

Oracle® Fusion Applications
Extensibility Guide for Developers

11g Release 7 (11.1.7)

E41852-03

September 2013

Documentation for developers that describes how to use
design-time tools to customize and extend the standard
functionality provided by certain Oracle Fusion
Applications.

Oracle Fusion Applications Extensibility Guide for Developers, 11g Release 7 (11.1.7)

E41852-03

Copyright © 2011, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Chris Kutler (lead), Shelly Butcher, Ralph Gordon, Peter Jew, Mark Kennedy, Steven Leslie,
Landon Ott

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

What's New in This Guide .. xiii

New and Changed Features for 11g Release 7 (11.1.7) .. xiii
Other Significant Changes in this Document for 11g Release 7 (11.1.7).. xiii

Part I Introduction to Customizing and Extending Oracle Fusion Applications

1 Customizing and Extending Oracle Fusion Applications

1.1 Understanding Customizing and Extending Oracle Fusion Applications 1-1
1.1.1 Personalization .. 1-2
1.1.2 Runtime Customizations and Extensions .. 1-3
1.1.3 Design Time Customizations and Extensions .. 1-4
1.2 Understanding Customization Layers .. 1-5
1.3 Understanding the Tools .. 1-7
1.3.1 Understanding Role-Based Access to Tools ... 1-8
1.3.2 Personalizing and Customizing Pages Using Page Composer 1-8
1.3.3 Customizing Pages Using Application Composer ... 1-9
1.3.4 Creating and Customizing Objects .. 1-10
1.3.5 Creating and Customizing Business Process Flows for Custom Objects 1-11
1.3.6 Defining Security Policies for Custom Objects ... 1-11
1.3.7 Adding Custom Attributes to Business Components .. 1-11
1.3.8 Customizing Reports and Analytics .. 1-11
1.3.9 Performing Design Time Customizations .. 1-11
1.3.10 Customizing and Extending Oracle BPM Project Templates 1-12
1.3.11 Understanding Other Available Customizations ... 1-12
1.3.12 What You Can Customize and Extend and with Which Tool 1-12
1.3.13 Installing Customization Tools .. 1-19

iv

2 Understanding the Customization Development Lifecycle

2.1 Understanding Typical Customization Workflows .. 2-1
2.1.1 Runtime Customization Workflow .. 2-2
2.1.2 Design Time Customization Workflow ... 2-3
2.2 Using the Sandbox Manager ... 2-5
2.3 Exporting and Moving Customizations ... 2-6

Part II Design Time Customizations and Extensions

3 Using Oracle JDeveloper for Customizations

3.1 About Using JDeveloper for Customization .. 3-1
3.1.1 About Customizing Oracle ADF Artifacts ... 3-2
3.1.2 About Using JDeveloper to Customize SOA Composite Applications 3-4
3.1.3 Before You Begin Using JDeveloper to Customize .. 3-5
3.2 Customizing Oracle ADF Artifacts with JDeveloper .. 3-6
3.2.1 Creating the Customization Application Workspace .. 3-6
3.2.2 Determining Which Oracle ADF Artifacts You Need to Customize 3-7
3.2.3 Customizing the Artifacts .. 3-8
3.2.4 Avoiding Conflicts Among Multiple Customization Developers 3-11
3.2.5 Running Customizations Locally ... 3-11
3.2.6 Importing Customizations into Your Application Workspace 3-11
3.2.7 Resynchronizing Your Customization Application Workspace Configuration Files

.. 3-12
3.3 Customizing SOA Composite Applications with JDeveloper .. 3-13
3.3.1 Before You Begin Using JDeveloper to Customize .. 3-13
3.3.2 Setting Up the JDeveloper Application Workspace and SOA Composite Application

Project for MDS Repository Customization ... 3-14
3.3.3 Customizing the SOA Composite Application .. 3-18
3.3.4 Customizing SOA Resource Bundles ... 3-18

4 Customizing and Extending Oracle ADF Application Artifacts

4.1 About Customizing Oracle ADF Application Artifacts .. 4-1
4.1.1 Before You Begin Customizing Oracle ADF Application Artifacts 4-2
4.1.2 Customizing at the Role Level ... 4-3
4.2 Editing Existing Business Components ... 4-4
4.3 Editing Task Flows ... 4-6
4.4 Editing Pages .. 4-7
4.5 Creating Custom Business Components ... 4-7
4.6 Creating Custom Task Flows ... 4-9
4.7 Creating Custom Pages .. 4-10
4.8 Customizing and Extending the Oracle Fusion Applications Schemas 4-11
4.8.1 About Customizing and Extending the Oracle Fusion Applications Schemas 4-11
4.8.2 What You Can Do with Schema Modifications .. 4-12
4.8.3 What You Cannot Do with Schema Modifications .. 4-12
4.8.4 Before You Begin Extending the Oracle Fusion Applications Schemas 4-13
4.8.5 Extending the Schemas Using a Custom Schema .. 4-13

v

4.8.6 Extending a Preconfigured Schema ... 4-14
4.9 Customizing or Creating a Custom Search Object ... 4-15
4.10 Editing the UI Shell Template .. 4-15
4.11 Customizing Menus ... 4-16
4.12 Customizing or Adding Resource Bundles .. 4-17
4.13 Extending Oracle Fusion Applications with a Custom Peer Application 4-17
4.14 Deploying Oracle ADF Customizations and Extensions .. 4-18

5 Customizing and Extending SOA Components

5.1 About Customizing and Extending SOA Components .. 5-2
5.1.1 Before You Begin Customizing SOA Composite Applications 5-5
5.2 Customizing SOA Composite Applications ... 5-6
5.3 Merging Runtime Customizations from a Previously Deployed Revision into a New

Revision .. 5-15
5.4 Extending or Customizing Custom SOA Composite Applications 5-18
5.5 Deploying SOA Composite Application Customizations and Extensions 5-23
5.6 Extending a New Oracle SOA Suite Service ... 5-24

6 Customizing and Extending Oracle BPM Project Templates

6.1 About Customizing Project Templates ... 6-1
6.1.1 About the Business Catalog ... 6-2
6.1.2 Before You Begin Using JDeveloper to Customize Project Templates 6-3
6.2 Customizing or Extending a Project Template ... 6-3
6.3 Publishing Project Templates to the Oracle BPM Repository ... 6-4

7 Customizing and Extending Oracle Enterprise Scheduler Jobs

7.1 About Customizing and Extending Oracle Enterprise Scheduler Jobs 7-1
7.1.1 Main Steps for Extending Oracle Enterprise Scheduler Jobs 7-2
7.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs 7-2
7.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs 7-2
7.2 Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion

Applications ... 7-2
7.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job 7-4
7.2.2 Extending a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job 7-8
7.2.3 Extending a Custom Java Oracle Enterprise Scheduler Job 7-8
7.2.4 Submitting Oracle Enterprise Scheduler Jobs .. 7-12
7.3 Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise

Scheduler Jobs .. 7-13
7.3.1 Creating Host and UI Applications Using an Ant Script ... 7-13
7.3.2 Generating an Oracle Enterprise Scheduler Synchronous Java Job Business Logic

Template .. 7-15
7.3.3 Creating Oracle Enterprise Scheduler Job Metadata Using JDeveloper 7-16
7.3.3.1 Creating an Oracle Enterprise Scheduler Job Definition in the Host Application

... 7-16
7.3.3.2 Creating a Schedule Request Submission UI to Enable End Users to Fill in

Properties .. 7-17
7.3.4 Assembling Oracle Enterprise Scheduler Oracle Fusion Applications 7-19

vi

7.3.5 Deploying Oracle Enterprise Scheduler Oracle Fusion Applications 7-22
7.3.6 Registering Oracle Enterprise Scheduler Topology Objects 7-26
7.3.7 Granting Job Metadata Permissions to Application Roles and Users 7-30
7.4 Customizing Existing Oracle Enterprise Scheduler Job Properties 7-32

8 Customizing Security for Oracle ADF Application Artifacts

8.1 About the Oracle Fusion Security Approach .. 8-1
8.1.1 How to Proceed with This Chapter ... 8-2
8.1.2 Related Security Documents .. 8-3
8.2 About Extending the Oracle Fusion Applications Security Reference Implementation ... 8-3
8.3 About Extending and Securing Oracle Fusion Applications .. 8-5
8.3.1 Oracle Fusion Security Customization Guidelines for New Functionality 8-6
8.3.2 Oracle Fusion Security Customization Process Overview ... 8-7
8.3.3 Oracle Fusion Security Customization Scenarios ... 8-8
8.3.4 Scenarios Related to Extending and Securing Data Model Components 8-11
8.3.5 Scenarios Related to Extending and Securing User Interface Artifacts 8-14
8.3.6 What You Can Customize in the Data Security Policy Store at Design Time 8-16
8.3.7 What You Can Customize in the Data Model Project at Design Time 8-19
8.3.8 What You Can Customize in the User Interface Project at Design Time 8-20
8.3.9 What You Can Customize in the Application Security Policy Store at Design Time 8-22
8.3.10 What You Cannot Do with Security Policies at Design Time 8-25
8.3.11 Before You Begin Customizing Security .. 8-26
8.4 Defining Data Security Policies on Custom Business Objects .. 8-28
8.5 Enforcing Data Security in the Data Model Project .. 8-32
8.6 Defining Function Security Policies for the User Interface Project 8-34

9 Translating Custom Text

9.1 About Translating Custom Text ... 9-1
9.2 Translating Resource Bundles from an MDS Repository ... 9-1
9.3 Translating Page Composer and Application Composer Customizations 9-3
9.4 Translating Menu Customizations ... 9-5
9.5 Translating Flexfield and Value Set Configurations ... 9-5

10 Configuring End-User Personalization

10.1 About Configuring End-User Personalization ... 10-1
10.1.1 Before You Begin Allowing Pages or Components to be Personalized 10-2
10.2 Allowing Pages to Be Personalized by End Users in Page Composer 10-3
10.3 Configuring End-User Personalization for Components ... 10-3

11 Customizing Help

11.1 About Customizing Help ... 11-1
11.1.1 What You Can Do with Help ... 11-3
11.1.2 Before You Begin Customizing Help ... 11-4
11.2 Customizing or Extending Oracle Fusion Applications Help .. 11-4
11.3 Customizing or Adding Bubble Embedded Help .. 11-5

vii

11.4 Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions
... 11-5

12 Customizing the Oracle Fusion Applications Skin

12.1 Introduction to Skinning Oracle Fusion Applications .. 12-1
12.1.1 Before You Begin Customizing the Oracle Fusion Applications Skin 12-2
12.2 Creating a Custom Oracle Fusion Applications Skin ... 12-2
12.3 Applying a Custom Skin to Your Oracle Fusion Applications 12-3

Part III Appendixes

A Troubleshooting Customizations

A.1 Introduction to Troubleshooting Customizations ..A-1
A.2 Getting Started with Troubleshooting and Logging Basics for CustomizationsA-2
A.2.1 Exporting Customizations ...A-2
A.2.2 Backing Up and Restoring Customizations ...A-2
A.2.3 Choosing the Right Customization Layer ..A-2
A.2.4 Determining the Full Path for a Customizations DocumentA-3
A.2.5 Determining Whether a Customization Layer is Active ..A-3
A.2.6 Logging Customizations that Are Applied to a Page ...A-4
A.3 Resolving Common Problems ..A-4
A.3.1 User Interface is not Displaying the Active Sandbox CustomizationsA-4
A.3.2 Customizations Context Table Is Empty in Oracle JDeveloperA-4
A.3.3 Application Is Not Displayed Correctly After Applying a Customized SkinA-5
A.3.4 Finding the EAR File for an Application ..A-5
A.4 Using My Oracle Support for Additional Troubleshooting InformationA-6

Glossary

viii

ix

Preface

Welcome to Oracle Fusion Applications Extensibility Guide for Developers.

Audience
This document is intended for developers who want to customize and extend the
standard functionality provided by Oracle Fusion Applications. Developers should
have a basic understanding of the Java programming language, web applications,
Oracle JDeveloper, and Oracle Application Development Framework. This book gives
an overview of the design-time customization and extension tasks and provides
references to the books that contain more detailed documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
You can also find information about Oracle Fusion Middleware and extending and
customizing Oracle Fusion Applications in the following documents:

■ Oracle Database Security Guide

■ Oracle Fusion Applications Administrator's Guide

■ Oracle Fusion Applications Administrator's Troubleshooting Guide

■ Oracle Fusion Applications Administrator and Implementor Roadmap

■ Oracle Fusion Applications Common Implementation Guide

■ Oracle Fusion Applications Concepts Guide

■ Oracle Fusion Applications Extensibility Guide for Business Analysts

■ Oracle Fusion Applications CRM Extensibility Guide

x

■ Oracle Fusion Applications Enterprise Deployment Guide for Customer Relationship
Management

■ Oracle Fusion Applications Developer's Guide

■ Oracle Fusion Functional Setup Manager User's Guide

■ Oracle Fusion Functional Setup Manager Developer's Guide

■ Oracle Fusion Applications Installation Guide

■ Oracle Fusion Applications Post-Installation Guide

■ Oracle Fusion Applications Master Glossary

■ Oracle Fusion Applications Patching Guide

■ Oracle Fusion Applications Security Guide

■ Oracle Fusion Applications Security Hardening Guide

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

■ Oracle Fusion Middleware Application Security Guide

■ Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business
Process Management

■ Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduler

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Error Messages Reference

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management

■ Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide
(Oracle Fusion Applications Edition)

■ Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Publisher
(Oracle Fusion Applications Edition)

■ Oracle Fusion Middleware Security and Administrator's Guide for Web Services

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware User Guide for Oracle Enterprise Repository

■ Oracle Fusion Middleware User's Guide for Oracle Identity Manager

■ Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces

■ Oracle Fusion Middleware User's Guide for Technology Adapters

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

Conventions
The following text conventions are used in this document:

xi

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

xiii

What's New in This Guide

The following topics introduce the new and changed design-time customization and
extensibility features of Oracle Fusion Applications and other significant changes that
are described in this guide, and provides pointers to additional information.

New and Changed Features for 11g Release 7 (11.1.7)
Oracle Fusion Applications 11g Release 7 (11.1.7) does not contain any new or changed
features for this document.

Other Significant Changes in this Document for 11g Release 7 (11.1.7)
For 11g Release 7 (11.1.7), this guide has been updated in several ways. Following are
the sections that have been added or changed.

■ Design-time information for on-premises installations of Oracle Fusion
Applications was moved from the Oracle Fusion Applications Extensibility Guide for
Business Analysts to this book.

■ Added customization guidelines for working in teams. See Section 3.2.4,
"Avoiding Conflicts Among Multiple Customization Developers."

■ Added guidelines for testing customized pages locally from Oracle JDeveloper.
See Section 3.2.5, "Running Customizations Locally."

■ Added instructions for implementing role-based customizations when
customizing and extending Oracle Application Development Framework
application artifacts. See Section 4.1.2, "Customizing at the Role Level."

xiv

Part I
Part I Introduction to Customizing and

Extending Oracle Fusion Applications

Part I contains the following chapters:

■ Chapter 1, "Customizing and Extending Oracle Fusion Applications"

■ Chapter 2, "Understanding the Customization Development Lifecycle"

1

Customizing and Extending Oracle Fusion Applications 1-1

1Customizing and Extending Oracle Fusion
Applications

This chapter provides an overview of how to customize and extend on-premises
installations of Oracle Fusion Applications and introduces the design time and
runtime tools that are used in the process. The remainder of this book describes how to
use the following tools to customize and extend on-premises installations at design
time:

■ Oracle JDeveloper

■ Oracle Business Process Management Worklist (Oracle BPM Worklist)

■ Oracle SOA Composer

■ Oracle Enterprise Manager Fusion Applications Control (Fusion Applications
Control)

■ Oracle Application Development Framework (Oracle ADF) Skin Editor

This chapter includes the following sections:

■ Section 1.1, "Understanding Customizing and Extending Oracle Fusion
Applications"

■ Section 1.2, "Understanding Customization Layers"

■ Section 1.3, "Understanding the Tools"

1.1 Understanding Customizing and Extending Oracle Fusion
Applications

While Oracle Fusion applications provide robust out-of-the-box functionality, there
may be areas of one of the applications that you must change to meet your business
needs. On-premises installations of Oracle Fusion Applications provide runtime and
design time tools to customize and extend Oracle Fusion applications. This book gives
an overview of both the runtime and design time tools, and then guides you through
the process of using the design time tools that are available for on-premises
installations. For further information about using runtime tools, see the Oracle Fusion
Applications CRM Extensibility Guide, the Oracle Fusion Applications Common
Implementation Guide, and the Oracle Fusion Applications Extensibility Guide for Business
Analysts.

Most customizations made to an Oracle Fusion application, whether a personalization
an end user makes, a change a business user makes using a runtime composer tool, or
a change a developer makes using JDeveloper to create new source code, are stored in
a metadata repository. Because these customizations are kept separate from the base

Understanding Customizing and Extending Oracle Fusion Applications

1-2 Extensibility Guide for Developers

code, you can safely upgrade your Oracle Fusion application without losing your
changes.

Customizations made at runtime can be saved in a sandbox so that the changes can be
isolated and validated before being published into a full test environment. Changes
done at design time are done in a development environment, and can also be deployed
to a sandbox before being deployed into the full test environment.

The Manage Customizations dialog enables you to identify and examine where
customizations have been made and for which layer, even when a page consists of
several different components (some of them actually being another page). You can
also use the Manage Customizations dialog to import customizations that others have
done, or you can export your own customizations.

For more information about using the Manage Customizations dialog and sandboxes,
see Chapter 2, "Understanding the Customization Development Lifecycle."

All Oracle Fusion applications are based on Oracle Fusion Middleware. Most user
interfaces are implemented using Oracle Application Development Framework
(Oracle ADF) and standard Java technologies, such as the JavaServer Faces technology.
The foundation of the applications are the service-oriented architecture (SOA)
business processes. Business intelligence frameworks provide several reporting
capabilities. Identity management works at every level to control access. Each of these
areas of an application can be customized and extended to suit your business needs.

Additionally, Oracle Fusion applications are built using a common data model.
Because of this commonality, when you make a customization in one area, that
customization will be available to all objects in the application. For example, if you
add an attribute to an object, you can easily add that attribute to the web-based view
page, to an associated mobile page, and to any associated reports.

Within this guide, the term customize means to change a standard (existing) artifact.
For example, you can add an attribute to an existing object or you can change what is
displayed on a standard page. The term extend means to create a completely new
artifact, such as a custom object.

For customizations and extensions, there are three basic scenarios:

■ Personalization

■ Runtime customizations and extensions

■ Design time customizations and extensions

1.1.1 Personalization
The term personalization refers to the changes that every end user of the Oracle Fusion
Applications product suite can make to certain artifacts in the user interface (UI) at
runtime. These changes remain for that user each time that user logs in to the
application. Personalization includes changes based on user behavior (such as
changing the width of a column in a table), changes the user elects to save, such as
search parameters, or composer-based personalizations, where an end user can
redesign aspects of a page.

Note: You can also create a complete Java EE application to
supplement your Oracle Fusion applications. See the Oracle Fusion
Applications Developer's Guide for more information.

Understanding Customizing and Extending Oracle Fusion Applications

Customizing and Extending Oracle Fusion Applications 1-3

For composer-based personalizations, Oracle Fusion Applications includes Page
Composer, which allows end users to change certain UI pages to suit their needs. For
example, they can rearrange certain objects on a page, add and remove designated
content, and save queries. Figure 1–1 shows the Partner Profile page in Page
Composer. An end user can add other content to this page, or change the order of the
current content.

Figure 1–1 End Users Can Personalize UIs with Page Composer

1.1.2 Runtime Customizations and Extensions
Runtime customizations and extensions include those that a business analyst can make
to an Oracle Fusion application at runtime using browser-based composers. These
customizations and extensions are visible and usable by all or by a subset of Oracle
Fusion Applications users. The types of runtime customizations and extensions range
from changing the look and feel of a page, to customizing standard objects, adding a
new object and associated pages and application functionality, changing workflows,
defining security for new objects, and customizing reports. Figure 1–2 shows how you
can customize the fields on a standard object using Application Composer, which is a
runtime tool used to customize and extend certain Oracle Fusion Customer
Relationship Management (Oracle Fusion CRM) applications.

Note: By default, only certain personalizations are allowed. You can
customize what can be personalized. For more information, see
Chapter 10, "Configuring End-User Personalization."

Understanding Customizing and Extending Oracle Fusion Applications

1-4 Extensibility Guide for Developers

Figure 1–2 Application Composer Allows You to Customize Objects at Runtime

For information about customizing and extending Oracle Fusion applications using
runtime tools, see the Oracle Fusion Applications CRM Extensibility Guide, the Oracle
Fusion Applications Common Implementation Guide, and the Oracle Fusion Applications
Extensibility Guide for Business Analysts.

1.1.3 Design Time Customizations and Extensions
Design time customizations and extensions include more complex changes, such as
creating a SOA composite application or creating a new batch job, and they require
deployment into a runtime environment. These design time customizations and
extensions are most often done by Java developers using Oracle JDeveloper (a
comprehensive integrated development environment), as shown in Figure 1–3, or they
may be done in other tools, such as Oracle SOA Composer. The customizations are
then uploaded or deployed to a running instance of Oracle Fusion Applications.
Developer-level extensions are covered in this book.

Understanding Customization Layers

Customizing and Extending Oracle Fusion Applications 1-5

Figure 1–3 Oracle JDeveloper

1.2 Understanding Customization Layers
Oracle Fusion applications contain built-in customization layers that allow you to
make customizations that affect only certain instances of an application. For example,
the Sales application has a layer for job role. When you customize an artifact, you can
choose to make that customization available only to users of a specific job role, for
example, a sales representative.

Customizations you make are not saved to the base standard artifact. Instead, they are
saved to an Extensible Markup Language (XML) file that is stored in an Oracle
Metadata Services (MDS) repository. This XML file acts like a list of instructions that
determines how the artifact looks or behaves in the application, based on the layer that
is controlling the current context. The customization engine in MDS manages this
process.

For example, say you want to customize the Sales home page by removing the Quick
Create panel, but only for users with the Sales Representative role. Before you make
your customization, you first select the layer in which to make your customization, in
this case the role layer whose value is Sales Representative. When you make your
customization by removing that pane from the page, an XML file is generated with the
instructions to remove the pane, but only in the role layer, and only when the value is
Sales Representative. The original page file remains untouched. The customization
engine in MDS then stores the XML file in an MDS repository.

Now, whenever someone logs in to the application and requests an artifact, the
customization engine in MDS checks the repository for XML files that match the
requested artifact and the given context, and if there is a match, it layers the
instructions on top of the base artifact. In this example, whenever the Sales home page
is requested (the artifact) by someone who is assigned the role of Sales Representative
(the context), before the page is rendered, the customization engine in MDS pulls the
corresponding XML file from the repository, layers it on top of the standard Sales
home page, and removes that pane. Whenever someone who is not a Sales
Representative logs in (for example, someone with the role of Sales Manager), the
XML file with your changes is not layered on top, and so the Quick Create panel is
displayed.

Figure 1–4 shows how the customization XML file is applied to the base document and
is visible only to a sales representative.

Understanding Customization Layers

1-6 Extensibility Guide for Developers

Figure 1–4 One Customization Layer Handled by the Customization Engine in MDS

All users of Oracle Fusion applications can personalize certain pages using the
Personalization menu. Users can move elements around on a page, hide elements, and
even add available elements to their page. When they do this personalization, the
customization engine in MDS creates an XML file specific to that user.

For example, say User 1 (who has the role of Sales Representative) personalizes the
Sales home page. There will then be an XML file stored in the repository, noting the
changes that user made. When User 1 logs in, as in the previous example, the
customization engine in MDS pulls the XML file with the sales representative
customizations from the repository and layers it on top of the standard Sales home
page. In addition, the engine pulls the XML file with the User 1personalizations,
allowing the user to see the personalization changes along with the Sales
Representative changes. When other Sales Representatives log in, they do not see the
User 1 personalization changes, as shown in Figure 1–5.

Figure 1–5 Personalizations Are Also Handled by the Customization Engine in MDS

The exact customization layers available for an application depend on that application
family (see the product-specific documentation from Oracle Enterprise Repository for
Oracle Fusion Applications for details). However, all Oracle Fusion applications have
the following customization layers:

■ Global layer: When customizations are made in the global layer, they affect all
users of the application. This layer's XML files are added for everyone, whenever

XMXMLXMLLLLLLMLMLMMLLLMMLMMMMMMMMMMMMMMLLLMLMMMM
XMXXXXX LLXMX LXMXMXXMXMXMLLLLLLLLLLLLLLLMLMMMLMMMMMMMMMMMLLLLLLMMLM LLXMX LXXXXXMXXXMXXXXXXMXMXML

XMLXML

XMLXML

Sales Representative
Role Customization

Sales Home
Page Base
Document

Metadata
Repository-File
or DB

No Customization

Sales
Representative’s
Page

Sales Manager’s
Page

+

XMXMLXMLLLLLLMLMLMMLLLMMLMMMMMMMLMMMMMMMLLLMLMMMM
XMXXXXX LLXMX LXMXMXXMXMXMLLLLLLLLLLLLLLLLMLMLMMLMMMMMMMMMMMLLLLLLLMMLM LLXMX LXXXXXMXXXMXXXXXMXMXML

XMLXML XMLXXML

XMLXML

User 1’s
Personalization

Base
Document

Sales
Representative

Metadata
Repository-File
or DB

No Personalization

User 1’s Page

User 2’s Page

+

+

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-7

the artifact is requested. Customizations made to ADF Business Components in
JDeveloper must be made in the global layer.

■ Site layer: Customizations made in the site layer affect users at a particular
location.

■ User layer: The user layer is where all personalizations are made. Users do not
have to explicitly select this layer. It is automatically selected when you use the
Personalization menu.

These layers are applied in a hierarchy, and the highest layer in that hierarchy in the
current context is considered the tip. Within the default customization layers, the
global layer is the base layer, and the user layer is the tip. If customizations are done to
the same object, but in different layers, at runtime, the tip layer customizations take
precedence. For example, if you customize the label for a field in the site layer using
Page Composer and customize the same label in the global layer using JDeveloper, the
site layer customization will be displayed at runtime.

Because customizations are saved in these XML files, when you patch or upgrade your
Oracle Fusion applications, the base artifacts can be updated without touching your
changes. The base artifact is replaced, and when the application is run after the patch
or upgrade, the XML files are simply layered on top of the new version. You do not
need to redo your customizations.

Before you create customizations, you must select the layer to which you want your
customizations to be applied. Most of the tools that you use to create your
customizations provide a dialog where you can pick the layer for your customizations.

1.3 Understanding the Tools
Oracle Fusion Applications provides several tools to enable you to customize and
extend Oracle Fusion applications. With these tools, you can perform the following
tasks:

■ Personalize and customize pages using Page Composer

■ Customize pages using Application Composer

■ Create and customize objects using Application Composer

■ Create business process flows for custom objects

■ Define security policies for custom objects

■ Add custom attributes to a business object

■ Customize reports and analytics

■ Perform design time customizations using JDeveloper

■ Customize and extend Oracle BPM Project Templates

■ Configure end-user personalization

■ Customize help

■ Customize the Oracle Fusion Applications skin

■ Translate custom text

For a more detailed description of the workflow you must follow when customizing
and extending Oracle Fusion applications, see Chapter 2, "Understanding the
Customization Development Lifecycle."

Understanding the Tools

1-8 Extensibility Guide for Developers

1.3.1 Understanding Role-Based Access to Tools
The user interfaces in Oracle Fusion applications are controlled by role-based
authentication, meaning that the information presented in the UI, and what the user
can do in the UI, depends on the role assigned to the currently logged-in user. For
example, if you are assigned a role with an administrative privilege, when you log in
to Oracle Fusion Applications, you will see an Administration menu, as shown in
Figure 1–6. This menu allows you to do things such as customize a page for all users,
or manage customizations.

Figure 1–6 Oracle Fusion Applications Menu Bar

1.3.2 Personalizing and Customizing Pages Using Page Composer
Both personalization and customization use Page Composer to make changes to an
application page. Using personalization, any user can drag and drop fields, rearrange
regions, add approved external content, and save their favorite queries.

Using administration customization, you also use Page Composer to customize pages
for other users. You can add fields, add validation, change defaults, rearrange regions,
and add external content. Page Composer allows you to work in a WYSIWYG view,
and, in some cases, Source view, as shown in Figure 1–7.

Tip: When you extend Oracle Fusion applications, you may want
those extensions to be configurable using Oracle Fusion Functional
Setup Manager. For more information about creating setup flows for
extensions, see the Oracle Fusion Functional Setup Manager User's
Guide.

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-9

Figure 1–7 Page Composer

For more information about customizing pages, see the "Page Composer: Customizing
Oracle Fusion CRM Applications" chapter in the Oracle Fusion Applications CRM
Extensibility Guide and the "Editing a Page" chapter in the Oracle Fusion Middleware
User's Guide for Oracle WebCenter Portal: Spaces.

1.3.3 Customizing Pages Using Application Composer
If you want to extend or customize the Sales, Marketing, Customer Center, Trading
Community Architecture (TCA), and Order Capture applications that are part of the
Oracle Fusion CRM product family of Oracle Fusion Applications, you can use
Application Composer to customize your pages, as described in the "Creating a Work
Area: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.

You access Application Composer by clicking the Application Composer link from
the Navigator menu of Oracle Fusion Applications, as shown in Figure 1–8.

Note: Only certain pages are available for customization. For a
complete list, see the product-specific documentation from Oracle
Enterprise Repository for Oracle Fusion Applications.

Understanding the Tools

1-10 Extensibility Guide for Developers

Figure 1–8 Navigator Menu

1.3.4 Creating and Customizing Objects
Application Composer allows business analysts to make more complex runtime
customizations to Oracle Fusion CRM applications. In addition to customizing pages,
business analysts can customize objects and all the artifacts that support them (such as
fields, pages, buttons and links, security, server scripts, and saved searches), and can
also extend Oracle Fusion applications by creating completely new objects and
artifacts, as shown in Figure 1–9. For more information, see the "Defining Objects:
Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.

Figure 1–9 Application Composer

When new objects are created, you often also create associated Work Area pages for
those objects. You can add those pages to the navigator menu so that they can be
accessed in the same way as standard objects. For more information, see the
"Managing Menu Customizations: Highlights" section in the Oracle Fusion Applications
Common Implementation Guide.

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-11

1.3.5 Creating and Customizing Business Process Flows for Custom Objects
When you create a new object that is not a subclass of another object, you can also
create a new object workflow to manage any business processes associated with it. For
example, say you used Application Composer to create a marketing object and you
want to create an associated approval flow. From within Application Composer, you
can access Oracle Business Process Composer and create the process that defines that
flow. For applications outside of Oracle Fusion CRM, you access Business Process
Composer directly from the Navigator menu. For more information about using the
Business Process Composer, see the "Customizing and Extending BPMN Processes"
chapter in the Oracle Fusion Applications Extensibility Guide for Business Analysts.

1.3.6 Defining Security Policies for Custom Objects
When you create a new object in Application Composer, you can define security
policies for it. A security policy defines the end user's level of access to the data
records of the object. For more information about creating security policies for custom
Oracle Fusion CRM objects, see the "Securing Custom Objects: Explained" section in
the Oracle Fusion Applications CRM Extensibility Guide.

1.3.7 Adding Custom Attributes to Business Components
If you need to add an attribute to a business component in an application that is not
one of the five Oracle Fusion CRM applications, you can often use flexfields. A
flexfield enables you to define attributes on a business component and then apply
business logic to them. For example, an airline manufacturer might require very
specific attributes for their orders that are not provided by the out-of-the-box
implementation of an order. Because a flexfield exists for the order business
component, you can use it to create and configure the desired attribute. Flexfield
configurations are stored in an MDS repository, and so are safe during patching and
upgrading. You access flexfields from the Setup and Maintenance menu from the
Administration menu. For more information about flexfields, see the "Flexfields:
Overview" section in the Oracle Fusion Applications Common Implementation Guide.

1.3.8 Customizing Reports and Analytics
Oracle Fusion Applications comes with a complete set of reports. You can customize
these reports (for example, change the layout) to fit your particular business needs.
Additionally, if you customize or create a business object, you can create a new report
for that object. For more information, see the "Customizing Reports and Analytics"
chapter in the Oracle Fusion Applications Extensibility Guide for Business Analysts.

1.3.9 Performing Design Time Customizations
To customize or create business objects outside of the five Oracle Fusion CRM
applications, or when required customizations cannot be made in one of the runtime
composers, use JDeveloper. When you work in a JDeveloper environment, you create
an application workspace that contains your changes and additions. When you create
this application workspace, you do so in the Oracle Fusion Applications Developer
role. Like Oracle Fusion Applications, JDeveloper uses roles to shape what you see and
can do in the integrated development environment (IDE). Work done in a developer
role is stored in actual projects with code that gets deployed to an environment. Use
the Oracle Fusion Applications Administrator Customization role when customizing
an existing standard object (as opposed to creating a new object). Work done in this
role is saved to an XML file that gets deployed into an MDS repository, keeping your
changes separate from the base code. For more information about how to set up your

Understanding the Tools

1-12 Extensibility Guide for Developers

JDeveloper customization environment, see Chapter 3, "Using Oracle JDeveloper for
Customizations."

Developers can use JDeveloper to create and customize view pages, business objects,
task flows (reusable components that specify the control flow in an application),
searches, and resource bundles. All customizations and extensions created in
JDeveloper must be deployed to an environment. For more information about using
JDeveloper to customize business objects and associated artifacts, see Chapter 4,
"Customizing and Extending Oracle ADF Application Artifacts."

SOA composite applications are the foundation on which Oracle Fusion applications
are built: they are the glue that holds all the different components together and they
allow the different applications to work in a unified manner. SOA composite
applications contain service components such as Business Process Execution
Language (BPEL) process flows. These BPEL process flows provide communication
between applications, additional human-based workflows, and business rules that
determine the branching in those flows. Developers can customize existing SOA
composite applications or create new ones using a mixture of JDeveloper and
browser-based tools. Customized and extended SOA composite applications are all
stored in MDS repositories. For more information, see Chapter 5, "Customizing and
Extending SOA Components."

1.3.10 Customizing and Extending Oracle BPM Project Templates
Some Oracle Fusion applications provide business process modeling (BPM) project
templates that you can use to create BPM projects. BPM projects consist of SOA
artifacts, such as business rules and human tasks, and Business Process Modeling and
Notation (BPMN) processes. You can customize these project templates to suit your
business needs. For more information, see Chapter 6, "Customizing and Extending
Oracle BPM Project Templates."

1.3.11 Understanding Other Available Customizations
When you create custom pages, you may want to make them personalizable, so that
end users can change the page for themselves. For more information, see Chapter 10,
"Configuring End-User Personalization." Also, when you make any type of
customization or extension to Oracle Fusion applications, you might have to change
the embedded help that appears on the screen. For more information, see Chapter 11,
"Customizing Help."

You can customize the look and feel of Oracle Fusion Applications, such as change the
colors or add a logo. For more information, see Chapter 12, "Customizing the Oracle
Fusion Applications Skin."

Some customizations can be translated. For more information, see Chapter 9,
"Translating Custom Text."

1.3.12 What You Can Customize and Extend and with Which Tool
There are many scenarios for which you can customize Oracle Fusion applications.
The following tables identify for each scenario the artifacts that you can customize or
create in Oracle Fusion Applications, what tool you use, the type of user that can make
the change, and whether the changes are stored in an MDS repository:

Note: You cannot create your own roles to define what you see and
what you can do in JDeveloper.

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-13

■ View page customizations: Table 1–1

■ Branding customizations: Table 1–2

■ Object customization: Table 1–3

■ Business process customizations: Table 1–4

■ Report customizations: Table 1–5

■ Analysis and dashboard customizations: Table 1–6

■ Oracle Enterprise Scheduler job customizations: Table 1–7

■ Security customizations: Table 1–8

Note: Application Composer is available only if you want to make
changes in the following Oracle Fusion CRM applications:

■ Marketing

■ Sales

■ Customer Center

■ Trading Community Architecture (TCA)

■ Order Capture

Note: While you can customize view pages in Page Composer and
Application Composer, only certain pages are configured to allow it.
If the customization that you want to make is not available in Page
Composer, then you must use JDeveloper to make the customization.

Table 1–1 View Page Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Add, move, delete,
show, or hide
components on a
page.

Page Composer Business Analyst Yes "Building Pages" chapter in the
Oracle Fusion Middleware User's
Guide for Oracle WebCenter Portal:
Spaces

Change a page layout. Page Composer Business Analyst Yes "Changing the Page Layout"
section in the Oracle Fusion
Middleware User's Guide for Oracle
WebCenter Portal: Spaces

Create a site-level
search for all users.

Page Composer Business Analyst Yes "Editing a Page in Page
Composer" section in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Customize a page
title.

Page Composer Business Analyst Yes "Editing a Page in Page
Composer" section in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Customize a task list
menu.

Page Composer Business Analyst Yes "Editing a Page in Page
Composer" section in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Understanding the Tools

1-14 Extensibility Guide for Developers

Customize popup
window content.

Page Composer Business Analyst Yes "Editing a Page in Page
Composer" section in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Add fields, buttons,
links, to a standard
page (Oracle Fusion
CRM).

Application Composer Business Analyst Yes "Application Composer: Using
the Application Composer"
chapter in the Oracle Fusion
Applications CRM Extensibility
Guide

Customize attributes
for a flexfield on a
page.

Page Composer Business Analyst Yes "Flexfields: Overview" section in
the Oracle Fusion Applications
Common Implementation Guide

Customize properties
for UI components on
a standard page.

Page Composer Business Analyst Yes "Setting Component Properties"
section in the Oracle Fusion
Middleware User's Guide for Oracle
WebCenter Portal: Spaces

Customize properties
for UI components on
a standard page
(Oracle Fusion CRM).

Application Composer Business Analyst Yes "Editing an Object: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide

Make UI components
on a page
personalizable.

Page Composer Business Analyst Yes Section 10.3, "Configuring
End-User Personalization for
Components"

Customize the UI
Shell template.

JDeveloper Developer Yes Section 4.10, "Editing the UI Shell
Template"

Customize the UI
Shell template.

Page Composer Business Analyst Yes "Editing the UI Shell Template
Used by All Pages" section in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Define resource
bundles.

JDeveloper Developer Yes Section 4.12, "Customizing or
Adding Resource Bundles"

Make a custom page
personalizable
(custom pages created
in Application
Composer are
customizable by
default).

JDeveloper Developer Yes Section 10.2, "Allowing Pages to
Be Personalized by End Users in
Page Composer"

Customize onscreen
text that is displayed
when the end user
mouses over a button
or link.

Page Composer Business Analyst Yes Section 11.3, "Customizing or
Adding Bubble Embedded Help"

Table 1–1 (Cont.) View Page Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-15

Customize onscreen
help text.

JDeveloper Developer Yes Section 11.4, "Customizing or
Adding Static Instructions,
In-Field Notes, and Terminology
Definitions"

Change the look and
feel of the entire
application.

JDeveloper Developer No Chapter 12, "Customizing the
Oracle Fusion Applications Skin"

Translate custom text. JDeveloper Developer Yes Chapter 9, "Translating Custom
Text"

Table 1–2 Branding Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Customize the UI
Shell template.

JDeveloper Developer Yes Section 4.10, "Editing the UI Shell
Template"

Customize the UI
Shell template.

Page Composer Business Analyst Yes "Editing the UI Shell Template
Used by All Pages" section in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Change the look and
feel of the entire
application.

JDeveloper Developer No Chapter 12, "Customizing the
Oracle Fusion Applications Skin"

Change the logo. JDeveloper Developer No Chapter 12, "Customizing the
Oracle Fusion Applications Skin"

Customize report
layouts.

Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Table 1–3 Object Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Customize business
objects.

JDeveloper Developer Yes Section 4.2, "Editing Existing
Business Components"

Customize objects
(Oracle Fusion CRM).

Application Composer Business Analyst Yes "Editing an Object: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide

Add an attribute to a
business object using
flexfields (not Oracle
Fusion CRM).

Setup and Maintenance
work area

Business Analyst No "Flexfields: Overview" section in
the Oracle Fusion Applications
Common Implementation Guide

Create business
objects.

JDeveloper Developer Yes Section 4.5, "Creating Custom
Business Components"

Create objects (Oracle
Fusion CRM).

Application Composer Business Analyst Yes "Editing an Object: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide

Table 1–1 (Cont.) View Page Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Understanding the Tools

1-16 Extensibility Guide for Developers

Add a business object
page to the navigator
menu

Setup and Maintenance
work area

Business Analyst No "Managing Menu
Customizations: Highlights"
section in the Oracle Fusion
Applications Common
Implementation Guide

Add custom object
work area pages to
the navigator menu
(Oracle Fusion CRM)

Application Composer Business Analyst No "Managing Menu
Customizations: Highlights"
section in the Oracle Fusion
Applications Common
Implementation Guide"

Add validation to a
business object

JDeveloper Developer Yes "Section 4.5, "Creating Custom
Business Components"

Add validation to an
object (Oracle Fusion
CRM).

Application Composer Business Analyst Yes "Groovy Scripting: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide"

Customize saved
searches for a custom
object (Oracle Fusion
CRM).

Application Composer Business Analyst Yes "Saved Searches for CRM
Objects: Explained" section in the
Oracle Fusion Applications CRM
Extensibility Guide"

Create searches for an
object.

JDeveloper Developer Yes Section 4.9, "Customizing or
Creating a Custom Search
Object"

Create saved searches
for a custom object
(Oracle Fusion CRM).

Application Composer Business Analyst Yes "Saved Searches for CRM
Objects: Explained" section in the
Oracle Fusion Applications CRM
Extensibility Guide

Customize task flows
for an object.

JDeveloper Developer Yes Section 4.3, "Editing Task Flows"

Create task flows for
an object.

JDeveloper Developer Yes Section 4.6, "Creating Custom
Task Flows"

Customize object
workflows for an
object (Oracle Fusion
CRM).

Application Composer Business Analyst Yes "Object Workflows: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide

Create object
workflows for an
object (Oracle Fusion
CRM).

Application Composer Business Analyst Yes "Object Workflows: Explained"
section in the Oracle Fusion
Applications CRM Extensibility
Guide

Table 1–3 (Cont.) Object Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-17

Table 1–4 Business Process Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Create a BPMN
process in a BPM
project.

Business Process
Composer

Business Analyst Yes "Customizing and Extending
BPMN Processes" chapter in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Create a BPMN
approval process in a
BPM project (Oracle
Fusion CRM).

Application Composer Business Analyst Yes "Customizing and Extending
BPMN Processes" chapter in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Customize custom
BPM projects.

Business Process
Composer

Business Analyst Yes "Customizing and Extending
BPMN Processes" chapter in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Customize custom
BPM projects (Oracle
Fusion CRM).

Application Composer Business Analyst Yes "Customizing and Extending
BPMN Processes" chapter in the
Oracle Fusion Applications
Extensibility Guide for Business
Analysts

Customize BPM
project templates.

Oracle BPM Studio Developer Yes Chapter 6, "Customizing and
Extending Oracle BPM Project
Templates"

Customize a business
rule (either an
approval
configuration and
assignment rule or a
nonapproval business
rule), domain value
map, or composite
application endpoint
property.

Oracle BPM Worklist,
Oracle SOA Composer,
and Fusion
Applications Control

Developer Yes Section 5.2, "Customizing SOA
Composite Applications"

Merge the
customizations from a
previous revision of a
SOA composite
application into a new
revision.

Opatch Administrator Yes Section 5.3, "Merging Runtime
Customizations from a
Previously Deployed Revision
into a New Revision"

Customize a BPEL
process or a mediator
component, or add
additional SOA
components.

JDeveloper Developer Yes Section 5.4, "Extending or
Customizing Custom SOA
Composite Applications"

Understanding the Tools

1-18 Extensibility Guide for Developers

Table 1–5 Report Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Create report layout. Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Customize report
layouts.

Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Customize style
templates.

Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Create a report. Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Translate a report. Oracle BI Publisher Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Create a report
subject area (Oracle
Fusion CRM)

Application Composer Business Analyst No "Custom Subject Areas:
Explained" section in the Oracle
Fusion Applications CRM
Extensibility Guide

Table 1–6 Analysis and Dashboard Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Customize analytics. Reports and Analytics
pane

Business Analyst No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Customize and
extend the Oracle BI
repository (RPD file).

JDeveloper, Oracle BI
Administration Tool

Developer No "Customizing Reports and
Analytics" chapter in the Oracle
Fusion Applications Extensibility
Guide for Business Analysts

Table 1–7 Oracle Enterprise Scheduler Job Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Create jobs. JDeveloper Developer No Chapter 7, "Customizing and
Extending Oracle Enterprise
Scheduler Jobs"

Understanding the Tools

Customizing and Extending Oracle Fusion Applications 1-19

1.3.13 Installing Customization Tools
All the business analyst tools are available from the navigator menu of Oracle Fusion
Applications. However, for most of the design time tools, you must install and
configure a version of JDeveloper that is certified for your Oracle Fusion Applications
release. This version of JDeveloper, along with the necessary extensions for
customizing and extending Oracle Fusion Applications, is in the release's Oracle
Fusion Applications Media Pack, which is available from Oracle Software Delivery
Cloud at http://edelivery.oracle.com. After installing JDeveloper, they must
set up their environment for customization and extending.

For procedures for installing JDeveloper and setting it up for extending (that is, for
creating new objects), see the "Setting Up Your Development Environment" and
"Setting Up Your JDeveloper Application Workspace and Projects" chapters in the
Oracle Fusion Applications Developer's Guide.

For procedures for setting up JDeveloper for customizations, see Chapter 3, "Using
Oracle JDeveloper for Customizations."

Customize jobs. Fusion Applications
Control

Administrator No Chapter 7, "Customizing and
Extending Oracle Enterprise
Scheduler Jobs"

Submit jobs. Fusion Applications
Control

Administrator No Chapter 7, "Customizing and
Extending Oracle Enterprise
Scheduler Jobs"

Submit jobs. JDeveloper Developer No Chapter 7, "Customizing and
Extending Oracle Enterprise
Scheduler Jobs"

Table 1–8 Security Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Add data security to a
custom object.

Manage Data Security
task accessible from the
Setup and Maintenance
work area

Developer No Section 8.4, "Defining Data
Security Policies on Custom
Business Objects"

Opt into data security
policies for custom
objects.

JDeveloper Developer No Section 8.5, "Enforcing Data
Security in the Data Model
Project"

Grant access to
application artifacts.

JDeveloper Developer No Section 8.6, "Defining Function
Security Policies for the User
Interface Project"

Grant access to
custom objects
(Oracle Fusion CRM).

Application Composer Business Analyst No "Securing Custom Objects:
Explained" section in the Oracle
Fusion Applications CRM
Extensibility Guide

Enable elevated
privileges
customization.

Application Composer Business Analyst No "Securing Custom Objects:
Explained" section in the Oracle
Fusion Applications CRM
Extensibility Guide

Table 1–7 (Cont.) Oracle Enterprise Scheduler Job Customization Scenarios in Oracle Fusion Applications

Customization/
Extension Tool Type of User MDS? Where to Find Information

Understanding the Tools

1-20 Extensibility Guide for Developers

2

Understanding the Customization Development Lifecycle 2-1

2Understanding the Customization
Development Lifecycle

This chapter discusses the typical workflow for customizing and extending Oracle
Fusion applications. It describes how to use sandboxes to perform customizations in
an environment that is separate from the full test environment, publish the changes to
a full test environment, and move the changes to other environments.

This chapter includes the following sections:

■ Section 2.1, "Understanding Typical Customization Workflows"

■ Section 2.2, "Using the Sandbox Manager"

■ Section 2.3, "Exporting and Moving Customizations"

2.1 Understanding Typical Customization Workflows
All customizations and extensions to Oracle Fusion Applications should be done in a
full test environment, as shown in Figure 2–1. Typically, this environment contains one
or more Oracle Fusion applications that will then be moved to a production
environment after all customizations and extensions are complete and tested.

