

Oracle® Database
Advanced Security Administrator’s Guide

11g Release 2 (11.2)

E10746-07

April 2013

Oracle Database Advanced Security Administrator's Guide 11g Release 2 (11.2)

E10746-07

Copyright © 1996, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sumit Jeloka

Contributor: Peter Wahl, Rahil Mir, Indra Fitzgerald, Paul Youn, Adam Lee, Preetam Ramakrishna, Gopal
Mulagund, Daniel Wong, Rajbir Chahal, Min-Hank Ho, Michael Hwa, Sudha Iyer, Adam Lindsey Jacobs,
Supriya Kalyanasundaram, Lakshmi Kethana, Andrew Koyfman, Van Le, Nina Lewis, Stella Li, Janaki
Narasinghanallur, Vikram Pesati, Andy Philips, Richard Smith, Deborah Steiner, Philip Thornton, Ramana
Turlapati, Paul Needham

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Organization .. xx
Related Documentation... xxii
Conventions ... xxiii

What's New in Oracle Advanced Security? .. xxv

Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle Advanced Security................. xxv
Oracle Database 11g Release 2 (11.2) New Features in Oracle Advanced Security....................... xxv
Oracle Database 11g Release 1 (11.1) New Features in Oracle Advanced Security....................... xxvi

Part I Getting Started with Oracle Advanced Security

1 Introduction to Oracle Advanced Security

Security Challenges in an Enterprise Environment .. 1-1
Security in Enterprise Grid Computing Environments.. 1-1
Security in an Intranet or Internet Environment ... 1-2
Common Security Threats .. 1-2

Eavesdropping and Data Theft ... 1-2
Data Tampering .. 1-2
Falsifying User Identities ... 1-3
Password-Related Threats ... 1-3

Solving Security Challenges with Oracle Advanced Security .. 1-3
Data Encryption.. 1-3

Supported Encryption Algorithms... 1-4
RC4 Encryption: ... 1-4
DES Encryption : .. 1-5
Triple-DES Encryption : .. 1-5
Advanced Encryption Standard: ... 1-5

Data Integrity... 1-5
Federal Information Processing Standard... 1-6

Strong Authentication ... 1-6
Centralized Authentication and Single Sign-On.. 1-6

How Centralized Network Authentication Works... 1-6

iv

Supported Authentication Methods .. 1-8
Kerberos .. 1-8
 Remote Authentication Dial-In User Service (RADIUS) :... 1-8
Secure Sockets Layer ... 1-8
Entrust/PKI : .. 1-9

Oracle Advanced Security Architecture... 1-9
System Requirements... 1-10
Oracle Advanced Security Restrictions... 1-11

2 Configuration and Administration Tools Overview

Network Encryption and Strong Authentication Configuration Tools ... 2-1
Oracle Net Manager... 2-1

Starting Oracle Net Manager... 2-2
Navigating to the Oracle Advanced Security Profile .. 2-2
Oracle Advanced Security Profile Property Sheets.. 2-3

Authentication Property Sheet .. 2-3
Other Params Property Sheet... 2-3
Integrity Property Sheet.. 2-3
Encryption Property Sheet ... 2-3
SSL Property Sheet .. 2-3

Oracle Advanced Security Kerberos Adapter Command-Line Utilities.................................... 2-4
Public Key Infrastructure Credentials Management Tools.. 2-4

Oracle Wallet Manager.. 2-4
Starting Oracle Wallet Manager.. 2-5
Navigating the Oracle Wallet Manager User Interface ... 2-5

Navigator Pane... 2-5
Right Pane... 2-6

Toolbar.. 2-7
Menus ... 2-7

Wallet Menu ... 2-7
Operations Menu ... 2-8
Help Menu .. 2-9

orapki Utility... 2-9
Duties of a Security Administrator/DBA .. 2-9

Part II Data Encryption and Integrity

3 Securing Stored Data Using Transparent Data Encryption

About Transparent Data Encryption... 3-1
Benefits of Using Transparent Data Encryption.. 3-1
Types of Transparent Data Encryption... 3-2

TDE Column Encryption ... 3-2
TDE Tablespace Encryption .. 3-3

Using Transparent Data Encryption ... 3-5
Enabling Transparent Data Encryption .. 3-6

Specifying a Wallet Location for Transparent Data Encryption .. 3-6

v

Using Wallets with Automatic Login Enabled... 3-6
Setting and Resetting the Master Encryption Key .. 3-6

Setting the Master Encryption Key... 3-7
Resetting the Master Encryption Key .. 3-8

Opening and Closing the Encrypted Wallet .. 3-8
Encrypting Columns in Tables... 3-9

Creating Tables with Encrypted Columns ... 3-10
Creating a Table with an Encrypted Column... 3-10
Creating a Table with an Encrypted Column Using a Nondefault Algorithm and No
Salt 3-10
Using the NOMAC Parameter to Save Disk Space and Improve Performance 3-11
Creating an Encrypted Column in an External Table ... 3-12

Encrypting Columns in Existing Tables ... 3-13
Adding an Encrypted Column to an Existing Table ... 3-13
Encrypting an Unencrypted Column .. 3-13
Disabling Encryption on a Column.. 3-13

Creating an Index on an Encrypted Column... 3-13
Adding or Removing Salt from an Encrypted Column ... 3-14
Changing the Encryption Key or Algorithm for Tables Containing Encrypted Columns
3-14
Data Types That Can Be Encrypted with TDE Column Encryption 3-15
Restrictions on Using TDE Column Encryption ... 3-15

Encrypting Entire Tablespaces .. 3-16
Setting the Tablespace Master Encryption Key ... 3-17

Resetting the Tablespace Master Encryption Key.. 3-17
Opening the Oracle Wallet ... 3-17
Creating an Encrypted Tablespace.. 3-18
Restrictions on Using TDE Tablespace Encryption .. 3-19

Using Hardware Security Modules with TDE.. 3-20
Set the ENCRYPTION_WALLET_LOCATION Parameter in the sqlnet.ora File 3-20
Copy the PKCS#11 Library to Its Correct Path.. 3-21
Set Up the HSM.. 3-21
Generate a Master Encryption Key for HSM-Based Encryption....................................... 3-21
Reconfigure the Software Wallet (Optional).. 3-22
Ensure that the HSM Is Accessible .. 3-23
Encrypt and Decrypt Data .. 3-23

Using Transparent Data Encryption with Oracle RAC ... 3-24
Using a Non-Shared File System to Store the Wallet ... 3-24

Managing Transparent Data Encryption... 3-24
Oracle Wallet Management ... 3-25

Specifying a Separate Wallet for Transparent Data Encryption 3-25
Using an Auto Login Wallet... 3-25
Creating Wallets... 3-26

Backup and Recovery of Master Encryption Keys... 3-26
Backup and Recovery of Oracle Wallet .. 3-26
Backup and Recovery of PKI Key Pair.. 3-27

Export and Import of Tables with Encrypted Columns.. 3-27

vi

Performance and Storage Overheads... 3-29
Performance Overheads.. 3-29
Storage Overheads... 3-30

Security Considerations ... 3-30
Using Transparent Data Encryption in a Multi-Database Environment 3-31
Replication in Distributed Environments.. 3-31
Compression and Data Deduplication of Encrypted Data ... 3-32
Transparent Data Encryption with OCI .. 3-32
Transparent Data Encryption in a Multi-Database Environment.. 3-32
Transparent Data Encryption Data Dictionary Views... 3-33

Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption . 3-35
Prepare the Database for Transparent Data Encryption ... 3-36

Specify an Oracle Wallet Location in the sqlnet.ora File.. 3-36
Create the Master Encryption Key .. 3-36
Open the Oracle Wallet ... 3-36

Create a Table with an Encrypted Column ... 3-37
Create an Index on an Encrypted Column.. 3-37
Alter a Table to Encrypt an Existing Column ... 3-38
Create an Encrypted Tablespace... 3-38
Create a Table in an Encrypted Tablespace... 3-38

Troubleshooting Transparent Data Encryption ... 3-39
Transparent Data Encryption Reference Information.. 3-43

Supported Encryption and Integrity Algorithms... 3-44
Quick Reference: Transparent Data Encryption SQL Commands... 3-44

4 Configuring Network Data Encryption and Integrity for Oracle Servers and
Clients

Oracle Advanced Security Encryption ... 4-1
Advanced Encryption Standard .. 4-2
DES Algorithm Support .. 4-2
Triple-DES Support ... 4-2

DES40 Algorithm .. 4-2
RSA RC4 Algorithm for High Speed Encryption .. 4-2

Oracle Advanced Security Data Integrity.. 4-3
Data Integrity Algorithms Supported... 4-3

Diffie-Hellman Based Key Negotiation... 4-3
Authentication Key Fold-in .. 4-3

How To Configure Data Encryption and Integrity .. 4-4
About Activating Encryption and Integrity ... 4-4
About Negotiating Encryption and Integrity .. 4-5

REJECTED.. 4-5
ACCEPTED.. 4-5
REQUESTED.. 4-5
REQUIRED... 4-6

Configuring Encryption and Integrity Parameters Using Oracle Net Manager....................... 4-6
Configuring Encryption on the Client and the Server... 4-7
Configuring Integrity on the Client and the Server... 4-8

vii

5 Configuring Network Authentication, Encryption, and Integrity for Thin JDBC
Clients

About the Java Implementation .. 5-1
Java Database Connectivity Support... 5-1
Securing Thin JDBC ... 5-2
Implementation Overview.. 5-3
Obfuscation ... 5-3

Configuration Parameters... 5-3
Client Encryption Level: CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL
5-4
Client Encryption Selected List: CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_
TYPES 5-4
Client Integrity Level: CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL 5-5
Client Integrity Selected List: CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES .
5-5
Client Authentication Service: CONNECTION_PROPERTY_THIN_NET_
AUTHENTICATION_SERVICES 5-5
AnoServices Constants .. 5-6

Part III Oracle Advanced Security Strong Authentication

6 Configuring RADIUS Authentication

RADIUS Overview .. 6-1
RADIUS Authentication Modes ... 6-2

Synchronous Authentication Mode... 6-3
Challenge-Response (Asynchronous) Authentication Mode .. 6-4

Enabling RADIUS Authentication, Authorization, and Accounting .. 6-7
Task 1: Install RADIUS on the Oracle Database Server and on the Oracle Client.................... 6-7
Task 2: Configure RADIUS Authentication ... 6-7

Step 1: Configure RADIUS on the Oracle Client .. 6-7
Step 2: Configure RADIUS on the Oracle Database Server .. 6-8
Step 3: Configure Additional RADIUS Features ... 6-10

Task 3: Create a User and Grant Access .. 6-12
Task 4: Configure External RADIUS Authorization (optional).. 6-13
Task 5: Configure RADIUS Accounting .. 6-14

Set RADIUS Accounting on the Oracle Database Server... 6-14
Configure the RADIUS Accounting Server.. 6-14

Task 6: Add the RADIUS Client Name to the RADIUS Server Database............................... 6-15
Task 7: Configure the Authentication Server for Use with RADIUS 6-15
Task 8: Configure the RADIUS Server for Use with the Authentication Server.................... 6-15
Task 9: Configure Mapping Roles .. 6-15

Using RADIUS to Log In to a Database.. 6-16
RSA ACE/Server Configuration Checklist... 6-17

7 Configuring Kerberos Authentication

Enabling Kerberos Authentication .. 7-1

viii

Task 1: Install Kerberos ... 7-1
Task 2: Configure a Service Principal for an Oracle Database Server .. 7-2
Task 3: Extract a Service Key Table from Kerberos... 7-2
Task 4: Install an Oracle Database Server and an Oracle Client ... 7-3
Task 5: Install Oracle Net Services and Oracle Advanced Security.. 7-3
Task 6: Configure Oracle Net Services and Oracle Database .. 7-3
Task 7: Configure Kerberos Authentication... 7-4

Step 1: Configure Kerberos on the Client and on the Database Server............................... 7-4
Step 2: Set the Initialization Parameters .. 7-5
Step 3: Set sqlnet.ora Parameters (optional).. 7-6

Task 8: Create a Kerberos User .. 7-7
Task 9: Create an Externally Authenticated Oracle User ... 7-8
Task 10: Get an Initial Ticket for the Kerberos/Oracle User ... 7-8

Utilities for the Kerberos Authentication Adapter .. 7-8
Obtaining the Initial Ticket with the okinit Utility ... 7-9
Displaying Credentials with the oklist Utility ... 7-9
Removing Credentials from the Cache File with the okdstry Utility 7-10
Connecting to an Oracle Database Server Authenticated by Kerberos................................... 7-10

Configuring Interoperability with a Windows 2000 Domain Controller KDC 7-10
Task 1: Configure an Oracle Kerberos Client to Interoperate with a Windows 2000 Domain
Controller KDC 7-11

Step 1: Create the Client Kerberos Configuration Files to Use a Windows Domain
Controller KDC 7-11
Step 2: Specify the Oracle Configuration Parameters in the sqlnet.ora File.................... 7-11
Step 3: Specify the Listening Port Number .. 7-12

Task 2: Configure a Windows 2000 Domain Controller KDC to Interoperate with an Oracle
Client 7-12

Step 1: Create the User .. 7-12
Step 2: Create the Oracle Database Principal... 7-12

Task 3: Configure an Oracle Database to Interoperate with a Windows 2000 Domain Controller
KDC 7-13

Step 1: Set Configuration Parameters in the sqlnet.ora File... 7-13
Step 2: Create an Externally Authenticated Oracle User ... 7-13

Task 4: Obtain an Initial Ticket for the Kerberos/Oracle User... 7-13
Troubleshooting... 7-14

8 Configuring Secure Sockets Layer Authentication

SSL and TLS in an Oracle Environment .. 8-1
Difference between SSL and TLS ... 8-1
Using SSL... 8-2
How SSL Works in an Oracle Environment: The SSL Handshake ... 8-2

Public Key Infrastructure in an Oracle Environment ... 8-3
About Public Key Cryptography ... 8-3
Public Key Infrastructure Components in an Oracle Environment ... 8-4

Certificate Authority... 8-4
Certificates ... 8-4
Certificate Revocation Lists ... 8-4
Wallets .. 8-5

ix

Hardware Security Modules ... 8-5
SSL Combined with Other Authentication Methods ... 8-6

Architecture: Oracle Advanced Security and SSL... 8-6
How SSL Works with Other Authentication Methods... 8-6

SSL and Firewalls... 8-7
SSL Usage Issues .. 8-8
Enabling SSL ... 8-8

Task 1: Install Oracle Advanced Security and Related Products .. 8-8
Task 2: Configure SSL on the Server ... 8-9

Step 1: Confirm Wallet Creation on the Server... 8-9
Step 2: Specify the Database Wallet Location on the Server... 8-9
Step 3: Set the SSL Cipher Suites on the Server (Optional).. 8-10
Step 4: Set the Required SSL Version on the Server (Optional) .. 8-12
Step 5: Set SSL Client Authentication on the Server (Optional).. 8-13
Step 6: Set SSL as an Authentication Service on the Server (Optional)............................ 8-14
Step 7: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server............. 8-14

Task 3: Configure SSL on the Client ... 8-15
Step 1: Confirm Client Wallet Creation .. 8-15
Step 2: Configure Oracle Net Service Name to Include Server DNs and Use TCP/IP with
SSL on the Client 8-15
Step 3: Specify Required Client SSL Configuration (Wallet Location) 8-16
Step 4: Set the Client SSL Cipher Suites (Optional) .. 8-18
Step 5: Set the Required SSL Version on the Client (Optional) ... 8-19
Step 6: Set SSL as an Authentication Service on the Client (Optional) 8-20

Task 4: Log on to the Database.. 8-20
Troubleshooting SSL .. 8-20
Certificate Validation with Certificate Revocation Lists ... 8-23

What CRLs Should You Use? .. 8-24
How CRL Checking Works ... 8-24
Configuring Certificate Validation with Certificate Revocation Lists 8-25
Certificate Revocation List Management... 8-27

Displaying orapki Help .. 8-27
Renaming CRLs with a Hash Value for Certificate Validation... 8-27
Uploading CRLs to Oracle Internet Directory... 8-28
Listing CRLs Stored in Oracle Internet Directory ... 8-29
Viewing CRLs in Oracle Internet Directory... 8-29
Deleting CRLs from Oracle Internet Directory.. 8-30

Troubleshooting Certificate Validation ... 8-30
Oracle Net Tracing File Error Messages Associated with Certificate Validation........... 8-31

Configuring Your System to Use Hardware Security Modules ... 8-32
General Guidelines for Using Hardware Security Modules with Oracle Advanced Security
8-33
Configuring Your System to Use nCipher Hardware Security Modules 8-33

Oracle Components Required To Use an nCipher Hardware Security Module 8-33
About Installing an nCipher Hardware Security Module ... 8-34

Configuring Your System to Use SafeNET Hardware Security Modules 8-34

x

Oracle Components Required To Use a SafeNET Luna SA Hardware Security Module
8-34
About Installing a SafeNET Hardware Security Module .. 8-35

Troubleshooting Using Hardware Security Modules.. 8-35
Error Messages Associated with Using Hardware Security Modules 8-35

9 Using Oracle Wallet Manager

Oracle Wallet Manager Overview ... 9-1
Wallet Password Management .. 9-2
Strong Wallet Encryption.. 9-2
Microsoft Windows Registry Wallet Storage... 9-2

Options Supported:... 9-2
Backward Compatibility ... 9-3
Public-Key Cryptography Standards (PKCS) Support... 9-3
Multiple Certificate Support... 9-3
LDAP Directory Support .. 9-5

Starting Oracle Wallet Manager .. 9-6
How to Create a Complete Wallet: Process Overview... 9-6
Managing Wallets... 9-7

Required Guidelines for Creating Wallet Passwords ... 9-7
Creating a New Wallet .. 9-8

Creating a Standard Wallet ... 9-8
Creating a Wallet to Store Hardware Security Module Credentials 9-8

Opening an Existing Wallet .. 9-9
Closing a Wallet... 9-10
Exporting Oracle Wallets to Third-Party Environments... 9-10
Exporting Oracle Wallets to Tools that Do Not Support PKCS #12 .. 9-10
Uploading a Wallet to an LDAP Directory ... 9-11
Downloading a Wallet from an LDAP Directory... 9-11
Saving Changes ... 9-12
Saving the Open Wallet to a New Location .. 9-12
Saving in System Default ... 9-13
Deleting the Wallet ... 9-13
Changing the Password ... 9-13
Using Auto Login.. 9-14

Enabling Auto Login ... 9-14
Disabling Auto Login .. 9-14

Managing Certificates .. 9-14
Managing User Certificates ... 9-15

Adding a Certificate Request ... 9-15
Importing the User Certificate into the Wallet .. 9-17

To import the user certificate from the text of the Certificate Authority's e-mail... 9-17
To import the certificate from a file ... 9-18

Importing Certificates and Wallets Created by Third Parties .. 9-18
Importing User Certificates Created with a Third-Party Tool 9-19

Removing a User Certificate from a Wallet ... 9-19
Removing a Certificate Request... 9-20

xi

Exporting a User Certificate ... 9-20
Exporting a User Certificate Request .. 9-20

Managing Trusted Certificates.. 9-20
Importing a Trusted Certificate ... 9-21

To copy and paste the text only (BASE64) trusted certificate 9-21
To import a file that contains the trusted certificate.. 9-21

Removing a Trusted Certificate ... 9-21
Exporting a Trusted Certificate.. 9-22
Exporting All Trusted Certificates... 9-22

10 Configuring Multiple Authentication Methods and Disabling Oracle
Advanced Security

Connecting with User Name and Password... 10-1
Disabling Oracle Advanced Security Authentication.. 10-1
Configuring Multiple Authentication Methods ... 10-2
Configuring Oracle Database for External Authentication ... 10-3

Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora 10-3
Setting OS_AUTHENT_PREFIX to a Null Value ... 10-3

Part IV Appendixes

A Data Encryption and Integrity Parameters

Sample sqlnet.ora File .. A-1
Data Encryption and Integrity Parameters ... A-2

SQLNET.ENCRYPTION_SERVER Parameter.. A-3
SQLNET.ENCRYPTION_CLIENT Parameter .. A-4
SQLNET.CRYPTO_CHECKSUM_SERVER Parameter... A-4
SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter ... A-4
SQLNET.ENCRYPTION_TYPES_SERVER Parameter.. A-4
SQLNET.ENCRYPTION_TYPES_CLIENT Parameter .. A-5
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter... A-6
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter ... A-6

B Authentication Parameters

Parameters for Clients and Servers using Kerberos Authentication ... B-1
Parameters for Clients and Servers using RADIUS Authentication... B-1

sqlnet.ora File Parameters.. B-1
SQLNET.AUTHENTICATION_SERVICES... B-2
SQLNET.RADIUS_AUTHENTICATION .. B-2
SQLNET.RADIUS_AUTHENTICATION_PORT.. B-2
SQLNET.RADIUS_AUTHENTICATION_TIMEOUT.. B-2
SQLNET.RADIUS_AUTHENTICATION_RETRIES .. B-2
SQLNET.RADIUS_SEND_ACCOUNTING... B-3
SQLNET.RADIUS_SECRET ... B-3
SQLNET.RADIUS_ALTERNATE.. B-3
SQLNET.RADIUS_ALTERNATE_PORT... B-3

xii

SQLNET.RADIUS_ALTERNATE_TIMEOUT... B-4
SQLNET.RADIUS_ALTERNATE_RETRIES.. B-4
SQLNET.RADIUS_CHALLENGE_RESPONSE .. B-4
SQLNET.RADIUS_CHALLENGE_KEYWORD.. B-4
SQLNET.RADIUS_AUTHENTICATION_INTERFACE ... B-4
SQLNET.RADIUS_CLASSPATH .. B-5

Minimum RADIUS Parameters .. B-5
Initialization File Parameters... B-5

Parameters for Clients and Servers using SSL .. B-5
SSL Authentication Parameters .. B-5
Cipher Suite Parameters... B-6

Supported SSL Cipher Suites ... B-6
SSL Version Parameters ... B-7
SSL Client Authentication Parameters... B-7

SSL X.509 Server Match Parameters.. B-8
SSL_SERVER_DN_MATCH ... B-8
SSL_SERVER_CERT_DN... B-8

Wallet Location.. B-9

C Integrating Authentication Devices Using RADIUS

About the RADIUS Challenge-Response User Interface .. C-1
Customizing the RADIUS Challenge-Response User Interface .. C-1

D Oracle Advanced Security FIPS 140-1 Settings

Configuration Parameters.. D-1
Server Encryption Level Setting.. D-2
Client Encryption Level Setting .. D-2
Server Encryption Selection List ... D-2
Client Encryption Selection List.. D-2
FIPS Parameter .. D-2

Post Installation Checks... D-3
Status Information .. D-3
Physical Security ... D-3

E Oracle Advanced Security FIPS 140-2 Settings

Configuring FIPS Parameter ... E-1
Selecting Cipher Suites .. E-2
Post-Installation Checks .. E-2
Verifying FIPS Connections .. E-2

F orapki Utility

orapki Utility Overview ... F-1
orapki Utility Syntax... F-1

Creating Signed Certificates for Testing Purposes ... F-2
Managing Oracle Wallets with orapki Utility ... F-2

Creating, Viewing, and Modifying Wallets with orapki... F-2

xiii

Creating a PKCS#12 Wallet .. F-3
Creating an Auto Login Wallet .. F-3
Viewing a Wallet .. F-4
Modifying the Password for a Wallet ... F-4

Adding Certificates and Certificate Requests to Oracle Wallets with orapki F-4
Exporting Certificates and Certificate Requests from Oracle Wallets with orapki F-6

Managing Certificate Revocation Lists (CRLs) with orapki Utility .. F-6
orapki Usage Examples .. F-6
orapki Utility Commands Summary ... F-8

orapki cert create ... F-8
Purpose.. F-8
Syntax .. F-8

orapki cert display .. F-9
Purpose.. F-9
Syntax .. F-9

orapki crl delete ... F-9
Purpose.. F-9
Prerequisites ... F-9
Syntax .. F-9

orapki crl display .. F-10
Purpose.. F-10
Syntax .. F-10

orapki crl hash ... F-10
Purpose.. F-10
Syntax .. F-10

orapki crl list .. F-11
Purpose.. F-11
Syntax .. F-11

orapki crl upload ... F-11
Purpose.. F-11
Syntax .. F-11

orapki wallet add .. F-12
Purpose.. F-12
Syntax .. F-12

orapki wallet create... F-13
Purpose.. F-13
Syntax .. F-13

orapki wallet display .. F-13
Purpose.. F-13
Syntax .. F-13

orapki wallet export.. F-13
Purpose.. F-13
Syntax .. F-13

G Entrust-Enabled SSL Authentication

Benefits of Entrust-Enabled Oracle Advanced Security.. G-1
Enhanced X.509-Based Authentication and Single Sign-On... G-1

xiv

Integration with Entrust Authority Key Management.. G-2
Integration with Entrust Authority Certificate Revocation .. G-2

Required System Components for Entrust-Enabled Oracle Advanced Security G-2
Entrust Authority for Oracle ... G-2

Entrust Authority Security Manager .. G-3
Entrust Authority Self-Administration Server .. G-3
Entrust Entelligence Desktop Manager .. G-3

Entrust Authority Server Login Feature .. G-3
Entrust Authority IPSec Negotiator Toolkit.. G-3

Entrust Authentication Process .. G-4
Enabling Entrust Authentication ... G-4

Creating Entrust Profiles.. G-4
Administrator-Created Entrust Profiles ... G-4
User-Created Entrust Profiles .. G-5

Installing Oracle Advanced Security and Related Products for Entrust-Enabled SSL........... G-5
Configuring SSL on the Client and Server for Entrust-Enabled SSL... G-5
Configuring Entrust on the Client .. G-5

Configuring Entrust on a UNIX Client ... G-6
Configuring Entrust on a Windows Client .. G-6

Configuring Entrust on the Server ... G-6
Configuring Entrust on a UNIX Server .. G-6
Configuring Entrust on a Windows Server.. G-7

Creating Entrust-Enabled Database Users .. G-8
Logging Into the Database Using Entrust-Enabled SSL.. G-8

 Issues and Restrictions that Apply to Entrust-Enabled SSL.. G-9
Troubleshooting Entrust In Oracle Advanced Security... G-9

Error Messages Returned When Running Entrust on Any Platform .. G-9
Error Messages Returned When Running Entrust on Windows Platforms........................... G-10
General Checklist for Running Entrust on Any Platform ... G-12

Checklist for Entrust Installations on Windows.. G-12

Glossary

Index

xv

List of Figures

1–1 Encryption.. 1-4
1–2 Strong Authentication with Oracle Authentication Adapters ... 1-6
1–3 How a Network Authentication Service Authenticates a User.. 1-7
1–4 Oracle Advanced Security in an Oracle Networking Environment................................. 1-10
1–5 Oracle Net Services with Authentication Adapters.. 1-10
2–1 Oracle Advanced Security Profile in Oracle Net Manager ... 2-3
2–2 Oracle Wallet Manager User Interface... 2-5
2–3 Certificate Request Information Displayed in Oracle Wallet Manager Right Pane.......... 2-7
3–1 TDE Column Encryption Overview... 3-3
3–2 TDE Tablespace Encryption .. 3-5
4–1 Oracle Advanced Security Encryption Window.. 4-7
4–2 Oracle Advanced Security Integrity Window .. 4-9
6–1 RADIUS in an Oracle Environment ... 6-2
6–2 Synchronous Authentication Sequence ... 6-3
6–3 Asynchronous Authentication Sequence .. 6-5
6–4 Oracle Advanced Security Authentication Window ... 6-8
6–5 Oracle Advanced Security Other Params Window ... 6-9
7–1 Oracle Advanced Security Authentication Window (Kerberos) ... 7-4
7–2 Oracle Advanced Security Other Params Window (Kerberos).. 7-5
8–1 SSL in Relation to Other Authentication Methods... 8-7
8–2 SSL Cipher Suites Window... 8-12
8–3 Oracle Advanced Security SSL Window (Server) ... 8-12
8–4 Oracle Advanced Security SSL Window (Server) ... 8-14
8–5 Oracle Advanced Security SSL Window (Client).. 8-17
8–6 Oracle Advanced Security SSL Window (Client).. 8-19
8–7 Oracle Advanced Security SSL Window with Certificate Revocation Checking Selected

8-25
10–1 Oracle Advanced Security Authentication Window .. 10-2
G–1 Entrust Authentication Process.. G-4

xvi

List of Tables

1–1 Authentication Methods and System Requirements ... 1-11
2–1 Oracle Wallet Manager Navigator Pane Objects... 2-6
2–2 Oracle Wallet Manager Toolbar Buttons .. 2-7
2–3 Oracle Wallet Manager Wallet Menu Options .. 2-8
2–4 Oracle Wallet Manager Operations Menu Options .. 2-8
2–5 Oracle Wallet Manager Help Menu Options ... 2-9
2–6 Common Security Administrator/DBA Configuration and Administrative Tasks 2-10
3–1 Maximum Allowable Size for Data Types .. 3-15
3–2 Description of the ALL_ENCRYPTED_COLUMNS Data Dictionary View 3-33
3–3 Description of the V$ENCRYPTED_TABLESPACES View ... 3-34
3–4 Description of the V$WALLET View... 3-34
3–5 Description of the V$ENCRYPTION_WALLET View .. 3-35
3–6 Supported Encryption Algorithms for Transparent Data Encryption............................ 3-44
3–7 Transparent Data Encryption SQL Commands Quick Reference 3-44
4–1 Two Forms of Attack ... 4-3
4–2 Encryption and Data Integrity Negotiations ... 4-6
4–3 Valid Encryption Algorithms... 4-8
4–4 Valid Integrity Algorithms .. 4-10
5–1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL Parameter Attributes ...

5-4
5–2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Parameter Attributes....

5-4
5–3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL Parameter Attributes

5-5
5–4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES Parameter Attributes

5-5
5–5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES Parameter

Attributes 5-5
6–1 RADIUS Authentication Components.. 6-2
6–2 RADIUS Configuration Parameters ... 6-16
7–1 Options for the okinit Utility.. 7-9
7–2 Options for the oklist Utility ... 7-10
8–1 SSL Cipher Suites .. 8-11
9–1 KeyUsage Values ... 9-4
9–2 Oracle Wallet Manager Import of User Certificates to an Oracle Wallet 9-4
9–3 Oracle Wallet Manager Import of Trusted Certificates to an Oracle Wallet 9-5
9–4 PKI Wallet Encoding Standards ... 9-10
9–5 Types of Certificates ... 9-15
9–6 Certificate Request: Fields and Descriptions .. 9-16
9–7 Available Key Sizes... 9-17
A–1 Algorithm Type Selection .. A-3
A–2 SQLNET.ENCRYPTION_SERVER Parameter Attributes .. A-3
A–3 SQLNET.ENCRYPTION_CLIENT Parameter Attributes... A-4
A–4 SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes.................................... A-4
A–5 SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes A-4
A–6 SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes A-4
A–7 SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes..................................... A-5
A–8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter Attributes A-6
A–9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter Attributes...................... A-6
B–1 Kerberos Authentication Parameters .. B-1
B–2 SQLNET.AUTHENTICATION_SERVICES Parameter Attributes.................................... B-2
B–3 SQLNET.RADIUS_AUTHENTICATION Parameter Attributes B-2
B–4 SQLNET.RADIUS_AUTHENTICATION_PORT Parameter Attributes B-2

xvii

B–5 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter Attributes B-2
B–6 SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes B-2
B–7 SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes B-3
B–8 SQLNET.RADIUS_SECRET Parameter Attributes.. B-3
B–9 SQLNET.RADIUS_ALTERNATE Parameter Attributes .. B-3
B–10 SQLNET.RADIUS_ALTERNATE_PORT Parameter Attributes.. B-3
B–11 SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes................................ B-4
B–12 SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes B-4
B–13 SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter Attributes............................. B-4
B–14 SQLNET.RADIUS_CHALLENGE_KEYWORD Parameter Attributes............................. B-4
B–15 SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter Attributes B-4
B–16 SQLNET.RADIUS_CLASSPATH Parameter Attributes ... B-5
B–17 Wallet Location Parameters... B-9
C–1 Server Encryption Level Setting ... C-2
D–1 Sample Output from v$session_connect_info .. D-3

xviii

xix

Preface

Welcome to the Oracle Database Advanced Security Administrator's Guide for the 11g
Release 2 (11.2) of Oracle Advanced Security.

Oracle Advanced Security contains a comprehensive suite of security features that
protect enterprise networks and securely extend them to the Internet. It provides a
single source of integration with multiple network encryption and authentication
solutions, single sign-on services, and security protocols.

The Oracle Database Advanced Security Administrator's Guide describes how to
implement, configure and administer Oracle Advanced Security.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Audience
The Oracle Database Advanced Security Administrator's Guide is intended for users and
systems professionals involved with the implementation, configuration, and
administration of Oracle Advanced Security including:

■ Implementation consultants

■ System administrators

■ Security administrators

■ Database administrators (DBAs)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Organization
This document contains the following chapters:

Part I, "Getting Started with Oracle Advanced Security"

Chapter 1, "Introduction to Oracle Advanced Security"
This chapter provides an overview of Oracle Advanced Security features provided
with this release.

Chapter 2, "Configuration and Administration Tools Overview"
This chapter provides an introduction and overview of Oracle Advanced Security GUI
and command-line tools.

Part II, "Data Encryption and Integrity"

Chapter 3, "Securing Stored Data Using Transparent Data Encryption"
This chapter provides an overview of the transparent data encryption feature
introduced in Oracle Advanced Security 11g Release 2 (11.2). It describes how to
configure and use transparent data encryption services.

Chapter 4, "Configuring Network Data Encryption and Integrity for Oracle Servers
and Clients"
This chapter describes how to configure data encryption and integrity within an
existing Oracle Net Services 11g Release 2 (11.2) network.

Chapter 5, "Configuring Network Authentication, Encryption, and Integrity for Thin
JDBC Clients"
This chapter provides an overview of the Java implementation of Oracle Advanced
Security, which lets Thin Java Database Connectivity (JDBC) clients securely connect
to Oracle Database databases.

Part III, "Oracle Advanced Security Strong Authentication"

Chapter 6, "Configuring RADIUS Authentication"
This chapter describes how to configure Oracle for use with RADIUS (Remote
Authentication Dial-In User Service). It provides an overview of how RADIUS works
within an Oracle environment, and describes how to enable RADIUS authentication
and accounting. It also introduces the challenge-response user interface that third
party vendors can customize to integrate with third party authentication devices.

Chapter 7, "Configuring Kerberos Authentication"
This chapter describes how to configure Oracle for use with MIT Kerberos and
provides a brief overview of steps to configure Kerberos to authenticate Oracle users.
It also includes a brief section that discusses interoperability between the Oracle
Advanced Security Kerberos adapter and a Microsoft KDC.

xxi

Chapter 8, "Configuring Secure Sockets Layer Authentication"
This chapter describes how Oracle Advanced Security supports a public key
infrastructure (PKI). It includes a discussion of configuring and using the Secure
Sockets Layer (SSL), certificate validation, and hardware security module support
features of Oracle Advanced Security.

Chapter 9, "Using Oracle Wallet Manager"
This chapter describes how to use Oracle Wallet Manager to manage Oracle wallets
and PKI credentials.

Chapter 10, "Configuring Multiple Authentication Methods and Disabling Oracle
Advanced Security"
This chapter describes the authentication methods that can be used with Oracle
Advanced Security, and how to use conventional user name and password
authentication. It also describes how to configure the network so that Oracle clients
can use a specific authentication method, and Oracle servers can accept any method
specified.

Part IV, "Appendixes"

Appendix A, "Data Encryption and Integrity Parameters"
This appendix describes Oracle Advanced Security data encryption and integrity
configuration parameters.

Appendix B, "Authentication Parameters"
This appendix describes Oracle Advanced Security authentication configuration file
parameters.

Appendix C, "Integrating Authentication Devices Using RADIUS"
This appendix explains how third party authentication device vendors can integrate
their devices and customize the graphical user interface used in RADIUS
challenge-response authentication.

Appendix D, "Oracle Advanced Security FIPS 140-1 Settings"
This appendix describes the sqlnet.ora configuration parameters required to
comply with the FIPS 140-1 Level 2 evaluated configuration.

Appendix E, "Oracle Advanced Security FIPS 140-2 Settings"
This appendix describes the configuration parameters required to comply with the
FIPS 140-2 Level 2 evaluated configuration.

Appendix F, "orapki Utility"
This appendix provides the syntax for the orapki command line utility. This utility
must be used to manage certificate revocation lists (CRLs). You can also use this utility
to create and manage Oracle wallets; create certificate requests, signed certificates, and
user certificates for testing purposes; and to export certificates and certificate requests
from Oracle wallets.

Appendix G, "Entrust-Enabled SSL Authentication"
This appendix describes how to configure and use Entrust-enabled Oracle Advanced
Security for Secure Sockets Layer (SSL) authentication.

xxii

Glossary

Related Documentation
For more information, refer to these Oracle resources:

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Heterogeneous Connectivity User's Guide

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Internet Directory Administrator's Guide

■ Oracle Database Administrator's Guide

■ Oracle Database Security Guide

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/index.html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technetwork/documentation/index.html

For information from third-party vendors, refer to:

■ ACE/Server Administration Manual, from Security Dynamics

■ ACE/Server Client for UNIX, from Security Dynamics

■ ACE/Server Installation Manual, from Security Dynamics

■ RADIUS Administrator's Guide

■ Notes about building and installing Kerberos from Kerberos version 5 source
distribution

■ Entrust/PKI for Oracle

■ Administering Entrust/PKI on UNIX

■ Application Environment Specification/Distributed Computing

For conceptual information about the network security technologies supported by
Oracle Advanced Security, you can refer to the following third-party publications:

■ Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Code in C by
Bruce Schneier. New York: John Wiley & Sons, 1996.

■ SSL & TLS Essentials: Securing the Web by Stephen A. Thomas. New York: John
Wiley & Sons, 2000.

■ Understanding and Deploying LDAP Directory Services by Timothy A. Howes, Ph.D.,
Mark C. Smith, and Gordon S. Good . Indianapolis: New Riders Publishing, 1999.

xxiii

■ Understanding Public-Key Infrastructure: Concepts, Standards, and Deployment
Considerations by Carlisle Adams and Steve Lloyd. Indianapolis: New Riders
Publishing, 1999.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxiv

xxv

What's New in Oracle Advanced Security?

This section describes new features of Oracle Advanced Security 11g Release 2 (11.2)
and provides pointers to additional information.

Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle
Advanced Security

This release includes the following new features:

■ Support for SHA-2 Certificate Signatures

This feature introduces support for SHA-2 (256-bit) signed certificates that are
used by the database for network encryption and authentication.

These certificates are issued by a separate certificate authority (CA), and are
exchanged between the database and a client when a secure database connection is
being established.

■ Support for PIN and Multiple Certificates on Smart Card

This feature introduces support for authenticating to the database using Common
Access Cards (CAC, HSPD-12) that contain multiple certificates.

When a database user inserts a card containing one or more digital certificates into
a card reader, the database attempts to intelligently select which certificate to read.
If the database cannot determine which certificate to read, a selection box is
presented on Windows clients. The user also must manually enter the correct PIN.

■ TDE Hardware Acceleration for Solaris

Transparent Data Encryption (TDE) can automatically detect whether the database
host machine includes specialized cryptographic silicon that accelerates the
encryption and decryption processing. When detected, TDE uses the specialized
silicon for cryptographic processing, accelerating the overall cryptographic
performance significantly.

In prior releases, cryptographic hardware acceleration for TDE was only available
on Intel Xeon, and only for Linux. Starting with release 11.2.0.3, it works with the
current versions of Solaris 11 running on both SPARC T-Series and Intel Xeon.

Oracle Database 11g Release 2 (11.2) New Features in Oracle Advanced
Security

This release includes the following new features:

■ Enhanced TDE Tablespace Encryption

xxvi

Oracle Database 11g Release 2 (11.2) implements the following enhancements to
TDE Tablespace Encryption:

■ A unified master encryption key is used for both Transparent Data Encryption
(TDE) Column Encryption and TDE Tablespace Encryption.

■ The unified master encryption key can optionally be stored in a hardware
security module. This enables you to use the TDE Tablespace Encryption
feature along with hardware security modules.

■ You can reset (rekey) the unified master encryption key. This provides
enhanced security and helps meet security and compliance requirements.

■ TDE Supports Intel Advanced Encryption Standard New Instructions (Intel
AES-NI)

Transparent Data Encryption (TDE) now supports Intel AES-NI. Oracle Database
11g Release 2 (11.2) running on Intel Xeon 5600 series processor-based servers with
Intel AES-NI shows a multifold increase in TDE encryption and decryption speed.

According to benchmark results, TDE shows a 10x speedup of AES encryption
processing rate and an 8x speedup of decryption processing rate, using 256 bit
keys, on Intel Xeon X5680 processor utilizing AES-NI as compared to Intel Xeon
X5560 processor without AES-NI.

■ Internet Protocol Version 6 (IPv6) Support

Oracle Advanced Security fully supports Internet Protocol Version 6 (IPv6)
networks.

■ Kerberos Enhancements

The Oracle Kerberos authentication mechanism now supports the Microsoft
Windows Server 2003 constrained delegation feature. The middle tier can use the
Kerberos adapter to authenticate to the Oracle Database without providing the
user's forwarded Kerberos credentials.

A user can authenticate to the middle tier using a non-Kerberos authentication
mechanism. The middle tier authenticates to the backend Oracle Database using
the Kerberos authentication mechanism on behalf of the user.

Oracle Database 11g Release 1 (11.1) New Features in Oracle Advanced
Security

This release includes the following new features:

■ Enhanced Transparent Data Encryption

Transparent Data Encryption enables you to encrypt data in columns without
having to manage the encryption key. Businesses can protect sensitive data in their
databases without having to make changes to their applications.

Oracle Advanced Security uses industry standard encryption algorithms including
AES and 3DES to encrypt columns that have been marked for encryption. Key
Management is handled by the database. SQL interfaces to Key Management hide
the complexity of encryption.

See Also: "Encrypting Entire Tablespaces" on page 3-16

See Also: Microsoft documentation for more information on the
Microsoft Windows Server 2003 constrained delegation feature

xxvii

You can now encrypt entire tablespaces using Tablespace Encryption. All objects
created in the encrypted tablespace are automatically encrypted. See "TDE
Tablespace Encryption" in on page 3-3 for more information.

Transparent Data Encryption now enables you to use a hardware security module
(HSM) to store the master encryption key. This allows for enhanced security. See
"Using Hardware Security Modules with TDE" on page 3-20 for more information.

■ Kerberos authentication is more secure and manageable

The Kerberos implementation now makes use of secure encryption algorithms like
3DES and AES in place of DES. This makes using Kerberos more secure. The
Kerberos authentication mechanism in Oracle Database now supports the
following encryption types:

– DES3-CBC-SHA (DES3 algorithm in CBC mode with HMAC-SHA1 as
checksum)

– RC4-HMAC (RC4 algorithm with HMAC-MD5 as checksum)

– AES128-CTS (AES algorithm with 128-bit key in CTS mode with HMAC-SHA1
as checksum)

– AES256-CTS (AES algorithm with 256-bit key in CTS mode with HMAC-SHA1
as checksum)

The Kerberos implementation has been enhanced to interoperate smoothly with
Microsoft and MIT Key Distribution Centers.

The Kerberos prinicipal name can now contain more than 30 characters. It is no
longer restricted by the number of characters allowed in a database user name.

See Also: "Supported Encryption Algorithms" on page 1-4 for more
information on the encryption algorithms that are supported.

Chapter 3, "Securing Stored Data Using Transparent Data Encryption"
for more information on implementing and using Transparent Data
Encryption.

See Also: Chapter 7, "Configuring Kerberos Authentication"

Note: In this release, the features of Multiplexing and Connection
Pooling do not work with SSL transport. Refer to Oracle Database JDBC
Developer's Guide and Reference for details of encryption support
available in JDBC.

xxviii

Part I
Getting Started with Oracle Advanced

Security

This part introduces Oracle Advanced Security, describing security solutions it
provides, its features, and its tools.

Part I contains the following chapters:

■ Chapter 1, "Introduction to Oracle Advanced Security"

■ Chapter 2, "Configuration and Administration Tools Overview"

Introduction to Oracle Advanced Security 1-1

1
Introduction to Oracle Advanced Security

This chapter introduces Oracle Advanced Security, summarizes the security risks it
addresses, and describes its features. These features are available to database and
related products that interface with Oracle Net Services, including Oracle Database,
Oracle Application Server, and Oracle Identity Management infrastructure.

This chapter contains the following topics:

■ Security Challenges in an Enterprise Environment

■ Solving Security Challenges with Oracle Advanced Security

■ Oracle Advanced Security Architecture

■ System Requirements

■ Oracle Advanced Security Restrictions

Security Challenges in an Enterprise Environment
To increase efficiency and lower costs, companies adopt strategies to automate
business processes. One such strategy is to conduct more business on the Web, but that
requires greater computing power, translating to higher IT costs. In response to rising
IT costs, more and more businesses are considering enterprise grid computing
architecture where inexpensive computers act as one powerful system. While such
strategies improve the bottom line, they introduce risks, which are associated with
securing data, in rest and motion, and managing an ever increasing number of user
identities.

This section examines the security challenges of today's enterprise computing
environments in the following topics:

■ Security in Enterprise Grid Computing Environments

■ Security in an Intranet or Internet Environment

■ Common Security Threats

Security in Enterprise Grid Computing Environments
Grid computing is a computing architecture that coordinates large numbers of servers
and storage to act as a single large computer. It provides flexibility, lower costs, and IT
investment protection because inexpensive, off-the-shelf components can be added to
the grid as business needs change. While providing significant benefits, grid
computing environments present unique security requirements because their
computing resources are distributed and often heterogeneous. The following sections
discuss these requirements:

Security Challenges in an Enterprise Environment

1-2 Oracle Database Advanced Security Administrator's Guide

Distributed Environment Security Requirements
Enterprise grid computing pools distributed business computing resources to cost
effectively harness the power of clustered servers and storage. A distributed
environment requires secure network connections. Even more critical in grid
environments, it is necessary to have a uniform definition of "who is the user" and
"what is the user allowed to do." Without such uniform definitions, administrators
frequently must assign, manage, and revoke authorizations for every user on different
software applications to protect employee, customer, and partner information. This is
expensive because it takes time, which drives up costs. Consequently, the cost savings
gained with grid computing are lost.

Heterogeneous Environment Security Requirements
Because grid computing environments often grow as business needs change,
computing resources are added over time, resulting in diverse collections of hardware
and software. Such heterogeneous environments require support for different types of
authentication mechanisms which adhere to industry standards. Without strict
adherence to industry standards, integrating heterogeneous components becomes
costly and time consuming. Once again the benefits of grid computing are squandered
when the appropriate infrastructure is not present.

Security in an Intranet or Internet Environment
Oracle databases power the largest and most popular Web sites on the Internet. In
record numbers, organizations throughout the world are deploying distributed
databases and client/server applications based on Oracle Database and Oracle Net
Services. This proliferation of distributed computing is matched by an increase in the
amount of information that organizations place on computers. Employee and financial
records, customer orders, product information, and other sensitive data have moved
from filing cabinets to file structures. The volume of sensitive information on the Web
has thus increased the value of data that can be compromised.

Common Security Threats
The increased volume of data in distributed, heterogeneous environments exposes
users to a variety of security threats, including the following:

■ Eavesdropping and Data Theft

■ Data Tampering

■ Falsifying User Identities

■ Password-Related Threats

Eavesdropping and Data Theft
Over the Internet and in wide area network environments, both public carriers and
private networks route portions of their network through insecure land lines,
vulnerable microwave and satellite links, or a number of servers— exposing valuable
data to interested third parties. In local area network environments within a building
or campus, the potential exists for insiders with access to the physical wiring to view
data not intended for them, and network sniffers can be installed to eavesdrop on
network traffic.

Data Tampering
Distributed environments bring with them the possibility that a malicious third party
can compromise integrity by tampering with data as it moves between sites.

Solving Security Challenges with Oracle Advanced Security

Introduction to Oracle Advanced Security 1-3

Falsifying User Identities
In a distributed environment, it is more feasible for a user to falsify an identity to gain
access to sensitive information. How can you be sure that user Pat connecting to
Server A from Client B really is user Pat?

Moreover, in distributed environments, malefactors can hijack connections. How can
you be sure that Client B and Server A are what they claim to be? A transaction that
should go from the Personnel system on Server A to the Payroll system on Server B
could be intercepted in transit and re-routed to a terminal masquerading as Server B.

Password-Related Threats
In large systems, users typically must remember multiple passwords for the different
applications and services that they use. For example, a developer can have access to a
development application on a workstation, a PC for sending e-mail, and several
computers or intranet sites for testing, reporting bugs, and managing configurations.

Users typically respond to the problem of managing multiple passwords in several
ways:

■ They may select easy-to-guess passwords, such as a name, a fictional character, or
a word found in a dictionary. All of these passwords are vulnerable to dictionary
attacks.

■ They may also choose to standardize passwords so that they are the same on all
systems or Web sites. This results in a potentially large exposure in the event of a
compromised password. They can also use passwords with slight variations that
can be easily derived from known passwords.

■ Users with complex passwords may write them down where an attacker can easily
find them, or they may just forget them, requiring costly administration and
support efforts.

All of these strategies compromise password secrecy and service availability.
Moreover, administration of multiple user accounts and passwords is complex,
time-consuming, and expensive.

Solving Security Challenges with Oracle Advanced Security
To solve enterprise computing security problems, Oracle Advanced Security provides
industry standards-based data privacy, integrity, authentication, single sign-on, and
access authorization in a variety of ways. For example, you can configure either Oracle
Net native encryption or Secure Sockets Layer (SSL) for data privacy. Oracle Advanced
Security also provides the choice of several strong authentication methods, including
Kerberos, smart cards, and digital certificates.

Oracle Advanced Security provides the following security features:

■ Data Encryption

■ Strong Authentication

Data Encryption
Sensitive information that is stored in your database or that travels over enterprise
networks and the Internet can be protected by encryption algorithms. An encryption
algorithm transforms information into a form that cannot be deciphered without a
decryption key.

Solving Security Challenges with Oracle Advanced Security

1-4 Oracle Database Advanced Security Administrator's Guide

Figure 1–1 shows how encryption works to ensure the security of a transaction sent
over the network. For example, if a manager approves a bonus, this data should be
encrypted when sent over the network to avoid eavesdropping. If all communication
between the client, the database, and the application server is encrypted, then when
the manager sends the bonus amount to the database, it is protected.

Figure 1–1 Encryption

This section discusses the following topics:

■ Supported Encryption Algorithms

■ Data Integrity

■ Federal Information Processing Standard

Supported Encryption Algorithms
Oracle Advanced Security provides the following encryption algorithms to protect the
privacy of network data transmissions:

■ RC4 Encryption:

■ DES Encryption :

■ Triple-DES Encryption :

■ Advanced Encryption Standard:

Selecting the network encryption algorithm is a user configuration option, providing
varying levels of security and performance for different types of data transfers.

Prior versions of Oracle Advanced Security provided three editions: Domestic,
Upgrade, and Export, each with different key lengths. Oracle Advanced Security 11g
Release 2 (11.2) contains a complete complement of the available encryption
algorithms and key lengths, previously only available in the Domestic edition. Users
deploying prior versions of the product can obtain the Domestic edition for a specific
product release.

RC4 Encryption: The RC4 encryption module uses the RSA Security, Inc., RC4
encryption algorithm. Using a secret, randomly-generated key unique to each session,
all network traffic is fully safeguarded including all data values, SQL statements, and
stored procedure calls and results. The client, server, or both, can request or require the
use of the encryption module to guarantee that data is protected. Oracle's optimized

Note: The U.S. government has relaxed its export guidelines for
encryption products. Accordingly, Oracle can ship Oracle
Advanced Security with its strongest encryption features to all of its
customers.

Solving Security Challenges with Oracle Advanced Security

Introduction to Oracle Advanced Security 1-5

implementation provides a high degree of security for a minimal performance penalty.
For the RC4 algorithm, Oracle provides encryption key lengths of 40-bits, 56-bits,
128-bits, and 256-bits.

DES Encryption : Oracle Advanced Security implements the U.S. Data Encryption
Standard algorithm (DES) with a standard, optimized 56-bit key encryption algorithm
and also provides DES40, a 40-bit version, for backward compatibility.

Triple-DES Encryption : Oracle Advanced Security also supports Triple-DES encryption
(3DES), which encrypts message data with three passes of the DES algorithm. 3DES
provides a high degree of message security, but with a performance penalty. The
magnitude of penalty depends on the speed of the processor performing the
encryption. 3DES typically takes three times as long to encrypt a data block as
compared with the standard DES algorithm.

3DES is available in two-key and three-key versions, with effective key lengths of
112-bits and 168-bits, respectively. Both versions operate in outer Cipher Block
Chaining (CBC) mode.

Advanced Encryption Standard: Approved by the National Institute of Standards and
Technology (NIST) in Federal Information Processing Standards (FIPS) Publication
197, Advanced Encryption Standard (AES) is a cryptographic algorithm standard
developed to replace DES. AES is a symmetric block cipher that can process data
blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits, which are
referred to as AES-128, AES-192, and AES-256, respectively. All three versions operate
in outer-CBC mode.

Data Integrity
To ensure the integrity of data packets during transmission, Oracle Advanced Security
can generate a cryptographically secure message digest using MD5 or SHA-1 hashing
algorithms and include it with each message sent across a network.

Data integrity algorithms add little overhead and protect against the following attacks:

■ Data modification

■ Deleted packets

■ Replay attacks

See Also:

■ Chapter 4, "Configuring Network Data Encryption and
Integrity for Oracle Servers and Clients"

■ Appendix A, "Data Encryption and Integrity Parameters"

Note: SHA-1 is slightly slower than MD5 but produces a larger
message digest, making it more secure against brute-force collision
and inversion attacks.

See Also: Chapter 4, "Configuring Network Data Encryption and
Integrity for Oracle Servers and Clients", for information about
MD5 and SHA-1

Solving Security Challenges with Oracle Advanced Security

1-6 Oracle Database Advanced Security Administrator's Guide

Federal Information Processing Standard
Oracle Advanced Security Release 8.1.6 has been validated under U.S. Federal
Information Processing Standard 140-1 (FIPS) at the Level 2 security level. This
provides independent confirmation that Oracle Advanced Security conforms to federal
government standards. FIPS 140-1 related configuration settings are described in
Appendix D, "Oracle Advanced Security FIPS 140-1 Settings".

