VO) FeatureTransVORowImpl for more details.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 168

Exception condition Invalid Feature short name (code) is used

Sample code Constructing Input

String featureShortName = PAY_LEGISLATION;

Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 List<FeatureTransVORowImpl> listOfFeatures =
featureAM.getFeatureHierarchyChoices(PER_CORE);

 If(listOfFeatures != null) {

 for (int i=0;i<listOfFeatures.size();i++) {

 FeatureTransVORowImpl row = listOfFeatures.get(i);

System.out.println(Feature:+row.getFeatureName()+:+row.getFeatureType()+:+ro
w.getFeatureShortName()+
parent:+row.getParentFeature()+:+row.getFeatureLevel()+:+row.getParentFeature
ShortName());

 RowIterator iter = row.getFeatureChoice();

 while(iter.hasNext()) {

 FeatureChoiceVORowImpl choiceRow =
(FeatureChoiceVORowImpl)iter.next();

 System.out.println(Choice:+choiceRow.gand so
onhoiceShortName()+:+choiceRow.gand so
onhoiceName()+:+choiceRow.getFeatureShortName());

 }

 }

}

 } catch(Exception e) {

 e.printStackTrace();

 }

Retrieving Associated Objects of Enabled Offerings and
Options

Offerings and options are the driving decision points in configuring Oracle
Fusion Applications to fit just right for the business needs in any given
implementation. For a given installation, implementation managers will
select or enable offerings and options that are applicable to their business
needs.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 169

Based on those selections, the following offering and option related
associations could be programmatically enabled or disabled to make the
Oracle Fusion application properly configured for a specific
implementation.

• Oracle Transactional Business Intelligence (OTBI) reports

• Subject Areas of Oracle Business Intelligence Analytics (OBIA)

• Oracle Enterprise Manager (EM) Metrics

Determining Whether to Display an OTBI Report

Use EL expression to determine if an OTBI report will be displayed in the
Oracle Fusion Applications based on whether or not any of the offerings
with which it is associated is in the Implemented status. Use the following
steps:

1. Define a managed bean called
oracle.apps.setup.commonSetup.features.Offerings with the variable
called OFFERINGS at REQUESTSCOPE LEVEL in adfc-config.xml
file.

2. Refer to showReport property by using:
#{Offerings.showReport.REPORT_NAME}, where REPORT_NAME
is the name of the report whose showReport property you want to
know.

If FSM finds that the specified REPORT_NAME is associated with at
least one offering that has implementation status set to Implemented, then
showReport returns Y. Otherwise, showReport returns N.

Retrieving OBIA Subject Areas Associated with Enabled
Offerings and Options

Use getEnabledSubjectAreas Java API to retrieve a list of OBI subject
areas that are associated with enabled offerings and options. An offering
or option is considered enabled when implementation managers set its
Enabled for Implementation flag.

No web services are available for this method.
Name getEnabledSubjectAreas

Purpose Retrieves all BI subject areas that are associated with enabled Offerings and
Options.

Definition public List<SubjectAreaVORowImpl> getEnabledSubjectAreas() throws
JboException

Parameters N/A

Results returned A list of BI Subject Areas.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 170

See (transient VO) SubjectAreaVORowImpl for more details.

Exception condition No match found and a NULL list is returned.

Sample code Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 List<SubjectAreaVORowImpl> subjectAreaList=
featureAM.getEnabledSubjectAreas();

 If(subjectAreaList!= null) {

 for (int i=0;i< subjectAreaList.size();i++) {

 SubjectAreaVORowImpl row = subjectAreaList.get(i);

 System.out.println(Subject
Area:+row.getSubjectAreaName()+:+row.getSubjectAreaShortName()+:+row.get
SubjectAreaDesc()+:+row.getOfferingOptionShortName()+:+row.getOfferingOpt
ionName());

}

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

Retrieving EM Metrics Associated with Enabled Offerings and
Options

Use getEnabledEMMetrics Java API to retrieve a list of EM Metrics that
are associated with enabled offerings and options. An Offering or option is
considered enabled when implementation managers set its Enabled for
Implementation flag.