As described in Section 2.1.1, "Runtime Customization Workflow," business analysts
using Page Composer and Oracle Fusion CRM Application Composer (Application
Composer) make their application customizations in a sandbox. Sandboxes store the
customizations in isolated, protected Oracle Metadata Services (MDS) labels that are
available only when you work in that particular sandbox. The changes can be done in
a test-only sandbox (that is, the code in the sandbox is for testing only, and is never
deployed), or they can be done in a sandbox that is then published to the full test
environment.

Developers using design time tools, such as Oracle JDeveloper, have the option to
publish their customizations to a sandbox, as described in Section 2.1.2, "Design Time
Customization Workflow."

After testing, you can then move the customizations to the mainline code as described
in Section 2.3, "Exporting and Moving Customizations."

Understanding Typical Customization Workflows

2-2 Extensibility Guide for Developers

Figure 2–1 Customization Workflow in a Full Test Environment

2.1.1 Runtime Customization Workflow
When you use Application Composer and Page Composer to make runtime
customizations to Oracle Fusion applications, you use sandboxes to save your changes
in an isolated environment. For example, before you begin making customizations,
you create a sandbox named MySandbox and make your customizations in that
sandbox. If others want to see the customizations, then they would use MySandbox.

You also use a sandbox when you define security policies for custom objects that you
have created using Application Composer. A security sandbox stores the security
information in new database tables that are available only when you choose to work in
that sandbox.

After you complete your customizations, others can review and validate the sandbox.
Then you can publish the sandbox to the full test environment where your

Tip: When you extend Oracle Fusion applications, you might want
users to be able to configure the extensions using Oracle Fusion
Functional Setup Manager. For more information about creating task
flows for setup activities for extensions, see the Oracle Fusion
Functional Setup Manager Developer's Guide.

Publish Publish

Quality
Assurance

Quality
Assurance

Business Analyst
Using Page
Composer

Business
Analyst Using
CRM Application
Composer

FA Administrator
customizations
using Jdev

Patches and
Upgrades
from Oracle
Fusion
Applications

MDS

Full Test Environment

Understanding Typical Customization Workflows

Understanding the Customization Development Lifecycle 2-3

customizations become part of that repository. For more information about sandboxes,
see Section 2.2, "Using the Sandbox Manager."

2.1.2 Design Time Customization Workflow
After you create these customizations using JDeveloper, you can test them locally in
JDeveloper and then deploy your customizations to a sandbox. Note that security
customizations done at design time are not saved to a sandbox. The migration of
security customizations is discussed in Section 8.3.10, "What You Cannot Do with
Security Policies at Design Time."

Additionally, you can use source control software to manage design time
customizations. For more information about what source control software JDeveloper
supports, see the "Versioning Applications with Source Control" topic of the
JDeveloper online help.

Because your customizations (other than security changes) are stored in customization
XML files in an MDS repository, they can also be viewed and managed using the
Manage Customizations dialog.

Figure 2–2 shows the flow for a typical design time customization process.

Understanding Typical Customization Workflows

2-4 Extensibility Guide for Developers

Figure 2–2 Typical Design Time Customization Workflow

Deploy
customizations

to full test
environment

Use
Customization
Set Migration

to move
customizations

to the
production

environment

Use Customization
Manager to view

customizations and
download

customization files

Fix customization
issues with help

from Oracle
Support Services

Test
customizations

locally in
JDeveloper

Start

SOA composite

Yes

Yes

No
No

Oracle ADF artifacts, help, personalization
What

are you
customizing?

Fix
issues
using

JDeveloper
?

Set up a JDeveloper
environment for
customizing SOA

composites

Set up a JDeveloper
environment for

customizing Oracle
ADF artifacts

Make
customizations
in JDeveloper

Problems
with Oracle ADF
customizations

?

Using the Sandbox Manager

Understanding the Customization Development Lifecycle 2-5

2.2 Using the Sandbox Manager
The sandbox manager is a tool for managing the different types of customization
changes that can be applied to an application These changes that are contained within
a sandbox do not affect the mainline code. You can test and validate the changes by
publishing the sandbox to the full test environment. After the application has been
tested, it can then be moved to the production environment.

There are three types of sandboxes:

■ Metadata

The metadata sandbox supports making changes to the application's metadata
stored in the MDS repository.

■ Security

The security-enabled sandbox supports making data security changes.

■ Flexfield

The flexfield sandbox is not created using the sandbox manager. Use the flexfield
UI to make changes to the flexfields and then deploy them to the sandbox. The
flexfield deployment process manages the creation of the sandbox.

To customize an Oracle Fusion application in runtime, you must first create a sandbox
and then use Page Composer or Application Composer to make the customizations.
For information about using sandboxes for runtime customizations, see the
"Application Composer: Using Sandboxes" chapter in the Oracle Fusion Applications
CRM Extensibility Guide the "Using the Sandbox Manager" section in the Oracle Fusion
Applications Extensibility Guide for Business Analysts.

Oracle Business Process Composer and Oracle SOA Composer are also runtime
customization tools, but they do not use the sandbox manager. They have their own
mechanisms for handling customization changes:

■ For information about using Oracle Business Process Composer, see the
"Customizing and Extending BPMN Processes" chapter in the Oracle Fusion
Applications Extensibility Guide for Business Analysts.

■ For information about using Oracle SOA Composer, see Chapter 5, "Customizing
and Extending SOA Components."

For non-Cloud implementations, a metadata sandbox that you create using the
sandbox manager is available in JDeveloper when you are creating and deploying
customizations intended for a deployed Oracle Fusion application in Oracle WebLogic
Server. The available sandboxes will appear in a selection list in JDeveloper during
deployment. For more information, see Section 4.14, "Deploying Oracle ADF
Customizations and Extensions." Note that the security sandboxes created using the
sandbox manager are not available in JDeveloper.

The metadata and security sandbox sessions can be saved, downloaded, and imported
as files into other Oracle Fusion applications.

If more than one person is using a sandbox, then you must take care to prevent
conflicts. For more information, see the "Multiple Sandbox User Conflicts: Explained"
section in the Oracle Fusion Applications CRM Extensibility Guide and the "Using the
Sandbox Manager" section in the Oracle Fusion Applications Extensibility Guide for
Business Analysts.

Exporting and Moving Customizations

2-6 Extensibility Guide for Developers

2.3 Exporting and Moving Customizations
There are several tools available for exporting and moving customizations. These tools
enable you to perform the following tasks:

■ Move customizations and extensions to another Oracle Fusion Applications
environment, such as the production environment.

■ Diagnose issues seen in the test environment.

■ Send files to Oracle Support Services for further diagnosing.

■ Import a customization into another environment. For example, a customization
developer using JDeveloper might need to see customizations done by someone
else.

For information about the tools that are available for exporting and moving
customizations, see the "Exporting and Moving Customizations" section in the Oracle
Fusion Applications Extensibility Guide for Business Analysts.

Part II
Part II Design Time Customizations and

Extensions

Part II contains the following chapters:

■ Chapter 3, "Using Oracle JDeveloper for Customizations"

■ Chapter 4, "Customizing and Extending Oracle ADF Application Artifacts"

■ Chapter 5, "Customizing and Extending SOA Components"

■ Chapter 6, "Customizing and Extending Oracle BPM Project Templates"

■ Chapter 7, "Customizing and Extending Oracle Enterprise Scheduler Jobs"

■ Chapter 8, "Customizing Security for Oracle ADF Application Artifacts"

■ Chapter 9, "Translating Custom Text"

■ Chapter 10, "Configuring End-User Personalization"

■ Chapter 11, "Customizing Help"

■ Chapter 12, "Customizing the Oracle Fusion Applications Skin"

3

Using Oracle JDeveloper for Customizations 3-1

3Using Oracle JDeveloper for Customizations

This chapter describes how to configure Oracle JDeveloper for implementing
customizations in Oracle Fusion applications. It also describes how to customize
Service-Oriented Architecture (SOA) composite applications with JDeveloper,
including setting up the JDeveloper application workspace and SOA composite
application project for Oracle Metadata Services (MDS) Repository customization,
customizing the SOA composite application, and customizing the SOA resource
bundle.

This chapter includes the following sections:

■ Section 3.1, "About Using JDeveloper for Customization"

■ Section 3.2, "Customizing Oracle ADF Artifacts with JDeveloper"

■ Section 3.3, "Customizing SOA Composite Applications with JDeveloper"

3.1 About Using JDeveloper for Customization
You use JDeveloper when you need to customize or create objects or security outside
of CRM applications, or when you need to make more sophisticated changes, like
changes to SOA composite applications, Oracle Enterprise Scheduler jobs, Oracle
Business Process Management project templates, or embedded help. While you use
JDeveloper to both customize existing standard objects and to create new custom
objects, the procedures you use for each are different.

New custom objects created in JDeveloper are not saved into MDS Repository, and are
therefore created in a standard application workspace using the Oracle Fusion
Applications Developer role. However, when you customize standard objects, those
customizations are saved into MDS Repository, and therefore must be implemented
using the Oracle Fusion Applications Administrator Customization role.
Implementing the customizations using this customization role ensures that your
changes are saved to the upgrade-safe MDS Repository, and not written directly to the
standard object. In the future, when you patch or upgrade Oracle Fusion Applications,
your customizations held in these metadata files are not affected, so you do not have
to redo them. For more information about customizations and MDS Repository, see
Chapter 1, "Customizing and Extending Oracle Fusion Applications."

When customizing Oracle Application Development Framework (Oracle ADF)
artifacts, you create a special customization application workspace, using the
developer role. This application workspace includes a connection to a deployed Oracle
Fusion Applications environment (typically a test environment), which allows you to
import the artifacts you want to customize into your application workspace. This
customization application workspace is automatically configured to work within
Oracle Fusion Applications, so that when you test and deploy your customizations,

About Using JDeveloper for Customization

3-2 Extensibility Guide for Developers

they behave as though they were native Oracle Fusion Applications. When
customizing SOA composite applications, you create a SOA Composite application
workspace in the developer role.

After the application workspace is created, you switch roles to the customization role
and import the Oracle ADF artifact or the SOA archive you want to customize. You
then make your customizations to the imported artifact. After completion, you
package and deploy the artifacts in the application workspace to the Oracle Fusion
Applications environment.

Often, you must perform both customizations (customizing an existing standard
object) and extensions (creating a new object). For example, say you want to create a
new entity object and expose that new object in an existing application module. First,
because you are creating a new custom entity object, you would create a standard
application workspace and then create your entity object. After completion, you would
package the application workspace as an ADF Library, and place it into the exploded
enterprise archive (EAR) directory for your test environment. Next, you would create a
customization application workspace, and import both the new entity object library
and the library that contains the application module to which you must add the entity
object. After both are imported, you log in using the customization role and make the
customizations to the application module. After customizations are complete, you
would deploy the customizations to the test environment.

3.1.1 About Customizing Oracle ADF Artifacts
Oracle Fusion applications are built using Oracle Application Development
Framework (Oracle ADF) artifacts on Oracle Fusion Middleware, including the
following:

■ Application modules: An application module is the transactional component that
UI clients use to work with application data. It defines an updatable data model
along with top-level procedures and functions (called service methods) related to a
logical unit of work related to an end-user task.

■ Entity objects: An entity object represents a row in a database table and simplifies
modifying its data by handling all data manipulation language (DML) operations
for you. It can encapsulate business logic to ensure that your business rules are
consistently enforced. You associate an entity object with other entity objects to
reflect relationships in the underlying database schema to create a layer of
business domain objects to reuse in multiple applications.

■ View objects: A view object represents a SQL query and simplifies working with
its results. You use the SQL language to join, filter, sort, and aggregate data into
whatever form is required by the end-user task being represented in the user
interface. This includes the ability to link a view object with other view objects to
create master-detail hierarchies of any complexity. When end users modify data in
the user interface, your view objects collaborate with entity objects to consistently
validate and save the changes.

■ Task flows: A task flow defines the flow of control throughout an application. It
can also be included in a page as a region, where users can navigate through a
series of page fragments, without leaving the original page.

■ JSPX pages and page fragments: The view layer of Oracle Fusion Applications
consists of a small number of pages per application. These pages then contain task
flows, which in turn contain several page fragments.

For more information about Oracle ADF components, see the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

About Using JDeveloper for Customization

Using Oracle JDeveloper for Customizations 3-3

When you customize Oracle ADF artifacts, you usually work in an overview editor
that allows you to make your customizations declaratively. For example, Figure 3–1
shows the editor for an entity object. Among other things, you can set validation or
change how the UI displays the data.

Figure 3–1 Overview Editor for Entity Object

For JSP pages, you work in a WYSIWYG environment using the Design tab in the
editor window, as shown in Figure 3–2.

About Using JDeveloper for Customization

3-4 Extensibility Guide for Developers

Figure 3–2 Design Editor for JSP Pages

3.1.2 About Using JDeveloper to Customize SOA Composite Applications
Oracle Fusion applications are built using SOA composite artifacts on Oracle Fusion
Middleware, which include the following:

■ Service components: A service component implements the business logic or
processing rules of a SOA composite application. Available service components
include the following:

– Business Process Execution Language (BPEL) processes: A BPEL process
enables you to integrate a series of business activities and services into an
end-to-end business process flow.

– Business rules: A business rule enables you to create business decisions in
your business process flow based on rules.

– Human tasks: A human task enables you to create human workflows that
describe the tasks for users or groups to act upon as part of an end-to-end
business process flow. You use Oracle Business Process Management Worklist
(Oracle BPM Worklist) to act upon the tasks during runtime.

– Oracle Mediator: An Oracle Mediator enables you to define services that
perform message and event routing, filtering, and transformations within the
SOA composite application.

About Using JDeveloper for Customization

Using Oracle JDeveloper for Customizations 3-5

■ Binding components: A binding component establishes the connection between a
SOA composite application and the external world. There are two types of binding
components:

– Services provide the outside world with an entry point to the SOA composite
application. The Web Services Description Language (WSDL) file of the service
advertises its capabilities to external applications. These capabilities are used
for contacting the SOA composite application components. The binding
connectivity of the service describes the protocols that can communicate with
the service (for example, Simple Object Access Protocol (SOAP)/Hypertext
Transfer Protocol (HTTP) or Java EE connector architecture (JCA) adapter).

– References enable messages to be sent from the SOA composite application to
external services in the outside world.

■ Wires: A wire connects services, service components, and references into a
complete SOA composite application.

For more information about SOA composite applications, see the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

3.1.3 Before You Begin Using JDeveloper to Customize
Before you use JDeveloper to customize, be familiar with the Oracle Fusion application
architecture that enables customization, as described in Chapter 1, "Customizing and
Extending Oracle Fusion Applications." Also understand the typical workflows for
working with customizations, as described in Chapter 2, "Understanding the
Customization Development Lifecycle."

Do the following before using JDeveloper to customize:

■ Deploy the application you are customizing to a test environment. You must have
access to the test environment and to the exploded EAR directory for that
application.

■ Install JDeveloper and set up your development environment. Before you can
implement customizations using JDeveloper, you must create a customization
application workspace that imports the necessary parts of the application you
want to customize. For more information, see Section 1.3.13, "Installing
Customization Tools."

Note: Before you can use JDeveloper to customize your application,
JDeveloper must have access to the customization layers for the
application. To enable JDeveloper to see the customization classes that
define the customization layers, use the
-Dide.extension.extra.search.path VM option, as described
in the "Adding Customization Extension Bundles to the jdev.conf File"
section of the Oracle Fusion Applications Developer's Guide.

For information about locating the Java archive (JAR) files containing
the product-specific customization classes, see the product-specific
documentation from Oracle Enterprise Repository for Oracle Fusion
Applications. You can also use the steps in the "Adding Customization
Extension Bundles to the jdev.conf File" section of the Oracle Fusion
Applications Developer's Guide to locate the JAR files.

Customizing Oracle ADF Artifacts with JDeveloper

3-6 Extensibility Guide for Developers

3.2 Customizing Oracle ADF Artifacts with JDeveloper
To customize Oracle ADF artifacts, you first create a customization application
workspace, using the Oracle Fusion Applications Developer role in JDeveloper. After
the application workspace is created, you exit JDeveloper and then reenter, using the
Oracle Fusion Applications Administrator Customization role and import and
customize your artifacts.

3.2.1 Creating the Customization Application Workspace
You must set up a customization application workspace in JDeveloper to create the
application that holds your customizations.

To create the customization application workspace:
1. Start JDeveloper using the Oracle Fusion Applications Developer role, as shown

in Figure 3–3.

Figure 3–3 Oracle Fusion Applications Developer Role

2. In JDeveloper, from the main menu, choose File > New to open the New Gallery.
In the New Gallery, select Applications > Fusion Applications Customization
Application.

3. In the Step 1 page of the FA Customization Application dialog, enter the following
and click Next:

■ Application Name and Directory: These are the name and location of your
customization application, and can be anything you like.

Note: Before you start the FA Customization Application wizard to
create a customization application workspace, make sure that the
entire topology for the application you want to customize is up and
running. The conn.xml file in Oracle Fusion applications contains EL
expressions pointing to common server endpoints, such as the BI
server, that cannot be resolved unless the entire topology for the
application is running.

Customizing Oracle ADF Artifacts with JDeveloper

Using Oracle JDeveloper for Customizations 3-7

■ Fusion Database: Enter the connection to your Oracle Fusion database.

■ Application Package Prefix: This can be anything, but must not start with
oracle.

■ Deployed Application Ear: Browse to the exploded EAR for the application
you want to customize.

■ Policy Store Security Information: Browse to the exported jazn-data.xml
file. First, you must export all predefined function security policies of the
application that you are customizing into a jazn-data.xml file. For details
about how to export the application policy store, see the "Securing Oracle
Fusion Applications" chapter in the Oracle Fusion Applications Administrator's
Guide. For information about security customization, see Chapter 8,
"Customizing Security for Oracle ADF Application Artifacts."

4. Complete the wizard by changing any default settings as needed.

After you complete the wizard, an application with a project is created for you. This
application is configured to be the same as a deployed Oracle Fusion application. For
example, it is connected to the same database, same metadata repository, and has
similar web.xml and weblogic.xml settings. This configuration allows it to work
correctly when deployed into your Oracle Fusion Applications environment, and also
ensures that when you test your customizations locally in JDeveloper Integrated
WebLogic Server, the customizations behave as they will in the full test environment.

JDeveloper also creates a connection to the exploded EAR directory named
Customizable Archive, which is accessible from the Application Resources panel of
the Application Navigator. Figure 3–4 shows a connection to the exploded EAR
directory for an application.

Figure 3–4 Application Resources Connection to Exploded EAR Contents

3.2.2 Determining Which Oracle ADF Artifacts You Need to Customize
Most often, the customizations you want to make are surfaced on an existing page. For
example, say you want to add a field to a page. So, you first must identify the page to
customize, which may actually be a page fragment within a task flow. You then must
identify which business objects you'll need to customize to add the field.

The easiest way to identify which artifacts you need to customize is to follow this path:

1. In a runtime environment, access the page you want to customize and open it in
the Source view of Page Composer. The page's structure is displayed, and from
here, you can identify the page name, or if the customization is actually on a page
fragment within a task flow, you can identify the task flow name. For more
information about using Page Composer, see the "Page Composer: Customizing
Oracle Fusion CRM Applications" chapter in the Oracle Fusion Applications CRM
Extensibility Guide and the "Editing a Page" chapter in the Oracle Fusion Middleware
User's Guide for Oracle WebCenter Portal: Spaces.

Customizing Oracle ADF Artifacts with JDeveloper

3-8 Extensibility Guide for Developers

2. If you need to customize a page fragment (.jsff) file within a task flow, from
Page Composer, click Manage Customizations to open the page in the Manage
Customizations dialog. From here, you can identify the .jsff file name.

3. In JDeveloper, after you have created a connection to the exploded EAR directory,
you can use the Filter Customizable Archive dialog to search for the .jsff file or
the task flow file.

4. Right-click the file and choose Customize to import the file and open it in
JDeveloper.

5. Right-click the file, and choose Go to Page Definition.

The page definition file shows you the view objects being used by the components
on the page to return the data.

6. Open the view object in JDeveloper.

The view object can be customized, or if needed, you can identify the associated
entity object and customize that. Note that you can also identify the application
module from here.

When you have identified the artifacts you want to customize, take note of the
top-level page that contains the artifacts. You will need to know the name of the page
to run when testing your customizations. For more information, see Section 3.2.5,
"Running Customizations Locally."

3.2.3 Customizing the Artifacts
You must switch to the Customization Developer role before you can begin
customizing.

1. Restart JDeveloper and select the Oracle Fusion Applications Administrator
Customization role, as shown in Figure 3–5.

Figure 3–5 Oracle Fusion Applications Administrator Customization Role

2. In the Application Resources panel, expand Connections, and then Customizable
Archive.

3. To locate the artifact you want to customize, right-click Base Application Archive
and choose Filter.

Customizing Oracle ADF Artifacts with JDeveloper

Using Oracle JDeveloper for Customizations 3-9

For help in determining which artifacts you need to customize, see Section 3.2.2,
"Determining Which Oracle ADF Artifacts You Need to Customize."

4. In the Filter Customizable Archive dialog, enter the file name of the artifact you
want to customize, and click the Go icon.

When the file is located, it is displayed in the Application Resources panel.

Note that sometimes when customizing an ADF Business Components object, you
will find two results entries for a given object. For example, when searching for
LookupValuesVO.xml, you might find both of the following results:

jdev.rc:%40scratch%40jdeveloper%40mywork%40FASalesApp%40FASalesAp
p.jws/Base+Application+Archive+-+FASalesApp/APP-INF/lib/AdfBaseSa
lesCommonPublicModelSalesLookups.jar/oracle/apps/sales/baseSales/
common/publicModel/salesLookups/view/LookupValuesVO.xml

jdev.rc:%40scratch%40jdeveloper%40mywork%40FASalesApp%40FASalesAp
p.jws/Base+Application+Archive+-+FASalesApp/APP-INF/lib/AdfBaseSa
lesCommonModelSalesLookups.jar/oracle/apps/sales/baseSales/common
/salesLookups/salesLookupService/view/LookupValuesVO.xml

When you encounter this situation, use the non-service object for customization.
That is, customize the object that does not have a service named package in its
path. In this example, you would customize the first object because the second
object has salesLookupService in its path.

5. Right-click the artifact, choose Customize, and choose to add the associated
library to the project.

The artifacts from the imported library now display in the Application Navigator,
under the ADF Library Customizations node, and the artifact you selected to
customize opens in the editor window, as shown in Figure 3–6.

Customizing Oracle ADF Artifacts with JDeveloper

3-10 Extensibility Guide for Developers

Figure 3–6 JSPX Page Open in Editor and Ready to Customize

6. In the Customization Context window (by default, displayed at the bottom of
JDeveloper), select the layer to which you want the customizations written.

All customizations for Oracle ADF business components must be done in the
global layer. View layer customizations can be made in any other layer except
User. For more information about customization layers, see Section 1.2,
"Understanding Customization Layers."

You are now ready to begin customizing your artifact. For more information about
customizing specific artifacts, see the following chapters:

■ Chapter 4, "Customizing and Extending Oracle ADF Application Artifacts"

■ Chapter 7, "Customizing and Extending Oracle Enterprise Scheduler Jobs"

■ Chapter 8, "Customizing Security for Oracle ADF Application Artifacts"

■ Chapter 10, "Configuring End-User Personalization"

Note: If imported data controls are not displayed in the Data
Controls panel, do the following:

1. From the JDeveloper main menu, choose Tools > Preferences to open the
Preferences dialog.

2. Expand the Business Components node.

3. Select General.

4. Select Display Imported ADF Libraries in Data Control Palette.

Customizing Oracle ADF Artifacts with JDeveloper

Using Oracle JDeveloper for Customizations 3-11

■ Chapter 11, "Customizing Help"

3.2.4 Avoiding Conflicts Among Multiple Customization Developers
When working in teams of multiple developers implementing multiple customizations
in an application, observe the following guidelines to avoid conflicts of customized
metadata:

■ Create small, focused customization application workspaces for the application,
logically divided among functional areas.

■ Ensure that any given artifact is customized in only one customization application
workspace.

■ Share the customization application workspaces among customization developers,
ensuring that only one developer at a time implements customizations in the
workspace.

■ Make sure that all custom JAR files have different names that begin with the prefix
Xx, for example XxMyJar.jar.

By following these guidelines, you can avoid situations where developers
inadvertently overwrite each others customizations, and make sure that
customizations don't interfere with product upgrades.

3.2.5 Running Customizations Locally
You can use JDeveloper to run applications in Integrated WebLogic Server. To
accomplish this, you need to identify a runnable target that contains the customized
object.

When identifying which artifact to customize, you typically start by opening the page
that exposes that artifact, and then drill down to identify the specific object to
customize. The top-level page you start at (typically a .jspx file) is the page you will
run to test customizations, so it is important to take note of the name of that file when
you begin customization. Page fragments (.jsff files) are not runnable objects.

You will also need to make sure that your local test environment has the necessary
security configuration to run the application. For more information, see Chapter 8,
"Customizing Security for Oracle ADF Application Artifacts." In particular, you will
need to consult a security administrator to export all predefined function security
policies of the application that you are customizing into a jazn-data.xml file. For
details about how the security administrator exports the application policy store, see
the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications
Administrator's Guide.

For more information about running locally, see the "Running a Fusion Web
Application in Integrated WebLogic Server" section in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. For more information
about identifying an artifact to customize see Section 3.2.2, "Determining Which Oracle
ADF Artifacts You Need to Customize."

3.2.6 Importing Customizations into Your Application Workspace
There may be occasions when you need to import other customizations into your
application workspace. For example, someone else may have made customizations to
an application module to which you need to make changes as well. Before you make
your customization, you must import that application module into your customization
application workspace.

Customizing Oracle ADF Artifacts with JDeveloper

3-12 Extensibility Guide for Developers

If you need to import customizations made to a single page or page fragment, you can
use the Manage Customizations dialog to download the file, as described in the "Using
the Manage Customizations Dialog to Download Customizations" section in the Oracle
Fusion Applications Extensibility Guide for Business Analysts. Save the customization files
to a zip or JAR file.

If you need to import multiple customizations available in the metadata repository for
an application, you use the exportMetadata Oracle WebLogic Scripting Tool (WLST)
command. For more information, see the "Application Metadata Management
Commands" section of Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference. This command saves the customization files in a JAR file that you can import
into your application workspace. For procedures, see the "Viewing ADF Library
Runtime Customizations from Exported JARs" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

If you want to use extensions (for example, if you want to add a custom entity object to
an existing application module), the extensions must be deployed into the
environment to which you have a connection. For more information, see Section 4.14,
"Deploying Oracle ADF Customizations and Extensions."

3.2.7 Resynchronizing Your Customization Application Workspace Configuration Files
During the process of customization, it is possible that the base application that you
are customizing is updated with a patch. If this happens, you might need to
resynchronize the configuration files in your local customization application
workspace from the exploded EAR of the application you are customizing.

When you create a customization application workspace in your local development
environment, workspace configuration files (such as, adf-config.xml,
connections.xml, and web.xml) are copied to the local development environment.
In some cases, the file is modified to allow you to implement and test customizations
locally. When a patch is applied to the base application, these configuration files might
change, and would therefore need to be synchronized to your local development
environment so that you can continue to implement and test customizations.

JDeveloper allows you to check for and process updates to the workspace
configuration files after a patch has occurred on the base application. When you run
the check, there are three potential results for each file:

■ The file in the local development environment does not need to be updated.

■ The file in the local development environment must be updated, and can be
updated safely because the local version has not been modified.

■ The file in the local development environment must be updated, but cannot be
updated safely because the local version has been modified.

After the check, JDeveloper lets you decide how to handle the update. If you choose to
proceed with the updates, backups of the local files are created. You can use the
backup files to manually merge changes into the updated files if necessary.

Tip: You can also use Oracle Enterprise Manager Fusion
Applications Control to import and export customization files. For
more information, see the "Transferring Metadata Using Fusion
Middleware Control" section of the Oracle Fusion Middleware
Administrator's Guide. The referenced procedure describes using
Fusion Middleware Control, but also applies to Fusion Applications
Control.

Customizing SOA Composite Applications with JDeveloper

Using Oracle JDeveloper for Customizations 3-13

To synchronize your customization application workspace configuration files:
1. Start JDeveloper in the Oracle Fusion Applications Administrator Customization

role, and open your customization application workspace.

2. From the main menu, choose Application > Synchronize Patch Changes.

The check is run, and the Synchronize Patch Changes dialog displays the results.

3. If no files in the development environment need updating, the Synchronize Patch
Changes dialog gives you the option to review the list of possible updates. Click
Yes to view possible updates, or No to close the dialog.

4. If one or more files need to be updated, the Synchronize Patch Changes dialog
displays the files that might be out of date. Files that have been modified locally
are indicated with a green icon. Click Yes to update the files, or No to skip the
updates and close the dialog.

3.3 Customizing SOA Composite Applications with JDeveloper
Before you begin customizing, you must identify the SOA archive (SAR) file to
customize, retrieve the configuration plan from the default SOA composite
application in MDS Repository, and set up the application workspace and SOA
composite application project for MDS Repository customization in JDeveloper using
the Oracle Fusion Middleware Developer role. After the application workspace is
created, you must exit and reenter JDeveloper using the Oracle Fusion Applications
Administrator Customization role.

3.3.1 Before You Begin Using JDeveloper to Customize
Perform the following tasks before you begin customizing SOA composite
applications with JDeveloper:

1. Identify the SAR file to customize, and locate it in the APPLICATIONS_
BASE/fusionapps/applications/product_family/deploy directory. This
directory includes the following files:

■ Composite SAR (sca_*.jar)

■ Business process management (BPM) template (bta_*.jar)

■ List of resource bundle classes (jar_*.jar)

2. Ensure that the SAR file is marked as customizable by Oracle Fusion Applications.
Otherwise, customizations do not survive patching or are not properly patched
and merged. For information about which SOA composite applications are
customizable, see the product-specific documentation from Oracle Enterprise
Repository for Oracle Fusion Applications.

If you encounter the following message when importing the SAR file for
customization, it means that Oracle Fusion Applications did not mark the SOA
composite application for customizations in JDeveloper and your changes cannot
survive patching.

The composite from the archive was not created for
customization. If you import the composite for
customization, you can customize it but you will have

Note: If you choose to proceed with the updates, backups of the local
files are created. You can use the backup files to manually merge
changes into the updated files if necessary.

Customizing SOA Composite Applications with JDeveloper

3-14 Extensibility Guide for Developers

problems to merge your customizations to any new
versions of that composite.
Do you want to continue?
Otherwise, uncheck "Import for Customization" box, and
click "Finish" option.

3. Get the configuration plan from the default SOA composite application in MDS
Repository using the following WLST commands:

a. Identify the default revision of the SOA composite application with sca_
getDefaultCompositeRevision. For example:

wls:/mydomain/ServerConfig> sca_getDefaultCompositeRevision("myhost",
"7001", "weblogic", "weblogic",
"FinGlCurrencyUserPreferredCurrencyComposite")

b. Export the full SOA composite application corresponding to the default
revision with sca_exportComposite. For example:

wls:/offline/mydomain/ServerConfig> sca_
exportComposite('http://myhost:8001', 'none', '/tmp/sca_
FinGlCurrencyUserPreferredCurrencyComposite.0.jar',
'FinGlCurrencyUserPreferredCurrencyComposite',
 '1.0')

c. Extract the configuration plan used originally with the export action with
sca_extractPlan. For example:

wls:/mydomain/ServerConfig> sca_extractPlan("/tmp/sca_
FinGlCurrencyUserPreferredCurrencyComposite_
rev1.0.jar", "/tmp/FinGlCurrencyUserPreferredCurrencyComposite_
configPlan.xml")

For information about using these commands, see the "Oracle SOA Suite Custom
WLST Commands" section of Oracle Fusion Middleware WebLogic Scripting Tool
Command Reference.

3.3.2 Setting Up the JDeveloper Application Workspace and SOA Composite
Application Project for MDS Repository Customization

You must set up the JDeveloper application workspace and SOA composite
application project for MDS repository customization.

To set up the JDeveloper application workspace and SOA composite application
project for MDS Repository customization:
1. Start JDeveloper using the Oracle Fusion Applications Developer role.

2. From the File main menu, choose New, then Applications, then SOA
Application, and then OK to create a SOA application with an XX prefix in the
application name.

The XX prefix identifies a SOA artifact or object created by the customer and
distinguishes it from Oracle Fusion Applications artifacts. You can delete the SOA
project named Project1 that was created by default.

The Oracle Fusion Applications SOA composite application references shared SOA
artifacts through the SOA-shared repository stored in MDS Repository instead of
replicating the shared SOA artifact throughout the Oracle Fusion Applications
code source. If the references to the SOA shared repository are not resolved, you
receive the error message shown in Figure 3–7.

Customizing SOA Composite Applications with JDeveloper

Using Oracle JDeveloper for Customizations 3-15

Figure 3–7 WSDL Read Error Message

3. To resolve references to the SOA-shared repository (oramds:/apps), define an
MDS Repository entry in the adf-config.xml file. The entry must point to the
MDS repository of the SOA Infrastructure partition in the MDS Repository schema
corresponding to the SOA cluster where you plan to deploy the customized SOA
composite application. Add a <namespace> attribute with path="/apps" to
<metadata-namespaces>:

<namespace metadata-store-usage="mstore-usage_2" path="/apps"/>

4. Add a <metadata-store-usage> attribute to <metadata-store-usages>
for a database-based MDS Repository that points to the MDS repository of the
SOA Infrastructure partition in the MDS repository for SOA schema.

5. Replace the database schema name, database server, database port, and database
name with actual values. To identify the user name, password, and database
connection information, see the configuration for the MDS data source for SOA in
Oracle WebLogic Server Administration Console.

<metadata-store-usage id="mstore-usage_2">
 <metadata-store class-name="oracle.mds.persistence.stores.db.
 DBMetadataStore">
 <property value="soa_mds_schema_name" name="jdbc-userid"/>
 <property value="soa_mds_schema_password" name="jdbc-password"/>
 <property value="jdbc:oracle:thin:@database_server:
 database_port:database_name" name="jdbc-url"/>
 <property value="soa-infra" name="partition-name"/>
 </metadata-store>
</metadata-store-usage>

The following code shows an <adf-mds-config> example in the
adf-config.xml file. The mstore-usage_2 entry resolves references to the
SOA shared repository:

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/soa/shared"/>
 <namespace metadata-store-usage="mstore-usage_2" path="/apps"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store
 class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property value="$\{oracle.home}/integration"
 name="metadata-path"/>

Customizing SOA Composite Applications with JDeveloper

3-16 Extensibility Guide for Developers

 <property value="seed" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>
 <metadata-store-usage id="mstore-usage_2">
 <metadata-store
 class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property value="FIN_FUSION_MDS_SOA" name="jdbc-userid"/>
 <property value="FIN_FUSION_MDS_SOA" name="jdbc-password"/>
 <property
 value="jdbc:oracle:thin:@database_server.us.example.com:1521:database_name"
 name="jdbc-url"/>
 <property value="soa-infra" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

6. From the File main menu, choose Import, then SOA Archive Into SOA Project to
import the SAR file, and then click OK.

7. In the Project Name field, enter the name of the new SOA project with an XX
prefix and select a name to identify the base SOA composite application that you
are extending. For example, specify
XXFinGlCurrencyUserPreferredCurrencyComposite if you are
customizing FinGlCurrencyUserPreferredCurrencyComposite.

8. Click Next.

9. In the Composite Archive field, perform the following steps:

a. Click Browse to select the SAR file to customize that you identified in
Section 3.3.1, "Before You Begin Using JDeveloper to Customize."

b. Accept the default setting for the SOA composite application name.

c. Select the Import for Customization checkbox.

d. Click Finish.

Accept the default SOA composite application name to ensure that patching and
Oracle SOA Suite can identify whether runtime customizations, JDeveloper
customizations, or both types have been applied to the SOA composite
application. If the SOA composite application is renamed, patching and SOA have
no knowledge of the renamed SOA composite application.

You may see an error icon on a partner link in Design view of the
composite.xml file that reports the following error:

Couldn't resolve classpath:/META-INF/wsdl/ServiceException.wsdl

This error is addressed in subsequent steps.

10. Right-click the SOA composite application project and go to Project Properties,
then Libraries and Classpath.

11. Click Add Library, and select the BC4J Service Client library.

12. Click OK to close the Add Library dialog.

13. Click OK to close the Project Properties dialog.

Customizing SOA Composite Applications with JDeveloper

Using Oracle JDeveloper for Customizations 3-17

By adding this library to your SOA project, you avoid the design time error you
may have received in Step 9d.

14. Click the Validate icon in the Design view of the composite.xml file. The error
shown in Step 9d that you may have received for the partner link should now be
resolved.

15. Make the customization classes and values available in your project.

There are two types of customization classes:

■ Applications Core customizing classes are available from the Applications
Core shared library. See Section 1.2, "Understanding Customization Layers"
for the list of Applications Core customization classes permitted in
JDeveloper.

■ Product team customization classes are available in the appropriate EAR file.
These customization classes are bundled in a JAR file in the EAR's
APP-INF/lib directory. These JAR files follow a naming convention of
Ext...jar. Therefore, you must get these JAR files from the deployed area,
and perform the following steps:

– Put the customization class JAR file under $JDEV_
HOME/jdev/extensions.

– Add the JAR file in the new project's library and class path setting.

16. Right-click the SOA composite application project and go to Project Properties,
then Libraries and Classpath.

17. Add the Applications Core library to the SOA composite application project, as
shown in Figure 3–8.

Figure 3–8 Applications Core Library

18. Go to Application Resources, then Descriptors, then ADF META-INF, and then
adf-config.xml.

19. Add the appropriate customization class in the MDS Repository configuration,
such as oracle.apps.fnd.applcore.customization.SiteCC.

Customizing SOA Composite Applications with JDeveloper

3-18 Extensibility Guide for Developers

20. Right-click the SOA composite application project and go to Project Properties,
then Libraries and Classpath.

The following libraries have now been added:

■ Application Core

■ BC4J Service Client

3.3.3 Customizing the SOA Composite Application
You must customize the SOA composite application.

To customize the SOA composite application:
1. Start JDeveloper using the Oracle Fusion Applications Administrator

Customization role.

2. Select the value for the layer in the Customization Context dialog that you want to
customize. Figure 3–9 provides details.

Figure 3–9 Customization Context Dialog

3. See Chapter 5, "Customizing and Extending SOA Components" for instructions
about customizing the SOA composite application during design time in
JDeveloper and runtime with Oracle SOA Composer, Oracle BPM Worklist, and
Oracle Enterprise Manager Fusion Applications Control.

4. When introducing new components, partner links, and SOA artifacts to the SOA
composite application, add the XX prefix to the name to prevent problems with
existing and future components that may be introduced in Oracle Fusion
Applications patches.

5. Use the configuration plan that you extracted in Step 3 of Section 3.3.1, "Before You
Begin Using JDeveloper to Customize." If any new partner links were added to
your SOA composite application, add entries to the configuration plan, if needed.
For information about configuration plans, see the "Customizing Your Application
for the Target Environment Prior to Deployment" section of the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

6. Deploy the SOA composite application using the same revision you found in
Section 3.3.1, "Before You Begin Using JDeveloper to Customize."

3.3.4 Customizing SOA Resource Bundles
Table 3–1 describes how to customize SOA resource bundles.

Customizing SOA Composite Applications with JDeveloper

Using Oracle JDeveloper for Customizations 3-19

Table 3–1 Customizing SOA Resource Bundles

To Modify or Add
Translatable Strings
for... Description

An existing human task,
activity guide, or BPEL
process

This feature is not supported in the first version of Oracle Fusion
Applications (for example, modifying the human task title).

Runtime modifications do not support this functionality and the
.task, .ag, and .agdl files are not customizable in JDeveloper.

Human task mapped
attributes

This feature is not supported in the first version of Oracle Fusion
Applications.

Translations for human task mapped attribute labels are defined in
the following resource bundle:

oracle.bpel.services.workflow.resource.WorkflowLabels

For this version, the WorkflowLabels resource bundle is
deployed to the SOA clusters in the Customer Relationship
Management and Human Capital Management domains. Any
customizations to the resource bundle are overwritten with future
patches.

Server name in Federated
Worklist on the Oracle
Fusion Applications
home page

The server names that appear in the Federated Worklist on the
Oracle Fusion Applications home page are defined in the
following file:

oracle/apps/common/acr/resource/ResourcesAttrBundle.xliff

See Section 4.12, "Customizing or Adding Resource Bundles" for
instructions about overriding strings in XML localization
interchange file format (XLIFF) resource bundles.

Note: Oracle Fusion Applications automatically seed human
task-protected mapped attributes and labels, but do not seed public
mapped attributes. If you require human task mapped attributes, it is
recommended that you use the public mapped attributes. However, if
protected mapped attributes are required, then add the XX prefix to
your label names to prevent problems with Oracle Fusion
Applications seeded labels.

Customizing SOA Composite Applications with JDeveloper

3-20 Extensibility Guide for Developers

4

Customizing and Extending Oracle ADF Application Artifacts 4-1

4Customizing and Extending Oracle ADF
Application Artifacts

This chapter describes how to use Oracle JDeveloper to customize and extend
application artifacts defined by Oracle Application Development Framework (Oracle
ADF) in Oracle Fusion applications.

This chapter includes the following sections:

■ Section 4.1, "About Customizing Oracle ADF Application Artifacts"

■ Section 4.2, "Editing Existing Business Components"

■ Section 4.3, "Editing Task Flows"

■ Section 4.4, "Editing Pages"

■ Section 4.5, "Creating Custom Business Components"

■ Section 4.6, "Creating Custom Task Flows"

■ Section 4.7, "Creating Custom Pages"

■ Section 4.8, "Customizing and Extending the Oracle Fusion Applications Schemas"

■ Section 4.9, "Customizing or Creating a Custom Search Object"

■ Section 4.10, "Editing the UI Shell Template"

■ Section 4.11, "Customizing Menus"

■ Section 4.12, "Customizing or Adding Resource Bundles"

■ Section 4.13, "Extending Oracle Fusion Applications with a Custom Peer
Application"

■ Section 4.14, "Deploying Oracle ADF Customizations and Extensions"

4.1 About Customizing Oracle ADF Application Artifacts
With the customization features provided by Oracle Metadata Services (MDS),
developers can customize Oracle Fusion Applications using JDeveloper, making
modifications to suit the needs of a particular group, such as a specific country or site.

Using JDeveloper, you can implement customizations on existing artifacts that are
stored in a metadata repository and retrieved at runtime to reveal the customized
application. You can also extend you application with new custom artifacts that are
packaged into a JAR file, and integrated using customizations on the existing
application.

About Customizing Oracle ADF Application Artifacts

4-2 Extensibility Guide for Developers

Note that many kinds of customizations can be performed in the runtime environment
using Oracle Fusion CRM Application Composer, which allows you to customize
existing objects and extend an application with new objects for the following CRM
applications:

■ Sales

■ Marketing

■ Customer Center

■ Trading Community Architecture

■ Order Capture

For more information about using Application Composer to customize these
applications, see the Oracle Fusion Applications CRM Extensibility Guide.

However some kinds of customization (including all customizations to applications
other than those listed above) require a lower level approach, for which you will need
to use JDeveloper.

4.1.1 Before You Begin Customizing Oracle ADF Application Artifacts
Before you customize application artifacts (such as entity objects, view objects,
application modules, and pages) using JDeveloper, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

Before you make any changes to the data model such as adding entity objects or
attributes, first check to see if there is an existing flexfield that meets your needs. For
more information, see the "Flexfields: Overview" section in the Oracle Fusion
Applications Common Implementation Guide.

In addition, you will need to perform the following tasks before you can begin
customizing your application:

■ Set up a test environment.

All application artifact customizations should be deployed to a test environment.
For more information, see Chapter 2, "Understanding the Customization
Development Lifecycle."

■ Determine which artifacts you want to customize.

Before you can implement customizations using JDeveloper, you must first
determine which business objects you want to customize, so that you can create a
customization application workspace that imports the necessary parts of the

WARNING: Do not use JDeveloper to customize flexfields. If you require
flexfield changes that you cannot accomplish using the Manage Flexfields
tasks or the Manage Value Sets tasks as described in the "Define
Flexfields" section in the Oracle Fusion Applications Common
Implementation Guide, contact My Oracle Support at
https://support.oracle.com or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if
you are hearing impaired.

About Customizing Oracle ADF Application Artifacts

Customizing and Extending Oracle ADF Application Artifacts 4-3

application. For more information, see Section 3.2, "Customizing Oracle ADF
Artifacts with JDeveloper."

■ Create an application workspace.

Before you can implement customizations using JDeveloper, you must create a
customization application workspace that imports the necessary parts of the
application you want to customize. For more information, see Section 3.2.1,
"Creating the Customization Application Workspace."

■ Start JDeveloper in the appropriate role.

If you are implementing customizations on existing application artifacts, you must
select the Oracle Fusion Applications Administrator Customization role when
you start JDeveloper.

If you are creating new custom application artifacts (such as entity objects, view
objects, and pages), you must select the Oracle Fusion Applications Developer
role when you start JDeveloper.

■ Select a layer value.

When customizing application artifacts in JDeveloper, you must first select the
layer and layer value to work in. You use the Customization Context window to
make this selection. When customizing business components, such as entity
objects and view objects, you must use the global layer. For more information
about customization layers, see Section 1.2, "Understanding Customization
Layers."

4.1.2 Customizing at the Role Level
The layers and layer values that are available depend on which application you are
customizing, and the Role layer is not available in all Oracle Fusion applications.
CRM applications have a Role layer that you can select in the Customization Context
window, while other applications do not.

To implement role-level customizations in an application that does not have a Role
layer, you can use an expression in the rendered property of a component to
conditionally render the component based on specified security level associated with a
role. For example, you might want to display a button or a column in a table only to
users that have the role of manager.

To conditionally render a button based on a role, start JDeveloper in the Oracle Fusion
Applications Administrator Customization role, and then select the layer in which to
customize. (Remember that if you want to customize an ADF Business Components
object, such as an entity object or view object, then you must use the global layer.)
Open the page that contains the button, and then in the Properties window, click the
Property Menu icon beside the Rendered field and select Expression Builder. In the
Expression Builder dialog, enter an EL expression like the one in Example 4–1.

Example 4–1 EL Expression to Verify Security

#{securityContext.userGrantedPermission['FND_APP_MANAGE_STANDARD_LOOKUP_PRIV']}

Note that the EL expression in Example 4–1 assumes that you have a security
permission called FND_APP_MANAGE_STANDARD_LOOKUP_PRIV already defined.
This expression evaluates to False for users that have not been granted the FND_
APP_MANAGE_STANDARD_LOOKUP_PRIV permission, and the button is not rendered
in the page. For more information, see the "Enabling ADF Security in a Fusion Web

Editing Existing Business Components

4-4 Extensibility Guide for Developers

Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

4.2 Editing Existing Business Components
When customizing an application in JDeveloper, be aware that the layer in which you
choose to implement customizations has an impact on what kinds of customizations
you can perform. If you want to customize an ADF Business Components object, such
as an entity object or view object, then you must use the global layer.

Before you begin:
Before you start customizing business objects, you will need to determine which
business objects you want to customize and create a customization application
workspace. For more information, see Section 4.1.1, "Before You Begin Customizing
Oracle ADF Application Artifacts."

Then when customizing ADF artifacts, you need to start JDeveloper in the Oracle
Fusion Applications Administrator Customization role, and then select the global
layer.

Task: Edit Attributes
You can customize the properties of an attribute from an entity object or view object
using JDeveloper. When you open an entity object or view object in the overview
editor, you click the Attributes navigation tab to see the attributes of the object. When
you select an attribute, its properties are displayed in the Property Inspector.