The cryptographic libraries for SSL included in Oracle Database 10g have been
validated under FIPS 140-2 at the Level 2 security level. FIPS 140-2 related
configuration settings are described in Appendix E, "Oracle Advanced Security FIPS
140-2 Settings".

Strong Authentication
Authentication is used to prove the identity of the user. Authenticating user identity is
imperative in distributed environments, without which there can be little confidence in
network security. Passwords are the most common means of authentication. Oracle
Advanced Security enables strong authentication with Oracle authentication adapters
that support various third-party authentication services, including SSL with digital
certificates.

Figure 1–2 shows user authentication with an Oracle database instance configured to
use a third-party authentication server. Having a central facility to authenticate all
members of the network (clients to servers, servers to servers, users to both clients and
servers) is one effective way to address the threat of network nodes falsifying their
identities.

Figure 1–2 Strong Authentication with Oracle Authentication Adapters

This section contains the following topics:

■ Centralized Authentication and Single Sign-On

■ Supported Authentication Methods

Centralized Authentication and Single Sign-On
Centralized authentication also provides the benefit of single sign-on (SSO) for users.
Single sign-on enables users to access multiple accounts and applications with a single
password. A user only needs to login once and can then automatically connect to any
other service without having to giving user name and password again. Single sign-on
eliminates the need for the user to remember and administer multiple passwords,
reducing the time spent logging into multiple services.

How Centralized Network Authentication Works Figure 1–3 shows how a centralized
network authentication service typically operates.

Solving Security Challenges with Oracle Advanced Security

Introduction to Oracle Advanced Security 1-7

Figure 1–3 How a Network Authentication Service Authenticates a User

The following steps describe how centralized Network Authentication Process works.

1. A user (client) requests authentication services and provides identifying
information, such as a token or password.

2. The authentication server validates the user's identity and passes a ticket or
credentials back to the client, which may include an expiration time.

3. The client passes these credentials to the Oracle server concurrent with a service
request, such as connection to a database.

4. The server sends the credentials back to the authentication server for
authentication.

5. The authentication server checks the credentials and notifies the Oracle server.

6. If the credentials were accepted by the authentication server, then the Oracle
server authenticates the user. If the authentication server rejected the credentials,
then authentication fails, and the service request is denied.

Solving Security Challenges with Oracle Advanced Security

1-8 Oracle Database Advanced Security Administrator's Guide

Supported Authentication Methods
Oracle Advanced Security supports the following industry-standard authentication
methods:

■ Kerberos

■ Remote Authentication Dial-In User Service (RADIUS) :

■ Secure Sockets Layer (with digital certificates)

■ Entrust/PKI :

Kerberos Oracle Advanced Security support for Kerberos provides the benefits of
single sign-on and centralized authentication of Oracle users. Kerberos is a trusted
third-party authentication system that relies on shared secrets. It presumes that the
third party is secure, and provides single sign-on capabilities, centralized password
storage, database link authentication, and enhanced PC security. It does this through a
Kerberos authentication server. Refer to Chapter 7, "Configuring Kerberos
Authentication" for information about configuring and using this adapter.

 Remote Authentication Dial-In User Service (RADIUS) : RADIUS is a client/server security
protocol that is most widely known for enabling remote authentication and access.
Oracle Advanced Security uses this standard in a client/server network environment
to enable use of any authentication method that supports the RADIUS protocol.
RADIUS can be used with a variety of authentication mechanisms, including token
cards and smart cards.

■ Smart Cards

A RADIUS-compliant smart card is a credit card-like hardware device which has
memory and a processor. It is read by a smart card reader located at the client
workstation.

■ Token Cards

Token cards (Secure ID or RADIUS-compliant) can improve ease of use through
several different mechanisms. Some token cards dynamically display one-time
passwords that are synchronized with an authentication service. The server can
verify the password provided by the token card at any given time by contacting
the authentication service. Other token cards have a keypad and operate on a
challenge-response basis. In this case, the server offers a challenge (a number) that
the user enters into a token card. The token card provides a response (another
number cryptographically derived from the challenge) that the user enters and
sends to the server.

You can use SecurID tokens through the RADIUS adapter.

Secure Sockets Layer Secure Sockets Layer (SSL) is an industry standard protocol for
securing network connections. SSL provides authentication, data encryption, and data
integrity.

Note: Oracle authentication for Kerberos provides database link
authentication (also called proxy authentication). Kerberos is also
an authentication method that is supported with Enterprise User
Security.

See Also: Chapter 6, "Configuring RADIUS Authentication" for
information about configuring and using RADIUS

Oracle Advanced Security Architecture

Introduction to Oracle Advanced Security 1-9

The SSL protocol is the foundation of a public key infrastructure (PKI). For
authentication, SSL uses digital certificates that comply with the X.509v3 standard and
a public and private key pair.

Oracle Advanced Security SSL can be used to secure communications between any
client and any server. You can configure SSL to provide authentication for the server
only, the client only, or both client and server. You can also configure SSL features in
combination with other authentication methods supported by Oracle Advanced
Security (database user names and passwords, RADIUS, and Kerberos).

To support your PKI implementation, Oracle Advanced Security includes the
following features in addition to SSL:

■ Oracle wallets, where you can store PKI credentials

■ Oracle Wallet Manager, which you can use to manage your Oracle wallets

■ Certificate validation with certificate revocation lists (CRLs)

■ Hardware security module support

Entrust/PKI : Oracle Advanced Security supports the public key infrastructure provided
by the Entrust/PKI software from Entrust Technologies, Inc. Entrust-enabled Oracle
Advanced Security lets Entrust users incorporate Entrust single sign-on into their
Oracle applications, and it lets Oracle users incorporate Entrust-based single sign-on
into Oracle applications.

Oracle Advanced Security Architecture
Oracle Advanced Security complements an Oracle server or client installation with
advanced security features. Figure 1–4 shows the Oracle Advanced Security
architecture within an Oracle networking environment.

See Also:

■ Chapter 8, "Configuring Secure Sockets Layer Authentication"
for conceptual, configuration, and usage information about
SSL, certificate validation, and hardware security modules

■ Chapter 9, "Using Oracle Wallet Manager" for information
about using this tool to manage Oracle wallets

■ Chapter 10, "Configuring Multiple Authentication Methods
and Disabling Oracle Advanced Security" for information
about configuring SSL in combination with other
authentication methods

See Also: Appendix G, "Entrust-Enabled SSL Authentication" for
more information about this feature

System Requirements

1-10 Oracle Database Advanced Security Administrator's Guide

Figure 1–4 Oracle Advanced Security in an Oracle Networking Environment

Oracle Advanced Security supports authentication through adapters that are similar to
the existing Oracle protocol adapters. As shown in Figure 1–5, authentication adapters
integrate the Oracle Net interface, and allow existing applications to take advantage of
new authentication systems transparently, without any changes to the application.

Figure 1–5 Oracle Net Services with Authentication Adapters

System Requirements
Oracle Advanced Security 11g Release 2 (11.2) requires Oracle Net 11g Release 2 (11.2)
and supports Oracle Database Enterprise Edition. Table 1–1 lists additional system
requirements.

See Also: Oracle Database Net Services Administrator's Guide for
more information about stack communications in an Oracle
networking environment

Note: Oracle Advanced Security is not available with Oracle
Database Standard Edition.

Oracle Advanced Security Restrictions

Introduction to Oracle Advanced Security 1-11

Oracle Advanced Security Restrictions
Oracle Applications support Oracle Advanced Security encryption and data integrity.
However, because Oracle Advanced Security requires Oracle Net Services to transmit
data securely, Oracle Advanced Security external authentication features are not
supported by some parts of Oracle Financial, Human Resource, and Manufacturing
Applications when they are running on Microsoft Windows. The portions of these
products that use Oracle Display Manager (ODM) do not take advantage of Oracle
Advanced Security, because ODM does not use Oracle Net Services.

Table 1–1 Authentication Methods and System Requirements

Authentication Method System Requirements

Kerberos ■ MIT Kerberos Version 5, release 1.1 or above.

■ The Kerberos authentication server must be installed on a
physically secure system.

RADIUS ■ A RADIUS server that is compliant with the standards in
the Internet Engineering Task Force (IETF) RFC #2138,
Remote Authentication Dial In User Service (RADIUS) and
RFC #2139 RADIUS Accounting.

■ To enable challenge-response authentication, you must
run RADIUS on an operating system that supports the
Java Native Interface as specified in release 1.1 of the Java
Development Kit from JavaSoft.

SSL ■ A wallet that is compatible with the Oracle Wallet
Manager 10g release. Wallets created in earlier releases of
the Oracle Wallet Manager are not forward compatible.

Entrust/PKI ■ Entrust IPSEC Negotiator Toolkit Release 6.0

■ Entrust/PKI 6.0

Oracle Advanced Security Restrictions

1-12 Oracle Database Advanced Security Administrator's Guide

Configuration and Administration Tools Overview 2-1

2
Configuration and Administration Tools

Overview

Configuring advanced security features for an Oracle database instance includes
configuring encryption, integrity (checksumming), and strong authentication methods
for Oracle Net Services. Strong authentication method configuration can include
third-party software, as is the case for Kerberos or RADIUS, or it may entail
configuring and managing a public key infrastructure for using digital certificates with
Secure Sockets Layer (SSL).

Such diverse advanced security features require a diverse set of tools with which to
configure and administer them. This chapter introduces the tools used to configure
and administer advanced security features for an Oracle database in the following
topics:

■ Network Encryption and Strong Authentication Configuration Tools

■ Public Key Infrastructure Credentials Management Tools

■ Duties of a Security Administrator/DBA

Network Encryption and Strong Authentication Configuration Tools
Oracle Net Services can be configured to encrypt data using standard encryption
algorithms, and for strong authentication methods, such as Kerberos, RADIUS, and
SSL. The following sections introduce the Oracle tools you can use to configure these
advanced security features for an Oracle Database:

■ Oracle Net Manager

■ Oracle Advanced Security Kerberos Adapter Command-Line Utilities

Oracle Net Manager
Oracle Net Manager is a graphical user interface tool, primarily used to configure
Oracle Net Services for an Oracle home on a local client or server host.

Although you can use Oracle Net Manager to configure Oracle Net Services, such as
naming, listeners, and general network settings, it also enables you to configure the
following Oracle Advanced Security features, which use the Oracle Net protocol:

■ Strong authentication (Kerberos, RADIUS, and Secure Sockets Layer)

■ Network encryption (RC4, DES, Triple-DES, and AES)

■ Checksumming for data integrity (MD5, SHA-1)

Network Encryption and Strong Authentication Configuration Tools

2-2 Oracle Database Advanced Security Administrator's Guide

This section introduces you to the features of Oracle Net Manager that are used to
configure Oracle Advanced Security. It contains the following topics:

■ Starting Oracle Net Manager

■ Navigating to the Oracle Advanced Security Profile

Starting Oracle Net Manager
You can start Oracle Net Manager by using Oracle Enterprise Manager Console or as a
standalone application. However, you must use the standalone application to access
the Oracle Advanced Security Profile where you can configure Oracle Advanced
Security features.

To start Oracle Net Manager as a standalone application:

■ (UNIX) From $ORACLE_HOME/bin, enter the following at the command line:

netmgr

■ (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration and
Migration Tools, Net Manager

Navigating to the Oracle Advanced Security Profile
The Oracle Net Manager interface window contains two panes: the navigator pane
and the right pane.The interface displays various property sheets that enable you to
configure network components. When you select a network object in the navigator
pane, its associated property sheets displays in the right pane. To configure Oracle
Advanced Security features, select the Profile object in the navigator pane, and then
select Oracle Advanced Security from the list in the right pane, as shown in
Figure 2–1.

See Also:

■ "Duties of a Security Administrator/DBA" on page 2-9 for
information about the tasks you can perform with this tool that
configure advanced security features

■ Oracle Database Net Services Administrator's Guide and Oracle
Net Manager online Help for complete documentation of this
tool

Network Encryption and Strong Authentication Configuration Tools

Configuration and Administration Tools Overview 2-3

Figure 2–1 Oracle Advanced Security Profile in Oracle Net Manager

Oracle Advanced Security Profile Property Sheets
The Oracle Advanced Security Profile contains the following property sheets:

■ Authentication Property Sheet

■ Other Params Property Sheet

■ Integrity Property Sheet

■ Encryption Property Sheet

■ SSL Property Sheet

Authentication Property Sheet Use this property sheet to select a strong authentication
method, such as Kerberos Version 5 (KERBEROS5), Windows native authentication
(NTS), or RADIUS.

Other Params Property Sheet Use this property sheet to set other parameters for the
authentication method you selected on the Authentication property sheet.

Integrity Property Sheet Use this property sheet to enable checksumming on the client or
the server and to select an encryption algorithm for generating secure message digests.

Encryption Property Sheet Use this property sheet to select one or more cipher suites to
encrypt client or server connections with native encryption algorithms.

SSL Property Sheet Use this property sheet to configure Secure Sockets Layer (SSL),
including the wallet location and cipher suite, on a client or server.

Public Key Infrastructure Credentials Management Tools

2-4 Oracle Database Advanced Security Administrator's Guide

Oracle Advanced Security Kerberos Adapter Command-Line Utilities
The Oracle Advanced Security Kerberos adapter provides three command-line utilities
that enable you to obtain, cache, display, and remove Kerberos credentials. The
following table briefly describes these utilities:

Public Key Infrastructure Credentials Management Tools
The security provided by a public key infrastructure (PKI) depends on how effectively
you store, manage, and validate your PKI credentials. The following Oracle tools are
used to manage certificates, wallets, and certificate revocation lists so your PKI
credentials can be stored securely and your certificate validation mechanisms kept
current:

■ Oracle Wallet Manager

■ orapki Utility

Oracle Wallet Manager
Oracle Wallet Manager is an application that wallet owners and security
administrators use to manage and edit the security credentials in their Oracle wallets.
A wallet is a password-protected container that is used to store authentication and
signing credentials, including private keys, certificates, and trusted certificates needed
by SSL. You can use Oracle Wallet Manager to perform the following tasks:

■ Create public and private key pairs

■ Store and manage user credentials

■ Generate certificate requests

■ Store and manage certificate authority certificates (root key certificate and
certificate chain)

■ Upload and download wallets to and from an LDAP directory

■ Create wallets to store hardware security module credentials

The following topics introduce the Oracle Wallet Manager user interface:

Utility Name Description

okinit Obtains Kerberos tickets from the key distribution center (KDC)
and caches them in the user's credential cache

oklist Displays a list of Kerberos tickets in the specified credential
cache

okdstry Removes Kerberos credentials from the specified credential
cache

See Also: "Utilities for the Kerberos Authentication Adapter" on
page 7-8 for complete descriptions of these utilities, their syntax,
and available options

Note: The Cybersafe adapter is not supported beginning with this
release. You should use Oracle's Kerberos adapter in its place.
Kerberos authentication with the Cybersafe KDC (Trust Broker)
continues to be supported when using the Kerberos adapter.

Public Key Infrastructure Credentials Management Tools

Configuration and Administration Tools Overview 2-5

■ Starting Oracle Wallet Manager

■ Navigating the Oracle Wallet Manager User Interface

■ Toolbar

■ Menus

Starting Oracle Wallet Manager
To start Oracle Wallet Manager:

■ (UNIX) From $ORACLE_HOME/bin, enter the following at the command line:

owm
■ (Windows) Select Start, Programs, Oracle HOME_NAME, Integrated

Management Tools, Wallet Manager

Navigating the Oracle Wallet Manager User Interface
The Oracle Wallet Manager interface includes two panes, a toolbar, and various menu
items as shown in Figure 2–2.

Figure 2–2 Oracle Wallet Manager User Interface

Navigator Pane The navigator pane provides a graphical navigation tree view of the
certificate requests and certificates stored in the Oracle home where Oracle Wallet

See Also: Chapter 9, "Using Oracle Wallet Manager" for detailed
information about using this application

Public Key Infrastructure Credentials Management Tools

2-6 Oracle Database Advanced Security Administrator's Guide

Manager is installed. You can use the navigator pane to view, modify, add, or delete
certificates and certificate requests.

The navigator pane functions the same way as it does in other Oracle graphical user
interface tools, enabling you to

■ Expand and contract wallet objects so that you can manage the user and trusted
certificates they contain.

■ Right-click a wallet, certificate, or certificate request to perform operations on it
such as add, remove, import, or export.

When you expand a wallet, you see a nested list of user and trusted certificates. When
you select a wallet or certificate in the navigator pane, details about your selection
display in the adjacent right pane of Oracle Wallet Manager. Table 2–1 lists the main
objects that display in the navigator pane.

Right Pane The right pane displays information about an object that is selected in the
navigator pane. The right pane is read-only.

Figure 2–3 shows what is displayed in the right pane when a certificate request object
is selected in the navigator pane. Information about the request and the requester's
identity display in the Requested Identity, Key Size, and Key Type fields. The PKCS
#10-encoded certificate request displays in the Certificate Request text box. To request
a certificate from a certificate authority, you can copy this request into an e-mail or
export it into a file.

Table 2–1 Oracle Wallet Manager Navigator Pane Objects

Object Description

Wallet Password-protected container that is used to store
authentication and signing credentials

Certificate Request1

1 These objects display only after you create a wallet, generate a certificate request, and import a
certificate into the wallet.

A PKCS #10-encoded message containing the requester's
distinguished name (DN), a public key, the key size, and key
type.

Certificate1 An X.509 data structure containing the entity's DN, public key,
and is signed by a trusted identity (certificate authority).

Trusted Certificates1 Sometimes called a root key certificate, is a certificate from a
third party identity that is qualified with a level of trust.

Note: Figure 2–3 shows a certificate request for a user. A certificate
can also be requested for a server in which case the CN attribute will
contain the name of the server in place of the user name.

Public Key Infrastructure Credentials Management Tools

Configuration and Administration Tools Overview 2-7

Figure 2–3 Certificate Request Information Displayed in Oracle Wallet Manager Right Pane

Toolbar
The toolbar contains buttons that enable you to manage your wallets. Move the mouse
cursor over a toolbar button to display a description of the button's function. The
toolbar buttons are listed and described in Table 2–2.

Menus
You use Oracle Wallet Manager menus to manage your wallets and the credentials
they contain. The following sections describe the options that are available under each
menu.

Wallet Menu Table 2–3 describes the contents of the Wallet menu.

Table 2–2 Oracle Wallet Manager Toolbar Buttons

Toolbar Button Description

New Creates a new wallet

Open Wallet Enables you to browse your file system to locate and open an
existing wallet

Save Wallet Saves the currently open wallet

Delete Wallet Deletes the wallet that is currently selected in the navigator
pane

Help Opens the Oracle Wallet Manager online Help

Public Key Infrastructure Credentials Management Tools

2-8 Oracle Database Advanced Security Administrator's Guide

Operations Menu Table 2–4 describes the contents of the Operations menu.

Table 2–3 Oracle Wallet Manager Wallet Menu Options

Option Description

New Creates a new wallet

Open Opens an existing wallet

Close Closes the currently open wallet

Upload Into The
Directory Service

Uploads a wallet to a specified LDAP directory server.

You must supply a directory password, host name, and port
information.

Download From The
Directory Service

Downloads a wallet from a specified LDAP directory server. You
must supply a directory password, host name, and port
information.

Save Saves the currently open wallet in the current working directory

Save As Enables you to browse your file system to choose a directory
location in which to save the currently open wallet

Save In System
Default

Saves the currently open wallet in the system default location:

■ (UNIX) /etc/ORACLE/WALLETS/username

■ (Windows) %USERPROFILE%\ORACLE\WALLETS

Delete Deletes the wallet in the current working directory.

 You must supply the wallet password.

Change Password Changes the password for the currently open wallet. You must
supply the old password before you can create a new one.

Auto Login Sets the auto login feature for the currently open wallet.

Exit Exits the Oracle Wallet Manager application

Table 2–4 Oracle Wallet Manager Operations Menu Options

Option Description

Add Certificate Request Generates a certificate request for the currently open wallet
that you can use to request a certificate from a certificate
authority (CA)

Import User Certificate Imports the user certificate issued to you from the CA. You
must import the issuing CA's certificate as a trusted certificate
before you can import the user certificate.

Import Trusted Certificate Imports the CA's trusted certificate

Remove Certificate
Request

Deletes the certificate request in the currently open wallet. You
must remove the associated user certificate before you can
delete a certificate request.

Remove User Certificate Deletes the user certificate from the currently open wallet.

Remove Trusted
Certificate

Removes the trusted certificate that is selected in the navigator
pane from the currently open wallet. You must remove all user
certificates that the trusted certificate signs before you can
remove it.

Export User Certificate Exports the user certificate in the currently open wallet to save
in a file system directory

Export Certificate Request Exports the certificate request in the currently open wallet to
save in a file

Duties of a Security Administrator/DBA

Configuration and Administration Tools Overview 2-9

Help Menu Table 2–5 describes the contents of the Help menu.

orapki Utility
The orapki utility is a command line tool that you can use to manage certificate
revocation lists (CRLs), create and manage Oracle wallets, and to create signed
certificates for testing purposes.

The basic syntax for this utility is as follows:

orapki module command -option_1 argument ... -option_n argument

For example, the following command lists all CRLs in the CRL subtree in an instance
of Oracle Internet Directory that is installed on machine1.us.example.com and
that uses port 389:

orapki crl list -ldap machine1.us.example.com:389

Duties of a Security Administrator/DBA
Most of the tasks of a security administrator involve ensuring that the connections to
and from Oracle databases are secure. Table 2–6 lists the primary tasks of security
administrators, the tools used to perform the tasks, and links to where the tasks are
documented.

Export Trusted Certificate Exports the trusted certificate that is selected in the navigator
pane to save in another location in your file system

Export All Trusted
Certificates

Exports all trusted certificates in the currently open wallet to
save in another location in your file system

Export Wallet Exports the currently open wallet to save as a text file

Table 2–5 Oracle Wallet Manager Help Menu Options

Option Description

Contents Opens Oracle Wallet Manager online Help

Search for Help on Opens Oracle Wallet Manager online Help and displays the
Search tab

About Oracle Wallet
Manager

Opens a window that displays the Oracle Wallet Manager
version number and copyright information

See Also:

■ "Certificate Revocation List Management" on page 8-27 for
information about how to use orapki to manage CRLs in the
directory

■ Appendix F, "orapki Utility" for reference information on all
available orapki commands

Table 2–4 (Cont.) Oracle Wallet Manager Operations Menu Options

Option Description

Duties of a Security Administrator/DBA

2-10 Oracle Database Advanced Security Administrator's Guide

Table 2–6 Common Security Administrator/DBA Configuration and Administrative Tasks

Task Tools Used See Also

Configure encrypted Oracle Net connections
between database servers and clients

Oracle Net Manager "Configuring Encryption on the Client
and the Server" on page 4-7

Configure checksumming on Oracle Net
connections between database servers and
clients

Oracle Net Manager "Configuring Integrity on the Client and
the Server" on page 4-8

Configure database clients to accept RADIUS
authentication

Oracle Net "Step 1: Configure RADIUS on the Oracle
Client" on page 6-7

Configure a database to accept RADIUS
authentication

Oracle Net "Step 2: Configure RADIUS on the Oracle
Database Server" on page 6-8

Create a RADIUS user and grant them access
to a database session

SQL*Plus "Task 3: Create a User and Grant Access"
on page 6-12

Configure Kerberos authentication on a
database client and server

Oracle Net Manager "Task 7: Configure Kerberos
Authentication" on page 7-4

Create a Kerberos database user ■ kadmin.local

■ Oracle Net Manager

■ "Task 8: Create a Kerberos User" on
page 7-7

■ "Task 9: Create an Externally
Authenticated Oracle User" on
page 7-8

Manage Kerberos credentials in the credential
cache

■ okinit

■ oklist

■ okdstry

■ "Obtaining the Initial Ticket with the
okinit Utility" on page 7-9

■ "Displaying Credentials with the
oklist Utility" on page 7-9

■ "Removing Credentials from the
Cache File with the okdstry Utility"
on page 7-10

Create a wallet for a database client or server ■ Oracle Wallet Manager "Creating a New Wallet" on page 9-8

Request a user certificate from a certificate
authority (CA) for SSL authentication

■ Oracle Wallet Manager ■ "Adding a Certificate Request" on
page 9-15

■ "Importing the User Certificate into
the Wallet" on page 9-17

Import a user certificate and its associated
trusted certificate (CA certificate) into a
wallet

■ Oracle Wallet Manager ■ "Importing a Trusted Certificate" on
page 9-21

■ "Importing the User Certificate into
the Wallet" on page 9-17

Configuring SSL connections for a database
client

■ Oracle Net Manager "Task 3: Configure SSL on the Client" on
page 8-15

Configuring SSL connections for a database
server

■ Oracle Net Manager "Task 2: Configure SSL on the Server" on
page 8-9

Enabling certificate validation with
certificate revocation lists

■ Oracle Net Manager ■ "Configuring Certificate Validation
with Certificate Revocation Lists" on
page 8-25

Part II
Data Encryption and Integrity

This part describes how to implement and manage transparent data encryption in
your Oracle databases. It also describes how to configure Oracle Advanced Security
data encryption and integrity for your Oracle network and for thin JDBC connections
to the database.

Part II contains the following chapters:

■ Chapter 3, "Securing Stored Data Using Transparent Data Encryption"

■ Chapter 4, "Configuring Network Data Encryption and Integrity for Oracle
Servers and Clients"

■ Chapter 5, "Configuring Network Authentication, Encryption, and Integrity for
Thin JDBC Clients"

Securing Stored Data Using Transparent Data Encryption 3-1

3
Securing Stored Data Using Transparent

Data Encryption

Transparent Data Encryption(TDE) enables you to encrypt sensitive data, such as
credit card numbers, stored in tables and tablespaces. Encrypted data is transparently
decrypted for a database user or application that has access to data. TDE helps protect
data stored on media in the event that the storage media or data file gets stolen.

This chapter is divided into the following topics:

■ About Transparent Data Encryption

■ Using Transparent Data Encryption

■ Managing Transparent Data Encryption

■ Example: Getting Started with TDE Column Encryption and TDE Tablespace
Encryption

■ Troubleshooting Transparent Data Encryption

■ Transparent Data Encryption Reference Information

About Transparent Data Encryption
Oracle Database uses authentication, authorization, and auditing mechanisms to
secure data in the database, but not in the operating system data files where data is
stored. To protect these data files, Oracle Database provides Transparent Data
Encryption (TDE). TDE encrypts sensitive data stored in data files. To prevent
unauthorized decryption, TDE stores the encryption keys in a security module
external to the database.

Database users and applications do not need to manage key storage or create auxiliary
tables, views, and triggers. An application that processes sensitive data can use TDE to
provide strong data encryption with little or no change to the application.

Use TDE to protect confidential data, such as credit card and social security numbers,
stored in table columns. You can also use TDE to encrypt entire tablespaces.

This section contains the following topics:

■ Benefits of Using Transparent Data Encryption

■ Types of Transparent Data Encryption

Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) has the following advantages:

About Transparent Data Encryption

3-2 Oracle Database Advanced Security Administrator's Guide

■ As a security administrator, you can be sure that sensitive data is safe in case the
storage media or data file gets stolen.

■ Implementing TDE helps you address security-related regulatory compliance
issues.

■ You do not need to create triggers or views to decrypt data for the authorized user
or application. Data from tables is transparently decrypted for the database user
and application.

■ Database users and applications need not be aware of the fact that the data they
are accessing is stored in encrypted form. Data is transparently decrypted for the
database users and applications.

■ Applications need not be modified to handle encrypted data. Data encryption and
decryption is managed by the database.

■ Key management operations are automated. The user or application does not need
to manage encryption keys.

Types of Transparent Data Encryption
Transparent Data Encryption (TDE) column encryption enables you to encrypt
sensitive data stored in select table columns. TDE tablespace encryption enables you to
encrypt all data stored in a tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered,
key-based architecture. Even if the encrypted data is retrieved, it cannot be understood
until authorized decryption occurs, which is automatic for users authorized to access
the table.

The following sections discuss TDE column encryption and TDE tablespace
encryption:

■ TDE Column Encryption

■ TDE Tablespace Encryption

TDE Column Encryption
TDE column encryption is used to protect confidential data, such as credit card and
social security numbers, stored in table columns. TDE column encryption uses the
two-tiered, key-based architecture to transparently encrypt and decrypt sensitive table
columns. The TDE master encryption key is stored in an external security module,
which can be an Oracle wallet or Hardware Security Module (HSM). This master
encryption key is used to encrypt the table key, which in turn is used to encrypt and
decrypt data in the table column. Figure 3–1shows an overview of the TDE column
encryption process.

About Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-3

Figure 3–1 TDE Column Encryption Overview

As shown in Figure 3–1, the master encryption key is stored in an external security
module that is outside the database and accessible only to the security administrator.
For this external security module, Oracle uses an Oracle wallet or Hardware Security
Module (HSM), as described in this chapter. Storing the master encryption key in this
way prevents its unauthorized use.

Using an external security module (wallet/HSM) separates ordinary program
functions from encryption operations, making it possible to divide duties between
database administrators and security administrators. Security is enhanced because the
wallet password can be unknown to the database administrator, requiring the security
administrator to provide the password.

When a table contains encrypted columns, a single table key is used regardless of the
number of encrypted columns. The table keys for all tables are encrypted with the
database server master encryption key and stored in a dictionary table in the database.
No keys are stored in the clear.

TDE Tablespace Encryption
TDE tablespace encryption enables you to encrypt an entire tablespace. All objects
created in the encrypted tablespace are automatically encrypted. TDE tablespace
encryption is useful if you want to secure sensitive data in tables. You do not need to
perform a granular analysis of each table column to determine the columns that need
encryption.

Data Dictionary

S.No Name Credit Card
No.

1. SCOTT #!&*!%@)$(

3. MARY @!@*!$%)#&

2. JOHN !#%&*@!)$(

TDE Master
Encryption Key

External Security Module
(Software Wallet/HSM)

TDE Table
Keys

Encrypt/Decrypt

Encrypt/
Decrypt

Oracle Database

TDE Column Encryption

About Transparent Data Encryption

3-4 Oracle Database Advanced Security Administrator's Guide

In addition, TDE tablespace encryption takes advantage of bulk encryption and
caching to provide enhanced performance. While the actual performance impact on
applications can vary, the performance overhead is roughly estimated to be in between
5% and 8%.

TDE tablespace encryption is a good alternative to TDE column encryption if your
tables contain sensitive data in multiple columns, or if you want to protect the entire
table and not just individual columns.

TDE tablespace encryption encrypts all data stored in an encrypted tablespace. This
includes internal large objects (LOBs) such as BLOBs and CLOBs. TDE tablespace
encryption does not encrypt data that is stored outside the tablespace. For example,
BFILE data is not encrypted as it is stored outside the database. If you create a table
with a BFILE column in an encrypted tablespace, then this particular column will not
be encrypted. However, SecureFile LOBs are supported from Oracle Database 11g
Release 1 (11.1).

All data in an encrypted tablespace is stored in encrypted format on the disk. Data is
transparently decrypted for an authorized user having the necessary privileges to
view or modify the data. A database user or application does not need to know if the
data in a particular table is encrypted on the disk. In the event that the data files on a
disk or backup media gets stolen, the data is not compromised.

TDE tablespace encryption uses the two-tiered, key-based architecture to transparently
encrypt (and decrypt) tablespaces. The TDE master key is stored in an external
security module (Oracle Wallet or HSM). This TDE master key is used to encrypt the
TDE tablespace encryption key, which in turn is used to encrypt and decrypt data in
the tablespace.

Figure 3–2 shows an overview of the TDE tablespace encryption process.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-5

Figure 3–2 TDE Tablespace Encryption

TDE tablespace encryption also allows index range scans on data in encrypted
tablespaces. This is not possible with TDE column encryption.

Oracle Database 11g Release 2 (11.2) implements the following enhancements to TDE
tablespace encryption:

■ A unified master encryption key is used for both TDE column encryption and TDE
tablespace encryption.

■ You can reset the unified master encryption key. This provides enhanced security
and helps meet security and compliance requirements.

Using Transparent Data Encryption
The following sections discuss using Transparent Data Encryption (TDE):

■ Enabling Transparent Data Encryption

■ Setting and Resetting the Master Encryption Key

■ Opening and Closing the Encrypted Wallet

Note: The encrypted data is protected during operations like JOIN
and SORT. This means that the data is safe when it is moved to
temporary tablespaces. Data in undo and redo logs is also protected.

TDE Tablespace Encryption

TDE Master
Encryption Key

External Security Module
(Software Wallet/HSM)

Encrypt/
Decrypt

Encrypt/
Decrypt

Oracle Database

TDE Tablespace
Encryption Key

Tablespace

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

TDE Tablespace
Encryption Key

Tablespace

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

Using Transparent Data Encryption

3-6 Oracle Database Advanced Security Administrator's Guide

■ Encrypting Columns in Tables

■ Encrypting Entire Tablespaces

■ Using Hardware Security Modules with TDE

■ Using Transparent Data Encryption with Oracle RAC

Enabling Transparent Data Encryption
TDE column encryption was first introduced in Oracle Database 10g release 2 (10.2). To
use this feature, you must be running Oracle Database 10g release 2 (10.2) or higher.

TDE tablespace encryption was introduced in Oracle Database 11g release 1 (11.1). To
use this feature, you must be running Oracle Database 11g release 1 (11.1) or higher.

To start using TDE, the security administrator must create a wallet and set a master
key. The wallet can be the default database wallet shared with other Oracle Database
components, or a separate wallet specifically used by TDE. Oracle strongly
recommends that you use a separate wallet to store the master encryption key.

Specifying a Wallet Location for Transparent Data Encryption
If you wish to use a wallet specifically for TDE, then you must specify a wallet location
in the sqlnet.ora file by using the ENCRYPTION_WALLET_LOCATION parameter.
Oracle recommends that you use the ENCRYPTION_WALLET_LOCATION parameter to
specify a wallet location for TDE.

Using Wallets with Automatic Login Enabled
The external security module can use wallets with the automatic login feature enabled.
These wallets remain open all the time. The security administrator does not have to
reopen the wallet after a database instance has been restarted. If your environment
does not require the extra security provided by a wallet that must be explicitly opened
for use, then you may use an auto login wallet.

You can also choose to create a local auto login wallet. Local auto login wallets cannot
be moved to another computer. They must be used on the host on which they are
created.

Setting and Resetting the Master Encryption Key
The master encryption key is stored in an external security module, and it is used to
protect the table keys and tablespace encryption keys. By default, the master
encryption key is a random key generated by Transparent Data Encryption (TDE). It
can also be an existing key pair from a PKI certificate designated for encryption. To use

Note: Oracle Database 11g Release 1 (11.1) and higher versions
ensure greater security by protecting data in temporary tablespaces
during operations such as JOIN and SORT. The data in temporary
tablespaces stays encrypted during these operations.

See Also: "Sample sqlnet.ora File" on page A-1for an example of the
syntax used to set this parameter

See Also:

"Using an Auto Login Wallet" on page 3-25 for more information on
auto login wallets.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-7

TDE with PKI key pairs, the issuing certificate authority must be able to issue X.509v3
certificates with the key usage field marked for encryption.

Neither key type is more secure, but if you have already deployed PKI within your
organization, then you can leverage such PKI services as key escrow and recovery.
However, encryption using current PKI algorithms requires significantly more system
resources than symmetric key encryption. Using a PKI key pair as a master encryption
key may result in greater performance degradation when accessing encrypted columns
in the database.

Use the ALTER SYSTEM command to set or reset (rekey) the master encryption key.
The following sections discuss setting and resetting the master encryption key.

Setting the Master Encryption Key
Before you can encrypt or decrypt database columns or tablespaces, you must generate
a master encryption key. Oracle Database 11g Release 2 (11.2) uses the same master
encryption key for both TDE column encryption and TDE tablespace encryption.

To set the master encryption key, use the following command:

SQL> ALTER SYSTEM SET ENCRYPTION KEY ["certificate_ID"] IDENTIFIED BY "password"

where

■ certificate_ID is an optional string containing the unique identifier of a
certificate stored in the Oracle wallet. Use this parameter if you intend to use your
PKI private key as your master encryption key. This parameter has no default
setting. Enclose the certificate_ID in double quotation marks (" ").

You can search for a certificate_ID by querying the V$WALLET fixed view
when the wallet is open. Only certificates that can be used as master encryption
keys by TDE are shown.

■ password is the mandatory wallet password for the security module, with no
default setting. It is case sensitive. Enclose the password string in double quotation
marks (" ").

The wallet location specified by the ENCRYPTION_WALLET_LOCATION parameter, in
the sqlnet.ora parameter file, is used to create the master encryption key. If the
ENCRYPTION_WALLET_LOCATION parameter is not present in the sqlnet.ora file,
then the WALLET_LOCATION value is used. A new wallet is created if one does not
exist already.

If no wallet location is specified in the sqlnet.ora file, then the default database
wallet location is used. The default database wallet location is
ORACLE_BASE/admin/DB_UNIQUE_NAME/wallet or
ORACLE_HOME/admin/DB_UNIQUE_NAME/wallet. Here, DB_UNIQUE_NAME is the
unique name of the database specified in the initialization parameter file.

Note: PKI-based encryption does not work with TDE tablespace
encryption or hardware security modules. To know more about
hardware security modules, refer to "Using Hardware Security
Modules with TDE" on page 3-20.

See Also: Oracle Database SQL Reference for the rules related to
supplying passwords

Using Transparent Data Encryption

3-8 Oracle Database Advanced Security Administrator's Guide

If an existing auto login wallet is present at the expected wallet location, then a new
wallet is not created.

Resetting the Master Encryption Key
Reset/Regenerate the master encryption key only if it has been compromised or as per
the security policies of the organization. You should back up the wallet before resetting
the master encryption key.

Frequent master encryption key regeneration does not necessarily enhance system
security. Security modules can store a large number of keys. However, this number is
not unlimited. Frequent master encryption key regeneration can exhaust all available
storage space.

To reset the master encryption key, use the SQL syntax as shown in "Setting the Master
Encryption Key" on page 3-7.

The ALTER SYSTEM SET ENCRYPTION KEY command is a data definition language
(DDL) command requiring the ALTER SYSTEM privilege, and it automatically
commits any pending transactions. Example 3–1 shows a sample usage of this
command.

Example 3–1 Setting or Resetting the Master Encryption Key To Use a PKI-Based Private
Key

SQL> ALTER SYSTEM SET ENCRYPTION KEY "j23lm781098dhb345sm" IDENTIFIED BY
"password";

Here, j23lm781098dhb345sm is the certificate ID and password is the wallet
password.

For PKI-based keys, certificate revocation lists are not enforced as enforcing certificate
revocation may lead to losing access to all encrypted information in the database.
However, you cannot use the same certificate to create the master key again.

Opening and Closing the Encrypted Wallet
The database must load the master encryption key into memory before it can encrypt
or decrypt columns/tablespaces. Opening the wallet allows the database to access the
master encryption key. Use the following ALTER SYSTEM command to explicitly open
the wallet:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password"

where password is the password to open the wallet. Enclose the password string in
double quotation marks (" ").

Note: If you are resetting the master encryption key for a wallet that
has auto login enabled, then you must ensure that both the auto login
wallet, identified by the .sso file, and the encryption wallet,
identified by the .p12 file, are present before issuing the command to
reset the master encryption key.

Note: The password to open the wallet is the password that you
specify for creating the master encryption key. This is discussed under
"Setting the Master Encryption Key" on page 3-7.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-9

Once the wallet has been opened, it remains open until you shut down the database
instance, or close it explicitly by issuing the following command:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "password"

Closing the wallet disables all encryption and decryption operations. Any attempt to
encrypt/decrypt data or access encrypted data results in the following error:

ORA-28365: wallet is not open

Each time you restart a database instance, you must issue the ALTER SYSTEM SET
ENCRYPTION WALLET OPEN IDENTIFIED BY "password" command to reenable
encryption and decryption operations.

If the user does not have the ALTER SYSTEM privilege, or the wallet is unavailable, or
an incorrect password is given, then the command returns an error and exits. If the
wallet is already open, the command returns an error and takes no action.
Example 3–2 shows an example of each usage case.

Example 3–2 Opening the External Security Module Wallet with ALTER SYSTEM

SQL> --Successfully opening the wallet
SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "U83j10LLt8v";
Wallet opened.

SQL> --Trying to open a wallet that is already open
SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "U83j10LLt8v";
ERROR at line 1:
ORA-28354: wallet already open

SQL> --Trying to open the wallet with an incorrect password
SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "U93j10LLt8v";
ERROR at line 1:
ORA-28353: failed to open wallet

Encrypting Columns in Tables
The following sections discuss using TDE column encryption:

■ Creating Tables with Encrypted Columns

■ Encrypting Columns in Existing Tables

■ Creating an Index on an Encrypted Column

■ Adding or Removing Salt from an Encrypted Column

■ Changing the Encryption Key or Algorithm for Tables Containing Encrypted
Columns

■ Data Types That Can Be Encrypted with TDE Column Encryption

Note: Auto login wallets are opened automatically and do not need
to be opened explicitly.

In case an auto login wallet needs to be closed, it can be closed with
the following command:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET CLOSE

No password is required to close an auto login wallet.

Using Transparent Data Encryption

3-10 Oracle Database Advanced Security Administrator's Guide

■ Restrictions on Using TDE Column Encryption

Creating Tables with Encrypted Columns
To create relational tables with encrypted columns, specify the SQL ENCRYPT clause
when you define database columns with the CREATE TABLE statement.

This section contains the following topics:

■ Creating a Table with an Encrypted Column

■ Creating a Table with an Encrypted Column Using a Nondefault Algorithm and
No Salt

■ Using the NOMAC Parameter to Save Disk Space and Improve Performance

■ Creating an Encrypted Column in an External Table

Creating a Table with an Encrypted Column By default, TDE uses the AES encryption
algorithm with a 192-bit key length (AES192). If you encrypt a table column without
specifying an algorithm, the column is encrypted using the AES192 algorithm.

TDE adds salt to cleartext before encrypting it. This makes it harder for attackers to
steal data through a brute force attack. TDE also adds a Message Authentication Code
(MAC) to the data for integrity checking. The SHA-1 integrity algorithm is used by
default.

Example 3–3 creates a new table with an encrypted column. The column is encrypted
using the default encryption algorithm (AES192). Salt and MAC are added by default.

Example 3–3 Creating a New Table with an Encrypted Column Using the Default
Algorithm (AES192)

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER,
 salary NUMBER(6) ENCRYPT
);

Creating a Table with an Encrypted Column Using a Nondefault Algorithm and No Salt By
default, TDE adds salt to cleartext before encrypting it. This makes it harder for
attackers to steal data through a brute force attack. However, if you plan to index the
encrypted column, you must use NO SALT.

TDE also enables you to specify a nondefault encryption algorithm. You can choose
from one of the following algorithms:

■ 3DES168

■ AES128

■ AES192 (default)

Note: If there are multiple encrypted columns in a table, then all
these columns must use the same pair of encryption and integrity
algorithms.

Salt is specified at the column level. This means that an encrypted
column in a table can choose not to use salt irrespective of whether
other encrypted columns in the table use salt or not.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-11

■ AES256

 Example 3–4 shows how to specify the NO SALT parameter with the SQL ENCRYPT
clause (empID NUMBER ENCRYPT NO SALT). It also shows the syntax for specifying
a different encryption algorithm (salary NUMBER(6) ENCRYPT USING
'3DES168'). Note that the string which specifies the algorithm must be enclosed in
single quotation marks (' ').

The empID and salary columns will both use the 3DES168 encryption algorithm.
This is because all encrypted columns in a table must use the same encryption
algorithm. The salary column will use salt by default. The empID column will not
use salt as the NO SALT option has been specified for it.

Example 3–4 Creating a New Table with an Encrypted Column Using 3DES168 and NO
SALT

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT NO SALT,
 salary NUMBER(6) ENCRYPT USING '3DES168'
);

Using the NOMAC Parameter to Save Disk Space and Improve Performance The NOMAC
parameter enables you to skip the integrity check performed by TDE. This saves 20
bytes of disk space per encrypted value. If the number of rows and encrypted columns
in the table is large, then this adds up to a significant amount of disk space.

The NOMAC parameter also reduces the performance overheads associated with TDE.
Using the NOMAC parameter causes the integrity check to be skipped during
encryption and decryption operations. This saves processing cycles and leads to faster
performance.

Example 3–5 creates a table with an encrypted column. The empID column is
encrypted using the NOMAC parameter.

Example 3–5 Using the NOMAC parameter in a CREATE TABLE statement

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT 'NOMAC' NO SALT ,
 salary NUMBER(6)
);

Example 3–6 shows how to change the integrity algorithm for encrypted columns in a
table. The encryption algorithm is set to 3DES168 and the integrity algorithm is set to
SHA-1. The second ALTER TABLE statement sets the integrity algorithm to NOMAC.

Note: TDE uses the SHA-1 integrity algorithm by default. All
encrypted columns in a table must use the same integrity algorithm. If
you already have a table column using the SHA-1 algorithm, then you
cannot use the NOMAC parameter to encrypt another column in the
same table.

You can change the integrity algorithm used by all encrypted columns
in a table using the ALTER TABLE....REKEY... command. See
Example 3–6 for an example.

Using Transparent Data Encryption

3-12 Oracle Database Advanced Security Administrator's Guide

Example 3–6 Changing the Integrity Algorithm for a Table

SQL> ALTER TABLE EMPLOYEE REKEY USING '3DES168' 'SHA-1';

Table altered.
SQL> ALTER TABLE EMPLOYEE REKEY USING '3DES168' 'NOMAC';

Table altered.

Creating an Encrypted Column in an External Table The external table feature enables you to
access data in external sources as if the data were in a database table. External tables
can be updated using the ORACLE_DATAPUMP access driver.

To encrypt specific columns in an external table, use the ENCRYPT clause when
defining those columns. A system generated key is used to encrypt the columns. For
example, the following definition encrypts the ssn column using the 3DES168
algorithm:

CREATE TABLE emp_ext (
 first_name,

 ssn ENCRYPT USING '3DES168',

...
...

If you plan to move your external table to a new location, then you cannot use a
randomly generated key to encrypt the columns. This is because the randomly
generated key will not be available at the new location.

For such scenarios, you should specify a password while encrypting the columns.
After you move the data, you can use the same password to regenerate the key
required to access encrypted column data at the new location.

Table partition exchange also requires a password-based table key.

Example 3–7 creates an external table using a password to create the table key.

Example 3–7 Creating a New External Table with a Password-Generated Table Key

CREATE TABLE emp_ext (
 first_name,
 last_name,
 empID,
 salary,
 ssn ENCRYPT IDENTIFIED BY "xIcf3T9u"
) ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "D_DIR"
 LOCATION('emp_ext.dat')
)
 REJECT LIMIT UNLIMITED
AS SELECT * FROM EMPLOYEE;

See Also: Oracle Database Concepts for discussions on Schema Objects
and Tables.

See Also: Oracle Database SQL Language Reference about CREATE
TABLE, ENCRYPT, and the rules for passwords.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-13

Encrypting Columns in Existing Tables
To add an encrypted column to an existing table, or to encrypt or decrypt an existing
column, you use the ALTER TABLE SQL command with the ADD or MODIFY clause.

This section contains the following topics:

■ Adding an Encrypted Column to an Existing Table

■ Encrypting an Unencrypted Column

■ Disabling Encryption on a Column

Adding an Encrypted Column to an Existing Table To add an encrypted column to an
existing table, you use the ALTER TABLE ADD command, specifying the new column
with the ENCRYPT clause. Example 3–8 adds an encrypted column, ssn, to an existing
table, called employee.

Example 3–8 Adding an Encrypted Column to an Existing Table

SQL> ALTER TABLE employee ADD (ssn VARCHAR2(11) ENCRYPT);

The ssn column is encrypted with the default AES192 algorithm. Salt and MAC are
added by default.

You can choose to encrypt the column using a different algorithm. You can also specify
NO SALT, if you wish to index the column.

Encrypting an Unencrypted Column To encrypt an unencrypted column, use the ALTER
TABLE MODIFY command, specifying the unencrypted column with the ENCRYPT
clause. Example 3–9 encrypts the first_name column in the employee table.

Example 3–9 Encrypting an Unencrypted Column

SQL> ALTER TABLE employee MODIFY (first_name ENCRYPT);

The first_name column is encrypted with the default AES192 algorithm. Salt is
added to the data, by default.

You can choose to encrypt the column using a different algorithm. You can also specify
NO SALT, if you wish to index the column. You can also choose to skip integrity
checks by using the NOMAC parameter. Example 3–10 encrypts the first_name
column in the employee table using the NOMAC parameter.

Example 3–10 Using the NOMAC parameter in an ALTER TABLE statement

SQL> ALTER TABLE employee MODIFY (first_name ENCRYPT 'NOMAC');

Disabling Encryption on a Column You may want to disable encryption for reasons of
compatibility or performance. To disable column encryption, use the ALTER TABLE
MODIFY command with the DECRYPT clause. Example 3–11 decrypts the first_name
column in the employee table.

Example 3–11 Turning Off Column Encryption

SQL> ALTER TABLE employee MODIFY (first_name DECRYPT);

Creating an Index on an Encrypted Column
To create an index on an encrypted column, you use the standard CREATE INDEX
command. The column being indexed must have been encrypted without salt.

Using Transparent Data Encryption

3-14 Oracle Database Advanced Security Administrator's Guide

Example 3–12 shows how to create an index on a column that has been encrypted
without salt.

Example 3–12 Creating Index on a Column Encrypted Without Salt

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT NO SALT,
 salary NUMBER(6) ENCRYPT USING '3DES168'
);
CREATE INDEX employee_idx on employee (empID);

Adding or Removing Salt from an Encrypted Column
Salt is a way to strengthen the security of encrypted data. It is a random string added
to the data before it is encrypted. This ensures that the same plaintext data does not
always translate to the same encrypted text. Salt removes the one common method
attackers use to steal data, namely, matching patterns of encrypted text. Adding salt
requires an additional 16 bytes of storage, per encrypted data value.

To add or remove salt from encrypted columns, use the ALTER TABLE MODIFY
command. Example 3–13 encrypts the first_name column using salt. If the
first_name column was encrypted without salt earlier, then this command
reencrypts it using salt.

Example 3–13 Adding Salt to an Encrypted Column

SQL> ALTER TABLE employee MODIFY (first_name ENCRYPT SALT);

Example 3–14 removes salt from the first_name column. If you need to index a
column that was encrypted using salt, then you can use this command to remove the
salt before indexing.

Example 3–14 Removing Salt from an Encrypted Column

SQL> ALTER TABLE employee MODIFY (first_name ENCRYPT NO SALT);

Changing the Encryption Key or Algorithm for Tables Containing Encrypted
Columns
Each table can have only one table key for its columns. You can regenerate the table
key with the ALTER TABLE command. You can also choose to use a different
encryption algorithm for the new table key.

Example 3–15 regenerates the table key for the employee table.

Example 3–15 Changing the Encryption Key on Tables Containing Encrypted Columns

SQL> ALTER TABLE employee REKEY;

Example 3–16 regenerates the table key for the employee table using the 3DES168
algorithm.

Note: You cannot create an index on a column that has been
encrypted with salt. If you try to do this, an error (ORA-28338) is
raised.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-15

Example 3–16 Changing the Encryption Key and Algorithm on Tables Containing
Encrypted Columns

SQL> ALTER TABLE employee REKEY USING '3DES168';

Data Types That Can Be Encrypted with TDE Column Encryption
The following data types can be encrypted using this feature:

■ BINARY_DOUBLE

■ BINARY_FLOAT

■ CHAR

■ DATE

■ INTERVAL DAY TO SECOND

■ INTERVAL YEAR TO MONTH

■ LOBs (Internal LOBs and SECUREFILE LOBs Only)

■ NCHAR

■ NUMBER

■ NVARCHAR2

■ RAW

■ TIMESTAMP (includes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE)

■ VARCHAR2

You cannot encrypt a column if the encrypted column size becomes greater than the
size allowed by the data type of the column. Table 3–1 shows the maximum allowable
sizes for various data types.

Restrictions on Using TDE Column Encryption
TDE column encryption encrypts and decrypts data at the SQL layer. Oracle Database
utilities and features that bypass the SQL layer cannot leverage the services provided
by TDE column encryption. Do not use TDE column encryption with the following
database features:

■ Index types other than B-tree

■ Range scan search through an index

■ External large objects (BFILE)

Table 3–1 Maximum Allowable Size for Data Types

Data Type Maximum Size

CHAR 1932 bytes

VARCHAR2 3932 bytes

NVARCHAR2 1966 bytes

NCHAR 966 bytes

Note: TDE tablespace encryption does not have these data type
restrictions.

Using Transparent Data Encryption

3-16 Oracle Database Advanced Security Administrator's Guide

■ Synchronous Change Data Capture

■ Transportable Tablespaces

■ Original import/export utilities

In addition, you cannot use TDE column encryption to encrypt columns used in
foreign key constraints.

Applications that need to use these unsupported features can use the DBMS_CRYPTO
package for their encryption needs.

TDE protects data stored on disk/media. It does not protect data in transit. Use Oracle
Advanced Security network encryption solutions discussed in Chapter 2,
"Configuration and Administration Tools Overview"to encrypt data over the network.

Encrypting Entire Tablespaces
In order to use TDE tablespace encryption, you must be running Oracle Database 11g
release 1 (11.1) or higher. If you have upgraded from an earlier release, the
compatibility for the database must have been set to 11.0.0 or higher.

To use the enhanced tablespace encryption features in Oracle Database 11g Release 2
(11.2), the compatibility for the database must be set to 11.2 or higher.

The following steps discuss using TDE tablespace encryption:

■ Setting the Tablespace Master Encryption Key

■ Opening the Oracle Wallet

■ Creating an Encrypted Tablespace

■ Restrictions on Using TDE Tablespace Encryption

See Also:

■ "Export and Import of Tables with Encrypted Columns" on
page 3-27

■ "Data Types That Can Be Encrypted with TDE Column
Encryption" on page 3-15

Note: Oracle Database 10g release 2 (10.2) TDE did not support large
object (LOB) data types such as BLOB and CLOB. Oracle Database 11g
TDE supports internal large object data types such as BLOB and CLOB.
However, you cannot encrypt external LOBs (BFILE).