No web services are available for this method.
Name getEnabledEMMetrics

Purpose Retrieves all EM Metrics that are associated with enabled Offerings and Options.

Definition public List<EmMetricVORowImpl> getEnabledEMMetrics() throws
JboException

Parameters N/A

Results returned A list of EM Metrics.

See (transient VO) EmMetricVORowImpl for more details.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 171

Exception condition No match found and a NULL list is returned.

Sample code Call Method

 FeatureAMImpl featureAM =
(FeatureAMImpl)<OriginalAM>.getFeatureAM();

 try {

 List<EmMetricVORowImpl> emMetricList=
featureAM.getEnabledEMMetrics();

 If(emMetricList!= null) {

 for (int i=0;i< emMetricList.size();i++) {

 EmMetricVORowImpl row = emMetricList.get(i);

 System.out.println(Em
Metric:+row.getEmMetricName()+:+row.getEmMetricShortName()+:+row.getE
mMetricDesc()+:+row.getOfferingOptionShortName()+:+row.getOfferingOption
Name()+: + row.getModuleShortName()+:+
row.getServiceName()+:+row.getEndPointURL());

}

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

View Objects
The following transient view objects (VO) are used by feature-related
APIs and web services.

ScopeValueParamVORowImpl

Method Description

String getattributeValue() Gets value for the calculated attribute attributeValue

setattributeValue(String value) Sets value of the calculated attribute attributeValue

String getscopeValue() Gets value for the calculated attribute scopeValue

setscopeValue(String value) Sets value of the calculated attribute scopeValue

String getscopeValueCode() Gets value for the calculated attribute scopeValueCode

setscopeValueCode(String value) Sets value of the calculated attribute scopeValueCode

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 172

FeatureTransVORowImpl

Method Description

String getFeatureShortName() Returns feature short name (code)

void setFeatureShortName(String value) Sets feature short name (code)

String getFeatureName() Returns feature name

void setFeatureName(String value) Sets feature name

Long getFeatureLevel() Returns level of the feature in the hierarchy

void setFeatureLevel(Long value) Sets feature level

String getFeatureType() Returns type of feature, such as option or feature

void setFeatureType(String value) Sets feature type

String getParentFeature() Returns parent feature name. If the input is the root node,
the null is returned

void setParentFeature(String value) Sets parent feature value

void setParentFeatureShortName(String
value)

Sets parent feature short name (code)

String getParentFeatureShortName() Gets parent feature short name (code)

RowIterator getFeatureChoice() Returns feature choices of the feature

FeatureChoiceVORowImpl

Method Description

String getChoiceName() Returns feature choice name

void setChoiceName(String value) Sets feature choice name

String getChoiceShortName() Returns feature choice short name (code)

void setChoiceShortName(String value) Sets feature choice short name (code)

String getFeatureShortName() Returns feature short name (code)

void setFeatureShortName(String value) Sets feature short name (code)

SubjectAreaVORowImpl

Method Description

String getSubjectAreaName() Returns BI subject area name

String getSubjectAreaShortName() Returns BI subject area name

String getSubjectAreaDesc() Returns BI subject area description

String getOfferingOptionShortName() Returns offering or option short name (code)

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 173

String getOfferingOptionName() Returns offering or option name

EmMetricVORowImpl

Method Description

String getEmMetricName() Returns EM metric name

String getEmMetricShortName() Returns EM metric short name (code)

String getEmMetricDesc() Returns EM metric description

String getModuleShortName() Returns module short name (code)

String getServiceName() Returns service name

String getOfferingOptionShortName() Returns offering or option short name (code)

String getOfferingOptionName() Returns offering or option name

String getEndPointURL() Returns end-point URL of module

Task Status Integration
FSM provides public web services that allow to set or to retrieve setting of
status of a task in an implementation project.