It is not necessary to modify the page after customizing the properties of an existing
attribute. Customizations to existing attributes are automatically reflected on the pages
that show them.

However, if you modify an attribute so that it requires a different UI component, then
you must also update the page. For example, if you add a list of values (LOV) to an
attribute, then you must edit the page to hide the existing UI component that displays
the attribute, and add a new UI component that can display the LOV.

Note that some attribute properties defined in the entity object can be overridden in
the view object. For example, you can define the label text for a field in an entity object
and subsequently give it a different label in the consuming view object. Then pages
that use the view object display the label from the view object.

For more information about attributes in entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Task: Add Attributes
You can add custom attributes to an entity object or view object using JDeveloper. To
do this, you must start JDeveloper in the Oracle Fusion Applications Administrator
Customization role, and then select the global layer. When you open an entity object
or view object in the overview editor, you click the Attributes navigation tab to see the
attributes of the object. To add a custom attribute, click the Add icon.

If you want your custom attribute to be stored in the database, then you must first
create the column that will be use to store it.

If you want your custom attributes to be displayed in the application, then you must
also customize the pages to display them. For more information, see Section 4.4,
"Editing Pages."

Editing Existing Business Components

Customizing and Extending Oracle ADF Application Artifacts 4-5

For more information about attributes in entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Task: Edit Entity Objects
In JDeveloper, you edit entity objects using the overview editor. In the Application
Navigator, right-click an entity object, and choose Open. Then click the navigation tabs
to view and edit the various features of the entity object.

For more information about entity objects, see the "Creating a Business Domain Layer
Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

For more information about using entity objects in Oracle Fusion applications, see the
"Getting Started with Business Services" chapter in the Oracle Fusion Applications
Developer's Guide.

Task: Edit View Objects
In JDeveloper, you edit view objects using the overview editor. In the Application
Navigator, right-click a view object, and choose Open. Then click the navigation tabs
to view and edit the various features of the view object.

For more information about view objects, see the "Defining SQL Queries Using View
Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

For more information about using view objects in Oracle Fusion applications, see the
"Getting Started with Business Services" chapter in the Oracle Fusion Applications
Developer's Guide.

Task: Edit Validation
In JDeveloper, you edit declarative validation rules for entity objects and view objects
using the overview editor. In the Application Navigator, right-click an entity object or
view object, and choose Open. Then click the Business Rules navigation tab to view
and edit the validation rules.

When implementing customizations on validation rules, you can add rules, modify the
error message, and make rules more restrictive. But avoid removing rules or making
rules less restrictive, because this can cause unpredictable results. Also, you can edit
only declarative validation rules; programmatic validation rules cannot be customized.

For more information, see the "Defining Validation and Business Rules Declaratively"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Task: Customize Business Logic Using Groovy Triggers
In JDeveloper, you can implement Groovy script to respond to predefined trigger
points (such as, Before Delete in Database or After Create) for an entity object. These
trigger points are available on the Business Rules page of the overview editor for
entity objects.

In the Application Navigator, right-click an entity object, and choose Open. Then click
the Business Rules navigation tab to view the existing validation rules. Click the Add
icon and choose Trigger to display the Add Trigger dialog, which allows you to select
a trigger point and enter a Groovy expression that will be executed in response to it.
For more information, see the "Customizing Applications with MDS" chapter in the

Editing Task Flows

4-6 Extensibility Guide for Developers

Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Task: Edit Application Modules
In JDeveloper, you edit application modules using the overview editor. In the
Application Navigator, right-click an application module, and choose Open.

In JDeveloper, you can make the following kinds of customizations on an application
module:

■ Add new custom properties. This is done on the General page of the overview
editor.

■ Add new view object and application module instances. This is done on the Data
Model page of the overview editor.

■ Add newly created subtype view objects. This is done on the Data Model page of
the overview editor.

■ Add new application module configurations. This is done on the Configurations
page of the overview editor.

It is important to note that you cannot modify the web service interface for a
service-enabled application module. You can, for example, add an attribute in a view
object that is included in a service-enabled application module, but that attribute
cannot be added to the web service interface.

For more information about working with application modules, see the "Implementing
Business Services with Application Modules" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Task: Add Customizations to Existing Reports
After you have implemented customizations on your application, you can use Oracle
Business Intelligence Publisher to include these customizations in your reports. For
more information, see the "Customizing Reports and Analytics" chapter in the Oracle
Fusion Applications Extensibility Guide for Business Analysts.

4.3 Editing Task Flows
You can use JDeveloper to implement customizations on the task flows that are used in
your application. A task flow is a set of ADF Controller activities, control flow rules,
and managed beans that interact to allow a user to complete a task. Although
conceptually similar, a task flow is not the same as a human task, a task in the
worklist, or a process flow.

A bounded task flow can be rendered in a JSF page or page fragment (.jsff) by using
an ADF region. This is typically done to allow reuse of the task flow, as necessary,
throughout the application. If you modify a bounded task flow, the changes apply to
any ADF region that uses the task flow. For more information, see the "Using Task
Flows as Regions" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Before you begin:
Before you start editing task flows, you will need to determine which task flows you
want to customize, and create a customization application workspace. For more
information, see Section 4.1.1, "Before You Begin Customizing Oracle ADF Application
Artifacts."

Creating Custom Business Components

Customizing and Extending Oracle ADF Application Artifacts 4-7

When editing a task flow in JDeveloper, you must start JDeveloper in the Oracle
Fusion Applications Administrator Customization role.

Task: Edit Task Flows
In JDeveloper, you use the task flow diagram editor to implement customizations on
existing task flows. In the Application Navigator, right-click the task flow you want to
customize, and choose Open. The page is displayed in the diagram editor, where you
can make changes to the existing activities and control flow cases, or create new
custom ones. For more information, see the "Getting Started with ADF Task Flows"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

4.4 Editing Pages
You can use JDeveloper to implement customizations on the pages that are used in
your application. When editing a page in JDeveloper, you must start JDeveloper in the
Oracle Fusion Applications Administrator Customization role.

Before you begin:
Before you start editing pages, you will need to determine which pages you want to
customize, and create a customization application workspace. For more information,
see Section 4.1.1, "Before You Begin Customizing Oracle ADF Application Artifacts."

Task: Edit Pages
In JDeveloper, you use the visual editor to implement customizations on existing
pages. In the Application Navigator, right-click the page you want to customize, and
choose Open. The page is displayed in the visual editor (accessed by clicking the
Design tab). Then you can edit the page as you typically would using this editor. For
more information about editing pages in JDeveloper, see the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

4.5 Creating Custom Business Components
You can use JDeveloper to extend your application by creating custom business
components. When creating custom business components in JDeveloper, you must
start JDeveloper in the Oracle Fusion Applications Developer role. This role is used
for creating new custom objects that you want to add to the application. You can use
the same application workspace that you created for customization. Then after you
have created the custom business components, you switch to the Oracle Fusion
Applications Administrator Customization role, to make changes to existing artifacts
to integrate the new custom artifacts into the application.

Before you begin:
Before you start creating business objects, you will need to determine which business
objects you want to create, and create a customization application workspace. For
more information, see Section 4.1.1, "Before You Begin Customizing Oracle ADF
Application Artifacts."

Task: Create Custom Entity Objects
An entity object represents a row in a database table, and encapsulates the business
logic and database storage details of your business entities.

Creating Custom Business Components

4-8 Extensibility Guide for Developers

In JDeveloper, you can create entity objects using the Create Entity Object wizard,
which you can access from the New Gallery. In the Application Navigator, right-click
the project you want to add the entity object to, and choose New. Then in the New
Gallery, expand Business Tier, click ADF Business Components, choose Entity
Object, and click OK. Follow the prompts in the wizard to create an entity object.

For more information about creating entity objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

For more information about using entity objects and view objects in Oracle Fusion
applications, see the "Getting Started with Business Services" chapter in the Oracle
Fusion Applications Developer's Guide.

Task: Create Custom View Objects
A view object represents a SQL query and also collaborates with entity objects to
consistently validate and save the changes when end users modify data in the UI.

In JDeveloper, you can create view objects using the Create View Object wizard, which
you can access from the New Gallery. In the Application Navigator, right-click the
project you want to add the view object to, and choose New. Then in the New Gallery,
expand Business Tier, click ADF Business Components, choose View Object, and
click OK. Follow the prompts in the wizard to create a view object.

For more information about creating view objects, see the "Defining SQL Queries
Using View Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

For more information about using entity objects and view objects in Oracle Fusion
applications, see the "Getting Started with Business Services" chapter in the Oracle
Fusion Applications Developer's Guide.

Task: Create Custom Application Modules
An application module encapsulates an active data model and the business functions
for a logical unit of work related to an end-user task.

In JDeveloper, you can create application modules using the Create Application
Module wizard, which you can access from the New Gallery. In the Application
Navigator, right-click the project you want to add the application module to, and
choose New. Then in the New Gallery, expand Business Tier, click ADF Business
Components, choose Application Module, and click OK. Follow the prompts in the
wizard to create an application module.

For more information about creating application modules, see the "Implementing
Business Services with Application Modules" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

For more information about using application modules in Oracle Fusion applications,
see the "Getting Started with Business Services" chapter in the Oracle Fusion
Applications Developer's Guide.

Task: Create a Web Service Interface for a Custom Application Module
In JDeveloper, you can edit a custom application module to create a web service
interface that exposes the top-level view objects and defines the available service
operations it supports. To do this, open the application module in the overview editor,
click the Service Interface navigation tab, and click the Enable support for Service
Interface icon. Then use the Create Service Interface wizard to configure the desired
options.

Creating Custom Task Flows

Customizing and Extending Oracle ADF Application Artifacts 4-9

It is important to note that the new web service cannot be deployed to the Oracle
Fusion application. You can deploy it only to a new application.

For more information about creating a web service interface for an application module,
see the "Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For more information about using application modules in Oracle Fusion applications,
see the "Getting Started with Business Services" chapter in the Oracle Fusion
Applications Developer's Guide.

Task: Add Validation
In JDeveloper, you can create declarative validation rules for entity objects and view
objects to help ensure the integrity of the data. To do this, open the entity object or
view object in the overview editor, and click the Business Rules navigation tab. Then
select the attribute you want to provide validation for, click the Create new validator
icon, and use the Add Validation Rule dialog to configure the rule. For more
information, see the "Defining Validation and Business Rules Declaratively" chapter in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Task: Enforce Data Security for a Custom Business Object
You can use JDeveloper to enforce row and attribute security for custom ADF Business
Components objects. This is done using data security policies to secure data from
business objects based on the grants made to roles.

When you need to expose data records in an extended application, you can use
JDeveloper to create entity objects based on secured database resources, and then opt
into data security policies by enabling row-level privilege checking for specific
operations on the entity objects. For more information, see Section 8.5, "Enforcing Data
Security in the Data Model Project."

Task: Add a Business Object to an Existing Report
After you have extended your application with custom business objects, you can use
Oracle Business Intelligence Publisher to include these extensions in your reports. For
more information, see the "Customizing Reports and Analytics" chapter in the Oracle
Fusion Applications Extensibility Guide for Business Analysts.

4.6 Creating Custom Task Flows
You can use JDeveloper to create custom task flows that you can include in your
application. A task flow is a set of ADF Controller activities, control flow rules, and
managed beans that interact to allow a user to complete a task. Although conceptually
similar, a task flow is not the same as a human task, a task in the worklist, or a process
flow.

Before you begin:
Before you start creating custom task flows, you will need to determine which task
flows you want to create, and create a customization application workspace. For more
information, see Section 4.1.1, "Before You Begin Customizing Oracle ADF Application
Artifacts."

When extending your application with custom task flows in JDeveloper, you must
start JDeveloper in the Oracle Fusion Applications Developer role.

Creating Custom Pages

4-10 Extensibility Guide for Developers

Task: Create a Custom Task Flow
You can create a custom task flow in JDeveloper using the New Gallery, and then
define its activities using the task flow diagram editor. In the Application Navigator,
right-click the project you want to add the task flow to, and choose New. Then in the
New Gallery, expand Web Tier, and click JSF/Facelets. Then select ADF Task Flow,
and click OK. In the Create Task Flow dialog, you'll specify the details about the type
of task flow you want to create. When you click OK, the task flow is created and
displayed in the diagram editor.

For information about creating and designing task flows, see the "Getting Started with
ADF Task Flows" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

4.7 Creating Custom Pages
You can use JDeveloper to create custom pages that you can include in your
application. When creating custom pages in JDeveloper, you must start JDeveloper in
the Oracle Fusion Applications Developer role.

When creating the page (or dropping a view activity onto a task flow), you can create
the page either as a JSF JSP or as a JSF JSP fragment. JSF fragments provide a simple
way to create reusable page content in a project, and are what you use when you want
to use task flows as regions on a page. When you modify a JSF page fragment, the JSF
pages that consume the page fragment are automatically updated.

After extending your application with custom pages, you will need to make sure that
security for the new pages is implemented appropriately and that the new pages are
deployed so that they are accessible from the application. For more information about
updating security, see Chapter 8, "Customizing Security for Oracle ADF Application
Artifacts." For more information about deployment, see Section 4.14, "Deploying
Oracle ADF Customizations and Extensions."

For more information about creating pages in JDeveloper, see the following resources:

■ The Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework

■ "Getting Started with Your Web Interface" in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework

■ "Implementing UIs in JDeveloper with Application Tables, Trees and Tree Tables"
in the Oracle Fusion Applications Developer's Guide

■ "Implementing Applications Panels, Master-Detail, Hover, and Dialog Details" in
the Oracle Fusion Applications Developer's Guide

■ "Creating Customizable Applications" in the Oracle Fusion Applications Developer's
Guide

Before you begin:
Before you start creating custom pages, you will need to determine which pages you
want to create, and create a customization application workspace. For more
information, see Section 4.1.1, "Before You Begin Customizing Oracle ADF Application
Artifacts."

When creating custom pages in JDeveloper, you must start JDeveloper in the Oracle
Fusion Applications Developer role.

Customizing and Extending the Oracle Fusion Applications Schemas

Customizing and Extending Oracle ADF Application Artifacts 4-11

Task: Create a Custom Page
In JDeveloper, you can create pages either by double-clicking a view activity in a task
flow or by using the New Gallery. In the Application Navigator, right-click the project
you want to add the page to, and choose New. Then in the New Gallery, expand Web
Tier, and click JSF/Facelets. Then select either Page or ADF Page Fragment, and click
OK.

Task: Add a Custom Page to a Task Flow
If you created the page by double-clicking a view activity in a task flow, then it is
already added to the task flow. If you created it using the New Gallery, then you can
add it to a task flow by dragging the page from the Application Navigator and
dropping it in the task flow diagram editor. Then you can connect the page using a
control flow. For more information, see the "Getting Started with ADF Task Flows"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Task: Enable Runtime Customization for a Custom Page
To enable a custom page to be customized at runtime, you must make sure that the
page and the project that contains it are set to allow runtime customizations. For
information on how to do this, see the "How to Authorize the Runtime Customization
of Pages and Task Flows" section in the Oracle Fusion Applications Developer's Guide.

4.8 Customizing and Extending the Oracle Fusion Applications Schemas
Using the database tools of your choice, you can customize and extend the Oracle
Fusion Applications schemas to suit the needs of your organization. However, you
should first consider using Application Composer or flexfields to satisfy your
additional data storage requirements. For more information about using Application
Composer, see the Oracle Fusion Applications CRM Extensibility Guide. For more
information about using flexfields, see the "Flexfields: Overview" section in the Oracle
Fusion Applications Common Implementation Guide.

4.8.1 About Customizing and Extending the Oracle Fusion Applications Schemas
If you need to extend the preconfigured Oracle Fusion Applications schemas to
address additional data storage needs, create a custom schema. In your custom
schema, you can create tables, columns, and all the necessary additional schema
objects. This approach allows you to contain and maintain all of your custom data
storage objects separately from the preconfigured Oracle Fusion Applications schemas.

If necessary, you can extend the preconfigured schemas within certain constraints.
With the exception of customizing a preconfigured table to include new custom
objects, such as columns, you must not make any customizations to preconfigured
schema objects. Instead, you can extend the schema by adding new custom objects that
you can configure as needed.

When making amendments to the schema, such as adding tables or columns, add a
prefix to the name of the table or column that is a unique identifier (for example, XX_)
to prevent collisions with existing objects.

Any code that accesses the new custom schema objects should use fully qualified table
names (for example, SCHEMA_NAME.TABLE_NAME). If your code does not use fully
qualified table names, you will need to create synonyms for the custom tables. The
synonym must be created in the FUSION schema, and associated privileges must be
granted in the FUSION_RUNTIME schema. At runtime, Oracle Fusion applications
connect to the FUSION_RUNTIME schema, so privileges must be granted there.

Customizing and Extending the Oracle Fusion Applications Schemas

4-12 Extensibility Guide for Developers

However, because the schema context is set to FUSION, the synonym must be created
there. This convention applies in all cases, whether you create custom schema objects
in a custom schema or a preconfigured schema.

Note that if you are writing a custom application that is a peer application to an
existing Oracle Fusion Applications module, you must define a custom schema that
contains all the database objects for your custom application. Additionally, to integrate
your custom application using a public Oracle Fusion Applications PL/SQL API, you
must:

■ Grant EXECUTE privilege to the custom schema on the Oracle Fusion
Applications PL/SQL package.

Public APIs in the Oracle Fusion Applications PL/SQL package are owned by the
FUSION schema and are defined with the AUTHID DEFINER clause. This way
when the custom schema invokes a PL/SQL API, the application will run with the
set of privileges of the FUSION user, so there is no need to grant additional object
privileges to the custom schema in order for the program to execute successfully.

■ Refer to the package and its procedures and functions using a fully qualified
name, for example: FUSION.<package_name>.<procedure_name>

If your custom application will interact with objects in the FUSION schema (for
example interface tables), then you must also:

■ Grant the necessary privileges on Oracle Fusion Applications objects to the custom
schema (for example, INSERT privileges on interface tables) as necessary.

■ Refer to objects in the FUSION schema with fully qualified names, for example:
FUSION.<table name>

For information about creating database objects, see the Designing Databases topics in
the JDeveloper online help.

4.8.2 What You Can Do with Schema Modifications
Using the SQL Worksheet in JDeveloper or the database tools of your choice, you can
issue commands to the database to customize and extend it. When making changes to
the database, you can do the following:

■ Add a custom schema

■ Add or modify tables

■ Add columns to preconfigured or custom tables

■ Add indexes to custom columns

■ Add sequences

■ Add PL/SQL packages, procedures, functions and abstract data types

4.8.3 What You Cannot Do with Schema Modifications
When making changes to the database, you cannot do any of the following:

■ Modify preconfigured columns or sequences.

■ Modify preconfigured PL/SQL packages, procedures, functions and abstract data
types (unless explicitly directed to do so by product documentation).

■ Delete preconfigured schema objects.

Customizing and Extending the Oracle Fusion Applications Schemas

Customizing and Extending Oracle ADF Application Artifacts 4-13

■ Add indexes to preconfigured columns (unless explicitly directed to do so by
product documentation).

4.8.4 Before You Begin Extending the Oracle Fusion Applications Schemas
Before you modify the Oracle Fusion Applications schema, you should first see if you
can address your additional data storage requirements using flexfields, as described in
the "Flexfields: Overview" section in the Oracle Fusion Applications Common
Implementation Guide.

4.8.5 Extending the Schemas Using a Custom Schema
Using the SQL Worksheet in JDeveloper, you can issue commands to the database to
customize and extend it. In a custom schema, you can add tables, columns, indexes,
and other schema objects to support the customizations and extensions you want to
implement in the application (such as, adding an attribute to an entity object).

To access the SQL Worksheet, right-click the database connection (under the
Connections node in the Application Resources panel of the Application Navigator),
and choose Database Navigator from the context menu. This will open the selected
database connection in the Database Navigator and display the SQL Worksheet.

Before you begin:
Before you attempt to extend the schema, you should be familiar with the guidelines
described in Section 4.8.1, "About Customizing and Extending the Oracle Fusion
Applications Schemas."

Task: Create a Custom Schema
When creating a custom schema, add a prefix to the name of the schema that is a
unique identifier (for example, XX_) to prevent collisions with existing schemas. You
must grant the privileges to the custom schema that are necessary for it to function
properly and for any supporting code to compile (for example, objects referenced in
PL/SQL code).

Task: Create Custom Database Tables, Columns, Indexes, and Sequences
Within a custom schema, you can create custom database tables, columns, indexes,
and sequences to address your additional data storage needs. When adding custom
objects, add a prefix to the name of the object that is a unique identifier (for example,
XX_) to prevent collisions with existing objects. New custom indexes and sequences
should adhere to this convention as well.

After creating a custom table, you will need to grant the necessary object privileges to
the FUSION_RUNTIME schema, which Oracle Fusion Applications uses at runtime.
You can grant privileges directly to the schema, or through a custom database role, but
do not use the preconfigured FUSION_APPS_READ_AND_WRITE database role.

Any code that accesses the new custom schema objects should use fully qualified table
names (for example, SCHEMA_NAME.TABLE_NAME). If your code does not use fully
qualified table names, then you will need to create synonyms for the custom tables, as
described in Section 4.8.1, "About Customizing and Extending the Oracle Fusion
Applications Schemas."

Customizing and Extending the Oracle Fusion Applications Schemas

4-14 Extensibility Guide for Developers

Task: Create Custom PL/SQL Packages, Procedures, Functions, and Abstract
Data Types
When adding PL/SQL objects and abstract data types to a custom schema, add a
prefix to the name of the object or data type that is a unique identifier (for example,
XX_) to prevent collisions with existing objects.

Your PL/SQL code should contain the AUTHID INVOKER clause so that the code is
executed within the context of the privilege set of the FUSION_RUNTIME user.
Additionally, the FUSION_RUNTIME user must be granted the EXECUTE privilege
on the PL/SQL object or type, either directly or through a database role.

If you need to create synonyms to support your PL/SQL code, then create your
synonyms in the FUSION schema, as described in Section 4.8.1, "About Customizing
and Extending the Oracle Fusion Applications Schemas."

4.8.6 Extending a Preconfigured Schema
Using the SQL Worksheet in JDeveloper, you can issue commands to the database to
customize and extend it. When making changes to the schema, you can add tables or
columns to support the customizations and extensions you want to implement in the
application (such as, adding an attribute to an entity object). However, do not remove
tables or columns, because this can have adverse affects in other parts of the
application.

With the exception of customizing a preconfigured table to include new custom
objects, such as columns, you must not make any customizations to preconfigured
schema objects.

To access the SQL Worksheet, right-click the database connection (under the
Connections node in the Application Resources panel of the Application Navigator),
and choose Database Navigator from the context menu. This will open the selected
database connection in the Database Navigator and display the SQL Worksheet.

Before you begin:
Before you implement extensions to a preconfigured schema, consider creating your
extensions in a custom schema. This approach provides greater flexibility and
modularity.

Also, you should be familiar with the guidelines described in Section 4.8.1, "About
Customizing and Extending the Oracle Fusion Applications Schemas."

Task: Edit Database Tables
With the exception of customizing a preconfigured table to include new custom
objects, such as columns, you must not make any customizations to preconfigured
schema objects.

When adding columns to a preconfigured table, add a prefix to the name of the
column that is a unique identifier (for example, XX_) to prevent collisions with existing
columns.

Task: Create Custom Database Tables, Columns, Sequences, and Indexes
You can create custom database tables and columns to address your additional data
storage needs. When adding custom tables and columns, add a prefix to the name of
the table and columns that is a unique identifier (for example, XX_) to prevent
collisions with existing tables and columns.

After creating a custom table, you will need to grant the necessary object privileges to
the FUSION_RUNTIME schema, which Oracle Fusion Applications uses at runtime.

Editing the UI Shell Template

Customizing and Extending Oracle ADF Application Artifacts 4-15

You can grant privileges directly to the schema, or through a custom database role, but
do not use the preconfigured FUSION_APPS_READ_AND_WRITE database role.

Any code that accesses the new custom schema objects should use fully qualified table
names (for example, SCHEMA_NAME.TABLE_NAME). If your code does not use fully
qualified table names, then you will need to create synonyms for the custom tables, as
described in Section 4.8.1, "About Customizing and Extending the Oracle Fusion
Applications Schemas."

You can create new custom indexes on custom columns, but do not attempt to create
an index on a preconfigured column, unless explicitly directed to do so by product
documentation.

Task: Create Custom PL/SQL Packages, Procedures, Functions, and Abstract
Data Types
When adding PL/SQL objects and abstract data types, add a prefix to the name of the
object or data type that is a unique identifier (for example, XX_) to prevent collisions
with existing objects.

Your PL/SQL code should contain the AUTHID INVOKER clause so that the code is
executed within the context of the privilege set of the FUSION_RUNTIME user.
Additionally, the FUSION_RUNTIME user must be granted the EXECUTE privilege
on the PL/SQL object or type, either directly or through a database role.

If you need to create synonyms to support your PL/SQL code, then create your
synonyms in the FUSION schema, as described in Section 4.8.1, "About Customizing
and Extending the Oracle Fusion Applications Schemas."

4.9 Customizing or Creating a Custom Search Object
In JDeveloper, you can customize and create saved searches and search forms for your
application. To customize a search form or saved search in JDeveloper, you will need
to set up an application workspace as described in Section 3.2.1, "Creating the
Customization Application Workspace." Then, locate and open the object you want to
customize. To create a new search form, you open or create the page that will display
the form and select a data collection from the Data Controls panel. For more
information, see the "Creating ADF Databound Search Forms" chapter in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

4.10 Editing the UI Shell Template
To edit the UI Shell template in JDeveloper, you will need to set up an application
workspace as described in Section 3.2.1, "Creating the Customization Application
Workspace." Then, in the Oracle Fusion Applications Administrator Customization
role, expand the contents of the Applications Core (ViewController) library and drill
down to the file oracle/apps/fnd/applcore/templates/UIShell.jspx. This
is the UI Shell template, which you can customize as necessary.

Alternatively, you can access the UI Shell template from any page in the library. Open
the page in JDeveloper, right-click on the view ID of the pageTemplate tag
(/oracle/apps/fnd/applcore/templates/UIShell.jspx), and then choose
Go to Declaration to open the UI Shell template.

You can also use Page Composer to edit the UI Shell template, as described in the
"Editing the UI Shell Template Used by All Pages" section in the Oracle Fusion
Applications Extensibility Guide for Business Analysts.

Customizing Menus

4-16 Extensibility Guide for Developers

In addition, you can customize the Oracle Fusion Applications skin using ADF Skin
Editor as described in Chapter 12, "Customizing the Oracle Fusion Applications Skin."

4.11 Customizing Menus
Using JDeveloper you can customize the menus in your Oracle Fusion applications.
Customizing the tasklist menu follows the same pattern as editing most artifacts (such
as, pages or business components) from the EAR connection. However, customizing
the home page, preferences and navigator menus is slightly different. For these menus,
you will need to export the menu's XML file from the MDS repository and copy them
into your customization application workspace before you can implement
customizations.

To export the menu files for an application, you use the exportMetadata Oracle
WebLogic Scripting Tool (WLST) command. For more information, see the
"Application Metadata Management Commands" section of Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference. This command saves the files in a JAR file
that you can import into your application workspace. For procedures, see the "Viewing
ADF Library Runtime Customizations from Exported JARs" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

When exporting the menu XML files from the MDS repository, you can find them in
the oracle/apps/menu directory in the repository. The following are their file
names:

■ Home page menu: homepage_menu.xml

■ Preferences menu: pref_menu.xml

■ Navigator menu: root_menu.xml

Then you copy the files to the same directory (under project source path) in your local
customization application workspace (for example, CUSTOMIZATION_APP_
PATH/PROJECT_NAME/src/oracle/apps/menu). After you have copied them into
your local customization application workspace, you can customize the menus as
necessary.

After you have implemented customizations on a menu, you will need to update the
MAR profile to make sure they are included during deployment. In the MAR profile,
under User Metadata > Directories, select the customizations you implemented that
correspond to the menu files. For more information about deploying customizations,
see Section 4.14, "Deploying Oracle ADF Customizations and Extensions."

Note: You can also customize the navigator menu at runtime from
the Setup and Maintenance work area, as described in the "Managing
Menu Customizations: Highlights" section in the Oracle Fusion
Applications Common Implementation Guide.

Tip: You can also use Oracle Enterprise Manager Fusion
Applications Control to import and export metadata files. For more
information, see the "Transferring Metadata Using Fusion Middleware
Control" section of the Oracle Fusion Middleware Administrator's Guide.
The referenced procedure describes using Fusion Middleware Control,
but also applies to Fusion Applications Control.

Extending Oracle Fusion Applications with a Custom Peer Application

Customizing and Extending Oracle ADF Application Artifacts 4-17

For more information about menus in Oracle Fusion Applications, see the "Working
with the Global Menu Model" section in the Oracle Fusion Applications Developer's
Guide.

4.12 Customizing or Adding Resource Bundles
One method of customizing text is defining a new key in the resource bundle. There is
a single override resource bundle for Oracle Fusion Applications. You can use this
resource bundle to override values for existing keys, but you cannot add new keys.

Because you cannot define a new key in the shipped resource bundle, you need to
create a new override bundle. You can accomplish this in JDeveloper by creating an
XLIFF file from the New Gallery. After the file is generated, you can then enter new
keys and their associated text in the XLIFF file.

To make the newly created resource bundle available for customization, you need to
register the resource bundle with the customization project. You can do this from the
Resource Bundle page of the Project Properties dialog.

You can also extend your application by creating a new resource bundle for a project if,
for example, you want to customize the text for a label and you don't want to change
the value in the global override bundle. To do this, create an XLIFF file from the New
Gallery, package it into an ADF Library JAR file, and import the JAR file into the
customization project.

To test your customizations locally in JDeveloper Integrated WebLogic Server, you
must also include the ADF Library JAR file in the APP-INF/lib directory.

For information about translating custom resource bundle strings, see Section 9.2,
"Translating Resource Bundles from an MDS Repository."

For more information about working with resource bundles, see the "Creating a
Business Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

4.13 Extending Oracle Fusion Applications with a Custom Peer
Application

Using JDeveloper, you can create a custom peer application to extend the functionality
of an existing Oracle Fusion Applications module.

When you create the application, the package that you will use depends on how the
functionality is integrated into the existing application.

■ If the new custom functionality is completely separate and loosely integrated into
the existing application (for example, adding a custom button or link to an existing
page to go to a new custom page that exposes the custom peer application), then
you will need to create a new package and deploy it separately from the existing
application. On the Name page (step 1 of 5) of the Create Fusion Web Application
wizard, you can specify any application package prefix that you want, but do not
use oracle.apps.cust.

■ If the new custom functionality is a tightly integrated extension of existing
functionality (for example, adding new tasks to an existing task flow exposed in

Note: All custom JAR file names must begin with the prefix Xx, for
example XxMyJar.jar.

Deploying Oracle ADF Customizations and Extensions

4-18 Extensibility Guide for Developers

an existing page), then make sure that you specify oracle.apps.cust as the
application package prefix on the Name page (step 1 of 5) of the Create Fusion
Web Application wizard. In this case, the customization application workspace
MAR will pick up your metadata files from the included ADF libraries when you
package and deploy the customizations.

After you create the application workspace, create an ADF Library deployment profile
for each project in the peer application. Then when you package the peer application,
ADF Library JAR files will be generated.

After you have created and packaged your custom peer application, you will need to
place the ADF library JAR files into the customization application workspace that you
are extending. The ADF library JAR for model artifacts (such as entity objects and
view objects) should be placed into the ExplodedEarDirectory/APP-INF/lib
directory. The ADF Library JAR for user interface artifacts (such as pages) should be
placed in the ExploadedWarDirectory/WEB-INF/lib directory. For more
information about packaging and deploying, see Section 4.14, "Deploying Oracle ADF
Customizations and Extensions."

When you extend an Oracle Fusion Applications module with a custom peer
application, you must define a custom schema that contains all the database objects for
the custom application. For more information, see Section 4.8, "Customizing and
Extending the Oracle Fusion Applications Schemas."

4.14 Deploying Oracle ADF Customizations and Extensions
After you have customized existing artifacts, you can use JDeveloper to deploy the
customizations to a sandbox or to the Oracle Fusion application. For more information
about how to use sandboxes to isolate changes from the mainline code so you can test
and validate the changes, see the "Sandboxes: Explained" section in the Oracle Fusion
Applications CRM Extensibility Guide.

When you create a customization application workspace as described in Section 3.2.1,
"Creating the Customization Application Workspace," the wizard generates a MAR
profile. By default, the name of the MAR profile is application_name_
customizations. It will automatically include the customizations that you
implement. You can use this profile to package your customizations for deployment.

When you package customizations from the customization application workspace, the
MAR file should include only library customizations. If you have extensions, make
sure to include those directories as well (for example, oracle/apps), as shown in
Figure 4–1. Do not include the User Metadata or HTML Root Dir for Project in the
MAR profile, unless explicitly directed to do so by product documentation.

Deploying Oracle ADF Customizations and Extensions

Customizing and Extending Oracle ADF Application Artifacts 4-19

Figure 4–1 MAR Deployment Profile Properties

If you extend your application with new custom artifacts, then you can use JDeveloper
to package them into an ADF Library JAR and place them into the proper location
within the application directory structure.

Task: Deploy the Customizations
You can use JDeveloper to deploy the customizations directly or you can use
JDeveloper to create a MAR file, and then load the MAR file using WLST commands
or the WebLogic Server Administration Console.

If you are using JDeveloper to deploy directly, you have a choice to deploy to available
sandboxes or into the already deployed Oracle Fusion application.

When you deploy customizations on ADF Business Component objects (such as entity
objects and view objects), the server must be restarted for the customizations to be
picked up.

For instructions on deploying customizations, see the "How to Deploy New
Customizations Applied to ADF LIbrary" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Task: Package New Artifacts into ADF Library
If you have extended your application with new custom artifacts (or you are supplied
with new artifacts), then you must package these artifacts into an ADF library JAR and
place the JAR files in the proper location within the application.

Tip: You can also use Oracle Enterprise Manager Fusion
Applications Control to import and export customization files. For
more information, see the "Transferring Metadata Using Fusion
Middleware Control" section of the Oracle Fusion Middleware
Administrator's Guide. The referenced procedure describes using
Fusion Middleware Control, but also applies to Fusion Applications
Control.

Deploying Oracle ADF Customizations and Extensions

4-20 Extensibility Guide for Developers

The ADF library JAR for the new model artifacts (such as entity objects and view
objects) should be placed into the ExplodedEarDirectory/APP-INF/lib
directory (for example, /fusionapps/applications/fin/deploy/
EarFinPayables.ear/APP-INF/lib/XxMyJar.jar). The ADF Library JAR for
the new user interface artifacts (such as pages) should be placed in the
ExploadedWarDirectory/WEB-INF/lib directory.

For instructions on creating ADF Library, see the "Packaging a Reusable ADF
Component into an ADF Library" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Note: All custom JAR files must begin with the prefix Xx, for
example XxMyJar.jar.

5

Customizing and Extending SOA Components 5-1

5Customizing and Extending SOA
Components

This chapter describes how to customize (edit) a service-oriented architecture (SOA)
component during runtime in a deployed SOA composite application with a runtime
tool such as Oracle Business Process Management Worklist (Oracle BPM Worklist),
Oracle SOA Composer, or Oracle Enterprise Manager Fusion Applications Control or
customize and extend (create) a SOA component during design time in Oracle
JDeveloper. It also provides recommendations for merging runtime customizations
from a previously deployed revision into a new revision and instructions for
synchronizing a customized flexfield in Oracle Metadata Services (MDS) Repository.

This chapter includes the following sections:

■ Section 5.1, "About Customizing and Extending SOA Components"

■ Section 5.2, "Customizing SOA Composite Applications"

■ Section 5.3, "Merging Runtime Customizations from a Previously Deployed
Revision into a New Revision"

■ Section 5.4, "Extending or Customizing Custom SOA Composite Applications"

■ Section 5.5, "Deploying SOA Composite Application Customizations and
Extensions"

■ Section 5.6, "Extending a New Oracle SOA Suite Service"

For information about troubleshooting SOA issues, see the "Troubleshooting Oracle
SOA Suite" chapter in the Oracle Fusion Applications Administrator's Troubleshooting
Guide.

About Customizing and Extending SOA Components

5-2 Extensibility Guide for Developers

5.1 About Customizing and Extending SOA Components
SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA enables you to develop
enterprise applications as modular business web services that can be integrated and
reused, resulting in a flexible, adaptable IT infrastructure. SOA separates business
functions into distinct units, or services.

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing SOA composite applications. A SOA composite
application is a service, service component, and reference assembly designed and
deployed in a single application. Wiring between the services, service components,
and references enables message communication.

Oracle SOA Suite consists of SOA components that comprise the business logic and
processing rules in a SOA composite application. You can include components such as
the following in a SOA composite application:

■ Business rules:

The following business rule categories are available:

– Approval configuration (expirations, escalations, and notifications) and
assignment rules:

Define complex task routing slips for approval management by taking into
account business documents and associated rules to identify the approval
hierarchy for a work item. Additionally, approval management lets you define
multistage approvals with associated list builders based on supervisor or
position hierarchies. You can also define expiration, escalation, and
notification configurations. For example, an expense approval task may use
rules to define its approvers.

Approval configuration and assignment rules are within the context of a
human workflow.

– Nonapproval business rules:

Note:

■ This chapter does not describe customizing and extending Oracle
Business Process Management Suite (Oracle BPM Suite). Oracle
BPM Suite is installed on top of Oracle SOA Suite, and provides
the ability to run Business Process Modeling and Notation
(BPMN) processes. To accomplish this task, there are extensions to
JDeveloper for working with BPMN (Oracle BPM Studio) and a
web-based application for working with BPMN processes (Oracle
Business Process Composer). For information about BPMN
process flows, see the "Customizing and Extending BPMN
Processes" chapter in the Oracle Fusion Applications Extensibility
Guide for Business Analysts. For information about Oracle BPM
project templates, see Chapter 6, "Customizing and Extending
Oracle BPM Project Templates."

■ Oracle SOA Suite extensions cannot be used with JDeveloper
Integrated WebLogic Server. If an application has references to
Oracle SOA Suite shared libraries, then customizations on the
application cannot be tested with Integrated WebLogic Server.

About Customizing and Extending SOA Components

Customizing and Extending SOA Components 5-3

Define a business decision based on rules that enables dynamic decisions to be
made at runtime that automate policies, computations, and reasoning while
separating rule logic from underlying application code. For example, you can
define a business rule to select a supplier with the lowest shipping price to
fulfill a shipping order.

Nonapproval business rules are in the context of Oracle SOA Suite, but
outside of human workflow.

– Rules in non-Oracle SOA Suite applications

Use of standalone rules in non-Oracle SOA Suite applications is supported.
You can completely control how the rule dictionaries are structured and how
these applications are patched. You may structure the rules as recommended
for Oracle SOA Suite rules, as described in this chapter.

A rule dictionary is a business rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file
that stores the application's rulesets and the data model. Dictionaries can link
to other dictionaries. A bucketset enables you to define a list of values or a
range of values of a specified type. After you create a bucketset, you can
associate the bucketset with a fact property of a matching type. Business rules
use the bucketsets that you define to specify constraints on the values
associated with fact properties in rules or in a decision table. A ruleset is a
business rules container for rules and decision tables. A ruleset provides a
namespace, similar to a Java package, for rules and decision tables.

■ Domain value maps:

Operate on actual data values that move through the infrastructure at runtime. A
domain value map enables you to map from one vocabulary used in a given
domain to another vocabulary used in a different domain. For example, one
domain can represent a city with a long name (Boston), while another domain can
represent a city with a short name (BO). In such cases, you can directly map the
values by using domain value maps.

■ Human tasks:

Extend a workflow that describes the tasks for users or groups to perform as part
of an end-to-end business process flow. For example, a vacation request workflow
is assigned to a manager. The manager must act on the request task three days
before the vacation starts. If the manager formally approves or rejects the request,
the employee is notified with the decision. If the manager does not act on the task,
the request is treated as rejected. Notification actions similar to the formal rejection
are taken.

■ Business Process Execution Language (BPEL) processes:

Integrate a series of business activities and services into an end-to-end process
flow. For example, a BPEL process flow calls a credit rating service. When you run
this process, you enter a social security number into a user interface. The credit
rating service takes the number and returns a credit rating.

■ Oracle Mediator:

Defines services that perform message and event routing, filtering, and
transformations. For example, Oracle Mediator can accept data contained in a text
file from an application or service, transform it into a format appropriate for
updating a database that serves as a customer repository, and then route and
deliver the data to that database.

About Customizing and Extending SOA Components

5-4 Extensibility Guide for Developers

For more information about these components, see the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

Oracle SOA Suite supports the following types of customizations and extensions of
these components:

■ Customizing several components during runtime

■ Customizing and extending several components during design time

Oracle SOA Suite supports customizing several components during runtime.

The tool to use depends on the component you are customizing or extending and
whether you are performing these tasks during runtime or design time. Table 5–1
provides details.

Note: If you are customizing approval configuration and assignment
rules or nonapproval business rules for a deployed project (either for
Oracle SOA Suite or Oracle BPM Suite), always use Oracle BPM
Worklist or Oracle SOA Composer. If you are customizing approval
configuration and assignment rules or nonapproval business rules as
part of a new Oracle BPM Suite project being extended in Oracle
Business Process Composer, then use Oracle Business Process
Composer. For information about using Oracle Business Process
Composer, see Chapter 6, "Customizing and Extending Oracle BPM
Project Templates."

Table 5–1 Customization and Extension Tools for Oracle SOA Suite

To Perform These Tasks... Use This Tool... Use This Tool At... Tool User

Customize business rules:

■ Approval configuration
and assignment rules

■ Nonapproval business
rules

■ Oracle BPM Worklist (recommended)
or Oracle SOA Composer

■ Oracle SOA Composer

Note: If you use Oracle SOA Composer to
customize approval configuration and
assignment rules during runtime, changes
in subsequent revision patches are not
applied successfully.

Runtime in a deployed
SOA composite application

Runtime in a deployed
SOA composite application

Technical
analyst

Business
analyst

Customize domain value
maps

Oracle SOA Composer Runtime in a deployed
SOA composite application

Business
analyst

Customize SOA composite
application endpoint
properties such as the
following:

■ Attached Oracle Web
Services Manager
(Oracle WSM) security
policies

■ Service and reference
binding component
properties

Fusion Applications Control Runtime in a deployed
SOA composite application

System
administrat
or

About Customizing and Extending SOA Components

Customizing and Extending SOA Components 5-5

5.1.1 Before You Begin Customizing SOA Composite Applications
Before you customize SOA components, become familiar with the Oracle Fusion
application architecture that enables customizations, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications." Also understand the typical
workflows for working with runtime customizations, as described in Chapter 2,
"Understanding the Customization Development Lifecycle."

In addition, you need to perform the following tasks before you can begin customizing
your application:

■ Customize or extend
business rules

■ Customize or extend
BPEL processes

■ Customize or extend
human tasks

■ Customize or extend
Oracle Mediator

■ Customize SOA
composite application
components such as a
binding component and
wire

■ Customize or extend
transformations

■ Extend Web Services
Description Language
(WSDL) or Extensible
Markup Language
(XML) schema
definition (XSD) files

■ Extend business rules

■ Extend Java EE
connector architecture
(JCA) adapters

JDeveloper (when logged in with the
Customization Developer role)

Design time (when
complete, you must deploy
the SOA composite
application)

System
integrator

Note:

■ You cannot customize human tasks, BPEL processes, and Oracle
Mediators during runtime in a deployed SOA composite
application.

■ When using Oracle SOA Composer, you can save your
customizations in a sandbox environment without applying them
to a running instance. You can later return to the sandbox to make
additional customizations. These customizations are applied to
the running instance only when you click Commit.

■ When you click Save or Commit in Oracle SOA Composer, a
dialog is displayed in which you can optionally enter comments.
When complete, you click OK, which performs the save or
commit action, along with saving the comments.

Table 5–1 (Cont.) Customization and Extension Tools for Oracle SOA Suite

To Perform These Tasks... Use This Tool... Use This Tool At... Tool User

Customizing SOA Composite Applications

5-6 Extensibility Guide for Developers

■ Install JDeveloper and set up your development environment. Before you can
implement customizations using JDeveloper, you must create an application
workspace that imports the necessary parts of the application you want to
customize. For more information, see Section 1.3.13, "Installing Customization
Tools" and the "Setting Up Your Development Environment" chapter in the Oracle
Fusion Applications Developer's Guide.

■ Create a customization application workspace. For more information, see
Chapter 3, "Using Oracle JDeveloper for Customizations."

■ Start JDeveloper in the appropriate role.

For more information, see Chapter 3, "Using Oracle JDeveloper for
Customizations."

5.2 Customizing SOA Composite Applications
As described in Table 5–1, you can customize SOA components during runtime in a
deployed SOA composite application with a runtime tool. This section provides an
overview of these tasks and provides references to additional documentation for more
specific instructions.

Task: Start the Runtime Customization Tool
Use a web browser to start the tools shown in Table 5–2 for customizing approval
configuration and assignment rules, nonapproval business rules, domain value maps,
and SOA composite application endpoint properties at runtime.

Note: You cannot customize SOA components in Oracle Fusion CRM
Application Composer (Application Composer). However, you can
extend a business event in Application Composer and use the Event
notification action to notify a SOA composite application by email of
the occurrence of the event.

Table 5–2 Starting the Customization Tool

For Customizing... Start... By Entering...

Business rules

■ Approval
configuration
and assignment
rules

■ Oracle BPM
Worklist
(recommended)

■ Oracle SOA
Composer

Note: If you use Oracle
SOA Composer to
customize approval
configuration and
assignment rules during
runtime, changes in
subsequent revision
patches are not applied
successfully.

http://host:port/integration/worklistapp

http://host:port/soa/composer

■ Nonapproval
business rules

Oracle SOA Composer http://host:port/soa/composer

Domain value maps Oracle SOA Composer http://host:port/soa/composer

Customizing SOA Composite Applications

Customizing and Extending SOA Components 5-7

Task: Select the Data to Customize
After accessing the runtime customization tool to use, select the data to customize:

■ Oracle SOA Composer:

1. From the Open list in Oracle SOA Composer, select the data to customize, as
shown in Figure 5–1.

Figure 5–1 Open Menu of Oracle SOA Composer

Table 5–3 describes the options available for selection.

■ Oracle BPM Worklist:

1. In the Administration section, click the Task Configuration tab.

2. Select a specific approval configuration and assignment rule task to customize.

The Event Driven and Data Driven tabs are now accessible.

3. Select a task to view or customize from the list of task types.

■ Fusion Applications Control:

1. In the navigation pane in Fusion Applications Control, expand the SOA
folder.

2. Expand soa-infra.

SOA composite
application
endpoint properties
such as Oracle
WSM security
policies and
binding component
properties

Fusion Applications
Control

http://host:port/em

Table 5–3 Selecting the Data to Customize

For Customizing... Select...

Nonapproval business rules Open Rules

Domain value maps Open DVM

Approval configuration and
assignment rules

Open Task

Note: If you use Oracle SOA Composer to customize approval
configuration and assignment rules during runtime, changes in
subsequent revision patches are not applied successfully.

Table 5–2 (Cont.) Starting the Customization Tool

For Customizing... Start... By Entering...

Customizing SOA Composite Applications

5-8 Extensibility Guide for Developers

3. Expand the partition in which the SOA composite applications are deployed
(for example, default).

4. Select the SOA composite application to customize.

Task: Customize Business Rules
Two categories of rules are available:

■ Approval configuration and assignment rules:

You can customize approval configuration and assignment rules included in a
deployed SOA composite application using Oracle BPM Worklist (recommended),
as shown in Figure 5–2, or in Oracle SOA Composer, as shown in Figure 5–3.