See Also: "DBMS_CRYPTO" in Oracle Database PL/SQL Packages and
Types Reference

Note: Advancing the database compatibility, using the COMPATIBLE
initialization parameter, is an irreversible change.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-17

Setting the Tablespace Master Encryption Key
Before you can encrypt or decrypt tablespaces, you must generate or set a master
encryption key. The tablespace master encryption key is stored in an external security
module and is used to encrypt the TDE tablespace encryption keys.

Check to ensure that the ENCRYPTION_WALLET_LOCATION (or WALLET_LOCATION)
parameter in the sqlnet.ora file points to the correct software wallet location. For
example:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=FILE)(METHOD_DATA=
 (DIRECTORY=/app/wallet)))

Oracle Database 11g Release 2 (11.2) uses the same master encryption key for both TDE
column encryption and TDE tablespace encryption. When you issue the ALTER
SYSTEM SET ENCRYPTION KEY command, a unified master encryption key is
created for both TDE column encryption and TDE tablespace encryption. Creating a
master encryption key is discussed under "Setting the Master Encryption Key" on
page 3-7.

If you were already using TDE in Oracle Database 10g release 2 (10.2), and have
upgraded the database to 11g Release 2 (11.2), then you must reissue the ALTER
SYSTEM SET ENCRYPTION KEY command to create a unified master encryption key.

If you were already using TDE tablespace encryption in Oracle Database 11g release 1
(11.1), and have upgraded the database to 11g release 2 (11.2), then you have separate
master encryption keys for TDE column encryption and TDE tablespace encryption.
You must create a unified master encryption key by reissuing the ALTER SYSTEM
SET ENCRYPTION KEY command.

Resetting the Tablespace Master Encryption Key

Oracle Database 11g Release 2 (11.2) uses a unified master encryption key for both TDE
column encryption and TDE tablespace encryption. When you reset (rekey) the
master encryption key for TDE column encryption, the master encryption key for TDE
tablespace encryption also gets reset.

The ALTER SYSTEM SET ENCRYPTION KEY command resets the tablespace master
encryption key. Resetting the master encryption key is discussed under "Setting and
Resetting the Master Encryption Key" on page 3-6.

Opening the Oracle Wallet
Before you can create an encrypted tablespace, the Oracle wallet containing the
tablespace master encryption key must be open. The wallet must also be open before
you can access data in an encrypted tablespace. Opening the Oracle wallet has been
discussed under "Opening and Closing the Encrypted Wallet" on page 3-8.

The security administrator also needs to open the wallet before performing database
recovery operations. This is because background processes may require access to
encrypted redo and undo logs. When performing database recovery, the wallet must
be opened before opening the database. This is illustrated in the following statements:

SQL> STARTUP MOUNT;

Note: The security administrator needs to open the Oracle wallet
after starting the Oracle instance. A restart of the Oracle instance
requires the security administrator to open the wallet again.

Using Transparent Data Encryption

3-18 Oracle Database Advanced Security Administrator's Guide

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";
SQL> ALTER DATABASE OPEN;

You can also choose to use auto login wallets, if your environment does not require the
extra security provided by a wallet that needs to be explicitly opened. .

Creating an Encrypted Tablespace
The CREATE TABLESPACE command enables you to create an encrypted tablespace.
The permanent_tablespace_clause enables you to choose the encryption
algorithm and the key length for encryption. The ENCRYPT keyword in the
storage_clause encrypts the tablespace. The following syntax illustrates this:

CREATE
 [BIGFILE | SMALLFILE]
 { permanent_tablespace_clause
 | temporary_tablespace_clause
 | undo_tablespace_clause
 } ;

Where,

permanent_tablespace_clause=
TABLESPACE tablespace
.........
ENCRYPTION [USING algorithm]
.........
storage_clause
.........

Where,

storage_clause=
.........
[ENCRYPT]
.........

Here:

algorithm can have one of the following values:

■ 3DES168

■ AES128

■ AES192

■ AES256

The key lengths are included in the names of the algorithms themselves. If no
encryption algorithm is specified, the default encryption algorithm is used. The
default encryption algorithm is AES128.

Note:

■ The ENCRYPTION keyword in the
permanent_tablespace_clause is used to specify the
encryption algorithm. The ENCRYPT keyword in the
storage_clause actually encrypts the tablespace.

■ For security reasons, a tablespace cannot be encrypted with the NO
SALT option.

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-19

Example 3–17 creates a tablespace called securespace. The tablespace is encrypted
using the 3DES algorithm. The key length is 168 bits.

Example 3–17 Creating an Encrypted Tablespace

CREATE TABLESPACE securespace
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION USING '3DES168'
DEFAULT STORAGE(ENCRYPT);

Example 3–18 creates a tablespace called securespace2. As no encryption algorithm
is specified, the default encryption algorithm (AES128) is used. The key length is 128
bits.

Example 3–18 Creating an Encrypted Tablespace

CREATE TABLESPACE securespace2
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION
DEFAULT STORAGE(ENCRYPT);

The following data dictionary views maintain information about the encryption status
of a tablespace. You can query these views to verify that a tablespace has been
encrypted:

■ DBA_TABLESPACES: The ENCRYPTED column indicates whether a tablespace is
encrypted

■ USER_TABLESPACES: The ENCRYPTED column indicates whether a tablespace is
encrypted

You cannot encrypt an existing tablespace. However, you can import data into an
encrypted tablespace using the Oracle Data Pump utility. You can also use SQL
commands like CREATE TABLE...AS SELECT...or ALTER TABLE...MOVE... to
move data into an encrypted tablespace. The CREATE TABLE...AS SELECT...
command enables you to create a table from an existing table. The ALTER
TABLE...MOVE... command enables you to move a table into the encrypted
tablespace.

Restrictions on Using TDE Tablespace Encryption
TDE tablespace encryption encrypts/decrypts data during read/write operations, as
opposed to TDE column encryption, which encrypts/decrypts data at the SQL layer.
This means that most restrictions that apply to TDE column encryption, such as data
type restrictions and index type restrictions, are not applicable to TDE tablespace
encryption.

The following list includes the restrictions that apply to TDE tablespace encryption:

See Also: Oracle Database SQL Reference Guide for the CREATE
TABLESPACE command syntax.

See Also: Oracle Database Reference for a full description of these data
dictionary views.

See Also: Oracle Database SQL Language Reference for more details on
the CREATE TABLE and ALTER TABLE commands.

Using Transparent Data Encryption

3-20 Oracle Database Advanced Security Administrator's Guide

■ External Large Objects (BFILEs) cannot be encrypted using TDE tablespace
encryption. This is because these files reside outside the database.

■ To perform import and export operations, use Oracle Data Pump.

Using Hardware Security Modules with TDE
A hardware security module (HSM) is a physical device that provides secure storage
for encryption keys. It also provides secure computational space (memory) to perform
encryption and decryption operations. HSM is a more secure alternative to the Oracle
wallet.

TDE can use HSM to provide enhanced security for sensitive data. An HSM is used to
store the master encryption key used for TDE. The key is secure from unauthorized
access attempts as the HSM is a physical device and not an operating system file. All
encryption and decryption operations that use the master encryption key are
performed inside the HSM. This means that the master encryption key is never
exposed in insecure memory.

Using HSM involves an initial setup of the HSM device. You also need to configure
TDE to use HSM. Once the initial setup is done, HSM can be used just like an Oracle
software wallet. The following steps discuss configuring and using hardware security
modules:

1. Set the ENCRYPTION_WALLET_LOCATION Parameter in the sqlnet.ora File

2. Copy the PKCS#11 Library to Its Correct Path

3. Set Up the HSM

4. Generate a Master Encryption Key for HSM-Based Encryption

5. Reconfigure the Software Wallet (Optional)

6. Ensure that the HSM Is Accessible

7. Encrypt and Decrypt Data

Set the ENCRYPTION_WALLET_LOCATION Parameter in the sqlnet.ora File
The ENCRYPTION_WALLET_LOCATION parameter specifies the location of the Oracle
wallet. You need to change this parameter to reflect the fact that an HSM is to be used
in place of the software wallet.

Use the following steps to set the ENCRYPTION_WALLET_LOCATION parameter:

1. Open the sqlnet.ora file. This file is located in the
$ORACLE_HOME/network/admin directory.

2. Add the ENCRYPTION_WALLET_LOCATION parameter to the sqlnet.ora file, as
follows:

ENCRYPTION_WALLET_LOCATION=(SOURCE=(METHOD=HSM))

If the ENCRYPTION_WALLET_LOCATION parameter is already present in the
sqlnet.ora file, then change the METHOD value to HSM:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=HSM)(METHOD_DATA=
 (DIRECTORY=/app/wallet)))

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-21

3. Save and close the file.

Copy the PKCS#11 Library to Its Correct Path
Your HSM vendor supplies you with an associated PKCS#11 library. You should copy
this library to the specified directory structure to ensure that the database is able to
find this library. Use the following directory structures for UNIX and Windows
respectively:

/opt/oracle/extapi/[32,64]/hsm/{VENDOR}/{VERSION}/libapiname.ext

%SYSTEM_DRIVE%\oracle\extapi\[32,64]\hsm\{VENDOR}\{VERSION}\libapiname.ext

Here:

[32,64] specifies whether the supplied binary is 32-bits or 64-bits

VENDOR stands for the name of the vendor supplying the library

VERSION refers to the version of the library. This should preferably be in a format,
number.number.number

apiname requires no special format. However, the apiname must be prefixed with
the word lib, as illustrated in the syntax.

.ext needs to be replaced by the extension of the library file. This extension is .so on
Unix.

Set Up the HSM
Your HSM vendor should have provided you the instructions to set up the HSM
interface. Use your HSM management interface and the instructions provided by your
vendor to set up the HSM. Create the user account and password that would be used
by the database to interact with the HSM.

Generate a Master Encryption Key for HSM-Based Encryption
To start using HSM-based encryption, you need to create a master encryption key that
will be stored inside the HSM. The master encryption key is used to encrypt or decrypt
table keys inside the HSM.

Note: If a DIRECTORY value is present in the
ENCRYPTION_WALLET_LOCATION parameter, then make sure that
you do not delete it. Although HSM does not require a DIRECTORY
value, the value is used to locate your old software wallet when
migrating to HSM-based transparent data encryption. Also, the
DIRECTORY value might be required by tools, such as Recovery
Manager (RMAN), to locate the software wallet.

Note: Only one PKCS#11 library is supported at a time. If you wish
to use an HSM from a new vendor, then you should replace the
PKCS#11 library from the earlier vendor with the library from the new
vendor.

Note: The HSM is set up by the HSM administrator or the security
administrator responsible for managing TDE.

Using Transparent Data Encryption

3-22 Oracle Database Advanced Security Administrator's Guide

Use the following command to create the master encryption key:

SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "user_Id:password" [MIGRATE
USING "wallet_password"]

Here:

user_Id is the user Id created for the database using the HSM management interface

password is the password created for the user Id using the HSM management
interface. Enclose the user_Id:password string in double quotation marks (" ").

wallet_password is the password required to open an existing Oracle wallet on the
file system. Enclose the wallet_password string in double quotation marks (" ").

If you are already using transparent data encryption and not using HSM, then you
need to use the MIGRATE USING wallet_password clause in the preceding
command. This decrypts the existing table keys and reencrypts them with the newly
created, HSM-based, master encryption key.

Reconfigure the Software Wallet (Optional)
This step is applicable if you have exported encrypted data or created encrypted
backups using the software wallet. Tools like Oracle Data Pump and Recovery
Manager require access to the old software wallet to perform decryption and
encryption operations on data exported or backed up using the software wallet.

You can use either of the following approaches to reconfigure the software wallet:

■ Change the wallet password to the HSM userId:password string. Here:

user_Id is the user Id created for the database using the HSM management
interface

password is the password created for the user Id using the HSM management
interface. Enclose the user_Id:password string in double quotation marks (" ").

Use Oracle Wallet Manager or the orapki command-line utility to change the
password for the software wallet. SQL*Plus cannot be used to change the wallet
password.

■ You can alternatively choose to use an auto login wallet. The auto login wallet is
identified by a file with the .sso extension. Use an auto login wallet only if your

Note: The user_Id and password are not created automatically.
You must set these up using the HSM management interface before
issuing the ALTER SYSTEM SET ENCRYPTION KEY command. This
is different from the procedure used for an Oracle wallet. An Oracle
wallet requires no prior setup before issuing the ALTER SYSTEM SET
ENCRYPTION KEY command.

Note: If the database contains columns encrypted with a public key,
then the columns are decrypted and reencrypted with an AES
symmetric key generated by HSM-based transparent data encryption.

See Also: "Changing the Password" on page 9-13 for more details
on changing the wallet password

Using Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-23

environment does not require the extra security provided by a wallet that needs to
be explicitly opened.

You can also choose to create a local auto login wallet. Local auto login wallets
cannot be moved to another computer. They must be used on the host on which
they are created.

Ensure that the HSM Is Accessible
The security administrator must make sure that the HSM is accessible to the database
before any encryption or decryption can be performed. This is analogous to opening
the Oracle wallet. Use the following command to make the HSM accessible:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "user_Id:password"

Here:

user_Id is the user Id created for the database using the HSM management interface

password is the password created for the user Id using the HSM management
interface

Enclose the user_Id:password string in double quotation marks (" ")

The security administrator can disable access to the HSM using the ALTER SYSTEM
SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "user_Id:password"
command. This disables all encryption and decryption operations in the HSM. A
database user or application cannot perform any operation involving encrypted data
until the wallet has been reopened. For example, the following operations will fail if
the HSM is not accessible:

■ SELECT data from an encrypted column

■ INSERT data into on an encrypted column

■ CREATE a table with encrypted column(s)

■ ALTER the encryption properties of a column

■ CREATE an encrypted tablespace

Encrypt and Decrypt Data
HSM use is transparent to the end user. The commands to create a table with
encrypted columns, access encrypted data, or decrypt data are the same regardless of
whether the master encryption key resides in an Oracle wallet or HSM.

See Also:

■ "Using Auto Login" on page 9-14 for information about enabling
auto login using Oracle Wallet Manager

■ "Creating, Viewing, and Modifying Wallets with orapki" on
page F-2 for information about enabling auto login and local auto
login using the orapki command-line utility

Note: Access to the HSM needs to reenabled every time the database
instance is restarted.

Managing Transparent Data Encryption

3-24 Oracle Database Advanced Security Administrator's Guide

Using Transparent Data Encryption with Oracle RAC
Oracle Database 11g Release 2 (11.2) enables Oracle Real Application Clusters (Oracle
RAC) nodes to share the wallet. This eliminates the need to manually copy and
synchronize the wallet across all nodes. Oracle recommends that you create the wallet
on a shared file system. This allows all instances to access the same shared wallet.

Any wallet operation, like opening or closing the wallet, performed on any one Oracle
RAC instance is applicable for all other Oracle RAC instances. This means that when
you open and close the wallet for one instance, then it opens and closes for all Oracle
RAC instances.

When using a shared file system, you need to ensure that the
ENCRYPTION_WALLET_LOCATION or WALLET_LOCATION parameter for all Oracle
RAC instances point to the same shared wallet location. The security administrator
also needs to ensure security of the shared wallet by assigning appropriate directory
permissions.

A master key rekey performed on one instance is applicable for all instances. When a
new Oracle RAC node comes up, it is aware of the current wallet open or close status.

Using a Non-Shared File System to Store the Wallet
If you are not using a shared file system to store the wallet, then you need to copy the
wallet to all nodes after a master key rekey. If you need to reset the master encryption
key for the database, then use the following steps:

1. Reset the master encryption key on the first Oracle RAC node. Use the following
command: See "Setting and Resetting the Master Encryption Key" on page 3-6 for
more information.

2. Copy the wallet with the new master encryption key from the first node to all
other nodes.

3. Close and reopen the wallet on any one node. Use the following commands:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "password";
SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";

All Oracle RAC nodes are now configured to use the new master encryption key.

Managing Transparent Data Encryption
This section contains these topics:

■ Oracle Wallet Management

■ Backup and Recovery of Master Encryption Keys

■ Export and Import of Tables with Encrypted Columns

■ Performance and Storage Overheads

■ Security Considerations

Note: Any wallet operation, like opening or closing the wallet,
performed on any one Oracle RAC instance is applicable for all other
Oracle RAC instances. This is true even if you are not using a shared
file system.

Managing Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-25

■ Using Transparent Data Encryption in a Multi-Database Environment

■ Replication in Distributed Environments

■ Compression and Data Deduplication of Encrypted Data

■ Transparent Data Encryption with OCI

■ Transparent Data Encryption in a Multi-Database Environment

■ Transparent Data Encryption Data Dictionary Views

Oracle Wallet Management
Transparent Data Encryption (TDE) stores the master encryption key in an Oracle
wallet. The wallet can also be an auto login wallet that allows access to encrypted data
without requiring a security administrator to explicitly open the wallet.

Specifying a Separate Wallet for Transparent Data Encryption
When determining which wallet to use, TDE first attempts to use the wallet specified
by the parameter ENCRYPTION_WALLET_LOCATION. If the parameter is not set, then
it attempts to use the wallet specified by the parameter WALLET_LOCATION. If this
fails as well, then TDE looks for a wallet at the default database location.

Oracle strongly recommends that you use a separate wallet for storing master
encryption keys used by TDE. To designate a separate wallet, set the
ENCRYPTION_WALLET_LOCATION parameter in the sqlnet.ora file to point to the
wallet used exclusively by TDE.

Using an Auto Login Wallet
You can create an auto login wallet with Oracle Wallet Manager or the orapki
command-line utility. The auto login wallet allows convenient access to encrypted data
across database instance restarts.

TDE uses an auto login wallet only if it is available at the correct location
(ENCRYPTION_WALLET_LOCATION, WALLET_LOCATION, or default wallet
location), and the SQL command to open an encrypted wallet has not already been
executed. If an auto login wallet is being used, you must not use the ALTER SYSTEM
SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password" command.

See Also: "Sample sqlnet.ora File" on page A-1for an example of the
syntax used to set this parameter

Note: You should not remove the PKCS#12 wallet (ewallet.p12
file) after the auto login wallet (.sso file) has been created. You need
the PKCS#12 wallet to regenerate/rekey the master encryption key in
future.

See Also:

■ "Using Auto Login" on page 9-14 for information about enabling
auto login using Oracle Wallet Manager

■ "Creating, Viewing, and Modifying Wallets with orapki" on
page F-2 for information about enabling auto login and local auto
login using the orapki command-line utility

Managing Transparent Data Encryption

3-26 Oracle Database Advanced Security Administrator's Guide

Creating Wallets
When you create the master encryption key using the ALTER SYSTEM SET
ENCRYPTION KEY IDENTIFIED BY "password" command, TDE checks to see if a
wallet exists in the default or specified location. If no wallet exists, then a wallet is
created automatically.

In addition to the SQL command, you can also use Oracle Wallet Manager to create
wallets. Oracle Wallet Manager is a full-featured tool that allows you to create wallets
and to view and modify their content.

You can also use the orapki command like utility to create wallets.

Backup and Recovery of Master Encryption Keys
This section contains the following topics:

■ Backup and Recovery of Oracle Wallet

■ Backup and Recovery of PKI Key Pair

Backup and Recovery of Oracle Wallet
You cannot access any encrypted data without the master encryption key. As the
master encryption key is stored in the Oracle wallet, the wallet should be periodically
backed up in a secure location. You must back up a copy of the wallet whenever a new
master encryption key is set.

The Oracle wallet should not be backed up with the encrypted data. The wallet should
be backed up separately. This is especially true when using the auto login wallet,
which does not require a password to open. In case the backup tape gets lost, a
malicious user should not be able to get both the encrypted data and the wallet.

Recovery Manager (RMAN) does not back up the wallet as part of the database
backup. When using a media manager like Oracle Secure Backup (OSB) with RMAN,
OSB automatically excludes auto-open wallets (the cwallet.sso files). However,
encryption wallets (the ewallet.p12 files) are not excluded automatically. It is a
good practice to add the following exclude dataset statement to your OSB
configuration:

exclude name *.p12

This instructs OSB to exclude the encryption wallet from the backup set.

If you lose the wallet that stores the master encryption key, you can restore access to
encrypted data by copying the backed-up version of the wallet to the appropriate
location. If the restored wallet was archived after the last time that the master
encryption key was reset, then no additional action needs to be taken.

If the restored wallet does not contain the most recent master encryption key, then you
can recover old data up to the point when the master encryption key was reset by
rolling back the state of the database to that point in time. All modifications to
encrypted columns after the master encryption key was reset are lost.

See Also:

■ Chapter 9, "Using Oracle Wallet Manager" for more information
about Oracle Wallet Manager

■ "Creating, Viewing, and Modifying Wallets with orapki"

Managing Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-27

Backup and Recovery of PKI Key Pair
TDE column encryption supports the use of PKI asymmetric key pairs as master
encryption keys. This enables it to leverage existing key backup, escrow, and recovery
facilities from leading certificate authority vendors.

In current key escrow or recovery systems, the certificate authority with key recovery
capabilities typically stores a version of the private key, or a piece of information that
helps recover the private key. If the private key is lost, the user can recover the original
key and certificate by contacting the certificate authority and initiating a key recovery
process.

Typically, the key recovery process is automated and requires the user to present
certain authenticating credentials to the certificate authority. TDE puts no restrictions
on the key recovery process other than that the recovered key and its associated
certificate be a PKCS#12 file that can be imported into an Oracle wallet. This
requirement is consistent with the key recovery mechanisms of leading certificate
authorities.

After obtaining the PKCS#12 file with the original certificate and private key, you need
to create a new empty wallet in the same location as the previous wallet. To do this,
you can use Oracle Wallet Manager. You can then import the PKCS#12 file into the
wallet by using the same utility. You should choose a strong password to protect the
wallet.

After the wallet has been created and the correct certificates imported, log onto the
database and execute the following command at the SQL prompt to complete the
recovery process:

SQL> ALTER SYSTEM SET ENCRYPTION KEY "certificate_id" IDENTIFIED BY
"wallet_password"

To retrieve the certificate_id of the certificate in the wallet, query the V$WALLET
fixed view after the wallet has been opened.

Export and Import of Tables with Encrypted Columns
The following points are important when exporting tables containing encrypted
columns:

■ Sensitive data should remain unintelligible during transport

■ Authorized users should be able to decrypt the data after it is imported at the
destination

You can use the Oracle Data Pump utility to export and import tables containing
encrypted columns. Oracle Data Pump makes use of the ENCRYPTION parameter to
enable encryption of data in dump file sets. The ENCRYPTION parameter allows the
following values:

■ ENCRYPTED_COLUMNS_ONLY: Encrypted columns are written to the dump file set
in encrypted format

■ DATA_ONLY: All data is written to the dump file set in encrypted format

■ METADATA_ONLY: All metadata is written to the dump file set in encrypted format

■ ALL: All data and metadata is written to the dump file set in encrypted format

■ NONE: Encryption is not used for dump file sets

The following steps discuss exporting and importing tables with encrypted columns
using ENCRYPTION=ENCRYPTED_COLUMNS_ONLY:

Managing Transparent Data Encryption

3-28 Oracle Database Advanced Security Administrator's Guide

1. You should ensure that the encryption wallet is open, before attempting to export
tables containing encrypted columns. This is because the encrypted columns need
to be decrypted using the table keys, which in turn requires access to the master
encryption key. The columns are reencrypted using a password, before they are
exported.

2. Use the ENCRYPTION_PASSWORD parameter to specify a password that is used to
encrypt column data in the export dump file set. The following example exports
the employee_data table:

expdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PASSWORD=PWD2encrypt

Password: password_for_hr

3. When importing data into the target database, you need to specify the same
password. The password is used to decrypt the data. Data is reencrypted with the
new table keys generated in the target database. The target database must have the
wallet open to access the master encryption key. The following example imports
the employee_data table:

impdp hr TABLES=employee_data DIRECTORY=dpump_dir DUMPFILE=dpcd2be1.dmp
ENCRYPTION_PASSWORD=PWD2encrypt

Password: password_for_hr

Oracle Data Pump functionality has been enhanced in Oracle Database 11g Release 2
(11.2). You can encrypt entire dump sets, as opposed to encrypting just transparent
data encryption columns. The ENCRYPTION_MODE parameter enables you to specify
the encryption mode.

ENCRYPTION_MODE=DUAL encrypts the dump set using the master key stored in the
wallet and the password provided. The following example uses dual encryption mode:

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=PWD2encrypt
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=dual

Password: password_for_hr

While importing, you can use either the password or the wallet master key to decrypt
the data. If the password is not supplied, then the master key in the wallet is used to
decrypt the data. The wallet must be present, and open, at the target database. The
open wallet is also required to reencrypt column encryption data at the target
database.

You can use ENCRYPTION_MODE=TRANSPARENT to transparently encrypt the dump
file set with the master encryption key stored in the wallet. A password is not required
in this case. The wallet must be present, and open, at the target database, for successful
decryption during import. The open wallet is also required to reencrypt column
encryption data at the target database.

See Also:

■ "Overview of Data Pump", "Data Pump Export", and "Data Pump
Import" in the Oracle Database Utilities Guide for details on using
Oracle Data Pump and the associated encryption parameters.

■ "Creating an Encrypted Column in an External Table" on
page 3-12

Managing Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-29

Performance and Storage Overheads
The overhead associated with Transparent Data Encryption (TDE) can be categorized
into the following:

■ Performance Overheads

■ Storage Overheads

Performance Overheads
TDE tablespace encryption has small associated overheads. While the actual
performance impact on applications can vary, it is roughly estimated to be in between
5% and 8%.

TDE column encryption affects performance only when data is retrieved from or
inserted into an encrypted column. No reduction in performance occurs for operations
involving unencrypted columns, even if these columns are in a table containing
encrypted columns.

Accessing data in encrypted columns involves small overheads. The overhead
associated with encrypting or decrypting a common attribute, such as credit card
number, is estimated to be around 5%. This means that a SELECT operation (involves
decryption) or an INSERT operation (involves encryption) would take roughly 5%
more time than what it takes with clear text data.

The total performance overhead depends on the number of encrypted columns and
their frequency of access. The columns most appropriate for encryption are those
containing the most sensitive data.

Enabling encryption on an existing table results in a full table update like any other
ALTER TABLE operation that modifies table characteristics. Administrators should
keep in mind the potential performance and redo log impact on the database server
before enabling encryption on a large existing table.

A table can temporarily become inaccessible for write operations while encryption is
being enabled, table keys are being rekeyed, or the encryption algorithm is being
changed. You can use online table redefinition to ensure that the table is available for
write operations during such procedures.

If TDE column encryption is being enabled on a very large table, then the redo log size
might need to be increased to accommodate the operation.

It has also been observed that encrypting an indexed column takes more time than
encrypting a column without indexes. If you need to encrypt a column that has an
index built on it, you can try dropping the index, encrypting the column with NO
SALT, and then re-creating the index.

If you index an encrypted column, then the index is created on the encrypted values.
When you query for a value in the encrypted column, Oracle transparently encrypts
the value used in the SQL query. It then performs an index lookup using the encrypted
value.

See Also: "Using the NOMAC Parameter to Save Disk Space and
Improve Performance" on page 3-11

See Also: "Redefining Tables Online" in Oracle Database
Administrator's Guide

Managing Transparent Data Encryption

3-30 Oracle Database Advanced Security Administrator's Guide

Storage Overheads
TDE tablespace encryption has no storage overheads. However, TDE column
encryption has some associated storage overheads. Encrypted column data needs
more storage space than clear text data. In addition, TDE pads out encrypted values to
multiples of 16 bytes. This means that if a credit card number requires 9 bytes for
storage, then an encrypted credit card value will require an additional 7 bytes.

Each encrypted value is also associated with a 20-byte integrity check. This is not
applicable if you have encrypted columns using the NOMAC parameter. Also, if data
has been encrypted with salt, then each encrypted value requires an additional 16
bytes of storage.

The maximum storage overhead for each encrypted value is 52 bytes.

Security Considerations
Security considerations for Transparent Data Encryption (TDE) operate within the
broader arena of total system security. As a security administrator, you must identify
the levels of risk to be addressed and the degrees of sensitivity of data maintained by
the site. Costs and benefits must be evaluated for the alternative methods of achieving
acceptable protections. In many cases, it makes sense to have separate security
administrators, a separate wallet for TDE, and protected backup procedures for
encrypted data. Having a separate wallet for TDE permits auto-login for other Oracle
components but preserves password protection for the TDE wallet.

Additional security considerations apply to normal database and network operations
when using TDE. Encrypted column data stays encrypted in the data files, undo logs,
redo logs, and the buffer cache of the system global area (SGA). However, data is
decrypted during expression evaluation, making it possible for decrypted data to
appear in the swap file on the disk. Privileged operating system users can potentially
view this data.

Column values encrypted using TDE are stored in the data files in encrypted form.
However, these data files may still contain some clear-text fragments, called ghost
copies, left over by past data operations on the table. This is similar to finding data on
the disk after a file has been deleted by the operating system.

Old clear-text fragments may be present for some time until the database overwrites
the blocks containing such values. If privileged operating system users bypass the
access controls of the database, they might be able to directly access these values in the
data file holding the tablespace. You can use the following procedure to minimize this
risk:

1. Create a new tablespace in a new data file. You can use the CREATE TABLESPACE
statement.

2. Move the table containing encrypted columns to the new tablespace. You can use
the ALTER TABLE.....MOVE statement. Repeat this step for all objects in the
original tablespace.

Note: If you need to perform range scans over indexed, encrypted,
columns, then you should use TDE tablespace encryption in place of
TDE column encryption.

See Also: "Using the NOMAC Parameter to Save Disk Space and
Improve Performance" on page 3-11

Managing Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-31

3. Drop the original tablespace. You can use the DROP TABLESPACE tablespace
INCLUDING CONTENTS KEEP DATAFILES statement. Oracle recommends that
you securely delete data files using platform specific utilities.

4. Use platform and file system specific utilities to securely delete the old data file.
Examples of such utilities include shred (on Linux) and sdelete (on Windows).

Using Transparent Data Encryption in a Multi-Database Environment
If there are multiple Oracle databases installed on the same server (for example,
databases sharing the same Oracle binary but using different data files), then each
database must access its own Transparent Data Encryption wallet. Wallets are not
designed to be shared between databases. By design, there must be one wallet per
database. You cannot use the same wallet for more than one database.

To configure the sqlnet.ora file for a multi-database environment, use one of the
following options:

1. If the databases share the same Oracle home, then keep the sqlnet.ora file in
the default location, which is in the ORACLE_HOME/network/admin directory.

In this case, it is ideal to use the default location. Ensure that the sqlnet.ora file
has no WALLET_LOCATION or ENCRYPTION_WALLET_LOCATION entries.
Transparent Data Encryption accesses the wallet from the default sqlnet.ora
location if these two entries are not in the sqlnet.ora file.

2. If Option 1 is not feasible for your site, then you can specify the wallet location
based on an environment variable setting, such as ORACLE_SID. For example:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/oracle/wallet/$ORACLE_SID)

3. If Options 1 and 2 are not feasible, then use separate sqlnet.ora files, one for
each database. Ensure that you have correctly set the TNS_ADMIN environment
variable to point to the correct database configuration. See SQL*Plus User's Guide
and Reference for more information and examples of setting the TNS_ADMIN
variable.

Replication in Distributed Environments
Oracle Data Guard supports Transparent Data Encryption (TDE). If the primary
database uses TDE, then each standby database in a Data Guard configuration must
have a copy of the encryption wallet from the primary database. If you reset the
master encryption key in the primary database, then the wallet containing the master
encryption key needs to be copied to each standby database.

Encrypted data in log files remains encrypted when data is transferred to the standby
database. Encrypted data also stays encrypted during transit.

Caution: Using a wallet from another database can cause partial or
complete data loss.

See Also: Appendix C in the Oracle Data Guard Concepts and
Administration Guide for more information about the use of TDE with
logical standby databases

Managing Transparent Data Encryption

3-32 Oracle Database Advanced Security Administrator's Guide

TDE works with SQL*Loader direct path loads. The data loaded into encrypted
columns is transparently encrypted during the direct path load.

Materialized views work with TDE tablespace encryption. You can create both
materialized views and materialized view logs in encrypted tablespaces.

Materialized views also work with TDE column encryption. However, materialized
view logs cannot contain encrypted columns.

Compression and Data Deduplication of Encrypted Data
After you have encrypted data, you cannot compress it. Any compression that you
need to perform must take place before you encrypt the data. In Transparent Data
Encryption column encryption, because much less data is encrypted, the
post-encryption compression functions are not affected as much as with Transparent
Data Encryption tablespace encryption.

You can use the following solutions to handle compression and data deduplication of
encrypted data:

■ To compress database tables before the encryption takes place, use the Advanced
Compression Option of Oracle Recovery Manager.

■ If you have many copies of very similar or even identical data stored on a single
disk, then consider using storage-based data deduplication. To use data
deduplication, use the Oracle SecureFiles LOB deduplication functionality on
individual tables.

Transparent Data Encryption with OCI
Row shipping cannot be used, because the key to make the row usable is not available
at the receipt-point.

Transparent Data Encryption in a Multi-Database Environment
If there are multiple Oracle databases installed on the same server (for example,
databases sharing the same Oracle binary but using different data files), then each
database must access its own Transparent Data Encryption keystore. Wallets are not
designed to be shared between databases. By design, there must be one wallet per
database. You cannot use the same wallet for more than one database.

To configure the sqlnet.ora file for a multi-database environment, use one of the
following options:

1. If the databases share the same Oracle home, then keep the sqlnet.ora file in
the default location, which is in the ORACLE_HOME/network/admin directory.

In this case, it is ideal to use the default location. Ensure that the sqlnet.ora file
has no WALLET_LOCATION or ENCRYPTION_WALLET_LOCATION entries.

See Also: "Materialized View Concepts and Architecture" in the
Oracle Database Advanced Replication Guide for more information on
materialized views

See Also:

■ Oracle Database Backup and Recovery User's Guide for more
information about the Advanced Compression Option

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

Managing Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-33

Transparent Data Encryption accesses the wallet from the default sqlnet.ora
location if these two entries are not in the sqlnet.ora file.

2. If Option 1 is not feasible for your site, then you can specify the wallet location
based on an environment variable setting, such as ORACLE_SID. For example:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/oracle/wallet/$ORACLE_SID)

3. If Options 1 and 2 are not feasible, then use separate sqlnet.ora files, one for
each database. Ensure that the TNS_ADMIN environment variable is correctly set
to point to the correct database configuration. See SQL*Plus User's Guide and
Reference for more information and examples of setting the TNS_ADMIN variable.

Transparent Data Encryption Data Dictionary Views
The following data dictionary views maintain information about encryption details,
tablespaces, and wallet details:

■ ALL_ENCRYPTED_COLUMNS

The ALL_ENCRYPTED_COLUMNS view displays encryption information about
encrypted columns in the tables accessible to the current user. Table 3–2 lists the
information included in this view:

■ DBA_ENCRYPTED_COLUMNS

Caution: Using a keystore from another database can cause partial or
complete data loss.

Table 3–2 Description of the ALL_ENCRYPTED_COLUMNS Data Dictionary View

Column Datatype NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the table

TABLE_NAME VARCHAR2(30) NOT NULL Name of the table

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column

ENCRYPTION_ALG VARCHAR2(29) Encryption algorithm used to protect
secrecy of data in this table:

■ 3 Key Triple DES 168 bits
key

■ AES 128 bits key

■ AES 192 bits key

■ AES 256 bits key

SALT VARCHAR2(3) Indicates whether the column is
encrypted with SALT (YES) or not (NO)

INTEGRITY_ALG VARCHAR2(12) Integrity algorithm used for the table:

■ SHA-1

■ NOMAC

Managing Transparent Data Encryption

3-34 Oracle Database Advanced Security Administrator's Guide

The DBA_ENCRYPTED_COLUMNS view displays encryption information for all
encrypted columns in the database. The view details are the same as the
ALL_ENCRYPTED_COLUMNS view.

■ USER_ENCRYPTED_COLUMNS

The USER_ENCRYPTED_COLUMNS view displays encryption information for
encrypted table columns in the user’s schema. The view details are the same as the
ALL_ENCRYPTED_COLUMNS view, except for the OWNER column. The OWNER
column is not included, as data from only tables owned by the user are displayed.

■ V$ENCRYPTED_TABLESPACES

The V$ENCRYPTED_TABLESPACES view displays information about the
tablespaces that are encrypted. Table 3–3 lists the information included in this
view:

■ V$WALLET

The V$WALLET view displays metadata information for a PKI certificate, which
may be used as a master key for TDE. Table 3–4 summarizes the information
included in this view.

Table 3–3 Description of the V$ENCRYPTED_TABLESPACES View

Column Datatype Description

TS# NUMBER Tablespace number

ENCRYPTIONALG VARCHAR2(7) Encryption algorithm:

■ NONE

■ 3DES168

■ AES128

■ AES192

■ AES256

ENCRYPTEDTS VARCHAR2(3) Indicates whether the tablespace is encrypted (YES) or
not (NO)

Table 3–4 Description of the V$WALLET View

Column Datatype Description

CERT_ID VARCHAR2(52) A unique certificate identifier value used to
specify a particular PKI certificate for use as the
master key

DN VARCHAR2(255) Distinguished name of a particular PKI
certificate

SERIAL_NUM VARCHAR2(40) Unique serial number assigned to a certificate
by the issuer or signer

ISSUER VARCHAR2(255) Distinguished name of the Certificate Authority
or issuer that issued and signed the certificate

KEYSIZE NUMBER Size of the PKI key associated with the
certificate

Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption

Securing Stored Data Using Transparent Data Encryption 3-35

■ V$ENCRYPTION_WALLET

V$ENCRYPTION_WALLET displays information on the status of the wallet and the
wallet location for TDE. Table 3–5 summarizes the information included in this
view.

Example: Getting Started with TDE Column Encryption and TDE
Tablespace Encryption

This section uses a tutorial approach to help you get started with TDE column
encryption and TDE tablespace encryption. We illustrate the following tasks using
sample scenarios:

■ Prepare the Database for Transparent Data Encryption

■ Create a Table with an Encrypted Column

■ Create an Index on an Encrypted Column

■ Alter a Table to Encrypt an Existing Column

■ Create an Encrypted Tablespace

■ Create a Table in an Encrypted Tablespace

STATUS VARCHAR2(16) Current status of the certificate:

■ UNUSED

■ IN USE

■ USED

This column allows the user to identify whether
a certificate is currently in use or has already
been used for transparent database encryption.

Table 3–5 Description of the V$ENCRYPTION_WALLET View

Column Datatype Description

WRL_TYPE VARCHAR2(20) Type of the wallet resource locator (for example,
FILE)

WRL_PARAMETER VARCHAR2(4000) Parameter of the wallet resource locator (for
example, absolute filename if WRL_TYPE =
FILE)

STATUS VARCHAR2(9) Status of the wallet:

■ OPEN

■ CLOSED

■ UNDEFINED

■ OPEN_NO_MASTER_KEY

See Also: Oracle Database Reference for a full description of these data
dictionary views.

Table 3–4 (Cont.) Description of the V$WALLET View

Column Datatype Description

Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption

3-36 Oracle Database Advanced Security Administrator's Guide

Prepare the Database for Transparent Data Encryption
In order to start using Transparent Data Encryption (TDE), let us first prepare the
database by specifying an Oracle wallet location and setting the master encryption key.
The following steps prepare the database to use TDE:

1. Specify an Oracle Wallet Location in the sqlnet.ora File

2. Create the Master Encryption Key

3. Open the Oracle Wallet

Specify an Oracle Wallet Location in the sqlnet.ora File
Open the sqlnet.ora file located in $ORACLE_HOME/network/admin. Enter the
following line at the end of the file:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=FILE)(METHOD_DATA=
 (DIRECTORY=/app/wallet)))

Save the changes and close the file.

Create the Master Encryption Key
Next, we need to create the master encryption key, which is used to encrypt the table
keys. Enter the following commands to create the master encryption key:

SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "Easy2rem";

The preceding command achieves the following:

■ If no encrypted wallet is present in the directory specified, an encrypted wallet is
created (ewallet.p12), the wallet is opened, and the master encryption key for
TDE is created/re-created.

■ If an encrypted wallet is present in the directory specified, the wallet is opened,
and the master encryption key for TDE is created/re-created.

Open the Oracle Wallet
Every time the database is shut down, the Oracle wallet is closed. You can also
explicitly close the wallet.

You need to make sure that the Oracle wallet is open before you can perform any
encryption or decryption operation. Use the following command to open the wallet
containing the master encryption key:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "Easy2rem";

Note: You can choose any directory for the encrypted wallet, but the
path should not point to the standard obfuscated wallet
(cwallet.sso) created during the database installation.

Note:

■ The master encryption key should only be created once, unless
you want to reencrypt your data with a new encryption key.

■ Only users with the ALTER SYSTEM privilege can create a master
encryption key or open the wallet.

Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption

Securing Stored Data Using Transparent Data Encryption 3-37

Create a Table with an Encrypted Column
We can now create tables with encrypted columns. Let us create a table called
cust_payment_info. This table contains a column called credit_card_number.
The credit_card_number column contains sensitive data, which we would like to
encrypt. Use the following command to create the table:

CREATE TABLE cust_payment_info
 (first_name VARCHAR2(11),
 last_name VARCHAR2(10),
 order_number NUMBER(5),
 credit_card_number VARCHAR2(16) ENCRYPT NO SALT,
 active_card VARCHAR2(3));

The table is created in the default tablespace of the user that issues this command. The
credit_card_number column is encrypted without SALT. All data entered for the
credit_card_number column would be encrypted on disk. Any user with access to
the credit_card_number data can view the decrypted data. A database user or
application need not be aware if the contents of a particular column are encrypted on
the disk.

You can now enter data into the table. The following example adds some sample data
to the cust_payment_info table:

INSERT INTO cust_payment_info VALUES
 ('Jon', 'Oldfield', 10001, '5446959708812985','YES');
INSERT INTO cust_payment_info VALUES
 ('Chris', 'White', 10002, '5122358046082560','YES');
INSERT INTO cust_payment_info VALUES
 ('Alan', 'Squire', 10003, '5595968943757920','YES');
INSERT INTO cust_payment_info VALUES
 ('Mike', 'Anderson', 10004, '4929889576357400','YES');
INSERT INTO cust_payment_info VALUES
 ('Annie', 'Schmidt', 10005, '4556988708236902','YES');
INSERT INTO cust_payment_info VALUES
 ('Elliott', 'Meyer', 10006, '374366599711820','YES');
INSERT INTO cust_payment_info VALUES
 ('Celine', 'Smith', 10007, '4716898533036','YES');
INSERT INTO cust_payment_info VALUES
 ('Steve', 'Haslam', 10008, '340975900376858','YES');
INSERT INTO cust_payment_info VALUES
 ('Albert', 'Einstein', 10009, '310654305412389','YES');

All data entered into the credit_card_number column is stored on the disk in
encrypted form.

Create an Index on an Encrypted Column
You can create an index on an encrypted column if it has been encrypted without salt.
Let us create an index on the credit_card_number column. The following
command creates an index on the credit_card_number column:

Note: The password used with the preceding command is the same
that you used to create the master encryption key. This becomes the
password to open the wallet and make the master encryption key
accessible.

Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption

3-38 Oracle Database Advanced Security Administrator's Guide

CREATE INDEX cust_payment_info_idx ON cust_payment_info (credit_card_number);

Alter a Table to Encrypt an Existing Column
You can use the ALTER TABLE command to alter an existing table. Let us alter a table
called employees with no encrypted columns. The following command describes the
employees table:

SQL> DESC employees
 Name Null? Type
 --- -------- ----------------------------
 FIRSTNAME VARCHAR2(11)
 LASTNAME VARCHAR2(10)
 EMP_SSN VARCHAR2(9)
 DEPT VARCHAR2(20)

The following command encrypts the emp_ssn column in the employees table:

SQL> ALTER TABLE employees MODIFY (emp_ssn ENCRYPT);

The following command describes the altered employees table:

SQL> DESC employees
 Name Null? Type
 --- -------- ----------------------------
 FIRSTNAME VARCHAR2(11)
 LASTNAME VARCHAR2(10)
 EMP_SSN VARCHAR2(9) ENCRYPT
 DEPT VARCHAR2(20)

All existing data in the emp_ssn column will now be encrypted on the disk. Data
would be transparently decrypted for users, who otherwise have access to the data.

Create an Encrypted Tablespace
TDE tablespace encryption enables you to encrypt an entire tablespace. All data stored
in the tablespace is encrypted by default. Thus, if you create any table in an encrypted
tablespace, it is encrypted by default. You do not need to perform a granular analysis
of each table column to determine the columns that need encryption.

Let us create an encrypted tablespace to store encrypted tables. The following
command creates an encrypted tablespace called securespace:

SQL> CREATE TABLESPACE securespace
 2 DATAFILE '/home/oracle/oracle3/product/11.1.0/db_1/secure01.dbf'
 3 SIZE 150M
 4 ENCRYPTION
 5 DEFAULT STORAGE(ENCRYPT);
Tablespace created.

Create a Table in an Encrypted Tablespace
If we create a table in an encrypted tablespace, then all data in the table is stored in
encrypted form on the disk. The following command creates a table called,
customer_info_payment in an encrypted tablespace called, securespace.

SQL> CREATE TABLE customer_payment_info
 2 (first_name VARCHAR2(11),
 3 last_name VARCHAR2(10),

Troubleshooting Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-39

 4 order_number NUMBER(5),
 5 credit_card_number VARCHAR2(16),
 6 active_card VARCHAR2(3))TABLESPACE securespace;
Table created.

Troubleshooting Transparent Data Encryption
This section lists common error messages that you may encounter while configuring
and using Transparent Data Encryption (TDE). It also lists the common causes of these
error messages and possible solutions for them.

ORA-28330: encryption is not allowed for this data type
Cause: Data type was not supported for column encryption.

Action: None

ORA-28331: encrypted column size too long for its data type
Cause: column was encrypted and for VARCHAR2, the length specified was >
3932; for CHAR, the length specified was > 1932; for NVARCHAR2, the length
specified was > 1966; for NCHAR, the length specified was > 966;

Action: Reduce the column size.

ORA-28332: cannot have more than one password for the encryption key
Cause: More than one password was specified in the user command.

Action: None

ORA-28333: column is not encrypted
Cause: An attempt was made to rekey or decrypt an unencrypted column.

Action: None

ORA-28334: column is already encrypted
Cause: An attempt was made to encrypt an encrypted column.

Action: None

ORA-28335: referenced or referencing FK constraint column cannot be encrypted
Cause: encrypted columns were involved in the referential constraint

Action: None

ORA-28336: cannot encrypt SYS owned objects
Cause: An attempt was made to encrypt columns in a table owned by SYS.

Action: None

ORA-28337: the specified index may not be defined on an encrypted column
Cause: Index column was either a functional, domain, or join index.

Action: None

ORA-28338: cannot encrypt indexed column(s) with salt
Cause: An attempt was made to encrypt index column with salt.

Action: Alter the table and specify column encrypting without salt.

ORA-28339: missing or invalid encryption algorithm
Cause: Encryption algorithm was missing or invalid in the user command.

Troubleshooting Transparent Data Encryption

3-40 Oracle Database Advanced Security Administrator's Guide

Action: Must specify a valid algorithm.

ORA-28340: a different encryption algorithm has been chosen for the table
Cause: Existing encrypted columns were associated with a different algorithm.

Action: No need to specify an algorithm, or specify the same one for the existing
encrypted columns.

ORA-28341: cannot encrypt constraint column(s) with salt
Cause: An attempt was made to encrypt constraint columns with salt.

Action: Encrypt the constraint columns without salt.

ORA-28342: integrity check fails on column key
Cause: Encryption metadata may have been improperly altered.

Action: None

ORA-28343: fails to encrypt data
Cause: data or encryption metadata may have been improperly altered or the
security module may not have been properly setup

Action: None

ORA-28344: fails to decrypt data
Cause: data or encryption metadata may have been improperly altered or the
security module may not have been properly setup

Action: None

ORA-28345: cannot downgrade because there exists encrypted column
Cause: An attempt was made to downgrade when there was an encrypted
column in the system.

Action: Decrypt these columns before attempting to downgrade.

ORA-28346: an encrypted column cannot serve as a partitioning column
Cause: An attempt was made to encrypt a partitioning key column or create
partitioning index with encrypted columns.

Action: The column must be decrypted.

ORA-28347: encryption properties mismatch
Cause: An attempt was made to issue an ALTER TABLE EXCHANGE
PARTITION | SUBPARTITION command, but encryption properties were
mismatched.

Action: Make sure encryption algorithms and columns keys are identical. The
corresponding columns must be encrypted on both tables with the same salt and
non-salt flavor.

ORA-28348: index defined on the specified column cannot be encrypted
Cause: An attempt was made to encrypt a column which is in a functional index,
domain index, or join index.

Action: drop the index

ORA-28349: cannot encrypt the specified column recorded in the materialized view
log
Cause: An attempt was made to encrypt a column which is already recorded in
the materialized view log.

Troubleshooting Transparent Data Encryption

Securing Stored Data Using Transparent Data Encryption 3-41

Action: drop the materialized view log

ORA-28350: cannot encrypt the specified column recorded in CDC synchronized
change table
Cause: An attempt was made to encrypt a column which is already recorded in
CDC synchronized change table.

Action: drop the synchronized change table

ORA-28351: cannot encrypt the column of a cluster key
Cause: An attempt was made to encrypt a column of the cluster key. A column of
the cluster key in a clustered table cannot be encrypted.

Action: None

ORA-28353: failed to open wallet
Cause: The database was unable to open the security module wallet due to an
incorrect wallet path or password It is also possible that a wallet has not been
created.

Action: Execute the command again using the correct wallet password or
verifying a wallet exists in the specified directory. If necessary, create a new wallet
and initialize it.

ORA-28354: wallet already open
Cause: The security module wallet has already been opened.

Action: None

ORA-28356: invalid open wallet syntax
Cause: The command to open the wallet contained improper spelling or syntax.

Action: If attempting to open the wallet, verify the spelling and syntax and
execute the command again.

ORA-28357: password required to open the wallet
Cause: A password was not provided when executing the open wallet command.

Action: Retry the command with a valid password.

ORA-28358: improper set key syntax
Cause: The command to set the master key contained improper spelling or
syntax.

Action: If attempting to set the master key for Transparent Database Encryption,
verify the spelling and syntax and execute the command again.

ORA-28359: invalid certificate identifier
Cause: The certificate specified did not exist in the wallet.

Action: Query the V$WALLET fixed view to find the proper certificate identifier
for certificate to be used.

ORA-28361: master key not yet set
Cause: The master key for the instance was not set.

Action: Execute the ALTER SYSTEM SET KEY command to set a master key for
the database instance.

ORA-28362: master key not found

Troubleshooting Transparent Data Encryption

3-42 Oracle Database Advanced Security Administrator's Guide

Cause: The required master key required could not be located. This may be
caused by the use of an invalid or incorrect wallet.

Action: Check wallet location parameters to see if they specify the correct wallet.
Also, verify that an SSO wallet is not being used when an encrypted wallet is
intended.

ORA-28363: buffer provided not large enough for output
Cause: A provided output buffer is too small to contain the output.

Action: Check the size of the output buffer to make sure it is initialized to the
proper size.

ORA-28364: invalid wallet operation
Cause: The command to operate the wallet contained improper spelling or syntax.

Action: Verify the spelling and syntax and execute the command again.

ORA-28365: wallet is not open
Cause: The security module wallet has not been opened.

Action: Open the wallet.

ORA-28366: invalid database encryption operation
Cause: The command for database encryption contained improper spelling or
syntax.

Action: Verify the spelling and syntax and execute the command again.

ORA-28367: wallet does not exist
Cause: The Oracle wallet has not been created or the wallet location parameters in
sqlnet.ora specifies an invalid wallet path.

Action: Verify that the WALLET_LOCATION or the
ENCRYPTION_WALLET_LOCATION parameter is correct and that a valid wallet
exists in the path specified.

ORA-28368: cannot auto-create wallet
Cause: The database failed to auto create an Oracle wallet. The Oracle process
may not have proper file permissions or a wallet may already exist.

Action: Confirm that proper directory permissions are granted to the Oracle user
and that neither an encrypted or obfuscated wallet exists in the specified wallet
location and try again.

ORA-28369: cannot add files to encryption-ready tablespace when offline
Cause: You attempted to add files to an encryption-ready tablespace when all the
files in the tablespace were offline.

Action: Bring the tablespace online and try again

ORA-28370: ENCRYPT storage option not allowed
Cause: You attempted to specify the ENCRYPT storage option. This option may
only be specified during CREATE TABLESPACE.

Action: Remove this option and retry the statement.

ORA-28371: ENCRYPTION clause and/or ENCRYPT storage option not allowed
Cause: You attempted to specify the ENCRYPTION clause or ENCRYPT storage
option for creating TEMP or UNDO tablespaces.

Action: Remove these options and retry the statement.

Transparent Data Encryption Reference Information

Securing Stored Data Using Transparent Data Encryption 3-43

ORA-28372: missing ENCRYPT storage option for encrypted tablespace
Cause: You attempted to specify ENCRYPTION property for CREATE
TABLESPACE without specifying ENCRYPT storage option to encrypt the
tablespace.

Action: Add ENCRYPT storage option and retry the statement.

ORA-28373: missing ENCRYPTION clause for encrypted tablespace
Cause: You attempted to specify storage option ENCRYPT in CREATE
TABLESPACE without specifying ENCRYPTION property to encrypt the
tablespace.

Action: Add ENCRYPTION clause and retry the statement.

ORA-28374: typed master key not found in wallet
Cause: You attempted to access encrypted tablespace or redo logs with a typed
master key not existing in the wallet.

Action: Copy the correct Oracle Wallet from the instance where the tablespace
was created.

ORA-28375: cannot perform cross-endianism conversion on encrypted tablespace
Cause: You attempted to perform cross-endianism conversion on encrypted
tablespace.

Action: Cross-endianism conversion on encrypted tablespace is not supported.

ORA-28376: cannot find PKCS11 library
Cause: The HSM vendor's library cannot be found.

Action: Place the HSM vendor's library in the following directory structure: For
Unix like system:
/opt/oracle/extapi/[32,64]/hsm/{VENDOR}/{VERSION}/lib<apiname>.<ext>
For Windows systems:
%SYSTEM_DRIVE%\oracle\extapi\[32,64]\hsm\{VENDOR}\{VERSION}\lib<a
pin// ame>.<ext> [32, 64] - refers to 32bit or 64bit binary. {VENDOR} - The name
of the vendor supplying the library. {VERSION} - Version of the library, preferably
in num#.num#.num# for// mat.