Retrieving Current Status of Specific Task in a Specific
Implementation Project

Use getTaskStatus web service to retrieve the information. No Java API is
available for this method.

Name getTaskStatus

Purpose To retrieve status of a task in an implementation project

Definition public java.lang.String getTaskStatus(java.lang.String iPTLItemKey)

Parameters iPTLItemKey – The identifier of a task in an implementation project as a String.

Results returned The status of the specified iPTLItemKey (input parameter). The return value could
be NULL if no match is found for the input parameter.

Exception condition N/A

Sample code String id = 100000010087002;

 String status = getStatus(id);

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 174

Setting Status of Specific Task in a Specific Implementation
Project

Use setTaskStatus web service to set task status. No Java API is available
for this method.

Name setTaskStatus

Purpose To set status of a task in an implementation project

Definition public void setTaskStatus (java.lang.String iPTLItemKey, java.lang.String status)

Parameters iPTLItemKey – The identifier of a task in an implementation project as a String.

Status – Status to be set for the specified iPTLItemKey. Valid values of status are:

NOT_STARTED

IN_PROGRESS

DONE

SUBMITTED

COMPLETED_WITH_WARNINGS

COMPLETED_WITH_ERRORS

EXECUTE_ONLY_ONCE

If VALID STATUS VALUE is not specified task Status of the specified
iPTLItemKey will NOT BE SET.

Results returned N/A

Exception condition N/A

Sample code String id = 100000010087002;

setTaskStatus(id, IN_PROGRESS);

Retrieving Identifier of a Task in an Implementation Project
Since a task can be part of many implementation projects, iPTLItemKey,
the key to uniquely identify a specific instance of a task in a specific
implementation project, is required to set or retrieve task status.

The key, iPTLItemKey, of a setup task is always passed as a parameter
when you perform the tasks from FSM. To retrieve the value, use the
following approaches as appropriate:

• In UI: See Reading Parameter Passed by FSM

• In Web Service: The parameter is passed via processControl of
launchProcess() API. See launchProcess() Details.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 175

10
Setup Program Deployment Topology

About Setup Program Deployment Topology
Application developers must define the deployment topology, meaning the
application server domains, J2EE applications and modules, for J2EE
components of setup task execution program (UI or web service) and each
export and import web service (collectively referred to as setup programs).

Later, after Oracle Fusion offerings are provisioned (installed), the
endpoint URLs (the actual location) of the application server domains and
enterprise applications will be assigned.

FSM will use the deployment topology including the actual deployed
location information to invoke the setup programs when you perform a
setup task or export and import setup data.

Note

Deployment topology must be specified for every UI and web service
expected to be executed from FSM. See Task Program Information and
Defining Export and Import Services for more information. However, in
most cases, existing domains, J2EE applications and modules may be used
and application developers do not need to define and register new
components.

Warning

Detailed information on the following areas is beyond the scope of this
document. Consult appropriate documentation and training material for
more information.

Application Server (in general) and Weblogic Server concepts.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 176

Standards and guidelines for defining deployment topology (domain,
enterprise applications, modules, and so on) of Oracle Fusion offerings.

J2EE Modules
Each setup program must be associated with a J2EE module. A module
represents the basic unit of an application and consists of one or more
J2EE components for the same container type and one component
deployment descriptor of that type. A component deployment descriptor
contains declarative data to customize the components in the module. A
J2EE module without an application deployment descriptor can be
deployed as a stand-alone J2EE module.

Categories

There are three categories of J2EE modules:

• Enterprise Javabeans (EJB) Modules: These contain class files for
enterprise beans and an EJB deployment descriptor. EJB modules are
packaged as JAR files with .JAR (Java Archive) extension.
Application client modules are also packaged as JAR files.

• Web Modules: These contain JSP files, class files for servlets, GIF
and HTML files, and a Web deployment descriptor. Web modules are
packaged as JAR files with .WAR (Web Archive) extension.