For more information, see the following:

– The "Using Approval Management" chapter in the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management (for
Oracle BPM Worklist)

– The "Working with Tasks at Run Time" section in the Oracle Fusion Middleware
User's Guide for Oracle Business Rules (for Oracle SOA Composer)

Figure 5–2 Approval Configuration and Assignment Rule Customizations in Oracle BPM Worklist

Customizing SOA Composite Applications

Customizing and Extending SOA Components 5-9

Figure 5–3 Approval Configuration and Assignment Rule Customizations in Oracle SOA
Composer

How to customize the text in notifications in Oracle BPM Worklist is decided by
what you want to customize in the task detail page (the page rendered when you
click the task in Oracle BPM Worklist):

– Some strings are part of Oracle SOA Suite, other strings are part of the Oracle
Fusion Applications-owned Oracle Application Development Framework
(Oracle ADF) resource bundle, and other strings are part of the Oracle Fusion
Applications-owned SOA resource bundle.

– The task title, task outcome, approval reason, stage name, and participant type
strings are stored in the Oracle Fusion Applications-owned SOA resource
bundles. You cannot customize these because there is no support for that
functionality in Oracle SOA Suite.

– The business object-specific text and sections are implemented in Oracle ADF
and resource bundles are owned by Oracle Fusion Applications. These strings
can be customized only in JDeveloper.

– The Oracle SOA Suite-owned strings correspond to those in the Comments,
Attachment, and History sections in Oracle BPM Worklist. The actions along
the top of the page (excluding the custom actions defined in the .task file)
are also part of Oracle SOA Suite. These strings in the Oracle SOA
Suite-owned resource bundles can be customized by following the instructions
in the "Resource Bundles in Workflow Services" section in the Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

How text appears in email notifications for human tasks is also decided by what
you want to customize:

– The subject (derived from the task title) and custom outcomes are defined in
the Oracle Fusion Applications-owned SOA resource bundle. You cannot
customize these because there is no support for that functionality in Oracle
SOA Suite.

– You can customize the notification message (the first line of instructions in the
email) during runtime in Oracle BPM Worklist.

Customizing SOA Composite Applications

5-10 Extensibility Guide for Developers

– The remaining email content is the same as customizing the text in
notifications in Oracle BPM Worklist.

■ Nonapproval business rules:

You can view, customize, and commit changes to a rule dictionary included in a
deployed SOA composite application using Oracle SOA Composer, as shown in
Figure 5–4. Supported customizations consist of the following:

– Customizing dictionary bucketsets

– Customizing rules in a ruleset

– Customizing advanced rule settings

– Customizing conditions and actions

– Customizing advanced mode rules

– Customizing a decision table

– Validating rule dictionaries

Figure 5–4 Nonapproval Business Rule Customizations in Oracle SOA Composer

For more information about customizing business rules in Oracle SOA Composer,
see the "Using Oracle SOA Composer with Oracle Business Rules" chapter in the
Oracle Fusion Middleware User's Guide for Oracle Business Rules.

Task: Customize Domain Value Maps
You can customize domain value map rows included in a deployed SOA composite
application using Oracle SOA Composer, as shown in Figure 5–5. For more
information, see the "Using Oracle SOA Composer with Domain Value Maps" chapter
in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Customizing SOA Composite Applications

Customizing and Extending SOA Components 5-11

Figure 5–5 Domain Value Map Customizations in Oracle SOA Composer

Task: Customize SOA Composite Application Endpoint Properties
You can customize endpoint address properties for an external reference such as
Oracle WSM security policies and binding components included in a deployed SOA
composite application using Fusion Applications Control.

Figure 5–6 provides details about customizing Oracle WSM security policies. For more
information, see the "Managing SOA Composite Application Policies" section in the
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business
Process Management Suite.

Customizing SOA Composite Applications

5-12 Extensibility Guide for Developers

Figure 5–6 Security Policy Customizations in Fusion Applications Control

Figure 5–7 provides details about customizing binding component properties for
services and references. For more information, see the "Configuring Service and
Reference Binding Component Properties" chapter in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

Figure 5–7 Binding Component Property Customizations in Fusion Applications Control

Task: Synchronizing Customized Flexfields in the MDS Repository for SOA
SOA composite applications in Oracle Fusion Applications reference copies of the
original XSD schema files included in the MDS repository for SOA. When you

Customizing SOA Composite Applications

Customizing and Extending SOA Components 5-13

customize and deploy Oracle Fusion Applications flexfields (or upgrade the base table,
after which the flexfields are automatically reapplied), which result in a new XSD file
being generated in the MDS repository for Oracle Fusion Applications, the updated
XSD files must be synchronized in the MDS repository for SOA for use in the fact
models in business rules.

To perform this synchronization, a special SOA composite application named
UpdateSOAMDS is included with Oracle Fusion Applications. By default,
UpdateSOAMDS is automatically deployed. When a synchronization is required, you
manually invoke an instance of this SOA composite application to synchronize the
updated XSD files in the MDS repository for SOA. You can view the results of this
synchronization in the audit trail in Fusion Applications Control.

1. Invoke UpdateSOAMDS.

a. Log in to Fusion Applications Control.

b. In the navigation pane, expand soa-infra and the domain.

c. Select UpdateSOAMDS.

d. At the top of the Dashboard page for UpdateSOAMDS, click Test.

e. In the Operation list, note that the updateDuring operation is selected, as
shown in Figure 5–8.

Figure 5–8 Operations to Perform

The updateDuring operation specifies how far back in time to go to get
flexfield updates for synchronizing in the MDS repository for SOA.

f. In the Value field of the Input Arguments section, enter a value, as shown in
Figure 5–9.

Figure 5–9 Value Field

Table 5–4 provides examples of how to specify a value. The updateDuring
operation uses the xsd:duration type as input to obtain the data.

Table 5–4 Operation Value Examples

If You Enter... Description

P50D The operation goes back 50 days to get flexfield updates that occurred.

Customizing SOA Composite Applications

5-14 Extensibility Guide for Developers

g. Click Test Web Service.

All rule dictionaries in the MDS repository for SOA that use the affected XSD
schemas are altered. The data model of the rule dictionaries is modified and
the fact types are reimported. After reimporting the XSD schemas, the rule
dictionaries are saved in the MDS repository for SOA.

The Java Architecture for XML Binding (JAXB) 2.0 classes for the fact type
model of the rule dictionaries that have been altered are regenerated and
compiled into the appropriate SOA composite application
SCA-INF/gen-classes directories.

Other SOA instances in the cluster are notified of the flexfield customizations.

The class loader for the SOA composite applications in which the rule
dictionaries were altered is invalidated and a new class loader is extended
with the next request for the SOA composite application.

The SOA instances not involved in updating the rule dictionaries in the MDS
repository for SOA regenerate the JAXB 2.0 classes for the SOA composite
applications that comprise rule dictionaries in which the fact type model was
altered.

2. View the results in the audit trail:

a. In the navigator, click soa-infra.

b. In the Recent Instances section of the Dashboard page of the SOA
Infrastructure, click the instance ID.

c. In the Trace section of the Flow Trace page, click the UpdateSOAMDS BPEL
service component.

d. Click View XML Document to expand the activities in the audit trail, as
needed.

e. View the list of XSD schema files synchronized in the MDS repository for SOA
in the audit trail, as shown in Figure 5–10.

P1M2DT3H The operation goes back one month, two days, and three hours to get
flexfield updates that occurred.

Table 5–4 (Cont.) Operation Value Examples

If You Enter... Description

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

Customizing and Extending SOA Components 5-15

Figure 5–10 Audit Trail Results

5.3 Merging Runtime Customizations from a Previously Deployed
Revision into a New Revision

After using a SOA composite application customized at runtime for a while, a new
patch revision of the SOA composite application may become available. Repeating the
process of customizing the new revision of the SOA composite application at runtime
can be cumbersome and time-consuming. To avoid these challenges, use OPatch.
OPatch is an Oracle-supplied, Java-based utility that enables you to merge
customizations made during runtime in a previously deployed SOA composite
application into a new patch revision of the SOA composite application. OPatch
preserves your runtime customizations and prevents you from having to reenter the
customizations again for the next patch revision.

OPatch merges a new patch revision into a SOA composite application that was
previously customized during design time in JDeveloper and runtime in Oracle SOA
Composer, Oracle BPM Worklist, or Fusion Applications Control. For specific
procedures on patching SOA composite applications with OPatch, see the "Patching
Service-Oriented Architecture (SOA) Composites" section in the Oracle Fusion
Applications Patching Guide.

Task: Merge Runtime Customizations from a Previously Deployed Revision into
a New Revision
Before using OPatch to merge runtime customizations from a previously deployed
revision into a new revision, review the recommendations in Table 5–5 to ensure that
you merge customizations successfully.

Note: Before Release 11g R1 (11.1.1.4), Oracle BPM Worklist included
a feature known as flex fields. Starting with Release 11g R1 (11.1.1.4),
flex fields are now known as mapped attributes. Do not confuse
Oracle BPM Worklist flex fields with Oracle Fusion Applications
flexfields; they are completely different features.

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

5-16 Extensibility Guide for Developers

Table 5–5 Recommendations on Merging Patch Revision Customizations and
Extensions

Component Recommendation

Deletion of base
components

Delete only components that you added as part of the customization, and
not components that are part of the base revision. This is because the
deletion of base components does not survive the move to the new
revision, but the deletion of the wiring does. If you delete an existing base
component, it comes back again when you get the new revision, which still
has the component. However, the wire deletion survives the upgrade
because the composite.xml file is customizable.

Merging Runtime Customizations from a Previously Deployed Revision into a New Revision

Customizing and Extending SOA Components 5-17

Business rules If business rules are customized at runtime, and those runtime
customizations must be preserved in subsequent revisions of the base
version of the SOA composite application, it is recommended that the rules
dictionaries be split into two dictionaries and linked using the dictionary
linking functionality.

The base rule, linked dictionary contains the data model of the dictionary
and the custom rules dictionary contains all the rules customized at
runtime. The OPatch process preserves the customized dictionary when it
merges the customized application with subsequent versions of the
application. Business rules are used in different scenarios and the
following information identifies how to handle each situation:

■ Approval configuration and assignment rules

These rules are used within human tasks to identify approvers and the
routing of human tasks. Approval rules are always generated as base
and custom dictionaries at design time. No further configuration is
necessary at design time.

Runtime customizations:

If you must customize approval configuration and assignment rules
during runtime, use only Oracle BPM Worklist to perform this task.
Using Oracle BPM Worklist enables:

-) Approval assignment and configuration rules to automatically be
stored in a custom rules dictionary (Rule.rules). The custom rules
dictionary is initially shipped with only sample, pre-seeded rules. The
custom rules dictionary is separate from the base rule, linked
dictionary (RuleBase.rules). The base rule, linked dictionary
contains Oracle Fusion Applications fact definitions. Revision patches
are applied to the base rule, linked dictionary.

-) Changes in subsequent revision patches to be applied successfully
to the base rule, linked dictionary.

If you use Oracle SOA Composer to customize approval configuration
and assignment rules during runtime, changes in subsequent revision
patches are not applied successfully.

Design time customizations:

You cannot customize existing rules that are part of the base version of
the SOA composite application at design time in JDeveloper.
However, you can extend new rules that you later customize.

■ Nonapproval business rules

These rules are used directly in processes like BPEL and BPMN
outside of the context of a human task. These dictionaries are not
generated as linked dictionaries in JDeveloper and must be manually
split as linked dictionaries.

Runtime customizations:

If the dictionaries are split as linked dictionaries, ensure that only the
linked dictionaries are customized from Oracle SOA Composer.
Identification of the base rule and linked rule dictionary is up to you
to develop.

Design time customizations:

You cannot customize existing rules that are part of the base version of
the SOA composite application at design time in JDeveloper.
However, you can extend new rules that you later customize.

Table 5–5 (Cont.) Recommendations on Merging Patch Revision Customizations and
Extensions

Component Recommendation

Extending or Customizing Custom SOA Composite Applications

5-18 Extensibility Guide for Developers

5.4 Extending or Customizing Custom SOA Composite Applications
You can customize or extend some SOA components during design time in JDeveloper
when logged in with the Customization Developer role. Components that are
extended in JDeveloper can be further customized in JDeveloper when again logged in
with the Customization Developer role. Customization changes are maintained in
separate .xml files from the base component files. Note that you cannot make
customizations in Source view in JDeveloper; only customizations made in Design
view are supported.

Default uniform
resource locators
(URLs) for service
binding
components

Use default URLs for service binding components. If the revision is used in
the URL for service binding components, when the SOA composite
application is patched using OPatch, the revision of the SOA composite
application is customized. In this case, the reference to URLs for service
binding components fails to work. In this scenario, you must manually
update all the URL references for service binding components.

Oracle BPEL
Process Manager
scope activity

If a base SOA composite application team removes the scope activity in the
next revision of the SOA composite application, when a vertical SOA
composite application team or customer runs OPatch to apply the new
revision of the SOA composite application to their customized version, all
customizations they performed on that scope activity in the first revision
are lost.

Renaming of a
SOA composite
application whose
SOA archive
(SAR) file is
imported in
JDeveloper

When importing a SAR file for customization in JDeveloper, the SOA
composite application must not be renamed. In addition, if you rename a
SOA composite application, OPatch cannot detect runtime customizations
made in Oracle SOA Composer, Oracle BPM Worklist, and Fusion
Applications Control. You must manually re-apply those customizations.

Base revision of a
SOA composite
application with
JDeveloper
customizations

Assume you customize the base revision of a SOA composite application
with the Customization Developer role in JDeveloper, and then deploy the
SOA composite application. When the base revision is updated and a
newer revision is made available, the customer uses OPatch to apply the
patch revision. OPatch may then fail because there are JDeveloper
customizations in the deployed SOA composite application.

To resolve this issue, perform the following steps:

1. Open the customized SOA composite application with the Default
Role in JDeveloper.

2. Import the patched base version 2 SAR file into this SOA composite
application project extended in Section 3.3, "Customizing SOA
Composite Applications with JDeveloper."

3. Restart JDeveloper with the Customization Developer role.

4. Open the preceding customized SOA composite application. Error
messages are shown in case of conflicts.

5. Resolve the conflicts in the SOA composite application.

6. Deploy the SOA composite application to the SAR file. The new SAR
file should be replaced by the patched base version 2 SAR file.

7. Proceed with the OPatch process.

Note: Ensure that the backup of the SAR files is taken properly.

Table 5–5 (Cont.) Recommendations on Merging Patch Revision Customizations and
Extensions

Component Recommendation

Extending or Customizing Custom SOA Composite Applications

Customizing and Extending SOA Components 5-19

Table 5–6 describes which existing base SOA artifacts in a SOA composite application
can be customized and which new SOA artifacts can be extended when logged in to
JDeveloper with the Customization Developer role.

Table 5–7 provides more specific details about which SOA artifacts can be extended
when logged in to JDeveloper with the Customization Developer role.

Note:

■ A new SOA artifact (SAR file) extended in the SOA composite
application survives patching.

■ Ensure that you provide unique names for any new components
and SOA artifacts that you extend. For example, add a prefix to
each component and SOA artifact name that is a unique identifier.

Table 5–6 Customizable and Extendable SOA Artifacts in Customization Developer Role

SOA Artifacts

Existing Artifact in Base SOA
Composite Application Is Customizable
with Customization Developer Role?

SOA Artifact Is Extendable
with Customization
Developer Role?

SOA composite
application
components

Yes Yes

BPEL process Yes Yes

Oracle Mediator Yes Yes

Human task No Yes

Business rule No Yes

Extensible style
sheet language
transformations
(XSLT) map

No Yes

Cross references
(XREFs)

No No

Domain value
maps

No No

XSD No Yes

WSDL No Yes

Business events No Yes

JCA Adapters No Yes

Table 5–7 SOA Artifact Extensibility in JDeveloper with Customization Developer Role

SOA Artifact Extendable? Description

SOA composite
application

No Only one SOA composite application per Oracle SOA
Suite project is permitted.

BPEL process Yes Can drag a BPEL process from the Component Palette
into SOA Composite Editor or Oracle BPEL Designer.

Oracle Mediator Yes Can drag an Oracle Mediator from the Component
Palette into SOA Composite Editor or Oracle BPEL
Designer.

Extending or Customizing Custom SOA Composite Applications

5-20 Extensibility Guide for Developers

Task: Customize a Base SOA Composite Application in JDeveloper
You can customize a base SOA composite application of Oracle Fusion Applications in
JDeveloper. These steps provide an overview of SOA composite application
customization and assume that you know the following:

■ How to set up the customization layer through the adf-config.xml editor

■ The customization classes defined by Oracle Fusion Applications

For more information, see the "Customizing SOA Composite Applications" chapter in
the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

1. Install Oracle Fusion Applications with a SOA composite application that you
want to customize in JDeveloper.

2. In Fusion Applications Control, go to the home page of the SOA composite
application to export.

3. From the SOA Composite menu at the top of the page, select Export.

4. Obtain the base SAR file for initially customizing from other locations, including:

■ Checking out the base SOA composite application project from the source
control system where the base SOA composite application project was checked

Human task Yes Can drag a human task from the Component Palette into
SOA Composite Editor or Oracle BPEL Designer.

Business rule Yes Can drag a business rule from the Component Palette
into SOA Composite Editor or Oracle BPEL Designer.

XSLT map Yes Can extend a transformation in a transform activity in
Oracle BPEL Designer or Mediator Editor.

Domain value maps No The New Gallery dialog is disabled with the
Customization Developer role.

XREFs No The New Gallery dialog is disabled with the
Customization Developer role.

XSD Yes Right-click an Oracle SOA Suite project and select SOA,
or as the result of extending other SOA artifacts.

WSDL Yes Right-click an Oracle SOA Suite project and select SOA,
or as the result of extending other SOA artifacts.

Business events Yes Subscribe to or publish events for a BPEL process or
Oracle Mediator component in SOA Composite Editor,
Oracle BPEL Designer, or Mediator Editor.

JCA adapters Yes Drag adapters from the Component Palette into SOA
Composite Editor or Oracle BPEL Designer.

Note: See Section 3.3.2, "Setting Up the JDeveloper Application
Workspace and SOA Composite Application Project for MDS
Repository Customization" for instructions on setting up the
JDeveloper workspace (JWS) and SOA composite application project
when customizing Oracle Fusion Applications SOA composite
applications.

Table 5–7 (Cont.) SOA Artifact Extensibility in JDeveloper with Customization Developer

SOA Artifact Extendable? Description

Extending or Customizing Custom SOA Composite Applications

Customizing and Extending SOA Components 5-21

in by the base development team. This way, no SAR file deployment, export
command, or import command is involved.

■ Importing the base SOA composite application SAR file that was deployed
from the base SOA composite application project.

■ Importing the base SOA composite application SAR file that was exported
(without runtime changes) from the Export Composite page of the Fusion
Applications Control installation from which the SOA server is managed.

5. Extend layer values for customization to the CustomizationLayerValues.xml
file (can perform this task in JDeveloper or from the directory structure).

6. Start JDeveloper in the Default Role.

7. Extend a new SOA composite application.

8. From the File main menu, choose Import, then SOA Archive Into SOA Project to
import the exported SAR file into the new SOA composite application in
JDeveloper.

9. In the Import Composite Archive wizard, select the Import For Customization
checkbox.

10. From the Tools main menu, choose Preferences, then Roles, and then
Customization Developer.

11. Restart JDeveloper, and customize the layers of the SOA composite application.

12. Right-click the project and choose Deploy to extend a customized SAR file of the
SOA composite application in Oracle Fusion Applications.

For more information about exporting SAR files, see the "Exporting a Deployed SOA
Composite Application" section in the Oracle Fusion Middleware Administrator's Guide
for Oracle SOA Suite and Oracle Business Process Management Suite.

Task: Extend or Customize Custom Business Rules
You can extend business rules in a SOA composite application during design time in
JDeveloper when logged in with the Customization Developer role. After extending
these business rules, you can further customize them in JDeveloper when again logged
in with the Customization Developer role. You cannot customize existing business
rules that are part of the base version of the SOA composite application.

For information about customizing business rules during runtime, see Section 5.2,
"Customizing SOA Composite Applications."

Task: Extend or Customize Custom BPEL Processes
You can extend or customize BPEL processes in a SOA composite application during
design time in JDeveloper when logged in with the Customization Developer role. For
example, you can perform the following tasks:

■ Extend or delete a new scope or other activity

■ Customize an activity

Note: After performing the initial customizations described in these
procedures, you can no longer export the SOA composite application
from the runtime. This is because the SOA composite application is a
merged SOA composite application, and no longer the original base
SOA composite application.

Extending or Customizing Custom SOA Composite Applications

5-22 Extensibility Guide for Developers

■ Extend a partner link

■ Extend a transformation

For more information about extending or customizing BPEL processes, see the "Using
the BPEL Process Service Component" part in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

Task: Extend or Customize Custom Human Tasks
You can extend human tasks in a SOA composite application during design time in
JDeveloper when logged in with the Customization Developer role. After extending
these human tasks, you can further customize them in JDeveloper when again logged
in with the Customization Developer role. You cannot customize existing human tasks
that are part of the base version of the SOA composite application.

For more information about extending human tasks, see the "Using the Human
Workflow Service Component" part in the Oracle Fusion Middleware Developer's Guide
for Oracle SOA Suite.

Task: Extend or Customize Custom Oracle Mediators
You can extend or customize an Oracle Mediator in a SOA composite application
during design time in JDeveloper when logged in with the Customization Developer
role. For example, you can perform the following tasks:

■ Extend a routing rule

■ Customize an XPath condition

■ Make any other changes, except those that affect files such as extensible style sheet
languages (XSLs) (for transformations), WSDLs, event definition languages (EDLs)
(for business events), or XSDs. Note that new SOA artifacts can be extended or
customized.

For more information, see the "Using the Oracle Mediator Service Component" part in
the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Task: Customize SOA Composite Application Components
You can customize SOA composite application endpoint properties in a SOA
composite application during design time in JDeveloper when logged in with the
Customization Developer role. For example, you can perform the following tasks:

■ Extend and delete a reference binding component

■ Extend and delete a service binding component (entry point)

■ Extend, customize, and delete a wire between components

For more information, see the "Developing SOA Composite Applications with Oracle
SOA Suite" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

Task: Extend or Customize Transformations (in a Transform Activity)
You cannot customize existing transformations that are part of the base SOA
composite application in JDeveloper. However, you can extend a new transform
activity in a BPEL process or in the Transformation Map dialog of Oracle Mediator
during design time in JDeveloper when logged in with the Customization Developer
role. After extending the transformation, you can further customize it in JDeveloper
when again logged in with the Customization Developer role. For example, you can
perform the following tasks:

Deploying SOA Composite Application Customizations and Extensions

Customizing and Extending SOA Components 5-23

■ Specify the mapper file (.xsl) to which the transform activity points from the
Mapper File field of a transform activity in a BPEL process or the Transformation
Map dialog of Oracle Mediator. However, you cannot extend or customize
mappings. The mappings are defined in the XSL file (not in the transform activity),
which is not customizable.

■ Copy an out-of-the-box XSL file into a custom XSL artifact, add the custom logic to
the custom XSL, and customize the transform activity to reference the custom XSL.
Additionally, you must copy the contents of the XSL file in the base SOA
composite application into the custom XSL file.

Task: Extend XSD or WSDL Files
You can extend an XSD schema or WSDL document in JDeveloper when logged in
with the Customization Developer role.

1. Right-click the Oracle SOA Suite project in the Application Navigator.

2. Select SOA.

3. Select the SOA artifact to extend:

■ Create XML Schema

Invokes the Create XML Schema dialog for extending a new XML schema file
in the project. When complete, the new schema file automatically opens.

■ Create WSDL Document

Invokes the Create WSDL dialog to extend a new WSDL file in the project.

Task: Extend Business Events
You cannot directly extend business events in JDeveloper when logged in with the
Customization Developer role. The New Gallery dialog that is displayed when you
select New from the File main menu is disabled with the Customization Developer
role. However, you can create business events as part of other Oracle SOA Suite
customizations such as when allowing Oracle Mediator to subscribe to an event.

For more information, see the "Using Business Events and the Event Delivery
Network" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

Task: Extend JCA Adapters
You can extend JCA adapters in JDeveloper when logged in with the Customization
Developer role.

For more information, see the Oracle Fusion Middleware User's Guide for Technology
Adapters.

5.5 Deploying SOA Composite Application Customizations and
Extensions

You must redeploy a customized or extended SOA composite application after making
changes in JDeveloper. The development and deployment phase is as follows:

■ During base SOA composite application development, you create a customizable
SOA project from the Default role in JDeveloper, set up customization layers, and
deploy the SOA composite application to a base SAR file.

Extending a New Oracle SOA Suite Service

5-24 Extensibility Guide for Developers

■ During customization, you import (for customization) the base SOA composite
application SAR file to extend a new SOA project, change from the Default role to
the Customization Developer role, perform customizations, and deploy the SOA
composite application to create a customized SAR file.

For more information, see the "Customizing SOA Composite Applications" chapter in
the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

5.6 Extending a New Oracle SOA Suite Service
You can extend new SOA composite application services to integrate with Oracle
Fusion Applications. This section provides an overview of tasks for extending and
consuming new services and provides references to documentation that more
specifically describes these tasks.

Task: Setting Up a Development Environment
You must set up and configure a development environment in JDeveloper to create
new Oracle SOA Suite services. For more information, see the "Getting Started
Building Your Oracle Fusion Applications" part in the Oracle Fusion Applications
Developer's Guide.

Task: Using JDeveloper to Create Applications, Projects, and Services
Whenever you create new projects, you must first create an application using
templates provided by JDeveloper. For more information, see the "Setting Up Your
JDeveloper Application Workspace and Projects" chapter in the Oracle Fusion
Applications Developer's Guide.

You can select an Oracle SOA Suite project template when creating a JDeveloper
application. For more information about creating Oracle SOA Suite projects, see the
"Developing SOA Composite Applications with Oracle SOA Suite" chapter in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

You can extend an ADF Business Components service to be consumed by the SOA
composite application. The ADF Business Components service is used for connecting
Oracle ADF applications using service data object (SDO) data formats with the SOA
composite application. For more information, see the "Getting Started with Binding
Components" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

Task: Understanding Common Service Use Cases and Design Patterns
There are fundamental patterns for Oracle Fusion Applications developers to follow
when building applications involving Oracle ADF and Oracle SOA Suite. These
patterns fall into three main categories:

■ Using business events to initiate business processes

■ Orchestrating over business logic implemented with Oracle ADF, Java, procedural
language/structured query language (PL/SQL), and SOA composite applications

■ Modeling human task flows in Oracle ADF applications

For more information about these and other design categories, see the "Common
Service Use Cases and Design Patterns" part in the Oracle Fusion Applications
Developer's Guide.

Extending a New Oracle SOA Suite Service

Customizing and Extending SOA Components 5-25

Task: Using Oracle SOA Suite with MDS Repository
MDS Repository contains metadata for certain types of deployed applications, such as
SOA composite applications. You can store Oracle Fusion Applications artifacts and
custom artifacts in MDS Repository. You connect to the repository to consume these
artifacts.

For more information about MDS Repository, see the "Managing the Metadata
Repository" chapter in the Oracle Fusion Middleware Administrator's Guide.

For more information about creating a connection from Oracle SOA Suite to MDS
Repository, using the MDS repository for SOA to store custom SOA artifacts, and
connecting to and consuming SOA artifacts from the MDS repository for SOA, see the
"Creating a SOA-MDS Connection" section in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

Task: Discovering Oracle Fusion Applications Services
Oracle Fusion Applications includes web services that are available for public
consumption. These web services are defined in Oracle Enterprise Repository and
available for discovery. When extending Oracle Fusion Applications and building SOA
composite applications to invoke services built by Oracle Fusion Applications, you can
use Oracle Enterprise Repository to perform the following tasks:

■ Use Oracle Enterprise Repository to discover the service.

■ Follow the link provided by Oracle Enterprise Repository to access the WSDL file.

■ When building the client, have JDeveloper download the WSDL file locally so that
the client is not accessing the runtime WSDL file.

For more information about Oracle Enterprise Repository, see the Oracle Fusion
Middleware User Guide for Oracle Enterprise Repository.

Task: Securing Oracle Fusion Applications and Services
You must secure Oracle Fusion Applications and services to be consumed by SOA
composite applications.

For more information about Oracle Fusion Applications security, see the Oracle Fusion
Applications Security Guide.

For more information about Oracle ADF Application Artifacts security, see Chapter 8,
"Customizing Security for Oracle ADF Application Artifacts."

For more information about web services security, see the "Securing Web Services Use
Cases" chapter in the Oracle Fusion Applications Developer's Guide.

Task: Deploying SOA Composite Applications and Services
You must deploy SOA composite applications and the services to be consumed.

For more information about deploying SOA composite applications, see the
"Deploying SOA Composite Applications" chapter in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

For more information about deploying external references such as web services, see
the "Deploying Web Services Applications" chapter in the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

Task: Understanding Fusion Applications Deployment Topology
An enterprise deployment is an Oracle guidelines blueprint based on proven Oracle
high-availability and security technologies and recommendations for Oracle Fusion

Extending a New Oracle SOA Suite Service

5-26 Extensibility Guide for Developers

Applications. For more information about deployment in an enterprise environment,
see the Oracle Fusion Applications Enterprise Deployment Guide for Customer Relationship
Management.

6

Customizing and Extending Oracle BPM Project Templates 6-1

6Customizing and Extending Oracle BPM
Project Templates

This chapter describes how to use Oracle JDeveloper and Oracle Business Process
Management Studio (Oracle BPM Studio) to customize and extend Oracle BPM project
templates. BPM projects contain the Business Process Modeling Notation (BPMN)
processes used by Oracle Fusion applications. Several Oracle Fusion applications use
BPMN processes to define process flows within the application.

This chapter includes the following sections:

■ Section 6.1, "About Customizing Project Templates"

■ Section 6.2, "Customizing or Extending a Project Template"

■ Section 6.3, "Publishing Project Templates to the Oracle BPM Repository"

6.1 About Customizing Project Templates
BPM project templates are templates used to create new BPM projects. Project
templates are created by developers and contain all of the elements necessary to create
a new BPM project that can be deployed to runtime. This includes all of the necessary
BPMN processes and business catalog component.

Oracle Fusion applications provide default project templates containing the required
BPMN processes and business catalog component. See the product-specific
documentation in Oracle Fusion Applications Help for a list of the default BPM project
templates provided by Oracle Fusion applications.

Developers can customize and extend these project templates. Project templates are
customized or extended by developers using Oracle BPM Studio, which is an
extension to JDeveloper that provides additional editors for creating and customizing
BPMN processes and related artifacts.

For more information about Oracle BPM Studio, see the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management.

In the context of Oracle Fusion applications, developers can customize project
templates when it is necessary to customize or extend business catalog component that
are part of the default project templates. See the product-specific documentation in
Oracle Fusion Applications Help for a list of the default BPM project templates
provided by Oracle Fusion applications.

After customizing or extending a project template, it can be published to the Oracle
BPM repository. Project templates are shared between Oracle BPM Studio and Oracle
Business Process Composer using the Oracle BPM repository. Additionally, BPM

About Customizing Project Templates

6-2 Extensibility Guide for Developers

projects can be shared between Business Process Composer and JDeveloper users via
the Oracle BPM repository.

After a template is published to the repository, it is available to Business Process
Composer users. Business Process Composer users can create and edit BPM projects
created using these templates and can collaborate on these projects with process
developers using JDeveloper. They can also create a SAR file or deployment plan, or
deploy BPM projects directly to full test environment without having to reedit and
deploy a project using JDeveloper.

See the "Workflow: Creating Project Templates" section in the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management for
information about the typical workflow for sharing project templates between Oracle
BPM Studio and Business Process Composer.

6.1.1 About the Business Catalog
The business catalog is a set of reusable components that contain all of the necessary
technical implementation to create a BPMN process flow that can be deployed as part
of a running Oracle Fusion application.

The business catalog contains the following components:

■ business rule

Define a business decision that enables dynamic decisions to be made at runtime.
Use rules to automate policies, computations, and reasoning while separating rule
logic from underlying application code.

■ human task

Create a workflow that describes the tasks for users or groups to perform as part
of an end-to-end business process flow.

■ service

Define how a BPMN process connects to other business processes and systems,
including databases and web services.

Table 6–1 lists the business catalog that can be customized using Oracle Business
Process Composer.

Note: When customizing a project template, you must first make a
copy of the existing template using JDeveloper. This enables you to
avoid overwriting project templates previously saved to the Oracle
BPM repository.

Table 6–1 List of Business Catalog Components

Business Catalog
Component

Can be created using
Business Process Composer?

Can be customized using
Business Process Composer?

Business rules Yes Yes

Human tasks Yes

You can create human tasks
using Business Process
Composer, however not all
functionality of a human task
can be customized.

Yes

Customizing or Extending a Project Template

Customizing and Extending Oracle BPM Project Templates 6-3

6.1.2 Before You Begin Using JDeveloper to Customize Project Templates
Before you customize the artifacts within a project template, including business
catalog components, business processes, and SOA components using JDeveloper, you
should be familiar with the Oracle Fusion applications architecture that enables
customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion
Applications."

You should also understand the typical workflows for working with customizations,
as described in Chapter 2, "Understanding the Customization Development Lifecycle."

You will also need to install Oracle JDeveloper and set up your development
environment. For more information, see Section 1.3.13, "Installing Customization
Tools."

6.2 Customizing or Extending a Project Template
The following outlines the general tasks you must perform to customize or extend a
BPM project template.

Task: Open a Project Template
You can open a project template with Oracle BPM Studio.

For information on opening a project template, see the "Working with Project
Templates" section in the Oracle Fusion Middleware Modeling and Implementation Guide
for Oracle Business Process Management.

The specific project or project template you must open depends on which Oracle
Fusion application you are customizing. See the product-specific documentation in
Oracle Fusion Applications Help for a list of the default BPM project templates
provided by Oracle Fusion Applications.

Task: Create or Customize BPMN Processes
BPMN processes are accessible using the BPM Project Navigator. For information on
using the BPM Project Navigator, see the "Oracle BPM Project Navigator" section in the
Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process
Management.

For information about opening a BPMN process, see the "How to Open a Business
Process" section in the Oracle Fusion Middleware Modeling and Implementation Guide for
Oracle Business Process Management.

For more information about working with flow objects in your process, see the
"Working with Flow Objects in Your Process" section in the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management.

For general information about BPMN flow objects, see the "BPMN Flow Object
Reference" appendix in the Oracle Fusion Middleware Business Process Composer User's
Guide for Oracle Business Process Management.

Services Yes Yes

Table 6–1 (Cont.) List of Business Catalog Components

Business Catalog
Component

Can be created using
Business Process Composer?

Can be customized using
Business Process Composer?

Publishing Project Templates to the Oracle BPM Repository

6-4 Extensibility Guide for Developers

Task: Create or Modify Business Catalog Components
Using Oracle BPM Studio, you can create or modify the following business catalog
components within a project template:

■ Services

■ Human tasks

■ Business rules

Task: Customize SOA Components
BPM projects are based on technology provided by Oracle SOA Suite. This includes
reusable components and services that are included as part of a project template.

In addition to customizing business catalog components, you can customize
applications by customizing SOA components, including the following:

■ domain value map

■ BPEL process

■ Oracle Mediator

See Section 5.4, "Extending or Customizing Custom SOA Composite Applications" for
more information.

6.3 Publishing Project Templates to the Oracle BPM Repository
In Oracle BPM, publishing a project template refers to the process of saving it in the
Oracle BPM repository. You can publish project templates to the repository to make
them available to Business Process Composer users.

The repository can also be used to share BPM projects between Business Process
Composer and JDeveloper users as part of the process development lifecycle.

Publishing a project template to the Oracle BPM repository makes them available to
Business Process Composer users, enabling collaboration between application
developers and business users.

Task: Configure an Oracle BPM MDS Connection
Before publishing a project template to the Oracle BPM MDS repository, you must
configure an MDS connection.

For more information about creating a connection to the repository, see the "How to
Configure a Connection to the Oracle BPM Metadata Service Repository" section in the
Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process
Management.

Task: Publish a Project Template
For information about publishing a project template, see the "How to Publish a Project
or Project Template to Oracle BPM MDS" section of the Oracle Fusion Middleware
Modeling and Implementation Guide for Oracle Business Process Management.

After publishing a project template, it is available to Business Process Composer users
who can use it to create new BPMN process flows. See the "Customizing and
Extending BPMN Processes" chapter in the Oracle Fusion Applications Extensibility
Guide for Business Analysts for more information.

7

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-1

7Customizing and Extending Oracle
Enterprise Scheduler Jobs

This chapter describes how to use Oracle JDeveloper or Oracle Enterprise Manager
Fusion Applications Control to create and extend scheduled jobs using Oracle
Enterprise Scheduler.

This chapter includes the following sections:

■ Section 7.1, "About Customizing and Extending Oracle Enterprise Scheduler Jobs"

■ Section 7.2, "Extending Custom Oracle Enterprise Scheduler Jobs Using Existing
Oracle Fusion Applications"

■ Section 7.3, "Creating a Custom Oracle Enterprise Scheduler Application to Extend
Oracle Enterprise Scheduler Jobs"

■ Section 7.4, "Customizing Existing Oracle Enterprise Scheduler Job Properties"

7.1 About Customizing and Extending Oracle Enterprise Scheduler Jobs
Enterprise applications require the ability to respond to many real-time transactions
requested by end users or web services. However, they also require the ability to
offload larger transactions to run at a future time, or automate the running of
application maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and spawned processes, distributed across nodes in a server cluster.
Oracle Enterprise Scheduler runs these jobs securely, and provides monitoring and
management through Fusion Applications Control.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:

■ Distributing job request processing across a cluster of servers

■ Running Java, PL/SQL, and binary jobs

■ Scheduling job requests based on recurrence

■ Managing job requests with Fusion Applications Control

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

■ Support sophisticated scheduling and workload management

■ Automate the running of administrative jobs

■ Schedule the creation and distribution of reports

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-2 Extensibility Guide for Developers

■ Schedule a future time for a step in a business flow for business process
management

7.1.1 Main Steps for Extending Oracle Enterprise Scheduler Jobs
Extending Oracle Enterprise Scheduler jobs involves the following main steps:

1. Develop the code that implements the job logic.

2. Create a metadata file for the job definition.

3. Grant permissions to the job, such that only those with the proper permissions can
request job submission.

4. Enable job request submission, using an existing host application, a preconfigured
user interface, or a new customized application.

7.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs
Customizing Oracle Enterprise Scheduler jobs involves editing job properties using
Oracle Enterprise Manager Fusion Applications Control. The job properties that you
can modify are described in Table 7–8.

7.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs
Before you extend and customize Oracle Enterprise Scheduler jobs, you should be
familiar with the Oracle Fusion application architecture that enables customization, as
described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You
should also understand the typical workflow for working with customizations, as
described in Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin extending Oracle Enterprise
Scheduler jobs:

■ For developers:

Set up JDeveloper. For more information, see Section 1.3.13, "Installing
Customization Tools."

■ For administrators:

– Install Oracle Fusion Applications, making sure to provision Oracle Enterprise
Scheduler services. For more information, see the Oracle Fusion Applications
Installation Guide.

– Start Fusion Applications Control. For more information about starting and
using Fusion Applications Control, see the "Getting Started with
Administering Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator's Guide.

7.2 Extending Custom Oracle Enterprise Scheduler Jobs Using Existing
Oracle Fusion Applications

There are two main use cases for creating Oracle Enterprise Scheduler jobs.

Oracle Enterprise Scheduler Administrator
Administrators can create a new job definition using Oracle Enterprise Manager
Fusion Applications Control console, using an existing host application. Scheduled
jobs typically required by administrators include database maintenance tasks using

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-3

PL/SQL or running spawned jobs or scripts such as SQL*Plus scripts to load data into
the database. After you have defined the job, use Oracle Enterprise Manager Fusion
Applications Control to submit the job request.

Developer or System Integrator
When using an existing host application, use Fusion Applications Control to create
Oracle Business Intelligence Publisher, PL/SQL, and spawned jobs. Use JDeveloper to
create Java jobs and develop a new host application that executes a set of jobs. A Java
job might invoke an ADF Business Components service or a service-oriented
architecture (SOA) composite application, for example.

In cases where there is no need to repackage the host application, PL/SQL, binary,
Oracle BI Publisher and Java jobs can be added to any host application. Optionally,
you can execute Java jobs from a custom host application.

System integrators may want to use Fusion Applications Control to develop a job,
while developers may prefer JDeveloper. Jobs are typically submitted using the
scheduled request submission UI. Alternatively, it is possible to develop an Oracle
Application Development Framework application with screens for submitting Oracle
Enterprise Scheduler jobs.

Task: Implement the Logic for the Oracle Enterprise Scheduler Job
An Oracle Enterprise Scheduler job is a request to execute a specific task written in
code or a script, such as Java, PL/SQL, spawned jobs, and so on.

An example of logic to be implemented by a scheduled job is writing particular data to
a database under certain conditions, for example, daily shift schedules for a given
subset of employees.

Task: Create a Job Definition Metadata File
An Oracle Enterprise Scheduler job definition specifies the type of job to be run (such
as Java, PL/SQL type jobs, and so on), the host application that will run the job, and
any additional required or optional parameters and properties for the job.

It is possible to create a job definition in Oracle Enterprise Manager Fusion
Applications Control or JDeveloper.

The minimum required properties and parameters for each job type are as follows:

■ Oracle BI Publisher jobs: Specify the reportid parameter. Specify Oracle BI
Publisher parameters as job parameters with required validation. These can be
entered by end users during request submission using the request submission user
interface.

If the report is a bursting report, identify it as such by selecting the bursting
checkbox.

■ PL/SQL jobs: In the job definition, specify the PL/SQL procedure that includes the
job logic implementation.

All input arguments to the PL/SQL procedure can be specified as parameters with
required validation. These can be entered by end users during request submission
using the request submission user interface.

■ All other job types: Specify the name of the implementation logic and parameters
in the job definition.

For more information about creating a job definition in Oracle Enterprise Manager
Fusion Applications Control, see the "Managing Oracle Enterprise Scheduler Service
and Jobs" chapter in the Oracle Fusion Applications Administrator's Guide.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-4 Extensibility Guide for Developers

For more information about creating a job definition in JDeveloper, see the "Working
with Extensions to Oracle Enterprise Scheduler" chapter in the Oracle Fusion
Applications Developer's Guide.

Task: Grant Relevant Permissions
Grant the appropriate permissions for the application using Oracle Authorization
Policy Manager.

An example of the use of relevant permissions is to grant execution permissions to a
role so that users belonging to that role can submit the job.

For more information about granting relevant permissions to a deployed application,
see the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's
Guide (Oracle Fusion Applications Edition).

Task: Enable Job Request Submission
You can enable job request submissions through an Oracle ADF user interface using
JDeveloper or Fusion Applications Control.

When using JDeveloper to enable job request submissions through an Oracle ADF user
interface, you must define a view object to capture properties filled in by end users.

If a job is defined with properties that must be filled in by end users, the user interface
allows end users to fill in these properties prior to submitting the job request. For
example, if the job requires start and end times, end users can fill in the desired start
and end times in the space provided by the user interface.

The properties that are filled in by end users are associated with a view object, which
in turn is associated with the job definition itself. When the job runs, Oracle Enterprise
Scheduler accesses the view object to retrieve the values of the properties.

You could, alternatively, submit job requests using Fusion Applications Control. Using
Fusion Applications Control to enable job request submissions through an Oracle ADF
user interface does not require you to create a view object for capturing end user data.

For more information about submitting job requests using Fusion Applications
Control, see the "Managing Oracle Enterprise Scheduler Service and Jobs" chapter in
the Oracle Fusion Applications Administrator's Guide.

For more information about defining a view object for use with a job submission
interface, see the "Working with Extensions to Oracle Enterprise Scheduler" chapter in
the Oracle Fusion Applications Developer's Guide.

7.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job
Extending a custom PL/SQL Oracle Enterprise Scheduler job involves creating a
PL/SQL package and defining job metadata.

Note: Suppose a parameter view object is VLinked to another view
object (VO1). If you customize the view object using JDeveloper, then
the Oracle Enterprise Scheduler job submission UI list of values
reflects this customization, if the customization is in the Oracle
Metadata Services runtime database.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-5

Task: Implement the Logic for the PL/SQL Job
Implementing a PL/SQL scheduled job involves creating a PL/SQL package and
defining the job metadata using the PL/SQL job type.

To implement the logic for a PL/SQL job:

1. Create a PL/SQL package, including the required errbuf and retcode
arguments. A sample PL/SQL package is shown in Example 7–1.

Example 7–1 Sample PL/SQL package

CREATE OR REPLACE PACKAGE XxSamplePkg AUTHID CURRENT_USER AS

Procedure SampleJob (
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 name in varchar2);

END XxSamplePkg;
/

CREATE OR REPLACE PACKAGE BODY XxSamplePkg AS

Procedure SampleJob (
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 name in varchar2)
 IS

begin
 -- Write log file content using the FND_FILE API.
 FND_FILE.PUT_LINE(FND_FILE.LOG, 'Running Stored procedure
SampleJob..........');
 FND_FILE.PUT_LINE(FND_FILE.LOG, 'FND USERNAME : ' || FND_GLOBAL.USER_NAME);

 -- Write log file content using the FND_FILE API.
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT,' Name : ' || name);
 FND_FILE.PUT_LINE(FND_FILE.OUTPUT, 'Job Request id : ' || FND_JOB.REQUEST_ID
);

 errbuf := fnd_message.get_string('FND', 'COMPLETED NORMAL');
 retcode := 0;

 end SampleJob;

END XxSamplePkg;
/

2. Deploy the package to Oracle Database.

3. Grant the required permissions, and perform any other necessary tasks in the
database.

grant execute on xxSampleJob to FUSION_APPS_EXECUTE;

For more information about granting permissions for the execution of a PL/SQL
job, see the "Performing Oracle Database Tasks for PL/SQL Stored Procedures"
section in the Oracle Fusion Middleware Developer's Guide for Oracle Enterprise
Scheduler.

4. Test the package.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-6 Extensibility Guide for Developers

Task: Create a Job Definition Metadata File for the PL/SQL Job
Use the Setup and Maintenance work area to define a job definition metadata file for
the PL/SQL job. The job definition metadata file may also include user properties for
the PL/SQL job as well as UI parameters to be displayed at runtime.

For more information about creating an Oracle Enterprise Scheduler metadata file, see
the "Creating Job Definitions" section in the Oracle Fusion Applications Administrator's
Guide.

To create a job definition metadata file for a PL/SQL job:

1. From the Administration menu in the global area of Oracle Fusion Applications,
choose the Setup and Maintenance work area and click the All Tasks tab. Search
for all tasks.

2. From the list of tasks that is displayed, select the relevant UI application you will
use to host the job definitions and parameter view objects. This Oracle Fusion
application is the portlet producer application for the job.

Click the Go to Task button.

The Manage Job Definitions tab is displayed, as shown in Figure 7–1.

Figure 7–1 The Manage Job Definitions Tab

3. In the Manage Job Definitions tab, click the New button.

4. In the Create Job Definition tab, click Show More to display all parameters and
enter the values for the job shown in Table 7–1.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-7

5. At the bottom of the pane, click the User Properties tab. Define the following user
properties by clicking the New button, as shown in Table 7–2.

6. Click the <Job Definition Name>: Parameters tab and specify UI parameters as
required. The UI parameter fields are described in Table 7–3.

7. Click Save and Close to create and save the new Oracle Enterprise Scheduler
PL/SQL job definition.

Table 7–1 PL/SQL Job Definition Values

Field Description

Display Name Enter a display name for the job.

Name Enter a name for the job definition.