ORA-28377: No need to migrate from wallet to HSM
Cause: There are either no encrypted columns or all column keys are already
encrypted with the HSM master key.

Action: No action required.

ORA-28378: Wallet not open after setting the Master Key
Cause: The Master Key has been set or reset. However, wallet could not be
reopened successfully.

Action: Reopen the wallet.

Transparent Data Encryption Reference Information
This section includes the following topics:

■ Supported Encryption and Integrity Algorithms

■ Quick Reference: Transparent Data Encryption SQL Commands

Transparent Data Encryption Reference Information

3-44 Oracle Database Advanced Security Administrator's Guide

Supported Encryption and Integrity Algorithms
By default, Transparent Data Encryption (TDE) uses the Advanced Encryption
Standard with a 192-bit length cipher key (AES192). In addition, salt is added by
default to cleartext before encryption unless specified otherwise. Note that salt cannot
be added to indexed columns that you want to encrypt. For indexed columns, choose
the NO SALT parameter for the SQL ENCRYPT clause.

You can change encryption algorithms and encryption keys on existing encrypted
columns by setting a different algorithm with the SQL ENCRYPT clause.

Table 3–6 lists the supported encryption algorithms.

For integrity protection, the SHA-1 hashing algorithm is used.

Quick Reference: Transparent Data Encryption SQL Commands
Table 3–7 provides a summary of the SQL commands you can use to implement and
manage transparent data encryption.

See Also:

■ Example 3–4 on page 3-11 for the correct syntax when choosing
the NO SALT parameter for the SQL ENCRYPT clause

■ "Changing the Encryption Key or Algorithm for Tables Containing
Encrypted Columns" on page 3-14 for syntax examples when
setting a different algorithm with the SQL ENCRYPT clause

Table 3–6 Supported Encryption Algorithms for Transparent Data Encryption

Algorithm Key Size Parameter Name

Triple DES (Data Encryption Standard) 168 bits 3DES168

AES (Advanced Encryption Standard) 128 bits AES128

AES 192 bits (default) AES192

AES 256 bits AES256

Table 3–7 Transparent Data Encryption SQL Commands Quick Reference

Task SQL Command

Add encrypted
column to existing
table

ALTER TABLE table_name ADD (column_name datatype ENCRYPT);

Create table and
encrypt column

CREATE TABLE table_name (column_name datatype ENCRYPT);

Encrypt unencrypted
existing column

ALTER TABLE table_name MODIFY (column_name ENCRYPT);

Master encryption key:
set or reset

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";

Master encryption key:
set or reset to use PKI
certificate

ALTER SYSTEM SET ENCRYPTION KEY "certificate_ID" IDENTIFIED BY "password";

Wallet: open to access
master encryption key

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";

Configuring Network Data Encryption and Integrity for Oracle Servers and Clients 4-1

4
Configuring Network Data Encryption and

Integrity for Oracle Servers and Clients

This chapter describes how to configure native Oracle Net Services data encryption
and integrity for Oracle Advanced Security. It contains the following topics:

■ Oracle Advanced Security Encryption

■ Oracle Advanced Security Data Integrity

■ Diffie-Hellman Based Key Negotiation

■ How To Configure Data Encryption and Integrity

Oracle Advanced Security Encryption
The purpose of a secure cryptosystem is to convert plaintext data into unintelligible
ciphertext based on a key, in such a way that it is very hard (computationally
infeasible) to convert ciphertext back into its corresponding plaintext without
knowledge of the correct key. In a symmetric cryptosystem, the same key is used both
for encryption and decryption of the same data. Oracle Advanced Security provides
the Advanced Encryption Standard (AES), DES, 3DES, and RC4 symmetric
cryptosystems for protecting the confidentiality of Oracle Net Services traffic.

This section describes data encryption algorithms available in the current release of
Oracle Advanced Security:

■ Advanced Encryption Standard

■ DES Algorithm Support

■ Triple-DES Support

■ RSA RC4 Algorithm for High Speed Encryption

Note: Prior to Release 8.1.7, Oracle Advanced Security provided
three editions: Domestic, Upgrade, and Export each with different
key lengths. This release now contains a complete complement of
the available encryption algorithms and key lengths, previously
only available in the Domestic edition. Users deploying prior
versions of the product can obtain the Domestic edition for a
specific product release.

Oracle Advanced Security Encryption

4-2 Oracle Database Advanced Security Administrator's Guide

Advanced Encryption Standard
Oracle Advanced Security supports the Federal Information Processing Standard
(FIPS) encryption algorithm, Advanced Encryption Standard (AES). AES can be used
by all U.S. government organizations and businesses to protect sensitive data over a
network. This encryption algorithm defines three standard key lengths, which are
128-bit, 192-bit, and 256-bit. All versions operate in outer Cipher Block Chaining
(CBC) mode.

DES Algorithm Support
Oracle Advanced Security supports the Data Encryption Standard (DES) algorithm.
DES has been a U.S. government standard for many years and is sometimes mandated
in the financial services industry. The DES algorithm uses a 56-bit key length. DES has
been largely replaced, as a standard, by AES.

Triple-DES Support
Oracle Advanced Security supports Triple-DES encryption (3DES), which encrypts
message data with three passes of the DES algorithm. 3DES provides a high degree of
message security, but with a performance penalty. The magnitude of the performance
penalty depends on the speed of the processor performing the encryption. 3DES
typically takes three times as long to encrypt a data block when compared to the
standard DES algorithm.

3DES is available in two-key and three-key versions, with effective key lengths of
112-bits and 168-bits, respectively. Both versions operate in outer Cipher Block
Chaining (CBC) mode.

DES40 Algorithm
The DES40 algorithm, available in every release of Oracle Advanced Security, Oracle
Advanced Networking Option, and Secure Network Services, is a variant of DES in
which the secret key is preprocessed to provide 40 effective key bits. It was designed to
provide DES-based encryption to customers outside the U.S. and Canada at a time
when the U.S. export laws were more restrictive. Now, in Oracle Advanced Security
11g Release 2 (11.2), DES40, DES, and 3DES are all available for export. DES40 is still
supported to provide backward-compatibility for international customers.

RSA RC4 Algorithm for High Speed Encryption
The RC4 algorithm, developed by RSA Data Security Inc., has become the
international standard for high-speed data encryption. RC4 is a variable key-length
stream cipher that operates at several times the speed of DES, making it possible to
encrypt large, bulk data transfers with minimal performance consequences.

Oracle Advanced Security 11g Release 2 (11.2) provides an RC4 implementation with
40-bit, 56-bit, 128-bit, and 256-bit key lengths. This provides backward-compatibility
and strong encryption, with no material performance compromise.

See Also:

■ "Configuring Encryption on the Client and the Server" on
page 4-7

■ Table 4–3, " Valid Encryption Algorithms" on page 4-8

Diffie-Hellman Based Key Negotiation

Configuring Network Data Encryption and Integrity for Oracle Servers and Clients 4-3

Oracle Advanced Security Data Integrity
Encryption of network data provides data privacy so that unauthorized parties are not
able to view plaintext data as it passes over the network. Oracle Advanced Security
also provides protection against two forms of active attack. Table 4–1 provides
information about these attacks.

Data Integrity Algorithms Supported
Oracle Advanced Security lets you select a keyed, sequenced implementation of the
Message Digest 5 (MD5) algorithm or the Secure Hash Algorithm (SHA-1) to protect
against both of these forms of attack. Both of these hash algorithms create a checksum
that changes if the data is altered in any way. This protection operates independently
from the encryption process so you can enable data integrity with or without enabling
encryption.

Diffie-Hellman Based Key Negotiation
Secure key distribution is difficult in a multiuser environment. Oracle Advanced
Security uses the well known Diffie-Hellman key negotiation algorithm to perform
secure key distribution for both encryption and data integrity.

When encryption is used to protect the security of encrypted data, keys must be
changed frequently to minimize the effects of a compromised key. Accordingly, the
Oracle Advanced Security key management function changes the session key with
every session.

Authentication Key Fold-in
The purpose of Authentication Key Fold-in is to defeat a possible third-party attack
(historically called the man-in-the-middle attack) on the Diffie-Hellman key negotiation.
It strengthens the session key significantly by combining a shared secret, known only
to the client and the server, with the original session key negotiated by Diffie-Hellman.

The client and the server begin communicating using the session key generated by
Diffie-Hellman. When the client authenticates to the server, they establish a shared
secret that is only known to both parties. Oracle Advanced Security combines the
shared secret and the Diffie-Hellman session key to generate a stronger session key
designed to defeat a man-in-the-middle attack.

Table 4–1 Two Forms of Attack

Type of Attack Explanation

Data modification attack An unauthorized party intercepting data in transit, altering it,
and retransmitting it is a data modification attack. For example,
intercepting a $100 bank deposit, changing the amount to
$10,000, and retransmitting the higher amount is a data
modification attack.

Replay attack Repetitively retransmitting an entire set of valid data is a replay
attack, such as intercepting a $100 bank withdrawal and
retransmitting it ten times, thereby receiving $1,000.

See Also:

■ "Configuring Integrity on the Client and the Server" on
page 4-8

■ Table 4–4, " Valid Integrity Algorithms" on page 4-10

How To Configure Data Encryption and Integrity

4-4 Oracle Database Advanced Security Administrator's Guide

How To Configure Data Encryption and Integrity
This section describes how to configure Oracle Advanced Security native Oracle Net
Services encryption and integrity and presumes the prior installation of Oracle Net
Services.

The network or security administrator sets up the encryption and integrity
configuration parameters. The profile on client and server systems using data
encryption and integrity (sqlnet.ora file) must contain some or all of the
parameters listed in this section, under the following topics:

■ About Activating Encryption and Integrity

■ About Negotiating Encryption and Integrity

■ Configuring Encryption and Integrity Parameters Using Oracle Net Manager

About Activating Encryption and Integrity
In any network connection, it is possible for both the client and server to support more
than one encryption algorithm and more than one integrity algorithm. When a
connection is made, the server selects which algorithm to use, if any, from those
algorithms specified in the sqlnet.ora files.

The server searches for a match between the algorithms available on both the client
and the server, and picks the first algorithm in its own list that also appears in the
client list. If one side of the connection does not specify an algorithm list, all the
algorithms installed on that side are acceptable. The connection fails with error
message ORA-12650 if either side specifies an algorithm that is not installed.

Encryption and integrity parameters are defined by modifying a sqlnet.ora file on
the clients and the servers on the network.

You can choose to configure any or all of the available Oracle Advanced Security
encryption algorithms (Table 4–3), and either or both of the available integrity
algorithms (Table 4–4). Only one encryption algorithm and one integrity algorithm are
used for each connect session.

Note: The authentication key fold-in function is an imbedded
feature of Oracle Advanced Security and requires no configuration
by the system or network administrator.

See Also: Chapter 8, "Configuring Secure Sockets Layer
Authentication", to configure the SSL feature for encryption,
integrity, and authentication

Note: Oracle Advanced Security selects the first encryption
algorithm and the first integrity algorithm enabled on the client and
the server. Oracle recommends that you select algorithms and key
lengths in the order in which you prefer negotiation, choosing the
strongest key length first.

See Also: Appendix A, "Data Encryption and Integrity
Parameters"

How To Configure Data Encryption and Integrity

Configuring Network Data Encryption and Integrity for Oracle Servers and Clients 4-5

About Negotiating Encryption and Integrity
To negotiate whether to turn on encryption or integrity, you can specify four possible
values for the Oracle Advanced Security encryption and integrity configuration
parameters. The four values are listed in the order of increasing security. The value
REJECTED provides the minimum amount of security between client and server
communications, and the value REQUIRED provides the maximum amount of network
security:

■ REJECTED

■ ACCEPTED

■ REQUESTED

■ REQUIRED

The default value for each of the parameters is ACCEPTED.

Oracle Database servers and clients are set to ACCEPT encrypted connections out of the
box. This means that you can enable the desired encryption and integrity settings for a
connection pair by configuring just one side of the connection, server-side or
client-side.

So, for example, if there are many Oracle clients connecting to an Oracle database, you
can configure the required encryption and integrity settings for all these connections
by making the appropriate sqlnet.ora changes at the server end. You do not need to
implement configuration changes for each client separately.

REJECTED
Select this value if you do not elect to enable the security service, even if required by
the other side.

In this scenario, this side of the connection specifies that the security service is not
permitted. If the other side is set to REQUIRED, the connection terminates with error
message ORA-12650. If the other side is set to REQUESTED, ACCEPTED, or
REJECTED, the connection continues without error and without the security service
enabled.

ACCEPTED
Select this value to enable the security service if required or requested by the other
side.

In this scenario, this side of the connection does not require the security service, but it
is enabled if the other side is set to REQUIRED or REQUESTED. If the other side is set
to REQUIRED or REQUESTED, and an encryption or integrity algorithm match is
found, the connection continues without error and with the security service enabled. If
the other side is set to REQUIRED and no algorithm match is found, the connection
terminates with error message ORA-12650.

If the other side is set to REQUESTED and no algorithm match is found, or if the other
side is set to ACCEPTED or REJECTED, the connection continues without error and
without the security service enabled.

REQUESTED
Select this value to enable the security service if the other side permits it.

In this scenario, this side of the connection specifies that the security service is desired
but not required. The security service is enabled if the other side specifies ACCEPTED,
REQUESTED, or REQUIRED. There must be a matching algorithm available on the

How To Configure Data Encryption and Integrity

4-6 Oracle Database Advanced Security Administrator's Guide

other side, otherwise the service is not enabled. If the other side specifies REQUIRED
and there is no matching algorithm, the connection fails.

REQUIRED
Select this value to enable the security service or preclude the connection.

In this scenario, this side of the connection specifies that the security service must be
enabled. The connection fails if the other side specifies REJECTED or if there is no
compatible algorithm on the other side.

Table 4–2 shows whether the security service is enabled, based on a combination of
client and server configuration parameters. If either the server or client has specified
REQUIRED, the lack of a common algorithm causes the connection to fail. Otherwise, if
the service is enabled, lack of a common service algorithm results in the service being
disabled.

Configuring Encryption and Integrity Parameters Using Oracle Net Manager
You can set up or change encryption and integrity parameter settings using Oracle Net
Manager. This section describes the following topics:

■ Configuring Encryption on the Client and the Server

■ Configuring Integrity on the Client and the Server

Table 4–2 Encryption and Data Integrity Negotiations

Client Setting Server Setting Encryption and Data Negotiation

REJECTED REJECTED OFF

ACCEPTED REJECTED OFF

REQUESTED REJECTED OFF

REQUIRED REJECTED Connection fails

REJECTED ACCEPTED OFF

ACCEPTED ACCEPTED OFF1

1 This value defaults to OFF. Cryptography and data integrity are not enabled until the user changes this parameter by using
Oracle Net Manager or by modifying the sqlnet.ora file.

REQUESTED ACCEPTED ON

REQUIRED ACCEPTED ON

REJECTED REQUESTED OFF

ACCEPTED REQUESTED ON

REQUESTED REQUESTED ON

REQUIRED REQUESTED ON

REJECTED REQUIRED Connection fails

ACCEPTED REQUIRED ON

REQUESTED REQUIRED ON

REQUIRED REQUIRED ON

How To Configure Data Encryption and Integrity

Configuring Network Data Encryption and Integrity for Oracle Servers and Clients 4-7

Configuring Encryption on the Client and the Server
Use Oracle Net Manager to configure encryption on the client and on the server (See
Also "Starting Oracle Net Manager" on page 2-2). The steps to configure Oracle Net
Manager are:

1. Navigate to the Oracle Advanced Security profile (For details, refer to "Navigating
to the Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced
Security tabbed window is displayed. (Figure 4–1):

Figure 4–1 Oracle Advanced Security Encryption Window

1. Click the Encryption tab.

2. Select CLIENT or SERVER option from the Integrity box.

3. From the Encryption Type list, select one of the following:

■ REQUESTED

■ REQUIRED

■ ACCEPTED

■ REJECTED

4. (Optional) In the Encryption Seed field, enter between 10 and 70 random
characters. The encryption seed for the client should not be the same as that for the
server.

5. Select an encryption algorithm in the Available Methods list. Move it to the
Selected Methods list by choosing the right arrow (>). Repeat for each additional
method you want to use.

6. Select File, Save Network Configuration. The sqlnet.ora file is updated.

See Also:

■ Appendix A, "Data Encryption and Integrity Parameters", for
valid encryption algorithms

■ Oracle Net Manager online help, for more detailed
configuration information

How To Configure Data Encryption and Integrity

4-8 Oracle Database Advanced Security Administrator's Guide

7. Repeat this procedure to configure encryption on the other system. The
sqlnet.ora file on the two systems should contain the following entries:

■ On the server:

SQLNET.ENCRYPTION_SERVER = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_SERVER = (valid_encryption_algorithm [,valid_
encryption_algorithm])

■ On the client:

SQLNET.ENCRYPTION_CLIENT = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_CLIENT = (valid_encryption_algorithm [,valid_
encryption_algorithm])

Valid encryption algorithms and their associated legal values are summarized by
Table 4–3:

Configuring Integrity on the Client and the Server
Use Oracle Net Manager to configure data integrity on the client and on the server (

1. Navigate to the Oracle Advanced Security profile. (For details, refer to "Navigating
to the Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced
Security tabbed window is displayed. (Figure 4–2):

Table 4–3 Valid Encryption Algorithms

Algorithm Name Legal Value

RC4 256-bit key RC4_256

RC4 128-bit key RC4_128

RC4 56-bit key RC4_56

RC4 40-bit key RC4_40

AES 256-bit key AES256

AES 192-bit key AES192

AES 128-bit key AES128

3-key 3DES 3DES168

2-key 3DES 3DES112

DES 56-bit key DES

DES 40-bit key DES40

See Also: "Starting Oracle Net Manager" on page 2-2

How To Configure Data Encryption and Integrity

Configuring Network Data Encryption and Integrity for Oracle Servers and Clients 4-9

Figure 4–2 Oracle Advanced Security Integrity Window

1. Click the Integrity tab.

2. Depending upon which system you are configuring, select the Server or Client
from the Integrity box.

3. From the Checksum Level list, select one of the following checksum level values:

■ REQUESTED

■ REQUIRED

■ ACCEPTED

■ REJECTED

4. Select an integrity algorithm in the Available Methods list. Move it to the Selected
Methods list by choosing the right arrow (>). Repeat for each additional method
you want to use.

5. Select File, Save Network Configuration. The sqlnet.ora file is updated.

6. Repeat this procedure to configure integrity on the other system. The
sqlnet.ora file on the two systems should contain the following entries:

■ On the server:

SQLNET.CRYPTO_CHECKSUM_SERVER = [accepted | rejected | requested |
required]
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

■ On the client:

SQLNET.CRYPTO_CHECKSUM_CLIENT = [accepted | rejected | requested |
required]
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

Valid integrity algorithms and their associated legal values are displayed in Table 4–4:

How To Configure Data Encryption and Integrity

4-10 Oracle Database Advanced Security Administrator's Guide

Table 4–4 Valid Integrity Algorithms

Algorithm Name Legal Values

MD5 MD5

SHA-1 SHA1

Configuring Network Authentication, Encryption, and Integrity for Thin JDBC Clients 5-1

5
Configuring Network Authentication,

Encryption, and Integrity for Thin JDBC
Clients

This chapter describes the Java implementation of Oracle Advanced Security, which
lets thin Java Database Connectivity (JDBC) clients securely connect to Oracle
Databases. This chapter contains the following topics:

■ About the Java Implementation

■ Configuration Parameters

About the Java Implementation
The Java implementation of Oracle Advanced Security provides network
authentication, encryption and integrity protection for Thin JDBC clients
communicating with Oracle Databases that have Oracle Advanced Security enabled.

This section contains the following topics:

■ Java Database Connectivity Support

■ Securing Thin JDBC

■ Implementation Overview

■ Obfuscation

Java Database Connectivity Support
Java Database Connectivity (JDBC), an industry-standard Java interface, is a Java
standard for connecting to a relational database from a Java program. Sun
Microsystems defined the JDBC standard and Oracle implements and extends the
standard with its own JDBC drivers.

Oracle JDBC drivers are used to create JDBC applications to communicate with Oracle
databases. Oracle implements two types of JDBC drivers: Thick JDBC drivers built on
top of the C-based Oracle Net client, as well as a Thin (Pure Java) JDBC driver to
support downloadable applets. Oracle extensions to JDBC include the following
features:

■ Data access and manipulation

■ LOB access and manipulation

See Also: Oracle Database JDBC Developer's Guide and Reference, for
information about JDBC, including examples

About the Java Implementation

5-2 Oracle Database Advanced Security Administrator's Guide

■ Oracle object type mapping

■ Object reference access and manipulation

■ Array access and manipulation

■ Application performance enhancement

Securing Thin JDBC
As the Thin JDBC driver is designed to be used with downloadable applets used over
the Internet, Oracle designed a 100% Java implementation of Oracle Advanced
Security authentication, encryption, and integrity algorithms, for use with thin clients.
Oracle Advanced Security provides the following features for Thin JDBC:

■ Strong Authentication

■ Data encryption

■ Data integrity checking

■ Secure connections from Thin JDBC clients to the Oracle RDBMS

■ Ability for developers to build applets that transmit data over a secure
communication channel

■ Secure connections from middle tier servers with Java Server Pages (JSP) to the
Oracle RDBMS

■ Secure connections from Oracle Database 11g Release 2 (11.2) to older versions of
Oracle databases with Oracle Advanced Security installed

The Oracle JDBC Thin driver supports Oracle Advanced Security SSL implementation
and third party authentication methods such as RADIUS and Kerberos. Thin JDBC
support for authentication methods like RADIUS, Kerberos, and SSL were introduced
in Oracle Database 11g Release 1 (11.1).

The Oracle Advanced Security Java implementation provides Java versions of the
following encryption algorithms:

■ AES256: AES 256-bit key

■ AES192: AES 192-bit key

■ AES128: AES 128-bit key

■ 3DES168: 3-key 3DES

■ 3DES112: 2-key 3DES

■ DES56C: DES 56-bit key CBC

■ DES40C: DES 40-bit key CBC

■ RC4_256: RC4 256-bit key

■ RC4_128: RC4 128-bit key

■ RC4_56: RC4 56-bit key

■ RC4_40: RC4 40-bit key

Note: In the preceding list of algorithms, CBC refers to the Cipher
Block Chaining mode.

Configuration Parameters

Configuring Network Authentication, Encryption, and Integrity for Thin JDBC Clients 5-3

Thin JDBC support for the Advanced Encryption Standard (AES) has been newly
introduced in Oracle Database 11g Release 2 (11.2).

In addition, this implementation provides data integrity checking for Thin JDBC using
Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5). Thin JDBC support for
SHA1 was introduced in Oracle Database 11g release 1 (11.1).

Implementation Overview
On the server side, the negotiation of algorithms and the generation of keys function
exactly the same as Oracle Advanced Security native encryption. This enables
backward and forward compatibility of clients and servers.

On the client side, the algorithm negotiation and key generation occur in exactly the
same manner as OCI clients. The client and server negotiate encryption algorithms,
generate random numbers, use Diffie-Hellman to exchange session keys, and use the
Oracle Password Protocol, in the same manner as the traditional Oracle Net clients.
Thin JDBC contains a complete implementation of a Oracle Net client in pure Java.

Obfuscation
The Java cryptography code is obfuscated. Obfuscation protects Java classes and
methods that contain encryption and decryption capabilities with obfuscation
software.

Java byte code obfuscation is a process frequently used to protect intellectual property
written in the form of Java programs. It mixes up Java symbols found in the code. The
process leaves the original program structure intact, letting the program run correctly
while changing the names of the classes, methods, and variables in order to hide the
intended behavior. Although it is possible to decompile and read non-obfuscated Java
code, obfuscated Java code is sufficiently difficult to decompile to satisfy U.S.
government export controls.

Configuration Parameters
A properties class object containing several configuration parameters is passed to the
Oracle Advanced Security interface.

All JDBC connection properties including the ones pertaining to Oracle Advanced
Security are defined as constants in the oracle.jdbc.OracleConnection
interface. The following list enumerates some of these connection properties:

■ Client Encryption Level:
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL

■ Client Encryption Selected List:
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES

■ Client Integrity Level:
CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL

■ Client Integrity Selected List:
CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES

■ Client Authentication Service:
CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES

See Also: Oracle Database JDBC Developer's Guide and Reference for
details on configuring authentication, encryption, and integrity for
thin JDBC clients.

Configuration Parameters

5-4 Oracle Database Advanced Security Administrator's Guide

Client Encryption Level: CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL
This parameter defines the level of security that the client wants to negotiate with the
server. Table 5–1 describes this parameters attributes.

Client Encryption Selected List:
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES

This parameter defines the encryption algorithm to be used. Table 5–2 describes this
parameter's attributes.

See Also: Oracle Database JDBC Developer's Guide and Reference for
detailed information on configuration parameters and configuration
examples

Table 5–1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL Parameter
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values REJECTED; ACCEPTED; REQUESTED; REQUIRED

Default Value ACCEPTED

Syntax prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_ENCRYPTION_LEVEL,level);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_ENCRYPTION_LEVEL,"REQUIRED");

where prop is an object of the Properties class

Table 5–2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Parameter
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values AES256 (AES 256-bit key), AES192 (AES 192-bit key), AES128
(AES 128-bit key), 3DES168 (3-key 3DES), 3DES112 (2-key
3DES), DES56C (DES 56-bit key CBC), DES40C (DES 40-bit key
CBC), RC4_256 (RC4 256-bit key), RC4_128 (RC4 128-bit key),
RC4_56 (RC4 56-bit key), RC4_40 (RC4 40-bit key)

Syntax prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_ENCRYPTION_TYPES,algorithm);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_ENCRYPTION_TYPES, "(AES256,
AES192)");

where prop is an object of the Properties class

Configuration Parameters

Configuring Network Authentication, Encryption, and Integrity for Thin JDBC Clients 5-5

Client Integrity Level: CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL
This parameter defines the level of security that it wants to negotiate with the server
for data integrity. Table 5–3 describes this parameter's attributes.

Client Integrity Selected List:
CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES

This parameter defines the data integrity algorithm to be used. Table 5–4 describes this
parameter's attributes.

Client Authentication Service:
CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES

This parameter determines the authentication service to be used. Table 5–5 describes
this parameter’s attributes.

Table 5–3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL Parameter
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values REJECTED; ACCEPTED; REQUESTED; REQUIRED

Default Value ACCEPTED

Syntax prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_CHECKSUM_LEVEL,level);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_CHECKSUM_LEVEL,"REQUIRED");

where prop is an object of the Properties class

Table 5–4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES Parameter
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values MD5, SHA1

Syntax prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_CHECKSUM_TYPES, algorithm);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_CHECKSUM_TYPES,"(MD5, SHA1
)");

where prop is an object of the Properties class

Table 5–5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES
Parameter Attributes

Attribute Description

Parameter Type String

Configuration Parameters

5-6 Oracle Database Advanced Security Administrator's Guide

AnoServices Constants
The oracle.net.ano.AnoServices interface has been updated in this release to
include the names of all the encryption, authentication, and checksum algorithms
supported by the JDBC Thin driver. The following constants have been added to the
oracle.net.ano.AnoServices interface:

// ---- SUPPORTED ENCRYPTION ALG -----
public static final String ENCRYPTION_RC4_40 = "RC4_40";
public static final String ENCRYPTION_RC4_56 = "RC4_56";
public static final String ENCRYPTION_RC4_128 = "RC4_128";
public static final String ENCRYPTION_RC4_256 = "RC4_256";
public static final String ENCRYPTION_DES40C = "DES40C";
public static final String ENCRYPTION_DES56C = "DES56C";
public static final String ENCRYPTION_3DES112 = "3DES112";
public static final String ENCRYPTION_3DES168 = "3DES168";
public static final String ENCRYPTION_AES128 = "AES128";
public static final String ENCRYPTION_AES192 = "AES192";
public static final String ENCRYPTION_AES256 = "AES256";
// ---- SUPPORTED INTEGRITY ALG ----
public static final String CHECKSUM_MD5 = "MD5";
public static final String CHECKSUM_SHA1 = "SHA1";
// ---- SUPPORTED AUTHENTICATION ADAPTORS ----
public static final String AUTHENTICATION_RADIUS = "RADIUS";
public static final String AUTHENTICATION_KERBEROS = "KERBEROS";

You can use these constants to set the encryption, integrity, and authentication
parameters. Example 5–1 illustrates one such scenario.

Example 5–1 Using AnoServices Constants in JDBC Client Code

import java.sql.*;
import java.util.Properties;
import oracle.jdbc.*;
import oracle.net.ano.AnoServices;
/**
 * JDBC thin driver demo: new security features in 11gR1.
 *
 * This program attempts to connect to the database using the JDBC thin
 * driver and requires the connection to be encrypted with either AES256 or AES192
 * and the data integrity to be verified with SHA1.
 *
 * In order to activate encryption and checksumming in the database you need to

Parameter Class Static

Permitted Values RADIUS, KERBEROS, SSL

Syntax prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_AUTHENTICATION_SERVICES,authe
ntication);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_P
ROPERTY_THIN_NET_AUTHENTICATION_SERVICES,"(
RADIUS, KERBEROS, SSL)");

where prop is an object of the Properties class

Table 5–5 (Cont.) CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES
Parameter Attributes

Attribute Description

Configuration Parameters

Configuring Network Authentication, Encryption, and Integrity for Thin JDBC Clients 5-7

 * modify the sqlnet.ora file. For example:
 *
 * SQLNET.ENCRYPTION_TYPES_SERVER = (AES256,AES192,AES128)
 * SQLNET.ENCRYPTION_SERVER = accepted
 * SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (SHA1)
 * SQLNET.CRYPTO_CHECKSUM_SERVER = accepted
 *
 * This output of this program is:
 * Connection created! Encryption algorithm is: AES256, data integrity algorithm
 * is: SHA1
 *
 */
public class DemoAESAndSHA1
{
 static final String USERNAME= "hr";
 static final String PASSWORD= "hr";
 static final String URL =
"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=somehost.us.example.c
om)(PORT=5561))"
 +"(CONNECT_DATA=(SERVICE_NAME=itydemo.regress.rdbms.dev.us.example.com)))";

 public static final void main(String[] argv)
 {
 DemoAESAndSHA1 demo = new DemoAESAndSHA1();
 try
 {
 demo.run();
 }catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 void run() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();
 // We require the connection to be encrypted with either AES256 or AES192.
 // If the database doesn't accept such a security level, then the connection
 // attempt will fail.
 prop.setProperty(

OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,AnoServices.ANO_REQ
UIRED);
 prop.setProperty(
 OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,
 "(" + AnoServices.ENCRYPTION_AES256 + "," +AnoServices.ENCRYPTION_AES192 +
")");
 // We also require the use of the SHA1 algorithm for data integrity checking.
 prop.setProperty(

OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,AnoServices.ANO_REQUI
RED);
 prop.setProperty(
 OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
 "(" + AnoServices.CHECKSUM_SHA1 + ")");

 prop.setProperty("user",DemoAESAndSHA1.USERNAME);
 prop.setProperty("password",DemoAESAndSHA1.PASSWORD);
 OracleConnection oraConn =
 (OracleConnection)dr.connect(DemoAESAndSHA1.URL,prop);

Configuration Parameters

5-8 Oracle Database Advanced Security Administrator's Guide

 System.out.println("Connection created! Encryption algorithm is:
"+oraConn.getEncryptionAlgorithmName()
 +", data integrity algorithm is: "+oraConn.getDataIntegrityAlgorithmName());

 oraConn.close();
 }

}

Part III
Oracle Advanced Security Strong

Authentication

This part describes how to configure strong authentication methods for the Oracle
network.

Part III contains the following chapters:

■ Chapter 6, "Configuring RADIUS Authentication"

■ Chapter 7, "Configuring Kerberos Authentication"

■ Chapter 8, "Configuring Secure Sockets Layer Authentication"

■ Chapter 9, "Using Oracle Wallet Manager"

■ Chapter 10, "Configuring Multiple Authentication Methods and Disabling Oracle
Advanced Security"

Configuring RADIUS Authentication 6-1

6
Configuring RADIUS Authentication

This chapter describes how to configure an Oracle Database server for use with
RADIUS (Remote Authentication Dial-In User Service). It contains the following
topics:

■ RADIUS Overview

■ RADIUS Authentication Modes

■ Enabling RADIUS Authentication, Authorization, and Accounting

■ Using RADIUS to Log In to a Database

■ RSA ACE/Server Configuration Checklist

RADIUS Overview
RADIUS is a client/server security protocol widely used to enable remote
authentication and access. Oracle Advanced Security uses this industry standard in a
client/server network environment.

You can enable the network to use any authentication method that supports the
RADIUS standard, including token cards and smart cards, by installing and
configuring the RADIUS protocol. Moreover, when you use RADIUS, you can change
the authentication method without modifying either the Oracle client or the Oracle
database server.

From the user's perspective, the entire authentication process is transparent. When the
user seeks access to an Oracle database server, the Oracle database server, acting as the
RADIUS client, notifies the RADIUS server. The RADIUS server:

■ Looks up the user's security information

■ Passes authentication and authorization information between the appropriate
authentication server or servers and the Oracle database server

■ Grants the user access to the Oracle database server

■ Logs session information, including when, how often, and for how long the user
was connected to the Oracle database server

Note: SecurID, an authentication product of RSA Security, Inc.,
though not directly supported by Oracle Advanced Security, has
been certified as RADIUS-compliant. You can therefore, run
SecurID under RADIUS.

Refer to the RSA Security SecurID documentation for further
information.

RADIUS Authentication Modes

6-2 Oracle Database Advanced Security Administrator's Guide

The Oracle/RADIUS environment is displayed in Figure 6–1:

Figure 6–1 RADIUS in an Oracle Environment

The Oracle database server acts as the RADIUS client, passing information between
the Oracle client and the RADIUS server. Similarly, the RADIUS server passes
information between the Oracle database server and the appropriate authentication
servers. The authentication components are listed in Table 6–1:

A RADIUS server vendor is often the authentication server vendor as well. In this case
authentication can be processed on the RADIUS server. For example, the RSA
ACE/Server is both a RADIUS server and an authentication server. It thus
authenticates the user's pass code.

RADIUS Authentication Modes
User authentication can take place in the following ways:

■ Synchronous Authentication Mode

Note: Oracle Advanced Security does not support RADIUS
authentication over database links.

Table 6–1 RADIUS Authentication Components

Component Stored Information

Oracle client Configuration setting for communicating through RADIUS.

Oracle database
server/RADIUS
client

Configuration settings for passing information between the Oracle
client and the RADIUS server.

The secret key file.

RADIUS server Authentication and authorization information for all users.

Each client's name or IP address.

Each client's shared secret.

Unlimited number of menu files enabling users already authenticated
to select different login options without reconnecting.

Authentication
server or servers

User authentication information such as pass codes and PINs,
depending on the authentication method in use.

Note: The RADIUS server can also be the authentication server.

See Also: Oracle Database Net Services Administrator's Guide, for
information about the sqlnet.ora file

Oracle Client

Radius Client

Oracle Server

Radius Server
or

RSA ACE / Server

RADIUS Authentication Modes

Configuring RADIUS Authentication 6-3

■ Challenge-Response (Asynchronous) Authentication Mode

Synchronous Authentication Mode
In the synchronous mode, RADIUS lets you use various authentication methods,
including passwords and SecurID token cards. Figure 6–2 shows the sequence in
which synchronous authentication occurs:

Figure 6–2 Synchronous Authentication Sequence

Following steps describe the Synchronous Authentication Sequence:

1. A user logs in by entering a connect string, pass code, or other value. The client
system passes this data to the Oracle database server.

2. The Oracle database server, acting as the RADIUS client, passes the data from the
Oracle client to the RADIUS server.

3. The RADIUS server passes the data to the appropriate authentication server, such
as Smart Card or SecurID ACE for validation.

4. The authentication server sends either an Access Accept or an Access Reject
message back to the RADIUS server.

5. The RADIUS server passes this response to the Oracle database server/RADIUS
client.

6. The Oracle database server/RADIUS client passes the response back to the Oracle
client.

Example: Synchronous Authentication with SecurID Token Cards
With SecurID authentication, each user has a token card that displays a dynamic
number that changes every sixty seconds. To gain access to the Oracle database

Oracle
server/
RADIUS

client

Client RADIUS
Server

1

Authentication
Server

2

. . .

3

5

4

6

RADIUS Authentication Modes

6-4 Oracle Database Advanced Security Administrator's Guide

server/RADIUS client, the user enters a valid pass code that includes both a personal
identification number (PIN) and the dynamic number currently displayed on the
user's SecurID card. The Oracle database server passes this authentication information
from the Oracle client to the RADIUS server, which in this case is the authentication
server for validation. Once the authentication server (RSA ACE/Server) validates the
user, it sends an accept packet to the Oracle database server, which, in turn, passes it to
the Oracle client. The user is now authenticated and able to access the appropriate
tables and applications.

Challenge-Response (Asynchronous) Authentication Mode
When the system uses the asynchronous mode, the user does not need to enter a user
name and password at the SQL*Plus CONNECT string. Instead, a graphical user
interface asks the user for this information later in the process.

Figure 6–3 shows the sequence in which challenge-response (asynchronous)
authentication occurs.

See Also:

■ Chapter 1, "Introduction to Oracle Advanced Security"

■ "Token Cards" on page 1-8

■ Documentation provided by RSA Security, Inc.

Note: If the RADIUS server is the authentication server, Steps 3, 4,
and 5, and Steps 9, 10, and 11 in Figure 6–3 are combined.

RADIUS Authentication Modes

Configuring RADIUS Authentication 6-5

Figure 6–3 Asynchronous Authentication Sequence

Following steps describe the Asynchronous Authentication Sequence:

1. A user initiates a connection to an Oracle database server. The client system passes
the data to the Oracle database server.

2. The Oracle database server, acting as the RADIUS client, passes the data from the
Oracle client to the RADIUS server.

3. The RADIUS server passes the data to the appropriate authentication server, such
as a Smart Card, SecurID ACE, or token card server.

4. The authentication server sends a challenge, such as a random number, to the
RADIUS server.

5. The RADIUS server passes the challenge to the Oracle database server/RADIUS
client.

6. The Oracle database server/RADIUS client, in turn, passes it to the Oracle client.
A graphical user interface presents the challenge to the user.

Oracle
server/
RADIUS

client

Client RADIUS
Server

1

7

Authentication
Server

2

. . . 12

3

8

5

4

6

9

10

11

RADIUS Authentication Modes

6-6 Oracle Database Advanced Security Administrator's Guide

7. The user provides a response to the challenge. To formulate a response, the user
can, for example, enter the received challenge into the token card. The token card
provides a dynamic password that is entered into the graphical user interface. The
Oracle client passes the user's response to the Oracle database server/RADIUS
client.

8. The Oracle database server/RADIUS client sends the user's response to the
RADIUS server.

9. The RADIUS server passes the user's response to the appropriate authentication
server for validation.

10. The authentication server sends either an Access Accept or an Access Reject
message back to the RADIUS server.

11. The RADIUS server passes the response to the Oracle database server/RADIUS
client.

12. The Oracle database server/RADIUS client passes the response to the Oracle
client.

Example: Asynchronous Authentication with Smart Cards
With smart card authentication, the user logs in by inserting the smart card into a
smart card reader that reads the smart card. The smart card is a plastic card, like a
credit card, with an embedded integrated circuit for storing information.

The Oracle client sends the login information contained in the smart card to the
authentication server by way of the Oracle database server/RADIUS client and the
RADIUS server. The authentication server sends back a challenge to the Oracle client,
by way of the RADIUS server and the Oracle database server, prompting the user for
authentication information. The information could be, for example, a PIN as well as
additional authentication information contained on the smart card.

The Oracle client sends the user's response to the authentication server by way of the
Oracle database server and the RADIUS server. If the user has entered a valid number,
the authentication server sends an accept packet back to the Oracle client by way of the
RADIUS server and the Oracle database server. The user is now authenticated and
authorized to access the appropriate tables and applications. If the user has entered
incorrect information, the authentication server sends back a message rejecting user's
access.

Example: Asynchronous Authentication with ActivCard Tokens
One particular ActivCard token is a hand-held device with a keypad and which
displays a dynamic password. When the user seeks access to an Oracle database server
by entering a password, the information is passed to the appropriate authentication
server by way of the Oracle database server/RADIUS client and the RADIUS server.
The authentication server sends back a challenge to the client, by way of the RADIUS
server and the Oracle database server. The user types that challenge into the token,
and the token displays a number for the user to send in response.

The Oracle client then sends the user's response to the authentication server by way of
the Oracle database server and the RADIUS server. If the user has typed a valid
number, the authentication server sends an accept packet back to the Oracle client by
way of the RADIUS server and the Oracle database server. The user is now
authenticated and authorized to access the appropriate tables and applications. If the
user has entered an incorrect response, the authentication server sends back a message
rejecting the user's access.

Enabling RADIUS Authentication, Authorization, and Accounting

Configuring RADIUS Authentication 6-7

Enabling RADIUS Authentication, Authorization, and Accounting
To enable RADIUS authentication, authorization, and accounting, perform the
following tasks:

■ Task 1: Install RADIUS on the Oracle Database Server and on the Oracle Client

■ Task 2: Configure RADIUS Authentication

■ Task 3: Create a User and Grant Access

■ Task 4: Configure External RADIUS Authorization (optional)

■ Task 5: Configure RADIUS Accounting

■ Task 6: Add the RADIUS Client Name to the RADIUS Server Database

■ Task 7: Configure the Authentication Server for Use with RADIUS.

■ Task 8: Configure the RADIUS Server for Use with the Authentication Server

■ Task 9: Configure Mapping Roles

Task 1: Install RADIUS on the Oracle Database Server and on the Oracle Client
RADIUS is installed with Oracle Advanced Security during a typical installation of
Oracle Database.

Task 2: Configure RADIUS Authentication
This task includes the following steps:

■ Step 1: Configure RADIUS on the Oracle Client

■ Step 2: Configure RADIUS on the Oracle Database Server

■ Step 3: Configure Additional RADIUS Features

Unless otherwise indicated, perform these configuration tasks by using Oracle Net
Manager or by using any text editor to modify the sqlnet.ora file.

Step 1: Configure RADIUS on the Oracle Client
Use Oracle Net Manager to configure RADIUS on the Oracle client (See "Starting
Oracle Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile (For details, refer to "Navigating
to the Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced
Security tabbed window is displayed (Figure 6–4):

See Also: Oracle Database operating system-specific installation
documentation, for information about installing Oracle Advanced
Security and the RADIUS adapter

Enabling RADIUS Authentication, Authorization, and Accounting

6-8 Oracle Database Advanced Security Administrator's Guide

Figure 6–4 Oracle Advanced Security Authentication Window

1. Click the Authentication tab.

2. From the Available Methods list, select RADIUS.

3. Select the right-arrow (>) to move RADIUS to the Selected Methods list. Move
any other methods you want to use in the same way.

4. Arrange the selected methods in order of required usage by selecting a method in
the Selected Methods list, and clicking Promote or Demote to position it in the list.
For example, put RADIUS at the top of the list for it to be the first service used.

5. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SQLNET.AUTHENTICATION_SERVICES=(RADIUS)

Step 2: Configure RADIUS on the Oracle Database Server
Following are the steps to configure RADIUS:

■ Create the RADIUS Secret Key File on the Oracle Database Server

■ Configure RADIUS Parameters on the Server (sqlnet.ora file)

■ Set Oracle Database Server Initialization Parameters

Create the RADIUS Secret Key File on the Oracle Database Server
Following are the steps to create Oracle Database Server:

1. Obtain the RADIUS secret key from the RADIUS server. For each RADIUS client,
the administrator of the RADIUS server creates a shared secret key, which must be
less than or equal to 16 characters.

2. On the Oracle database server, create a directory:

■ (UNIX) $ORACLE_HOME/network/security

■ (Windows) ORACLE_BASE\ORACLE_HOME\network\security

3. Create the file radius.key to hold the shared secret copied from the RADIUS
server. Place the file in the directory you created in Step 2.

Enabling RADIUS Authentication, Authorization, and Accounting

Configuring RADIUS Authentication 6-9

4. Copy the shared secret key and paste it (and nothing else) into the radius.key
file created on the Oracle database server.

5. For security purposes, change the file permission of radius.key to read only,
accessible only by the Oracle owner. Oracle relies on the file system to keep this
file secret.

Configure RADIUS Parameters on the Server (sqlnet.ora file)
Use Oracle Net Manager to configure RADIUS parameters on the server (Refer to
"Starting Oracle Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile. (Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced Security
tabbed window is displayed. (Figure 6–4).

2. Click the Authentication tab.

3. From the Available Methods list, select RADIUS.

4. Move RADIUS to the Selected Methods list by choosing the right-arrow (>).

5. To arrange the selected methods in order of desired use, select a method in the
Selected Methods list, and select Promote or Demote to position it in the list. For
example, if you want RADIUS to be the first service used, put it at the top of the
list.

6. Click Other Params as shown in (Figure 6–5):

Figure 6–5 Oracle Advanced Security Other Params Window

1. From the Authentication Service list, select RADIUS.

2. In the Host Name field, accept the localhost as the default primary RADIUS
server, or enter another host name.

3. Ensure that the default value of the Secret File field is valid.

4. Select File, Save Network Configuration.

See Also: The RADIUS server administration documentation, for
information about obtaining the secret key

Enabling RADIUS Authentication, Authorization, and Accounting

6-10 Oracle Database Advanced Security Administrator's Guide

The sqlnet.ora file is updated with the following entries:

SQLNET.AUTHENTICATION_SERVICES=RADIUS
SQLNET.RADIUS_AUTHENTICATION=RADIUS_server_{hostname|IP_address}

Set Oracle Database Server Initialization Parameters
Configure the initialization parameter file, located in

■ (UNIX) $ORACLE_HOME/admin/db_name/pfile

■ (Windows) ORACLE_BASE\ORACLE_HOME\admin\db_name\pfile

with the following values:

OS_AUTHENT_PREFIX=""

Step 3: Configure Additional RADIUS Features
■ Change Default Settings

■ Configure Challenge-Response

■ Set Parameters for an Alternate RADIUS Server

Change Default Settings
Use Oracle Net Manager to change default settings (See "Starting Oracle Net Manager"
on page 2-2):

1. Navigate to the Oracle Advanced Security profile (See "Navigating to the Oracle
Advanced Security Profile" on page 2-2) The Oracle Advanced Security tabbed
window is displayed. (Figure 6–5).

2. Click the Other Params tab.

3. From the Authentication Service list, select RADIUS.

4. Change the default setting for any of the following fields:

Note: The IP_address can either be an Internet Protocol Version 4
(IPv4) or Internet Protocol Version 6 (IPv6) address. The RADIUS
adapter supports both IPv4 and IPv6 based servers.

See Also: Oracle Database Reference and the Oracle Database
Administrator's Guide for information about setting initialization
parameters on an Oracle Database server

Field Description

Port Number Specifies the listening port of the primary RADIUS server. The
default value is 1645.

Timeout (seconds) Specifies the time the Oracle database server waits for a
response from the primary RADIUS server. The default is 15
seconds.

Number of Retries Specifies the number of times the Oracle database server
resends messages to the primary RADIUS server. The default is
three retries.

For instructions on configuring RADIUS accounting, see: Task 5:
Configure RADIUS Accounting on page 6-14.

Enabling RADIUS Authentication, Authorization, and Accounting

Configuring RADIUS Authentication 6-11

5. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

SQLNET.RADIUS_AUTHENTICATION_PORT=(PORT)
SQLNET.RADIUS_AUTHENTICATION_TIMEOUT=
(NUMBER OF SECONDS TO WAIT FOR response)
SQLNET.RADIUS_AUTHENTICATION_RETRIES=
(NUMBER OF TIMES TO RE-SEND TO RADIUS server)
SQLNET.RADIUS_SECRET=(path/radius.key)

Configure Challenge-Response
The challenge-response (asynchronous) mode presents the user with a graphical
interface requesting first a password, then additional information, for example, a
dynamic password that the user obtains from a token card. With the RADIUS adapter,
this interface is Java-based to provide optimal platform independence.

To configure challenge-response:

1. If you are using JDK 1.1.7 or JRE 1.1.7, set the JAVA_HOME environment variable to
the JRE or JDK location on the system where the Oracle client is run:

■ On UNIX, enter this command at the prompt:

% setenv JAVA_HOME /usr/local/packages/jre1.1.7B

■ On Windows, select Start, Settings, Control Panel, System, Environment, and
set the JAVA_HOME variable as follows:

c:\java\jre1.1.7B

Secret File Specifies the location of the secret key on the Oracle database
server. The field specifies the location of the secret key file, not
the secret key itself.

For information about specifying the secret key, see: Create the
RADIUS Secret Key File on the Oracle Database Server on
page 6-8.

Note: Third party vendors of authentication devices must
customize this graphical user interface to fit their particular device.
For example, a smart card vendor would customize the Java
interface so that the Oracle client reads data, such as a dynamic
password, from the smart card. When the smart card receives a
challenge, it responds by prompting the user for more information,
such as a PIN.

See Also: Appendix C, "Integrating Authentication Devices Using
RADIUS", for information about how to customize the
challenge-response user interface

Note: This step is not required for any other JDK/JRE version.

Field Description

Enabling RADIUS Authentication, Authorization, and Accounting

6-12 Oracle Database Advanced Security Administrator's Guide

1. Navigate to the Oracle Advanced Security profile in Oracle Net Manager (See
"Navigating to the Oracle Advanced Security Profile" on page 2-2) The Oracle
Advanced Security Other Params window is displayed. (Figure 6–5).

2. From the Authentication Service list, select RADIUS.

3. In the Challenge Response field, enter ON to enable challenge-response.

4. In the Default Keyword field, accept the default value of the challenge or enter a
keyword for requesting a challenge from the RADIUS server.

1. In the Interface Class Name field, accept the default value of
DefaultRadiusInterface or enter the name of the class you have created to handle
the challenge-response conversation. If other than the default RADIUS interface is
used, you also must edit the sqlnet.ora file to enter SQLNET.RADIUS_
CLASSPATH=(location), where location is the complete path name of the jar
file. It defaults to
$ORACLE_HOME/network/jlib/netradius.jar: $ORACLE_
HOME/JRE/lib/vt.jar

2. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

SQLNET.RADIUS_CHALLENGE_RESPONSE=([ON | OFF])
SQLNET.RADIUS_CHALLENGE_KEYWORD=(KEYWORD)
SQLNET.RADIUS_AUTHENTICATION_INTERFACE=(name of interface including the package
name delimited by "/" for ".")

Set Parameters for an Alternate RADIUS Server
If you are using an alternate RADIUS server, set these parameters in the sqlnet.ora
file using any text editor.

SQLNET.RADIUS_ALTERNATE=(hostname or ip address of alternate radius server)
SQLNET.RADIUS_ALTERNATE_PORT=(1812)
SQLNET.RADIUS_ALTERNATE_TIMEOUT=(number of seconds to wait for response)
SQLNET.RADIUS_ALTERNATE_RETRIES=(number of times to re-send to radius server)

Task 3: Create a User and Grant Access
To grant user access:

1. Launch SQL*Plus and execute these commands to create and grant access to a user
identified externally on the Oracle database server.

SQL> CONNECT system/manager@database_name;
SQL> CREATE USER username IDENTIFIED EXTERNALLY;
SQL> GRANT CREATE SESSION TO USER username;

Note: The keyword feature is provided by Oracle and supported
by some, but not all, RADIUS servers. You can use this feature only
if your RADIUS server supports it.

By setting a keyword, you let the user avoid using a password to
verify identity. If the user does not enter a password, the keyword
you set here is passed to the RADIUS server which responds with a
challenge requesting, for example, a driver's license number or
birth date. If the user does enter a password, the RADIUS server
may or may not respond with a challenge, depending upon the
configuration of the RADIUS server.

Enabling RADIUS Authentication, Authorization, and Accounting

Configuring RADIUS Authentication 6-13

SQL> EXIT

If you are using Windows, you can use the Security Manager tool in the Oracle
Enterprise Manager.

2. Enter the same username in the RADIUS server's users file.

Task 4: Configure External RADIUS Authorization (optional)
If you require external RADIUS authorization for RADIUS users who connect to an
Oracle database, then you must perform the following steps to configure the Oracle
server, the Oracle client, and the RADIUS server:

To configure the Oracle server (RADIUS client):
Following steps describes how to configure Oracle Server (RADIUS Client):

1. Add the OS_ROLE parameter to the init.ora file and set this parameter to TRUE
as follows:

OS_ROLE=TRUE

Then restart the database so the system can read the change to the init.ora file.

2. Set the RADIUS challenge-response mode to ON for the server if you have not
already done so by following the steps listed in "Configure Challenge-Response"
on page 6-11.

3. Add externally identified users and roles.

To configure the Oracle client (where users log in):
Set the RADIUS challenge-response mode to ON for the client if you have not already
done so by following the steps listed in "Configure Challenge-Response" on page 6-11.

To configure the RADIUS server:
Following steps describe how to configure the RADIUS Server:

1. Add the following attributes to the RADIUS server attribute configuration file:

2. Assign a Vendor ID for Oracle in the RADIUS server attribute configuration file
that includes the SMI Network Management Private Enterprise Code of 111.

For example, enter the following in the RADIUS server attribute configuration file:

VALUE VENDOR_SPECIFIC ORACLE 111

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Heterogeneous Connectivity User's Guide

See Also: Administration documentation for the RADIUS server

ATTRIBUTE NAME CODE TYPE

VENDOR_SPECIFIC 26 Integer

ORACLE_ROLE 1 String

Enabling RADIUS Authentication, Authorization, and Accounting

6-14 Oracle Database Advanced Security Administrator's Guide

3. Using the following syntax, add the ORACLE_ROLE attribute to the user profile of
the users who will use external RADIUS authorization:

ORA_databaseSID_rolename[_[A]|[D]]

where:

■ ORA designates that this role is used for Oracle purposes

■ databaseSID is the Oracle system identifier that is configured in the
database server's init.ora file

■ rolename is the name of role as it is defined in the data dictionary. For
example, SYSDBA

■ A is an optional character that indicates the user has administrator's privileges
for this role

■ D is an optional character that indicates this role is to be enabled by default

Ensure that RADIUS groups which map to Oracle roles adhere to the ORACLE_
ROLE syntax.

For example:

USERNAME USERPASSWD="user_password",
 SERVICE_TYPE=login_user,
 VENDOR_SPECIFIC=ORACLE,
 ORACLE_ROLE=ORA_ora920_sysdba

Task 5: Configure RADIUS Accounting
RADIUS accounting logs information about access to the Oracle database server and
stores it in a file on the RADIUS accounting server. Use this feature only if both the
RADIUS server and authentication server support it.