• Resource Adapter Modules: These contain all Java interfaces,
classes, native libraries, and other documentation, along with the
resource adapter deployment descriptor. Together, these implement the
connector architecture for a particular EIS. Resource adapter modules
are packages as JAR files with a .RAR (Resource Adapter Archive)
extension.

Module Types

Each Oracle Fusion Applications module may support J2EE components
of a specific type of program, which is specified using a module type.
They are:

• UI

• Web service

• SOA

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 177

(J2EE) Enterprise Applications
An enterprise application is a deployable unit of J2EE functionality. It can
contain a single J2EE module or a group of modules packaged into an
EAR file along with a Java EE application deployment descriptor. Its
primary goals are to provide scalable modular assembly and portable
deployment of various J2EE applications into a J2EE product.

Application Server Domain
An Oracle WebLogic Server domain is a logically related group of Java
components. A domain typically consists of one or more WebLogic Server
instances that are broadly classified as:

• Administration Server: A special Oracle WebLogic Server instances
used to configure and manage all resources within the domain. Each
domain will have one administration server.

• Managed Server: A collection of Oracle WebLogic Server instances
where Java components, such as Web applications, Enterprise Java
Beans (EJB), Web Services, and other resources, are deployed. A
domain will typically have multiple managed servers.

Note

Setup programs will be deployed on the managed servers of their specified
domains.

Oracle Fusion Application Pillars – Database Deployment
Configurations

Oracle Fusion Applications use the concept of pillars to determine how the
databases used by the (J2EE) enterprise applications can be implemented.

A pillar is a logical grouping of Oracle Fusion enterprise applications that
will use the same database instance. Enterprise applications from different
pillars, however, can be installed to use either of the following:

• Single database instance known As Global Single Instance (GSI)
configuration.

• Different database instances, in which case cross-pillar Producer-
Consumer Processing and Data Replication models are used to keep
the data synchronized across pillars.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 178

The pillar model is designed to support completely independent
management of individual database instances of each pillar including
patching and upgrade processes.

Supported Pillars
Currently Oracle Fusion Applications support the following three pillars:

• Financials and Supply Chain Management (FSCM)

• Human Capital Management (HCM)

• Customer Relationship Management (CRM)

In addition, a pillar called Migration is supported and used only migration
process of moving to Oracle Fusion Applications from other Oracle
product lines such as Oracle Enterprise Business Suites (EBS), Oracle
PeopleSoft, Oracle JD Edwards, Oracle Siebel, and so on.

Enterprise Applications in Multiple Pillars
Some Oracle Fusion Applications may be designed to be deployed in
multiple pillars. For example, Oracle Fusion Payables can be associated
with both FSCM and HCM pillars.

Warning

Currently Oracle Fusion Applications have implemented PILLARS in
very limited scope. The following restrictions apply at this time:

Only Global Single Instance (GSI) model is supported.

An enterprise application can belong to only one pillar.

Only the three predefined pillars are supported. That is, creating new
pillars or editing and deleting any of the existing pillars is not supported.

Viewing Lists of Domains
1. Go to the Setup and Maintenance work area.

2. Click Manage Domains from the task pane, which will display a page
with the same name. This page will show a list of domains based on
your default search setting. If no personalization was performed, the
default search setting of this page is to display all domains.

3. Modify search results if desired:

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 179

• Ad hoc search: In the Search region enter the appropriate
search criteria, and click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

Editing Domains
1. From the list of domains on the Manage Domains page, perform one

of the following actions to open the Edit Domain page:

• Click the domain name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. Edit the domain name or description.

3. Click Save or Save and Close to save changes.

See also:

About Setup Program Deployment Topology

Note

You can view Oracle-delivered domains, but cannot edit or delete them.

Creating Domains
1. From the list of domains on the Manage Domains page, perform one

of the following actions to open the Create Domain page:

• Click Create on the table task bar.

• Click Create from the Actions menu on the table task bar.

2. Enter the name and description for the new domain.

3. Click Save and Close to save changes.

Warning

Once created, a domain cannot be deleted.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 180

Viewing Lists of Enterprise Applications
1. Go to the Setup and Maintenance work area.