Path Specify the trailing package name for the job definition metadata. The default
namespace or path for custom job definitions begins with
oracle/apps/ess/custom. For example, when entering test in the Path text
field, the job definition is stored in the globalEss MDS namespace as
oracle/apps/ess/custom/test.

Job Application Name From the dropdown list, choose the name of the host application running the Oracle
Enterprise Scheduler job.

Job Type Choose the job type from the dropdown list, namely the PlsqlJobType.

Procedure Name Enter the name of the stored procedure to run as part of the PL/SQL job execution.

Standard request
submission flag

Check this box to indicate that the job request is to be submitted in the standard
manner.

Table 7–2 PL/SQL User Properties

Name Data Type Default Value Read Only

EXT_
PortletContainerWebModule

String For the default value, enter the name of the web
module that will be used as a portlet when
submitting the job request.

N/A

numberOfArgs String Set the number of job submission arguments,
including errbuf and retcode.

N/A

Note: Typically, the web context is registered as the web module
name. Verify with your applications administrator the value of the
registered web module name in the Topology Manager work area.
Registering the correct web module name enables the correct remote
rendering of the Oracle Fusion application job request parameters
from the Oracle Enterprise Scheduler central UI.

Table 7–3 PL/SQL Job UI Parameters

Field Description

Prompt Enter the text to be displayed at the prompt that is displayed during
runtime.

Data Type From the dropdown list, choose the relevant data type.

Page Element From the dropdown list, choose the UI page element you want to use
to display the parameter, for example, a text box.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-8 Extensibility Guide for Developers

7.2.2 Extending a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job
Implementing an Oracle BI Publisher scheduled job involves creating an Oracle BI
Publisher report on Oracle BI Server and defining the Oracle Enterprise Scheduler job
metadata.

Task: Implement the Logic for the Oracle BI Publisher Job
For information about implementing an Oracle BI Publisher job, see the "Using BI
Publisher with Oracle JDeveloper" chapter in the Oracle Fusion Middleware Developer's
Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition).

Task: Create a Job Definition Metadata File for the Oracle BI Publisher Job
Using the Setup and Maintenance work area, create an Oracle BI Publisher type job
definition.

To create a job definition metadata file for an Oracle BI Publisher job:

1. Follow the instructions in Task: Create a Job Definition Metadata File for the
PL/SQL Job.

2. From the Job Type dropdown list, choose BIPJobType.

3. In the User Properties tab, define only the EXT_PortletContainerWebModule
property.

7.2.3 Extending a Custom Java Oracle Enterprise Scheduler Job
Implementing a Java scheduled job involves implementing the Java business logic and
defining the relevant Oracle Enterprise Scheduler job metadata. Use JDeveloper to
implement a Java job and deploy the job as a shared library. Modify the deployment
descriptor of the deployed user interface or host application Enterprise Archive (EAR)
file so that it points to the shared library. Redeploy the file.

Deploying the job as a shared library allows you to add additional jobs in the future
without having to redeploy the host application. For more information about
deploying Oracle ADF applications, see the "Deploying Fusion Web Applications"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Task: Implement the Logic for the Java Job
In order to develop an application that runs a Java class under Oracle Enterprise
Scheduler, you must define the Java class that implements the Oracle Enterprise
Scheduler executable interface. The executable interface defines the contract that
enables using Oracle Enterprise Scheduler to invoke a Java class.

To create a Java class for an existing Oracle Enterprise Scheduler Oracle Fusion
application, take the following steps:

■ Create an application in JDeveloper.

■ Create a project in JDeveloper.

■ Develop the application code that uses the Oracle Enterprise Scheduler Java APIs.

To implement the logic for an Oracle Enterprise Scheduler Java job:

1. In JDeveloper, create an application and project. Make sure to include Enterprise
JavaBeans (EJB) and Java technologies in the project.

2. Add the Oracle Enterprise Scheduler extensions to the project.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-9

a. In the Application Navigator, right-click the project you just created. Choose
Project Properties, and then choose Libraries and Classpath.

b. In the Libraries and Classpath pane, click Add Library.

c. In the Add Library window, in the Libraries field, choose Enterprise
Scheduler Extensions and click OK.

3. Create a Java class using the Oracle Enterprise Scheduler package.

a. In the project overview tab, click the Java Files link.

b. In the Java Files pane, click the New button. From the Create New in Project
menu, choose Project Name and then choose Java Class.

The Create Java Class window is displayed.

c. In the Create Java Class window, enter a name for the Java class and the
package name in the fields provided. For example, if working with the
Financials Oracle Fusion application, the package name would be
oracle.apps.financials.ess.program. Accept the remaining default values.

4. In the Java class, develop the code that will do the work of the Java job.
Example 7–2 shows sample code that illustrates the use of an Oracle Enterprise
Scheduler job request file handle and writes a job request parameter submitted to
the request log and output files.

Example 7–2 Sample Java code

package oracle.apps.financials.ess.program;

 import java.io.IOException;
 import oracle.as.scheduler.Cancellable;
 import oracle.as.scheduler.Executable;

 import oracle.as.scheduler.ExecutionCancelledException;
 import oracle.as.scheduler.ExecutionErrorException;
 import oracle.as.scheduler.ExecutionPausedException;
 import oracle.as.scheduler.ExecutionWarningException;
 import oracle.as.scheduler.RequestExecutionContext;

 import oracle.as.scheduler.RequestParameters;
 import oracle.as.scheduler.SystemProperty;

 import oracle.as.scheduler.cp.exec.ProcessHelper;
 import oracle.as.scheduler.cp.file.LogFile;
 import oracle.as.scheduler.cp.file.OutputFile;

 public class XxSampleJob implements Executable, Cancellable {

 private OutputFile requestOutput;
 private LogFile requestLog;

 private boolean m_isCancelled = false;

 private long request_id = 0L;
 private String requestParameter1 = null;

 public XxSampleJob() {
 super();
 }

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-10 Extensibility Guide for Developers

 public void execute(RequestExecutionContext ctx,
 RequestParameters params) throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException {

 request_id = ctx.getRequestId();

 System.out.println("XxSampleJob Running, Request ID: " +
 ctx.getRequestId());

 try {

 String userFileDir =
 (String)params.getValue(SystemProperty.USER_FILE_DIR);

 String sysPropUserName =
 (String)params.getValue(SystemProperty.USER_NAME);

 // Read the job request parameter.
 requestParameter1 = (String) params.getValue("submit.argument1");

 requestOutput = ProcessHelper.getOutputFile();
 requestOutput.writeln("Sample ESS Java job execution OUTPUT");
 requestOutput.writeln("USER_NAME as SystemProperty: " +
 sysPropUserName);
 requestOutput.writeln("ESS Job requestID: " + request_id);
 requestOutput.writeln("ESS Job request parameter: "
 + requestParameter1);

 requestLog = ProcessHelper.getLogFile();
 requestLog.writeln("Sample ESS Java job execution LOG");
 requestLog.writeln("ESS requestFileDirectory: " + userFileDir);
 requestLog.writeln("ESS Job requestID: " + request_id);
 requestLog.writeln("ESS Job request parameter: "
 + requestParameter1);

 } catch (Exception ex) {

 System.out.println("Exception running XxSampleJob: " +
 ex.getMessage());
 ex.printStackTrace();

 } finally {

 try {

 // Close all open job request log and output files.
 ProcessHelper.closeAllFiles();

 } catch (IOException ioe) {

 System.out.println("Exception closing files: " +
 ioe.getMessage());
 ioe.printStackTrace();
 }

 }

 }

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-11

 @Override
 public void cancel() {
 m_isCancelled = true;
 }

 }

Task: Deploy the Java Business Logic
To deploy the Java logic of an Oracle Enterprise Scheduler Java job, identify an existing
Oracle Fusion application as the target host application.

Next, update the Java business logic for an existing Oracle Fusion application as
follows:

■ Package the Java application in a Java Archive (JAR) file.

■ Update JAR module in the Oracle Fusion application class path.

■ Bounce the server instance to load the Java program logic in the Oracle Fusion
application class loader.

To deploy the Java business logic:

1. Create a deployment profile for the project.

a. In JDeveloper, from the Application Navigator, choose the project you created.
Build the project to ensure that the Java class successfully compiles.

b. Right-click the project, choose Project Properties and then Deployment.

c. In the Deployment Profiles field, click New to create a deployment profile for
the JAR file.

The Create Deployment Profile window is displayed.

d. In the Create Deployment Profile window, enter a name for the deployment
profile and click OK.

e. In the Edit JAR Deployment Profile Properties window, verify that the Java job
class is included in the JAR module output and click OK.

2. Package the Oracle Enterprise Scheduler Java class into a JAR file and deploy it.

a. From the Application Navigator, right-click the project you created. Choose
Deploy and then choose the JAR file you just created.

The Deployment Action window is displayed.

b. In the Deployment Action window, click Finish to create a packaged JAR file.

The archive module is deployed to the default project deployment path, for
example, $JDEV_HOME/<PROJECT_NAME>/deploy/<JAR_NAME>.jar.

3. Update the JAR module in the application class path of the Oracle Enterprise
Scheduler host application.

a. Locate the expanded deployment directory of the EAR file for the existing
Oracle Fusion application, for example $MW_

Note: All custom JAR files must begin with the prefix Xx, for
example XxMyJar.jar.

Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications

7-12 Extensibility Guide for Developers

HOME/fusionapps/applications/fin/deploy/EarFinancialsEss.e
ar/APP-INF/lib.

b. Copy the deployed custom JAR file to the expanded directory.

4. In the domain to which the Oracle Enterprise Scheduler host application is
deployed, restart Oracle Enterprise Scheduler.

The Oracle Enterprise Scheduler job executes the updated Java class after the
application class loader successfully loads the updated class.

For more information about restarting Oracle Enterprise Scheduler, see the
"Starting and Stopping Oracle Enterprise Scheduler Service Components" section
in the Oracle Fusion Applications Administrator's Guide.

Task: Create a Job Definition Metadata File for the Java Job
Using the Setup and Maintenance work area, create a Java type job definition.

To create a job definition metadata file for a Java job:

1. Follow the instructions in Task: Create a Job Definition Metadata File for the
PL/SQL Job.

2. In the Create Job Definition window, from the Job Type dropdown list, choose
JavaJobType.

3. In the Create Job Definition window, in the Class Name field, enter the fully
qualified class name of the Java business logic.

4. In the Create Job Definition window, In the User Properties tab, define only the
EXT_PortletContainerWebModule property.

5. Click the <Job Definition Name>: Parameters tab and specify UI parameters as
required. The UI parameter fields are described in Table 7–3.

6. Click Save and Close to create and save the new Oracle Enterprise Scheduler Java
job definition.

7.2.4 Submitting Oracle Enterprise Scheduler Jobs
You can use Oracle Fusion Applications to submit Oracle Enterprise Scheduler jobs.

To submit Oracle Enterprise Scheduler jobs:

1. In the global area of Oracle Fusion Applications, access the Schedule Processes
page by clicking the Navigator menu and then choosing Tools and Schedule
Processes.

2. Click Schedule New Process.

The Search and Select: Process Name window is displayed.

3. In the Process Name field, enter the name of the Oracle Enterprise Scheduler job
you want to schedule and click Search.

The job name is displayed in the search results table.

4. From the search results table, choose the job name and click OK.

The Process Details page is displayed.

5. In the Process Details page, in the Parameters field, specify any required
parameters.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-13

6. Click Submit to request that the Oracle Enterprise Scheduler instance execute the
job. Click Close to return to the Scheduled Processes page.

7. In the Scheduled Processes page, refresh the Search Results table to monitor the
status of the submitted job.

7.3 Creating a Custom Oracle Enterprise Scheduler Application to Extend
Oracle Enterprise Scheduler Jobs

Use Apache Ant scripts to develop and deploy an Oracle Enterprise Scheduler host
application and user interface. Use JDeveloper to create the relevant metadata.

7.3.1 Creating Host and UI Applications Using an Ant Script
Use the supplied Ant script to create the host and user interface applications for the
Oracle Enterprise Scheduler jobs.

When deploying the application, be sure to identify the product family and use an
existing registered Oracle WebLogic Server domain. This allows you to test your
application without having to create and register a domain, or register any associated
applications with the product family.

To create host and user interface applications using scripts:

1. Extract the Oracle Enterprise Scheduler customer_extensibility script from
the JDeveloper installation or JDeveloper extensions to the development work
environment, for example, into a folder called template_home.

The template_home directory contains an Ant build.xml driver file that
processes the template Oracle Enterprise Scheduler host and producer web
applications by replacing macros with specified input.

2. Change directories to the template_home directory to create the user_home
directory that will contain the resulting macro-substituted files copied from the
template_home directory.

3. Run the script in any of the following ways:

■ Interactively, where you are prompted for the relevant input. Accept the
default, if there is one, by pressing Enter at each prompt.

In the template_home directory, enter ant or ant create-user-home. A
sample running script is shown in Example 7–3.

Example 7–3 Interactive Script Execution

$ ant
 Buildfile: build.xml
-init:

 create-user-home:
 [input] Enter which template should be used (source_template) (default=Fusion)
 [input] ([Fusion], Standalone)
 Fusion
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
 /JDEVADF_INSTALLATION/
 [input] Enter host application name (hosting_application_name) (default=MyAppEss) [MyAppEss]
 MyAppEss
 [input] Enter host application JPS stripe id (hosting_application_stripe_id)
 (default=MyAppEss) [MyAppEss]
 MyAppEss

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-14 Extensibility Guide for Developers

 [input] Enter UI application name (ui_application_name) (default=MyApp) [MyApp]
 MyApp
 [input] Enter UI application JPS stripe ID (ui_application_stripe_id) (default=MyApp) [MyApp]
 MyAppEss
 [input] Enter the shared library name for the job business logic (jobdef_library_name)
 (default=MyJobsLibrary) [MyJobsLibrary]
 oracle.ess.shared
 [input] Enter an empty directory where the applications will be created (user_home)
 /workspace/ess_user_home
 [echo]
 [echo]
 [mkdir] Created dir: /workspace/ess_user_home
 [propertyfile] Creating new property file: /workspace/ess_user_home/template.properties
 [copy] Copying 31 files to /workspace/ess_user_home
 [copy] Copied 36 empty directories to 14 empty directories under /workspace/ess_user_home
 [copy] Copying 19 files to /workspace/ess_user_home
 [move] Moving 1 file to /workspace/ess_user_home/Template_Hosting
 [move] Moving 1 file to /workspace/ess_user_home/Template_UI
 [echo]
 [echo] ==
 [echo]
 [echo] A new application workspace has been created at: /workspace/ess_user_home
 [echo] This application workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f /workspace/ess_user_home/ant/build-ess.xml deploy
 [echo] To create new jobs from predefined templates, run the following command:
 [echo] ant -f /workspace/ess_user_home/build.xml create-new-job-def

 BUILD SUCCESSFUL

■ Using predefined property files. Any properties not defined in a file can be
entered at the prompt. A sample properties file is shown in Example 7–4. To
create a properties file, run the command $> cat
myProperties.properties, where myProperties.properties is the
name of the properties file.

Example 7–4 Script Execution Via Property Files

user_home=/home/myuser/ess_user_home/

 ui_application_name=MyApp
 ui_application_stripe_id=MyApp
 ui_application_version=V2.0

 hosting_application_name=MyAppEss
 hosting_application_stripe_id=MyAppEss
 hosting_application_version=V2.0

 jobdef_library_name=oracle.ess.sharedlibrary
 jobdef_library_spec_version=11
 jobdef_library_impl_version=11.1.1.5.0

Then run the following command:

$> ant create-user-home -propertyfile myProperties.properties

■ Specifying individual properties at the command line. Any properties not
defined in a file can be entered at the prompt. A sample is shown in
Example 7–5.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-15

Example 7–5 Script Execution Via the Command Line

$> ant create-user-home -Dui_application_name=MyApp -Dhosting_application_
name=MyAppEss

To view supported options, enter ant help-create-user-home at the
prompt.

4. On successful execution, you can modify the template application workspace from
the user_home directory in JDeveloper.

At the prompt, enter ant help-deploy to list the supported deployment
options.

7.3.2 Generating an Oracle Enterprise Scheduler Synchronous Java Job Business
Logic Template

If you want to run a synchronous Java scheduled job, then you must develop the
business logic for the job. Use the build.xml file extracted in Section 7.3.1 to create a
template for the business logic of the Java job.

To generate an Oracle Enterprise Scheduler Java job business logic template:

1. To create new jobs from predefined templates, run the following command:

ant -f ${ess_user_home_dir}/build.xml create-new-job-def

2. When prompted, enter the Oracle Enterprise Scheduler job name, for example,
HelloSyncJavaJob, and the package name, for example,
oracle.apps.financials.ess.program.

A sample command execution is shown in Example 7–6.

Example 7–6 Creating a Java Job Business Logic Template

Buildfile: /workspace/ess_user_home/build.xml

-init:

create-new-job-def:
 [echo] Available Job Definition Templates:
 [echo] 1) Simple Synchronous Java Job
 [input] Enter number of job definition template to create (job_template_to_create)
 1
 [echo] Calling default target on /my_ess_main/ess/util/customer_extensibility/Fusion/
 Template_JobLibrary/simple_synchronous_job/build.xml

-init:

create-job-definition:
 [input] Enter Java package name for Job Definition (jobdef_package_name)
 (default=oracle.apps.ess.custom) [oracle.apps.ess.custom]
 oracle.apps.financials.ess.program
 [input] Enter Java class name for Job Definition (jobdef_class_name)
 (default=MySynchronousJavaJob) [MySynchronousJavaJob]
 HelloSyncJavaJob
 [copy] Copying 1 file to /workspace/ess_user_home/MyAppEss/EssSharedLibrary/src

Note: Ensure that the full job package name is unique across product
families.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-16 Extensibility Guide for Developers

 [copy] Copying 1 file to /workspace/ess_user_home/MyAppEss/EssSharedLibrary/src/oracle/
 apps/financials/ess/program

BUILD SUCCESSFUL

3. In JDeveloper, open the Oracle Enterprise Scheduler host application project saved
to the user_home application workspace location.

4. In the Navigator, expand the EssSharedLibrary Model project to modify the
template-generated Java job business logic.

5. Modify the file as required and save your changes.

7.3.3 Creating Oracle Enterprise Scheduler Job Metadata Using JDeveloper
To submit job requests using the Oracle Enterprise Scheduler host application, you
must create metadata that defines a job request, including the following:

■ Job type: This specifies an execution type and defines a common set of parameters
for a job request.

■ Job definition: This is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

7.3.3.1 Creating an Oracle Enterprise Scheduler Job Definition in the Host
Application
To use a Java class with Oracle Enterprise Scheduler you must create a job definition.
When creating a job definition, specify a name, choose a job type, and specify system
properties.

To create a job definition in the host application:

1. In the Application Navigator, right-click the EssSharedLibrary project and choose
New to display the New Gallery window.

2. In the New Gallery in the Categories area, expand Business Tier and choose
Enterprise Scheduler Metadata.

3. From the New Gallery Items area, choose Job Definition and click OK.

The Create Job Definition window is displayed.

4. In the Create Job Definition window, specify the following:

■ In the Name field, enter a name for the job definition. For example, for the
scheduler host application, enter SampleJob.

■ In the Package field, enter a package name. For example, enter
oracle/apps/ess/custom/test.

■ From the Job Type dropdown list, choose JavaJobType.

Click OK. The job definition SampleJob.xml is created, as well as the jobs folder
in the package oracle/apps/ess/custom/test. The Job Definition page is
displayed.

5. In the Job Definition page, specify the fully qualified class name of the
template-generated Java business logic created in Section 7.3.2.

6. Next to the Class Name field, choose the Overwrite checkbox.

7. In the Class Name field, enter the name of the Java class you created, for example,
oracle.apps.financials.ess.program.HelloSyncJavaJob.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-17

8. In the System Properties section, click the Add button and create a system
property called EffectiveApplication. Set the value of the property to the host
application name, for example, MyAppEss.

9. In the Parameters section, define the following required properties:

■ jobDefinitionName: The short name of the job. For example, SampleJob.

■ jobDefinitionApplication: The short name of the host application running the
job. For example, MyAppEss.

■ jobPackageName: The name of the package running the job. For example,
/oracle/apps/ess/custom/test.

■ srsFlag: A boolean parameter (Y or N) that controls whether the job is
displayed in the job request submission user interface. Enter Y.

■ EXT_PortletContainerWebModule: The name of the web module for the
Oracle Enterprise Scheduler Central UI application to use as a portlet when
submitting a job request. For example, MyApp, or any producer web
application (if you prefer to use an existing registered web module that hosts
the Oracle ADF view objects).

■ parametersVO: The ADF Business Components view object you define so that
end users may enter additional properties at runtime through an Oracle ADF
user interface. For example, oracle.apps.financials.ess.SampleVO.
For more information about creating a view object in the Oracle ADF producer
application, see Task: Create an ADF Business Components View Object for
Oracle Enterprise Scheduler.

7.3.3.2 Creating a Schedule Request Submission UI to Enable End Users to Fill in
Properties
If your job includes any properties to be filled in by end users at runtime, you need to
create an Oracle ADF user interface and an ADF Business Components view object
with validation, and the parameters to be filled in. The Oracle Enterprise Scheduler
schedule request submission UI allows end users to fill in these properties prior to
submitting the job request.

For more information about Oracle ADF view objects, see the "Creating a Business
Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Task: Create an Oracle ADF Model Project
Create an Oracle ADF model project to display the properties to be filled in by end
users at runtime.

To create an Oracle ADF model project:

1. In JDeveloper, open the Oracle Enterprise Scheduler Oracle ADF application.

2. From the Application menu, choose New Project.

3. In the New Gallery under Categories, expand General and choose Projects.

4. In the Items area, choose ADF Model Project and click OK.

5. On the Name Your Project wizard page, enter the project name, for example
EssModel. Click Finish to close the wizard.

6. From the Application Navigator, right-click the EssModel project and choose
Project Properties, then Libraries and Classpath, and then Add Library.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-18 Extensibility Guide for Developers

7. Add the required data model project libraries as described in the chapter "Setting
Up Your JDeveloper Application Workspace and Projects" in the Oracle Fusion
Applications Developer's Guide.

8. Click OK to close the Project Properties dialog.

Task: Create an ADF Business Components View Object for Oracle Enterprise
Scheduler
Use a parameters view object for jobs with parameters that require collecting values
from end users at runtime. The properties filled in by end users are associated with an
ADF Business Components view object, which is associated with the job definition
itself. When the job runs, Oracle Enterprise Scheduler accesses the view object to
retrieve the values of the properties.

To create an ADF Business Components view object for Oracle Enterprise Scheduler:

1. In JDeveloper in the Application Navigator, right-click the project EssModel in
which you want to create the view object, and choose New.

2. In the New Gallery, expand Business Tier, choose ADF Business Components
and then View Object. Click OK.

If this is the first component you are creating in the project, then the Initialize
Business Components Project dialog is displayed, allowing you to choose a
database connection.

3. In the Initialize Business Components Project dialog, choose the database
connection or choose New to create a connection.

Click OK. This launches the Create View Object wizard.

4. In the Create View Object wizard on the Name page, enter the following.

■ Package: Enter package information for the view object, for example
oracle.apps.financials.ess.

■ Name: Provide a name, for example, SampleVO.

■ Select the data source type you want to use as the basis for this view object:
For the data source, choose Rows Populated Programmatically, Not Based on
a Query.

5. Click Next. In the Attributes page, click Finish to create the Oracle Enterprise
Scheduler parameter view object SampleVO.

6. Define attributes for the view objects sequentially, ATTRIBUTE1, ATTRIBUTE2,
and so on, with an attribute for each required parameter.

7. Create a query for the view object:

a. On the View Object page, from the left-hand list panel, choose Query.

b. In the Query panel, click the Edit icon.

c. Use the following query and test for validity:

select null as ATTRIBUTE1 from dual

d. Click OK.

Note: Enter the view object package and name values specified for
the job definition property parametersVO in Section 7.3.3.1.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-19

8. Ensure that the view object attributes can always be updated:

a. On the View Object page, from the left-hand list panel, choose Attributes.

b. Edit the ATTRIBUTE1 table row.

c. In the Edit Attribute: Attribute1 window, select the option Always.

d. In the Edit Attribute: Attribute1 window, click Control Hints to display the
Control Hints page. In the Control Hints page, specify required prompts,
validation, and formatting for each parameter.

e. Click OK.

9. If not already specified, add the property parametersVO to your Oracle
Enterprise Scheduler host application job definition and specify the fully qualified
path of the view object as the value of parametersVO. For example, set
parametersVO to oracle.apps.financials.ess.SampleVO in the job
definition /oracle/apps/ess/custom/test/SampleJob.xml.

<parameter name="parametersVO"
data-type="string">oracle.apps.financials.ess.SampleVO</parameter>

7.3.4 Assembling Oracle Enterprise Scheduler Oracle Fusion Applications
Assembling the Oracle Enterprise Scheduler Oracle Fusion applications involves the
following main steps:

■ Assembling an Oracle Enterprise Scheduler shared library

■ Assembling the host application

■ Assembling the Oracle ADF producer application

Task: Assemble an Oracle Enterprise Scheduler Shared Library
Assembling a shared library for Oracle Enterprise Scheduler involves the following
main steps:

■ Creating or updating a shared library JAR manifest

■ Updating the shared library JAR deployment profile

The name and version information for a shared Java EE library are specified in the
META-INF/MANIFEST.MF file.

To assemble a shared library:

1. Specify attributes for the shared library in a manifest file.

a. Create or edit the manifest file in a text editor.

b. Enter the following command:

cd <ess_user_home>/MyAppEss/EssSharedLibrary/emacs MANIFEST.MF

Note: A maximum of 100 attributes can be used for the property
parametersVO. The attributes should be named incrementally, for
example ATTRIBUTE1, ATTRIBUTE2, and so on. Attribute names are
not case-sensitive, such that ATTRIBUTE1 and Attribute2 can be
used sequentially.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-20 Extensibility Guide for Developers

c. Add or edit a string value to specify the name of the shared Java EE library.
For example:

Extension-Name: oracle.ess.shared

Extension-Name specifies the name of the shared Java library. Use the value
specified in the script prompt for the shared library name. Oracle Enterprise
Scheduler host applications that reference the library must specify
Extension-Name exactly to use the shared files.

As a best practice, enter the optional version information for the shared Java
EE library. A sample MANIFEST.MF file is shown in Example 7–7.

Example 7–7 Sample MANIFEST.MF File

Extension-Name: oracle.ess.shared
Specification-Version: 11.1.0
Implementation-Version: 11.1.0.0.0

d. Save the file. The MANIFEST file is used by the JAR deployment file.

2. Compile the project. In the Application Navigator, right-click the Oracle Enterprise
Scheduler shared library project and choose Make EssSharedLibrary*.jpr*.

3. Right-click the Oracle Enterprise Scheduler shared library project and choose
Project Properties to display the Project Properties window.

4. In the Project Properties window, choose Deployment.

5. In the Deployment Profiles region, choose EssSharedLibrary (Shared Library JAR
File).

6. Click Edit to open the Edit JAR Deployment Profile Properties window.

7. In the Edit JAR Deployment Profile Properties window, click JAR Options.

8. In the JAR Options window, choose the checkbox Include Manifest File
(META-INF/MANIFEST.MF).

9. Click Add to specify the manifest file you created. This file should be merged into
the manifest file that is generated by JDeveloper.

10. In the Edit JAR Deployment Profile Properties window, expand File Groups and
choose Filters. Under the Merged Contents of this File Group's Contributors list,
deselect essmeta.

11. In the JAR Deployment Profile Properties page, click OK.

12. In the Project Properties page, click OK.

Task: Assemble the Host Application
Assembling the host application involves the following main steps:

■ Creating a MAR deployment file

■ Updating the EAR deployment file

To assemble the host application:

1. Open the Oracle Enterprise Scheduler host application in JDeveloper, and from the
Application menu, choose Application Properties.

2. In the Application Properties window, choose Deployment.

3. Click New to display the Create Deployment Profile page and do the following:

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-21

a. In the Archive Type field, from the dropdown list, choose MAR File.

b. In the Name field enter a name, for example myAppEss_MAR.

c. Click OK.

4. In the Edit MAR Deployment Profile Properties window, choose MAR Options.

5. Modify the name of the MAR file, removing _MAR from the end of the name, for
example, changing myAppEss_MAR.mar to myAppEss.mar.

6. Choose the Oracle Enterprise Scheduler metadata:

a. In the Edit MAR Deployment Profile Properties window, expand Metadata
File Groups and choose User Metadata.

b. In the Order of Contributors panel on the right-hand side, click Add to display
the Add Contributor dialog.

c. In the Add Contributor dialog, browse to the location of the project directory,
and expand it to add the essmeta metadata that contains the namespace for
the jobs directory. Choose the path that you need to include in the Add
Contributor dialog by double-clicking the essmeta directory.

d. In the Add Contributor dialog, click OK.

7. Choose the directory for the metadata:

a. In the Edit MAR Deployment Profile Properties window, expand Metadata
File Groups and User Metadata, and choose Directories.

b. Choose the directory that contains the Oracle Enterprise Scheduler application
user metadata for the host application.

c. Choose the bottommost directory in the tree. This is the directory from which
the namespace is created. The folder you choose in this dialog determines the
top-level namespace in adf-config.xml file.

d. This namespace should be the same as the package defined in the job
definition, for example oracle/apps/ess/custom/<directory name>.

e. In the Edit MAR Deployment Profile Properties page, click OK.

8. In the Application Properties window, choose Deployment.

9. In the Deployment Profiles pane on the right-hand side, choose the EAR profile
and click Edit.

10. In the Edit EAR Deployment Profile Properties window, choose Application
Assembly.

11. Under Java EE Modules, choose the checkbox for the MAR module.

12. In the Edit EAR Deployment Profile Properties window, choose EAR Options.

13. Deselect Include Manifest File (META-INF/MANIFEST.MF).

14. In the Edit EAR Deployment Profile Properties page, click OK.

15. In the Application Properties page, click OK.

Note: In general, to create the namespace
oracle/apps/<product>/<component>/ess, choose the ess
directory.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-22 Extensibility Guide for Developers

Task: Assemble the Oracle ADF Producer Application
Assembling the Oracle ADF application involves the following main steps:

■ Creating an ADF Library job deployment file

■ Preparing a Web Application Archive (WAR) deployment profile

Oracle ADF libraries have the option of automatic compilation that happens with
deployment profile dependencies. This option allows the Oracle Enterprise Scheduler
Oracle ADF Library used by the user interface project to be automatically included in
the WEB-INF/lib directory in the WAR file.

To assemble the Oracle ADF producer application:

1. Open the Oracle Enterprise Scheduler Oracle ADF application in JDeveloper.

2. In the Application Navigator, right-click the EssModel project and click New to
display the New Gallery window.

3. In the New Gallery in the Categories area, expand General and choose
Deployment Profiles. Create the deployment profile as follows:

a. In the Items region, choose ADF Library Jar File.

b. Click OK to open the Create Deployment Profile window.

c. In the Create Deployment Profile - ADF Library Jar File window, enter a name
for the profile, using the format Adf<projName> in accordance with package
structure and naming standards.

d. Click OK to save the new deployment profile and close the Create
Deployment Profile window.

4. In the Application Navigator, right-click the SuperWeb project and choose Project
Properties, and then Deployment.

5. In the Deployment Profiles region, edit the SuperWeb WAR deployment profile.

6. In the Edit WAR Profile Deployment Properties window, choose Profile
Dependencies.

7. In the pane on the right-hand side, under Java EE Modules, choose the
dependency under the ADF library JAR deployment file (EssModel.jpr), for
example, ADFMyApp.

8. Click OK to save the WAR deployment profile.

7.3.5 Deploying Oracle Enterprise Scheduler Oracle Fusion Applications
Deploying Oracle Enterprise Scheduler Oracle Fusion applications involves the
following main steps. You must deploy the Oracle Enterprise Scheduler Oracle Fusion
application in the order specified.

1. Deploy the shared Oracle Enterprise Scheduler library using JDeveloper or an Ant
script.

2. Deploy the Oracle Enterprise Scheduler host application using JDeveloper or an
Ant script.

3. Deploy the Oracle Enterprise Scheduler Oracle ADF producer application using
JDeveloper or an Ant script.

Application-specific policies packed with script-generated host and Oracle ADF
applications automatically migrate to the policy store when the application is

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-23

deployed. Prior to deployment, verify that any grant of permissions in the application
jazn-data.xml file contains no duplicates.

For more information about securely deploying applications, see the "Deploying
Secure Applications" chapter in the Oracle Fusion Middleware Application Security Guide.

Task: Deploy the Shared Oracle Enterprise Scheduler Library Using JDeveloper
You can deploy the shared Oracle Enterprise Scheduler library using JDeveloper or an
Ant script.

To deploy the share library using JDeveloper:

1. In the Application Navigator, right-click the Oracle Enterprise Scheduler shared
library project, choose Deploy and then choose the shared library JAR.

The Deploy EssSharedLibrary_JAR window is displayed.

2. Choose Deploy to a WebLogic Application Server and click Next.

3. In the Select Server window, choose the application server to which you want to
deploy the Oracle Enterprise Scheduler shared library.

4. Click the Add button to create a connection to the application server if none is
defined. Click Next.

5. In the WebLogic Options window, make the following selections:

a. Choose Deploy to selected instances in the Domain, and choose the Oracle
Enterprise Scheduler server instance in the table row. The Oracle Enterprise
Scheduler shared library should be deployed to the same server as the Oracle
Enterprise Scheduler host application.

b. Choose Deploy as a shared library.

c. Click Finish.

6. Verify the deployment using the deployment log. Upon successful deployment,
you can see the Oracle Enterprise Scheduler jobs shared library deployed as
'oracle.ess.shared(11,11.1.1)' in the Oracle WebLogic Server Administration
Console.

Task: Deploy the Shared Oracle Enterprise Scheduler Library Using an Ant
Script
To deploy the shared library using an Ant script:

1. Run the following Ant command:

ant -f ${ESS_HOME}/ant/build-ess.xml deploy_job_logic

The command deploy_job_logic builds, packages and deploys only the Oracle
Enterprise Scheduler jobs shared library.

2. To specify a different value for the ESS shared library name, take the following
steps:

a. In a text editor, modify the shared library JAR MANIFEST file. For example:

vi ${ess_user_home_dir}/MyAppEss/EssSharedLibrary/MANIFEST.MF

Note: When prompted, enter the Oracle WebLogic Server password.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-24 Extensibility Guide for Developers

b. Edit the string value of Extension-Name to specify the name of the shared
Java EE library.

c. Enter the optional version information for the shared Java EE library.

d. Update the Oracle Enterprise Scheduler build.properties file by editing
${ESS_HOME}/ant/config/ess-build.properties.

e. Change the value of the property customEss.shared.library.name to
match the value specified in the JAR MANIFEST file. A sample
build.properties file is shown in Example 7–8.

Example 7–8 Sample build.properties File

ESS build properties
 ess.script.base.dir=${user_home}

 fmw.home=${fmw_home}
 jdev.home=${fmw.home}/jdeveloper
 oracle.common=${fmw.home}/oracle_common

 # ========== ESS JDev project details ===============
 customEss.project.dir=${ess.script.base.dir}
 customEss.hostapp.workspace=${hosting_application_name}
 customEss.hostapp.jwsfile=${hosting_application_name}
 customEss.hostapp.earprofile=${hosting_application_name}
 customEss.hostapp.jprproject=EssSharedLibrary
 customEss.hostapp.jarprofile=EssSharedLibrary
 customEss.hostapp.jarfile=${jobdef_library_name}

 customEss.shared.library.name=${jobdef_library_name}

 customEss.hostapp.mds.partition=globalEss
 customEss.hostapp.mds.jdbc=mds-ApplicationMDSDB
 customEss.hostapp.name=${hosting_application_name}

 customEss.producerapp.workspace=${ui_application_name}
 customEss.producerapp.jwsfile=${ui_application_name}
 customEss.producerapp.earprofile=${ui_application_name}
 customEss.producerapp.name=${ui_application_name}

 # ========== WebLogic Server details ===============
 MW_HOME=${fmw.home}
 ORACLE_HOME=${jdev.home}
 MW_ORA_HOME=${jdev.home}
 COMMON_COMPONENTS_HOME=${oracle.common}
 WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
 weblogic.server.host=<server_host>
 weblogic.server.port=<server_port>

 weblogic.server.ssl.port=<server_ssl_port>

 weblogic.admin.user=<admin_username>
 weblogic.t3.url=t3://${weblogic.server.host}:${weblogic.server.port}
 # WebLogic server name where ESS producer web application is targeted for
 # deployment
 adfapp.server.name=AdminServer
 # WebLogic server name where ESS host application is targeted for deployment
 ess.server.name=ess_server1

f. Save the file.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-25

Task: Deploy the Oracle Enterprise Scheduler Host Application Using
JDeveloper
You can deploy the Oracle Enterprise Scheduler application using JDeveloper or an
Ant script.

To deploy the Oracle Enterprise Scheduler host application using JDeveloper:

1. In JDeveloper, open the Oracle Enterprise Scheduler host application.

2. From the Application menu, choose Deploy and then choose the name of the host
application, for example MyAppEss.

3. In the Deploy MyAppEss window, choose Deploy to Application Server and click
Next.

4. In the Select Server window, choose the application server to which you want to
deploy the Oracle Enterprise Scheduler host application.

Click the Add button to create a connection to the application server if none is
defined.

5. Click Next. In the WebLogic Options window, make the following selections:

a. Choose Deploy to selected instances in the Domain, and choose the Oracle
Enterprise Scheduler server instance in the table row, to which the Oracle
Enterprise Scheduler host application is to be deployed.

b. Choose Deploy as a standalone Application.

c. Click Finish.

JDeveloper displays the Deployment Configuration page. Choose the relevant
options for your metadata repository.

6. Click Deploy.

Verify the deployment using the deployment log.

Upon successful deployment, you can expect to see the Oracle Enterprise
Scheduler host application deployed in Fusion Applications Control.

Task: Deploy the Oracle Enterprise Scheduler Host Application Using an Ant
Script
To deploy the Oracle Enterprise Scheduler host application using an Ant script:

■ Run the following Ant command:

ant -f ${ESS_HOME}/ant/build-ess.xml deploy_ess_host

The command deploy_ess_host builds, packages, and deploys only the Oracle
Enterprise Scheduler host application. It is assumed that the Oracle Enterprise
Scheduler shared job library is already deployed prior to running this command.

Task: Deploy the Oracle ADF Producer Application Using JDeveloper
You can deploy the Oracle ADF producer application using JDeveloper or an Ant
script. This step is optional if using an existing deployed producer web application.
The value you defined for EXT_PortletContainerWebModule in Section 7.3.3.1
indicates the name of the application to be used.

To deploy the Oracle ADF producer application using JDeveloper:

Note: When prompted, enter the Oracle WebLogic Server password.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-26 Extensibility Guide for Developers

1. In JDeveloper, open the Oracle ADF producer application.

2. From the Application menu, choose Deploy and then choose the name of the
Oracle ADF producer application.

3. In the Deploy MyApp window, choose Deploy to Application Server and click
Next.

4. In the Select Server window, choose the application server to which you want to
deploy the Oracle Enterprise Scheduler Oracle ADF application.

5. Click the Add button to create a connection to the application server if none is
defined.

6. Click Next. In the WebLogic Options window, make the following selections:

a. Choose Deploy to selected instances in the Domain, and choose the Oracle
Enterprise Scheduler server instance in the table row, to which the Oracle
Enterprise Scheduler Oracle ADF application is to be deployed.

b. Choose Deploy as a standalone Application.

c. Click Finish.

d. The Select Deployment Type dialog window is displayed, prompting you to
expose the MyApp portlet application as a WSRP service. Choose Yes.

7. Click Next. The Deployment Configuration page is displayed. Choose the relevant
options for your metadata repository.

8. Enter globalEss as the partition name.

9. Click Deploy.

10. Verify the deployment using the deployment log.

Upon successful deployment, you can expect to see the deployed Oracle
Enterprise Scheduler Oracle ADF application in Fusion Applications Control.

11. Open the WSRP Producer test page to validate the deployment using the
following URL:

http://<ADF_HOST>:<ADF_PORT>/<MyApp-context-root>/

Task: Deploy the Oracle ADF Producer Application Using an Ant Script
To deploy the Oracle ADF producer application using an Ant script:

■ Run the following Ant command:

ant -f ${ess_user_home_dir}/ant/build-ess.xml deploy_ess_ui

The deploy_ess_ui command builds, packages, and deploys only the Oracle
Enterprise Scheduler Oracle ADF producer application.

7.3.6 Registering Oracle Enterprise Scheduler Topology Objects
Registering Oracle Enterprise Scheduler topology objects involves the following main
steps:

■ Creating Oracle Enterprise Scheduler topology objects

Note: When prompted, enter the Oracle WebLogic Server password.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-27

■ Registering Oracle Enterprise Scheduler topology objects

Task: Create Oracle Enterprise Scheduler Topology Objects
Use the Setup and Maintenance work area to create Oracle Enterprise Scheduler
topology objects, including the Oracle Enterprise Scheduler domain, host application,
and Oracle Enterprise Scheduler Oracle ADF producer application.

To create Oracle Enterprise Scheduler topology objects:

1. Create the Oracle Enterprise Scheduler domain topology object.

a. In the global area of Oracle Fusion Applications, from the Administration
menu, choose the Setup and Maintenance work area.

b. From the Tasks Pane, choose Topology Objects and then choose Manage
Domains.

c. On the Manage Domains page in the list of domains, click the Actions
dropdown list and choose Create.

d. In the Create Domain window that is displayed, enter a name for the domain
and click Save and Close.

2. Create the Oracle Enterprise Scheduler host application topology object:

a. In the global area of Oracle Fusion Applications, from the Administration
menu, choose the Setup and Maintenance work area.

b. From the Tasks Pane, choose Topology Objects and then choose Manage
Enterprise Applications.

c. On the Manage Enterprise Applications page in the list of domains, click the
Actions dropdown list and choose Create.

d. In the Create Enterprise Application page, enter the details in Table 7–4.

e. Click Save and Close to create the Oracle Enterprise Scheduler host
application topology object.

Note: Register the topology objects only when using an Ant
script-generated Oracle ADF producer web application. Alternatively,
you can use an existing registered web or Oracle Enterprise Scheduler
Oracle ADF producer application and skip this section.

Table 7–4 Enterprise Application Topology Object Details

Field Description

Name Enter the name of the enterprise application that you want to register,
for example EarCustomHostEss.

Code Enter a unique code to identify the enterprise application. After you
have created it, the code cannot be changed.

Domain Choose the name of the domain to be used by the enterprise
application, for example EssDomain.

Default URL Enter a static URL if the enterprise application is always to be deployed
at the same location. Optional.

Source File Enter the name of the EAR file. Optional.

Pillar From the Available Pillars list, shuttle the relevant pillar or pillars to the
Selected Pillars list.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-28 Extensibility Guide for Developers

3. Repeat Step 2 to create the Oracle Enterprise Scheduler Oracle ADF producer
application topology object.

Task: Register Oracle Enterprise Scheduler Topology Objects
Use the Setup and Maintenance work area to register the Oracle Enterprise Scheduler
topology objects you created.

To register Oracle Enterprise Scheduler topology objects:

1. Register the Oracle Enterprise Scheduler domain.

a. In the global area of Oracle Fusion Applications, from the Administration
menu, choose the Setup and Maintenance work area.

b. From the Tasks Pane, choose Topology Registrations and then choose
Register Domains.

c. On the Register Domains page in the list of domains, click the Actions
dropdown list and choose Create.

d. In the Add Domain window that is displayed, enter the details for the Oracle
Enterprise Scheduler domain created in "Task: Create Oracle Enterprise
Scheduler Topology Objects" as described in Table 7–5.

e. Click Save and Close to save your changes.

2. Register the Oracle Enterprise Scheduler web producer module.

a. In the global area of Oracle Fusion Applications, from the Administration
menu, and choose the Setup and Maintenance work area.

b. From the Tasks Pane, choose Topology Objects and then choose Manage
Modules.

c. On the Manage Modules page from the list of applications, click the Actions
dropdown list and choose Register Modules.

d. In the Register Modules window that is displayed, enter the details as shown
in Table 7–6.

Table 7–5 Domain Registration Values

Field Description

Enterprise Environment From the dropdown list, choose the enterprise
environment to be used, for example oracle.

Domain From the dropdown list, choose the name of the domain.

Name/Administrator Server
Name

Enter a name for the registered domain.

Enter a name for the domain's administration server.

Internal/External/Administrator
Server Host/Port/Protocol

Enter the URL, port number, and protocol (such as HTTP,
HTTPS, and so on) for the internal server to be registered,
as well as the external server and the administration
server.

Enterprise Manager Protocol From the dropdown list, choose the protocol to be used for
accessing Oracle Enterprise Manager, for example HTTP
or HTTPS.

Enterprise Manager Port Enter the port number to be used when accessing Oracle
Enterprise Manager in the domain.

Java Management Extensions Port Enter the port number to be used for Java management
extensions.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-29

e. Click Save and Close to save your changes.

3. Register the Oracle Enterprise Scheduler host and producer applications.

a. In the global area of Oracle Fusion Applications, from the Administration
menu, choose the Setup and Maintenance work area.

b. From the Tasks Pane, choose Topology Registrations and then choose
Register Enterprise Applications.

c. On the Register Enterprise Applications page from the list of applications,
click the Actions dropdown list and choose Add.

d. In the Add Enterprise Application window that is displayed, enter the details
in Table 7–7.

e. Click Save and Close to save your changes.

f. In the Register Enterprise Applications page, click the Actions dropdown list
and choose Add to display the Add Enterprise Application window.

g. Click the Enterprise Application dropdown list to display the Search and
Select: Enterprise Application window.

h. In the Name field, enter a name for the application you want to search for and
click the Domain dropdown list to choose the domain in which you want to
search.

Click Search to search for the Oracle Enterprise Scheduler producer web
application.

Table 7–6 Domain Registration Values

Field Description

Name Enter the name of the module that you want to register.

Code Enter a unique code to identify the module. After you have
created it, the code cannot be changed.

Description Enter a brief, meaningful description of the module. Optional.

Enterprise Application Choose and associate the enterprise application to which the
module belongs.

Type Choose the relevant module type from the list.

Context Root Enter the context root of the module.

Table 7–7 Domain Registration Values

Field Description

Enterprise Environment From the dropdown list, choose the enterprise environment to be
used, for example oracle.

Enterprise Application Choose and associate the enterprise application to which the
module belongs.

Name Enter the name of the enterprise application.

External Server
Protocol/Host/Port

Enter the URL, port number, and protocol (such as HTTP, HTTPS,
and so on) for the external server to be registered with the
enterprise application.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

7-30 Extensibility Guide for Developers

i. From the list of enterprise applications that is displayed, choose the relevant
Oracle Enterprise Scheduler producer web application and click OK, as shown
in Figure 7–2.

Figure 7–2 Choose the Relevant Enterprise Application

j. In the Add Enterprise Application page, fill in the details for the Oracle
Enterprise Scheduler producer web application as described in Table 7–7.

k. Click Save and Close.

7.3.7 Granting Job Metadata Permissions to Application Roles and Users
You can use Oracle Authorization Policy Manager to manage application roles and
resource-based policies. Identifying the application roles and users, and granting them
the required privileges to execute Oracle Enterprise Scheduler job-related tasks is a
one-time operation.

Granting Oracle Enterprise Scheduler metadata permission to the new job involves the
following main steps:

■ Creating a new resource for the custom job definition

■ Creating a new policy

Task: Create a Resource
In Oracle Authorization Policy Manager, create an application resource instance.

Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-31

To create a resource:

1. Run Oracle Authorization Policy Manager by entering the following URL in a
browser.

http://<fs-domain_url>/apm/

2. From the navigator pane, right-click the application Resources icon and choose
New.

An untitled page is displayed.