Set RADIUS Accounting on the Oracle Database Server
Use Oracle Net Manager to enable or disable RADIUS accounting (See "Starting Oracle
Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile. (See "Navigating to the Oracle
Advanced Security Profile" on page 2-2) The Other Params window is displayed
(Figure 6–5).

2. From the Authentication Service list, select RADIUS.

3. In the Send Accounting field, enter ON to enable accounting or OFF to disable
accounting.

4. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SQLNET.RADIUS_SEND_ACCOUNTING= ON

Configure the RADIUS Accounting Server
RADIUS Accounting Server consists of an accounting server residing on either the
same host as the RADIUS authentication server or on a separate host.

See Also: The RADIUS server administration documentation for
information about configuring the server.

Enabling RADIUS Authentication, Authorization, and Accounting

Configuring RADIUS Authentication 6-15

Task 6: Add the RADIUS Client Name to the RADIUS Server Database
You can use virtually any RADIUS server that complies with the standards in the
Internet Engineering Task Force (IETF) RFC #2138, Remote Authentication Dial In User
Service (RADIUS) and RFC #2139 RADIUS Accounting. Because RADIUS servers vary,
consult the documentation for your particular RADIUS server for any unique
interoperability requirements.

Perform the following steps to add the RADIUS client name to a Livingston RADIUS
server:

1. Open the clients file, which can be found at /etc/raddb/clients. The
following text and table appear:

@ (#) clients 1.1 2/21/96 Copyright 1991 Livingston Enterprises Inc
This file contains a list of clients which are allowed to make authentication
requests and their encryption key. The first field is a valid hostname. The
second field (separated by blanks or tabs) is the encryption key.
Client Name Key

2. In the CLIENT NAME column, enter the host name or IP address of the host on
which the Oracle database server is running. In the KEY column, type the shared
secret.

The value you enter in the CLIENT NAME column, whether it is the client's name
or IP address, depends on the RADIUS server.

3. Save and close the clients file.

Task 7: Configure the Authentication Server for Use with RADIUS
Refer to the authentication server documentation for instructions about configuring
the authentication servers.

Task 8: Configure the RADIUS Server for Use with the Authentication Server
Refer to the RADIUS server documentation.

Task 9: Configure Mapping Roles
If the RADIUS server supports vendor type attributes, you can manage roles by
storing them in the RADIUS server. The Oracle database server downloads the roles
when there is a CONNECT request using RADIUS.

To use this feature, configure roles on both the Oracle database server and the RADIUS
server.

Perform these steps to configure roles on the Oracle database server:

1. Use a text editor to set the OS_ROLES parameter in the initialization parameters
file on the Oracle database server.

2. Stop and restart the Oracle database server.

See Also: Administration documentation for the RADIUS server,
for information about configuring RADIUS accounting

See Also: Administration documentation for the RADIUS server

See Also: "Related Documentation" on page -xxii, which contains
a list of possible resources.

Using RADIUS to Log In to a Database

6-16 Oracle Database Advanced Security Administrator's Guide

3. Create each role that the RADIUS server will manage on the Oracle database
server with the value IDENTIFIED EXTERNALLY.

To configure roles on the RADIUS server, refer to Table 6–2 and use the following
syntax:

ORA_DatabaseName.DatabaseDomainName_RoleName

Example:

ORA_USERDB.US.EXAMPLE.COM_MANAGER

1. Configure RADIUS challenge-response mode.

Using RADIUS to Log In to a Database
If you are using the synchronous authentication mode, launch SQL*Plus and enter the
following command at the prompt:

CONNECT username@database_alias
Enter password: password

If you are using the challenge-response mode, launch SQL*Plus and, at the prompt,
enter the command that follows:

CONNECT /@database_alias

Table 6–2 RADIUS Configuration Parameters

Parameter Description

DatabaseName The name of the Oracle database server for which the role is
being created. This is the same as the value of the DB_NAME
initialization parameter.

DatabaseDomainName The name of the domain to which the Oracle database server
belongs. The value is the same as the value of the DB_
DOMAIN initialization parameter.

RoleName The name of the role created in the Oracle database server.

See Also:

■ Challenge-Response (Asynchronous) Authentication Mode on
page 6-4

■ Configure Challenge-Response on page 6-11

Note: You can log in with this command only when
challenge-response is not turned to ON.

Note: you can log in with this command only when
challenge-response is turned to ON.

Note: The challenge-response mode can be configured for all
login cases.

RSA ACE/Server Configuration Checklist

Configuring RADIUS Authentication 6-17

RSA ACE/Server Configuration Checklist
If you are using an RSA ACE/Server as a RADIUS server, check the following items
before making your initial connection:

■ Ensure that the host agent in the RSA ACE/Server is set up to send a node secret.
In version 5.0, this is done by leaving the SENT Node secret box unchecked. If the
RSA ACE/Server fails to send a node secret to the agent, then a node verification
failure message will be written to the RSA ACE/Server log.

■ If you are using RSA SecurID tokens, then ensure that the token is synchronized
with the RSA ACE/Server.

See Also: RSA ACE/Server documentation for specific
information about troubleshooting.

RSA ACE/Server Configuration Checklist

6-18 Oracle Database Advanced Security Administrator's Guide

Configuring Kerberos Authentication 7-1

7
Configuring Kerberos Authentication

This chapter describes how to configure Oracle Advanced Security for Oracle
Database for use with Kerberos authentication, and how to configure Kerberos to
authenticate Oracle database users. This chapter contains the following sections:

■ Enabling Kerberos Authentication

■ Utilities for the Kerberos Authentication Adapter

■ Configuring Interoperability with a Windows 2000 Domain Controller KDC

■ Troubleshooting

Enabling Kerberos Authentication
To enable Kerberos authentication:

■ Task 1: Install Kerberos

■ Task 2: Configure a Service Principal for an Oracle Database Server

■ Task 3: Extract a Service Key Table from Kerberos

■ Task 4: Install an Oracle Database Server and an Oracle Client

■ Task 5: Install Oracle Net Services and Oracle Advanced Security

■ Task 6: Configure Oracle Net Services and Oracle Database

■ Task 7: Configure Kerberos Authentication

■ Task 8: Create a Kerberos User

■ Task 9: Create an Externally Authenticated Oracle User

■ Task 10: Get an Initial Ticket for the Kerberos/Oracle User

Task 1: Install Kerberos
Install Kerberos on the system that functions as the authentication server.

See Also: Oracle Database Enterprise User Security Administrator's
Guide for information on migrating Kerberos users to
Kerberos-authenticated enterprise users

See Also: Your Kerberos version 5 source distribution for notes
about building and installing Kerberos

Enabling Kerberos Authentication

7-2 Oracle Database Advanced Security Administrator's Guide

Task 2: Configure a Service Principal for an Oracle Database Server
To enable the Oracle database server to validate the identity of clients that authenticate
themselves using Kerberos, you must create a service principal for Oracle Database.

The name of the principal should have the following format:

kservice/kinstance@REALM

Each of the fields in the service principal specify the following values:

For example, suppose kservice is oracle, the fully qualified name of the system on
which Oracle Database is running is dbserver.example.com and the realm is
EXAMPLE.COM. The principal name then is:

oracle/dbserver.example.com@EXAMPLE.COM

It is a convention to use the DNS domain name as the name of the realm. To create the
service principal, run kadmin.local. On UNIX, run this command as the root user,
by using the following syntax:

cd /kerberos-install-directory/sbin
./kadmin.local

To add a principal named oracle/dbserver.example.com@EXAMPLE.COM to the
list of server principals known by Kerberos, enter the following:

kadmin.local:addprinc -randkey oracle/dbserver.example.com@EXAMPLE.COM

Task 3: Extract a Service Key Table from Kerberos
Extract the service key table from Kerberos and copy it to the Oracle database
server/Kerberos client system.

Note: After upgrading from a 32-bit version of Oracle Database,
the first use of the Kerberos authentication adapter causes an error
message: ORA-01637: Packet receive failed.

Workaround: After upgrading to the 64-bit version of the database
and before using Kerberos external authentication method, check
for a file named /usr/tmp/oracle_service_name.RC on your
computer, and remove it.

Service Principal Field Description

kservice A case-sensitive string that represents the Oracle service.
This can be the same as the database service name.

kinstance This is typically the fully qualified DNS name of the
system on which Oracle Database is running.

REALM This is the name of the Kerberos realm with which the
service principal is registered. REALM must always be
uppercase and is typically the DNS domain name.

Note: The utility names in this section are executable programs.
However, the Kerberos user name krbuser and the realm
EXAMPLE.COM are examples only.

Enabling Kerberos Authentication

Configuring Kerberos Authentication 7-3

For example, use the following steps to extract a service key table for
dbserver.example.com:

1. Enter the following to extract the service key table:

kadmin.local: ktadd -k /tmp/keytab oracle/dbserver.example.com

Entry for principal oracle/dbserver.example.com with kvno 2, encryption
DES-CBC-CRC added to the keytab WRFILE: 'WRFILE:/tmp/keytab

kadmin.local: exit

oklist -k -t /tmp/keytab

2. After the service key table has been extracted, verify that the new entries are in the
table in addition to the old ones. If they are not, or you need to add more, use
kadmin.local to append to them.

If you do not enter a realm when using ktadd, it uses the default realm of the
Kerberos server. kadmin.local is connected to the Kerberos server running on
the localhost.

3. If the Kerberos service key table is on the same system as the Kerberos client, you
can move it. If the service key table is on a different system from the Kerberos
client, you must transfer the file with a program such as FTP. If using FTP, transfer
the file in binary mode.

The following example shows how to move the service key table on a UNIX
platform:

mv /tmp/keytab /etc/v5srvtab

The default name of the service file is /etc/v5srvtab.

4. Verify that the owner of the Oracle database server executable can read the service
key table (/etc/v5srvtab in the previous example). To do so, set the file owner
to the Oracle user, or make the file readable by the group to which Oracle belongs.

Task 4: Install an Oracle Database Server and an Oracle Client
Install the Oracle database server and client software.

Task 5: Install Oracle Net Services and Oracle Advanced Security
Install Oracle Net Services and Oracle Advanced Security on the Oracle database
server and Oracle client systems.

Task 6: Configure Oracle Net Services and Oracle Database
Configure Oracle Net Services on the Oracle database server and client.

Caution: Do not make the file readable to all users. This can
cause a security breach.

See Also: Oracle Database operating system-specific installation
documentation

See Also: Oracle Database operating system-specific installation
documentation

Enabling Kerberos Authentication

7-4 Oracle Database Advanced Security Administrator's Guide

Task 7: Configure Kerberos Authentication
Perform these tasks to set required parameters in the Oracle database server and client
sqlnet.ora files:

■ Step 1: Configure Kerberos on the Client and on the Database Server

■ Step 2: Set the Initialization Parameters

■ Step 3: Set sqlnet.ora Parameters (optional)

Step 1: Configure Kerberos on the Client and on the Database Server
Use Oracle Net Manager to perform the following steps to configure Kerberos
authentication service parameters on the client and on the database server (Refer to,
"Starting Oracle Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile. (Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced Security
window is displayed (Figure 7–1):

Figure 7–1 Oracle Advanced Security Authentication Window (Kerberos)

1. Click the Authentication tab.

2. From the Available Methods list, select KERBEROS5.

3. Move KERBEROS5 to the Selected Methods list by clicking the right arrow (>).

4. Arrange the selected methods in order of use. To do this, select a method in the
Selected Methods list, then click Promote or Demote to position it in the list. For
example, if you want KERBEROS5 to be the first service used, move it to the top of
the list.

5. Click the Other Params tab (Figure 7–2).

See Also:

■ Oracle Database operating system-specific installation
documentation

■ Oracle Database Net Services Administrator's Guide.

Enabling Kerberos Authentication

Configuring Kerberos Authentication 7-5

Figure 7–2 Oracle Advanced Security Other Params Window (Kerberos)

1. From the Authentication Service list, select KERBEROS(V5).

2. Type Kerberos into the Service field. This field defines the name of the service
Oracle Database uses to obtain a Kerberos service ticket. When you provide the
value for this field, the other fields are enabled.

3. Optionally enter values for the following fields:

■ Credential Cache File

■ Configuration File

■ Realm Translation File

■ Key Table

■ Clock Skew

4. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=kservice

Step 2: Set the Initialization Parameters
As Kerberos user names can be long, and Oracle user names are limited to 30
characters, Oracle recommends that you set the value of OS_AUTHENT_PREFIX to null
in the initialization parameter file.

OS_AUTHENT_PREFIX=""

Setting this parameter to null overrides the default value of OPS$.

See Also: Oracle Net Manager online Help, and "Step 3: Set
sqlnet.ora Parameters (optional)" on page 7-6, for more information
about the fields and the parameters they configure

Enabling Kerberos Authentication

7-6 Oracle Database Advanced Security Administrator's Guide

Step 3: Set sqlnet.ora Parameters (optional)
In addition to the required parameters, you can optionally set the following
parameters in the sqlnet.ora file on the client and the Oracle database server:

Note: Oracle Database 11g Release 2 (11.2) enables you to create
external database users that have Kerberos user names of more than
30 characters. See "Task 9: Create an Externally Authenticated Oracle
User" on page 7-8 for more information.

Attribute Description

Parameter: SQLNET.KERBEROS5_CC_NAME=pathname_to_credentials_ca
che_file

Description: Specifies the complete path name to the Kerberos credentials cache
(CC) file. The default value is operating system-dependent. For
UNIX, it is /tmp/krb5cc_userid.

You can use the following formats to specify a value for
SQLNET.KERBEROS5_CC_NAME:

■ SQLNET.KERBEROS5_CC_NAME=complete_path_to_cc_file

For example:

SQLNET.KERBEROS5_CC_NAME=/tmp/kcache

SQLNET.KERBEROS5_CC_NAME=D:\tmp\kcache

■ SQLNET.KERBEROS5_CC_NAME=FILE:complete_path_to_cc_
file

For example:

SQLNET.KERBEROS5_CC_NAME=FILE:/tmp/kcache

■ SQLNET.KERBEROS5_CC_NAME=OSMSFT:

Use this value if you are running Windows and using a
Microsoft KDC.

You can also set this parameter by using the KRB5CCNAME
environment variable, but the value set in the sqlnet.ora file takes
precedence over the value set in KRB5CCNAME.

Example: SQLNET.KERBEROS5_CC_NAME=/usr/tmp/krbcache

Parameter: SQLNET.KERBEROS5_CLOCKSKEW=number_of_seconds_accept
ed_as_network_delay

Description: This parameter specifies how many seconds can pass before a
Kerberos credential is considered out-of-date. It is used when a
credential is actually received by either a client or a database server.
An Oracle database server also uses it to decide if a credential needs
to be stored to protect against a replay attack. The default is 300
seconds.

Example: SQLNET.KERBEROS5_CLOCKSKEW=1200

Parameter: SQLNET.KERBEROS5_CONF=pathname_to_Kerberos_
configuration_file

Description: This parameter specifies the complete path name to the Kerberos
configuration file. The configuration file contains the realm for the
default KDC (key distribution center) and maps realms to KDC
hosts. The default is operating system-dependent. For UNIX, it is
/krb5/krb.conf.

Example: SQLNET.KERBEROS5_CONF=/krb/krb.conf

Enabling Kerberos Authentication

Configuring Kerberos Authentication 7-7

Support for Credential Cache Type 4 Format
Oracle Database now supports and recognizes the credential cache type 4 format. This
feature is useful for those environments that use newer versions of MIT Kerberos 5
(1.3.x and above) utilities.

To use this feature, you need to set the following parameter in the sqlnet.ora file:

SQLNET.KERBEROS5_CONF_MIT = TRUE

Your Kerberos configuration file (krb5.conf) should have the following settings:

...
[libdefaults]
...
kdc_timesync = 1
ccache_type = 4

Task 8: Create a Kerberos User
To create Oracle users that Kerberos can authenticate, perform this task on the
Kerberos authentication server where the administration tools are installed. The realm
must already exist.

Run /krb5/admin/kadmin.local as root to create a new Kerberos user, such as
krbuser.

Parameter: SQLNET.KERBEROS5_CONF_MIT=[TRUE|FALSE]

Description: This parameter specifies whether the new MIT Kerberos
configuration format is used. If the value is set to TRUE, it will parse
the file according to the new configuration format rules. When the
value is set to FALSE, the default (non-MIT) configuration is used.
The default is FALSE.

Example: SQLNET.KERBEROS5_CONF_MIT=False

Parameter: SQLNET.KERBEROS5_KEYTAB=
pathname_to_Kerberos_principal/key_table

Description: This parameter specifies the complete path name to the Kerberos
principal/secret key mapping file. It is used by the Oracle database
server to extract its key and decrypt the incoming authentication
information from the client. The default is operating
system-dependent. For UNIX, it is /etc/v5srvtab.

Example: SQLNET.KERBEROS5_KEYTAB=/etc/v5srvtab

Parameter: SQLNET.KERBEROS5_REALMS=
pathname_to_Kerberos_realm_translation_file

Description: This parameter specifies the complete path name to the Kerberos
realm translation file. The translation file provides a mapping from a
host name or domain name to a realm. The default is operating
system-dependent. For UNIX, it is /etc/krb.realms.

Example: SQLNET.KERBEROS5_REALMS=/krb5/krb.realms

Note: The utility names in this section are executable programs.
However, the Kerberos user name krbuser and realm
EXAMPLE.COM are examples only. They can vary among systems.

Attribute Description

Utilities for the Kerberos Authentication Adapter

7-8 Oracle Database Advanced Security Administrator's Guide

The following example is UNIX-specific:

./kadmin.local
kadmin.local: addprinc krbuser
Enter password for principal: "krbuser@EXAMPLE.COM": (password does not display)
Re-enter password for principal: "krbuser@EXAMPLE.COM": (password does not
display)
kadmin.local: exit

Task 9: Create an Externally Authenticated Oracle User
Run SQL*Plus on the Oracle database server to create the Oracle user that corresponds
to the Kerberos user. In the following example, OS_AUTHENT_PREFIX is set to null
(""). The Oracle user name is in uppercase enclosed in double quotation marks as
shown in the following example:

SQL> CONNECT / AS SYSDBA;
SQL> CREATE USER "KRBUSER@EXAMPLE.COM" IDENTIFIED EXTERNALLY;
SQL> GRANT CREATE SESSION TO "KRBUSER@EXAMPLE.COM";

If the user’s Kerberos principal name is longer than 30 characters, and up to 1024
characters, then create the user as follows:

SQL> CREATE USER db_user_name IDENTIFIED EXTERNALLY AS 'kerberos_principal_name'

For example:

SQL> CREATE USER KRBUSER IDENTIFIED EXTERNALLY AS 'KerberosUser@EXAMPLE.COM';

Task 10: Get an Initial Ticket for the Kerberos/Oracle User
Before you can connect to the database, you must ask the Key Distribution Center
(KDC) for an initial ticket. To do so, run the following on the client:

% okinit username

If, when making a database connection, a reference such as the following follows a
database link, you must use the forwardable flag (-f) option:

sqlplus /@oracle

Executing okinit -f enables credentials that can be used across database links. Run
the following commands on the Oracle client:

% okinit -f
Password for krbuser@EXAMPLE.COM:password

Utilities for the Kerberos Authentication Adapter
Three utilities are shipped with the Oracle Kerberos authentication adapter. These
utilities are intended for use on an Oracle client with Oracle Kerberos authentication
support installed. Use the following utilities for these specified tasks:

■ Obtaining the Initial Ticket with the okinit Utility

■ Displaying Credentials with the oklist Utility

Note: The database administrator should ensure that two database
users are not identified externally by the same Kerberos principal
name.

Utilities for the Kerberos Authentication Adapter

Configuring Kerberos Authentication 7-9

■ Removing Credentials from the Cache File with the okdstry Utility

Obtaining the Initial Ticket with the okinit Utility
The okinit utility obtains and caches Kerberos tickets. This utility is typically used to
obtain the ticket-granting ticket, using a password entered by the user to decrypt the
credential from the key distribution center (KDC). The ticket-granting ticket is then
stored in the user's credential cache.

The options available with okinit are listed in Table 7–1:

Displaying Credentials with the oklist Utility
Run the oklist utility to display the list of tickets held. Available oklist options are
listed in Table 7–2:

Table 7–1 Options for the okinit Utility

Option Description

-f Ask for a forwardable ticket-granting ticket. This option is
necessary to follow database links.

-l Specify the lifetime of the ticket-granting ticket and all
subsequent tickets. By default, the ticket-granting ticket is
good for eight (8) hours, but shorter or longer-lived credentials
may be desired. Note that the KDC can ignore this option or
put site-configured limits on what can be specified. The
lifetime value is a string that consists of a number qualified by
w (weeks), d (days), h (hours), m (minutes), or s (seconds), as
in the following example:

okinit -l 2wld6h20m30s

The example requests a ticket-granting ticket that has a life
time of 2 weeks, 1 day, 6 hours, 20 minutes, and 30 seconds.

-c Specify an alternative credential cache. For UNIX, the default
is /tmp/krb5cc_uid. You can also specify the alternate
credential cache by using the SQLNET.KERBEROS5_CC_NAME
parameter in the sqlnet.ora file.

-e Specifies a number representing the Kerberos encryption type
to use.

This option can be used to request a particular Kerberos
encryption type key for the session. If you specify more than
one encryption type, then the KDC chooses the common and
strongest encryption type from the list.

The following values are allowed:

■ 1 for DES-CBC-CRC

■ 3 for DES-CBC-MD5

■ 16 for DES3-CBC-SHA1

■ 18 for AES256-CTS

■ 23 for RC4-HMAC

The following example requests for the DES-CBC-CRC and
DES3-CBC-SHA1 encryption types:

okinit -e 1 -e 16 krbuser@REALM

Note that you can repeat the option to request multiple
encryption types.

-? List command line options.

Configuring Interoperability with a Windows 2000 Domain Controller KDC

7-10 Oracle Database Advanced Security Administrator's Guide

The show flag option (-f) displays additional information, as shown in the following
example:

% oklist -f
27-Jul-1999 21:57:51 28-Jul-1999 05:58:14
krbtgt/EXAMPLE.COM@EXAMPLE.COM
Flags: FI

Removing Credentials from the Cache File with the okdstry Utility
Use the okdstry utility to remove credentials from the credentials cache file:

$ okdstry -f

where the -f command option lets you specify an alternative credential cache. For
UNIX, the default is /tmp/krb5cc_uid. You can also specify the alternate credential
cache by using the SQLNET.KRB5_CC_NAME parameter in the sqlnet.ora file.

Connecting to an Oracle Database Server Authenticated by Kerberos
You can now connect to an Oracle database server without using a user name or
password. Enter a command similar to the following:

$ sqlplus /@net_service_name

where net_service_name is an Oracle Net Services service name. For example:

$ sqlplus /@oracle_dbname

Configuring Interoperability with a Windows 2000 Domain Controller KDC
Oracle Advanced Security, which complies with MIT Kerberos, can interoperate with
tickets that are issued by a Kerberos Key Distribution Center (KDC) on a Windows
2000 domain controller to enable Kerberos authentication with an Oracle database. To
configure Kerberos authentication that uses a Windows 2000 domain controller KDC,
perform the following tasks:

Table 7–2 Options for the oklist Utility

Option Description

-f Show flags with credentials. Relevant flags are:

■ I, credential is a ticket-granting ticket

■ F, credential is forwardable

■ f, credential is forwarded.

-c Specify an alternative credential cache. In UNIX, the default is
/tmp/krb5cc_uid. The alternate credential cache can also be
specified by using the SQLNET.KERBEROS5_CC_NAME
parameter in the sqlnet.ora file.

-k List the entries in the service table (default /etc/v5srvtab)
on UNIX. The alternate service table can also be specified by
using the SQLNET.KERBEROS5_KEYTAB parameter in the
sqlnet.ora file.

See Also: Chapter 1, "Introduction to Oracle Advanced Security"
and Oracle Database Heterogeneous Connectivity User's Guide for
information about external authentication

Configuring Interoperability with a Windows 2000 Domain Controller KDC

Configuring Kerberos Authentication 7-11

■ Task 1: Configure an Oracle Kerberos Client to Interoperate with a Windows 2000
Domain Controller KDC

■ Task 2: Configure a Windows 2000 Domain Controller KDC to Interoperate with
an Oracle Client

■ Task 3: Configure an Oracle Database to Interoperate with a Windows 2000
Domain Controller KDC

■ Task 4: Obtain an Initial Ticket for the Kerberos/Oracle User

Task 1: Configure an Oracle Kerberos Client to Interoperate with a Windows 2000
Domain Controller KDC

The following steps must be performed on the Oracle Kerberos client.

Step 1: Create the Client Kerberos Configuration Files to Use a Windows Domain
Controller KDC
Create the following Kerberos client configuration files that refer to the Windows 2000
domain controller as the Kerberos KDC. In the examples that follow, the Windows
2000 domain controller is running on a node named sales3854.us.example.com.

■ krb.conf file

For example:

SALES3854.US.EXAMPLE.COM
SALES3854.US.EXAMPLE.COM sales3854.us.example.com admin server

■ krb5.conf file

For example:

[libdefaults]
default_realm=SALES.US.EXAMPLE.COM
[realms]
SALES.US.EXAMPLE.COM= {

kdc=sales3854.us.example.com:88
}
[domain_realm]
.us.example.com=SALES.US.EXAMPLE.COM

■ krb5.realms file

For example:

us.example.com SALES.US.EXAMPLE.COM

Step 2: Specify the Oracle Configuration Parameters in the sqlnet.ora File
Configuring an Oracle client to interoperate with a Windows 2000 domain controller
KDC uses the same sqlnet.ora file parameters that are listed in "Step 1: Configure
Kerberos on the Client and on the Database Server" on page 7-4.

Set the following parameters in the sqlnet.ora file on the client:

SQLNET.KERBEROS5_CONF=pathname_to_Kerberos_configuration_file
SQLNET.KERBEROS5_CONF_MIT=TRUE
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=Kerberos_service_name
SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5)

Configuring Interoperability with a Windows 2000 Domain Controller KDC

7-12 Oracle Database Advanced Security Administrator's Guide

Step 3: Specify the Listening Port Number
The Windows 2000 domain controller KDC listens on UDP/TCP port 88. Ensure that
the system file entry for kerberos5 is set to UDP/TCP port 88 as follows:

For the UNIX environment, ensure that the first kerberos5 entry in the
/etc/services file is set to 88.

Task 2: Configure a Windows 2000 Domain Controller KDC to Interoperate with an
Oracle Client

The following steps must be performed on the Windows 2000 domain controller.

Step 1: Create the User
Create a new user for the Oracle client in Microsoft Active Directory.

Step 2: Create the Oracle Database Principal
1. Create a new user for the Oracle database in Microsoft Active Directory.

For example, if the Oracle database runs on the host
sales3854.us.example.com, then use Active Directory to create a user with
the user name sales3854.us.example.com and the password oracle.

1. Use the Ktpass command line utility to extract the keytab file with the following
syntax:

Ktpass -princ service/hostname@NT-DNS-REALM-NAME -mapuser account -pass
password -out keytab.file

Using the database user created in the previous step, the following is an example
of Ktpass usage:

C:> Ktpass -princ oracle/sales3854.us.example.com@SALES.US.COM -mapuser
sales3854 -pass oracle -out C:\temp\v5srvtab

This utility is part of the Windows 2000 Support Tools and can be found on the
Windows 2000 distribution media in the
\support\reskit\netmgmt\security folder.

Note: Ensure that the SQLNET.KERBEROS5_CONF_MIT
parameter is set to TRUE because the Windows 2000 operating
system is designed to interoperate only with security services that
are based on MIT Kerberos version 5.

See Also: Microsoft documentation for information about how to
create users in Active Directory.

Note: Do not create a user as host/hostname.dns.com, such as
oracle/sales3854.us.example.com, in Active Directory.
Microsoft's KDC does not support multipart names like an MIT
KDC does. An MIT KDC allows multipart names to be used for
service principals because it treats all principals as user names.
However, Microsoft's KDC does not.

Configuring Interoperability with a Windows 2000 Domain Controller KDC

Configuring Kerberos Authentication 7-13

2. Copy the extracted keytab file to the host computer where the Oracle database is
installed.

For example, the keytab that was created in the previous step can be copied to
/krb5/v5svrtab.

Task 3: Configure an Oracle Database to Interoperate with a Windows 2000 Domain
Controller KDC

The following steps must be performed on the host computer where the Oracle
database is installed.

Step 1: Set Configuration Parameters in the sqlnet.ora File
Specify values for the following parameters in the sqlnet.ora file for the database
server:

SQLNET.KERBEROS5_CONF=pathname_to_Kerberos_configuration_file
SQLNET.KERBEROS5_KEYTAB=pathname_to_Kerberos_principal/key_table
SQLNET.KERBEROS5_CONF_MIT=TRUE
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=Kerberos_service_name
SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5)

Step 2: Create an Externally Authenticated Oracle User
Follow the task information for "Task 9: Create an Externally Authenticated Oracle
User" on page 7-8 to create an externally authenticated Oracle user. Ensure that the
username is created in all uppercase characters. For example,
ORAKRB@SALES.US.EXAMPLE.COM.

Task 4: Obtain an Initial Ticket for the Kerberos/Oracle User
Before a client can connect to the database, the client must request an initial ticket. To
request an initial ticket, follow the task information for "Task 10: Get an Initial Ticket
for the Kerberos/Oracle User" on page 7-8.

See Also: Detailed information about Windows 2000
interoperability with Kerberos 5 that is available at the following
URL:

http://technet.microsoft.com/hi-in/windowsserver/2000/b
b735396(en-us).aspx

Note: Ensure that the SQLNET.KERBEROS5_CONF_MIT
parameter is set to TRUE because the Windows 2000 operating
system is designed to interoperate only with security services that
are based on MIT Kerberos version 5.

See Also: "Task 7: Configure Kerberos Authentication" on
page 7-4 for information about using Oracle Net Manager to set the
sqlnet.ora file parameters.

Note: The user does not need to explicitly request for an initial ticket,
using the okinit command, when using the Windows native cache.

If the Oracle client is running on Windows 2000 or later, the Kerberos
ticket is automatically retrieved when the user logs in to Windows.

Troubleshooting

7-14 Oracle Database Advanced Security Administrator's Guide

Troubleshooting
This section lists some common configuration problems and explains how to resolve
them.

■ If you cannot get your ticket-granting ticket using okinit:

– Ensure that the default realm is correct by examining the krb.conf file.

– Ensure that the KDC is running on the host specified for the realm.

– Ensure that the KDC has an entry for the user principal and that the
passwords match.

– Ensure that the krb.conf and krb.realms files are readable by Oracle.

– Ensure that the TNS_ADMIN environment variable is pointing to the directory
containing the sqlnet.ora configuration file.

■ If you have an initial ticket but still cannot connect:

– After trying to connect, check for a service ticket.

– Check that the sqlnet.ora file on the database server side has a service
name that corresponds to a service known by Kerberos.

– Check that the clocks on all systems involved are set to times that are within a
few minutes of each other or change the SQLNET.KERBEROS5_CLOCKSKEW
parameter in the sqlnet.ora file.

■ If you have a service ticket and you still cannot connect:

– Check the clocks on the client and database server.

– Check that the v5srvtab file exists in the correct location and is readable by
Oracle. Remember to set the sqlnet.ora parameters.

– Check that the v5srvtab file has been generated for the service named in the
sqlnet.ora file on the database server side.

■ If everything seems to work fine, but then you issue another query and it fails:

– Check that the initial ticket is forwardable. You must have obtained the initial
ticket by running the okinit utility.

– Check the expiration date on the credentials. If the credentials have expired,
then close the connection and run okinit to get a new initial ticket.

See Also: Microsoft documentation for details on the
Kerbtray.exe utility, which can be used to display Kerberos ticket
information for a system

Configuring Secure Sockets Layer Authentication 8-1

8
Configuring Secure Sockets Layer

Authentication

This chapter describes how to configure and use the Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) protocols which are supported by Oracle Advanced
Security. It contains the following topics:

■ SSL and TLS in an Oracle Environment

■ Public Key Infrastructure in an Oracle Environment

■ SSL Combined with Other Authentication Methods

■ SSL and Firewalls

■ SSL Usage Issues

■ Enabling SSL

■ Troubleshooting SSL

■ Certificate Validation with Certificate Revocation Lists

■ Configuring Your System to Use Hardware Security Modules

SSL and TLS in an Oracle Environment
Secure Sockets Layer (SSL) is an industry standard protocol originally designed by
Netscape Communications Corporation for securing network connections. SSL uses
RSA public key cryptography in conjunction with symmetric key cryptography to
provide authentication, encryption, and data integrity.

This section discusses the following topics:

■ Difference between SSL and TLS

■ Using SSL

■ How SSL Works in an Oracle Environment: The SSL Handshake

Difference between SSL and TLS
Although SSL was primarily developed by Netscape Communications Corporation,
the Internet Engineering Task Force (IETF) took over development of it, and renamed
it Transport Layer Security (TLS). Essentially, TLS is an incremental improvement to
SSL version 3.0.

SSL and TLS in an Oracle Environment

8-2 Oracle Database Advanced Security Administrator's Guide

Using SSL
Oracle Advanced Security supports authentication by using digital certificates over
SSL in addition to the native encryption and data integrity capabilities of these
protocols.

By using Oracle Advanced Security SSL functionality to secure communications
between clients and servers, you can

■ Use SSL to encrypt the connection between clients and servers

■ Authenticate any client or server, such as Oracle Application Server 10g, to any
Oracle database server that is configured to communicate over SSL

You can use SSL features by themselves or in combination with other authentication
methods supported by Oracle Advanced Security. For example, you can use the
encryption provided by SSL in combination with the authentication provided by
Kerberos. SSL supports any of the following authentication modes:

■ Only the server authenticates itself to the client

■ Both client and server authenticate themselves to each other

■ Neither the client nor the server authenticates itself to the other, thus using the SSL
encryption feature by itself

How SSL Works in an Oracle Environment: The SSL Handshake
When a network connection over SSL is initiated, the client and server perform an SSL
handshake that includes the following steps:

■ The client and server establish which cipher suites to use. This includes which
encryption algorithms are used for data transfers.

■ The server sends its certificate to the client, and the client verifies that the server's
certificate was signed by a trusted CA. This step verifies the identity of the server.

■ Similarly, if client authentication is required, the client sends its own certificate to
the server, and the server verifies that the client's certificate was signed by a
trusted CA.

See Also: The TLS Protocol Version 1.0 [RFC 2246] at the IETF Web
site, which can be found at:

http://www.ietf.org

Note: To simplify discussion, this chapter uses the term SSL where
either SSL or TLS may be appropriate because SSL is the most
widely recognized term. However, where distinctions occur
between how you use or configure these protocols, this chapter
specifies what is appropriate for either SSL or TLS.

See Also:

■ The SSL Protocol, version 3.0, published by the Internet
Engineering Task Force, for a more detailed discussion of SSL

■ Chapter 1, "Introduction to Oracle Advanced Security", for
more information about authentication methods

Public Key Infrastructure in an Oracle Environment

Configuring Secure Sockets Layer Authentication 8-3

■ The client and server exchange key information using public key cryptography.
Based on this information, each generates a session key. All subsequent
communications between the client and the server is encrypted and decrypted by
using this session key and the negotiated cipher suite.

The authentication process consists of the following steps:

1. On a client, the user initiates an Oracle Net connection to the server by using SSL.

2. SSL performs the handshake between the client and the server.

3. If the handshake is successful, the server verifies that the user has the appropriate
authorization to access the database.

Public Key Infrastructure in an Oracle Environment
A public key infrastructure (PKI) is a substrate of network components that provide a
security underpinning, based on trust assertions, for an entire organization. A PKI
exists so that disparate network entities can access its security services, which use
public-key cryptography on an as-needed basis. Oracle provides a complete PKI that is
based on RSA Security, Inc., Public-Key Cryptography Standards, and which
interoperates with Oracle servers and clients.

About Public Key Cryptography
Traditional private-key or symmetric-key cryptography requires a single, secret key
that is shared by two or more parties to a secure communication. This key is used to
both encrypt and decrypt secure messages sent between the parties, requiring prior,
secure distribution of the key to each party. The problem with this method is that it is
difficult to securely transmit and store the key.

Public-key cryptography provides a solution to this problem, by employing public
and private key pairs and a secure method for key distribution. The freely available
public key is used to encrypt messages that can only be decrypted by the holder of the
associated private key. The private key is securely stored, together with other security
credentials, in an encrypted container called a wallet.

Public-key algorithms can guarantee the secrecy of a message, but they do not
necessarily guarantee secure communications because they do not verify the identities
of the communicating parties. To establish secure communications, it is important to
verify that the public key used to encrypt a message does in fact belong to the target
recipient. Otherwise, a third party can potentially eavesdrop on the communication
and intercept public key requests, substituting its own public key for a legitimate key
(the man-in-the-middle attack).

In order to avoid such an attack, it is necessary to verify the owner of the public key, a
process called authentication. Authentication can be accomplished through a
certificate authority (CA), which is a third party that is trusted by both of the
communicating parties.

The CA issues public key certificates that contain an entity's name, public key, and
certain other security credentials. Such credentials typically include the CA name, the
CA signature, and the certificate effective dates (From Date, To Date).

The CA uses its private key to encrypt a message, while the public key is used to
decrypt it, thus verifying that the message was encrypted by the CA. The CA public
key is well known and does not have to be authenticated each time it is accessed. Such
CA public keys are stored in wallets.

Public Key Infrastructure in an Oracle Environment

8-4 Oracle Database Advanced Security Administrator's Guide

Public Key Infrastructure Components in an Oracle Environment
Public key infrastructure (PKI) components in an Oracle environment include the
following:

■ Certificate Authority

■ Certificates

■ Certificate Revocation Lists

■ Wallets

■ Hardware Security Modules

Certificate Authority
A certificate authority (CA) is a trusted third party that certifies the identity of entities,
such as users, databases, administrators, clients, and servers. When an entity requests
certification, the CA verifies its identity and grants a certificate, which is signed with
the CA's private key.

Different CAs may have different identification requirements when issuing certificates.
Some CAs may verify a requester's identity with a driver's license, some may verify
identity with the requester's fingerprints, while others may require that requesters
have their certificate request form notarized.

The CA publishes its own certificate, which includes its public key. Each network
entity has a list of trusted CA certificates. Before communicating, network entities
exchange certificates and check that each other's certificate is signed by one of the CAs
on their respective trusted CA certificate lists.

Network entities can obtain their certificates from the same or different CAs. By
default, Oracle Advanced Security automatically installs trusted certificates from
VeriSign, RSA, Entrust, and GTE CyberTrust when you create a new wallet.

Oracle Application Server Certificate Authority, part of Oracle Identity Management
Infrastructure, is a new Oracle PKI component available in Oracle Application Server
10g (9.0.4).

Certificates
A certificate is created when an entity's public key is signed by a trusted certificate
authority (CA). A certificate ensures that an entity's identification information is
correct and that the public key actually belongs to that entity.

A certificate contains the entity's name, public key, and an expiration date, as well as a
serial number and certificate chain information. It can also contain information about
the privileges associated with the certificate.

When a network entity receives a certificate, it verifies that it is a trusted certificate,
that is, one that has been issued and signed by a trusted certificate authority. A
certificate remains valid until it expires or until it is revoked.

Certificate Revocation Lists
Typically, when a CA signs a certificate binding a public key pair to a user identity, the
certificate is valid for a specified period of time. However, certain events, such as user
name changes or compromised private keys, can render a certificate invalid before the
validity period expires. When this happens, the CA revokes the certificate and adds its
serial number to a Certificate Revocation List (CRL). The CA periodically publishes

See Also: "Wallets" on page 8-5

Public Key Infrastructure in an Oracle Environment

Configuring Secure Sockets Layer Authentication 8-5

CRLs to alert the user population when it is no longer acceptable to use a particular
public key to verify its associated user identity.

When servers or clients receive user certificates in an Oracle environment, they can
validate the certificate by checking its expiration date, signature, and revocation status.
Certificate revocation status is checked by validating it against published CRLs. If
certificate revocation status checking is turned on, then the server searches for the
appropriate CRL depending on how this feature has been configured. The server
searches for CRLs in the following locations:

1. Oracle Internet Directory

2. CRL Distribution Point, a location specified in the CRL Distribution Point (CRL
DP) X.509, version 3, certificate extension when the certificate is issued.

Wallets
A wallet is a container that is used to store authentication and signing credentials,
including private keys, certificates, and trusted certificates needed by SSL. In an Oracle
environment, every entity that communicates over SSL must have a wallet containing
an X.509 version 3 certificate, private key, and list of trusted certificates, with the
exception of Diffie-Hellman.

Security administrators use Oracle Wallet Manager to manage security credentials on
the server. Wallet owners use it to manage security credentials on clients. Specifically,
you use Oracle Wallet Manager to do the following:

■ Generate a public-private key pair and create a certificate request

■ Store a user certificate that matches with the private key

■ Configure trusted certificates

Hardware Security Modules
Oracle Advanced Security uses these devices for the following functions:

■ Store cryptographic information, such as private keys

See Also: "Certificate Validation with Certificate Revocation
Lists" on page 8-23 for information about configuring and
managing this PKI component

Note: To use CRLs with other Oracle products, refer to the specific
product documentation. This implementation of certificate
validation with CRLs is only available in the Oracle Database 11g
Release 2 (11.2) SSL adapter.

Note: Installation of Oracle Advanced Security 11g Release 2 (11.2)
also installs Oracle Wallet Manager release 10.1.

See Also:

■ Chapter 9, "Using Oracle Wallet Manager"

■ "Creating a New Wallet" on page 9-8

■ "Managing Trusted Certificates" on page 9-20

SSL Combined with Other Authentication Methods

8-6 Oracle Database Advanced Security Administrator's Guide

■ Perform cryptographic operations to off load RSA operations from the server,
freeing the CPU to respond to other transactions

Cryptographic information can be stored on two types of hardware devices:

■ (Server-side) Hardware boxes where keys are stored in the box, but managed by
using tokens.

■ (Client-side) Smart card readers, which support storing private keys on tokens.

An Oracle environment supports hardware devices using APIs that conform to the
RSA Security, Inc., Public-Key Cryptography Standards (PKCS) #11 specification.

SSL Combined with Other Authentication Methods
You can configure Oracle Advanced Security to use SSL concurrently with database
user names and passwords, RADIUS, and Kerberos, which are discussed in the
following sections:

■ Architecture: Oracle Advanced Security and SSL

■ How SSL Works with Other Authentication Methods

Architecture: Oracle Advanced Security and SSL
Figure 1–4 on page 1-10, which displays the Oracle Advanced Security implementation
architecture, shows that Oracle Advanced Security operates at the session layer on top
of SSL and uses TCP/IP at the transport layer. This separation of functionality lets you
employ SSL concurrently with other supported protocols.

How SSL Works with Other Authentication Methods
Figure 8–1 illustrates a configuration in which SSL is used in combination with another
authentication method supported by Oracle Advanced Security.

Note: Currently, SafeNET and nCipher devices are certified with
Oracle Advanced Security

See Also: "Configuring Your System to Use Hardware Security
Modules" on page 8-32 for details configuration details.

See Also: Appendix A, "Data Encryption and Integrity
Parameters" for information about how to configure SSL with other
supported authentication methods, including an example of a
sqlnet.ora file with multiple authentication methods specified.

See Also: Oracle Database Net Services Administrator's Guide for
information about stack communications in an Oracle networking
environment

SSL and Firewalls

Configuring Secure Sockets Layer Authentication 8-7

Figure 8–1 SSL in Relation to Other Authentication Methods

In this example, SSL is used to establish the initial handshake (server authentication),
and an alternative authentication method is used to authenticate the client

1. The client seeks to connect to the Oracle database server.

2. SSL performs a handshake during which the server authenticates itself to the client
and both the client and server establish which cipher suite to use.

3. Once the SSL handshake is successfully completed, the user seeks access to the
database.

4. The Oracle database server authenticates the user with the authentication server
using a non-SSL authentication method such as Kerberos or RADIUS.

5. Upon validation by the authentication server, the Oracle database server grants
access and authorization to the user, and then the user can access the database
securely by using SSL.

SSL and Firewalls
Oracle Advanced Security supports two types of firewalls:

■ Application proxy-based firewalls, such as Network Associates Gauntlet, or Axent
Raptor.

■ Stateful packet inspection firewalls, such as Check Point Firewall-1, or Cisco PIX
Firewall.

When you enable SSL, stateful inspection firewalls behave like application proxy
firewalls because they do not decrypt encrypted packets.

Firewalls do not inspect encrypted traffic. When a firewall encounters data addressed
to an SSL port on an intranet server, it checks the target IP address against its access
rules and lets the SSL packet pass through to permitted SSL ports, rejecting all others.

With the Oracle Net Firewall Proxy kit, a product offered by some firewall vendors,
firewall applications can provide specific support for database network traffic. If the
proxy kit is implemented in the firewall, then the following processing takes place:

■ The Net Proxy (a component of the Oracle Net Firewall Proxy kit) determines
where to route its traffic.

■ The database listener requires access to a certificate in order to participate in the
SSL handshake. The listener inspects the SSL packet and identifies the target
database, returning the port on which the target database listens to the client. This
port must be designated as an SSL port.

See Also: "How SSL Works in an Oracle Environment: The SSL
Handshake" on page 8-2

2

3

5

1

Oracle
Client Oracle Server

Wallet

Authentication Server

4

SSL Usage Issues

8-8 Oracle Database Advanced Security Administrator's Guide

■ The client communicates on this server-designated port in all subsequent
connections.

SSL Usage Issues
Consider the following issues when using SSL:

■ SSL use enables secure communication with other Oracle products, such as Oracle
Internet Directory.

■ Because SSL supports both authentication and encryption, the client/server
connection is somewhat slower than the standard Oracle Net TCP/IP transport
(using native encryption).

■ Each SSL authentication mode requires configuration settings.

■ Multi-threaded clients currently cannot use SSL.

Enabling SSL
To enable SSL, perform the following tasks:

■ Task 1: Install Oracle Advanced Security and Related Products

■ Task 2: Configure SSL on the Server

■ Task 3: Configure SSL on the Client

■ Task 4: Log on to the Database

Task 1: Install Oracle Advanced Security and Related Products
Install Oracle Advanced Security on both the client and server. When you do this, the
Oracle Universal Installer automatically installs SSL libraries and Oracle Wallet
Manager on your computer.

Note:

■ U.S. government regulations prohibit double encryption.
Accordingly, if you configure Oracle Advanced Security to use
SSL encryption and another encryption method concurrently,
then the connection fails. You also cannot configure SSL
authentication concurrently with non-SSL authentication.

■ If you configure SSL encryption, you must disable non-SSL
encryption. To disable such encryption, refer to "Disabling
Oracle Advanced Security Authentication" on page 10-1.

See Also:

■ "Configuring Your System to Use Hardware Security Modules"
on page 8-32 for information about improving SSL performance
with hardware accelerators

■ "Enabling SSL" on page 8-8

See Also: Oracle Database platform-specific installation
documentation

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-9

Task 2: Configure SSL on the Server
During installation, Oracle sets defaults on both the Oracle database server and on the
Oracle client for all SSL parameters except the location of the Oracle wallet. To
configure SSL on the server, perform these steps:

■ Step 1: Confirm Wallet Creation on the Server

■ Step 2: Specify the Database Wallet Location on the Server

■ Step 3: Set the SSL Cipher Suites on the Server (Optional)

■ Step 4: Set the Required SSL Version on the Server (Optional)

■ Step 5: Set SSL Client Authentication on the Server (Optional)

■ Step 6: Set SSL as an Authentication Service on the Server (Optional)

■ Step 7: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server

Step 1: Confirm Wallet Creation on the Server
Before proceeding to the next step, you must confirm that a wallet has been created. To
confirm that your wallet is ready, open it by using Oracle Wallet Manager. The wallet
should contain a certificate with a status of Ready and auto login turned on. If auto
login is not on, then select it from the Wallet menu and save the wallet again. This
turns auto login on.

Step 2: Specify the Database Wallet Location on the Server
Use Oracle Net Manager to specify required configuration parameters for the server
(Refer to "Starting Oracle Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile. (Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced Security SSL
window is displayed. (Figure 8–5).

2. Click the SSL tab and select Configure SSL for: Server.

3. In the Wallet Directory box, enter the directory in which the Oracle wallet is
located or click Browse to find it by searching the file system.

Note that if you are configuring the database-to-directory SSL connection for
Enterprise User Security, then Database Configuration Assistant automatically
creates a database wallet while registering the database with the directory. You
must use that wallet to store the database PKI credentials for SSL-authenticated
Enterprise User Security.

See Also: Appendix B, "Authentication Parameters" for the
dynamic parameter names

See Also:

■ "Opening an Existing Wallet" on page 9-9

■ "Creating a New Wallet" on page 9-8

■ "Using Auto Login" on page 9-14

Enabling SSL

8-10 Oracle Database Advanced Security Administrator's Guide

1. Select File, Save Network Configuration.

The sqlnet.ora and listener.ora files are updated with the following
entries:

wallet_location =
 (SOURCE=
 (METHOD=File)
 (METHOD_DATA=
 (DIRECTORY=wallet_location)))

Step 3: Set the SSL Cipher Suites on the Server (Optional)
A cipher suite is a set of authentication, encryption, and data integrity algorithms used
for exchanging messages between network entities. During an SSL handshake, two
entities negotiate to see which cipher suite they will use when transmitting messages
back and forth.

When you install Oracle Advanced Security, the SSL cipher suites listed in Table 8–1
are set for you by default and negotiated in the order they are listed. You can override
the default order by setting the SSL_CIPHER_SUITES parameter. For example, if you
use Oracle Net Manager to add the cipher suite SSL_RSA_WITH_RC4_128_SHA, all
other cipher suites in the default setting are ignored.

You can prioritize the cipher suites. When the client negotiates with servers regarding
which cipher suite to use, it follows the prioritization you set. When you prioritize the
cipher suites, consider the following:

■ Compatibility. Server and client must be configured to use compatible cipher
suites for a successful connection.

■ Cipher priority and strength. Prioritize cipher suites starting with the strongest
and moving to the weakest to ensure the highest level of security possible.

■ The level of security you want to use. For example, triple-DES encryption is
stronger than DES

Important:

■ Use Oracle Wallet Manager to create the wallet. Refer to
"Creating a New Wallet" on page 9-8.

■ Use Oracle Net Manager to set the wallet location in the
sqlnet.ora file.

Ensure that you enter the same wallet location when you create it
and when you set the location in the sqlnet.ora file.

Note: The listener uses the wallet defined in the listener.ora
file. It can use any database wallet. When SSL is configured for a
server using Net Manager, the wallet location is entered into the
listener.ora and the sqlnet.ora files. The listener.ora
file is not relevant to the Oracle client.

To change the listener wallet location so that the listener has its own
wallet, you can edit listener.ora to enter the new location.

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-11

■ The impact on performance. For example, triple-DES encryption is slower than
DES.

Table 8–1 lists the SSL cipher suites supported in the current release of Oracle
Advanced Security. These cipher suites are set by default when you install Oracle
Advanced Security. The following table also lists the authentication, encryption, and
data integrity types each cipher suite uses.

To specify cipher suites for the server:

1. Click Add. A dialog box displays available cipher suites (Figure 8–2).

Notes: Regarding Diffie-Hellman anonymous authentication:

1. If you set the server to employ this cipher suite, then you must also set
the same cipher suite on the client. Otherwise, the connection fails.

2. If you use a cipher suite employing Diffie-Hellman anonymous, then you
must set the SSL_CLIENT_AUTHENTICATION parameter to FALSE. For
more information, refer to "Step 5: Set SSL Client Authentication on the
Server (Optional)" on page 8-13.

3. There is a known bug in which an OCI client requires a wallet even when
using a cipher suite with DH_ANON, which does not authenticate the
client.

Table 8–1 SSL Cipher Suites

Cipher Suites Authentication Encryption Data Integrity

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA-1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA-1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA-1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA-1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA-1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA-1

SSL_RSA_WITH_AES_128_CBC_SHA1

1 AES ciphers work with Transport Layer Security (TLS 1.0) only

RSA AES 128 CBC SHA-1

SSL_RSA_WITH_AES_256_CBC_SHA1 RSA AES 256 CBC SHA-1

Enabling SSL

8-12 Oracle Database Advanced Security Administrator's Guide

Figure 8–2 SSL Cipher Suites Window

1. Select a suite and click OK. The Cipher Suite Configuration list is updated
(Figure 8–3):

Figure 8–3 Oracle Advanced Security SSL Window (Server)

1. Use the up and down arrows to prioritize the cipher suites.

2. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CIPHER_SUITES= (SSL_cipher_suite1 [,SSL_cipher_suite2])

Step 4: Set the Required SSL Version on the Server (Optional)
You can set the SSL_VERSION parameter in the sqlnet.ora or the listener.ora
file. This parameter defines the version of SSL that must run on the systems with

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-13

which the server communicates. You can require these systems to use any valid
version. The default setting for this parameter in sqlnet.ora is undetermined,
which is set by selecting Any from the list in the SSL tab of the Oracle Advanced
Security window.

To set the SSL version for the server:

1. In the Require SSL Version list, the default is Any. Accept this default or select the
SSL version you want to use.

2. Select File, Save Network Configuration.

If you chose Any, then the sqlnet.ora file is updated with the following entry:

SSL_VERSION=UNDETERMINED

Step 5: Set SSL Client Authentication on the Server (Optional)
The SSL_CLIENT_AUTHENTICATION parameter in the sqlnet.ora file controls
whether the client is authenticated using SSL. The default value is TRUE.

You must set this parameter to FALSE if you are using a cipher suite that contains
Diffie-Hellman anonymous authentication (DH_anon). Also, you can set this
parameter to FALSE for the client to authenticate itself to the server by using any of
the non-SSL authentication methods supported by Oracle Advanced Security, such as
Kerberos or RADIUS.

To set SSL_CLIENT_AUTHENTICATION to FALSE on the server:

Note: SSL 2.0 is not supported on the server side.

Note: There is a known bug in which an OCI client requires a wallet
even when using a cipher suite with DH_ANON, which does not
authenticate the client.

Enabling SSL

8-14 Oracle Database Advanced Security Administrator's Guide

Figure 8–4 Oracle Advanced Security SSL Window (Server)

1. Deselect Require Client Authentication (Figure 8–4).

2. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CLIENT_AUTHENTICATION=FALSE

Step 6: Set SSL as an Authentication Service on the Server (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets
the SSL authentication service.