2. Click Manage Enterprise Applications from the task pane, which will
display a page with the same name. This page will show a list of
enterprise applications based on your default search setting. If no
personalization was performed, the default search setting of this page
is to display all enterprise applications.

3. Modify search results if desired:

• Ad hoc search: In the Search region enter the appropriate
search criteria, and click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page, you can:

• View and edit enterprise application details

• Register new enterprise applications

Viewing and Editing Enterprise Application Details
1. From the list of enterprise applications on the Manage Enterprise

Applications page, perform one of the following actions to open the
Edit Enterprise Application page:

• Click the enterprise application name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit enterprise application details.

3. Click Save and Close to save changes.

Note

You can view Oracle-delivered enterprise applications, but cannot edit or
delete them.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 181

Registering New Enterprise Applications
1. From the list of enterprise applications on the Manage Enterprise

Applications page, perform one of the following actions to open the
Register Enterprise Application page:

• Click Register Enterprise Application on the table task bar.

• Click Register Enterprise Application from the Actions menu
on the table task bar.

2. Enter enterprise application details.

3. Click Save and Close to save changes.

Warning

Once registered, an enterprise application cannot be deleted.

Enterprise Application Details
When creating a new enterprise application or editing an existing
enterprise application, enter or modify the following fields.

Field Field Type Required Description

Name Text Yes Enter the name of enterprise application that you want to
register

Code Text Yes Use a unique code to identify the enterprise application.
Once created, code cannot be changed.

Domain List of
Values

Yes Select the name of the domain to be used by this
enterprise application.

Default URL Text No If the enterprise application will always deployed at a
constant and static location then the URL of that location

Source File Text No EAR file name

Pillar Shuttle Box Yes Create Association: Select desired row in Available
Pillars (shuttle box) and click on move to right button to
move it to Selected Pillars (shuttle box)

Remove Association: Select desired row in Selected
Pillars (shuttle box) and click on move to left button to
move it to Available Pillars (shuttle box).

Warning

Do not associate more than one pillar with any enterprise application.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 182

Viewing Lists of Modules
1. Go to the Setup and Maintenance work area.

2. Click Manage Modules from the task pane, which will display a page
with the same name. This page will show a list of modules based on
your default search setting. If no personalization was performed, the
default search setting of this page is to display all modules.

3. Modify search results if desired:

• Ad hoc search: In the Search region enter the appropriate
search criteria, and click Search.

• Saved search: Select the desired saved search from the Saved
Search field.

4. From this page, you can:

• View and edit modules

• Register new modules

Viewing and Editing Module Details
1. From the list of modules on the Manage Modules page, perform one of

the following actions to open the Edit Module page:

• Click a module name.

• Select the desired row and click Edit on the table task bar.

• Select the desired row and click Edit from the Actions menu on
the table task bar.

2. View or edit module details.

3. Click Save and Close to save changes.

Note

You can view Oracle-delivered modules, but cannot edit or delete them.

Registering New Modules
1. From the list of modules on the Manage Modules page, perform one of

the following actions to open the Register Module window:

• Click Register Module on the table task bar.

Oracle® Fusion Applications Information Technology Management, Implement Applications Developer Guide 183

• Click Register Module from the Actions menu on the table task
bar.

2. Enter module details.

3. Click Save and Close to save changes.

Warning

Once registered, a module cannot be deleted.

Module Details
When creating a new enterprise application or editing an existing
enterprise application, enter or modify the following fields.

Field Field Type Required Description

Name Text Yes Enter the name of module that you want to register

Code Text Yes Use a unique code to identify the module. Once created,
code cannot be changed.

Description Text No Although not required, provide a brief, meaningful
description that will help you understand the purpose of
the module.

Enterprise
Application

List of
Values

Yes Select and associate the enterprise application to which
this module belongs

Type List of
Values

Yes Indicate what type of module it is by selecting one of the
valid values

Context Root Text Yes Enter the context root of this module.