3. Define a resource with the resource type ESSMetadataResourceType, as well as
the name and display name of the Oracle Enterprise Scheduler component using
the following syntax:
oracle.apps.ess.applicationName.JobDefinitionName.JobName.

4. Save the resource.

Task: Define a Policy
Define a policy that specifies the privileges allocated to a particular user when
submitting the job request.

To define a policy:

1. In Oracle Authorization Policy Manager in the Home tab, under the Applications
region, choose an application for which you want to manage the policy, for
example, MyAppEss.

2. Click Search Policies to display the Search Authorization Policies tab.

3. In the Search Authorization Policies tab, choose the principal user on which to
base the policy being created, for example, FinUser1.

4. In the Functional Security tab, choose Resource Based Policies.

5. Click New Policy to create a new policy for the selected user.

6. Add resource instances to the policy by clicking the Add button in the Resources
table.

7. Select the resource instance created for the custom Oracle Enterprise Scheduler job
definition (from "Task: Create a Resource").

8. Specify the actions EXECUTE and READ to provision Oracle Enterprise Scheduler
job execution privileges to the user.

9. Click Save.

Task: Test Oracle Enterprise Scheduler Job Submission from the Oracle
Enterprise Scheduler Central UI
Submit a job request to ensure that everything works as it should.

To submit a test job request:

1. Log in to Functional Setup Manager with the user for whom you defined an
authorization policy, for example, as FinUser1.

The URL for Functional Setup Manager is as follows:

https://<HOST>/setup/faces/TaskListManagerTop

2. From the Tools menu, choose Schedule Processes.

Customizing Existing Oracle Enterprise Scheduler Job Properties

7-32 Extensibility Guide for Developers

3. Click the Schedule New Process button and choose a job process name when
prompted. Select the job definition you created.

4. Click OK.

The Oracle Enterprise Scheduler Schedule Request Submission window is
displayed.

5. In the Parameters region, specify the job parameters as required.

6. Click Submit to schedule the job execution, and Close to exit the window.

7. Refresh the Search Results table to monitor the status of the submitted job.

7.4 Customizing Existing Oracle Enterprise Scheduler Job Properties
You can customize Oracle Enterprise Scheduler jobs that are associated with Oracle
Fusion applications. Customizing existing Oracle Enterprise Scheduler jobs involves
editing job properties using Oracle Enterprise Manager Fusion Applications Control.

An example of a customization is to set the timeout value for a scheduled job to be run
asynchronously. When the job takes longer than the timeout, you can find the job that
timed out in Fusion Applications Control and manually complete the job.

The job properties that can be edited are shown in Table 7–8.

For more information about editing scheduled job properties, see the "Managing
Oracle Enterprise Scheduler Service and Jobs" chapter in the Oracle Fusion Applications
Administrator's Guide.

Table 7–8 Job Properties

API Description

oracle.as.scheduler.
SystemProperty.PRIOR
ITY

This property specifies the request processing priority, from 0 to 9, where 0 is the
lowest priority and 9 is the highest. If this property is not specified, the system default
value used is oracle.as.scheduler.RuntimeService#DEFAULT_PRIORITY.

oracle.as.scheduler.
SystemProperty.RETRI
ES

This property defines the numerical value that specifies the retry limit for a failed job
request. If job execution fails, the request retries up to the number of times specified
by this property until the job succeeds. If the retry limit is zero, a failed request will
not be retried. If this property is not specified, the system default used is
oracle.as.scheduler.RuntimeService#DEFAULT_RETRIES.

oracle.as.scheduler.
SystemProperty.REQUE
ST_CATEGORY

This property specifies an application-specific label for a request. The label, defined
by an application or system administrator, allows administrators to group job
requests according to their own specific needs.

Customizing Existing Oracle Enterprise Scheduler Job Properties

Customizing and Extending Oracle Enterprise Scheduler Jobs 7-33

oracle.as.scheduler.
SystemProperty.ASYNC
_REQUEST_TIMEOUT

This property specifies the time in minutes that the job request processor waits for an
asynchronous request after it has begun execution. After the time elapses, the job
request times out.

enableTrace The property specifies a numerical value that indicates the level of tracing control for
the job. Possible values are as follows:

■ 1: Database trace

■ 5: Database trace with bind

■ 9: Database trace with wait

■ 13: Database trace with bind and wait

■ 16: PL/SQL profile

■ 17: Database trace and PL/SQL profile

■ 21: Database trace with bind and PL/SQL profile

■ 25: Database trace with wait and PL/SQL profile

■ 29: Database trace with bind, wait, and PL/SQL profile

enableTimeStatistics This property enables or disables the accumulation of time statistics.

Table 7–8 (Cont.) Job Properties

API Description

Customizing Existing Oracle Enterprise Scheduler Job Properties

7-34 Extensibility Guide for Developers

8

Customizing Security for Oracle ADF Application Artifacts 8-1

8Customizing Security for Oracle ADF
Application Artifacts

This chapter describes how to customize security for custom and extended business
objects and related custom and extended application artifacts defined by Oracle
Application Development Framework (Oracle ADF) in Oracle Fusion applications.
Developers customize security using Oracle Authorization Policy Manager and Oracle
JDeveloper.

Security customization in the production environment is typically restricted to the
security administrator using Oracle Authorization Policy Manager; however, during
the development phase of application customization, you can perform similar security
customization tasks using Oracle Authorization Policy Manager and JDeveloper.

This chapter includes the following sections:

■ Section 8.1, "About the Oracle Fusion Security Approach"

■ Section 8.2, "About Extending the Oracle Fusion Applications Security Reference
Implementation"

■ Section 8.3, "About Extending and Securing Oracle Fusion Applications"

■ Section 8.4, "Defining Data Security Policies on Custom Business Objects"

■ Section 8.5, "Enforcing Data Security in the Data Model Project"

■ Section 8.6, "Defining Function Security Policies for the User Interface Project"

8.1 About the Oracle Fusion Security Approach
Oracle Fusion Applications is secure as delivered. The Oracle Fusion security
approach tightly coordinates various security concerns of the enterprise, including:

■ The ability to define security policies to specify the allowed operations on
application resources, including viewing and editing data and invoking functions
of the application.

■ The ability to enforce security policies by using roles assigned to end users, and
not by directly enforcing those policies on the end users of the system.

A role is an identity that end users are anticipated to fill when interacting with Oracle
Fusion Applications that specifically determines the user's permitted access to data
and application functions. For example, when an end user attempts to access a task
flow, whether or not the end user has the right to enter the task flow and view the
contained web pages is specified by the roles provisioned to the end user and the
security policies defined for those roles.

About the Oracle Fusion Security Approach

8-2 Extensibility Guide for Developers

In the enterprise, the security administrator ensures end users are provisioned with
the privileges to perform the duties of their various jobs. A privilege determines the
user right to access data and application functions of Oracle Fusion applications. The
provisioning tasks involve Oracle Fusion Middleware tools that integrate with Oracle
Fusion Applications and allow IT personnel to extend the security reference
implementation. These tools directly update a copy of the security reference
implementation in the deployed application's security policy store and identity store.
The security reference implementation provides role-based access control in Oracle
Fusion Applications, and is composed of predefined security policies that protect
functions, data, and segregation of duties.

From the standpoint of application developers who seek to apply the Oracle Fusion
security approach to an Oracle Fusion application that they extend, the security
implementation process overlaps with tasks performed by IT personnel. You may or
may not need to extend the Oracle Fusion Applications security reference
implementation, depending upon how end users will interact with the new resource.
At the end of the process, you must ensure that any new resource you create, such as a
business object in the data model project or a task flow in the user interface project,
has sufficient security policies to grant access privileges and suitable roles to receive
the access privileges.

8.1.1 How to Proceed with This Chapter
Customizing security is a complex process that involves working with several tools,
familiarity with diverse technologies, and coordination between the application
developer and security administrator. For a concise summary of the security
customization scenarios and corresponding tasks, see Table 8–1 in Section 8.3.3,
"Oracle Fusion Security Customization Scenarios."

After familiarizing yourself with the types of security customizations performed by
the application developer, read the following sections to gather a more complete
understanding of the security customization process:

■ For an overview of the Oracle Fusion Applications security reference
implementation, see Section 8.2.

■ For a list of security guidelines that dictate which security artifacts in the Oracle
Fusion Applications security reference implementation you may or may not
modify, see Section 8.3.1.

■ For an overview of the steps you follow to secure a new resource, see Section 8.3.2.

■ For additional background about the type of resource customizations that require
customizing security, see Section 8.3.4 and Section 8.3.5.

■ For details about the security artifacts that you create to define security policies,
see Section 8.3.6 through Section 8.3.9.

■ For a list of tasks that may be performed only by a security administrator, see
Section 8.3.10.

■ For a list of prerequisite tasks to be completed before customizing security, see
Section 8.3.11.

■ For information about the tools involved in customizing security, see Section 8.4
through Section 8.6.

About Extending the Oracle Fusion Applications Security Reference Implementation

Customizing Security for Oracle ADF Application Artifacts 8-3

8.1.2 Related Security Documents
The following related documents contain important information specific to
customizing security in Oracle Fusion Applications. References to these documents
appear throughout this chapter. Consult these documents for complete details.

■ Oracle Fusion Applications Security Guide

Describes the concepts and best practices of the Oracle Fusion security approach.
This is the main document addressing the Oracle Fusion security approach.

■ Oracle Fusion Applications Security Hardening Guide

Describes how security administrators proceed to implement the Oracle Fusion
Applications security reference implementation for their enterprise.

■ Oracle Fusion Applications security reference manuals

Describes the segregation of duties in the Oracle Fusion Applications security
reference implementation. Each Oracle Fusion application has its own reference
manual.

■ Oracle Fusion Applications Developer's Guide

Describes how to secure new custom resources in Oracle Fusion Applications.
Includes chapters describing how to implement data security and function
security for new resources.

■ Oracle Fusion Applications Administrator's Guide

Summarizes available security administration tasks in a single chapter.

■ Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide
(Oracle Fusion Applications Edition)

Describes how to define and modify data security policies and data role templates.

■ Oracle Fusion Middleware Application Security Guide

Describes the concepts and best practices of Oracle Platform Security Services
(OPSS) upon which Oracle Fusion security is based. This is the main document
addressing the architecture of Oracle security services.

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

Describes ADF Security, through which the components of Oracle ADF interact
with OPSS.

■ Oracle Fusion Middleware User's Guide for Oracle Identity Manager

Describes role provisioning and other identity management tasks.

■ Oracle Database Security Guide

Describes implementing security policies at the level of the database.

■ JDeveloper online help topics

Describes the tools used to create database objects using JDeveloper.

8.2 About Extending the Oracle Fusion Applications Security Reference
Implementation

The Oracle Fusion Applications security approach is embodied in the security
reference implementation, which delivers predefined roles and security policies that

About Extending the Oracle Fusion Applications Security Reference Implementation

8-4 Extensibility Guide for Developers

address the common business needs of the enterprise. The reference implementation
can be extended to adjust to the needs of a specific enterprise. The predefined security
policies implement role-based access control: a set of roles recognizable as jobs, a role
hierarchy that contains the duties for those jobs, and a set of role provisioning events
and workflows. The Oracle Fusion Applications security reference implementation
represents what Oracle considers to be the general security guidelines for jobs, roles,
duties, and segregation of duties.

In general, the Oracle Fusion Applications security reference implementation is
designed to require only small changes to adjust Oracle Fusion security for a specific
enterprise. The security reference implementation provides a comprehensive set of
predefined security policies and predetermined data role templates that may be
customized to generate security policies. From the standpoint of security
administrators who address the specific security concerns of their organizations,
typical tasks include changing or extending role definitions and role hierarchies, and
managing security policies and data role templates. For example, enterprise IT security
administrators eventually review the duties and access defined in the security
reference implementation and specify how that matches with the job titles and tasks
the enterprise expects to be performed in the deployed Oracle Fusion application.

A security administrator provisions end users with role membership, and defines the
provisioning in the application's identity store. This configuration task is performed
independent of security customization. The Oracle Fusion Applications security
reference implementation contains four types of roles: duty, job, data, and abstract, and
implements hierarchies between these roles to streamline provisioning access to end
users. Each of the Oracle Fusion Applications roles is implemented in Oracle Fusion
Middleware as one of the following roles:

■ Internal roles are roles that are not assigned directly to end users. An internal role
is also called an application role because it is specific to an application.

Note that, in Oracle Fusion Applications, application roles are called duty roles.
The security reference implementation defines a large number of duty roles that
correspond to the duties of individual job roles. Duty roles are specific to
applications, stored in the policy store, and shared within an Oracle Fusion
Applications instance. For example, in your enterprise, the job of an application
developer may also include project management duties. The duty role is a role that
corresponds to a line on a job description for that job.

■ External roles are roles associated with a collection of end users and other groups.
They are also called enterprise roles because they are shared across the enterprise.

In Oracle Fusion Applications, enterprise roles include:

■ The job role is a role that corresponds to a job title defined in human resources
(HR).

■ The data role is a role that authorizes a person with a job to a particular
dimension of data on which they can work. For example, the data role AP
Manager - US Commercial Business Unit identifies who may access the
accounts specific to the US division of the enterprise.

■ The abstract role is a role that is not a job title, but is a means to group end
users without respect to specific jobs, for example, Employee and Line
Manager are both abstract roles.

The division between internal roles and external roles is an important principle of the
Oracle Fusion security approach. The principle, called least privilege, ensures that the
end user acquires privileges specific only to the job they perform rather than to a
variety of miscellaneous duties. Therefore, in adherence to the principle of least

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-5

privilege, duty roles are defined by Oracle Platform Security Services (OPSS) as
internal roles and cannot be assigned directly to end users.

To understand the Oracle Fusion security approach in detail and to learn more about
using the Oracle Fusion security infrastructure to implement and administer security
for the enterprise, see the "Introduction" chapter in the Oracle Fusion Applications
Security Guide.

8.3 About Extending and Securing Oracle Fusion Applications
Oracle Fusion Applications is configured by default to deny end users access to the
data of the application domain and the web pages that display the data. An important
principle of Oracle Fusion security ensures that end users do not have unintended
access to data and application artifacts exposed in the extended application.

To enable access to custom resources in the extended application, you may define
security policies to specify "who can perform what operations on what specific data
and on what specific application artifacts."

To define the security policy, you must consider the additional duties the end users of
the extended application will perform, and then grant the required roles the specific
privileges to:

■ Access the web pages of a custom task flow that supports the duty

■ Access the specific data records, or instances of a custom business object, required
to complete the duty

■ Perform only those operations on that data required by the duty

When you need to secure new resources, you can expect to work with two different
types of security policies: data security policies that control access to the data records
of database tables or views in the Oracle Fusion Applications schema, and function
security policies that control access to the Oracle Fusion application artifacts used to
display the data. Because the representation of data security policies and function
security policies differs, the environment you will use to define security policies
depends on whether data security or function security is being implemented.

In the case of access to data records, a custom business object may be secured either
explicitly or implicitly. For example, the AP Manager is authorized to an explicit list of
business units specified by a data role, whereas the Project Manager is implicitly
authorized to the projects that he manages. When you need to secure data records,
then you can:

■ Implicitly grant data access to abstract and job roles through data security policies
you define on custom duty roles inherited by the abstract or job role.

You can create custom duty roles to support a new duty introduced by a custom
application resource.

Note: The term protected in this chapter refers to the default Oracle
Fusion Applications condition that denies end users access to
database resources and application artifacts. In contrast, the term
secured refers to resources that have been made accessible to end
users through security policies created for this purpose. Therefore, a
security policy specifically enables access to the resource based on the
privileges it confers to the end user.

About Extending and Securing Oracle Fusion Applications

8-6 Extensibility Guide for Developers

■ Explicitly grant data access to a data role through a data security policy you apply
directly to the inherited job or abstract role using a data role template.

You can customize the data role template before running the template to generate
the data roles.

8.3.1 Oracle Fusion Security Customization Guidelines for New Functionality
In general, when you create new functionality, not supported by Oracle Fusion
Applications, do not include authorization to that functionality from within the
security artifacts that Oracle Fusion Applications delivers in the security reference
implementation.

Specifically, Oracle Fusion security guidelines suggest customization developers and
security administrators must not modify the following security artifacts in the security
reference implementation when introducing new functionality, through custom or
extended business objects:

■ Predefined duty roles, specifically:

– Do not change the role hierarchy by removing member duty roles assigned to
parent duty roles or job roles.

– Do not remove (also called revoke) existing privileges granted to duty roles.

– Do not add (also called grant) new privileges to duty roles.

■ Predefined security policies (including data and function), specifically:

– Do not remove existing instance sets from predefined data security policies.

– Do not remove existing member resources from predefined function security
policies.

– Do not revoke existing actions (mapped by Oracle Fusion security to resource
operations) granted on each resource or instance set.

Customization developers and security administrators may modify security artifacts in
the security reference implementation in the following ways:

■ Do modify job roles to add a custom duty role (permissible by security
administrator only).

■ Do modify data role templates to add a new job role as the base role or to add
access privileges to a custom business object.

Customization developers and security administrators may create the following
security artifacts and add them to the security reference implementation:

■ Do create custom duty roles when a custom application resource requires a new
duty role to support the segregation of duties or when a custom application
resource introduces new privileges to a predefined business object.

■ Do create data role templates when a custom business object is used as a data
stripe and when explicit data security policies grant access to the data stripe. A
data stripe is a dimensional subset of the data granted by a data security policy
and associated with a data role. For example, create a data role template when you
need to grant data roles access to a specific business unit or organization.

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-7

8.3.2 Oracle Fusion Security Customization Process Overview
Creating a new, custom business object and exposing it in the extended application is
one of the main customization tasks that you may perform. Although you may also
extend existing business objects to introduce new functionality or to introduce
additional data, the security customization process for new and existing business
objects follows a similar pattern.

To secure a new business object in the extended Oracle Fusion application:

1. Create a custom duty role to serve as the grantee of the security policy privileges.

For details about creating duty roles, see the "Managing Policies and Policy
Objects" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

2. Define a database resource in the Oracle Fusion Data Security repository to protect
the data records of a database table that you intend to expose in the application.

For details about registering a database table as a database resource, see
Section 8.3.6, "What You Can Customize in the Data Security Policy Store at
Design Time."

This step causes Oracle Fusion security to protect the database table records, thus
rendering the data inaccessible to the end user of the application. A data security
policy will be required to grant access to the data defined by the database resource
and a function security policy will be required to grant access to the application
artifacts that display the data in the extended application.

3. Define data security policies for the previously defined database resource to grant
access to specific data records for a given role.

For details about securing data, see Section 8.3.6, "What You Can Customize in the
Data Security Policy Store at Design Time."

4. Extend the data model project (in the extended application) with a new ADF entity
object to expose the database table that you defined as an Oracle Fusion Data
Security database resource.

For details about creating custom ADF business components to represent a
database table, see Chapter 4, "Customizing and Extending Oracle ADF
Application Artifacts."

5. Opt into the previously defined data security policies by enabling OPSS
authorization checking on the operations of individual data model objects in the
data model project.

For details about enabling security, see Section 8.3.7, "What You Can Customize in
the Data Model Project at Design Time."

6. Consult a security administrator to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

Note: You must not modify predefined duty roles, and you must
always add custom duty roles to grant access privileges. Only the
security administrator can add or remove duty roles associated with
an existing job role. If a predefined job role that adequately describes
the duties performed by a job does not exist, then the security
administrator can also create a new job role.

About Extending and Securing Oracle Fusion Applications

8-8 Extensibility Guide for Developers

For details about how the security administrator exports the application policy
store, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator's Guide.

7. Copy the exported jazn-data.xml file into your application workspace.

For details about adding the file to your application, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer's Guide.

8. Customize the Oracle ADF application artifacts in the user interface project to
display the data records exposed by the extended data model.

For details about creating securable custom application artifacts, see Chapter 4,
"Customizing and Extending Oracle ADF Application Artifacts."

9. Define function security policies for the custom Oracle ADF application artifacts to
specify the access privileges of end users.

For details about securing application functions, see Section 8.3.9, "What You Can
Customize in the Application Security Policy Store at Design Time."

10. Opt into the previously defined function security policies by running the ADF
Security wizard to enable OPSS authorization checking.

For details about enabling security on the user interface project, see Section 8.3.8,
"What You Can Customize in the User Interface Project at Design Time."

8.3.3 Oracle Fusion Security Customization Scenarios
You do not need to customize security for every type of customization that you may
make in the extended application. Whether or not a security policy is needed will
depend on the application resource and the type of customization performed.

Table 8–1 summarizes the security customization scenarios that Oracle Fusion security
supports. The "Application Developer Tasks" column of the table provides a brief
description of the security artifacts involved in each scenario, but presumes some
familiarity with the Oracle Fusion security approach (for guidance see Section 8.1.1,
"How to Proceed with This Chapter").

Note: For simplicity, Table 8–1 does not make a distinction between
explicit and implicit data security policies. You may also need to
customize data role templates when a custom business object is used
as a data stripe and explicit data security policies grant access to that
data stripe. For more details about customizing data role templates,
see Section 8.3.6, "What You Can Customize in the Data Security
Policy Store at Design Time."

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-9

Table 8–1 Oracle Fusion Applications Security Customization Scenarios

Security Customization Goal Security Policy Requirement Application Developer Tasks

Control whether the end user
associated with a particular role
may access a new task flow and
view all the web pages of the
flow.

Define a new security policy.

The new task flow will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

Enable ADF Security on the user interface
project to protect all task flows (and the
web pages they contain). Then, in the
file-based policy store, create a resource
definition for the task flow and assign the
definition as a member of an entitlement
(defined in the policy store as a
permission set) that you name. Then,
define the security policy by granting the
entitlement to a custom application role
that you either created or consulted with
a security administrator to create for you.

As a security guideline, do not modify a
predefined function security policy by
granting additional entitlements to a
predefined duty role.

Control whether the end user
associated with a particular role
may access a customized task flow
and view the new or
customized web pages of the
flow.

Do not define a security policy.

The customized Oracle Fusion
application task flow will already
have a function security policy
defined by the security reference
implementation; because this type of
change does not require new duties,
there is no need to grant access to a
new duty role.

Consult the security administrator who
can make a customized task flow
accessible to additional end users
through role provisioning. If the same
group of end users requires access to the
customized task flow, then no change to
the provisioned end users is required.

Control whether the end user
associated with a particular role
may access a new top-level web
page.

In Oracle Fusion Applications, a
top-level web page is one that is
not contained by a task flow.

Define a new security policy.

The new top-level web page will be
inaccessible by default (also called
protected) and will require a new
function security policy to grant end
users access.

The ability to secure individual web
pages in Oracle Fusion Applications
is reserved for top-level web pages
backed by an ADF page definition
file only.

Enable ADF Security on the user interface
project to protect all top-level web pages
backed by ADF page definition files.
Then, in the file-based policy store, create
a resource definition for the web page
and assign the definition as a member of
an entitlement (defined in the policy store
as a permission set) that you name. Then,
define the security policy by granting the
entitlement to a custom application role
that you either created or consulted with
a security administrator to create for you.

As a security guideline, do not modify a
predefined function security policy by
granting additional entitlements to a
predefined duty role.

Control whether the end user
associated with a particular role
may access a customized top-level
web page.

In Oracle Fusion Applications, a
top-level web page is one that is
not contained by a task flow.

Do not define a security policy.

The customized top-level web page
will already have a function security
policy defined by the security
reference implementation; because
this type of change does not require
new duties, there is no need to grant
access to a new duty role.

Consult the security administrator who
can make customized top-level web
pages accessible to additional end users
through role provisioning. If the same
group of end users requires access to the
web page, then no change to the
provisioned end users is required.

Decide whether the end user
associated with a particular role
has the right to select the create,
edit, or delete button in the
displayed web page.

Do not define a security policy.

Access to user interface components,
such as buttons, is not controlled by a
security policy, but can be controlled
by rendering the button in the user
interface based on the end user's role.

Conditionally render the component by
entering an Expression Language (EL)
expression on the rendered attribute of
the button using ADF Security utility
methods to test whether the end user has
membership in a particular role.

About Extending and Securing Oracle Fusion Applications

8-10 Extensibility Guide for Developers

Control whether the end user
associated with a particular role
may view or update a specific set
of data records for an all new
business object in the displayed
web page.

Define a new security policy.

After an Oracle Fusion Data Security
database resource is defined for the
data, the data records exposed by the
new business object will be
inaccessible by default (also called
protected) and will require a new
data security policy to grant end
users read or update access on one or
more specific sets of data records.

Enable authorization checking on the
appropriate operations of the ADF entity
object (read, update, and
removeCurrentRow) that maps to a
specific database table. Then, in the
Oracle Fusion Data Security repository,
add a custom duty role as the grantee of
access privileges and create a named
instance set of data records. Then, define
the security policy by granting Oracle
Fusion Data Security view or update
privileges to the custom duty role for the
data records.

As a security guideline, do not modify a
predefined data security policy by
granting additional privileges to a
predefined duty role.

Control whether the end user
associated with a particular role
may view or update a new set of
data records for an existing
business object in the customized
web page.

Define a new security policy.

Although an existing Oracle Fusion
business object will have an existing
data security policy, you must not
modify privileges granted to
predefined duty roles (those defined
by the security reference
implementation) and you must
instead grant privileges only to
custom duty roles that they define.

In the Oracle Fusion Data Security
repository, add a custom duty role as the
grantee of access privileges and create a
named instance set for the new data
records. Then, define the security policy
by granting Oracle Fusion Data Security
view or update privileges to the custom
duty role for the data records.

As a security guideline, do not modify a
predefined data security policy by
granting additional privileges to a
predefined duty role.

Control whether the end user
associated with a particular role
may view or update new
sensitive data exposed on a new
attribute of an existing business
object in the customized web
page.

Sensitive data is defined as any
personally identifiable
information (PII) that is
considered "public within the
enterprise" (also called
"internally public"). Internally
public PII data is secured from
access external to the enterprise.

Define a new security policy.

Sensitive PII data exposed by a new
attribute that is added to an existing
Oracle Fusion application business
object will be secured by the business
object's data security policies and
will require a new data security
policy to grant end users read or
update access on a specific column of
data.

Column-level OPSS authorization
checking is not supported for ADF entity
objects. Instead create a custom OPSS
permission to control access to the
column read or update operation, and
then, in the Oracle Fusion Data Security
repository, map the operation to a custom
privilege and grant the privilege to the
custom duty roles for the sensitive data
records.

Last, conditionally render the attribute by
testing whether the end user has the
custom privilege either 1.) by entering an
EL expression on the user interface
component that displays the attribute or
2.) by entering a Groovy expression on
the ADF view object to which the user
interface component is bound.

Table 8–1 (Cont.) Oracle Fusion Applications Security Customization Scenarios

Security Customization Goal Security Policy Requirement Application Developer Tasks

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-11

8.3.4 Scenarios Related to Extending and Securing Data Model Components
In Oracle Fusion Applications, when you want to extend the application to expose
additional data, you create an ADF entity object and implement the operations that
may be performed over a particular set of data records. The ADF entity object you
create encapsulates the data as business object instances, corresponding to data records
from a database table or view, such as an invoice or a purchase order. Typical
operations are business functions like viewing, editing, or creating an instance of the
business object.

Security concerned with controlling the operations that can be performed against
specific data is called data security. Data security policies involve granting an end
user, by means of the end user's membership in a role, the ability to perform
operations on specific sets of data. For example, an accounts payable manager in the
enterprise's western regional office may be expected to view and edit invoice data
records, but only for the customers in the western region. The Accounts Payable
Manager role provisioned to the accounts payable manager authorizes access to the
business functions required to view and edit invoice instances, and, in this case, the
specific instances of the invoice business object that is striped for the western region.

Data security policies are implemented using Oracle Fusion Data Security, which is the
technology that implements the security repository for data security policies. Oracle
Fusion Data Security is implemented as a series of Oracle Fusion Applications
database tables, sometimes referred to as FND tables (note that FND refers to
resources in foundation tables) and includes tables like FND_OBJECTS that defines the
protected database resource and FND_GRANTS that defines the access privileges for
those database resources.

To protect the business object in the extended application, where it has been exposed
as an ADF entity object, a database resource definition in the FND_OBJECTS table
identifies the same table or view backing the ADF entity object. The database resource
in Oracle Fusion Data Security is the data resource on which data security is enforced.

Control whether the end user
associated with a particular role
may view or update new
confidential data exposed on a
new business object that the
customized web page displays.

Confidential data is defined as
any personally identifiable
information (PII) that is
considered "private within the
enterprise." Exposure of such
information outside the
enterprise could result in harm,
such as loss of business, benefit
to a competitor, legal liability, or
damaged reputation.
Confidential PII data is secured
from access external to the
enterprise and is secured
additionally to prevent access
within the enterprise even by
highly privileged end users
(such as database
administrators).

Define a new security policy.

In Oracle Database, the Virtual
Private Database (VPD) feature only
supports securing a set of data
records and therefore will require a
new table in a custom schema that
you create for Oracle Fusion
Applications. The confidential PII
data exposed by the new business
object will be inaccessible by default
(also called protected) and will
require a new data security policy to
grant end users read or update access
on a specific set of data records.

Column-level policies are not supported
by Virtual Private Database (VPD).
Instead, the database administrator must
create a new table in your custom schema
for Oracle Fusion Applications, create a
view for that table, and then define a
VPD policy to filter the PII data records
by associating a PL/SQL function with
that view.

Then, in the Oracle Fusion Data Security
repository, create an action with the same
name as the database view and define the
security policy by granting Oracle Fusion
Data Security view or update privileges
to the custom duty role for the
confidential data records.

Last, in the data model project, enable
OPSS authorization checking on the
appropriate operations of the ADF entity
object (read, update, and
removeCurrentRow) that maps to the new
PII database table.

Table 8–1 (Cont.) Oracle Fusion Applications Security Customization Scenarios

Security Customization Goal Security Policy Requirement Application Developer Tasks

About Extending and Securing Oracle Fusion Applications

8-12 Extensibility Guide for Developers

After the business object is defined as an Oracle Fusion Data Security database
resource, then a security policy must be created to grant access to the data records. The
security policies for the database resource specify access privileges such as read,
update, and delete privileges on specific sets of data records exposed by the business
object.

As an Oracle Fusion Applications security guideline, a new data security policy must
be created instead of modifying predefined data security policies of the security
reference implementation. For example, a new data security policy is required to
expose additional data records or operations for an existing business object.
Additionally, a custom duty role must be created as the recipient of the new data
security access privileges because granting privileges to a predefined duty role would
alter the segregation of duties defined by the security reference implementation.

Additionally, the security reference implementation uses database-level security
policies to protect most of the confidential personally identifiable information (PII),
also called internally private data, that exists in the Oracle Fusion Applications
schema. This type of security is implemented in Virtual Private Database (VPD)
policies directly on the PII tables. In general, database administrators and other
personnel with access to the database must not modify VPD policies implemented for
Oracle Fusion Applications. However, when you create a business object that
introduces confidential data and that data needs to be treated as internally private
within the enterprise, then certain roles may be granted access to the confidential data
for valid business reasons. For example, a human resources representative may require
access to the employee's home addresses, while a dispatcher may require access to the
home telephone numbers of on-call staff.

Whether or not you will need to define a data security policy to grant access to data
records depends on the type of customization, as summarized in Table 8–1. The
scenarios for defining data security policies include the following.

When a new business object is introduced and it needs to be secured:
When you seek to secure additional data records in the extended application because a
new ADF entity object is introduced, then an Oracle Fusion Data Security database
resource must be defined to protect the data records and a new data security policy
must be created to grant end users access to the data records exposed by the business
object that the ADF entity object defines. The data records exposed by the business
object will be unprotected (accessible to all end users) until a database resource
identifying the business object is defined in the Oracle Fusion Data Security repository.

Note: When an ADF entity object exposes a business object that does
not require security, then no database resource for that business object
needs to be defined in the Oracle Fusion Data Security repository. For
complete details about Oracle Fusion Data Security, see the
"Implementing Oracle Fusion Data Security" chapter in the Oracle
Fusion Applications Developer's Guide.

Note: Developers are not entitled to modify the role hierarchy
defined by the Oracle Fusion Applications security reference
implementation. Therefore, whenever you create a new duty role, you
must consult the security administrator to assign the custom duty role
to a job role or data role.

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-13

Note that the operations to be secured on the new business object will also require
enabling OPSS authorization checking for those operations on the ADF entity object in
the data model project, as described in Section 8.3.7, "What You Can Customize in the
Data Model Project at Design Time."

When a new business object attribute is introduced and it maps to sensitive
data:
When you modify an existing ADF entity object to include a new attribute that maps
to data that not all end users need to view, then a new data security policy must be
defined to grant end users access to the sensitive data. This is accomplished through a
combination of a data security policy that grants a custom privilege and enforcement
of the privilege in the application source.

Because Oracle Fusion Data Security does not support automatic enforcement of
custom data security privileges, column-level security is not supported by default. You
enforce the custom privilege in the application source by enabling OPSS authorization
checking at the level of the user interface component or its databound ADF view
object. Otherwise, without the custom data security privilege and custom privilege
check, the data records (including the sensitive fields) exposed by the business object
would be secured by the data security policy that already exists for the business object.

When a new business object attribute is introduced and it maps to confidential
data:
When you create an ADF entity object that introduces data that is to be treated as
confidential to the enterprise, then define row-level VPD policies to control access to
PII data by privileged users, including database administrators. Implementing VPD
policies requires saving the confidential information in a new table in a custom schema
for Oracle Fusion Applications.

In this case, the database administrator first creates the database table and the VPD
policy to secure the PII data records. The VPD policy the database administrator
creates associates a policy function (a PL/SQL function) with a particular view or
synonym definition in the database. The policy function filters the rows for any query
made against the PII data. Finally, you can define the actual data security policies by
granting to an action that has been created with same name as the database view
where the policy is defined.

For information about creating tables in a custom schema for Oracle Fusion
Applications, see Section 4.8, "Customizing and Extending the Oracle Fusion
Applications Schemas."

For information about creating VPD policies, see the "Using Oracle Virtual Private
Database to Control Data Access" chapter in the Oracle Database Security Guide.

Important: Oracle Fusion Data Security alone will not prevent
sensitive data from being accessed by highly privileged end users,
such as database administrators. If the data needs to be treated as
internally private (confidential data), then consider implementing
additional security using Virtual Private Database (VPD) policies.
However, do not implement column-level VPD policies to protect
sensitive data exposed by attributes, because security for attributes is
not supported by VPD in Oracle Fusion Applications.

About Extending and Securing Oracle Fusion Applications

8-14 Extensibility Guide for Developers

When new operations or new data records are introduced from an already
secured business object:
When you introduce new operations or additional data records exposed by an existing
ADF entity object into the extended application, you must not modify the predefined
data security policies or data role templates that already exist for that business object.
Instead, define a new data security policy to grant end users access to the operations
or data records that had previously remained protected.

Note that the operations to be secured on the business object may also require enabling
OPSS authorization checking for those operations on the ADF entity object in the data
model project, as described in Section 8.3.7, "What You Can Customize in the Data
Model Project at Design Time."

When already exposed operations or data records need to be accessible to
additional end users:
When you introduce functionality into the extended application that changes the
access requirements of the operations and data records exposed by an existing
business object, then those end users may be provisioned by existing job roles or data
roles. Consult the security administrator to make the data accessible to additional end
users through role provisioning. This type of customization does not require
modifying the access privileges or the duty roles of an associated data security policy.

8.3.5 Scenarios Related to Extending and Securing User Interface Artifacts
When you want to extend an Oracle Fusion application user interface to support
particular end user duties, you may either create a new ADF bounded task flow or
customize an existing bounded task flow. The bounded task flow specifies the control
flow that the end user is expected to follow when interacting with the web pages
contained by the task flow. Similarly, top-level web pages (ones that are not contained
by a bounded task flow) may be introduced or customized.

Security concerned with controlling access to a bounded task flow or top-level web
page is called function security. Function security policies involve granting an end
user, by means of the end user's membership in a role, the ability to access task flows
and perform operations in the contained web pages. For example, the accounts
payable manager must be granted access privileges to the task flow that provides the
functions to manage the invoice data records. If the manager is authorized to access
the task flow, then a data security policy governing the invoice records will specify the
manager's right to access the actual data.

Function security is implemented at the most fundamental level as resource/action
pairs that may be granted to secure specific application artifacts. Oracle ADF defines
the actions needed to secure certain Oracle ADF application artifacts, including ADF
bounded task flows and, in the case of top-level web pages, ADF page definitions files.

In the Oracle Fusion Applications environment, function security policies aggregate
one or more resource/action pairs into an entitlement definition. The entitlement is the
entity that is granted to a duty role. The function security policy for the Oracle ADF
application artifact, confers the end user with function access privileges, such as view
or manage, through a specific duty role.

The function security policies for all the resources of the Oracle Fusion application
form the function security repository, which is implemented as an OPSS application
policy store. The OPSS policy store in a test or production environment is an LDAP
server running Oracle Internet Directory. At runtime, OPSS performs authorization
checks against the application policy store to determine the end user's access
privileges.

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-15

The security administrator for the enterprise exports the LDAP-based application
policy store for a particular Oracle Fusion application into an XML file-based policy
store that allows you to add security policies using the tools provided by JDeveloper.
As an Oracle Fusion security guideline, you must define a new function security
policy rather than modify the predefined function security policies of the security
reference implementation. Additionally, a custom duty role must be created as the
recipient (also called the grantee) of the new function security access privileges
because granting privileges to a predefined duty role would alter the segregation of
duties defined by the security reference implementation.

Whether or not you will need to define a function security policy to grant access to a
task flow or top-level web page depends on the type of customization, as summarized
in Table 8–1. The scenarios for defining function security policies include the
following.

When a new task flow or top-level web page is introduced:
When you expose new functionality in the extended application through a new ADF
bounded task flow or top-level web page that you create, then a new function security
policy must be defined to grant end users access to the application artifact.

The new ADF bounded task flow and top-level web page are the only scenarios that
require a new function security policy for the extended application.

When a new web page is introduced into an existing task flow:
When you modify an existing task flow to include new web pages, those web pages
will be secured by the containing task flow's existing security policy. In this case,
because all web pages contained by a bounded task flow are secured at the level of the
task flow, there is no need to grant more function security privileges specifically for
the new page. You will, however, need to define a new data security policy to grant
end users access to any new data records that were introduced by the customization.

When a web page is modified to display a new field of sensitive data:
When you modify a web page to display sensitive data for a single data record field
(for example, by adding a column to a table component to display salary information),
access to the field displayed by the user interface component cannot be controlled by a
function security policy. Authorization checking is not implemented by OPSS at the
level of ADF Faces user interface components in the web page. Instead, you enter an
Expression Language (EL) expression on that part of the databound ADF Faces
component responsible for rendering the field and test the end user's associated role.

Note: For more information about how Oracle Platform Security
Services implements function security, see the "Understanding
Security Concepts" part in the Oracle Fusion Middleware Application
Security Guide.

Note: Developers are not entitled to modify the role hierarchy
defined by the Oracle Fusion Applications security reference
implementation. Therefore, whenever you create a new duty role, you
must consult the security administrator to assign the custom duty role
to a job role.

About Extending and Securing Oracle Fusion Applications

8-16 Extensibility Guide for Developers

Note that using EL expressions to conditionally render a portion of a user interface
component does not control access to the actual data; truly sensitive data must be
secured on the business object with a data security policy, as described in Section 8.3.4,
"Scenarios Related to Extending and Securing Data Model Components."

When a web page is modified to display UI components that must not be
viewable by all end users:
When you modify a web page to display user interface components that not all end
users need to view (for example, a button that deletes data records), access to the
components cannot be controlled with a function security policy. Authorization
checking is not implemented by OPSS at the level of ADF Faces user interface
components in the web page. Instead, you enter an EL expression using ADF Security
utility methods on the rendered property of the ADF Faces component to hide or
render the entire component based the end user's associated role.

Note that using EL expressions to conditionally render a user interface component
does not control access to the actual data (if that component displays data). Truly
sensitive data must be secured on the business object with a data security policy, as
described in Section 8.3.4, "Scenarios Related to Extending and Securing Data Model
Components."

When existing task flows or top-level web pages must be accessible by
additional end users:
When you introduce functionality into the extended application that changes the
access requirements of an existing bounded task flow or top-level web page, then
consult the security administrator to make the resource accessible to additional end
users through role provisioning. This type of customization does not require changing
the access privileges associated with the resource or the duties it defines.

8.3.6 What You Can Customize in the Data Security Policy Store at Design Time
Data security policies are stored in the Oracle Fusion Data Security repository and are
defined and edited using Oracle Authorization Policy Manager. You have access to
this tool through Oracle Fusion Functional Setup Manager, from the Manage Data
Security task available in the Setup and Maintenance work area of any Oracle Fusion
Setup application.

Data security policies control access to the database resources of an enterprise.
Database resources in the security reference implementation include database tables
and views and are predefined standard business objects that must not be changed.
However, for cases where custom database resources must be secured business objects
(defined by ADF entity objects in the data model project), you can be entitled to create
custom duty roles, manage database resources, and define new data security policies
using Oracle Authorization Policy Manager.

Note: After you select the Manage Data Security task in Oracle
Fusion Functional Setup Manager, the environment redirects to the
data security customization user interface provided by Oracle
Authorization Policy Manager. In this guide, although the data
security customization tool is identified as Oracle Authorization
Policy Manager, be aware that the tool must be accessed through
Oracle Fusion Functional Setup Manager.

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-17

The data security policy consists of privileges conditionally granted to a role to control
access to instance sets of the business object. A privilege is a single action
corresponding to an end user's intended operation on a single business object. A data
security policy therefore is a grant of a set of privileges to a role on a business object
for a given instance set. You can define the instance sets as a single row of data,
multiple rows of a single table, or all rows of a single table.

The following security artifacts are recorded in the Oracle Fusion Data Security
repository for a new data security policy:

■ A database resource that references a primary key corresponding to the database
table or view of the business object on which data security will be enforced.

After the database resource is defined in the data security repository, Oracle
Fusion Data Security protects the data records and operations exposed by the
business object by default, and a data security policy must be defined to grant end
users access to the business object.

■ One or more roles that will be assigned to the end users who can perform the
granted actions.

For more details about the roles used by Oracle Fusion Applications, see
Section 8.2, "About Extending the Oracle Fusion Applications Security Reference
Implementation."

■ A rule (also called a named condition) to define the available row instance sets in
the form of a SQL predicate or simple filter (stored as XML) defined on the rows of
the database resource.

Instance sets may be a single row of data, multiple rows of a single table, or all
rows of a single table. Only instance sets with multiple rows require creating a
named condition.

■ One or more actions (such as view, edit, and delete) performed on database
records that correspond to the operations supported by the business object (which
may include custom operations).

At runtime, data security policies make data available to end users based on their
provisioned roles according to the following means:

■ Action grants that specify whether the end user has the necessary privilege to
perform the intended operation

■ Condition evaluation for individual actions (and its corresponding operation) that
specify which data records from the database resource may be accessed

Important: As an Oracle Fusion Applications security guideline, the
privileges granted by predefined data security policies assigned to
duty roles of the Oracle Fusion Applications security reference
implementation must not be changed by customization developers.
Always define new data security policies to confer additional access
privileges. Details about the security reference implementation can be
found in the Oracle Fusion Applications security reference manuals.

About Extending and Securing Oracle Fusion Applications

8-18 Extensibility Guide for Developers

Related to data security is an Oracle Fusion security feature called the data role
template. Oracle Fusion Applications supplies data role templates to anticipate typical
Oracle Fusion security scenarios and to allow the enterprise to generate data security
policies based on information that is specific to the enterprise, such as the names of
business units on which to apply the data security policies. Typically, the
implementation manager for Oracle Fusion Applications enters the template
information and then runs the templates to generate data security policies and the
supporting data roles.

When you create a new business object or expose a new set of data records in the
extended application, you must confirm whether a data role template exists to
generate data security policies for that business object. If a data role template exists,
you can update the template to supply information pertaining to the business object,
such as the data records to secure and the data dimensions to express data stripes,
such as territorial or geographic information used to partition enterprise data. A data
dimension is a stripe of data accessed by a data role, such as the data controlled by a
business unit.

Using Oracle Authorization Policy Manager, you may perform the following data
security-related customization tasks:

■ Manage database resources.

An existing database resource must not have its primary key altered, but you can
define new named conditions and add new actions to map any new operations
that you implement. If you create a new business object for a database table or
view, you can create an all new database resource with named conditions (see the
next list entry) and actions.

■ Create named conditions to filter the rows of the business object. (Optional)

The database resource conditions are specified as SQL queries that, when added to
a security policy, filter the data and generate an instance set of available data
records. Conditions specify the entitlements available to the end user for specific
business objects. Conditions may be static or they may be parameterized to allow
instance sets to be specified generically but granted specifically. Note a condition
is required only when the data security policy does not secure either a single data
record or all data records: Both of these cases may be defined without named
conditions when creating the security policy.

Note that instance sets generated with parameters cannot be used for data security
that is enforced declaratively. Instead, you must write code to enforce OPSS
authorization checking.

■ Define data security policies consisting of privileges for a specific application role,
named condition (optional), and business object.

A privilege can map a standard action to a standard operation: read, update, and
delete on a condition of a business object. The standard actions and the standard
operations are named similarly.

Note: The application developer does not enforce data security
policies when creating the policies. In the case of data security, you
must enable OPSS authorization checking on each business object that
needs data security. This enforcement is implemented in JDeveloper,
as described in Section 8.3.7, "What You Can Customize in the Data
Model Project at Design Time."

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-19

Alternatively, a privilege can map a custom action to a custom operation on a
condition of a business object. The custom privilege, for example ApprovePO, is
useful to secure a custom operation in the data model project or to secure any
operation for row sets at the level of the individual ADF view object. The custom
privilege also supports securing operations on columns through an EL expression
in the user interface project or Groovy scripting language expressions in the data
model project.

As an alternative to specifying a named condition, the data security policy can
secure an instance set defined by a single data record or defined by all data
records. Both of these cases may be selected when creating the data security policy.

■ Generate data security policies by updating a data role template with data
dimensions and data sets required to support the business object.

A data role template generates data security policies for a business object based on
supplied data dimensions to partition the data records into sets of data security
policies. The template also maps instance sets for the data security policies it will
generate to a particular data dimension. Instance sets are authored at the time the
business object is registered as a database resource. Data dimensions and instance
sets are specified as SQL clauses.

Note that the SQL clauses cannot be modified after running the template.

For an overview of these tasks, see Section 8.4, "Defining Data Security Policies on
Custom Business Objects." For detailed documentation, see the "Managing Oracle
Fusion Applications Data Security Policies" and "Oracle Fusion Applications Data Role
Templates" chapters in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

8.3.7 What You Can Customize in the Data Model Project at Design Time
You create a data model project in JDeveloper to map custom business objects to ADF
entity objects. At runtime, the ADF entity object creates a row set of data records
exposed by the business object and simplifies modifying the data by handling create,
read, update, and delete operations. In the data model project, you then define one or
more ADF view objects on top of the ADF entity object to shape the data to the row set
required by the tasks of the application, such as populating a form that displays a
customer's sales invoice.

After you map the business object to an ADF entity object, enforcement of data
security policies does not occur automatically on the data records of the exposed
business object. The Oracle Fusion security approach protects the business object that
has been registered as an Oracle Fusion Data Security database resource to ensure that
end users do not have unintended access to sensitive data. In adherence to the security
principle of protected by default, Oracle Fusion security separates defining policies
and enforcing policies. Thus, by default, data security policies for a business object will
remain ineffective until you enable OPSS authorization checking on the operations of
the ADF business component. Enforcement of OPSS authorization checking can be
specified either declaratively, at the level of ADF entity objects or ADF view objects, or
programmatically, on any related code.