Set this parameter if you want to use SSL authentication in conjunction with another
authentication method supported by Oracle Advanced Security. For example, use this
parameter if you want the server to authenticate itself to the client by using SSL and
the client to authenticate itself to the server by using Kerberos.

To set the SQLNET.AUTHENTICATION_SERVICES parameter on the server:
Add TCP/IP with SSL (TCPS) to this parameter in the sqlnet.ora file by using a
text editor. For example, if you want to use SSL authentication in conjunction with
RADIUS authentication, set this parameter as follows:

 SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

If you do not want to use SSL authentication in conjunction with another
authentication method, then do not set this parameter.

Step 7: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server
Configure the listener with a TCP/IP with SSL listening endpoint in the
listener.ora file. Oracle recommends using port number 2484 for typical Oracle
Net clients.

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-15

Task 3: Configure SSL on the Client
To configure SSL on the client:

■ Step 1: Confirm Client Wallet Creation

■ Step 2: Configure Oracle Net Service Name to Include Server DNs and Use
TCP/IP with SSL on the Client

■ Step 3: Specify Required Client SSL Configuration (Wallet Location)

■ Step 4: Set the Client SSL Cipher Suites (Optional)

■ Step 5: Set the Required SSL Version on the Client (Optional)

■ Step 6: Set SSL as an Authentication Service on the Client (Optional)

Step 1: Confirm Client Wallet Creation
Before proceeding to the next step, you must confirm that a wallet has been created on
the client and that the client has a valid certificate.

Step 2: Configure Oracle Net Service Name to Include Server DNs and Use TCP/IP
with SSL on the Client
You must specify the server's distinguished name (DN) and TCPS as the protocol in
the client network configuration files to enable server DN matching and TCP/IP with
SSL connections. Server DN matching prevents the database server from faking its
identity to the client during connections by matching the server's global database
name against the DN from the server certificate.

You must manually edit the client network configuration files, tnsnames.ora and
listener.ora, to specify the server's DN and the TCP/IP with SSL protocol. The
tnsnames.ora file can be located on the client or in the LDAP directory. If it is

See Also:

■ Oracle Database Net Services Administrator's Guide for detailed
information about configuring the listener.ora file

■ "Certificate Validation with Certificate Revocation Lists" on
page 8-23 for information about configuring your system to
validate certificates with certificate revocation lists

See Also: Appendix B, "Authentication Parameters" for the
dynamic parameter names

Note: Oracle recommends that you use Oracle Wallet Manager to
remove the trusted certificate in your Oracle wallet associated with
each certificate authority that you do not use.

See Also:

■ Chapter 9, "Using Oracle Wallet Manager", for general
information about wallets

■ "Opening an Existing Wallet" on page 9-9, for information
about opening an existing wallet

■ "Creating a New Wallet" on page 9-8, for information about
creating a new wallet

Enabling SSL

8-16 Oracle Database Advanced Security Administrator's Guide

located on the client, then it typically resides in the same directory as the
listener.ora file. Depending on the operating system, these files reside in the
following directory locations:

■ (UNIX) $ORACLE_HOME/network/admin/

■ (Windows) ORACLE_BASE\ORACLE_HOME\network\admin\

To edit the tnsnames.ora and listener.ora files, use the following steps:

1. In the client tnsnames.ora file, add the SSL_SERVER_CERT_DN parameter and
specify the database server's DN as follows:

(SECURITY=
(SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=acme"))

The client uses this information to obtain the list of DNs it expects for each of the
servers, enforcing the server's DN to match its service name. Example 8–1 shows an
entry for the Finance database in the tnsnames.ora file.

Alternatively, the administrator can ensure that the common name (CN) portion of the
server's DN matches the service name.

1. In the client tnsnames.ora file, enter tcps as the PROTOCOL in the ADDRESS
parameter. This specifies that the client will use TCP/IP with SSL to connect to the
database that is identified in the SERVICE_NAME parameter. Example 8–1 also
shows an entry that specifies TCP/IP with SSL as the connecting protocol in the
tnsnames.ora file.

2. In the listener.ora file, enter tcps as the PROTOCOL in the ADDRESS
parameter. Example 8–2 shows an entry that specifies TCP/IP with SSL as the
protocol.

Example 8–1 Sample tnsnames.ora File with Server Certificate DN and TCP/IP with SSL
Specified

finance=
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS= (PROTOCOL = tcps) (HOST = finance_server) (PORT = 1575)))
(CONNECT_DATA=
(SERVICE_NAME= Finance.us.example.com))
(SECURITY=
(SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=acme"))

Example 8–2 Sample listener.ora File with TCP/IP with SSL Specified as the Protocol

LISTENER=
(DESCRIPTION_LIST=
(DESCRIPTION=
(ADDRESS= (PROTOCOL = tcps) (HOST = finance_server) (PORT = 1575))))

Step 3: Specify Required Client SSL Configuration (Wallet Location)
Use Oracle Net Manager to specify required configuration parameters for the client
(Refer to "Starting Oracle Net Manager" on page 2-2):

1. Navigate to the Oracle Advanced Security profile. (Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2) The Oracle Advanced Security SSL
window is displayed (Figure 8–5):

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-17

Figure 8–5 Oracle Advanced Security SSL Window (Client)

1. Click the SSL tab.

2. Select Configure SSL for: Client.

3. In the Wallet Directory box, enter the directory in which the Oracle wallet is
located, or click Browse to find it by searching the file system.

4. From the Match server X.509 name list, select one of the following options:

■ Yes: Requires that the server's distinguished name (DN) match its service
name. SSL ensures that the certificate is from the server and connections
succeed only if there is a match.

■ No (default): SSL checks for a match between the DN and the service name,
but does not enforce it. Connections succeed regardless of the outcome but an
error is logged if the match fails.

■ Let Client Decide: Enables the default.

5. Select File, Save Network Configuration.

The sqlnet.ora file on the client is updated with the following entries:

Note: This check can be made only when RSA ciphers are
selected, which is the default setting.

Note: The following alert is displayed when you select No:

Security Alert

Not enforcing the server X.509 name match allows a server to
potentially fake its identity. Oracle recommends selecting YES for
this option so that connections are refused when there is a
mismatch.

Enabling SSL

8-18 Oracle Database Advanced Security Administrator's Guide

SSL_CLIENT_AUTHENTICATION =TRUE
wallet_location =
 (SOURCE=
 (METHOD=File)
 (METHOD_DATA=
 (DIRECTORY=wallet_location)))

SSL_SERVER_DN_MATCH=(ON/OFF)

Step 4: Set the Client SSL Cipher Suites (Optional)
A cipher suite is a set of authentication, encryption, and data integrity algorithms used
for exchanging messages between network entities. During an SSL handshake, two
entities negotiate to see which cipher suite they will use when transmitting messages
back and forth.

When you install Oracle Advanced Security, the SSL cipher suites listed in Table 8–1
are set for you by default. This table lists them in the order they are tried when two
entities are negotiating a connection. You can override the default by setting the SSL_
CIPHER_SUITES parameter. For example, if you use Oracle Net Manager to add the
cipher suite SSL_RSA_WITH_RC4_128_SHA, all other cipher suites in the default
setting are ignored.

You can prioritize the cipher suites. When the client negotiates with servers regarding
which cipher suite to use, it follows the prioritization you set. When you prioritize the
cipher suites, consider the following:

■ The level of security you want to use. For example, triple-DES encryption is
stronger than DES.

■ The impact on performance. For example, triple-DES encryption is slower than
DES. Refer to "Configuring Your System to Use Hardware Security Modules" on
page 8-32 for information about using SSL hardware accelerators with Oracle
Advanced Security.

■ Administrative requirements. The cipher suites selected for a client must be
compatible with those required by the server. For example, in the case of an Oracle
Call Interface (OCI) user, the server requires the client to authenticate itself. You
cannot, in this case, use a cipher suite employing Diffie-Hellman anonymous
authentication, which disallows the exchange of certificates.

You typically prioritize cipher suites starting with the strongest and moving to the
weakest.

Table 8–1 lists the SSL cipher suites supported in the current release of Oracle
Advanced Security. These cipher suites are set by default when you install Oracle
Advanced Security. The table also lists the authentication, encryption, and data
integrity types each cipher suite uses.

See Also:

For information about the server match parameters:

■ "SSL X.509 Server Match Parameters" on page B-8

For information about using Oracle Net Manager to configure
TCP/IP with SSL:

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Net Services Reference

Enabling SSL

Configuring Secure Sockets Layer Authentication 8-19

To specify client cipher suites:

1. In the Cipher Suite Configuration region, click Add. A dialog box displays
available cipher suites as shown in (Figure 8–2).

2. Select a suite and click OK. The Cipher Suite Configuration list is updated as
shown in (Figure 8–6):

Figure 8–6 Oracle Advanced Security SSL Window (Client)

1. Use the up and down arrows to prioritize the cipher suites.

2. Select File, Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CIPHER_SUITES= (SSL_cipher_suite1 [,SSL_cipher_suite2])

Step 5: Set the Required SSL Version on the Client (Optional)
You can set the SSL_VERSION parameter in the sqlnet.ora file. This parameter
defines the version of SSL that must run on the systems with which the client
communicates. You can require these systems to use any valid version. The default
setting for this parameter in sqlnet.ora is undetermined, which is set by selecting
Any from the list in the SSL tab of the Oracle Advanced Security window. When Any
is selected, TLS 1.0 is tried first, then SSL 3.0, and SSL 2.0 are tried in that order. Ensure
that the client SSL version is compatible with the version the server uses.

To set the required SSL version for the client:

Note: If the SSL_CLIENT_AUTHENTICATION parameter is set to
true in the sqlnet.ora file, then disable all cipher suites that use
Diffie-Hellman anonymous authentication. Otherwise, the
connection fails.

Troubleshooting SSL

8-20 Oracle Database Advanced Security Administrator's Guide

1. In the Require SSL Version list, the default setting is Any. Accept this default or
select the SSL version you want to configure.

2. Select File, Save Network Configuration.

The sqlnet.ora file is updated. If you selected Any, then it is updated with the
following entry:

SSL_VERSION=UNDETERMINED

Step 6: Set SSL as an Authentication Service on the Client (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets
the SSL authentication service. Typically, the sqlnet.ora file is located in the same
directory as the other network configuration files. Depending on the platform, the
sqlnet.ora file is in the following directory location:

■ (UNIX) $ORACLE_HOME/network/admin

■ (Windows) ORACLE_BASE\ORACLE_HOME\network\admin\

Set the SQLNET.AUTHENTICATION_SERVICES parameter if you want to use SSL
authentication in conjunction with another authentication method supported by
Oracle Advanced Security. For example, use this parameter if you want the server to
authenticate itself to the client by using SSL and the client to authenticate itself to the
server by using RADIUS.

To set the client SQLNET.AUTHENTICATION_SERVICES parameter:
Add TCP/IP with SSL (TCPS) to this parameter in the sqlnet.ora file by using a text
editor. For example, if you want to use SSL authentication in conjunction with
RADIUS authentication, set this parameter as follows:

 SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

If you do not want to use SSL authentication in conjunction with another
authentication method, then do not set this parameter.

Task 4: Log on to the Database
If you are using SSL authentication for the client (SSL_CLIENT_
AUTHENTICATION=true in the listener.ora file), then launch SQL*Plus and enter
the following:

CONNECT/@net_service_name

If you are not using SSL authentication (SSL_CLIENT_AUTHENTICATION=false in
the listener.ora file), then launch SQL*Plus and enter the following:

CONNECT username@net_service_name
Enter password: password

Troubleshooting SSL
The following section lists the most common errors you may receive while using the
Oracle Advanced Security SSL adapter.

See Also: "Certificate Validation with Certificate Revocation
Lists" on page 8-23 for information about configuring the client for
certificate validation with certificate revocation lists

Troubleshooting SSL

Configuring Secure Sockets Layer Authentication 8-21

It may be necessary to enable Oracle Net tracing to determine the cause of an error. For
information about setting tracing parameters to enable Oracle Net tracing, refer to
Oracle Database Net Services Administrator's Guide.

ORA-28759: Failure to Open File
Cause: The system could not open the specified file. Typically, this error occurs
because the wallet cannot be found.

Action: Check the following:

■ Ensure that the correct wallet location is specified in the sqlnet.ora file.
This should be the same directory location where you saved the wallet.

■ Enable Oracle Net tracing to determine the name of the file that cannot be
opened and the reason.

■ Ensure that auto login was enabled when you saved the wallet. Refer to
"Using Auto Login" on page 9-14

ORA-28786: Decryption of Encrypted Private Key Failure
Cause: An incorrect password was used to decrypt an encrypted private key.
Frequently, this happens because an auto login wallet is not being used.

Action: Use Oracle Wallet Manager to turn the auto login feature on for the
wallet. Then save the wallet again. Refer to, "Using Auto Login" on page 9-14.

 If the auto login feature is not being used, then enter the correct password.

ORA-28858: SSL Protocol Error
Cause: This is a generic error that can occur during SSL handshake negotiation
between two processes.

Action: Enable Oracle Net tracing and attempt the connection again to produce
trace output. Then contact Oracle customer support with the trace output.

ORA-28859 SSL Negotiation Failure
Cause: An error occurred during the negotiation between two processes as part of
the SSL protocol. This error can occur when two sides of the connection do not
support a common cipher suite.

Action: Check the following:

■ Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match, or are compatible. For example, if the server accepts only
SSL 3.0 and the client accepts only TLS 1.0, then the SSL connection will fail.

■ Use Oracle Net Manager to check what cipher suites are configured on the
client and the server, and ensure that compatible cipher suites are set on both.

If the error still persists, then enable Oracle Net tracing and attempt the
connection again. Contact Oracle customer support with the trace output.

ORA-28862: SSL Connection Failed

See Also: "Step 4: Set the Client SSL Cipher Suites (Optional)" on
page 8-18 for details about setting compatible cipher suites on the
client and the server

Note: If you do not configure any cipher suites, then all available
cipher suites are enabled.

Troubleshooting SSL

8-22 Oracle Database Advanced Security Administrator's Guide

Cause: This error occurred because the peer closed the connection.

Action: Check the following:

■ Ensure that the correct wallet location is specified in the sqlnet.ora file so
the system can find the wallet.

■ Use Oracle Net Manager to ensure that cipher suites are set correctly in the
sqlnet.ora file. Sometimes this error occurs because the sqlnet.ora has
been manually edited and the cipher suite names are misspelled. Ensure that
case sensitive string matching is used with cipher suite names.

■ Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match or are compatible. Sometimes this error occurs because the
SSL version specified on the server and client do not match. For example, if
the server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the
SSL connection will fail.

■ For more diagnostic information, enable Oracle Net tracing on the peer.

ORA-28865: SSL Connection Closed
Cause: The SSL connection closed because of an error in the underlying transport
layer, or because the peer process quit unexpectedly.

Action: Check the following:

■ Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match, or are compatible. Sometimes this error occurs because the
SSL version specified on the server and client do not match. For example, if
the server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the
SSL connection will fail.

■ If you are using a Diffie-Hellman anonymous cipher suite and the SSL_
CLIENT_AUTHENTICATION parameter is set to true in the server's
listener.ora file, then the client does not pass its certificate to the server.
When the server does not receive the client's certificate, it (the server) cannot
authenticate the client so the connection is closed. To resolve this use another
cipher suite, or set this listener.ora parameter to false.

■ Enable Oracle Net tracing and check the trace output for network errors.

■ For details, refer to Actions listed for "ORA-28862: SSL Connection Failed" on
page 8-21

ORA-28868: Peer Certificate Chain Check Failed
Cause: When the peer presented the certificate chain, it was checked and that
check failed. This failure can be caused by a number of problems, including:

■ One of the certificates in the chain has expired.

■ A certificate authority for one of the certificates in the chain is not recognized
as a trust point.

■ The signature in one of the certificates cannot be verified.

Action: Refer to, "Opening an Existing Wallet" on page 9-9 to use Oracle Wallet
Manager to open your wallet and check the following:

■ Ensure that all of the certificates installed in your wallet are current (not
expired).

■ Ensure that a certificate authority's certificate from your peer's certificate chain
is added as a trusted certificate in your wallet. Refer to, "Importing a Trusted

Certificate Validation with Certificate Revocation Lists

Configuring Secure Sockets Layer Authentication 8-23

Certificate" on page 9-21 to use Oracle Wallet Manager to import a trusted
certificate.

ORA-28885: No certificate with the required key usage found.
Cause: Your certificate was not created with the appropriate X.509 version 3 key
usage extension.

Action: Use Oracle Wallet Manager to check the certificate's key usage. Refer to,
Table 9–1, " KeyUsage Values" on page 9-4.

ORA-29024: Certificate Validation Failure
Cause: The certificate sent by the other side could not be validated. This may
occur if the certificate has expired, has been revoked, or is invalid for any other
reason.

Action: Check the following:

■ Check the certificate to determine whether it is valid. If necessary, get a new
certificate, inform the sender that her certificate has failed, or resend.

■ Check to ensure that the server's wallet has the appropriate trust points to
validate the client's certificate. If it does not, then use Oracle Wallet Manager
to import the appropriate trust point into the wallet. Refer to, "Importing a
Trusted Certificate" on page 9-21 for details.

■ Ensure that the certificate has not been revoked and that certificate revocation
list (CRL) checking is turned on. For details, refer to "Configuring Certificate
Validation with Certificate Revocation Lists" on page 8-25

ORA-29223: Cannot Create Certificate Chain
Cause: A certificate chain cannot be created with the existing trust points for the
certificate being installed. Typically, this error is returned when the peer does not
give the complete chain and you do not have the appropriate trust points to
complete it.

Action: Use Oracle Wallet Manager to install the trust points that are required to
complete the chain. Refer to,"Importing a Trusted Certificate" on page 9-21

Certificate Validation with Certificate Revocation Lists
The process of determining whether a given certificate can be used in a given context
is referred to as certificate validation. Certificate validation includes determining that

■ A trusted certificate authority (CA) has digitally signed the certificate

■ The certificate's digital signature corresponds to the independently-calculated
hash value of the certificate itself and the certificate signer's (CA's) public key

■ The certificate has not expired

■ The certificate has not been revoked

The SSL network layer automatically performs the first three validation checks, but
you must configure certificate revocation list (CRL) checking to ensure that certificates
have not been revoked. CRLs are signed data structures that contain a list of revoked
certificates. They are usually issued and signed by the same entity who issued the
original certificate. (Refer to, certificate revocation lists)

This section contains the following topics:

■ What CRLs Should You Use?

■ How CRL Checking Works

Certificate Validation with Certificate Revocation Lists

8-24 Oracle Database Advanced Security Administrator's Guide

■ Configuring Certificate Validation with Certificate Revocation Lists

■ Certificate Revocation List Management

■ Troubleshooting Certificate Validation

What CRLs Should You Use?
You should have CRLs for all of the trust points that you honor. The trust points are
the trusted certificates from a third party identity that is qualified with a level of trust.
Typically, the certificate authorities you trust are called trust points.

How CRL Checking Works
Certificate revocation status is checked against CRLs, which are located in file system
directories, Oracle Internet Directory, or downloaded from the location specified in the
CRL Distribution Point (CRL DP) extension on the certificate. Typically, CRL
definitions are valid for a few days. If you store your CRLs on the local file system or
in the directory, then you must update them regularly. If you use CRL DPs then CRLs
are downloaded each time a certificate is used, so there is no need to regularly refresh
the CRLs.

The server searches for CRLs in the following locations in the order listed. When the
system finds a CRL that matches the certificate CA's DN, it stops searching.

1. Local file system

The system checks the sqlnet.ora file for the SSL_CRL_FILE parameter first,
followed by the SSL_CRL_PATH parameter. If these two parameters are not
specified, then the system checks the wallet location for any CRLs.

2. Oracle Internet Directory

If the server cannot locate the CRL on the local file system and directory
connection information has been configured in an ldap.ora file, then the server
searches in the directory. It searches the CRL subtree by using the CA's
distinguished name (DN) and the DN of the CRL subtree.

The server must have a properly configured ldap.ora file to search for CRLs in
the directory. It cannot use the Domain Name System (DNS) discovery feature of
Oracle Internet Directory. Also note that if you store CRLs in the directory, then
you must use the orapki utility to periodically update them. For details, refer to
"Uploading CRLs to Oracle Internet Directory" on page 8-28

3. CRL DP

If the CA specifies a location in the CRL DP X.509, version 3, certificate extension
when the certificate is issued, then the appropriate CRL that contains revocation
information for that certificate is downloaded. Currently, Oracle Advanced
Security supports downloading CRLs over HTTP and LDAP.

Note: Note: if you store CRLs on your local file system, then you
must use the orapki utility to periodically update them. Fro more
information, refer to "Renaming CRLs with a Hash Value for
Certificate Validation" on page 8-27

Certificate Validation with Certificate Revocation Lists

Configuring Secure Sockets Layer Authentication 8-25

Configuring Certificate Validation with Certificate Revocation Lists
The SSL_CERT_REVOCATION parameter must be set to REQUIRED or REQUESTED in
the sqlnet.ora file to enable certificate revocation status checking. By default this
parameter is set to NONE indicating that certificate revocation status checking is turned
off.

To enable certificate revocation status checking for the client or the server:

Figure 8–7 Oracle Advanced Security SSL Window with Certificate Revocation Checking
Selected

Following steps describe how to configure Certificate Validation with Certificate
revocation Lists:

1. Select one of the following options from the Revocation Check list (refer to,
Figure 8–7):

■ REQUIRED

Note:

■ For performance reasons, only user certificates are checked.

■ Oracle recommends that you store CRLs in the directory rather
than the local file system.

Note: If you want to store CRLs on your local file system or in
Oracle Internet Directory, then you must use the command line
utility, orapki, to rename CRLs in your file system or upload them
to the directory. Refer to, "Certificate Revocation List Management"
on page 8-27 for information about using orapki.

Certificate Validation with Certificate Revocation Lists

8-26 Oracle Database Advanced Security Administrator's Guide

Requires certificate revocation status checking. The SSL connection is rejected
if a certificate is revoked or no CRL is found. SSL connections are accepted
only if it can be verified that the certificate has not been revoked.

■ REQUESTED

Performs certificate revocation status checking if a CRL is available. The SSL
connection is rejected if a certificate is revoked. SSL connections are accepted if
no CRL is found or if the certificate has not been revoked.

1. (Optional) If CRLs are stored on your local file system, then set one or both of the
following fields that specify where they are stored. These fields are available only
when Revocation Check is set to REQUIRED or REQUESTED.

■ Certificate Revocation Lists Path:

Enter the path to the directory where CRLs are stored or click Browse to find it
by searching the file system. Specifying this path sets the SSL_CRL_PATH
parameter in the sqlnet.ora file. If a path is not specified for this parameter,
then the default is the wallet directory. Both DER-encoded (binary format) and
PEM-encoded (BASE64) CRLs are supported.

■ Certificate Revocation Lists File:

Enter the path to a comprehensive CRL file (where PEM-encoded (BASE64)
CRLs are concatenated in order of preference in one file) or click Browse to
find it by searching the file system. Specifying this file sets the SSL_CRL_FILE
parameter in the sqlnet.ora file. If this parameter is set, then the file must
be present in the specified location, or else the application will error out
during startup.

1. (Optional) If CRLs are fetched from Oracle Internet Directory, then directory
server and port information must be specified in an ldap.ora file.

1. Select File, Save Network Configuration. The sqlnet.ora file is updated.

To disable certificate revocation status checking:

1. Select NONE from the Revocation Check list.

Note: For performance reasons, only user certificates are checked
for revocation.

Note: If you want to store CRLs in a local file system directory by
setting the Certificate Revocation Lists Path, then you must use
the orapki utility to rename them so the system can locate them.
Refer to, "Renaming CRLs with a Hash Value for Certificate
Validation" on page 8-27

Note: When configuring your ldap.ora file, you should specify
only a non-SSL port for the directory. CRL download is done as
part of the SSL protocol, and making an SSL connection within an
SSL connection is not supported.

Oracle Advanced Security CRL functionality will not work if the
Oracle Internet Directory non-SSL port is disabled.

Certificate Validation with Certificate Revocation Lists

Configuring Secure Sockets Layer Authentication 8-27

2. Select File, Save Network Configuration. The sqlnet.ora file is updated with
the following entry:

SSL_CERT_REVOCATION=NONE

Certificate Revocation List Management
Before you can enable certificate revocation status checking, you must ensure that the
CRLs you receive from the CAs you use are in a form (renamed with a hash value) or
in a location (uploaded to the directory) where your computer can use them. Oracle
Advanced Security provides a command-line utility, orapki, that you can use to
perform the following tasks:

■ Displaying orapki Help

■ Renaming CRLs with a Hash Value for Certificate Validation

■ Uploading CRLs to Oracle Internet Directory

■ Listing CRLs Stored in Oracle Internet Directory

■ Viewing CRLs in Oracle Internet Directory

■ Deleting CRLs from Oracle Internet Directory

You can also use LDAP command-line tools to manage CRLs in Oracle Internet
Directory.

Displaying orapki Help
You can display all the orapki commands that are available for managing CRLs by
entering the following at the command line:

orapki crl help

This command displays all available CRL management commands and their options.

Renaming CRLs with a Hash Value for Certificate Validation
When the system validates a certificate, it must locate the CRL issued by the CA who
created the certificate. The system locates the appropriate CRL by matching the issuer
name in the certificate with the issuer name in the CRL.

See Also: "Troubleshooting Certificate Validation" on page 8-30
for information about resolving certificate validation errors.

Note: CRLs must be updated at regular intervals (before they
expire) for successful validation. You can automate this task by
using orapki commands in a script

See Also: Appendix A, "Syntax for Command-Line Tools" in
Oracle Internet Directory Application Developer's Guide for
information about LDAP command-line tools and their syntax

Note: Using the -summary, -complete, or -wallet command
options is always optional. A command will still run if these
command options are not specified.

Certificate Validation with Certificate Revocation Lists

8-28 Oracle Database Advanced Security Administrator's Guide

When you specify a CRL storage location for the Certificate Revocation Lists Path
field in Oracle Net Manager, which sets the SSL_CRL_PATH parameter in the
sqlnet.ora file, use the orapki utility to rename CRLs with a hash value that
represents the issuer's name. Creating the hash value enables the server to load the
CRLs.

On UNIX operating systems, orapki creates a symbolic link to the CRL. On Windows
operating systems, it creates a copy of the CRL file. In either case, the symbolic link or
the copy created by orapki are named with a hash value of the issuer's name. Then
when the system validates a certificate, the same hash function is used to calculate the
link (or copy) name so the appropriate CRL can be loaded.

Depending on the operating system, enter one of the following commands to rename
CRLs stored in the file system.

To rename CRLs stored in UNIX file systems:

orapki crl hash -crl crl_filename [-wallet wallet_location] -symlink crl_directory
[-summary]
To rename CRLs stored in Windows file systems:

orapki crl hash -crl crl_filename [-wallet wallet_location] -copy crl_directory
[-summary]

where crl_filename is the name of the CRL file, wallet_location is the location
of a wallet that contains the certificate of the CA that issued the CRL, and crl_
directory is the directory where the CRL is located.

Using -wallet and -summary are optional. Specifying -wallet causes the tool to
verify the validity of the CRL against the CA's certificate prior to renaming the CRL.
Specifying the -summary option causes the tool to display the CRL issuer's name.

Uploading CRLs to Oracle Internet Directory
Publishing CRLs in the directory enables CRL validation throughout your enterprise,
eliminating the need for individual applications to configure their own CRLs. All
applications can use the CRLs stored in the directory where they can be centrally
managed, greatly reducing the administrative overhead of CRL management and use.

The user who uploads CRLs to the directory by using orapki must be a member of
the directory group CRLAdmins (cn=CRLAdmins,cn=groups,%s_
OracleContextDN%). This is a privileged operation because these CRLs are
accessible to the entire enterprise. Contact your directory administrator to get added to
this administrative directory group.

To upload CRLs to the directory, enter the following at the command line:

orapki crl upload -crl crl_location -ldap hostname:ssl_port -user username
[-wallet wallet_location] [-summary]

where crl_location is the file name or URL where the CRL is located, hostname
and ssl_port (SSL port with no authentication) are for the system on which your
directory is installed, username is the directory user who has permission to add CRLs
to the CRL subtree, and wallet_location is the location of a wallet that contains
the certificate of the CA that issued the CRL.

Using -wallet and -summary are optional. Specifying -wallet causes the tool to
verify the validity of the CRL against the CA's certificate prior to uploading it to the
directory. Specifying the -summary option causes the tool to print the CRL issuer's
name and the LDAP entry where the CRL is stored in the directory.

The following example illustrates uploading a CRL with the orapki utility:

Certificate Validation with Certificate Revocation Lists

Configuring Secure Sockets Layer Authentication 8-29

orapki crl upload -crl /home/user1/wallet/crldir/crl.txt -ldap
host1.example.com:3533 -user cn=orcladmin

Listing CRLs Stored in Oracle Internet Directory
You can display a list of all CRLs stored in the directory with orapki, which is useful
for browsing to locate a particular CRL to view or download to your local computer.
This command displays the CA who issued the CRL (Issuer) and its location (DN) in
the CRL subtree of your directory.

To list CRLs in Oracle Internet Directory, enter the following at the command line:

orapki crl list -ldap hostname:ssl_port

where the hostname and ssl_port are for the system on which your directory is
installed. Note that this is the directory SSL port with no authentication as described in
the preceding section.

Viewing CRLs in Oracle Internet Directory
You can view specific CRLs that are stored in Oracle Internet Directory in a
summarized format or you can request a complete listing of revoked certificates for the
specified CRL. A summary listing provides the CRL issuer's name and its validity
period. A complete listing provides a list of all revoked certificates contained in the
CRL.

To view a summary listing of a CRL in Oracle Internet Directory, enter the following at
the command line:

orapki crl display -crl crl_location [-wallet wallet_location] -summary

where crl_location is the location of the CRL in the directory. It is convenient to
paste the CRL location from the list that displays when you use the orapki crl
list command. Refer to, "Listing CRLs Stored in Oracle Internet Directory" on
page 8-29.

To view a list of all revoked certificates contained in a specified CRL, which is stored in
Oracle Internet Directory, enter the following at the command line:

orapki crl display -crl crl_location [-wallet wallet_location] -complete

For example, the following orapki command:

orapki crl display -crl $T_WORK/pki/wlt_crl/nzcrl.txt -wallet $T_WORK/pki/wlt_crl
-complete

produces the following output, which lists the CRL issuer's DN, its publication date,
date of its next update, and the revoked certificates it contains:

issuer = CN=root,C=us, thisUpdate = Sun Nov 16 10:56:58 PST 2003, nextUpdate = Mon

Note:

■ The orapki utility will prompt you for the directory password
when you perform this operation.

■ Ensure that you specify the directory SSL port on which the
Diffie-Hellman-based SSL server is running. This is the SSL
port that does not perform authentication. Neither the server
authentication nor the mutual authentication SSL ports are
supported by the orapki utility.

Certificate Validation with Certificate Revocation Lists

8-30 Oracle Database Advanced Security Administrator's Guide

Sep 30 11:56:58 PDT 2013, revokedCertificates = {(serialNo =
153328337133459399575438325845117876415, revocationDate - Sun Nov 16 10:56:58 PST
2003)}
CRL is valid

Using the -wallet option causes the orapki crl display command to validate
the CRL against the CA's certificate.

Depending on the size of your CRL, choosing the -complete option may take a long
time to display.

You can also use Oracle Directory Manager, a graphical user interface tool that is
provided with Oracle Internet Directory, to view CRLs in the directory. CRLs are
stored in the following directory location:

cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext

Deleting CRLs from Oracle Internet Directory
The user who deletes CRLs from the directory by using orapki must be a member of
the directory group CRLAdmins. Refer to "Uploading CRLs to Oracle Internet
Directory" on page 8-28 for information about this directory administrative group.

To delete CRLs from the directory, enter the following at the command line:

orapki crl delete -issuer issuer_name -ldap host:ssl_port -user username
[-summary]

where issuer_name is the name of the CA who issued the CRL, the hostname and
ssl_port are for the system on which your directory is installed, and username is
the directory user who has permission to delete CRLs from the CRL subtree. Ensure
that this must be a directory SSL port with no authentication. Refer to, "Uploading
CRLs to Oracle Internet Directory" on page 8-28 for more information about this port.

Using the -summary option causes the tool to print the CRL LDAP entry that was
deleted.

For example, the following orapki command:

orapki crl delete -issuer "CN=root,C=us" -ldap machine1:3500 -user cn=orcladmin
-summary

produces the following output, which lists the location of the deleted CRL in the
directory:

Deleted CRL at cn=root
cd45860c.rN,cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext

Troubleshooting Certificate Validation
To determine whether certificates are being validated against CRLs, you can enable
Oracle Net tracing. When a revoked certificate is validated by using CRLs, then you
will see the following entries in the Oracle Net tracing file without error messages
logged between entry and exit:

nzcrlVCS_VerifyCRLSignature: entry
nzcrlVCS_VerifyCRLSignature: exit

nzcrlVCD_VerifyCRLDate: entry
nzcrlVCD_VerifyCRLDate: exit

nzcrlCCS_CheckCertStatus: entry
nzcrlCCS_CheckCertStatus: Certificate is listed in CRL

Certificate Validation with Certificate Revocation Lists

Configuring Secure Sockets Layer Authentication 8-31

nzcrlCCS_CheckCertStatus: exit

Oracle Net Tracing File Error Messages Associated with Certificate Validation
The following trace messages, relevant to certificate validation, may be logged
between the entry and exit entries in the Oracle Net tracing file. Oracle SSL looks
for CRLs in multiple locations, so there may be multiple errors in the trace.

Check the following list of possible error messages for information about how to
resolve them.

CRL signature verification failed with RSA status
Cause: The CRL signature cannot be verified.

Action: Ensure that the downloaded CRL is issued by the peer's CA and that the
CRL was not corrupted when it was downloaded. Note that the orapki utility
verifies the CRL before renaming it with a hash value or before uploading it to the
directory.

CRL date verification failed with RSA status
Cause: The current time is later than the time listed in the next update field. You
should not see this error if CRL DP is used. The systems searches for the CRL in
the following order:

1. File system

2. Oracle Internet Directory

3. CRL DP

The first CRL found in this search may not be the latest.

Action: Update the CRL with the most recent copy.

CRL could not be found
Cause: The CRL could not be found at the configured locations. This will return
error ORA-29024 if the configuration specifies that certificate validation is require.

Action: Ensure that the CRL locations specified in the configuration are correct by
performing the following steps:

1. Use Oracle Net Manager to check if the correct CRL location is configured.
Refer to "Configuring Certificate Validation with Certificate Revocation Lists"
on page 8-25

Note: Note that when certificate validation fails, the peer in the SSL
handshake sees an ORA-29024: Certificate Validation
Failure. If this message displays, refer to "ORA-29024: Certificate
Validation Failure" on page 8-23 for information about how to resolve
the error.

See Also: Oracle Database Net Services Administrator's Guide for
information about setting tracing parameters to enable Oracle Net
tracing

See Also: "Certificate Revocation List Management" on page 8-27 for
information about using orapki for CRL management

Configuring Your System to Use Hardware Security Modules

8-32 Oracle Database Advanced Security Administrator's Guide

2. If necessary, use the orapki utility to configure CRLs for system use as
follows:

– For CRLs stored on your local file system, refer to "Renaming CRLs with a
Hash Value for Certificate Validation" on page 8-27

– CRLs stored in the directory, refer to "Uploading CRLs to Oracle Internet
Directory" on page 8-28

Oracle Internet Directory host name or port number not set
Cause: Oracle Internet Directory connection information is not set. Note that this
is not a fatal error. The search continues with CRL DP.

Action: If you want to store the CRLs in Oracle Internet Directory, then use Oracle
Net Configuration Assistant to create and configure an ldap.ora file for your
Oracle home.

Fetch CRL from CRL DP: No CRLs found
Cause: The CRL could not be fetched by using the CRL Distribution Point (CRL
DP). This happens if the certificate does not have a location specified in its CRL DP
extension, or if the URL specified in the CRL DP extension is incorrect.

Action: Ensure that your certificate authority publishes the CRL to the URL that is
specified in the certificate's CRL DP extension.

Manually download the CRL. Then depending on whether you want to store it on
your local file system or in Oracle Internet Directory, perform the following steps:

If you want to store the CRL on your local file system:

1. Use Oracle Net Manager to specify the path to the CRL directory or file. Refer
to "Configuring Certificate Validation with Certificate Revocation Lists" on
page 8-25

2. Use the orapki utility to configure the CRL for system use. Refer to
"Renaming CRLs with a Hash Value for Certificate Validation" on page 8-27

If you want to store the CRL in Oracle Internet Directory:

1. Use Oracle Net Configuration Assistant to create and configure an ldap.ora
file with directory connection information.

2. Use the orapki utility to upload the CRL to the directory. Refer to "Uploading
CRLs to Oracle Internet Directory" on page 8-28

Configuring Your System to Use Hardware Security Modules
Oracle Advanced Security supports hardware security modules that use APIs which
conform to the RSA Security, Inc., PKCS #11 specification. Typically, these hardware
devices are used to securely store and manage private keys in tokens or smart cards, or
to accelerate cryptographic processing.

This section contains the following topics:

■ General Guidelines for Using Hardware Security Modules with Oracle Advanced
Security

■ Configuring Your System to Use nCipher Hardware Security Modules

■ Configuring Your System to Use SafeNET Hardware Security Modules

■ Troubleshooting Using Hardware Security Modules

Configuring Your System to Use Hardware Security Modules

Configuring Secure Sockets Layer Authentication 8-33

General Guidelines for Using Hardware Security Modules with Oracle Advanced
Security

The following general guidelines apply if you are using a hardware security module
with Oracle Advanced Security:

1. Contact your hardware device vendor to obtain the necessary hardware, software,
and PKCS #11 libraries.

2. Install the hardware, software, and libraries where appropriate for the hardware
security module you are using.

3. Test your hardware security module installation to ensure that it is operating
correctly. Refer to your device documentation for instructions.

4. Create a wallet of the type PKCS11 by using Oracle Wallet Manager and specify
the absolute path to the PKCS #11 library (including the library name) if you wish
to store the private key in the token. Oracle PKCS11 wallets contain information
that points to the token for private key access.

You can use the wallet containing PKCS #11 information just as you would use any
Oracle wallet, except the private keys are stored on the hardware device and the
cryptographic operations are performed on the device as well.

Configuring Your System to Use nCipher Hardware Security Modules
Hardware security modules made by nCipher Corporation are certified to operate
with Oracle Advanced Security. These modules provide a secure way to store keys
and off-load cryptographic processing. Primarily, these devices provide the following
benefits:

■ Off-load cryptographic processing that frees your server to respond to other
requests

■ Secure private key storage on the device

■ Allow key administration through the use of smart cards

Oracle Components Required To Use an nCipher Hardware Security Module
To use an nCipher hardware security module, you need the following components:

■ nCipher Hardware Security Module

■ Supporting nCipher PKCS #11 library

The following platform-specific PKCS#11 library is required:

– libcknfast.so library for UNIX 32-Bit

– libcknfast-64.so library for UNIX 64-Bit

– cknfast.dll library for Windows

See Also: "Creating a Wallet to Store Hardware Security Module
Credentials" on page 9-8

Note: You must contact your nCipher representative to obtain
certified hardware and software to use with Oracle Advanced
Security.

Configuring Your System to Use Hardware Security Modules

8-34 Oracle Database Advanced Security Administrator's Guide

About Installing an nCipher Hardware Security Module
To use the secure accelerator, you must provide the absolute path to the directory that
contains the nCipher PKCS #11 library (including the library name) when you create
the wallet by using Oracle Wallet Manager. This enables the library to be loaded at
runtime. Typically, the nCipher card is installed at the following locations:

■ /opt/nfast for UNIX

■ C:\nfast for Windows

The nCipher PKCS #11 library is located at the following location for typical
installations:

■ /opt/nfast/toolkits/pkcs11/libcknfast.so for UNIX 32-Bit

■ /opt/nfast/toolkits/pkcs11/libcknfast-64.so for UNIX 64-Bit

■ C:\nfast\toolkits\pkcs11\cknfast.dll for Windows

Configuring Your System to Use SafeNET Hardware Security Modules
Hardware security modules made by SafeNET Incorporated are certified to operate
with Oracle Advanced Security. These modules provide a secure way to store keys and
off-load cryptographic processing. Primarily, these devices provide the following
benefits:

■ Off-load of cryptographic processing to free your server to respond to more
requests

■ Secure private key storage on the device

Oracle Components Required To Use a SafeNET Luna SA Hardware Security
Module
To use a SafeNET Luna SA hardware security module, you need the following
components

■ SafeNET Luna SA Hardware Security Module

■ Supporting SafeNET Luna SA PKCS #11 library

Note: You must contact your nCipher representative to have the
hardware security module or the secure accelerator installed, and to
acquire the necessary library.

These tasks must be performed before you can use an nCipher
hardware security module with Oracle Advanced Security.

Note: Use the 32-bit library version when using the 32-bit release
of Oracle Database and use the 64-bit library version when using
the 64-bit release of Oracle Database. For example, use the 64-bit
nCipher PKCS #11 library for the Oracle Database for Solaris
Operating System (SPARC 64-bit).

Note: You must contact your SafeNET representative to obtain
certified hardware and software to use with Oracle Advanced
Security.

Configuring Your System to Use Hardware Security Modules

Configuring Secure Sockets Layer Authentication 8-35

The following platform-specific PKCS#11 library is required:

– libCryptoki2.so library for UNIX

– cryptoki.dll library for Windows

About Installing a SafeNET Hardware Security Module
To use the secure accelerator, you must provide the absolute path to the directory that
contains the SafeNET PKCS #11 library (including the library name) when you create
the wallet using Oracle Wallet Manager. This enables the library to be loaded at
runtime. Typically, the SafeNET Luna SA client is installed at the following location:

■ /usr/lunasa for UNIX

■ C:\Program Files\LunaSA for Windows

The SafeNET Luna SA PKCS #11 library is located at the following location for typical
installations:

■ /usr/lunasa/lib/libCryptoki2.so for UNIX

■ C:\Program Files\LunaSA\cryptoki2.dll for Windows

Troubleshooting Using Hardware Security Modules
To detect whether the module is being used, you can turn on Oracle Net tracing. If the
wallet contains PKCS #11 information and the private key on the module is being
used, then you will see the following entries in the Oracle Net tracing file without
error messages logged between entry and exit:

nzpkcs11_Init: entry
nzpkcs11CP_ChangeProviders: entry
nzpkcs11CP_ChangeProviders: exit
nzpkcs11GPK_GetPrivateKey: entry
nzpkcs11GPK_GetPrivateKey: exit
nzpkcs11_Init: exit
...
nzpkcs11_Decrypt: entry
nzpkcs11_Decrypt: exit

nzpkcs11_Sign: entry
nzpkcs11_Sign: exit

Error Messages Associated with Using Hardware Security Modules
The following errors are associated with using PKCS #11 hardware security modules:

ORA-43000: PKCS11: library not found

Note: You must contact your SafeNET representative to have the
hardware security module or the secure accelerator installed, and to
acquire the necessary library.

These tasks must be performed before you can use a SafeNET
hardware security module with Oracle Advanced Security.

See Also: Oracle Database Net Services Administrator's Guide for
information about setting tracing parameters to enable Oracle Net
tracing

Configuring Your System to Use Hardware Security Modules

8-36 Oracle Database Advanced Security Administrator's Guide

Cause: The system cannot locate the PKCS #11 library at the location specified
when the wallet was created. This happens only when the library is moved after
the wallet is created.

Action: Copy the PKCS #11 library back to its original location where it was when
the wallet was created.

ORA-43001: PKCS11: token not found
Cause: The smart card that was used to create the wallet is not present in the
hardware security module slot.

Action: Ensure that the smart card that was used when the wallet was created is
present in the hardware security module slot.

ORA-43002: PKCS11: passphrase is wrong
Cause: This can occur when an incorrect password is specified at wallet creation,
or the PKCS #11 device password is changed after the wallet is created and not
updated in the wallet by using Oracle Wallet Manager.

Action: Depending on the cause, take one of the following actions:

If you see this error during wallet creation, then check to ensure that you have the
correct password and reenter it.

If the password changed after wallet creation, then use Oracle Wallet Manager to
open the wallet and enter a new password.

See Also: "Creating a Wallet to Store Hardware Security Module
Credentials" on page 9-8

Note: The nCipher log file is in the directory where the module is
installed at the following location:

/log/logfile

See Also: nCipher and SafeNET documentation for more
information about troubleshooting nCipher and SafeNET devices

Using Oracle Wallet Manager 9-1

9
Using Oracle Wallet Manager

Security administrators use Oracle Wallet Manager to manage public key security
credentials on Oracle clients and servers. The wallets it creates can be read by Oracle
Database, Oracle Application Server 10g, and the Oracle Identity Management
infrastructure.

This chapter describes Oracle Wallet Manager using the following topics:

■ Oracle Wallet Manager Overview

■ Starting Oracle Wallet Manager

■ How to Create a Complete Wallet: Process Overview

■ Managing Wallets

■ Managing Certificates

Oracle Wallet Manager Overview
Oracle Wallet Manager is an application that wallet owners use to manage and edit the
security credentials in their Oracle wallets. A wallet is a password-protected container
used to store authentication and signing credentials, including private keys,
certificates, and trusted certificates needed by SSL. You can use Oracle Wallet Manager
to perform the following tasks:

■ Creating wallets

■ Generating certificate requests

■ Opening wallets to access PKI-based services

■ Saving credentials to hardware security modules, by using APIs that comply
with the Public-Key Cryptography Standards #11 (PKCS #11) specification

■ Uploading wallets to (and downloading them from) an LDAP directory

■ Importing third-party PKCS #12-format wallets

■ Exporting Oracle wallets to a third-party environment

See Also:

■ "Public Key Infrastructure in an Oracle Environment" on
page 8-3, which discusses all of the Oracle PKI components

■ Appendix F, "orapki Utility" for information about the orapki
command line utility you can use to create wallets and issue
certificates for testing purposes

Oracle Wallet Manager Overview

9-2 Oracle Database Advanced Security Administrator's Guide

Oracle Wallet Manager provides the following features:

■ Wallet Password Management

■ Strong Wallet Encryption

■ Microsoft Windows Registry Wallet Storage

■ Backward Compatibility

■ Public-Key Cryptography Standards (PKCS) Support

■ Multiple Certificate Support

■ LDAP Directory Support

Wallet Password Management
Oracle wallets are password protected. Oracle Wallet Manager includes an enhanced
wallet password management module that enforces Password Management Policy
guidelines, including the following:

■ Minimum password length (8 characters)

■ Maximum password length unlimited

■ Alphanumeric character mix required

Strong Wallet Encryption
Oracle Wallet Manager stores private keys associated with X.509 certificates and uses
Triple-DES encryption.

Microsoft Windows Registry Wallet Storage
Oracle Wallet Manager lets you store multiple Oracle wallets in a Windows file
management system or in the user profile area of the Microsoft Windows system
registry. Storing your wallets in the registry provides the following benefits:

■ Better Access Control: Wallets stored in the user profile area of the registry are
only accessible by the associated user. User access controls for the system thus
become, by extension, access controls for the wallets. In addition, when a user logs
out of a system, access to that user's wallets is effectively precluded.

■ Easier Administration: Wallets are associated with specific user profiles, so no file
permissions need to be managed, and the wallets stored in the profile are
automatically deleted when the user profile is deleted. You can use Oracle Wallet
Manager to create and manage the wallets in the registry.

Options Supported:
■ Open a wallet from the registry

■ Save a wallet to the registry

■ Save As to a different registry location

■ Delete a wallet from the registry

■ Open a wallet from the file system and save it to the registry

■ Open a wallet from the registry and save it to the file system

See Also: "Public Key Infrastructure in an Oracle Environment"
on page 8-3

Oracle Wallet Manager Overview

Using Oracle Wallet Manager 9-3

Backward Compatibility
Oracle Wallet Manager is backward-compatible to Release 8.1.7.

Public-Key Cryptography Standards (PKCS) Support
RSA Laboratories, a division of RSA Security, Inc., has developed, in cooperation with
representatives from industry, academia, and government, a family of basic
cryptography standards called Public-Key Cryptography Standards, or PKCS for
short. These standards establish interoperability between computer systems that use
public-key technology to secure data across intranets and the Internet.

Oracle Wallet Manager stores X.509 certificates and private keys in PKCS #12 format,
and generates certificate requests according to the PKCS #10 specification. These
capabilities make the Oracle wallet structure interoperable with supported third-party
PKI applications and provide wallet portability across operating systems.

Oracle Wallet Manager wallets can store credentials on hardware security modules
that use APIs conforming to the PKCS #11 specification. When a wallet is created with
PKCS11 chosen as the wallet type, then all keys stored in that wallet are saved to a
hardware security module or token. Examples of such hardware devices include smart
cards, PCMCIA cards, smart diskettes, or other portable hardware devices that store
private keys or perform cryptographic operations (or both).

Multiple Certificate Support
Oracle Wallet Manager enables you to store multiple certificates in each wallet,
supporting any of the following Oracle PKI certificate usages:

■ SSL authentication

■ S/MIME signature

■ S/MIME encryption

■ Code-Signing

■ CA Certificate Signing

See Also: Oracle Database Platform Guide for Windows

Note: To use Oracle Wallet Manager with PKCS #11 integration on
the 64-bit Solaris Operating System, enter the following at the
command line: owm -pkcs11

See Also:

■ "Importing User Certificates Created with a Third-Party Tool"
on page 9-19

■ "Exporting Oracle Wallets to Third-Party Environments" on
page 9-10

■ "Creating a Wallet to Store Hardware Security Module
Credentials" on page 9-8

■ To view PKCS standards documents, navigate to the following
URL:

http://www.rsasecurity.com/rsalabs/

Oracle Wallet Manager Overview

9-4 Oracle Database Advanced Security Administrator's Guide

Each certificate request you create generates a unique private/public key pair. The
private key stays in the wallet and the public key is sent with the request to a
certificate authority. When that certificate authority generates your certificate and
signs it, you can import it only into the wallet that has the corresponding private key.

If the wallet also contains a separate certificate request, the private/public key pair
corresponding to that request is of course different from the pair for the first certificate
request. Sending this separate certificate request to a certificate authority can get you a
separate signed certificate, which you can import into this same wallet

A single certificate request can be sent to a certificate authority multiple times to
obtain multiple certificates. However, only one certificate corresponding to that
certificate request can be installed in the wallet.

Oracle Wallet Manager uses the X.509 Version 3 KeyUsage extension to define Oracle
PKI certificate usages (Table 9–1). A single certificate cannot be applied to all possible
certificate usages. Table 9–2 and Table 9–3 show legal usage combinations.

When installing a certificate, Oracle Wallet Manager maps the KeyUsage extension
values to Oracle PKI certificate usages as specified in Table 9–2 and Table 9–3.

Table 9–1 KeyUsage Values

Value Usage

0 digitalSignature

1 nonRepudiation

2 keyEncipherment

3 dataEncipherment

4 keyAgreement

5 keyCertSign

6 cRLSign

7 encipherOnly

8 decipherOnly

Table 9–2 Oracle Wallet Manager Import of User Certificates to an Oracle Wallet

KeyUsage Value Critical?1 Usage

none NA Certificate is importable for SSL or S/MIME
encryption use.

0 alone or along with any
values excluding 5 and 2

NA Accept certificate for S/MIME signature or
code-signing use.

1 alone Yes Not importable

1 alone No Accept certificate for S/MIME signature or
code-signing use.

2 alone or along with any
combination excluding 5

NA Accept certificate for SSL or S/MIME encryption
use.

5 alone or along with any
other values

NA Accept certificate for CA certificate signing use.

Any settings not listed
previously

Yes Not importable.

Oracle Wallet Manager Overview

Using Oracle Wallet Manager 9-5

You should obtain, from the certificate authority, certificates with the correct
KeyUsage value matching your required Oracle PKI certificate usage. A single wallet
can contain multiple key pairs for the same usage. Each certificate can support
multiple Oracle PKI certificate usages, as indicated by Table 9–2 and Table 9–3. Oracle
PKI applications use the first certificate containing the required PKI certificate usage.

For example, for SSL usage, the first certificate containing the SSL Oracle PKI
certificate usage is used.

If you do not have a certificate with SSL usage, then an ORA-28885 error (No
certificate with required key usage found) is returned.

LDAP Directory Support
Oracle Wallet Manager can upload wallets to and retrieve them from an
LDAP-compliant directory. Storing wallets in a centralized LDAP-compliant directory
lets users access them from multiple locations or devices, ensuring consistent and
reliable user authentication while providing centralized wallet management
throughout the wallet life cycle. To prevent a user from accidentally overwriting
functional wallets, only wallets containing an installed certificate can be uploaded.

Directory user entries must be defined and configured in the LDAP directory before
Oracle Wallet Manager can be used to upload or download wallets for a user. If a
directory contains Oracle8i (or prior) users, then they are automatically upgraded to
use the wallet upload and download feature on first use.

Oracle Wallet Manager downloads a user wallet by using a simple password-based
connection to the LDAP directory. However, for uploads it uses an SSL connection if
the open wallet contains a certificate with SSL Oracle PKI certificate usage. If an SSL
certificate is not present in the wallet, password-based authentication is used.

Any settings not listed
previously

No Certificate is importable for SSL or S/MIME
encryption use.

1 If the KeyUsage extension is critical, the certificate cannot be used for other purposes.

Table 9–3 Oracle Wallet Manager Import of Trusted Certificates to an Oracle Wallet

KeyUsage Value Critical?1

1 If the KeyUsage extension is marked critical, the certificate cannot be used for other purposes.

Usage

none NA Importable.

Any combination
excluding 5

Yes Not importable.

Any combination
excluding 5

No Importable

5 alone or along with any
other values

NA Importable.

Note: The directory password and the wallet password are
independent and can be different. Oracle recommends that these
passwords be maintained to be consistently different, where neither
one can logically be derived from the other.

Table 9–2 (Cont.) Oracle Wallet Manager Import of User Certificates to an Oracle Wallet

KeyUsage Value Critical?1 Usage

Starting Oracle Wallet Manager

9-6 Oracle Database Advanced Security Administrator's Guide

Starting Oracle Wallet Manager
To start Oracle Wallet Manager:

■ (Windows) Select Start, Programs, Oracle-HOME_NAME, Integrated
Management Tools, Wallet Manager

■ (UNIX) At the command line, enter owm.