You can modify the data model project to opt into data security in two ways:

■ At the level of the ADF entity object, to enable OPSS authorization checking on
standard operations. Standard operations supported by ADF entity objects
include, read, update, and delete current row. In this case, all ADF view objects
based on the ADF entity object will have the same level of authorization checking

About Extending and Securing Oracle Fusion Applications

8-20 Extensibility Guide for Developers

enabled. The applicable data security policies will filter the data for each row set
produced by these ADF view objects in exactly the same way.

■ At the level of the ADF view object, to enable OPSS authorization checking on
standard operations for a collection of rows. This provides a way to filter the data
in the data model project based on an individual row set that the ADF view object
defines. This level of authorization checking also supports defining a custom
privilege (corresponding to the ADF view object read operation) in the data
security policy store.

Using JDeveloper, you can perform the following security-related customization tasks
in the data model project:

■ Enforce row-level security for standard operations.

Standard operations that you can secure are read, update, and remove current row.
OPSS authorization checking is enabled directly on the ADF entity object to be
secured. Although the ADF entity object maps to all instances of the business
object, the data security policy defines conditions to filter the rows displayed to
the end user.

■ Enforce row-level security for custom operations.

You may wish to enforce security for custom operations that are specific to the
custom business object. Custom operations are not supported by ADF Business
Components on the ADF entity object. When a data security policy defines a
custom operation, you must enable it using view criteria that you set on an ADF
view object. The view criteria identifies the data security policy and business
object.

■ Enforce security for individual attributes of business objects.

Column-level OPSS authorization checking is not supported on the attributes of
ADF entity objects or ADF view objects. You must create a custom OPSS
permission for the column-level read or update operation and then map that to a
custom privilege. Whether or not the user interface displays the column is
specified by testing that custom privilege in the user interface using an EL
expression on the secured attribute displayed by the user interface component.

For an overview of these tasks, see Section 8.5, "Enforcing Data Security in the Data
Model Project." For detailed documentation, see the "Implementing Oracle Fusion
Data Security" chapter in the Oracle Fusion Applications Developer's Guide.

8.3.8 What You Can Customize in the User Interface Project at Design Time
Before you define function security policies, you will use JDeveloper to create a user
interface project with the custom ADF bounded task flows or top-level web pages that
you intend to secure.

To simplify the task of securing the functions of the extended application, ADF
Security defines a containment hierarchy that lets you define a single security policy
for the ADF bounded task flow and its contained web pages. In other words, the
security policy defined at the level of the bounded task flow, secures the flow's entry
point and then all pages within that flow are secured by the same policy. For example,
a series of web pages may guide new end users through a registration process and the
bounded task flow controls page navigation for the process.

Specifically, the Oracle ADF application artifacts that you can secure in the user
interface project of the extended Oracle Fusion application are:

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-21

■ An ADF bounded task flow that protects the entry point to the task flow, which in
turn controls the end user's access to the pages contained by the flow

The ADF unbounded task flow is not a securable application artifact and thus
does not participate in OPSS authorization checking. When you must secure the
contained pages of an unbounded task flow, you define policies for the page
definition files associated with the pages instead.

■ ADF page definition files associated with top-level web pages

For example, a page may display a summary of products with data coordinated by
the ADF bindings of the page's associated ADF page definition file.

For details about creating bounded task flows and databound top-level web pages, see
the "Introduction to Building Fusion Web Applications with Oracle ADF" chapter in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Although you can define function security policies for the custom resources of the user
interface project, enforcement of function security does not occur automatically. The
Oracle Fusion security approach protects securable Oracle ADF application resources
to ensure that end users do not have unintended access. In adherence to the security
principle of protected by default, Oracle Fusion security separates defining policies
and enforcing policies. Thus, by default, function security policies will remain
ineffective until you enable OPSS authorization checking by running the ADF Security
wizard in JDeveloper on the user interface project.

Using JDeveloper, you can perform the following security-related customization tasks
in the user interface project:

■ Enable OPSS authorization checking to protect Oracle ADF application artifacts.

Oracle ADF application artifacts in the user interface project, including ADF
bounded task flows and the top-level web pages (with a backing ADF page
definition) will be protected when you configure ADF Security by running the
ADF Security wizard with the Authentication and Authorization option selected.
This ensures that end users do not have unintended access to sensitive task flows
of the extended application.

■ Conditionally display or hide user interface components in the web page.

ADF Security implements utility methods for use in EL expressions to access
Oracle ADF application artifacts in the security context. For example, you can use
the ADF Security utility methods to specify whether the end user is allowed to
access create, edit, or delete buttons. Good security practice dictates that your
application must hide user interface components and capabilities for which the
end user does not have access. For example, if the end user is not allowed access to
a particular task flow, you can use the EL expression to evaluate the role
membership of the end user to determine whether or not to render the navigation
components that initiate the task flow.

Important: After you run the ADF Security wizard, OPSS
authorization checking is enforced on the bounded task flows and
top-level pages. These application artifacts will be inaccessible when
testing the application in JDeveloper. To enable access, you must
define function security policies on the protected application artifacts,
as described in Section 8.3.9, "What You Can Customize in the
Application Security Policy Store at Design Time."

About Extending and Securing Oracle Fusion Applications

8-22 Extensibility Guide for Developers

For an overview of these tasks, see Section 8.6, "Defining Function Security Policies for
the User Interface Project." For detailed documentation, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer's Guide.

8.3.9 What You Can Customize in the Application Security Policy Store at Design Time
You can use JDeveloper to add application security policies to a file-based policy store
that the security administrator creates by exporting policies from the LDAP-based
application security policy store. The file containing the exported policy store is the
jazn-data.xml file.

As a security development guideline, use JDeveloper tools only to work on the
exported file-based policy store, and do not edit the security definitions directly.
JDeveloper supports iterative development of security so you can easily define, test,
and edit security policies that you define for Oracle ADF application artifacts. In
JDeveloper, you can also create end user identities for the purpose of running and
testing the application in JDeveloper's Integrated WebLogic Server. You provision a
few end user test identities with roles to simulate how the actual end users will access
the secured application artifacts.

After testing in JDeveloper using Integrated WebLogic Server, you must consult with
the security administrator to merge the LDAP-based application policy store in the
staging environment with the security policies that you added to the exported XML
file. Initially, the staging environment allows further testing using that server's identity
store before deploying to the production environment. Thus, end user identities
created in JDeveloper are not migrated to standalone Oracle WebLogic Server and are
used only in Integrated WebLogic Server to test the extended application.

The basic security artifact for function security is the JAAS (Java Authentication and
Authorization Service) permission, where each permission is specific to a resource
type and maps the resource with an allowed action. In general, the JAAS permission
specifies the allowed operations that the end user may perform on a particular
application artifact. However, from the standpoint of Oracle Fusion Applications, end
users typically need to interact with multiple resources to complete the duties
designated by their provisioned roles. To simplify the task of creating function security
policies in the Oracle Fusion Applications environment, you work with OPSS
entitlements to grant privileges to a role for a variety of securable resources, including
ADF task flows, web services, and service-oriented architecture (SOA) workflows.

Function security policies that comprise entitlement grants with multiple application
artifacts are called entitlement-based policies. Example 8–1 shows the Oracle Fusion
Applications entitlement policy Maintain Purchase Orders, which groups the OPSS
permissions for ADF task flows, a web service, and a SOA workflow.

Example 8–1 OPSS Entitlement-Based Policy Groups Permissions as a Set that May Be
Granted to a Role

Resource Type: ADF Taskflow
Resource: PO Summary
Action: view

Resource Type: ADF Taskflow

Note: For details about implementing and testing security using
JDeveloper, see the "Implementing Function Security" chapter in the
Oracle Fusion Applications Developer's Guide.

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-23

Resource: PO Details
Action: view

Resource Type: ADF Taskflow
Resource: Supplier Details
Action: view

Resource Type: Web Service
Resource: SpendingLimitCheckWS
Action: invoke

Resource Type: Workflow
Resource: POApproval
Action: submit

You use the security policy editor in JDeveloper to define the entitlement-based policy.
JDeveloper modifies the source in the exported XML file. As Example 8–2 shows,
entitlement-based policies in Oracle Fusion applications are defined in the
<jazn-policies> element. The policy store section of the file contains the following
definitions:

■ A <resource-type> definition that identifies the actions supported for resources of
the selected type

■ A <resource> definition to identify the resource instance that you selected from
your application and mapped to a resource type

■ A <permission-set> definition to define the resources and actions to be granted
as an entitlement

■ A <grant> definition with one or more entitlements (defined in the XML as a
<permission-set>) and granted to the desired application roles (the grantee)

Example 8–2 Entitlement-Based Security Policy Definition in jazn-data.xml File

<?xml version="1.0" ?>
<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <role-categories>
 <role-category>
 <name>MyAppRoleCategory</name>
 <display-name>MyAppRoleCategory display name</display-name>
 <description>MyAppRoleCategory description</description>
 </role-category>
 </role-categories>

 <!-- resource-specific OPSS permission class definition -->

About Extending and Securing Oracle Fusion Applications

8-24 Extensibility Guide for Developers

 <resource-types>
 <resource-type>
 <name>APredefinedResourceType</name>
 <display-name>APredefinedResourceType display name</display-name>
 <description>APredefinedResourceType description</description>
 <provider-name>APredefinedResourceType provider</provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>write,read</actions>
 </resource-type>
 </resource-types>

 <resources>
 <resource>
 <name>MyResource</name>
 <display-name>MyResource display name</display-name>
 <description>MyResource description</description>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 </resource>
 </resources>

 <!-- entitlement definition -->
 <permission-sets>
 <permission-set>
 <name>MyEntitlement</name>
 <display-name>MyEntitlement display name</display-name>
 <description>MyEntitlement description</description>
 <member-resources>
 <member-resource>
 <type-name-ref>APredefinedResourceType</type-name-ref>
 <resource-name>MyResource</resource-name>
 <actions>write</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 </permission-sets>

 <!-- Oracle function security policies -->
 <jazn-policy>
 <!-- function security policy is a grantee and permission set -->
 <grant>
 <!-- application role is the recipient of the privileges -->
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 <name>AppRole</name>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 </principal>
 </principals>
 </grantee>
 <!-- entitlement granted to an application role -->
 <permission-set-refs>
 <permission-set-ref>
 <name>MyEntitlement</name>
 </permission-set-ref>

</permission-set-refs>
</grant>

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-25

</jazn-policy>
</application>

</applications>
</policy-store>
</jazn-data>

While OPSS permissions granted for a single resource are not typically defined in the
Oracle Fusion Applications environment, function security policies that use OPSS
permissions for a single resource are called resource-based policies. Ultimately, a
function security policy may have either one or more OPSS permissions, one or more
OPSS permission sets (entitlements), but not both.

Provisioning end users with role membership is defined in the application's identity
store and is a configuration task to be performed by the security administrator,
independent of security customization.

Using JDeveloper, you may perform the following function security customization
tasks:

■ Define an entitlement-based policy for all other application roles.

An entitlement-based policy is a set of resource grants (set of OPSS permissions)
that will be required by the end user to complete a task.

■ Define a resource-based policy specifically for the built-in OPSS application role
authenticated-role.

A resource-based policy sets an OPSS permission on a single application resource
and grants that permission to an application role. This type of function security is
typically not used by securable resources in Oracle Fusion Applications. However,
the resource-based policy must be used to make a custom resource accessible to
any authenticated end user (ones who visit the site and log in). For example,
granting a view privilege to the built-in OPSS application role
authenticated-role is the way to make an employee registration task flow
accessible to all employees within the enterprise.

For an overview of these tasks, see Section 8.6, "Defining Function Security Policies for
the User Interface Project." For detailed documentation, see the "Implementing
Function Security" chapter in the Oracle Fusion Applications Developer's Guide.

8.3.10 What You Cannot Do with Security Policies at Design Time
After you define the security policies, consult a security administrator to migrate the
policies to the staging environment.

The security administrator is responsible for the following tasks.

Note: Granting access to web pages in Oracle Fusion Applications is
enforced at the level of ADF Controller components called bounded
task flows. Task flows in Oracle Fusion Applications are ADF
Controller components that assemble the application's web pages (or
regions within a web page) into a workflow that supports the tasks to
be performed by application end users. Defining security policies on
task flows instead of individual web pages is a security best practice
that blocks end users from directly accessing the pages of a task flow.
Web pages that are not contained in a task flow are top-level pages
and may have security policies defined individually.

About Extending and Securing Oracle Fusion Applications

8-26 Extensibility Guide for Developers

■ After testing is completed in JDeveloper, the security administrator must merge
the file-based policy store with the application policy store in the staging
environment.

For information about how the security administrator merges the policies using
Oracle Authorization Policy Manager, see the "Upgrading Oracle Fusion
Applications Policies" chapter in the Oracle Fusion Middleware Oracle Authorization
Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).

■ The security administrator must provision enterprise users by mapping enterprise
roles (defined in the staging environment identity store) to the custom application
roles.

For information about how the security administrator provisions enterprise users
using Oracle Authorization Policy Manager, see the "Managing Policies and Policy
Objects" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

■ Before running the application in the staging environment, the security
administrator must reconcile the application role GUID of any data security
policies that were created based on new custom application roles.

When the file-based policy store is merged, the GUIDs of application roles are not
preserved. For information about how the security administrator reconciles GUIDs
in a staging environment, see the "Securing Oracle Fusion Applications" chapter in
the Oracle Fusion Applications Administrator's Guide.

■ Before running the application in the staging environment, the security
administrator must modify the application to use the LDAP-based policy store
provided by the testing environment.

For more information, see the "Implementing Function Security" chapter in the
Oracle Fusion Applications Developer's Guide.

■ After testing is completed in the staging environment, the security administrator
can migrate the application policy store from the staging environment to the
policy store in production.

For information about how the security administrator migrates policies to a new
environment, see the "Securing Oracle Fusion Applications" chapter in the Oracle
Fusion Applications Administrator's Guide.

8.3.11 Before You Begin Customizing Security
Before you begin customizing security, you should be familiar with the Oracle Fusion
application architecture that enables customization, as described in Chapter 1,
"Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will need to do the following before you can begin customizing security:

1. Install JDeveloper and set up your development environment.

For more information, see Section 1.3.13, "Installing Customization Tools."

2. Create a customization application workspace.

Before you can implement customizations using JDeveloper, you must create an
application workspace that imports the necessary parts of the application you
want to customize. For more information, see Chapter 3, "Using Oracle JDeveloper
for Customizations."

About Extending and Securing Oracle Fusion Applications

Customizing Security for Oracle ADF Application Artifacts 8-27

3. Start JDeveloper in the appropriate role.

If you are implementing customizations on existing application artifacts, you must
select the Oracle Fusion Applications Administrator Customization role when
you start JDeveloper.

If you are creating new custom application artifacts (such as, entity objects, view
objects, and pages), you must select the Oracle Fusion Applications Developer
role when you start JDeveloper.

4. Create the database resources in a custom schema for Oracle Fusion Applications.

The database table exposes the data in your application. You are free to use any
tool you wish to create database objects in your custom schema. For example, you
may choose to work with the Database Navigator in JDeveloper to model database
objects. For information about creating the table in a custom schema, see
Section 4.8, "Customizing and Extending the Oracle Fusion Applications
Schemas." For information about creating database objects, see the Designing
Databases topics in the JDeveloper online help.

5. When securing confidential personally identifiable information (PII), create a new
table in a custom schema for Oracle Fusion Applications, a view corresponding to
the new table, and a VPD policy to associate a PL/SQL filter function with the
view.

The VPD policy filters the view to expose the data for which data security policies
may be defined. For information about creating the table in a custom schema, see
Section 4.8, "Customizing and Extending the Oracle Fusion Applications
Schemas." For information about creating VPD policies, see the "Using Oracle
Virtual Private Database to Control Data Access" chapter in the Oracle Database
Security Guide.

6. Obtain privileges to define or edit Oracle Fusion Data Security security policies.

If you will be creating or editing Oracle Fusion Data Security security policies in
Oracle Fusion Applications, you will need specific privileges. When you have the
necessary privileges, Oracle Authorization Policy Manager allows you to access
the data security customization user interface. Contact your security administrator
for details.

7. In Oracle Authorization Policy Manager, create custom application roles.

Data security and function security permit granting access privileges to Oracle
Fusion Applications duty roles (also called OPSS application roles). Although
Oracle Fusion Applications ships with standard duty roles, as an Oracle Fusion
security guideline, you must create new duty roles rather than grant privileges to
predefined duty roles.

For information about creating application roles, see the "Managing Policies and
Policy Objects" chapter in the Oracle Fusion Middleware Oracle Authorization Policy
Manager Administrator's Guide (Oracle Fusion Applications Edition).

8. In human capital management (HCM) core applications, create job roles, as
needed.

Job roles (also called OPSS enterprise roles) provide access to application resources
through the Oracle Fusion Applications role inheritance hierarchy, which specifies
the inherited duty roles. Although Oracle Fusion Applications ships with standard
job roles, the security administrator can create a new job role even when one does
already exist that defines the new duties.

Defining Data Security Policies on Custom Business Objects

8-28 Extensibility Guide for Developers

The security administrator uses integrated Oracle Identity Management pages to
create and manage job roles in Oracle Fusion Applications. For information about
creating job roles, see the "Managing Roles" chapter in the Oracle Fusion Middleware
User's Guide for Oracle Identity Manager.

9. Identify the ADF business components in your application's data model project
that you want to create or customize.

You can create or customize ADF entity objects and ADF view objects using
JDeveloper to expose business objects in your application and opt into data
security policies. For information about creating these ADF business components,
see Chapter 4, "Customizing and Extending Oracle ADF Application Artifacts."

10. Identify the application artifacts in your user interface project that you want to
create or customize.

The following application artifacts that you create or customize using JDeveloper
may be secured: ADF bounded task flows and ADF page definition files for
top-level web pages. For information about creating these application artifacts, see
Chapter 4, "Customizing and Extending Oracle ADF Application Artifacts."

11. In JDeveloper, run the ADF Security wizard on your application.

When you run the ADF Security wizard, it configures your application to enable
authorization checking so that Oracle Platform Security Services (OPSS) running
in Oracle WebLogic Server (and in JDeveloper's test environment, Integrated
WebLogic Server) will utilize the security policies to authorize access to
application resources by the end user. OPSS determines whether the end user
(represented by the JAAS subject) has the privileges necessary to access the
resources they intend.

For information about running the wizard, see the "Implementing Function
Security" chapter in the Oracle Fusion Applications Developer's Guide.

8.4 Defining Data Security Policies on Custom Business Objects
In Oracle Authorization Policy Manager, the general process for defining a data
security policy is as follows:

1. Register the custom business object as a database resource.

2. Define the instance set of data records that you want to associate with specific
securable operations of the ADF business component.

The security policy identifies named conditions from the security repository to
specify the row instance set available to the end user provisioned to the role with
the privilege to perform the intended ADF business component operation.

In Oracle Authorization Policy Manager, a condition you create defines an
instance set of multiple rows specified either by simple filters (XML-defined) or
complex SQL queries whose values can be parameterized. No condition definition
is needed in the case of a single row instance or all the row instances of the
database resource.

3. Define the list of actions that you want to be able to grant to the role.

Action are database equivalent create, read, update, delete (CRUD) operations and
correspond to the names of securable operations of the business object that the end
user may invoke. The data security policy you define will associate one or more
actions with an instance set.

Defining Data Security Policies on Custom Business Objects

Customizing Security for Oracle ADF Application Artifacts 8-29

4. If the custom business object is not supported by a data role template, define the
data security policy:

a. Enter a name and start date for the data security policy.

b. Select one or more job roles or duty roles to which the policy grants access.
The roles you select entitle all end users assigned to those roles with access to
the data.

In Oracle Authorization Policy Manager, duty role names that you enter are
identified as OPSS internal roles called application roles. Similarly, job role
names are identified as OPSS external roles called enterprise roles.

c. Specify an instance set on the database resource for which the security policy
will control access. This may be a single row, all rows, or multiple rows
(specified by a previously defined named condition).

d. Specify one or more actions to secure on the database resource for the
currently specified instance set.

e. Repeat the steps to grant actions access to additional instance sets for the
current data security policy and roles.

Figure 8–1 illustrates the Actions tab in the Edit Data Security page after
several actions have been selected. Available actions will be limited to the
actions that had been defined for the database resource.

Figure 8–1 Creating a Data Security Policy - Selecting Actions

5. If the custom business object is supported by a data role template, then update the
data role template with the following information:

a. When the job role grantees of the data security policies generated by the
template are not already defined by the existing data role template, add a new
external role.

The data role template specifies which base roles to combine with which
dimension values for a set of data security policies.

Defining Data Security Policies on Custom Business Objects

8-30 Extensibility Guide for Developers

b. When the custom business object expresses a new data stripe to apply to the
generated data security policies, modify the SQL code that identifies the
dimension values of the template.

Note that the SQL code cannot be modified after running the template.

c. When the data role grantee of the data security policies generated by the
template are not already defined by the existing data role template, configure
a new data role name.

The data role template constrains the data roles with access privileges for
specific data records with particular actions. The data role provides
provisioned end users with privileges to access a dimensional subset of the
data granted by a data security policy.

d. Select the database resource that you registered for the custom business object.

e. Optionally, select one or more data sets that you specified as named conditions
when you created the database resource.

Alternatively, the template can generate policies based on the primary key of
the database resource.

f. Specify one or more actions to secure on the database resource for the
currently specified instance set.

Before you begin:
If you will be creating or editing Oracle Fusion Data Security security policies in
Oracle Fusion Applications, you will need specific privileges. When you have the
necessary privileges, Oracle Authorization Policy Manager allows you to access the
data security customization user interface. Contact your security administrator for
details.

The security reference implementation defines the job role IT Security Manager with
a duty role hierarchy that includes the Application Data Security Administration
Duty duty role. This duty role is entitled to manage data security policies (the
entitlement is Manage Data Security Policy) and provides the access necessary to
perform the Manage Data Security Policies task in Oracle Authorization Policy
Manager. Contact your security administrator for details.

Additionally, collect the following information that you will use to define the data
security policy in Oracle Authorization Policy Manager:

■ The primary key of the database table or view that the custom business object
represents

You specified the primary key of the database table or view when you registered
the database resource.

■ The names of the conditions for which you want the security policy to control
access

When you registered the database resource, you may have created named
conditions to control access to instance sets composed of multiple rows (Oracle
Fusion Data Security does not require that you create a named condition when
you want to grant access to instance sets composed either of a single row or of all
rows of the database resource).

■ The names of the actions for which you want to associate with a particular named
condition (or instance set) to control access

Defining Data Security Policies on Custom Business Objects

Customizing Security for Oracle ADF Application Artifacts 8-31

When you registered the database resource, you named actions to identify the
securable operations of the custom business object. Action names must be
identical to the names of the operations the business object supports. For example,
the names of actions corresponding to the supported standard operations are view,
edit, and delete. However, if your data model project defines custom operations,
actions may have names corresponding to operations named, for example, as
view_US_ONLY, edit_US_ONLY, or delete_US_ONLY .

■ The names of the custom duty roles for which you want to grant access to the
conditions and actions of the database resource associated with the custom
business object

As an Oracle Fusion Applications security guideline, predefined duty roles
defined by the security reference implementation must not be modified. You must
use Oracle Authorization Policy Manager to create a new duty role rather than
grant data security privileges to predefined duty roles. For information about
creating roles, see the "Managing Policies and Policy Objects" chapter in the Oracle
Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle
Fusion Applications Edition).

Task: Create Conditions on a Business Object
A business object can define securable instance sets of data records as named
conditions. The data security policy you define may identify a specific data record, all
data records of the object, or multiple data records. When you want to secure specific
sets of records, then conditions must be created on the business object.

To create conditions for a business object:

1. From the Administration menu in the global area of Oracle Fusion Applications,
choose Setup and Maintenance, and then choose Manage Data Security Policies.

2. In the General Information tab, register the business object as a database resource,
and then click the Conditions tab and click New.

3. In the Create Database Resource Condition dialog, enter the SQL predicate
consisting of a query on the table named by the database resource.

For more information, see the "Managing Oracle Fusion Applications Data Security
Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

Task: Grant Access for a Privilege to a Specific Role and Object Condition
A business object can define conditions that query only the set of data records that are
relevant to the members of a particular enterprise role or application role (also called
job roles or duty roles, respectively). You can secure these sets of data records by
making grants on conditions of the business object for a particular application role and
privilege that you define. Condition-level security lets you secure any number of
subsets of the business instances defined by the business object. As an alternative to
standard privileges, you can define a custom privilege to define a security policy for
operations that may be specific to a particular group of end users. Custom privileges
also let you enforce security in the data model project at the level of the ADF view
object and perform authorization checking to secure individual business object
attributes.

To define a data security policy:

1. From the Administration menu in the global area of Oracle Fusion Applications,
choose Setup and Maintenance, and then choose Manage Data Security Policies.

Enforcing Data Security in the Data Model Project

8-32 Extensibility Guide for Developers

2. Register the business object as a database resource (using the General
Information, Conditions, and Actions tabs sequentially), and then click the
Policies tab and click New.

3. Use the policy workflow at the bottom of the Edit Data Security page (Roles, Rule,
and Action tabs sequentially) to define the data security policy.

For more information, see the "Managing Oracle Fusion Applications Data Security
Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

Task: Grant Access to a Specific Data Role and Dimension Values
A business object can be mapped to a set of dimension values and data role naming
rules defined by data role templates. A data role for a defined set of data describes the
job an end user does within that defined set of data. A data role inherits job or abstract
roles and grants entitlement to access data within a specific dimension of data based
on data security policies. The dimension expresses data stripes, such as territorial or
geographic information you use to partition enterprise data. You use data role
templates to generate data roles and the template applies the values of the dimension
and participant data security policies to the group of base roles.

To create or revise a data role template:

1. From the Administration menu in the global area of Oracle Fusion Applications,
choose Setup and Maintenance, and Manage Data Role Templates.

2. In the data role template workflow, use the tabbed pages (External Role,
Dimension, Naming, and Policies tabs sequentially) to create a data role template
or revise an existing one.

For more information, see the "Oracle Fusion Applications Data Role Templates"
chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager
Administrator's Guide (Oracle Fusion Applications Edition).

8.5 Enforcing Data Security in the Data Model Project
Data security policies secure data from business objects based on the grants made to
roles. The business object participating in data security defines a database resource (a
database table or view) that has been registered in the Oracle Fusion Applications
FND_OBJECTS table. When you need to expose data records in the extended
application, you can use JDeveloper and Oracle ADF to create a data model project
with ADF entity objects based on secured database resources. However, it is not
sufficient to register the business object in FND_OBJECTS and define data security
policies. Additionally, you must opt into those data security policies by enabling
row-level OPSS authorization checking for specific operations on ADF entity objects in
the data model project.

By default, after the database table or view backing the ADF entity object has been
registered as a database resource in the FND_OBJECTS table, Oracle Fusion Data
Security denies end users access to the business object data. Enabling OPSS
authorization checking for the operations (such as view, edit, delete) by setting
metadata on the ADF entity object of the data model project, ensures that only end
users with sufficient privileges are authorized to perform the actions on the database
resources corresponding to the ADF entity object.

JDeveloper saves the security metadata that you define on the data model project into
an Oracle Metadata Services (MDS) repository.

Enforcing Data Security in the Data Model Project

Customizing Security for Oracle ADF Application Artifacts 8-33

Before you begin:
If the ADF entity object does not appear in the data model project, then you cannot opt
into data security policies that may exist for the business object. You must use
JDeveloper to create the ADF entity object based on a database table or database view
that you intend to register in the Oracle Fusion Data Security schema. For more
information, see Chapter 4, "Customizing and Extending Oracle ADF
Application Artifacts."

For OPSS to enforce security, the database table or view backing the ADF entity object
must be registered as a business object with the FND_OBJECTS table provisioned by
Oracle Fusion Data Security (the registered business object is also called a database
resource of the Oracle Fusion Data Security schema). You must use Oracle
Authorization Policy Manager to register the custom business object corresponding to
the ADF entity object data source. For more information, see the "Managing Oracle
Fusion Applications Data Security Policies" chapter in the Oracle Fusion Middleware
Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications
Edition).

Enabling security for custom operations in the data model project requires a custom
privilege in the data security policy defined on the business object. You must create the
custom privilege in the data security repository. For more information, see Section 8.4,
"Defining Data Security Policies on Custom Business Objects."

Task: Enforce Row Security for the Standard Operations of a Business Object
The ADF entity object in a data model project defines metadata that enables OPSS
authorization checking against data security policies for view, update, or delete
operations (also called standard operations) of the registered business object. You
enable row-level security for standard operations by selecting the operation on the
ADF entity object that maps to the business object upon which data security policies
exist. Although the ADF entity object maps to all instances of the business object, the
data security policy defines business object conditions to filter the records available to
the end user. Filtering of the business object for standard operations supports only
row-level security.

To enforce authorization checking for standard operations:

1. In JDeveloper, display the ADF entity object in the overview editor.

2. In the editor, click the General navigation tab and expand the Security section, and
then select the list of standard operations for which you want to enforce
authorization checking against data security policies.

For more information, see the "Implementing Oracle Fusion Data Security" chapter in
the Oracle Fusion Applications Developer's Guide.

Task: Enforce Row Security for a Custom Operation of a Business Object
The ADF entity object in a data model project does not support OPSS authorization
checking against data security policies for custom operations of the registered business
object. You enable row-level security for custom operations by mapping view criteria
that you create in the data model project to custom privileges in the data security
policies defined on the business objects. The view criteria creates a row set filter by
naming the custom privilege and business object. Filtering of the business object by
view criteria works only with custom operations.

To enforce authorization checking for a custom operation:

1. In JDeveloper, display the ADF view object in the overview editor and, in the
editor, click the Query navigation tab.

Defining Function Security Policies for the User Interface Project

8-34 Extensibility Guide for Developers

2. Expand the View Criteria section and then you click the Add button to create a
view criteria to enforce authorization checking for a custom operation.

For more information, see the "Implementing Oracle Fusion Data Security" chapter in
the Oracle Fusion Applications Developer's Guide.

Task: Enforce Security for Attributes of a Business Object
The ADF entity object in a data model project does not support authorization checks
against data security policies for columns of the registered business object. You enable
security for attributes by creating a custom OPSS permission to control access to the
column read or update operation, and then, in the Oracle Fusion Data Security
repository, you map the operation to a custom privilege and grant the privilege to
specify the roles that are authorized to view or update the data records. Last, in the
user interface, you enter an EL expression to test that custom privilege on the user
interface component displaying the attribute.

For more information, see the "Implementing Oracle Fusion Data Security" chapter in
the Oracle Fusion Applications Developer's Guide.

8.6 Defining Function Security Policies for the User Interface Project
You can use JDeveloper to define function security policies directly in an exported
version of the Oracle Fusion application security repository. The security administrator
exports the policies that exist in the LDAP-based application security policy store
(residing in a test environment) into an XML file that can be loaded in JDeveloper and
edited using the provided security policy editor.

After editing the XML file, you must consult the security administrator to merge the
security policies into the test environment.

In JDeveloper, the general process for defining function security policies is as follows:

1. Consult a security administrator to export all predefined function security policies
of the application that you are customizing into a jazn-data.xml file.

For details about how the security administrator exports the application policy
store, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion
Applications Administrator's Guide.

2. Copy the exported jazn-data.xml file into your application workspace.

This is the file that JDeveloper will update when you define function security
policies. For JDeveloper to use the file, copy the file to your application workspace
in the <JDevAppHome>/src/META-INF folder.

3. Create an entitlement to group one or more custom resources and their
corresponding actions that together entitle end users to access the resource when
needed to complete a specific duty.

In the Oracle Fusion Applications environment, the basic security artifact for
entitlement-based security polices is the entitlement (an entitlement is defined as a
OPSS permission set).

4. Grant the entitlement to a custom duty role that was added to the Oracle Fusion
application policy store.

The entitlement grant to the role specifies that the end user must be a member of
the role to access the resources specified by the entitlement. You must use custom
duty roles and you must not grant entitlements to predefined duty roles.

Defining Function Security Policies for the User Interface Project

Customizing Security for Oracle ADF Application Artifacts 8-35

In JDeveloper, duty role names that you select are identified as OPSS internal roles
called application roles.

5. Enable ADF Security for the application by running the Configure ADF Security
wizard.

The wizard configures files that integrate ADF Security with OPSS on Integrated
WebLogic Server.

After you run the ADF Security wizard, any web page associated with an ADF
bounded task flow will be protected. Therefore before you can run the application
and test security, you must define the security policies that grant end users access.

Before you begin:
Consult the security administrator to obtain the file-based application policy store in
the form of a jazn-data.xml file. The security administrator can run an Oracle
WebLogic Scripting Tool (WLST) script to export the LDAP-based application policy
store to the XML file. For more information about how the security administrator
exports the application policy store, see the "Securing Oracle Fusion Applications"
chapter in the Oracle Fusion Applications Administrator's Guide.

If the custom bounded task flows or top-level web pages do not appear in the user
interface project of the extended application, then you cannot define application
security policies. You must use JDeveloper to create the securable Oracle ADF
application artifacts. For more information, see Chapter 4, "Customizing and
Extending Oracle ADF Application Artifacts."

As an Oracle Fusion Applications security guideline, predefined duty roles defined by
the security reference implementation must not be modified. You must use Oracle
Authorization Policy Manager to create a new duty role rather than grant function
security privileges to predefined duty roles. For information about creating duty roles,
see the "Managing Policies and Policy Objects" chapter in the Oracle Fusion Middleware
Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications
Edition).

Task: Create Entitlement Grants for a Specific Application Role
An entitlement grant is a set of resource grants (set of OPSS permissions) that will be
required by the end user to complete a task. Each permission in the entitlement grant
names an OPSS permission class, a resource, and an action. Entitlements must be
granted to custom application roles.

To grant end users access to enable them to perform tasks:

1. In JDeveloper, choose Application then Security and then Entitlement Grants.

2. In the overview editor for security, name the entitlement, add member resources,
and add the actions that you want to secure.

3. Grant the entitlement to a custom application role.

For more information, see the "Implementing Function Security" chapter in the Oracle
Fusion Applications Developer's Guide.

Task: Create Resource Grants for the Authenticated User Role
A resource grant sets an OPSS permission on a single application resource and grants
that permission to an application role.

To make a resource publicly accessible by end users:

Defining Function Security Policies for the User Interface Project

8-36 Extensibility Guide for Developers

1. In JDeveloper, to make the resource publicly accessible, choose Application then
Security and then Resource Grants.

2. In the overview editor for security, select the Oracle ADF artifact, the built-in OPSS
role authenticated-role (or anonymous-role) as the grantee, and the action that
you want to make public.

For more information, see the "Implementing Function Security" chapter in the Oracle
Fusion Applications Developer's Guide.

Task: Display or Hide User Interface Components in a Web Page
The rendered attribute of a user interface component controls whether or not the
component is visible in the web page. You can create an EL expression using ADF
Security utility methods to conditionally render the UI component based on the end
user's membership in a particular role.

To hide components in a web page from unauthorized end users:

1. In JDeveloper, open the web page and, in the Property Inspector, select Expression
Builder for the Rendered property of the UI component that you want to
conditionally render.

2. In the Expression Builder, expand ADF Bindings - securityContext and then select
the appropriate EL method followed by the qualified name of the ADF resource
that the user will attempt to access.

For more information, see the "Enabling ADF Security in a Fusion Web Application"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

9

Translating Custom Text 9-1

9Translating Custom Text

This chapter describes how to localize the changes that you make to Oracle Fusion
applications using Page Composer and Oracle Fusion CRM Application Composer
(Application Composer). It also describes how to localize your navigator and home
page menu customizations and your descriptive flexfield and extensible flexfield
configurations.

This chapter includes the following sections:

■ Section 9.1, "About Translating Custom Text"

■ Section 9.2, "Translating Resource Bundles from an MDS Repository"

■ Section 9.3, "Translating Page Composer and Application Composer
Customizations"

■ Section 9.4, "Translating Menu Customizations"

■ Section 9.5, "Translating Flexfield and Value Set Configurations"

9.1 About Translating Custom Text
If your Oracle Fusion Applications are running in different locales, you can localize
your customizations such that end users see the custom text in the language of their
locale. End users set their locale when they log in. Users can also set their locale by
choosing Set Preferences from the Personalization menu in the Oracle Fusion
Applications global area.

Most user interface text is made available to applications through resource bundles.
These resource bundles are stored in an Oracle Metadata Services (MDS) repository in
XML localization interchange file format (XLIFF). To provide locale translations for
your Page Composer, Application Composer, navigator menu, and home page menu
changes, you export, edit, and import XLIFF documents. For flexfield and value set
configurations, you provide locale translations using the appropriate maintenance
tasks.

For information about XLIFF documents, see the "Manually Defining Resource
Bundles and Locales" section in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

9.2 Translating Resource Bundles from an MDS Repository
You use the Oracle WebLogic Scripting Tool (WLST) exportMetadata command to
obtain XLIFF documents and you use the WLST importMetadata command to import
XLIFF documents into an MDS repository. For information about MDS Repository and

Translating Resource Bundles from an MDS Repository

9-2 Extensibility Guide for Developers

the exportMetadata and importMetadata commands, see the "Managing the Metadata
Repository" chapter in the Oracle Fusion Middleware Administrator's Guide.

For specific information about localizing Page Composer and Application Composer
customizations, see Section 9.3, "Translating Page Composer and Application
Composer Customizations." For specific information about localizing navigator and
home page menu customizations, see Section 9.4, "Translating Menu Customizations."

Task: Define Translations for the Custom Text in an MDS Repository
You define the translations for custom text by exporting XLIFF documents from an
MDS repository, editing the documents to include the translated text, and importing
the revised documents into the repository.

To localize the custom text:

1. Use the WLST exportMetadata command shown in Example 9–1 to export XLIFF
documents from the MDS repository to a directory of your choice.

Example 9–1 WLST exportMetadata Command

exportMetadata(application='application', server='server',
toLocation='directory-path',
docs='xlf-classpath', applicationVersion='version')

Set the docs attribute to the class path for the XLIFF file. For example, use
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideBundle.xlf
for the base file for Page Composer and Application Composer custom text. Use
/oracle/apps/menu/CustResourceBundle.xlf for the base file for menu custom
text. Use the following format for the names of locale documents:

basename_language[_country].xlf

Replace language with the ISO 639 lowercase language code, such as fr for France.
When applicable, replace country with the ISO 3166 uppercase country code.
Country codes are necessary when one language is used by more than one
country. For example, use CustResourceBundle_zh_CN.xlf for custom translations
for Chinese in the People's Republic of China.

Because all Oracle Fusion applications use the same repository partition, you can
use any Oracle Fusion application as an argument for the application attribute
when you export an XIFF file for text customizations.

2. Synchronize the entries in the XLIFF documents and provide the translated text in
the <target> tags, as shown in Example 9–2.

Example 9–2 Sample Translation

<trans-unit id="ACCOUNTING_DISTRIBUTION">
 <source>Accounting Distribution</source>
 <target>Ventilation comptable</target>
 <note>Accounting Distribution</note>

Tip: You can also use Oracle Enterprise Manager Fusion
Applications Control to import and export the XLIFF documents from
an MDS repository. For more information, see the "Transferring
Metadata Using Fusion Middleware Control" section in the Oracle
Fusion Middleware Administrator's Guide. The referenced procedure
describes using Fusion Middleware Control, but also applies to Fusion
Applications Control.

Translating Page Composer and Application Composer Customizations

Translating Custom Text 9-3

</trans-unit>

3. Use the WLST importMetadata command shown in Example 9–2 to import the
modified documents into the MDS repository.

Example 9–3 WLST importMetadata Command

importMetadata(application='application', server='server',
fromLocation='directory-path',
docs='xlf-classpath', applicationVersion='version')

Because all Oracle Fusion applications use the same repository partition, you can
use any Oracle Fusion application as an argument for the application attribute
when you import an XIFF file for text customizations.

For more information about naming and editing XLIFF files, see the "Manually
Defining Resource Bundles and Locales" section in the Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

9.3 Translating Page Composer and Application Composer
Customizations

All Page Composer and Application Composer customizations are stored in the
customizations XLIFF document for the locale of the session in which you made the
customizations. After you customize a page using Page Composer or Application
Composer, you might want to define translations for the custom text in the base
customizations file as well as the customizations files for the other supported locales.
For example, you might want to define French and Chinese translations of new
prompts.

As shown in Figure 9–1, when an end user accesses the customized objects, the
application loads the translated custom text for the locale's language and, if applicable,
country. If the user's locale is for a language in a specific country and customized text
is not available for that locale, the application loads the text for the locale's language. If
no translated text is found, the application loads the text from the base customizations
document.

Translating Page Composer and Application Composer Customizations

9-4 Extensibility Guide for Developers

Figure 9–1 Process for Retrieving Translated Text

Note that Figure 9–1 does not show a No path for the condition where the translation
is not found in the base XLIFF document. If no entries exist in the locale and base
documents, the text that is displayed varies. For example, for a field label, the
application displays the attribute name. In other cases, no text is displayed.

To define translations for custom text, follow the steps in Task: Define Translations for
the Custom Text in an MDS Repository in Section 9.2, "Translating Resource Bundles
from an MDS Repository." Export the base document
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideBundle.xlf and
the documents for all the locales for which you want to define translations. The locale
XLIFF documents are named
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideBundle_
language[_country].xlf. Replace language with the ISO 639 lowercase language code,
such as fr for France. When applicable, replace country with the ISO 3166 uppercase
country code. Country codes are necessary when one language is used by more than
one country. For example, use
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideBundle_zh_
CN.xlf for custom translations for Chinese in the People's Republic of China.

Note: The base document
/oracle/apps/resourcebundles/xliffBundle/FusionAppsOverrideB
undle.xlf is automatically generated the first time that a string is
inserted or customized using Page Composer or Application
Composer. Ensure that the bundle exists by inserting or customizing
at least one string.

No

Locale is
for language
and country?

Translation
found in XLIFF
document for

language?

Translation
found in base

XLIFF
document?

Translation
found in XLIFF

document for locale
and country?

Display text from
XLIFF document

Yes

Yes

YesYes

No No

Translating Flexfield and Value Set Configurations

Translating Custom Text 9-5

Copy the new and changed entries from the document for the locale with which you
made the customizations into the base document and into the other locale documents.
Provide the translations and import the modified documents into the MDS repository.

9.4 Translating Menu Customizations
All navigator and home page menu customizations are stored in the
/oracle/apps/menu/CustResourceBundle.xlf base XLIFF document regardless of
your locale setting when you customized the menu. After you customize the menu,
you might want to define translations for your changes in the locales that you support,
including the locale for the session in which you entered the custom text. For example,
you might want to define French and Chinese translations of new menu items.

The process for retrieving translated text is the same as for Page Composer and
Application Composer, as shown in Figure 9–1, with the exception that if no entries
exist in the locale and base documents, no text is displayed.

To create locale translations for your menu changes, follow the steps in Task: Define
Translations for the Custom Text in an MDS Repository in Section 9.2, "Translating
Resource Bundles from an MDS Repository." Export the base document
/oracle/apps/menu/CustResourceBundle.xlf and export the documents for all the
locales for which you want to define translations. The locale XLIFF documents are
named /oracle/apps/menu/CustResourceBundle_language[_country].xlf. Replace
language with the ISO 639 lowercase language code, such as fr for France. When
applicable, replace country with the ISO 3166 uppercase country code. Country codes
are necessary when one language is used by more than one country. For example, use
/oracle/apps/menu/CustResourceBundle_zh_CN.xlf for custom translations for
Chinese in the People's Republic of China.

Copy the new and changed entries from the base document into the locale documents
and provide the translations. Then import the modified locale documents into the
MDS repository.

9.5 Translating Flexfield and Value Set Configurations
When you first configure a flexfield or segment, the translatable text that you enter,
such as prompts and descriptions, is stored as the text for all installed locales. To
translate the text for a particular locale, log in with that locale or use the
Personalization menu in the global area to set the locale. Then, update the translatable
text in the flexfield using the Manage Descriptive Flexfields task or the Manage
Extensible Flexfields task as described in the "Define Flexfields" section in the Oracle
Fusion Applications Common Implementation Guide. Your modifications change the
translated values only for the current session's locale.

 After you complete the translations, deploy the flexfield.

You can define translations for a dependent value set or an independent value set, if
it is of type Character with a subtype of Translated text. You define the translations by
setting the current session to the locale for which you want to define the translation
and using the Manage Value Sets task to enter the translated values and descriptions
for that locale as described in the "Define Flexfields" section in the Oracle Fusion
Applications Common Implementation Guide.

For a table value set for which the underlying table supports multiple languages and
for which the value set's value column is based on a translated attribute of the
underlying table, you can define translated values using the maintenance task for the
underlying table. For more information about enabling localization for table value sets,
see the "Define Flexfields" section in the Oracle Fusion Applications Common

Translating Flexfield and Value Set Configurations

9-6 Extensibility Guide for Developers

Implementation Guide. For information about multilanguage support for tables, see the
"Using Multi-Language Support Features" section in the Oracle Fusion Applications
Developer's Guide.

10

Configuring End-User Personalization 10-1

10Configuring End-User Personalization

This chapter describes how you can make pages in your Oracle Fusion application
personalizable by the end user. Note that mobile applications cannot be personalized
by the end user.

This chapter contains the following sections:

■ Section 10.1, "About Configuring End-User Personalization"

■ Section 10.2, "Allowing Pages to Be Personalized by End Users in Page Composer"

■ Section 10.3, "Configuring End-User Personalization for Components"

10.1 About Configuring End-User Personalization
There are certain runtime changes that an end user can make that persist from session
to session, such as changing the width of a column in a table, saving a search
parameter, or redesigning an aspect of a page. This type of change is called
personalization. Oracle Fusion applications allow end users to personalize certain
pages using the Personalization menu. End users can set preferences, edit the current
page, and reset the page to the default.

You can control what pages in an application can be personalized, including any new
pages you create.

Figure 10–1 shows the Personalization menu available in all Oracle Fusion
applications.

Tip: If you created a page using Oracle Fusion CRM Application
Composer (Application Composer), then that page is personalizable
by default.

Note: For a list of pages that end users can personalize, see the
product-specific documentation in Oracle Fusion Applications Help.

About Configuring End-User Personalization

10-2 Extensibility Guide for Developers

Figure 10–1 Personalization Menu in Oracle Fusion Applications

When end users choose the Edit Current Page menu item, Page Composer is opened.
From here, they can change certain aspects of the page, such as moving or deleting a
component. Figure 10–2 shows the Partner Profile application home page in Page
Composer, ready for the end user to personalize.

Figure 10–2 Home Page Ready for Personalization

Along with using Page Composer to personalize pages, end users can change certain
aspects of components, and then have those changes saved so that they remain each
time the user logs in to the application. For example, end users can change the width
of columns in many of the tables in Oracle Fusion applications. However, by default,
when they change the width, that new width size is saved only for the current session.
You can configure that column so that when the user changes the width size, it will
remain at that size whenever the user logs back in to the application. For more
information about configuring persistence, see the "Allowing User Customizations at
Runtime" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

10.1.1 Before You Begin Allowing Pages or Components to be Personalized
Before you configure pages to be personalizable, you should be familiar with the
Oracle Fusion application architecture that enables customization, as described in
Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also
understand the typical workflows for working with customizations, as described in
Chapter 2, "Understanding the Customization Development Lifecycle."

You will also need to do the following:

■ Install Oracle JDeveloper and set up your development environment. For more
information, see Section 1.3.13, "Installing Customization Tools."

Configuring End-User Personalization for Components

Configuring End-User Personalization 10-3

■ Create a customization application workspace. For more information, see
Chapter 3, "Using Oracle JDeveloper for Customizations."

■ Start JDeveloper in the Oracle Fusion Applications Administrator Customization
role.

■ Select a layer value. When customizing application artifacts in JDeveloper, you
first must select the layer and layer value to work in. You use the Customization
Context window to make this selection. For more information about customization
layers, see Section 1.2, "Understanding Customization Layers."