How to Create a Complete Wallet: Process Overview
Wallets provide a necessary repository in which you can securely store your user
certificates and the trust point you need to validate the certificates of your peers.

The following steps provide an overview of the complete wallet creation process:

1. Use Oracle Wallet Manager to create a new wallet:

2. Generate a certificate request. Note that when you create a new wallet with Oracle
Wallet Manager, the tool automatically prompts you to create a certificate request.

3. Send the certificate request to the CA you want to use. You can copy and paste the
certificate request text into an e-mail message, or you can export the certificate
request to a file. The certificate request becomes part of your wallet. It must remain
there until you remove its associated certificate.

4. When the CA sends your signed user certificate and its associated trusted
certificate, then you can import these certificates in the following order. The user
certificates and trusted certificates in the PKCS #7 format can be imported at the
same time.

■ First import the CA's trusted certificate into your wallet. This step may be
optional if the new user certificate has been issued by one of the CAs whose
trusted certificate is already present in Oracle Wallet Manager by default.

■ After you have successfully imported the trusted certificate, then import the
user certificate that the CA sent to you into your wallet.

5. (Optional) Set the auto login feature for your wallet.

Typically, this feature, which enables PKI-based access to services without a
password, is required for most wallets. It is required for database server and client
wallets. It is only optional for products that take the wallet password at the time of
startup.

After completing the preceding process, you have a wallet that contains a user
certificate and its associated trust points.

See Also:

■ Uploading a Wallet to an LDAP Directory on page 9-11.

■ Downloading a Wallet from an LDAP Directory on page 9-11

■ Multiple Certificate Support on page 9-3, for more information
about Oracle PKI certificate usage.

See Also: For more information about these steps, refer to
Managing Certificates on page 9-14

Managing Wallets

Using Oracle Wallet Manager 9-7

Managing Wallets
This section describes how to create a new wallet and perform associated wallet
management tasks, such as generating certificate requests, exporting certificate
requests, and importing certificates into wallets, in the following subsections:

■ Required Guidelines for Creating Wallet Passwords

■ Creating a New Wallet

■ Opening an Existing Wallet

■ Closing a Wallet

■ Exporting Oracle Wallets to Third-Party Environments

■ Exporting Oracle Wallets to Tools that Do Not Support PKCS #12

■ Uploading a Wallet to an LDAP Directory

■ Downloading a Wallet from an LDAP Directory

■ Saving Changes

■ Saving the Open Wallet to a New Location

■ Saving in System Default

■ Deleting the Wallet

■ Changing the Password

■ Using Auto Login

Required Guidelines for Creating Wallet Passwords
Because an Oracle wallet contains user credentials that can be used to authenticate the
user to multiple databases, it is especially important to choose a strong wallet
password. A malicious user who guesses the wallet password can access all the
databases to which the wallet owner has access.

Passwords must contain at least eight characters that consist of alphabetic characters
combined with numbers or special characters.

Caution: It is strongly recommended that users avoid choosing
easily guessed passwords based on user names, phone numbers, or
government identification numbers, such as "admin0," "oracle1," or
"2135551212A." This prevents a potential attacker from using
personal information to deduce the users' passwords. It is also a
prudent security practice for users to change their passwords
periodically, such as once in each month or once in each quarter.

When you change passwords, you must regenerate auto-login
wallets.

See Also:

■ Wallet Password Management on page 9-2.

■ "Using Auto Login" on page 9-14

Managing Wallets

9-8 Oracle Database Advanced Security Administrator's Guide

Creating a New Wallet
You can use Oracle Wallet Manager to create PKCS #12 wallets (the standard default
wallet type) that store credentials in a directory on your file system. It can also be used
to create PKCS #11 wallets that store credentials on a hardware security module for
servers, or private keys on tokens for clients. The following sections explain how to
create both types of wallets by using Oracle Wallet Manager.

Creating a Standard Wallet
Unless you have a hardware security module (a PKCS #11 device), then you should
use a standard wallet that stores credentials in a directory on your file system.

To create a standard wallet, perform the following tasks:

1. Select Wallet, then New from the menu bar. The New Wallet dialog box is
displayed.

2. Follow the "Required Guidelines for Creating Wallet Passwords" on page 9-7 and
enter a password in the Wallet Password field. This password protects
unauthorized use of your credentials.

3. Reenter that password in the Confirm Password field.

4. Select Standard from the Wallet Type list.

5. Click OK to continue. If the entered password does not conform to the required
guidelines, then the following message is displayed:

Password must have a minimum length of eight characters, and contain alphabetic
characters combined with numbers or special characters. Do you want to try
again?

6. An alert is displayed, and informs you that a new empty wallet has been created.
It prompts you to decide whether you want to add a certificate request. Refer to
"Adding a Certificate Request" on page 9-15.

If you select No, then you are returned to the Oracle Wallet Manager main
window. The new wallet you just created is displayed in the left window pane.
The certificate has a status of [Empty], and the wallet displays its default trusted
certificates.

7. Select Wallet, then Save In System Default to save the new wallet.

If you do not have permission to save the wallet in the system default, you can
save it to another location. This location must be used in the SSL configuration for
clients and servers.

A message at the bottom of the window confirms that the wallet was successfully
saved.

Creating a Wallet to Store Hardware Security Module Credentials
To create a wallet to store credentials on a hardware security module that complies
with PKCS #11, perform the following tasks:

1. Select Wallet, then New from the menu bar. The New Wallet dialog box is
displayed.

2. Follow the "Required Guidelines for Creating Wallet Passwords" on page 9-7 and
enter a password in the Wallet Password field.

3. Reenter that password in the Confirm Password field.

Managing Wallets

Using Oracle Wallet Manager 9-9

4. Select PKCS11 from the Wallet Type list, and click OK to continue. The New
PKCS11 Wallet window is displayed.

5. Select a vendor name from the Select Hardware Vendor list.

6. In the PKCS11 library filename field, enter the path to the directory where the
PKCS11 library is stored, or click Browse to find it by searching the file system.

7. Enter the SmartCard password, and click OK.

The smart card password, which is different from the wallet password, is stored in
the wallet.

8. An alert is displayed, and informs you that a new empty wallet has been created.
It prompts you to decide whether you want to add a certificate request. For more
information, refer to "Adding a Certificate Request" on page 9-15.

If you select No, you are returned to the Oracle Wallet Manager main window. The
new wallet you just created is displayed in the left window pane. The certificate
has a status of [Empty], and the wallet displays its default trusted certificates.

9. Select Wallet, then Save In System Default to save the new wallet.

If you do not have permission to save the wallet in the system default, you can
save it to another location.

A message at the bottom of the window confirms that the wallet was successfully
saved.

Opening an Existing Wallet
Open a wallet that already exists in the file system directory as follows:

1. Select Wallet, Open from the menu bar. The Select Directory dialog box is
displayed.

2. Navigate to the directory location in which the wallet is located, and select the
directory.

3. Click OK. The Open Wallet dialog box is displayed.

4. Enter the wallet password in the Wallet Password field.

5. Click OK.

You are returned to the main window and a message is displayed at the bottom of
the window indicating the wallet was opened successfully. The wallet's certificate
and its trusted certificates are displayed in the left window pane.

Note: In the current release of Oracle Wallet Manager, SafeNET
and nCipher hardware have been certified to interoperate with
Oracle wallets.

Note: If you change the smart card password or move the PKCS
#11 library, an error message displays when you try to open the
wallet. Then you are prompted to enter the new smart card
password or the new path to the library.

Managing Wallets

9-10 Oracle Database Advanced Security Administrator's Guide

Closing a Wallet
To close an open wallet in the currently selected directory:

Select Wallet, then Close.

A message is displayed at the bottom of the window to confirm that the wallet is
closed.

Exporting Oracle Wallets to Third-Party Environments
Oracle Wallet Manager can export its own wallets to third-party environments.

To export a wallet to third-party environments:

1. Use Oracle Wallet Manager to save the wallet file.

2. Follow the procedure specific to your third-party product to import an operating
system PKCS #12 wallet file created by Oracle Wallet Manager (called
ewallet.p12 on UNIX and Windows platforms).

Exporting Oracle Wallets to Tools that Do Not Support PKCS #12
You can export a wallet to a text-based PKI format if you want to put a wallet into a
tool that does not support PKCS #12. Individual components are formatted according
to the standards listed in Table 9–4. Within the wallet, only those certificates with SSL
key usage are exported with the wallet.

To export a wallet to text-based PKI format:

1. Select Operations, Export Wallet. The Export Wallet dialog box is displayed.

2. Enter the destination file system directory for the wallet, or navigate to the
directory structure under Folders.

3. Enter the destination file name for the wallet.

4. Click OK to return to the main window.

Note:

■ Oracle Wallet Manager supports multiple certificates for each
wallet, yet current browsers typically support import of
single-certificate wallets only. For these browsers, you must
export an Oracle wallet containing a single key-pair.

■ Oracle Wallet Manager supports wallet export to only Netscape
Communicator 4.7.2 and later, OpenSSL, and Microsoft Internet
Explorer 5.0 and later.

Table 9–4 PKI Wallet Encoding Standards

Component Encoding Standard

Certificate chains X509v3

Trusted certificates X509v3

Private keys PKCS #8

Managing Wallets

Using Oracle Wallet Manager 9-11

Uploading a Wallet to an LDAP Directory
To upload a wallet to an LDAP directory, Oracle Wallet Manager uses SSL if the
specified wallet contains an SSL certificate. Otherwise, it lets you enter the directory
password.

To prevent accidental destruction of your wallet, Oracle Wallet Manager will not
permit you to execute the upload option unless the target wallet is currently open and
contains at least one user certificate.

To upload a wallet:

1. Select Wallet, Upload Into The Directory Service. If the currently open wallet has
not been saved, a dialog box is displayed with the following message:

The wallet needs to be saved before uploading

Click Yes to proceed.

2. Wallet certificates are checked for SSL key usage. Depending on whether a
certificate with SSL key usage is found in the wallet, one of the following results
occur:

■ If at least one certificate has SSL key usage: When prompted, enter the LDAP
directory server host name and port information, then click OK. Oracle Wallet
Manager attempts connection to the LDAP directory server using SSL. A
message is displayed indicating whether the wallet was uploaded successfully
or it failed.

■ If no certificates have SSL key usage: When prompted, enter the user's
distinguished name (DN), the LDAP server host name and port information,
and click OK. Oracle Wallet Manager attempts connection to the LDAP
directory server using simple password authentication mode, assuming that
the wallet password is the same as the directory password.

If the connection fails, a dialog box prompts for the directory password of the
specified DN. Oracle Wallet Manager attempts connection to the LDAP
directory server using this password and displays a warning message if the
attempt fails. Otherwise, Oracle Wallet Manager displays a status message at
the bottom of the window indicating that the upload was successful.

Downloading a Wallet from an LDAP Directory
When a wallet is downloaded from an LDAP directory, it is resident in working
memory. It is not saved to the file system unless you explicitly save it using any of the
save options described in the following sections.

Note:

■ You should ensure that the distinguished name used matches a
corresponding user entry of object class inetOrgPerson in the
LDAP directory.

■ When uploading a wallet with an SSL certificate, use the SSL port.
When uploading a wallet that does not contain an SSL certificate,
use the non-SSL port.

Managing Wallets

9-12 Oracle Database Advanced Security Administrator's Guide

To download a wallet from an LDAP directory:

1. Select Wallet, Download From The Directory Service....

2. A dialog box prompts for the user's distinguished name (DN), and the LDAP
directory password, host name, and port information. Oracle Wallet Manager uses
simple password authentication to connect to the LDAP directory.

Depending on whether the downloading operation succeeds or not, one of the
following results occurs:

■ If the download operation fails: Check to make sure that you have correctly
entered the user's DN, and the LDAP server host name and port information.
The port used must be the non-SSL port.

■ If the download is successful: Click OK to open the downloaded wallet.
Oracle Wallet Manager attempts to open that wallet using the directory
password. If the operation fails after using the directory password, then a
dialog box prompts for the wallet password.

If Oracle Wallet Manager cannot open the target wallet using the wallet
password, then check to make sure you entered the correct password.
Otherwise a message displays at the bottom of the window, indicating that the
wallet was downloaded successfully.

Saving Changes
To save your changes to the current open wallet:

Select Wallet, then Save.

A message at the bottom of the window confirms that the wallet changes were
successfully saved to the wallet in the selected directory location.

Saving the Open Wallet to a New Location
To save open wallets to a new location, use the Save As menu option:

1. Select Wallet, then Save As. The Select Directory dialog box is displayed.

2. Select a directory location in which to save the wallet.

3. Click OK.

The following message is displayed if a wallet already exists in the selected
location:

A wallet already exists in the selected path. Do you want to overwrite it?

Select Yes to overwrite the existing wallet or No to save the wallet to another
location.

A message at the bottom of the window confirms that the wallet was successfully
saved to the selected directory location.

See Also:

■ "Saving Changes" on page 9-12

■ "Saving the Open Wallet to a New Location" on page 9-12

■ "Saving in System Default" on page 9-13

Managing Wallets

Using Oracle Wallet Manager 9-13

Saving in System Default
To save wallets in the default directory location, use the Save In System Default menu
option:

Select Wallet, Save In System Default.

A message at the bottom of the window confirms that the wallet was successfully
saved in the system default wallet location as follows for UNIX and Windows
platforms:

■ (UNIX) $ORACLE_HOME/owm/wallets/username if the ORACLE_HOME
environment variable has been set.

./owm/wallets/username if the ORACLE_HOME environment variable is not
set.

■ (WINDOWS) ORACLE_HOME\owm\wallets\username if the ORACLE_HOME
environment variable has been set.

.\owm\wallets\username if the ORACLE_HOME environment variable is not
set.

Deleting the Wallet
To delete the current open wallet:

1. Select Wallet, Delete. The Delete Wallet dialog box is displayed.

2. Review the displayed wallet location to verify you are deleting the correct wallet.

3. Enter the wallet password.

4. Click OK. A dialog panel is displayed to inform you that the wallet was
successfully deleted.

Changing the Password
A password change is effective immediately. The wallet is saved to the currently
selected directory, encrypted with the password.

Note:

■ SSL uses the wallet that is saved in the system default directory
location.

■ Some Oracle applications are not able to use the wallet if it is
not in the system default location. Check the Oracle
documentation for your specific application to determine
whether wallets must be placed in the default wallet directory
location.

Note: Any open wallet in application memory will remain in
memory until the application exits. Therefore, deleting a wallet that
is currently in use does not immediately affect system operation.

Note: If you are using a wallet with auto login enabled, you must
regenerate the auto login wallet after changing the password. Refer
to "Using Auto Login" on page 9-14

Managing Certificates

9-14 Oracle Database Advanced Security Administrator's Guide

To change the password for the current open wallet:

1. Select Wallet, then Change Password. The Change Wallet Password dialog box is
displayed.

2. Enter the existing wallet password.

3. Enter the new password.

4. Reenter the new password.

5. Click OK.

A message at the bottom of the window confirms that the password was successfully
changed.

Using Auto Login
PKI-based access to services can be enabled without requiring human interventions to
supply the necessary passwords: this feature is called auto login. Enabling auto login
creates an obfuscated copy of the wallet, which is then used automatically until the
auto login feature is disabled for that wallet.

Auto login wallets are protected by file system permissions. When auto login is
enabled for a wallet, only the operating system user who created it can manage it,
through the Oracle Wallet Manager.

You must enable auto login if you want single sign-on access to multiple Oracle
databases: such access is normally disabled, by default. Sometimes the obfuscated auto
login wallets are called "SSO wallets" because they support single sign-on capability.

Enabling Auto Login
To enable auto login:

1. Select Wallet from the menu bar.

2. Select Auto Login. A message at the bottom of the window indicates that auto
login is enabled.

Disabling Auto Login
To disable auto login:

1. Select Wallet from the menu bar.

2. Deselct Auto Login. A message at the bottom of the window indicates that auto
login is disabled.

Managing Certificates
All certificates are signed data structures that bind a network identity with a
corresponding public key. Table 9–5 describes the two types of certificates
distinguished in this chapter.

See Also:

■ "Required Guidelines for Creating Wallet Passwords" on
page 9-7

■ "Wallet Password Management" on page 9-2, for password
policy restrictions

Managing Certificates

Using Oracle Wallet Manager 9-15

The following subsections describe how to manage both types of certificates:

■ Managing User Certificates

■ Managing Trusted Certificates

Managing User Certificates
User certificates, including server certificates, are used by end users, smart cards, or
applications, such as Web servers. For example, if a CA issues a certificate for a Web
server, placing its distinguished name (DN) in the Subject field, then the Web server is
the certificate owner, thus the "user" for this user certificate.

Managing user certificates involves the following tasks:

■ Adding a Certificate Request

■ Importing the User Certificate into the Wallet

■ Importing Certificates and Wallets Created by Third Parties

■ Removing a User Certificate from a Wallet

■ Removing a Certificate Request

■ Exporting a User Certificate

■ Exporting a User Certificate Request

Adding a Certificate Request
You can add multiple certificate requests with Oracle Wallet Manager. When adding
multiple requests, Oracle Wallet Manager automatically populates each subsequent
request dialog box with the content of the initial request that you can then edit.

The actual certificate request becomes part of the wallet. You can reuse any certificate
request to obtain a new certificate. However, you cannot edit an existing certificate
request. Store only a correctly filled out certificate request in a wallet.

To create a PKCS #10 certificate request:

Table 9–5 Types of Certificates

Certificate Type Examples

User certificates Certificates issued to servers or users to prove an end entity's
identity in a public key/private key exchange

Trusted certificates Certificates representing entities whom you trust, such as
certificate authorities who sign the user certificates they issue

Note: Before a user certificate can be installed, the wallet must
contain the trusted certificate representing the certificate authority
who issued that user certificate. However, whenever you create a
new wallet, several publicly trusted certificates are automatically
installed, since they are so widely used. If the necessary certificate
authority is not represented, then you must install its certificate
first.

Also, you can import using the PKCS#7 certificate chain format,
which gives you the user certificate and the CA certificate at the
same time.

Managing Certificates

9-16 Oracle Database Advanced Security Administrator's Guide

1. Select Operations, then Add Certificate Request. The Add Certificate Request
dialog box is displayed.

2. Enter the information specified in Table 9–6.

3. Click OK. A message informs you that a certificate request was successfully
created. You can either copy the certificate request text from the body of this dialog
panel and paste it into an e-mail message to send to a certificate authority, or you
can export the certificate request to a file. At this point, Oracle Wallet Manager has
created your private/public key pair and stored it in the wallet. When the
certificate authority issues your certificate, it will also be stored in the wallet and
associate it with its corresponding private key.

4. Click OK to return to the Oracle Wallet Manager main window. The status of the
certificate changes to [Requested].

Table 9–7 lists the available key sizes and the relative security each size provides.
Typically, CAs use key sizes of 1024 or 2048. When certificate owners wish to keep
their keys for a longer duration, they choose 3072 or 4096 bit keys.

Note: The online Help for Oracle Wallet Manager becomes
unresponsive when modal dialog boxes appear, such as the one for
entering certificate request information. The online Help becomes
responsive once the modal dialog box is closed.

See Also: "Exporting a User Certificate Request" on page 9-20

Table 9–6 Certificate Request: Fields and Descriptions

Field Name Description

Common Name Mandatory. Enter the name of the user's or service's identity.
Enter a user's name in first name /last name format.

Example: Eileen.Sanger

Organizational Unit Optional. Enter the name of the identity's organizational unit.
Example: Finance.

Organization Optional. Enter the name of the identity's organization.
Example: XYZ Corp.

Locality/City Optional. Enter the name of the locality or city in which the
identity resides.

State/Province Optional. Enter the full name of the state or province in which
the identity resides.

Enter the full state name, because some certificate authorities do
not accept two–letter abbreviations.

Country Mandatory. Select Country to view a list of country
abbreviations. Select the country in which the organization is
located.

Key Size Mandatory. Select Key Size to view a list of key sizes to use
when creating the public/private key pair. Refer to Table 9–7 to
evaluate key size.

Advanced Optional. Select Advanced to view the Advanced Certificate
Request dialog panel. Use this field to edit or customize the
identity's distinguished name (DN). For example, you can edit
the full state name and locality.

Managing Certificates

Using Oracle Wallet Manager 9-17

Importing the User Certificate into the Wallet
When the Certificate Authority grants you a certificate, it may send you an e-mail that
has your certificate in text (BASE64) form or attached as a binary file.

To import the user certificate from the text of the Certificate Authority's e-mail Copy the
certificate, represented as text (BASE64), from the e-mail message. Include the lines
Begin Certificate and End Certificate.

1. Select Operations, Import User Certificate. The Import Certificate dialog box is
displayed.

2. Select Paste the certificate, and then click OK. Another Import Certificate dialog
box is displayed with the following message:

Please provide a base64 format certificate and paste it below.

3. Paste the certificate into the dialog box, and click OK.

a. If the certificate received is in PKCS#7 format, it is installed, and all the other
certificates included with the PKCS#7 data are placed in the Trusted Certificate
list.

b. If the certificate received is not in PKCS#7 format, and the certificate of its CA
is not already in the Trusted Certificates list, then more must be done. Oracle
Wallet Manager will ask you to import the certificate of the CA that issued
your certificate. This CA certificate will be placed in the Trusted Certificates
list. (If the CA certificate was already in the Trusted Certificates list, your
certificate is imported without additional steps.)

After either (a) or (b) succeeds, a message at the bottom of the window confirms
that the certificate was successfully installed. You are returned to the Oracle Wallet
Manager main panel, and the status of the corresponding entry in the left panel
subtree changes to [Ready].

Table 9–7 Available Key Sizes

Key Size Relative Security Level

512 or 768 Not regarded as secure.

1024 or 2048 Secure.

3072 or 4096 Very secure.

Note: Certificate authorities may send your certificate in a PKCS #7
certificate chain or as an individual X.509 certificate. Oracle Wallet
Manager can import both types.

PKCS #7 certificate chains are a collection of certificates, including the
user's certificate and all of the supporting trusted CA and subCA
certificates.

In contrast, an X.509 certificate file contains an individual certificate
without the supporting certificate chain.

However, before you can import any such individual certificate, the
signer’s certificate must be a Trusted Certificate in the wallet.

Managing Certificates

9-18 Oracle Database Advanced Security Administrator's Guide

To import the certificate from a file The user certificate in the file can be in either text
(BASE64) or binary (der) format.

1. Select Operations, Import User Certificate. The Import Certificate dialog box is
displayed.

2. Select Select a file that contains the certificate, and click OK. Another Import
Certificate dialog box is displayed.

3. Enter the path or folder name of the certificate file location.

4. Select the name of the certificate file (for example, cert.txt, cert.der).

5. Click OK.

a. If the certificate received is in PKCS#7 format, it is installed, and all the other
certificates included with the PKCS#7 data are placed in the Trusted Certificate
list.

b. If the certificate received is not in PKCS#7 format, and the certificate of its CA
is not already in the Trusted Certificates list, then more must be done. Oracle
Wallet Manager will ask you to import the certificate of the CA that issued
your certificate. This CA certificate will be placed in the Trusted Certificates
list. (If the CA certificate was already in the Trusted Certificates list, your
certificate is imported without additional steps.)

After either (a) or (b) succeeds, a message at the bottom of the window confirms
that the certificate was successfully installed. You are returned to the Oracle Wallet
Manager main panel, and the status of the corresponding entry in the left panel
subtree changes to [Ready].

Importing Certificates and Wallets Created by Third Parties
Third-party certificates are those created from certificate requests that were not
generated using Oracle Wallet Manager. These third-party certificates are actually
wallets, in the Oracle sense, because they contain more than just the user certificate;
they also contain the private key for that certificate. Furthermore, they include the
chain of trusted certificates validating that the certificate was created by a trustworthy
entity.

Oracle Wallet Manager makes these wallets available in a single step by importing
them in PKCS#12 format, which includes all three elements described earlier: the user
certificate, the private key, and the trusted certificates. It supports the following PKCS
#12-format certificates:

■ Netscape Communicator 4.x and later

Note: The standard X.509 certificate includes the following start
and end text:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

A typical PKCS#7 certificate includes more, as described earlier,
and includes the following start and end text:

-----BEGIN PKCS7-----
-----END PKCS7-----

You can use the standard Ctrl+c to copy, including all dashes, and
Ctrl+v to paste.

Managing Certificates

Using Oracle Wallet Manager 9-19

■ Microsoft Internet Explorer 5.x and later

Oracle Wallet Manager adheres to the PKCS#12 standard, so certificates exported by
any PKCS#12-compliant tool should be usable with Oracle Wallet Manager.

Such third-party certificates cannot be stored into existing Oracle wallets because they
would lack the private key and chain of trusted authorities. Therefore, each such
certificate is exported and retrieved instead as an independent PKCS#12 file, that is, as
its own wallet.

Importing User Certificates Created with a Third-Party Tool Once a third party generates the
wallet, you need to import it to make use of it, as described in this section.

To import a certificate created with a third-party tool, perform the following tasks:

1. Follow the procedures for your particular product to export the certificate. Take
the actions indicated in the exporting product to include the private key in the
export, and specify the new password to protect the exported certificate. Also
include all associated trust points. (Under PKCS #12, browsers do not necessarily
export trusted certificates, other than the signer's own certificate. You may need to
add additional certificates to authenticate to your peers. You can use Oracle Wallet
Manager to import trusted certificates.)

The resulting file, containing the certificate, the private key, and the trust points, is
the new wallet that enables the third-party certificate to be used.

2. To be used by particular applications or servers, such as a web server or an LDAP
server, wallets need to be located precisely. Each application has its own
expectations as to which directory it will search to find the needed wallet. You
must put the wallet where it will be sought, by copying it to the correct system
and directory.

3. For use with UNIX or Windows applications or servers, the wallet must be named
ewallet.p12.

For other operating systems, refer to the Oracle documentation for that specific
operating system.

Once a third-party certificate is stored as ewallet.p12, you can open and
manage it using Oracle Wallet Manager. You will have to supply the password
you created when exporting this wallet.

Removing a User Certificate from a Wallet
To remove a user certificate from a wallet:

1. In the left panel subtree, select the certificate that you want to remove.

2. Select Operations, then Remove User Certificate. A dialog panel is displayed
which prompts you to verify that you want to remove the user certificate from the
wallet.

Note: The password will be required whenever the associated
application starts up or otherwise needs the certificate. To make such
access automatic, refer to "Using Auto Login" on page 9-14.

However, if the private key for the desired certificate is held in a
separate hardware security module,you will not be able to import that
certificate.

Managing Certificates

9-20 Oracle Database Advanced Security Administrator's Guide

3. Select Yes to return to the Oracle Wallet Manager main panel. The certificate
displays a status of [Requested].

Removing a Certificate Request
You must remove a certificate before removing its associated request.

To remove a certificate request:

1. In the left panel subtree, select the certificate request that you want to remove.

2. Select Operations, then Remove Certificate Request.

3. Click Yes. The certificate displays a status of [Empty].

Exporting a User Certificate
To save the certificate in a file system directory, export the certificate by using the
following steps:

1. In the left panel subtree, select the certificate that you want to export.

2. Select Operations, then Export User Certificate from the menu bar. The Export
Certificate dialog box is displayed.

3. Enter the file system directory location where you want to save your certificate, or
navigate to the directory structure under Folders.

4. Enter a file name for your certificate in the Enter File Name field.

5. Click OK. A message at the bottom of the window confirms that the certificate was
successfully exported to the file. You are returned to the Oracle Wallet Manager
main window.

Exporting a User Certificate Request
To save the certificate request in a file system directory, export the certificate request by
using the following steps:

1. In the left panel subtree, select the certificate request that you want to export.

2. Select Operations, then Export Certificate Request. The Export Certificate
Request dialog box is displayed.

3. Enter the file system directory location where you want to save your certificate
request, or navigate to the directory structure under Folders.

4. Enter a file name for your certificate request, in the Enter File Name field.

5. Select OK. A message at the bottom of the window confirms that the certificate
request was successfully exported to the file. You are returned to the Oracle Wallet
Manager main window.

Managing Trusted Certificates
 Managing trusted certificates includes the following tasks:

See Also: "Exporting Oracle Wallets to Third-Party Environments"
on page 9-10 for information about exporting wallets. Note that Oracle
Wallet Manager supports storing multiple certificates in a single
wallet, yet current browsers typically support only single-certificate
wallets. For these browsers, you must export an Oracle wallet that
contains a single key-pair.

Managing Certificates

Using Oracle Wallet Manager 9-21

■ Importing a Trusted Certificate

■ Removing a Trusted Certificate

■ Exporting a Trusted Certificate

■ Exporting All Trusted Certificates

Importing a Trusted Certificate
You can import a trusted certificate into a wallet in either of two ways: paste the
trusted certificate from an e-mail that you receive from the certificate authority, or
import the trusted certificate from a file.

Oracle Wallet Manager automatically installs trusted certificates from VeriSign, RSA,
Entrust, and GTE CyberTrust when you create a new wallet.

To copy and paste the text only (BASE64) trusted certificate

Copy the trusted certificate from the body of the e-mail message you received that
contained the user certificate. Include the lines Begin Certificate and End
Certificate.

1. Select Operations, then Import Trusted Certificate from the menu bar. The Import
Trusted Certificate dialog panel is displayed.

2. Select Paste the Certificate and click OK. Another Import Trusted Certificate
dialog panel is displayed with the following message:

Please provide a base64 format certificate and paste it below.

3. Paste the certificate into the window, and click OK. A message at the bottom of the
window informs you that the trusted certificate was successfully installed.

4. Click OK. You are returned to the Oracle Wallet Manager main panel, and the
trusted certificate is displayed at the bottom of the Trusted Certificates tree.

To import a file that contains the trusted certificate The file containing the trusted certificate
should have been saved in either text (BASE64) or binary (der) format.

1. Select Operations, then Import Trusted Certificate. The Import Trusted Certificate
dialog panel is displayed.

2. Enter the path or folder name of the trusted certificate location.

3. Select the name of the trusted certificate file (for example, cert.txt).

4. Click OK. A message at the bottom of the window informs you that the trusted
certificate was successfully imported into the wallet.

5. Click OK to exit the dialog panel. You are returned to the Oracle Wallet Manager
main panel, and the trusted certificate is displayed at the bottom of the Trusted
Certificates tree.

Removing a Trusted Certificate
You cannot remove a trusted certificate if it has been used to sign a user certificate still
present in the wallet. To remove such trusted certificates, you must first remove the

Keyboard shortcuts for copying and pasting certificates:

Use Ctrl+c to copy, and use Ctrl+v to paste.

Managing Certificates

9-22 Oracle Database Advanced Security Administrator's Guide

certificates it has signed. Also, you cannot verify a certificate after its trusted certificate
has been removed from your wallet.

To remove a trusted certificate from a wallet:

1. Select the trusted certificate listed in the Trusted Certificates tree.

2. Select Operations, then Remove Trusted Certificate... from the menu bar.

A dialog panel warns you that your user certificate will no longer be verifiable by
its recipients if you remove the trusted certificate that was used to sign it.

3. Select Yes. The selected trusted certificate is removed from the Trusted Certificates
tree.

Exporting a Trusted Certificate
To export a trusted certificate to another file system location:

1. In the left panel subtree, select the trusted certificate that you want to export.

2. Select Operations, thenExport Trusted Certificate. The Export Trusted Certificate
dialog box is displayed.

3. Enter a file system directory in which you want to save your trusted certificate, or
navigate to the directory structure under Folders.

4. Enter a file name to save your trusted certificate.

5. Click OK. You are returned to the Oracle Wallet Manager main window.

Exporting All Trusted Certificates
To export all of your trusted certificates to another file system location:

1. Select Operations, then Export All Trusted Certificates.... The Export Trusted
Certificate dialog box is displayed.

2. Enter a file system directory location where you want to save your trusted
certificates, or navigate to the directory structure under Folders.

3. Enter a file name to save your trusted certificates.

4. Click OK. You are returned to the Oracle Wallet Manager main window.

Configuring Multiple Authentication Methods and Disabling Oracle Advanced Security 10-1

10
Configuring Multiple Authentication Methods

and Disabling Oracle Advanced Security

This chapter describes how to configure multiple authentication methods under
Oracle Advanced Security, and how to use conventional user name and password
authentication, even if you have configured another authentication method. This also
chapter describes how to configure your network so that Oracle clients can use a
specific authentication method and Oracle servers can accept any method specified.

This chapter contains the following topics:

■ Connecting with User Name and Password

■ Disabling Oracle Advanced Security Authentication

■ Configuring Multiple Authentication Methods

■ Configuring Oracle Database for External Authentication

Connecting with User Name and Password
To connect to an Oracle database server using a user name and password when an
Oracle Advanced Security authentication method has been configured, disable the
external authentication (Refer to "Disabling Oracle Advanced Security Authentication"
on page 10-1).

With the external authentication disabled, a user can connect to a database using the
following format:

% sqlplus username@net_service_name
Enter password: password

For example:

% sqlplus hr@emp
Enter password: password

Disabling Oracle Advanced Security Authentication
Use Oracle Net Manager to disable authentication methods (Refer to "Starting Oracle
Net Manager" on page 2-2):

Note: You can configure multiple authentication methods,
including both externally authenticated users and password
authenticated users, on a single database.

Configuring Multiple Authentication Methods

10-2 Oracle Database Advanced Security Administrator's Guide

1. Navigate to the Oracle Advanced Security profile. Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2. The Oracle Advanced Security
tabbed window is displayed as shown in Figure 10–1.

Figure 10–1 Oracle Advanced Security Authentication Window

1. Click the Authentication tab.

2. Sequentially move all authentication methods from the Selected Method list to the
Available Methods list by selecting a method and choosing the left arrow [<].

3. Select File, then Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SQLNET.AUTHENTICATION_SERVICES = (NONE)

Configuring Multiple Authentication Methods
Many networks use more than one authentication method on a single security server.
Accordingly, Oracle Advanced Security lets you configure your network so that Oracle
clients can use a specific authentication method, and Oracle database servers can
accept any method specified.

You can set up multiple authentication methods on both client and server systems
either by using Oracle Net Manager, or by using any text editor to modify the
sqlnet.ora file.

Use Oracle Net Manager to add authentication methods to both clients and servers
(Refer to "Starting Oracle Net Manager" on page 2-2)

Following steps describe how to configure Multiple authentication Methods.

Configuring Oracle Database for External Authentication

Configuring Multiple Authentication Methods and Disabling Oracle Advanced Security 10-3

1. Navigate to the Oracle Advanced Security profile. Refer to "Navigating to the
Oracle Advanced Security Profile" on page 2-2. The Oracle Advanced Security
tabbed window is displayed as shown in Figure 10–1.

2. Click the Authentication tab.

3. Select a method listed in the Available Methods list.

4. Sequentially move selected methods to the Selected Methods list by clicking the
right arrow (>).

5. Arrange the selected methods in order of desired use. To do this, select a method
in the Selected Methods list, and select Promote or Demote to position it in the list.

6. Select File, then Save Network Configuration.

The sqlnet.ora file is updated with the following entry, listing the selected
authentication methods:

SQLNET.AUTHENTICATION_SERVICES = (KERBEROS5, RADIUS)

Configuring Oracle Database for External Authentication
This section describes the parameters you must set to configure Oracle Database for
network authentication, using the following tasks:

■ Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora

■ Setting OS_AUTHENT_PREFIX to a Null Value

Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora
The following parameter must be set in the sqlnet.ora file for all clients and servers
to enable each to use a supported authentication method:

SQLNET.AUTHENTICATION_SERVICES=(oracle_authentication_method)

For example, for all clients and servers using Kerberos authentication, the
sqlnet.ora parameter must be set as follows:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)

Setting OS_AUTHENT_PREFIX to a Null Value
Authentication service-based user names can be long, and Oracle user names are
limited to 30 characters. Oracle strongly recommends that you enter a null value for
the OS_AUTHENT_PREFIX parameter in the initialization file used for the database
instance as follows:

Note: SecurID functionality is available through RADIUS;
RADIUS support is built into the RSA ACE/Server.

See Also: Chapter 6, "Configuring RADIUS Authentication" for
more information

See Also:

■ The corresponding chapter in this guide for information about
configuring a particular authentication method

■ Appendix B, "Authentication Parameters"

Configuring Oracle Database for External Authentication

10-4 Oracle Database Advanced Security Administrator's Guide

OS_AUTHENT_PREFIX=""

To create a user, launch SQL*Plus and enter the following:

SQL> CREATE USER os_authent_prefix username IDENTIFIED EXTERNALLY;

When OS_AUTHENT_PREFIX is set to a null value (" "), enter the following to create
the user king:

SQL> CREATE USER king IDENTIFIED EXTERNALLY;

The advantage of creating a user in this way is that the administrator no longer needs
to maintain different user names for externally identified users. This is true for all
supported authentication methods.

Note: The default value for OS_AUTHENT_PREFIX is OPS$;
however, you can set it to any string.

Attention: If a database already has the OS_AUTHENT_PREFIX set
to a value other than NULL (" "), do not change it, because it can
inhibit previously created, externally identified users from
connecting to the Oracle server.

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Heterogeneous Connectivity User's Guide

Part IV
Appendixes

Part IV contains the following reference appendixes:

■ Appendix A, "Data Encryption and Integrity Parameters"

■ Appendix B, "Authentication Parameters"

■ Appendix C, "Integrating Authentication Devices Using RADIUS"

■ Appendix D, "Oracle Advanced Security FIPS 140-1 Settings"

■ Appendix E, "Oracle Advanced Security FIPS 140-2 Settings"

■ Appendix F, "orapki Utility"

■ Appendix G, "Entrust-Enabled SSL Authentication"

Data Encryption and Integrity Parameters A-1

A
Data Encryption and Integrity Parameters

This appendix describes encryption and data integrity parameters supported by
Oracle Advanced Security. It also includes an example of a sqlnet.ora file
generated by performing the network configuration described in Chapter 4,
"Configuring Network Data Encryption and Integrity for Oracle Servers and Clients"
and Chapter 8, "Configuring Secure Sockets Layer Authentication".

This appendix contains the following topics:

■ Sample sqlnet.ora File

■ Data Encryption and Integrity Parameters

Sample sqlnet.ora File
This section contains a sample sqlnet.ora configuration file for a set of clients with
similar characteristics and a set of servers with similar characteristics. The file includes
examples of Oracle Advanced Security encryption and data integrity parameters.

Trace File Setup
#Trace file setup
trace_level_server=16
trace_level_client=16
trace_directory_server=/orant/network/trace
trace_directory_client=/orant/network/trace
trace_file_client=cli
trace_file_server=srv
trace_unique_client=true

Oracle Advanced Security Transparent Data Encryption
ENCRYPTION_WALLET_LOCATION = (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY =
 /etc/ORACLE/WALLETS/oracle)))

Oracle Advanced Security Network Encryption
#ASO Encryption
sqlnet.encryption_server=accepted
sqlnet.encryption_client=requested
sqlnet.encryption_types_server=(RC4_40)
sqlnet.encryption_types_client=(RC4_40)

Data Encryption and Integrity Parameters

A-2 Oracle Database Advanced Security Administrator's Guide

Oracle Advanced Security Network Data Integrity
#ASO Checksum
sqlnet.crypto_checksum_server=requested
sqlnet.crypto_checksum_client=requested
sqlnet.crypto_checksum_types_server = (MD5)
sqlnet.crypto_checksum_types_client = (MD5)

SSL
#SSL
WALLET_LOCATION = (SOURCE=
 (METHOD = FILE)
 (METHOD_DATA =
 DIRECTORY=/wallet)

SSL_CIPHER_SUITES=(SSL_DH_anon_WITH_RC4_128_MD5)
SSL_VERSION= 3
SSL_CLIENT_AUTHENTICATION=FALSE

Common
#Common
automatic_ipc = off
sqlnet.authentication_services = (beq)
names.directory_path = (TNSNAMES)

Kerberos
#Kerberos
sqlnet.authentication_services = (beq, kerberos5)
sqlnet.authentication_kerberos5_service = oracle
sqlnet.kerberos5_conf= /krb5/krb.conf
sqlnet.kerberos5_keytab= /krb5/v5srvtab
sqlnet.kerberos5_realms= /krb5/krb.realm
sqlnet.kerberos5_cc_name = /krb5/krb5.cc
sqlnet.kerberos5_clockskew=900
sqlnet.kerberos5_conf_mit=false

RADIUS
#Radius
sqlnet.authentication_services = (beq, RADIUS)
sqlnet.radius_authentication_timeout = (10)
sqlnet.radius_authentication_retries = (2)
sqlnet.radius_authentication_port = (1645)
sqlnet.radius_send_accounting = OFF
sqlnet.radius_secret = /orant/network/admin/radius.key
sqlnet.radius_authentication = radius.us.example.com
sqlnet.radius_challenge_response = OFF
sqlnet.radius_challenge_keyword = challenge
sqlnet.radius_challenge_interface =
oracle/net/radius/DefaultRadiusInterface
sqlnet.radius_classpath = /jre1.1/

Data Encryption and Integrity Parameters
If you do not specify any values for Server Encryption, Client Encryption, Server
Checksum, or Client Checksum, the corresponding configuration parameters do not
appear in the sqlnet.ora file. However, Oracle Advanced Security defaults to
ACCEPTED.

Data Encryption and Integrity Parameters

Data Encryption and Integrity Parameters A-3

For both data encryption and integrity algorithms, the server selects the first algorithm
listed in its sqlnet.ora file that matches an algorithm listed in the client
sqlnet.ora file, or in the client installed list if the client lists no algorithms in its
sqlnet.ora file. If there are no entries in the server sqlnet.ora file, the server
sequentially searches its installed list to match an item on the client side—either in the
client sqlnet.ora file or in the client installed list. If no match can be made and one side
of the connection REQUIRED the algorithm type (data encryption or integrity), the connection
fails. Otherwise, the connection succeeds with the algorithm type inactive.

Data encryption and integrity algorithms are selected independently of each other.
Encryption can be activated without integrity, and integrity can be activated without
encryption, as shown by Table A–1:

The following sections describe data encryption and integrity parameters:

■ "SQLNET.ENCRYPTION_SERVER Parameter"

■ "SQLNET.ENCRYPTION_CLIENT Parameter"

■ "SQLNET.CRYPTO_CHECKSUM_SERVER Parameter"

■ "SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter"

■ "SQLNET.ENCRYPTION_TYPES_SERVER Parameter"

■ "SQLNET.ENCRYPTION_TYPES_CLIENT Parameter"

■ "SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter"

■ "SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter"

SQLNET.ENCRYPTION_SERVER Parameter
This parameter specifies the desired encryption behavior when a client or a server
acting as a client connects to this server. The behavior of the server partially depends
on the SQLNET.ENCRYPTION_CLIENT setting at the other end of the connection.

Table A–1 Algorithm Type Selection

Encryption Selected? Integrity Selected?

Yes No

Yes Yes

No Yes

No No

See Also:

■ Chapter 4, "Configuring Network Data Encryption and
Integrity for Oracle Servers and Clients"

■ "About Activating Encryption and Integrity" on page 4-4

Table A–2 SQLNET.ENCRYPTION_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_SERVER = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

Data Encryption and Integrity Parameters

A-4 Oracle Database Advanced Security Administrator's Guide

SQLNET.ENCRYPTION_CLIENT Parameter
This parameter specifies the desired encryption behavior when this client or server
acting as a client connects to a server. The behavior of the client partially depends on
the value set for SQLNET.ENCRYPTION_SERVER at the other end of the connection.

SQLNET.CRYPTO_CHECKSUM_SERVER Parameter
This parameter specifies the desired data integrity behavior when a client or another
server acting as a client connects to this server. The behavior partially depends on the
SQLNET.CRYPTO_CHECKSUM_CLIENT setting at the other end of the connection.

SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter
This parameter specifies the desired data integrity behavior when this client or server
acting as a client connects to a server. The behavior partially depends on the
SQLNET.CRYPTO_CHECKSUM_SERVER setting at the other end of the connection.

SQLNET.ENCRYPTION_TYPES_SERVER Parameter
This parameter specifies a list of encryption algorithms used by this server in the order
of intended use. This list is used to negotiate a mutually acceptable algorithm with the
client end of the connection. Each algorithm is checked against the list of available
client algorithm types until a match is found. If an algorithm that is not installed is
specified on this side, the connection terminates with the error message ORA-12650.

Table A–3 SQLNET.ENCRYPTION_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_CLIENT = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

Table A–4 SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_SERVER = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

Table A–5 SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_CLIENT = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

Table A–6 SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_TYPES_SERVER = (valid_encryption_
algorithm [,valid_encryption_algorithm])

Data Encryption and Integrity Parameters

Data Encryption and Integrity Parameters A-5

SQLNET.ENCRYPTION_TYPES_CLIENT Parameter
This parameter specifies a list of encryption algorithms used by this client or server
acting as a client. This list is used to negotiate a mutually acceptable algorithm with
the other end of the connection. If an algorithm that is not installed is specified on this
side, the connection terminates with the ORA-12650 error message.

Valid Values ■ RC4_256: RSA RC4 (256-bit key size)

■ AES256: AES (256-bit key size)

■ AES192: AES (192-bit key size)

■ 3DES168: 3-key Triple-DES (168-bit effective key size)

■ RC4_128: RSA RC4 (128-bit key size)

■ AES128: AES (128-bit key size)

■ 3DES112: 2-key Triple-DES (112-bit effective key size)

■ RC4_56: RSA RC4 (56-bit key size)

■ DES: Standard DES (56-bit key size)

■ RC4_40: RSA RC4 (40-bit key size)

■ DES40: DES40 (40-bit key size)

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation in the preceding
sequence.

Usage Notes You can specify multiple encryption algorithms. It can be either
a single value or a list of algorithm names. For example, either
of the following encryption parameters is acceptable:

SQLNET.ENCRYPTION_TYPES_SERVER=(RC4_40)

SQLNET.ENCRYPTION_TYPES_SERVER=(3DES112,RC4_
56,RC4_128,3DES168)

Table A–7 SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_TYPES_CLIENT = (valid_encryption_
algorithm [,valid_encryption_algorithm])

Valid Values ■ RC4_256: RSA RC4 (256-bit key size).

■ AES256: AES (256-bit key size).

■ AES192: AES (192-bit key size).

■ 3DES168: 3-key Triple-DES (168-bit effective key size).

■ RC4_128: RSA RC4 (128-bit key size).

■ AES128: AES (128-bit key size).

■ 3DES112: 2-key Triple-DES (112-bit effective key size).

■ RC4_56: RSA RC4 (56-bit key size).

■ DES: Standard DES (56-bit key size).

■ RC4_40: RSA RC4 (40-bit key size).

■ DES40: DES40 (40-bit key size).

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation.

Table A–6 (Cont.) SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes

Attribute Description

Data Encryption and Integrity Parameters

A-6 Oracle Database Advanced Security Administrator's Guide

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter
This parameter specifies a list of data integrity algorithms that this server or client to
another server uses, in order of intended use. This list is used to negotiate a mutually
acceptable algorithm with the other end of the connection. Each algorithm is checked
against the list of available client algorithm types until a match is found. If an
algorithm is specified that is not installed on this side, the connection terminates with
the ORA-12650 error message

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter
This parameter specifies a list of data integrity algorithms that this client or server
acting as a client uses. This list is used to negotiate a mutually acceptable algorithm
with the other end of the connection. If an algorithm that is not installed on this side is
specified, the connection terminates with the ORA-12650 error message.

Usage Notes You can specify multiple encryption algorithms.

Table A–8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (valid_
crypto_checksum_algorithm [,valid_crypto_checksum_
algorithm])

Valid Values ■ SHA1: Secure Hash Algorithm

■ MD5: Message Digest 5

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation in the preceding
sequence.

Table A–9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (valid_
crypto_checksum_algorithm [,valid_crypto_checksum_
algorithm])

Valid Values ■ SHA1: Secure Hash Algorithm

■ MD5: Message Digest 5

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation.

Table A–7 (Cont.) SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes

Attribute Description

Authentication Parameters B-1

B
Authentication Parameters

This appendix illustrates some sample configuration files with the profile file
(sqlnet.ora) and the database initialization file authentication parameters, when
using Kerberos, RADIUS, or SSL authentication.

This appendix contains the following topics:

■ Parameters for Clients and Servers using Kerberos Authentication

■ Parameters for Clients and Servers using RADIUS Authentication

■ Parameters for Clients and Servers using SSL

Parameters for Clients and Servers using Kerberos Authentication
Following is a list of parameters to insert into the configuration files for clients and
servers using Kerberos.

Parameters for Clients and Servers using RADIUS Authentication
The following sections describe the parameters for RADIUS authentication

■ sqlnet.ora File Parameters

■ Minimum RADIUS Parameters

■ Initialization File Parameters

sqlnet.ora File Parameters
The following sections describe the sqlnet.ora parameters that are used to specify
RADIUS authentication.

Table B–1 Kerberos Authentication Parameters

File Name Configuration Parameters

sqlnet.ora SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=oracle
SQLNET.KERBEROS5_CC_NAME=/usr/tmp/DCE-CC
SQLNET.KERBEROS5_CLOCKSKEW=1200
SQLNET.KERBEROS5_CONF=/krb5/krb.conf
SQLNET.KERBEROS5_CONF_MIT=(FALSE)
SQLNET.KERBEROS5_REALMS=/krb5/krb.realms
SQLNET.KERBEROS5_KEYTAB=/krb5/v5srvtab

initialization
parameter file

OS_AUTHENT_PREFIX=""

Parameters for Clients and Servers using RADIUS Authentication

B-2 Oracle Database Advanced Security Administrator's Guide

SQLNET.AUTHENTICATION_SERVICES
This parameter configures the client or the server to use the RADIUS adapter.
Table B–2 describes this parameter's attributes.

SQLNET.RADIUS_AUTHENTICATION
This parameter sets the location of the primary RADIUS server, either host name or
dotted decimal format. If the RADIUS server is on a different computer from the
Oracle server, you must specify either the host name or the IP address of that
computer. Table B–3 describes this parameter's attributes.

SQLNET.RADIUS_AUTHENTICATION_PORT
This parameter sets the listening port of the primary RADIUS server. Table B–4
describes this parameter's attributes.

SQLNET.RADIUS_AUTHENTICATION_TIMEOUT
This parameter sets the time to wait for response. Table B–5 describes this parameter's
attributes.

SQLNET.RADIUS_AUTHENTICATION_RETRIES
This parameter sets the number of times to resend authentication information.
Table B–6 describes this parameter's attributes.

Table B–2 SQLNET.AUTHENTICATION_SERVICES Parameter Attributes

Attribute Description

Syntax SQLNET.AUTHENTICATION_SERVICES=(radius)

Default setting None

Table B–3 SQLNET.RADIUS_AUTHENTICATION Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION=RADIUS_server_IP_address

Default setting localhost

Table B–4 SQLNET.RADIUS_AUTHENTICATION_PORT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_PORT=port_number

Default setting 1645

Table B–5 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_TIMEOUT=time_in_seconds

Default setting 5

Table B–6 SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_RETRIES=n_times_to_
resend

Parameters for Clients and Servers using RADIUS Authentication

Authentication Parameters B-3

SQLNET.RADIUS_SEND_ACCOUNTING
This parameter turns accounting on and off. If you enable accounting, packets will be
sent to the active RADIUS server at the listening port plus one. By default, packets are
sent to port 1646. You need to turn this feature on only when your RADIUS server
supports accounting and you want to keep track of the number of times the user is
logging on to the system. Table B–7 describes this parameter's attributes.

SQLNET.RADIUS_SECRET
This parameter specifies the file name and location of the RADIUS secret key.
Table B–8 describes this parameter's attributes.

SQLNET.RADIUS_ALTERNATE
This parameter sets the location of an alternate RADIUS server to be used in case the
primary server becomes unavailable for fault tolerance. Table B–9 describes this
parameter's attributes.

SQLNET.RADIUS_ALTERNATE_PORT
This parameter sets the listening port for the alternate RADIUS server. Table B–10
describes this parameter's attributes.

Default setting 3

Table B–7 SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_SEND_ACCOUNTING=on

Default setting off

Table B–8 SQLNET.RADIUS_SECRET Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_SECRET=path_to_RADIUS_secret_key

Default setting $ORACLE_HOME/network/security/radius.key

Table B–9 SQLNET.RADIUS_ALTERNATE Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE=alternate_RADIUS_server_
hostname_or_IP_address

Default setting off

Table B–10 SQLNET.RADIUS_ALTERNATE_PORT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_PORT=alternate_RADIUS_
server_listening_port_number

Default setting 1645

Table B–6 (Cont.) SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes

Attribute Description

Parameters for Clients and Servers using RADIUS Authentication

B-4 Oracle Database Advanced Security Administrator's Guide

SQLNET.RADIUS_ALTERNATE_TIMEOUT
This parameter sets the time to wait for response for the alternate RADIUS server.
Table B–11 describes this parameter's attributes.

SQLNET.RADIUS_ALTERNATE_RETRIES
This parameter sets the number of times that the alternate RADIUS server resends
messages. Table B–12 describes this parameter's attributes.

SQLNET.RADIUS_CHALLENGE_RESPONSE
This parameter turns on or turns off the challenge-response or asynchronous mode
support. Table B–13 describes this parameter's attributes.

SQLNET.RADIUS_CHALLENGE_KEYWORD
This parameter sets the keyword to request a challenge from the RADIUS server. User
types no password on the client. Table B–14 describes this parameter's attributes.

SQLNET.RADIUS_AUTHENTICATION_INTERFACE
This parameter sets the name of the Java class that contains the graphical user interface
when RADIUS is in the challenge-response (asynchronous) mode. Table B–15 describes
this parameter's attributes.

Table B–11 SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_TIMEOUT=time_in_seconds

Default setting 5

Table B–12 SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_RETRIES=n_times_to_resend

Default setting 3

Table B–13 SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CHALLENGE_RESPONSE=on

Default setting off

Table B–14 SQLNET.RADIUS_CHALLENGE_KEYWORD Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CHALLENGE_KEYWORD=keyword

Default setting challenge

Table B–15 SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_INTERFACE=Java_class_
name

Parameters for Clients and Servers using SSL

Authentication Parameters B-5

SQLNET.RADIUS_CLASSPATH
If you decide to use the challenge-response authentication mode, RADIUS presents the
user with a Java-based graphical interface requesting first a password, then additional
information, for example, a dynamic password that the user obtains from a token card.
Add the SQLNET.RADIUS_CLASSPATH parameter in the sqlnet.ora file to set the
path for the Java classes for that graphical interface, and to set the path to the JDK Java
libraries. Table B–16 describes this parameter's attributes.