10.2 Allowing Pages to Be Personalized by End Users in Page Composer
You use JDeveloper to set certain attributes that allow a page to be personalized.

Task: Enable or Disable Personalization on Existing Standard Pages
Many pages in Oracle Fusion applications allow personalization by default. You can
either disable it or enable it using the isPersonalizableInComposer property on
a page. Set the property to true to allow personalizations, set it to false to disallow
personalizations. For instructions, see the "How to Enable End-User Personalizations
for a Page" section in the Oracle Fusion Applications Developer's Guide.

Task: Enable Page Composer Personalization on Custom Pages
For end users to be able to use Page Composer to personalize custom pages, you will
need to enable your pages to work with Page Composer by doing the following:

■ Set the isPersonalizableInComposer property to true.

For instructions, see the "How to Enable End-User Personalizations for a Page"
section in the Oracle Fusion Applications Developer's Guide.

■ Create a corresponding page definition file, if one does not exist.

For instructions, see the "Ensuring Customizable Pages Have Page Definitions"
section in the Oracle Fusion Applications Developer's Guide.

■ Use Oracle WebCenter Portal components that define areas that are customizable.

For instructions, see the "Making a JSPX Document Editable at Runtime" section in
the Oracle Fusion Applications Developer's Guide.

10.3 Configuring End-User Personalization for Components
Certain attribute values that affect how an ADF Faces component is displayed can
persist to an MDS repository. Application-wide component attribute persistence to an
MDS repository is controlled by configuration in the adf-config.xml file. However,
customizing this file is not allowed, because doing so is not upgrade-safe. Instead, you
can override the application-wide persistence at the page level by setting the persist
and dontPersist attributes for component instances.

For example, by default, table column attribute values do not persist. But you can
configure a column in a table so that when the user changes the width, reorders
columns, or selects a column, those changes will still be in effect when the user logs
back in to the application, by adding those attributes to the value of the persist

Note: If a page is currently available for personalization, and you do
not want it to be, change the property value to false.

Configuring End-User Personalization for Components

10-4 Extensibility Guide for Developers

attribute on the column component. For more information about what attribute values
can persist, see the "Introduction to Allowing User Customizations" section in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Task: Persist Attribute Values on JSPX Pages
You need to add the attributes you want to persist to the persist attribute on the
component. For more information, see the "Controlling User Customizations in
Individual JSF Pages" section in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework. You can set this attribute using Page
Composer.

Note: You cannot change the settings in the adf-config.xml file,
because these changes will be overwritten anytime you apply a patch
or an upgrade. Therefore, you must change the values on the
individual components on a page.

11

Customizing Help 11-1

11Customizing Help

This chapter describes how you can customize or extend user assistance help in your
Oracle Fusion application to match your runtime and design time customizations.

This chapter contains the following sections:

■ Section 11.1, "About Customizing Help"

■ Section 11.2, "Customizing or Extending Oracle Fusion Applications Help"

■ Section 11.3, "Customizing or Adding Bubble Embedded Help"

■ Section 11.4, "Customizing or Adding Static Instructions, In-Field Notes, and
Terminology Definitions"

11.1 About Customizing Help
When you customize an Oracle Fusion application, you may find you also need to
customize or extend the existing help to match your changes. Oracle Fusion
applications provide two different types of help:

■ Oracle Fusion Applications Help

This type of help includes help topics, FAQs, examples, demonstrations and PDF
guides, and is delivered with the Oracle Fusion Applications Help as shown in
Figure 11–1.

About Customizing Help

11-2 Extensibility Guide for Developers

Figure 11–1 Oracle Fusion Applications Help

■ Embedded static page-level help

This type of help is displayed directly on a page, using attributes of a component.
The help text is included in the application.

Embedded help includes the following:

– Static instruction text: displayed by panel components that typically contain
forms or tables. This instruction guides the user in filling out the form or using
the table, as shown in Figure 11–2.

Figure 11–2 Static Help Text in Oracle Fusion Applications

– In-field help note: displayed by input components and guides the user in
entering data into the component. Figure 11–3 shows an in-field note.

Tip: Help text is stored in resource bundles, and so can be
translated. For more information, see Chapter 9, "Translating Custom
Text."

About Customizing Help

Customizing Help 11-3

Figure 11–3 In-Field Note in Oracle Fusion Applications

– Terminology definition: displayed by input components and defines terms
used on the page, as shown in Figure 11–4.

Figure 11–4 Terminology Definition in Oracle Fusion Applications

– Bubble help: displayed when the end user mouses over a button or link
component, as shown in Figure 11–5.

Figure 11–5 Bubble Help in Oracle Fusion Applications

– Help window: displayed when a user clicks the help icon, as shown in
Figure 11–6. This type of help is generally brief context-sensitive help, and can
also provide links to help files in Oracle Fusion Applications Help.

Figure 11–6 Help Window in Oracle Fusion Applications

11.1.1 What You Can Do with Help
In Oracle Fusion Applications Help, you can change the content in existing help
windows or you can create new help windows. Within a page of an application, you

Customizing or Extending Oracle Fusion Applications Help

11-4 Extensibility Guide for Developers

can customize or create bubble help, static instructions, in-field notes, terminology
definitions, and help windows. This help text is stored either as a value for an
attribute, or in translatable resource bundles.

11.1.2 Before You Begin Customizing Help
Before you customize help, you should be familiar with the Oracle Fusion application
architecture that enables customization, as described in Chapter 1, "Customizing and
Extending Oracle Fusion Applications." You should also understand the typical
workflows for working with customizations, as described in Chapter 2,
"Understanding the Customization Development Lifecycle."

You will also need to do the following before you can begin customizing help:

■ If you will be adding or customizing Oracle Fusion Applications Help, then you
will need specific privileges. Contact your security administrator for details.

■ Install Oracle JDeveloper and set up your development environment. For more
information, see For more information, see Section 1.3.13, "Installing
Customization Tools."

■ Create a customization application workspace. For more information, see
Chapter 3, "Using Oracle JDeveloper for Customizations."

■ Start JDeveloper in the Oracle Fusion Applications Administrator Customization
role.

■ Select a layer value. When customizing application artifacts in JDeveloper, you
first must select the layer and layer value to work in. You use the Customization
Context window to make this selection. For more information about customization
layers, see Section 1.2, "Understanding Customization Layers."

11.2 Customizing or Extending Oracle Fusion Applications Help
You can customize existing help files in Oracle Fusion Applications Help, or you can
extend Oracle Fusion Applications Help by adding custom topics.

After they are created, custom help files are distinguished by an icon in search results,
and they are displayed at the top of help listings when you navigate.

Task: Customize Oracle Fusion Applications Help Windows
When you have the necessary privileges, help windows in Oracle Fusion Applications
Help display a Manage Custom Help link, which allows you to change the content
and specify in which help windows in the application your custom help will appear,
and where it will appear in the help site navigators. For more information, see the
"Define Help Configuration" section in the Oracle Fusion Applications Common
Implementation Guide.

Task: Add Custom Help Files to Oracle Fusion Applications Help
You can add new custom help files to Oracle Fusion Applications Help. Custom help
files will appear like standard help files and can be searched and included in help

Note: You can customize the help menu to add a link to a privacy
statement and to make Oracle User Productivity Kit (UPK) content
available for users. For information, see the "Setting Up Help" section
in the Oracle Fusion Applications Post-Installation Guide.

Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions

Customizing Help 11-5

windows and navigators. For more information, see the "Define Help Configuration"
section in the Oracle Fusion Applications Common Implementation Guide.

11.3 Customizing or Adding Bubble Embedded Help
 For bubble help, you can use Oracle Fusion CRM Application Composer (Application
Composer) or Page Composer to customize or create the help text.

The following components use bubble help.

■ Butcon

■ Button

■ Link

■ Tab

Task: Customize or Add Bubble Help
The text displayed in bubble help is the value of the component's shortDesc
attribute. Usually, the value resolves to a key in a resource bundle. If you are
customizing a CRM application, use Application Composer to customize the value of
the attribute. For other applications, use Page Composer to customize the attribute.

11.4 Customizing or Adding Static Instructions, In-Field Notes, and
Terminology Definitions

Oracle Fusion Applications embedded help (aside from bubble help) uses two types of
ADF Faces help: instruction and definition. Instruction-type help displays static text,
either in a specified area on a component (like static instruction help, shown in
Figure 11–2), or in a note window, as in-field notes do, shown in Figure 11–3.
Definition-type help displays a help icon, and is what terminology definition
embedded help uses, as shown in Figure 11–4. When the user mouses over the help
icon, the help text is displayed in a message box. UI components display the
instruction and definition help text using the helpTopicId attribute. For more
information about the ADF Faces help framework, see the "Displaying Help for
Components" section of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

It is important that for the type of help you want to add or customize, you understand
which component actually displays the help, and which type of ADF Faces help is
being used. Table 11–1 shows the different types of Oracle Fusion Applications
embedded help, the corresponding ADF Faces help, and the components that display
that type of help.

Table 11–1 Oracle Fusion Applications Help and Corresponding ADF Faces Help and UI
Components

Oracle Fusion
Applications
Help Type

ADF Faces Help
Type Component

Static instruction instruction Page header

Subheader

Sub-subheader

Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions

11-6 Extensibility Guide for Developers

You perform the following tasks in JDeveloper in the Oracle Fusion Applications
Administrator Customization role.

In-field note instruction Multiselect checkbox group

Single-select choice list

Multiselect choice list

Single-select list box

Multiselect list box

Text box

Single-select radio groups

Items in true/false radio groups

Items in true/false checkbox groups

Color picker

Date/time picker

Flexfield

LOV

Spin box

Slider

File upload

Shuttle

Rich Text Editor

Terminology
definition

definition Checkbox prompt

Checkbox group prompt

Single-select choice list

Multiselect choice list

Single-select list box

Multiselect list box

Text box

Radio group prompt

Color picker

Date/time picker

Flexfield

LOV

Column headers

Spin box

Slider

File upload

Shuttle

Rich Text Editor

Table 11–1 (Cont.) Oracle Fusion Applications Help and Corresponding ADF Faces Help
and UI Components

Oracle Fusion
Applications
Help Type

ADF Faces Help
Type Component

Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions

Customizing Help 11-7

Task: Add Help Strings to Resource Bundle
Add custom help text strings to an existing custom resource bundle or create a new
resource bundle to hold your customized help text (Oracle Fusion applications use
XLIFF files for resource bundles). If you create a new resource file, you must register
that file with the project. For information about creating and using resource bundles
for an Oracle Fusion application, see Section 4.12, "Customizing or Adding Resource
Bundles."

The help text must use the following syntax:

■ <trans-unit>: Enter the topic ID. This must contain a unique prefix, the topic
name, and the help type, either INSTRUCTION or DEFINITION.

For example:

MYCUSTHELP_NEWHELPTOPIC_DEFINITION

In this example, MYCUSTHELP is the prefix used to access the XLIFF file.
NEWHELPTOPIC is the topic name, and DEFINITION is the type of ADF Faces
help.

UI components access the help content based on the topic name. Therefore, if you
use the same topic name for two different types of help (instruction and
definition), then both types of help will be displayed by the UI component.

■ <source>: Create as a direct child of the <trans-unit> element and enter the
help text.

■ <target>: Create as a direct child of the <trans-unit> element and leave it
blank. This will hold translated text populated by translation tools.

■ <note>: Create as a direct child of the <trans-unit> element and enter a
description for the help text.

Example 11–1 shows a resource file that contains two topics.

Example 11–1 XLIFF Resource Bundle

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="this" datatype="xml">
 <body>
 <trans-unit id="MYCUSTHELP_NEWHELPTOPIC_DEFINITION">
 <source>Credit Card Definition</source>
 <target/>
 <note>This is the credit card definition text.</note>
 </trans-unit>
 <trans-unit id="MYCUSTHELP_NEWTOPIC2_INSTRUCTIONS">
 <source>Credit Card Instructions</source>
 <target/>
 <note>This is the credit card instruction text.</note>

Note: You cannot directly customize the existing help text strings. If
you want to change text that currently appears, you must create a new
text string and associate the component with that new text.

Note: You prefix must unique. You must use this prefix for all your
custom help strings.

Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions

11-8 Extensibility Guide for Developers

 </trans-unit>
 </body>
 </file>
</xliff>

Task: Associate the Component with the Help Strings
In JDeveloper, select the component to display the help. Associate that component
with the <trans-unit> element in the resource bundle, using the component's
helpTopicID attribute. Ensure that the component supports the type of help (that is,
definition or instruction) defined for the id attribute. For instructions, see the "How to
Access Help Content from a UI Component" section of the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

12

Customizing the Oracle Fusion Applications Skin 12-1

12Customizing the Oracle Fusion Applications
Skin

This chapter describes how to use Oracle Application Development Framework
(Oracle ADF) Skin Editor to change the look and feel of Oracle Fusion applications.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Skinning Oracle Fusion Applications"

■ Section 12.2, "Creating a Custom Oracle Fusion Applications Skin"

■ Section 12.3, "Applying a Custom Skin to Your Oracle Fusion Applications"

12.1 Introduction to Skinning Oracle Fusion Applications
If you want to make changes to the appearance of Oracle Fusion Applications pages,
such as changing the logo or changing the colors to make the pages adhere to your
company's corporate brand, use ADF Skin Editor to create a custom skin based on the
Oracle Fusion Applications Skin Extension (fusionFx-simple) and apply that skin to
your Oracle Fusion applications. You can apply a custom skin to the whole site, to
specific products, or specific end users. The changes that you make using custom skins
are maintained through future patches and upgrades of Oracle Fusion Applications.

The fusionFx-simple skin extension is a special type of cascading style sheet (CSS) that
enables you to customize the appearance of Oracle Fusion Middleware Extensions for
Applications (Applications Core) components, ADF Faces components, and ADF Data
Visualization components. Figure 12–1 shows an example of an application that has
been skinned using the fusionFx-simple skin extension.

Creating a Custom Oracle Fusion Applications Skin

12-2 Extensibility Guide for Developers

Figure 12–1 Example of a Skinned Application

12.1.1 Before You Begin Customizing the Oracle Fusion Applications Skin
Before you implement customizations in applications, you should be familiar with the
ADF skinning framework and how to use it to create a custom skin. You should also
be familiar with how to use the editor to work with Applications Core components.
For information about the ADF skinning framework and working with Applications
Core components, as well as how to install and start ADF Skin Editor, see the
Downloads for Oracle ADF 11g page at
http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html

You will need to do the following before you can begin customizing the Oracle Fusion
Applications skin:

1. Download ADF Skin Editor from the Downloads for Oracle ADF 11g page at
http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.h
tml

2. Install and start ADF Skin Editor.

3. Choose Check for Updates from the Help menu to install the most current release
of the Oracle Fusion Applications Skin Extension (fusionFx-simple).

12.2 Creating a Custom Oracle Fusion Applications Skin
To create and modify a custom skin for your Oracle Fusion applications, use ADF Skin
Editor to create a project, add a skin based on the fusionFx-simple skin extension, and
modify the ADF Faces component, ADF Data Visualization component, and
Applications Core component styles.

Task: Create a Custom Oracle Fusion Applications Skin
You create a skin by creating a new application in ADF Skin Editor and then creating a
new ADF skin file in the project. Ensure that you set the project's target application
release to the Oracle Fusion Applications release. When you create the ADF skin file,

http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html

Applying a Custom Skin to Your Oracle Fusion Applications

Customizing the Oracle Fusion Applications Skin 12-3

select the appropriate fusionFx-simple version from the Extends dropdown list. Make
a note of the family name from the Create ADF Skin File dialog. You use this name
when you apply the skin to your Oracle Fusion applications.

Task: Modify the Component Styles in the Custom Skin
Use ADF Skin Editor to change the look and feel of ADF Faces and ADF Data
Visualization components. The fusionFx-simple skin extension additionally enables
you to modify Applications Core components, which define how the Oracle Fusion
Applications template and extensible components appear. You find the Applications
Core components by expanding Style Classes in the Design view.

For information about modifying the look and feel of Applications Core components,
see Skinning Oracle Fusion Applications, which is available at
http://www.oracle.com/technetwork/fusion-apps/tools/downloads/index.html

12.3 Applying a Custom Skin to Your Oracle Fusion Applications
When you are ready to apply your custom skin to your Oracle Fusion applications,
you deploy the custom skin to an ADF Library JAR file. You then copy the custom skin
JAR file plus supporting JAR files to the installation directories of the applicable
Oracle Fusion applications, restart the applications, and set the profile option to use
the custom skin.

Task: Deploy the Custom Skin to an ADF Library JAR File
Deploy the skin project to a JAR file that can be included in an application.

To create the JAR file:

1. Right-click the skin project, choose Deploy, and choose New Deployment Profile
to display the Create Deployment Profile dialog.

2. Select ADF Library JAR File from the Profile Type dropdown list.

3. Set the Deployment Profile Name to a name that begins with Xx_. The Xx_ prefix
signifies to future patches and upgrades that this deployment is
customer-provided and must not be touched.

4. Click OK.

5. Right-click the skin project, choose Deploy, and choose the profile name to display
the Deploy profile name dialog.

6. Click Finish.

7. Right-click the skin project, choose Deploy, and choose profile name to JAR file.

Task: Add the Custom Skin JAR Files to Your Oracle Fusion Applications
You must make the custom skin JAR file and skin support JAR files available to Oracle
Fusion Applications before you can apply the skin.

Copy the following JAR files to the WEB-INF/lib directory of every Oracle Fusion
application:

■ skin-editor-installation-dir/jlib/adf-richclient-fusion-simple-version.jar

■ XxApplCoreSkin.version.jar. Download this JAR file from OTN at
http://www.oracle.com/technetwork/fusion-apps/tools/downloads/index.htm
l

■ The ADF Library JAR file for your custom skin.

Applying a Custom Skin to Your Oracle Fusion Applications

12-4 Extensibility Guide for Developers

After you add the custom JAR files, you must stop and restart the Oracle Fusion
applications as described in the "Starting and Stopping" section in the Oracle Fusion
Applications Administrator's Guide.

Task: Apply the Custom Skin to Your Oracle Fusion Applications
You use the Manage Profile Option Values page in the Manage Profile Options task
from the Setup and Maintenance work area to apply your custom skin to Oracle
Fusion applications. You can set this value at the site, product, or user level. You
typically set the option at the site level, however, if you want to test the skin, you can
set it at the user level.

To use your custom skin, change the value of the FND_CSS_SKIN_FAMILY profile
option to the skin family attribute that you set when you created your skin. If you do
not know the skin family attribute, you can find it in the skin project's
trinidad-skins.xml file.

Note: If you set the profile option at the site level, but you did not
copy the necessary skin JAR files into the WEB-INF/lib directory of
every Oracle Fusion application, the applications with the missing
files will be displayed with a simple skin that has a basic
black-and-white look.

Part III
Part III Appendixes

This part contains information about troubleshooting Oracle Fusion Applications
extensions and customizations. It contains the following appendix:

■ Appendix A, "Troubleshooting Customizations"

A

Troubleshooting Customizations A-1

ATroubleshooting Customizations

This appendix describes common problems that you might encounter when using
design time tools to customize and extend Oracle Fusion Applications and explains
how to solve them.

This appendix contains the following topics:

■ Section A.1, "Introduction to Troubleshooting Customizations"

■ Section A.2, "Getting Started with Troubleshooting and Logging Basics for
Customizations"

■ Section A.3, "Resolving Common Problems"

■ Section A.4, "Using My Oracle Support for Additional Troubleshooting
Information"

In addition to this appendix, review Oracle Fusion Middleware Error Messages Reference
for information about the error messages you may encounter.

A.1 Introduction to Troubleshooting Customizations
Use the following guidelines and process within this appendix to help focus and
minimize the time you spend resolving problems.

Guidelines
When using the information in this appendix, consider the following guidelines:

■ After performing any of the solution procedures in this appendix, immediately
retry the failed task that led you to this troubleshooting information. If the task
still fails when you retry it, perform a different solution procedure in this
appendix and then try the failed task again. Repeat this process until you resolve
the problem.

■ Make notes about the solution procedures you perform, symptoms you see, and
data you collect while troubleshooting. If you cannot resolve the problem using
the information in this appendix and you must log a service request, the notes will
expedite the process of solving the problem.

Process
Follow the process outlined in Table A–1 when using the information in this appendix.
If the information in a particular section does not resolve your problem, proceed to the
next step in this process.

Getting Started with Troubleshooting and Logging Basics for Customizations

A-2 Extensibility Guide for Developers

A.2 Getting Started with Troubleshooting and Logging Basics for
Customizations

This section provides the following general approaches for managing and diagnosing
customization issues:

■ Exporting Customizations

■ Backing Up and Restoring Customizations

■ Choosing the Right Customization Layer

■ Determining the Full Path for a Customizations Document

■ Determining Whether a Customization Layer is Active

■ Logging Customizations that Are Applied to a Page

A.2.1 Exporting Customizations
Customizations are stored in XML files. You can export the customizations for
diagnosing issues in a number of ways, as described in Section 2.3, "Exporting and
Moving Customizations."

A.2.2 Backing Up and Restoring Customizations
Before you make customizations, you can create a backup of a known good state by
creating a label. If an issue occurs after creating the label, you can revert back to that
label by promoting it to the tip as described in the "Creating Metadata Labels" and
"Promoting Metadata Labels" sections of the Oracle Fusion Middleware Administrator's
Guide.

Another way to back up and restore customizations is by exporting and importing
customization files, as described in Section A.2.1, "Exporting Customizations."

A.2.3 Choosing the Right Customization Layer
When you make customizations, be careful to choose the correct layer:

Table A–1 Process for Using the Information in this Appendix

Step Section to Use Purpose

1 Section A.2 Get started troubleshooting customizations. The procedures in this
section quickly address a wide variety of problems.

2 Section A.3 Perform problem-specific troubleshooting procedures for
customizations. This section describes:

■ Common problems

■ Solution procedures corresponding to each of the possible
problems

3 Section A.4 Use My Oracle Support to get additional troubleshooting information
about Oracle Fusion Applications or Oracle Business Intelligence. My
Oracle Support provides access to several useful troubleshooting
resources, including Knowledge Base articles and Community
Forums and Discussions.

4 Section A.4 Log a service request if the information in this appendix and My
Oracle Support does not resolve your problem. You can log a service
request using My Oracle Support at https://support.oracle.com.

Getting Started with Troubleshooting and Logging Basics for Customizations

Troubleshooting Customizations A-3

■ Use the site layer for customizations that affect all end users.

■ Use the global layer for ADF Business Components customizations.

■ Use product-specific layers appropriately as documented.

A.2.4 Determining the Full Path for a Customizations Document
The following string shows the structure of the full document path for a customization
document:

/package/mdssys/cust/layer-name/layer-value/document-name.suffix.xml

For example, the full document path for the Visa Work Permit Expiration region is
/oracle/apps/hcm/dashboard/hrSpecialist/publicUI/page/mdssys/Site/SITE/Vis
aWorkPermitExpirationRegion.jsf.xml.

You can obtain the full document path of a customized region on a page by completing
the following steps:

1. Go to the page that contains the customized region and choose Customize page_
name Pages from the Administration menu in the global area of Oracle Fusion
Applications to open Page Composer.

2. If you have more than one layer available for customization, the Layer Picker
dialog is displayed. In the Edit column, select the desired layer.

3. Choose Source from the View menu.

4. In the hierarchical list, drill down to and hover over the customized region to
display the full document path of the JSF fragment that contains the
customization, such as
/oracle/apps/hcm/dashboard/hrSpecialist/publicUI/page/mdssys/Site/SITE/
VisaWorkPermitExpirationRegion.jsf.xml. Make a note of this path.

For descriptive flexfield configurations, you can use the Register Descriptive Flexfields
task to find the name of the flexfield's package.

A.2.5 Determining Whether a Customization Layer is Active
Customizations do not appear if the customization layer is not active in an application.
To determine if a customization layer is active, open the adf-config.xml file for the
application and look for the <cust-config> tag, as shown in Example A–1. The nested
<customization-class> tags show the active layers.

Example A–1 Active Customization Layers

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
<cust-config>
 <match path="/">
 <customization-class name ="oracle.apps.fnd.applcore.customization.GlobalCC"/>
 <customization-class name ="oracle.apps.fnd.applcore.customization.SiteCC"/>
 <customization-class name ="oracle.apps.fnd.applcore.customization.UserCC"/>
 </match>
</cust-config>
</mds-config>
</adf-mds-config>

Resolving Common Problems

A-4 Extensibility Guide for Developers

A.2.6 Logging Customizations that Are Applied to a Page
To turn on runtime logging for customizations that are applied to a page, set the log
level for the oracle.mds.custmerge module to FINEST. You can set the application's
log level by choosing Troubleshooting from the Help menu. You might need to ask
your administrator to give you privilege to set the log level.

If you have administration privileges, you can also use Fusion Applications Control to
set the log level.

A.3 Resolving Common Problems
The following are common problems and solutions:

■ User Interface is not Displaying the Active Sandbox Customizations

■ Customizations Context Table Is Empty in Oracle JDeveloper

■ Application Is Not Displayed Correctly After Applying a Customized Skin

■ Finding the EAR File for an Application

A.3.1 User Interface is not Displaying the Active Sandbox Customizations

Problem
The customizations that were made in the active sandbox are not appearing in the user
interface.

Solution
Sign out and sign back in.

To ensure that the sandbox customization cache is cleared, log out and log back in
before you enter a sandbox and after you perform any of the following
sandbox-related actions:

■ Exit a sandbox

■ Publish a sandbox

■ Delete a sandbox

A.3.2 Customizations Context Table Is Empty in Oracle JDeveloper

Problem
You are using JDeveloper in the Oracle Fusion Applications Administrator
Customization role. The Customization Context table does not display the
customization classes, as shown in Figure A–1, and the messages log displays an error
message similar to the following text:

Error initializing MDS configuration for application
"file:/somepath/TestCustomHR.jws". Customizations disabled for this application.
MDS-00035: cannot load the class: oracle.apps.hcm.common.core.HcmCountryCC

Resolving Common Problems

Troubleshooting Customizations A-5

Figure A–1 Empty Customization Context Table

Solution
Enable JDeveloper to see the customization classes that define the customization layers
as described in Section 3.1.3, "Before You Begin Using JDeveloper to Customize."

A.3.3 Application Is Not Displayed Correctly After Applying a Customized Skin

Problem
After applying a customized skin that is based on the Oracle Fusion Applications Skin
Extension (fusionFx-simple), the application does not show the expected
customizations. For example, one or more of the following might occur:

■ The background is not in the expected color.

■ The user interface pages have a simple, minimal appearance instead of the
expected skin.

■ Expected images do not appear.

Solution
Verify that you used the correct target application version when you created the
custom skin. Try repackaging and redeploying the JAR file and ensure that no
problems occur during the packaging process.

Ensure that you copied the necessary JAR files to all the Oracle Fusion applications
and that you spelled the name of the skin correctly in the profile option.

For more information, see Section 12.3, "Applying a Custom Skin to Your Oracle
Fusion Applications."

A.3.4 Finding the EAR File for an Application
Use Oracle WebLogic Server Administration Console to locate a deployed
application's enterprise archive (EAR) file.

To find the EAR file for a deployed application:

1. Make a note of the string that follows the host name in the URL of the deployed
application. For example, if the URL is
http://myhost.mycompany.com:7401/myProd/faces/MyPage, make a note of
myProd.

2. Open Oracle WebLogic Server Administration Console.

3. Select Deployments.

4. In the Overview tab, click the entry with a name similar to the text that you noted
in Step 1, such as MyProdApp (V2.0), to display the settings for that deployed
application.

Using My Oracle Support for Additional Troubleshooting Information

A-6 Extensibility Guide for Developers

5. In the Overview tab, find the Path setting to see the path to the EAR file.

A.4 Using My Oracle Support for Additional Troubleshooting Information
You can use My Oracle Support (formerly MetaLink) to help resolve Oracle Fusion
Middleware problems. My Oracle Support contains several useful troubleshooting
resources, such as:

■ Knowledge base articles

■ Community forums and discussions

■ Patches and upgrades

■ Certification information

You can access My Oracle Support at https://support.oracle.com.

Note: You can also use My Oracle Support to log a service request.

Glossary-1

Glossary

application role

A role specific to applications and stored in the policy store.

application stripe

A collection of Oracle Application Server Java Authentication and Authorization
Service (JAAS) Provider policies that are applicable to the application with which it is
associated. Out of the box, an application stripe maps to a Java EE application. Oracle
Platform Security Services also supports mapping multiple Java EE applications to one
application stripe.

artifact (SAR file)

A file included in the SAR file of the SOA composite application. Examples of
artifacts include binding components and service components, references to B2B
agreements, Oracle Web Services Manager (Oracle WSM) policies, human task flows,
and metadata such as WSDL and XSD files.

binding component

A component that establishes the connection between a SOA composite application
and the external world. There are two types of binding components:

■ services: provide the outside world with an entry point to the SOA composite
application

■ references: enable messages to be sent from the SOA composite application to the
external services in the outside world.

BPEL

Business Process Execution Language. An XML-based markup language for
composing a set of discrete web services into an end-to-end process flow.

BPEL process

A service component that integrates a series of business activities and services into an
end-to-end business process flow. See also BPEL.

bucketset

A container for defining a list of values or a range of values of a specified type. After
you create a bucketset, you can associate the bucketset with a fact property of
matching type. Business rules use the bucketsets that you define to specify constraints
on the values associated with fact properties in rules or in decision tables.

business event

Glossary-2

business event

A message sent as the result of an occurrence or situation, such as a new order or
completion of an order. You can raise business events when a situation of interest
occurs. When an event is published, other applications can subscribe to it. Definitions
for business events are stored in an Oracle Metadata Services (MDS) repository, and
then published in the Event Delivery Network (EDN).

business object

A resource in an enterprise database, such as an invoice or purchase order.

Business Process Execution Language (BPEL)

See BPEL.

business rule

A statement that describes business policies or describes key business decisions.

component

An individual piece of an application, for example, a task flow, portlet, page, or layout
element such as a box or image.

configuration plan

As you move projects from one environment to another (for example, from testing to
production), you typically must modify several environment-specific values, such as
JDBC connection strings, hostnames of various servers, and so on. Configuration plans
enable you to modify these values using a single text (XML) file. During process
deployment, the configuration plan searches the SOA project for values that must be
replaced to adapt the project to the next target environment.

custom object

A high-level artifact, which manages data that resides in a database table, that you
create using Oracle Fusion CRM Application Composer.

customize

To change a standard (existing) Oracle Fusion Applications artifact.

data dimension

A stripe of data accessed by a data role, such as the data controlled by a business unit.

data security

The control of access to data. Data security controls what action an end user can take
against which data.

data stripe

A dimensional subset of the data granted by a data security policy and associated with
a data role. The data dimension expresses stripes of data, such as territorial or
geographic information, that you can use to partition enterprise data.

decision table

An alternative business rule format that is more compact and intuitive when many
rules are needed to analyze many combinations of property values. You can use a
decision table to create a set of rules that covers all combinations or when no two
combinations conflict.

format-only value set

Glossary-3

dependent value set

A list of values whose availability and meaning depend on the value that the end user
provides for a prior segment, where the prior segment is associated with an
independent value set.

descriptive flexfield

A type of flexfield used to give additional attributes to a data model. A descriptive
flexfield can support only a set amount of segments.

design time customizations and extensions

Customizations and extensions that include more complex changes, such as creating
Oracle SOA Suite composite applications or creating new batch jobs. Design time
customizations are most often done by Java developers using Oracle JDeveloper (a
comprehensive IDE), or may be done in other tools, such as Oracle SOA Composer.
The customizations are then uploaded or deployed to a running instance of Oracle
Fusion Applications.

domain value map

A set of value mappings that enables you to associate values from one application
with values from another. For example, one value can represent a city with a long
name (Boston), while another value can represent a city with a short name (BO). In
such cases, you can directly map the values by using domain value maps.

entitlement

A set of grants of access to functions and data. This is an Oracle Fusion Middleware
term for privilege.

extend

To create a completely new artifact, such as a custom business object or custom view
page.

extensible flexfield

A type of flexfield that is similar to a descriptive flexfield, but does not have a fixed
number of segments, allows grouping of segments into contexts, allows entities to
inherit segments from their parents, and supports one-to-many relationships between
an entity and its extended attribute rows.

flexfield

A set of placeholder fields (segments) that is associated with a business object. Oracle
Fusion Applications provides three types of flexfields: descriptive, extensible, and key.
Implementors use descriptive and extensible flexfields to add custom attributes to
business objects. Implementors use key flexfields to define keys, such as part
numbers.

flexfield sandbox

A sandbox to which you deploy flexfield configurations for testing purposes before
deploying to the mainline code.

format-only value set

A value set that conforms to formatting rules. This is used when you want to allow
end users to enter any value so long as that value conforms to formatting rules. For
example, if you specify a maximum length of 3 and numeric-only, then users can enter

function security

Glossary-4

456 but not 4567 or 45A. Use a format-only value set only when no other types of
validation are required.

function security

The mechanism by which user access to application functionality is controlled.

global layer

A customization layer in which customizations affect all end users of the application.
This layer's XML files are added for everyone, whenever the artifact is requested.
Customizations made to ADF Business Components in Oracle JDeveloper must be
made in the global layer.

human task

A Business Catalog component that enables you to define how end users interact with
your Oracle Business Process Management (Oracle BPM) processes. Human tasks are
implemented in an Oracle BPM process using the user task. Human tasks are also used
in SOA composite applications, where they are known as service components.

independent value set

A predefined list of values for a flexfield segment. These values can have an
associated description. The meaning of a value in this value set does not depend on
the value of any other segment.

key flexfield

A non-optional type of flexfield. This type of flexfield is used to define the parts of a
key structure such as the parts of a product key or the parts of a customer key.

metadata sandbox

The type of sandbox that supports making changes to the application's metadata
stored in an Oracle Metadata Services (MDS) repository.

multi-tenant environment

An environment where a single application instance serves multiple client
organizations by partitioning the data and configurations into separate virtual
application instances.

navigator menu

The global menu that is accessible from the Oracle Fusion Applications global area.

partner link

Characterizes the conversational relationship between two services in a BPEL process
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

permission

A security artifact in the policy store that maps a specific application resource with an
allowed action. For example, a permission may be granted to a role to confer access
rights to users.

personalization

The changes that every end user of the Oracle Fusion Applications product suite can
make to certain artifacts in the user interface (UI) at runtime. These changes remain for
that user each time that user logs in to the application. Personalization includes

SAR file

Glossary-5

changes based on user behavior (such as changing the width of a column in a table),
changes the user elects to save, such as search parameters, or composer-based
personalizations, where an end user can redesign aspects of a page.

privilege

A grant of access to functions and data. A privilege is a defined by a single, real world
action on a single business object.

production-to-test movement

The process of completely refreshing the test environment by copying configuration
and data from the production system.

resource bundle

A collection of locale-specific objects. When a program needs a locale-specific resource,
a String for example, it can load the resource from the resource bundle appropriate
for the current user's locale. In this way, the program code is largely independent of
the user's locale, isolating most, if not all, of the locale-specific information in resource
bundles.

role

An identity that determines permitted access to application functions and data.

rule dictionary

A business rules container for facts, functions, globals, bucketsets, links, decision
functions, and rulesets. A dictionary is an XML file that stores the application's
rulesets and the data model. Dictionaries can link to other dictionaries.

ruleset

A business rules container for rules and decision tables. A ruleset provides a
namespace, similar to a Java package, for rules and decision tables.

runtime customizations and extensions

Customizations and extensions that can be made to Oracle Fusion Applications at
runtime using browser-based components. These customizations and extensions are
available to all or to a subset of Oracle Fusion Applications end users, and range from
changing the look and feel of a page, to customizing standard business objects,
adding a new business object and associated pages and application functionality,
changing workflows, defining security for new objects, and customizing reports.

sandbox

A testing environment that separates sections of an application so that changes and
modifications are kept within the sandbox and do not affect the mainline code or other
sandboxes. Different users can create their own sandboxes to test their own sections.
After the changes made in the sandbox have been tested, the sandbox user has the
option to publish the changes to the mainline code.

SAR file

A SOA archive deployment unit. A SAR file is a special JAR file that requires a prefix
of sca_. (For example, sca_OrderBookingComposite_rev1.0.jar). The SAR file packages
binding components and service components, such as BPEL processes, business
rules, human tasks, and mediator routing services, into a SOA composite application.

security reference implementation

Glossary-6

security reference implementation

Provides role-based access control in Oracle Fusion Applications, and is composed of
predefined security policies that protect functions, data, and segregation of rules. The
reference implementation supports identity management, access provisioning, and
security enforcement across the tools, data transformations, access methods, and the
information lifecycle of an enterprise.

security sandbox

The type of sandbox that supports making data security changes.

segment

A subdivision of a flexfield. A segment captures a single atomic value, which is
represented in the application database as a single column. In the application UI,
segments can be presented as individual table columns, as separate fields, or as a
concatenated string of values.

service component

A component that implements the business logic or processing rules of a SOA
composite application. Service components include Oracle Business Process
Execution Language processes, business rules, human tasks, and mediator routing
services.

site layer

A customization layer in which customizations affect end users at a particular location.

skin

A style sheet based on the CSS 3.0 syntax and that is specified in one place for an entire
application. Instead of providing a style sheet for each component, or inserting a style
sheet on each page, you can create one skin for the entire application.

SOA composite application

An assembly of service binding components, service components, and reference
binding components designed and deployed in a single application. Wiring between
the components enables message communication. The details for a composite are
stored in the composite.xml file.

subset value set

A set of values taken from an existing independent value set. For example, if you
have an independent value set for the days of the week, a weekend subset can be
composed of its entries for Saturday and Sunday.

table value set

A value set with the Table validation type. The valid values in the value set are
obtained from a specified column in a database table.

UI Shell template

The template that is use for the base UI for all Oracle Fusion Applications pages.

user layer

The customization layer in which all personalizations are made. The user layer is
automatically selected when you use the Personalization menu.

wire

Glossary-7

value set

A list of values used to specify the validation rules for a flexfield segment.

wire

Wires connect service binding components, service components, and reference
binding components into a complete SOA composite application.

wire

Glossary-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 11g Release 7 (11.1.7)
	Other Significant Changes in this Document for 11g Release 7 (11.1.7)

	Part I Introduction to Customizing and Extending Oracle Fusion Applications
	1 Customizing and Extending Oracle Fusion Applications
	1.1 Understanding Customizing and Extending Oracle Fusion Applications
	1.1.1 Personalization
	1.1.2 Runtime Customizations and Extensions
	1.1.3 Design Time Customizations and Extensions

	1.2 Understanding Customization Layers
	1.3 Understanding the Tools
	1.3.1 Understanding Role-Based Access to Tools
	1.3.2 Personalizing and Customizing Pages Using Page Composer
	1.3.3 Customizing Pages Using Application Composer
	1.3.4 Creating and Customizing Objects
	1.3.5 Creating and Customizing Business Process Flows for Custom Objects
	1.3.6 Defining Security Policies for Custom Objects
	1.3.7 Adding Custom Attributes to Business Components
	1.3.8 Customizing Reports and Analytics
	1.3.9 Performing Design Time Customizations
	1.3.10 Customizing and Extending Oracle BPM Project Templates
	1.3.11 Understanding Other Available Customizations
	1.3.12 What You Can Customize and Extend and with Which Tool
	1.3.13 Installing Customization Tools

	2 Understanding the Customization Development Lifecycle
	2.1 Understanding Typical Customization Workflows
	2.1.1 Runtime Customization Workflow
	2.1.2 Design Time Customization Workflow

	2.2 Using the Sandbox Manager
	2.3 Exporting and Moving Customizations

	Part II Design Time Customizations and Extensions
	3 Using Oracle JDeveloper for Customizations
	3.1 About Using JDeveloper for Customization
	3.1.1 About Customizing Oracle ADF Artifacts
	3.1.2 About Using JDeveloper to Customize SOA Composite Applications
	3.1.3 Before You Begin Using JDeveloper to Customize

	3.2 Customizing Oracle ADF Artifacts with JDeveloper
	3.2.1 Creating the Customization Application Workspace
	3.2.2 Determining Which Oracle ADF Artifacts You Need to Customize
	3.2.3 Customizing the Artifacts
	3.2.4 Avoiding Conflicts Among Multiple Customization Developers
	3.2.5 Running Customizations Locally
	3.2.6 Importing Customizations into Your Application Workspace
	3.2.7 Resynchronizing Your Customization Application Workspace Configuration Files

	3.3 Customizing SOA Composite Applications with JDeveloper
	3.3.1 Before You Begin Using JDeveloper to Customize
	3.3.2 Setting Up the JDeveloper Application Workspace and SOA Composite Application Project for MDS Repository Customization
	3.3.3 Customizing the SOA Composite Application
	3.3.4 Customizing SOA Resource Bundles

	4 Customizing and Extending Oracle ADF Application Artifacts
	4.1 About Customizing Oracle ADF Application Artifacts
	4.1.1 Before You Begin Customizing Oracle ADF Application Artifacts
	4.1.2 Customizing at the Role Level

	4.2 Editing Existing Business Components
	4.3 Editing Task Flows
	4.4 Editing Pages
	4.5 Creating Custom Business Components
	4.6 Creating Custom Task Flows
	4.7 Creating Custom Pages
	4.8 Customizing and Extending the Oracle Fusion Applications Schemas
	4.8.1 About Customizing and Extending the Oracle Fusion Applications Schemas
	4.8.2 What You Can Do with Schema Modifications
	4.8.3 What You Cannot Do with Schema Modifications
	4.8.4 Before You Begin Extending the Oracle Fusion Applications Schemas
	4.8.5 Extending the Schemas Using a Custom Schema
	4.8.6 Extending a Preconfigured Schema

	4.9 Customizing or Creating a Custom Search Object
	4.10 Editing the UI Shell Template
	4.11 Customizing Menus
	4.12 Customizing or Adding Resource Bundles
	4.13 Extending Oracle Fusion Applications with a Custom Peer Application
	4.14 Deploying Oracle ADF Customizations and Extensions

	5 Customizing and Extending SOA Components
	5.1 About Customizing and Extending SOA Components
	5.1.1 Before You Begin Customizing SOA Composite Applications

	5.2 Customizing SOA Composite Applications
	5.3 Merging Runtime Customizations from a Previously Deployed Revision into a New Revision
	5.4 Extending or Customizing Custom SOA Composite Applications
	5.5 Deploying SOA Composite Application Customizations and Extensions
	5.6 Extending a New Oracle SOA Suite Service

	6 Customizing and Extending Oracle BPM Project Templates
	6.1 About Customizing Project Templates
	6.1.1 About the Business Catalog
	6.1.2 Before You Begin Using JDeveloper to Customize Project Templates

	6.2 Customizing or Extending a Project Template
	6.3 Publishing Project Templates to the Oracle BPM Repository

	7 Customizing and Extending Oracle Enterprise Scheduler Jobs
	7.1 About Customizing and Extending Oracle Enterprise Scheduler Jobs
	7.1.1 Main Steps for Extending Oracle Enterprise Scheduler Jobs
	7.1.2 Main Steps for Customizing Oracle Enterprise Scheduler Jobs
	7.1.3 Before You Begin Extending and Customizing Oracle Enterprise Scheduler Jobs

	7.2 Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications
	7.2.1 Extending a Custom PL/SQL Oracle Enterprise Scheduler Job
	7.2.2 Extending a Custom Oracle BI Publisher Oracle Enterprise Scheduler Job
	7.2.3 Extending a Custom Java Oracle Enterprise Scheduler Job
	7.2.4 Submitting Oracle Enterprise Scheduler Jobs

	7.3 Creating a Custom Oracle Enterprise Scheduler Application to Extend Oracle Enterprise Scheduler Jobs
	7.3.1 Creating Host and UI Applications Using an Ant Script
	7.3.2 Generating an Oracle Enterprise Scheduler Synchronous Java Job Business Logic Template
	7.3.3 Creating Oracle Enterprise Scheduler Job Metadata Using JDeveloper
	7.3.3.1 Creating an Oracle Enterprise Scheduler Job Definition in the Host Application
	7.3.3.2 Creating a Schedule Request Submission UI to Enable End Users to Fill in Properties

	7.3.4 Assembling Oracle Enterprise Scheduler Oracle Fusion Applications
	7.3.5 Deploying Oracle Enterprise Scheduler Oracle Fusion Applications
	7.3.6 Registering Oracle Enterprise Scheduler Topology Objects
	7.3.7 Granting Job Metadata Permissions to Application Roles and Users

	7.4 Customizing Existing Oracle Enterprise Scheduler Job Properties

	8 Customizing Security for Oracle ADF Application Artifacts
	8.1 About the Oracle Fusion Security Approach
	8.1.1 How to Proceed with This Chapter
	8.1.2 Related Security Documents

	8.2 About Extending the Oracle Fusion Applications Security Reference Implementation
	8.3 About Extending and Securing Oracle Fusion Applications
	8.3.1 Oracle Fusion Security Customization Guidelines for New Functionality
	8.3.2 Oracle Fusion Security Customization Process Overview
	8.3.3 Oracle Fusion Security Customization Scenarios
	8.3.4 Scenarios Related to Extending and Securing Data Model Components
	8.3.5 Scenarios Related to Extending and Securing User Interface Artifacts
	8.3.6 What You Can Customize in the Data Security Policy Store at Design Time
	8.3.7 What You Can Customize in the Data Model Project at Design Time
	8.3.8 What You Can Customize in the User Interface Project at Design Time
	8.3.9 What You Can Customize in the Application Security Policy Store at Design Time
	8.3.10 What You Cannot Do with Security Policies at Design Time
	8.3.11 Before You Begin Customizing Security

	8.4 Defining Data Security Policies on Custom Business Objects
	8.5 Enforcing Data Security in the Data Model Project
	8.6 Defining Function Security Policies for the User Interface Project

	9 Translating Custom Text
	9.1 About Translating Custom Text
	9.2 Translating Resource Bundles from an MDS Repository
	9.3 Translating Page Composer and Application Composer Customizations
	9.4 Translating Menu Customizations
	9.5 Translating Flexfield and Value Set Configurations

	10 Configuring End-User Personalization
	10.1 About Configuring End-User Personalization
	10.1.1 Before You Begin Allowing Pages or Components to be Personalized

	10.2 Allowing Pages to Be Personalized by End Users in Page Composer
	10.3 Configuring End-User Personalization for Components

	11 Customizing Help
	11.1 About Customizing Help
	11.1.1 What You Can Do with Help
	11.1.2 Before You Begin Customizing Help

	11.2 Customizing or Extending Oracle Fusion Applications Help
	11.3 Customizing or Adding Bubble Embedded Help
	11.4 Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions

	12 Customizing the Oracle Fusion Applications Skin
	12.1 Introduction to Skinning Oracle Fusion Applications
	12.1.1 Before You Begin Customizing the Oracle Fusion Applications Skin

	12.2 Creating a Custom Oracle Fusion Applications Skin
	12.3 Applying a Custom Skin to Your Oracle Fusion Applications

	Part III Appendixes
	A Troubleshooting Customizations
	A.1 Introduction to Troubleshooting Customizations
	A.2 Getting Started with Troubleshooting and Logging Basics for Customizations
	A.2.1 Exporting Customizations
	A.2.2 Backing Up and Restoring Customizations
	A.2.3 Choosing the Right Customization Layer
	A.2.4 Determining the Full Path for a Customizations Document
	A.2.5 Determining Whether a Customization Layer is Active
	A.2.6 Logging Customizations that Are Applied to a Page

	A.3 Resolving Common Problems
	A.3.1 User Interface is not Displaying the Active Sandbox Customizations
	A.3.2 Customizations Context Table Is Empty in Oracle JDeveloper
	A.3.3 Application Is Not Displayed Correctly After Applying a Customized Skin
	A.3.4 Finding the EAR File for an Application

	A.4 Using My Oracle Support for Additional Troubleshooting Information

	Glossary