Minimum RADIUS Parameters
sqlnet.authentication_services = (radius)
sqlnet.radius.authentication = IP-address-of-RADIUS-server

Initialization File Parameters
OS_AUTHENT_PREFIX=""

Parameters for Clients and Servers using SSL
There are two ways to configure a parameter:

■ Static: The name of the parameter that exists in the sqlnet.ora file. Parameters
like SSL_CIPHER_SUITES and SSL_VERSION can also be configured using the
listener.ora file.

■ Dynamic: The name of the parameter used in the security subsection of the Oracle
Net address.

SSL Authentication Parameters
This section describes the static and dynamic parameters for configuring SSL on the
server.

Default setting DefaultRadiusInterface
(oracle/net/radius/DefaultRadiusInterface)

Table B–16 SQLNET.RADIUS_CLASSPATH Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CLASSPATH=path_to_GUI_Java_classes

Default setting $ORACLE_HOME/jlib/netradius.jar:$ORACLE_
HOME/JRE/lib/sparc/native_threads

Attribute Description

Parameter Name
(static)

SQLNET.AUTHENTICATION_SERVICES

Parameter Name
(dynamic)

AUTHENTICATION

Parameter Type String LIST

Parameter Class Static

Permitted Values Add TCPS to the list of available authentication services.

Table B–15 (Cont.) SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter

Attribute Description

Parameters for Clients and Servers using SSL

B-6 Oracle Database Advanced Security Administrator's Guide

Cipher Suite Parameters
This section describes the static and dynamic parameters for configuring cipher suites.

Supported SSL Cipher Suites
Oracle Advanced Security supports the following cipher suites:

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_RC4_128_SHA

■ SSL_RSA_WITH_RC4_128_MD5

■ SSL_RSA_WITH_DES_CBC_SHA

Default Value No default value.

Description To control which authentication services a user wants to use.

Note: The dynamic version supports only the setting of one type.

Existing/New
Parameter Existing

Syntax (static) SQLNET.AUTHENTICATION_SERVICES = (TCPS, selected_method_
1, selected_method_2)

Example (static) SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

Syntax (dynamic) AUTHENTICATION = string

Example (dynamic)

AUTHENTICATION = (TCPS)

Attribute Description

Parameter Name
(static)

SSL_CIPHER_SUITES

Parameter Name
(dynamic)

 SSL_CIPHER_SUITES

Parameter Type String LIST

Parameter Class Static

Permitted Values Any known SSL cipher suite

Default Value No default

Description Controls the combination of encryption and data integrity used by
SSL.

Existing/New
Parameter

Existing

Syntax (static) SSL_CIPHER_SUITES=(SSL_cipher_suite1[, SSL_cipher_suite2, ... SSL_
cipher_suiteN])

Example (static) SSL_CIPHER_SUITES=(SSL_DH_DSS_WITH_DES_CBC_SHA)

Syntax (dynamic) SSL_CIPHER_SUITES=(SSL_cipher_suite1

[, SSL_cipher_suite2, ...SSL_cipher_suiteN])

Example (dynamic) SSL_CIPHER_SUITES=(SSL_DH_DSS_WITH_DES_CBC_SHA)

Attribute Description

Parameters for Clients and Servers using SSL

Authentication Parameters B-7

■ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

■ SSL_DH_anon_WITH_RC4_128_MD5

■ SSL_DH_anon_WITH_DES_CBC_SHA

■ SSL_RSA_EXPORT_WITH_RC4_40_MD5

■ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

■ SSL_RSA_WITH_AES_128_CBC_SHA

■ SSL_RSA_WITH_AES_256_CBC_SHA

Note that the cipher suites that use Advanced Encryption Standard (AES) work with
Transport Layer Security (TLS 1.0) only.

SSL Version Parameters
This section describes the static and dynamic parameters for configuring the version of
SSL to be used.

SSL Client Authentication Parameters
This section describes the static and dynamic parameters for configuring SSL on the
client.

Attribute Description

Parameter Name
(static)

SSL_VERSION

Parameter Name
(dynamic)

SSL_VERSION

Parameter Type string

Parameter Class Static

Permitted Values Any version which is valid to SSL. (0, 1.0 (for TLS), 2.0, and 3.0).

Default Value "0"

Description To force the version of the SSL connection.

Existing/New
Parameter

New

Syntax (static) SSL_VERSION=version

Example (static) SSL_VERSION=3.0

Syntax (dynamic) SSL_VERSION=version

Example (dynamic) SSL_VERSION=3.0

Attribute Description

Parameter Name
(static)

SSL_CLIENT_AUTHENTICATION

Parameter Name
(dynamic)

SSL_CLIENT_AUTHENTICATION

Parameter Type Boolean

Parameter Class Static

Permitted Values TRUE/FALSE

Parameters for Clients and Servers using SSL

B-8 Oracle Database Advanced Security Administrator's Guide

SSL X.509 Server Match Parameters
This section describes the parameters that are used to validate the identity of a server
that the client connects to.

SSL_SERVER_DN_MATCH

SSL_SERVER_CERT_DN

Default Value TRUE

Description To control whether a client, in addition to the server, is authenticated
using SSL.

Existing/New
Parameter

New

Syntax (static) SSL_CLIENT_AUTHENTICATION={TRUE | FALSE}

Example (static) SSL_CLIENT_AUTHENTICATION=FALSE

Syntax (dynamic) SSL_CLIENT_AUTHENTICATION={TRUE | FALSE}

Example (dynamic) SSL_CLIENT_AUTHENTICATION=FALSE

Attribute Description

Parameter Name SSL_SERVER_DN_MATCH

Where stored sqlnet.ora

Purpose Use this parameter to force the server's distinguished name (DN) to
match its service name. If you force the match verifications, SSL
ensures that the certificate is from the server. If you choose not to
enforce the match verification, SSL performs the check but permits
the connection, regardless of whether there is a match. Not forcing the
match lets the server potentially fake its identity.

Values yes|on|true. Specify to enforce a match. If the DN matches the
service name, the connection succeeds; otherwise, the connection
fails.

no|off|false. Specify to not enforce a match. If the DN does not
match the service name, the connection is successful, but an error is
logged to the sqlnet.log file.

Default Oracle8i, or later:.FALSE. SSL client (always) checks server DN. If it
does not match the service name, the connection succeeds but an
error is logged to sqlnet.log file.

Usage Notes Additionally configure the tnsnames.ora parameter SSL_
SERVER_CERT_DN to enable server DN matching.

Attribute Description

Parameter Name SSL_SERVER_CERT_DN

Where stored tnsnames.ora. It can be stored on the client, for every server it
connects to, or it can be stored in the LDAP directory, for every
server it connects to, updated centrally.

Purpose This parameter specifies the distinguished name (DN) of the server.
The client uses this information to obtain the list of DNs it expects for
each of the servers to force the server's DN to match its service name.

Attribute Description

Parameters for Clients and Servers using SSL

Authentication Parameters B-9

Wallet Location
For any application that must access a wallet for loading the security credentials into
the process space, you must specify the wallet location parameters defined by
Table B–17 in each of the following configuration files:

■ sqlnet.ora

■ listener.ora

The default wallet location is the ORACLE_HOME directory.

Values Set equal to distinguished name (DN) of the server.

Default n/a

Usage Notes Additionally configure the sqlnet.ora parameter SSL_SERVER_
DN_MATCH to enable server DN matching.

Example dbalias=(description=address_
list=(address=(protocol=tcps)(host=hostname)(port=p
ortnum)))(connect_
data=(sid=Finance))(security=(SSL_SERVER_CERT_
DN="CN=Finance,CN=OracleContext,C=US,O=Acme"))

Table B–17 Wallet Location Parameters

Static Configuration Dynamic Configuration

WALLET_LOCATION =

(SOURCE=

 (METHOD=File)

 (METHOD_DATA=

 (DIRECTORY=your wallet
location)

)

)

MY_WALLET_DIRECTORY

= your_wallet_dir

Attribute Description

Parameters for Clients and Servers using SSL

B-10 Oracle Database Advanced Security Administrator's Guide

Integrating Authentication Devices Using RADIUS C-1

C
Integrating Authentication Devices Using

RADIUS

This appendix describes how third-party authentication vendors customize the
RADIUS challenge-response user interface to fit their particular device.

This appendix contains the following topics:

■ About the RADIUS Challenge-Response User Interface

■ Customizing the RADIUS Challenge-Response User Interface

About the RADIUS Challenge-Response User Interface
You can set up any authentication device that supports the RADIUS standard to
authenticate Oracle users. When your authentication device uses the
challenge-response mode, a graphical interface prompts the user first for a password
and then for additional information. For example, a dynamic password that the user
obtains from a token card. This interface is Java-based to provide optimal platform
independence.

Third party vendors of authentication devices must customize this graphical user
interface to fit their particular device. For example, a smart card vendor customizes the
Oracle client to issue the challenge to the smart card reader. Then, when the smart card
receives a challenge, it responds by prompting the user for more information, such as a
PIN.

Customizing the RADIUS Challenge-Response User Interface
You can customize this interface by creating your own class to support the
functionality described in Table C–1. You can then open the sqlnet.ora file, look up
the SQLNET.RADIUS_AUTHENTICATION_INTERFACE parameter, and replace the
name of the class listed there (DefaultRadiusInterface), with the name of the
new class you have just created. When you make this change in the sqlnet.ora file,
the class is loaded on the Oracle client in order to handle the authentication process.

The third party must implement the Oracle RADIUS Interface, which is located in the
ORACLE.NET.RADIUS package.

public interface OracleRadiusInterface {
 public void radiusRequest();
 public void radiusChallenge(String challenge);
 public String getUserName();
 public String getPassword();

See Also: Chapter 6, "Configuring RADIUS Authentication"

Customizing the RADIUS Challenge-Response User Interface

C-2 Oracle Database Advanced Security Administrator's Guide

}

Table C–1 Server Encryption Level Setting

Parameter Description

radiusRequest Generally, this prompts the user for a user name and password,
which will later be retrieved through getUserName and
getPassword.

getUserName Extracts the user name the user enters. If this method returns
an empty string, it is assumed that the user wants to cancel the
operation. The user then receives a message indicating that the
authentication attempt failed.

getPassword Extracts the password the user enters. If getUserName returns
a valid string, but getPassword returns an empty string, the
challenge keyword is replaced as the password by the
database. If the user enters a valid password, a challenge may
or may not be returned by the RADIUS server.

radiusChallenge Presents a request sent from the RADIUS server for the user to
respond to the server's challenge.

getResponse Extracts the response the user enters. If this method returns a
valid response, that information then populates the
User-Password attribute in the new Access-Request
packet. If an empty string is returned, the operation is aborted
from both sides by returning the corresponding value.

Oracle Advanced Security FIPS 140-1 Settings D-1

D
Oracle Advanced Security FIPS 140-1

Settings

Oracle Advanced Security Release 8.1.6 has been validated under Federal Information
Processing Standard (FIPS) 140-1 at the Level 2 security level. This appendix
describes the formal configuration required for Oracle Advanced Security to comply
with the FIPS 140-1 standard. Refer to the NIST Cryptographic Modules Validation list
at the following Web site address:

http://csrc.nist.gov/cryptval/140-1/1401val.htm

This appendix contains the following topics:

■ Configuration Parameters

■ Post Installation Checks

■ Status Information

■ Physical Security

Configuration Parameters
 This appendix contains information on the Oracle Advanced Security parameters
required in the sqlnet.ora files to ensure that any connections created between a
client and server are encrypted under the control of the server.

Configuration parameters are contained in the sqlnet.ora file that is held locally for
each of the client and server processes. The protection placed on these files should be
equivalent to the level of a DBA.

The following configuration parameters are described in this appendix:

■ ENCRYPTION_SERVER

■ ENCRYPTION_CLIENT

■ ENCRYPTION_TYPES_SERVER

■ ENCRYPTION_TYPES_CLIENT

■ FIPS_140

Note: The information contained in this appendix should be used
with the information provided in Appendix A, "Data Encryption
and Integrity Parameters".

Configuration Parameters

D-2 Oracle Database Advanced Security Administrator's Guide

Server Encryption Level Setting
The server side of the negotiation notionally controls the connection settings. The
following parameter in the server file is mandatory:

SQLNET.ENCRYPTION_SERVER=REQUIRED

Setting the encryption as REQUIRED on the server side of the connection ensures that a
connection is only permitted if encryption is used, irrespective of the parameter value
on the client.

Client Encryption Level Setting
The ENCRYPTION_CLIENT parameter specifies the connection behavior for the client.
One of the following parameter settings in the client file is mandatory:

SQLNET.ENCRYPTION_CLIENT=(ACCEPTED|REQUESTED|REQUIRED)

A connection to the server is only possible if there is agreement between client and
server for the connection encryption. The server has this set to REQUIRED, therefore
the client must not reject encryption for a valid connection to be the result. Failure to
specify one of these values results in error when attempting to connect to a FIPS 140-1
compliant server.

Server Encryption Selection List
The ENCRYPTION_TYPES_SERVER parameter specifies a list of encryption algorithms
that the server is permitted to use when acting as a server in the order of required
usage. The specified algorithm must be installed or the connection terminates. For
FIPS 140-1 compliance, only DES encryption is permitted and therefore the following
parameter setting is mandatory:

SQLNET.ENCRYPTION_TYPES_SERVER=(DES,DES40)

Client Encryption Selection List
The ENCRYPTION_TYPES_CLIENT parameter specifies the list of encryption
algorithms which the client is prepared to use for the connection with the server. In
order for a connection to be successful, the algorithm must first be installed and the
encryption type must be mutually acceptable to the server.

To create a connection with a server that is configured for FIPS 140-1, the following
parameter setting is mandatory:

SQLNET.ENCRYPTION_TYPES_CLIENT=(DES,DES40)

FIPS Parameter
The default setting of the FIPS_140 parameter is FALSE. Setting the parameter to
TRUE is mandatory for both client and server to ensure Oracle Advanced Security
complies with the standards defined in FIPS 140-1 as follows:

SQLNET.FIPS_140=TRUE

Note: Use a text editor to set the FIPS_140 parameter in the
sqlnet.ora file. You cannot use Oracle Net Manager to set this
parameter.

Physical Security

Oracle Advanced Security FIPS 140-1 Settings D-3

Post Installation Checks
After the installation, the following permissions must be verified in the operating
system:

■ Execute permissions must be set on all Oracle Advanced Security executable files
so as to prevent execution of Oracle Advanced Security by users who are
unauthorized to do so in accordance with the system security policy.

■ Read and write permissions must be set on all executable files so as to prevent
accidental or deliberate reading or modification of Oracle Advanced Security files
by any user.

To comply with FIPS 140-1 Level 2 requirements, the security policy must include
procedures to prevent unauthorized users from reading or modifying Oracle
Advanced Security processes and the memory they are using in the operating system.

Status Information
Status information for Oracle Advanced Security is available after the connection has
been established. The information is contained in the RDBMS virtual table
v$session_connect_info.

Running the query SELECT * from V$SESSION_CONNECT_INFO displays all of the
product banner information for the active connection. Table D–1 shows an example of
a connection configuration where both DES encryption and MD5 data integrity is
defined:

Physical Security
To comply with FIPS 140-1 Level 2 requirements, tamper-evident seals must be applied
to the cover of each computer to ensure that removal of the cover is detectable.

Table D–1 Sample Output from v$session_connect_info

SID AUTHENTICATION OSUSER NETWORK_SERVICE_BANNER

7 DATABASE oracle Oracle Bequeath operating system adapter for
Solaris, v8.1.6.0.0

7 DATABASE oracle Oracle Advanced Security: encryption service for
Solaris

7 DATABASE oracle Oracle Advanced Security: DES encryption service
adapter

7 DATABASE oracle Oracle Advanced Security: crypto-checksumming
service

7 DATABASE oracle Oracle Advanced Security: MD5
crypto-checksumming service adapter.

Physical Security

D-4 Oracle Database Advanced Security Administrator's Guide

Oracle Advanced Security FIPS 140-2 Settings E-1

E
Oracle Advanced Security FIPS 140-2

Settings

The cryptographic libraries for SSL included in Oracle Database 10g are designed to
meet FIPS 140-2 Level 2 certification. Oracle Advanced Security makes use of these
cryptographic libraries for SSL authentication. Please verify the current status of the
certification at the Cryptographic Modules Validation Program Web site address:

http://csrc.nist.gov/cryptval/

The security policy, which would be available at the NIST site upon successful
certification, includes requirements for secure configuration of the host operating
system.

The following topics are covered in this appendix:

■ Configuring FIPS Parameter

■ Selecting Cipher Suites

■ Post-Installation Checks

■ Verifying FIPS Connections

Configuring FIPS Parameter
Oracle Advanced Security SSL adapter can be configured to run in FIPS mode by
setting the SSLFIPS_140 parameter to TRUE in the fips.ora file.

SSLFIPS_140=TRUE

This parameter is set to FALSE by default. It must be set to TRUE on both the client and
the server for FIPS mode operation.

Make sure that the fips.ora file is either located in the
$ORACLE_HOME/ldap/admin directory, or is pointed to by the FIPS_HOME
environment variable. This procedure can be repeated in any Oracle home for any
database server or client.

Note: The SSLFIPS_140 parameter replaces the
SQLNET.SSLFIPS_140 parameter used in Oracle Database 10g
Release 2 (10.2). The parameter needs to be set in the fips.ora file,
and not the sqlnet.ora file.

Selecting Cipher Suites

E-2 Oracle Database Advanced Security Administrator's Guide

Selecting Cipher Suites
A cipher suite is a set of authentication, encryption and data integrity algorithms used
for exchanging messages between network nodes. During an SSL handshake, for
example, the two nodes negotiate to see as to which cipher suite they will use when
transmitting messages back and forth.

Only the following cipher suites are approved for FIPS validation:

■ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

■ SSL_DH_anon_WITH_DES_CBC_SHA

■ SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

■ SSL_RSA_WITH_AES_256_CBC_SHA

■ SSL_RSA_WITH_AES_128_CBC_SHA

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_DES_CBC_SHA

■ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

Oracle Advanced Security SSL cipher suites are automatically set to FIPS approved
cipher suites. If you wish to configure specific cipher suites, you can do so by editing
the SSL_CIPHER_SUITES parameter in the sqlnet.ora or the listener.ora file.

SSL_CIPHER_SUITES=(SSL_cipher_suite1[,SSL_cipher_suite2[,..]])

You can also use Oracle Net Manager to set this parameter on the server and the client.

Post-Installation Checks
After installation, the following permissions must be verified in the operating system:

■ Execute permissions must be set on all Oracle executable files so as to prevent
execution of Oracle Cryptographic Libraries by users who are unauthorized to do
so in accordance with the system security policy.

■ Read and write permissions must be set on all Oracle executable files so as to
prevent accidental or deliberate reading or modification of Oracle Cryptographic
Libraries by any user.

To comply with FIPS 140-2 Level 2 requirements, the security policy must include
procedures to prevent unauthorized users from reading, modifying or executing
Oracle Cryptographic Libraries processes and the memory they are using in the
operating system.

Verifying FIPS Connections
To check if FIPS mode is enabled, tracing can be added to the sqlnet.ora file. FIPS
self-test messages can be found in the trace file. Add the following lines to
sqlnet.ora to enable tracing:

trace_directory_server=trace_dir
trace_file_server=trace_file
trace_level_server=trace_level

See Also: "Step 3: Set the SSL Cipher Suites on the Server
(Optional)" on page 8-10 and "Step 4: Set the Client SSL Cipher Suites
(Optional)" on page 8-18 for more information on setting cipher suites.

Verifying FIPS Connections

Oracle Advanced Security FIPS 140-2 Settings E-3

For example:

trace_directory=/private/oracle/owm
trace_file_server=fips_trace.trc
trace_level_server=6

Trace level 6 is the minimum trace level required to check the results of the FIPS
self-tests.

Verifying FIPS Connections

E-4 Oracle Database Advanced Security Administrator's Guide

orapki Utility F-1

F
orapki Utility

The orapki utility is provided to manage public key infrastructure (PKI) elements,
such as wallets and certificate revocation lists, from the command line. This enables
you to automate these tasks using scripts. Providing a way to incorporate the
management of PKI elements into scripts makes it possible to automate many of the
routine tasks of maintaining a PKI.

The following topics are included in this appendix:

■ orapki Utility Overview

■ Creating Signed Certificates for Testing Purposes

■ Managing Oracle Wallets with orapki Utility

■ Managing Certificate Revocation Lists (CRLs) with orapki Utility

■ orapki Usage Examples

■ orapki Utility Commands Summary

orapki Utility Overview
This command-line utility can be used to perform the following tasks:

■ Creating and viewing signed certificates for testing purposes

■ Manage Oracle wallets:

– Create and display Oracle wallets

– Add and remove certificate requests

– Add and remove certificates

– Add and remove trusted certificates

■ Manage certificate revocation lists (CRLs):

– Renaming CRLs with a hash value for certificate validation

– Uploading, listing, viewing, and deleting CRLs in Oracle Internet Directory

orapki Utility Syntax
The basic syntax of the orapki command-line utility is as follows:

orapki module command -parameter value

where module can be wallet (Oracle wallet), crl (certificate revocation list), or cert
(PKI digital certificate). The available commands depend on the module you are

Creating Signed Certificates for Testing Purposes

F-2 Oracle Database Advanced Security Administrator's Guide

using. For example, if you are working with a wallet, then you can add a certificate
or a key to the wallet with the add command. The following example adds the user
certificate located at /private/lhale/cert.txt to the wallet located at $ORACLE_
HOME/wallet/ewallet.p12:

orapki wallet add -wallet $ORACLE_HOME/wallet/ewallet.p12 -user_cert -cert
/private/lhale/cert.txt

Creating Signed Certificates for Testing Purposes
The orapki utility provides a convenient, lightweight way to create signed certificates
for testing purposes.

To create a signed certificate for testing purposes, use the following command:

orapki cert create [-wallet wallet_location] -request certificate_request_location
-cert certificate_location -validity number_of_days [-summary]

This command creates a signed certificate from the certificate request. The -wallet
parameter specifies the wallet containing the user certificate and private key that will
be used to sign the certificate request. The -validity parameter specifies the number
of days, starting from the current date, that this certificate will be valid. Specifying a
certificate and certificate request is mandatory for this command.

To view a certificate, use the following command:

orapki cert display -cert certificate_location [-summary | -complete]

This command enables you to view a test certificate that you have created with
orapki. You can choose either -summary or -complete, which determines how
much detail the command will display. If you choose -summary, the command will
display the certificate and its expiration date. If you choose -complete, it will display
additional certificate information, including the serial number and public key.

Managing Oracle Wallets with orapki Utility
The following sections describe the syntax used to create and manage Oracle wallets
with the orapki command-line utility. You can use these orapki utility wallet
module commands in scripts to automate the wallet creation process.

■ Creating, Viewing, and Modifying Wallets with orapki

■ Adding Certificates and Certificate Requests to Oracle Wallets with orapki

■ Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

Creating, Viewing, and Modifying Wallets with orapki
This section contains the following topics:

■ Creating a PKCS#12 Wallet

■ Creating an Auto Login Wallet

■ Viewing a Wallet

Note: The -wallet parameter is mandatory for all wallet
module commands.

Managing Oracle Wallets with orapki Utility

orapki Utility F-3

■ Modifying the Password for a Wallet

Creating a PKCS#12 Wallet
To create an Oracle PKCS#12 wallet (ewallet.p12), use the following command:

orapki wallet create -wallet wallet_location [-pwd password]

This command prompts you to enter and reenter a wallet password, if no password
has been specified on the command line. It creates a wallet in the location specified for
-wallet.

Creating an Auto Login Wallet
To create an auto login wallet (cwallet.sso) that does not need a password, use the
following command:

orapki wallet create -wallet wallet_location -auto_login_only

This command creates an auto login wallet (cwallet.sso) that does not need a
password to open. You can also modify or delete the wallet without using a password.
File system permissions provide the necessary security for such auto login wallets.

You can also create an auto login wallet that is associated with a PKCS#12 wallet. The
auto login wallet does not need a password to open. However, you must supply the
password for the associated PKCS#12 wallet in order to modify or delete the wallet.
Any update to the PKCS#12 wallet also updates the associated auto login wallet.

To create an auto login wallet (cwallet.sso) that is associated with a PKCS#12
wallet (ewallet.p12), use the following command:

orapki wallet create -wallet wallet_location -auto_login [-pwd password]

This command creates a wallet with auto login enabled (cwallet.sso) and
associates it with a PKCS#12 wallet (ewallet.p12). The command prompts you to
enter the password for the PKCS#12 wallet, if no password has been specified at the
command line.

If the wallet_location already contains a PKCS#12 wallet, then auto login is
enabled for it. You must supply the password for the existing PKCS#12 wallet in order
to enable auto login for it.

If the wallet_location does not contain a PKCS#12 wallet, then a new PKCS#12 wallet
is created. You must specify a password for the new PKCS#12 wallet.

If you wish to turn the auto login feature off for a PKCS#12 wallet, then use Oracle
Wallet Manager.

Note: For security reasons, Oracle recommends that you do not
specify the password at the command line. You should supply the
password when prompted to do so.

Note: For security reasons, Oracle recommends that you do not
specify the password at the command line. You should supply the
password when prompted to do so.

See Also: "Using Auto Login" on page 9-14 for more information

Managing Oracle Wallets with orapki Utility

F-4 Oracle Database Advanced Security Administrator's Guide

You can also choose to create a local auto login wallet. Local auto login wallets cannot
be moved to another computer. They must be used on the host on which they are
created.

A local auto login wallet does not need a password to open. However, you must
supply the password for the associated PKCS#12 wallet in order to modify or delete
the wallet. Any update to the PKCS#12 wallet also updates the associated auto login
wallet.

To create a local auto login wallet, use the following command:

orapki wallet create -wallet wallet_location -auto_login_local [-pwd password]

This command creates an auto login wallet (cwallet.sso) that is local to both the
computer on which it is created and the user who created it. It associates it with a
PKCS#12 wallet (ewallet.p12). The command prompts you to enter the password
for the PKCS#12 wallet, if no password has been specified at the command line.

Viewing a Wallet
To view an Oracle wallet, use the following command:

orapki wallet display -wallet wallet_location

This command displays the certificate requests, user certificates, and trusted
certificates contained in the wallet, which must be a binary PKCS12 file, with
extension .p12. Other files will fail.

Modifying the Password for a Wallet
To change the wallet password, use the following command:

orapki wallet change_pwd -wallet wallet_location [-oldpwd password] [-newpwd
password]

This command changes the current wallet password to the new password. The
command prompts you for the old and new passwords if no password is supplied at
the command line.

Adding Certificates and Certificate Requests to Oracle Wallets with orapki
To add a certificate request to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048

This command adds a certificate request to a wallet for the user with the specified
distinguished name (user_dn). The request also specifies the requested certificate's
key size (512, 1024, or 2048 bits). To sign the request, export it with the export option.

Note: For security reasons, Oracle recommends that you do not
specify the password at the command line. You should supply the
password when prompted to do so.

Note: For security reasons, Oracle recommends that you do not
specify the password options at the command line. You should supply
the password when prompted to do so.

Managing Oracle Wallets with orapki Utility

orapki Utility F-5

To add a trusted certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
certificate_location

This command adds a trusted certificate, at the specified location (-cert
certificate_location), to a wallet. You must add all trusted certificates in the
certificate chain of a user certificate before adding a user certificate, or the command to
add the user certificate will fail.

To add a root certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -dn certificate_dn -keySize
512|1024|2048 -self_signed -validity number_of_days

This command creates a new self-signed (root) certificate and adds it to the wallet. The
-validity parameter (mandatory) specifies the number of days, starting from the
current date, that this certificate will be valid. You can specify a key size for this root
certificate (-keySize) of 512, 1024, or 2048 bits.

To add a user certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -user_cert -cert certificate_location

This command adds the user certificate at the location specified with the -cert
parameter to the Oracle wallet at the wallet_location. Before you add a user
certificate to a wallet, you must add all the trusted certificates that make up the
certificate chain. If all trusted certificates are not installed in the wallet before you add
the user certificate, then adding the user certificate will fail.

To add PKCS#11 information to a wallet

You can use a wallet containing PKCS#11 information like any Oracle wallet. The
private keys are stored on a hardware device. The cryptographic operations are also
performed on the device.

Use the following command to add PKCS#11 information to a wallet:

orapki wallet p11_add -wallet wallet_location -p11_lib pkcs11Lib
[-p11_tokenlabel tokenLabel] [-p11_tokenpw tokenPassphrase]
[-p11_certlabel certLabel] [-pwd password]

The parameters have the following meaning:

■ -wallet specifies the wallet location.

■ -p11_lib specifies the path to the PKCS#11 library. This includes the library
filename.

■ -p11_tokenlabel specifies the token or smart card used on the device. Use this
when there are multiple tokens on the device. Token labels are set using vendor
tools.

■ -p11_tokenpw specifies the password that is used to access the token. Token
passwords are set using vendor tools.

■ -p11_certlabel is used to specify a certificate label on the token. Use this when
a token contains multiple certificates. Certificate labels are set using vendor tools.

■ -pwd is used to specify the wallet password.

See Also: "Exporting Certificates and Certificate Requests from
Oracle Wallets with orapki" on page F-6 for more information

Managing Certificate Revocation Lists (CRLs) with orapki Utility

F-6 Oracle Database Advanced Security Administrator's Guide

You can verify credentials on the hardware device using the PKCS#11 wallet. Use the
following command for this purpose:

orapki wallet p11_verify -wallet wallet_location [-pwd password]

Exporting Certificates and Certificate Requests from Oracle Wallets with orapki
To export a certificate from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_dn -cert certificate_
filename

This command exports a certificate with the subject's distinguished name (-dn) from a
wallet to a file that is specified by -cert.

To export a certificate request from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_request_dn -request
certificate_request_filename

This command exports a certificate request with the subject's distinguished name
(-dn) from a wallet to a file that is specified by -request.

Managing Certificate Revocation Lists (CRLs) with orapki Utility
CRLs must be managed with orapki. This utility creates a hashed value of the CRL
issuer's name to identify the CRLs location in your system. If you do not use orapki,
your Oracle server cannot locate CRLs to validate PKI digital certificates. For detailed
information about using orapki to manage CRLs refer to "Certificate Revocation List
Management" on page 8-27.

orapki Usage Examples
This section includes examples of some of the orapki commands discussed in the
preceding sections.

Example F–1 illustrates the steps to create a wallet with a self-signed certificate and
export the certificate to a file.

Example F–1 Create a Wallet with a Self-Signed Certificate and Export the Certificate

The following steps illustrate creating a wallet, adding a self-signed certificate to it,
viewing the wallet and exporting the certificate:

1. Create a wallet

orapki wallet create -wallet /private/user/orapki_use/root

The wallet is created at the location, /private/user/orapki_use/root.

Note: For security reasons, Oracle recommends that you do not
specify the password at the command line. You should supply the
password when prompted to do so.

Note: For security reasons, Oracle recommends that you do not
specify the password at the command line. You should supply the
password when prompted to do so.

orapki Usage Examples

orapki Utility F-7

2. Add a self-signed certificate to the wallet

orapki wallet add -wallet /private/user/orapki_use/root -dn
’CN=root_test,C=US’ -keysize 2048 -self_signed -validity 3650

This creates a self-signed certificate with a validity of 3650 days. The distinguished
name of the subject is CN=root_test,C=US. The key size for the certificate is
2048 bits.

3. View the wallet

orapki wallet display -wallet /private/user/orapki_use/root

This is used to view the certificate contained in the wallet.

4. Export the certificate

orapki wallet export -wallet /private/user/orapki_use/root -dn
’CN=root_test,C=US’ -cert /private/user/orapki_use/root/b64certificate.txt

This exports the self-signed certificate to the file, b64certificate.txt. Note
that the distinguished name used is the same as in step 2.

Example F–2 illustrates miscellaneous tasks related to creating user certificates.

Example F–2 Create a Wallet and a User Certificate

The following steps illustrate creating a wallet, creating a certificate request, exporting
the certificate request, creating a signed certificate from the request for testing, viewing
the certificate, adding a trusted certificate to the wallet and adding a user certificate to
the wallet.

1. Create a wallet with auto login enabled

orapki wallet create -wallet /private/user/orapki_use/server -auto_login

This creates a wallet at /private/user/orapki_use/server with auto login
enabled.

2. Add a certificate request to the wallet

orapki wallet add -wallet /private/user/orapki_use/server -dn ’CN=server_
test,C=US’ -keysize 2048

This adds a certificate request to the wallet that was created. The distinguished
name of the subject is CN=server_test,C=US. The key size specified is 2048 bits.

3. Export the certificate request to a file

orapki wallet export -wallet /private/user/orapki_use/server -dn ’CN=server_
test,C=US’ -request /private/user/orapki_use/server/creq.txt

This exports the certificate request to the specified file, which is creq.txt in this
case.

4. Create a signed certificate from the request for test purposes

orapki cert create -wallet /private/user/orapki_use/root -request
/private/user/orapki_use/server/creq.txt -cert /private/user/orapki_
use/server/cert.txt -validity 3650

This creates a certificate, cert.txt with a validity of 3650 days. The certificate is
created from the certificate request generated in the preceding step.

5. View the certificate

orapki Utility Commands Summary

F-8 Oracle Database Advanced Security Administrator's Guide

orapki cert display -cert /private/user/orapki_use/server/cert.txt -complete

This displays the the certificate generated in the preceding step. The -complete
option enables you to display additional certificate information, including the
serial number and public key.

6. Add a trusted certificate to the wallet

orapki wallet add -wallet /private/user/orapki_use/server -trusted_cert -cert
/private/user/orapki_use/root/b64certificate.txt

This adds a trusted certificate, b64certificate.txt to the wallet. You must
add all trusted certificates in the certificate chain of a user certificate before adding
a user certificate.

7. Add a user certificate to the wallet

orapki wallet add -wallet /private/user/orapki_use/server -user_cert -cert
/private/user/orapki_use/server/cert.txt

This adds the user certificate, cert.txt to the wallet.

orapki Utility Commands Summary
This section lists and describes the following orapki commands:

■ orapki cert create

■ orapki cert display

■ orapki crl delete

■ orapki crl display

■ orapki crl hash

■ orapki crl list

■ orapki crl upload

■ orapki wallet add

■ orapki wallet create

■ orapki wallet display

■ orapki wallet export

orapki cert create
The following sections describe this command.

Purpose
Use the orapki cert create command to create a signed certificate for testing
purposes.

Syntax
orapki cert create [-wallet wallet_location] -request certificate_request_location
-cert certificate_location -validity number_of_days [-summary]

■ The -wallet parameter specifies the wallet containing the user certificate and
private key that will be used to sign the certificate request.

orapki Utility Commands Summary

orapki Utility F-9

■ The -request parameter (mandatory) specifies the location of the certificate
request for the certificate you are creating.

■ The -cert parameter (mandatory) specifies the directory location where the tool
places the new signed certificate.

■ The -validity parameter (mandatory) specifies the number of days, starting
from the current date, that this certificate will be valid.

orapki cert display
The following sections describe this command.

Purpose
Use the orapki cert display command to display details of a specific certificate.

Syntax
orapki cert display -cert certificate_location [-summary|-complete]

■ The -cert parameter specifies the location of the certificate you want to display.

■ You can use either the -summary or the -complete parameter to display the
following information:

– -summary displays the certificate and its expiration date

– -complete displays additional certificate information, including the serial
number and public key

orapki crl delete
The following sections describe this command.

Purpose
Use the orapki crl delete command to delete CRLs from Oracle Internet
Directory. Note that the user who deletes CRLs from the directory by using orapki
must be a member of the CRLAdmins (cn=CRLAdmins,cn=groups,%s_
OracleContextDN%) directory group.

Prerequisites
None

Syntax
orapki crl delete -issuer issuer_name -ldap hostname:ssl_port -user username
[-wallet wallet_location] [-summary]

■ The -issuer parameter specifies the name of the certificate authority (CA) who
issued the CRL.

■ The -ldap parameter specifies the host name and SSL port for the directory where
the CRLs are to be deleted. Note that this must be a directory SSL port with no
authentication.

See Also: Refer to "Uploading CRLs to Oracle Internet Directory" on
page 8-28 for more information about this port.

orapki Utility Commands Summary

F-10 Oracle Database Advanced Security Administrator's Guide

■ The -user parameter specifies the user name of the directory user who has
permission to delete CRLs from the CRL subtree in the directory.

■ The -wallet parameter (optional) specifies the location of the wallet that
contains the certificate of the certificate authority (CA) who issued the CRL. Using
it causes the tool to verify the validity of the CRL against the CA's certificate prior
to deleting it from the directory.

■ The -summary parameter is optional. Using it causes the tool to print the CRL
LDAP entry that was deleted.

orapki crl display
The following sections describe this command.

Purpose
Use the orapki crl display command to display specific CRLs that are stored in
Oracle Internet Directory.

Syntax
orapki crl display -crl crl_location [-wallet wallet_location]
[-summary|-complete]

■ The -crl parameter specifies the location of the CRL in the directory. It is
convenient to paste the CRL location from the list that displays when you use the
orapki crl list command. Refer to "orapki crl list" on page F-11

■ The -wallet parameter (optional) specifies the location of the wallet that
contains the certificate of the certificate authority (CA) who issued the CRL. Using
it causes the tool to verify the validity of the CRL against the CA's certificate prior
to displaying it.

■ Choosing either the -summary or the -complete parameters displays the
following information:

– -summary provides a listing that contains the CRL issuer's name and the
CRL's validity period

– -complete provides a list of all revoked certificates that the CRL contains.
Note that this option may take a long time to display, depending on the size of
the CRL.

orapki crl hash
The following sections describe this command.

Purpose
Use the orapki crl hash command to generate a hash value of the certificate
revocation list (CRL) issuer to identify the location of the CRL in the file system for
certificate validation.

Syntax
orapki crl hash -crl crl_filename|URL [-wallet wallet_location] [-symlink|-copy]
crl_directory [-summary]

■ The -crl parameter specifies the filename that contains the CRL or the URL
where it can be found.

orapki Utility Commands Summary

orapki Utility F-11

■ The -wallet parameter (optional) specifies the location of the wallet that
contains the certificate of the certificate authority (CA) who issued the CRL. Using
it causes the tool to verify the validity of the CRL against the CA's certificate prior
to uploading it to the directory.

■ Depending on the operating system, use either the -symlink or the -copy
parameter:

– (UNIX) use -symlink to create a symbolic link to the CRL at the crl_
directory location

– (Windows) use -copy to create a copy of the CRL at the crl_directory
location

■ The -summary parameter (optional) causes the tool to display the CRL issuer's
name.

orapki crl list
The following sections describe this command.

Purpose
Use the orapki crl list command to display a list of CRLs stored in Oracle
Internet Directory. This is useful for browsing to locate a particular CRL to view or
download to your local file system.

Syntax
orapki crl list -ldap hostname:ssl_port

The -ldap parameter specifies the host name and SSL port for the directory server
from where you want to list CRLs. Note that this must be a directory SSL port with no
authentication.

orapki crl upload
The following sections describe this command.

Purpose
Use the orapki crl upload command to upload certificate revocation lists (CRLs)
to the CRL subtree in Oracle Internet Directory. Note that you must be a member of
the directory administrative group CRLAdmins (cn=CRLAdmins,cn=groups,%s_
OracleContextDN%) to upload CRLs to the directory.

Syntax
orapki crl upload -crl crl_location -ldap hostname:ssl_port -user username
[-wallet wallet_location] [-summary]

■ The -crl parameter specifies the directory location or the URL where the CRL is
located that you are uploading to the directory.

■ The -ldap parameter specifies the host name and SSL port for the directory where
you are uploading the CRLs. Note that this must be a directory SSL port with no
authentication.

Tip: "Uploading CRLs to Oracle Internet Directory" on page 8-28 for
more information about this port

orapki Utility Commands Summary

F-12 Oracle Database Advanced Security Administrator's Guide

■ The -user parameter specifies the user name of the directory user who has
permission to add CRLs to the CRL subtree in the directory.

■ The -wallet parameter specifies the location of the wallet that contains the
certificate of the certificate authority (CA) who issued the CRL. This is an optional
parameter. Using it causes the tool to verify the validity of the CRL against the
CA's certificate prior to uploading it to the directory.

■ The -summary parameter is also optional. Using it causes the tool to display the
CRL issuer's name and the LDAP entry where the CRL is stored in the directory.

orapki wallet add
The following sections describe this command.

Purpose
Use the orapki wallet add command to add certificate requests and certificates to
an Oracle wallet.

Syntax
To add certificate requests, use the following command:

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048

■ The -wallet parameter specifies the location of the wallet to which you want to
add a certificate request.

■ The -dn parameter specifies the distinguished name of the certificate owner.

■ The -keySize parameter specifies the key size for the certificate.

■ To sign the request, export it with the export option. Refer to "orapki wallet
export" on page F-13

To add trusted certificates, use the following command:

orapki wallet add -wallet wallet_location -trusted_cert -cert certificate_location

■ The -trusted_cert parameter causes the tool to add the trusted certificate, at
the location specified with -cert, to the wallet.

To add root certificates, use the following command:

orapki wallet add -wallet wallet_location -dn certificate_dn -keySize
512|1024|2048 -self_signed -validity number_of_days

■ The -self_signed parameter causes the tool to create a root certificate.

■ The -validity parameter is mandatory. Use it to specify the number of days,
starting from the current date, that this root certificate will be valid.

To add user certificates, use the following command:

orapki wallet add -wallet wallet_location -user_cert -cert certificate_location

■ The -user_cert parameter causes the tool to add the user certificate at the
location specified with the -cert parameter to the wallet. Before you add a user
certificate to a wallet, you must add all the trusted certificates that make up the

See Also: "Uploading CRLs to Oracle Internet Directory" on
page 8-28 for more information about this port

orapki Utility Commands Summary

orapki Utility F-13

certificate chain. If all trusted certificates are not installed in the wallet before you
add the user certificate, then adding the user certificate will fail.

orapki wallet create
The following sections describe this command.

Purpose
Use the orapki wallet create command to create an Oracle wallet or to set auto
login on for an Oracle wallet.

Syntax
orapki wallet create -wallet wallet_location [-auto_login|-auto_login_local]

■ The -wallet parameter specifies a location for the new wallet or the location of
the wallet for which you want to turn on auto login.

■ The -auto_login parameter creates an auto login wallet, or it turns on
automatic login for the wallet specified with the -wallet option.

■ The -auto_login_local parameter creates a local auto login wallet, or it turns
on local automatic login for the wallet specified with the -wallet option.

orapki wallet display
The following sections describe this command.

Purpose
Use the orapki wallet display command to view the certificate requests, user
certificates, and trusted certificates in an Oracle wallet.

Syntax
orapki wallet display -wallet wallet_location

■ The -wallet parameter specifies a location for the wallet you want to open if it is
not located in the current working directory.

orapki wallet export
The following sections describe this command.

Purpose
Use the orapki wallet export command to export certificate requests and
certificates from an Oracle wallet.

Syntax
To export a certificate from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_dn -cert certificate_
filename

See Also: "Using Auto Login" on page 9-14 for details about auto
login wallets

orapki Utility Commands Summary

F-14 Oracle Database Advanced Security Administrator's Guide

■ The -wallet parameter specifies the location of the wallet from which you want
to export the certificate.

■ The -dn parameter specifies the distinguished name of the certificate.

■ The -cert parameter specifies the name of the file that contains the exported
certificate.

To export a certificate request from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_request_dn -request
certificate_request_filename

■ The -request parameter specifies the name of the file that contains the exported
certificate request.

Entrust-Enabled SSL Authentication G-1

G
Entrust-Enabled SSL Authentication

Entrust Authority (formerly known as Entrust/PKI) is a suite of PKI products
provided by Entrust, Inc., that provides certificate generation, certificate revocation,
and key and certificate management. Oracle Advanced Security is integrated with
Entrust Authority so both Entrust and Oracle users can enhance their Oracle
environment security.

This appendix contains the following topics:

■ Benefits of Entrust-Enabled Oracle Advanced Security

■ Required System Components for Entrust-Enabled Oracle Advanced Security

■ Entrust Authentication Process

■ Enabling Entrust Authentication

■ Issues and Restrictions that Apply to Entrust-Enabled SSL

■ Troubleshooting Entrust In Oracle Advanced Security

Benefits of Entrust-Enabled Oracle Advanced Security
Entrust-enabled Oracle Advanced Security provides:

■ Enhanced X.509-Based Authentication and Single Sign-On

■ Integration with Entrust Authority Key Management

■ Integration with Entrust Authority Certificate Revocation

Enhanced X.509-Based Authentication and Single Sign-On
Entrust-enabled Oracle Advanced Security supports the use of Entrust credentials for
X.509-based authentication and single sign-on. Instead of using an Oracle wallet to
hold user PKI credentials, Oracle Advanced Security can access PKI credentials that
are created by Entrust Authority and held in an Entrust profile (a.epf file). Users who
have deployed Entrust software within their enterprise are able to use it for
authentication and single sign-on to Oracle Database.

Note: Oracle Advanced Security has been certified as
Entrust-Ready by Entrust, Inc., as of Release 8.1.7.

See Also: http://www.entrust.com for more information

Required System Components for Entrust-Enabled Oracle Advanced Security

G-2 Oracle Database Advanced Security Administrator's Guide

Integration with Entrust Authority Key Management
Entrust-enabled Oracle Advanced Security uses the extensive key management and
rollover functionality provided by Entrust Authority, which shields users from the
complexity of a PKI deployment. For example, users are automatically notified when
their certificates are expiring, and certificates are reissued according to preferences that
administrators can configure.

Integration with Entrust Authority Certificate Revocation
Entrust provides a certificate authority component, which natively checks certificate
revocation status and enables the revocation of certificates.

Users using Entrust credentials for authentication to Oracle are assured that the
revocation status of the certificate is checked, and connections are prevented if the
certificate is revoked.

Required System Components for Entrust-Enabled Oracle Advanced
Security

To implement Entrust-enabled Oracle Advanced Security, the following system
components are required:

■ Entrust Authority for Oracle

■ Entrust Authority Server Login Feature

■ Entrust Authority IPSec Negotiator Toolkit

Contact your Entrust representative to get these components.

Entrust Authority for Oracle
Entrust Authority for Oracle requires a database for storing information about Entrust
users and the infrastructure, and a Lightweight Directory Access Protocol
(LDAP)-compliant directory for information such as user names, public certificates,
and certificate revocation lists.

Entrust Authority for Oracle comprises the following software components:

■ Entrust Authority Security Manager

■ Entrust Authority Self-Administration Server

■ Entrust Entelligence Desktop Manager

Note: In the following sections, the term client refers to a client
connecting to an Oracle database, and the term server refers to the
host on which the Oracle database resides.

Note: Oracle Advanced Security supports Entrust Authority
Security Manager, Entrust Authority Server Login Feature, and
Entrust Authority IPSec Negotiator Toolkit versions 6.0 and later.

Contact your Entrust representative for the latest product
classification and naming details.

Required System Components for Entrust-Enabled Oracle Advanced Security

Entrust-Enabled SSL Authentication G-3

Entrust Authority Security Manager
Entrust Authority Security Manager is the centerpiece of Entrust's PKI technology. It
performs core certificate authority, certificate, and user management functions, such as
creating users and user profiles containing the user's credentials.

Entrust Authority Security Manager supports unattended login, also called Server
Login, which eliminates the need for a Database Administrator (DBA) to repeatedly
enter a password for the Entrust profile on the server. With unattended login, the DBA
need only enter a password once to open the Entrust profile for the server to
authenticate itself to multiple incoming connections.

Entrust Authority Self-Administration Server
Entrust Authority Self-Administration Server is the administrator's secure interface to
Entrust Authority Security Manager.

Entrust Entelligence Desktop Manager
Entrust Entelligence Desktop Manager provides support for user key management
and single sign-on functionality on both clients and server by enabling Oracle
Database server process access to incoming SSL connections.

Entrust Authority Server Login Feature
Entrust Authority Server Login Feature is required for single sign-on functionality on
servers operating on UNIX platforms.

Entrust Authority Server Login Feature provides single sign-on by enabling Oracle
Database server process access to incoming SSL connections. Without this capability, a
database administrator or other privileged user would have to enter the password for
the Entrust profile on the server for every incoming connection.

Contact your Entrust representative to get Entrust Authority Server Login Feature.

Entrust Authority IPSec Negotiator Toolkit
The Entrust Authority IPSec Negotiator Toolkit is required on both clients and servers
for integrating the Oracle Advanced Security SSL stack with Entrust Authority,
enabling SSL authentication to use Entrust profiles.

Contact your Entrust representative to get Entrust Authority IPSec Negotiator Toolkit.

Note: Oracle only supports the use of Entrust-enabled Oracle
Advanced Security with versions of Entrust Authority Security
Manager that run on Oracle Database.

See Also: Chapter 8, "Configuring Secure Sockets Layer
Authentication", for information about certificate authorities.

Note: Do not install Entrust Entelligence Desktop Manager on the
server computer because it uses unattended login credentials files
with.ual extensions.

Refer to "Configuring Entrust on the Server" on page G-6 for
information about creating.ual files.

Entrust Authentication Process

G-4 Oracle Database Advanced Security Administrator's Guide

Entrust Authentication Process
Figure G–1 illustrates the following Entrust authentication process:

1. The Entrust user on the Oracle client establishes a secure connection with the
server using SSL and Entrust credentials.

2. The Oracle SSL adapter on the server communicates with the Entrust Authority to
check the certificate revocation status of the Entrust user.

Figure G–1 Entrust Authentication Process

Enabling Entrust Authentication
This section describes the following tasks, which are required to configure
Entrust-enabled Oracle Advanced Security SSL authentication:

■ Creating Entrust Profiles

■ Installing Oracle Advanced Security and Related Products for Entrust-Enabled
SSL

■ Configuring SSL on the Client and Server for Entrust-Enabled SSL

■ Configuring Entrust on the Client

■ Configuring Entrust on the Server

■ Creating Entrust-Enabled Database Users

■ Logging Into the Database Using Entrust-Enabled SSL

Creating Entrust Profiles
This section describes how to create Entrust profiles, which can be created by either
administrators or users. On UNIX platforms, administrators create the Entrust profiles
for all clients. On Windows platforms, users can create their own Entrust profiles.

Administrator-Created Entrust Profiles
Administrators create Entrust profiles as follows:

Note: Figure G–1 does not include client and server profiles
creation, which is presumed.

See Also: "How SSL Works in an Oracle Environment: The SSL
Handshake" on page 8-2

Oracle
Recovery
Catalog

Oracle
Server

Oracle
Client SSL1

Entrust
Authority

and
Administration

2
Server's
Entrust
Profile

(unattended
login)

User's
Entrust
Profile
(Entrust

Entelligence)

Enabling Entrust Authentication

Entrust-Enabled SSL Authentication G-5

1. The Entrust administrator adds the Entrust user using the Entrust Authority
Self-Administration Server.

1. The administrator enters the user's name and password.

2. The Entrust Authority creates the profile, or.epf file.

3. The administrator securely sends all profile-related files to the user. The preset
password can be changed by the user.

User-Created Entrust Profiles
Entrust users create their own Entrust profiles as follows:

1. The Entrust administrator adds the Entrust user using the Entrust Authority
Self-Administration Server. In the New User dialog box, the Create Profile option
should be deselected.

1. The user receives a secure e-mail notification from the administrator that contains
a reference number, authorization code, and expiration date.

2. The user navigates to the Create Entrust Profiles screen in Entrust Entelligence
Desktop Manager as follows:

 Start, Programs, Entrust, Entrust Profiles, Create Entrust Profiles

3. The user enters the reference number, authorization code, and expiration date
provided in the e-mail notification, creating a profile, or.epf file, and the Entrust
initialization file.

Installing Oracle Advanced Security and Related Products for Entrust-Enabled SSL
For Oracle Advanced Security 11g Release 2 (11.2), Entrust support installs in Typical
mode. A single Oracle installation supports the use of both Oracle Wallets and Entrust
profiles.

Configuring SSL on the Client and Server for Entrust-Enabled SSL
Configure SSL on the client and server.

Configuring Entrust on the Client
The steps for configuring Entrust on the client vary according to the type of platform:

■ Configuring Entrust on a UNIX Client

■ Configuring Entrust on a Windows Client

See Also: The Entrust administration documentation for
information about creating Entrust Users

See Also: The Entrust administration documentation for
information about creating Entrust profiles

See Also: Oracle Database operating system-specific installation
documentation

See Also: Chapter 8, "Configuring Secure Sockets Layer
Authentication", for information about configuring SSL on the
client and server and skip the section that describes the Oracle
wallet location.

Enabling Entrust Authentication

G-6 Oracle Database Advanced Security Administrator's Guide

Configuring Entrust on a UNIX Client
If the client resides on a non-Windows platform, perform the following steps:

1. Set the JAVA_HOME variable to the JDK or JRE location.

For example:

>setenv JAVA_HOME $ORACLE_HOME/JRE

2. Set WALLET_LOCATION in the sqlnet.ora file.

For example:

WALLET_LOCATION=
(SOURCE=
(METHOD=entr)
(METHOD_DATA =
 (PROFILE=profile_location)
 (INIFILE=initialization_file_location)
)
)

Configuring Entrust on a Windows Client
If the client resides on a Windows platform, ensure that the Entrust Entelligence
Desktop Manager component is installed on the client and perform the following steps
to set up the Entrust credentials.

1. Set the WALLET_LOCATION parameter in the sqlnet.ora file.

For example:

WALLET_LOCATION=
(SOURCE=
(METHOD=entr)
(METHOD_DATA=
 (INIFILE=initialization_file_location)
)
)
where initialization_file_location is the path to the.ini file.

1. Select the Entrust icon on the system tray to open the Entrust_Login dialog box.

2. Log on to Entrust by entering the profile name and password.

Configuring Entrust on the Server
The steps for configuring Entrust on the server vary according to the type of platform:

■ Configuring Entrust on a UNIX Server

■ Configuring Entrust on a Windows Server

Configuring Entrust on a UNIX Server
If the server is a UNIX platform, ensure that the Entrust/Server Login Toolkit
component is installed on the server and perform the following steps:

1. Stop the Oracle database instance.

See Also: "Required System Components for Entrust-Enabled
Oracle Advanced Security" on page G-2 for information about
downloading the Entrust Server Login toolkit.

Enabling Entrust Authentication

Entrust-Enabled SSL Authentication G-7

2. Set the WALLET_LOCATION parameter in the sqlnet.ora and listener.ora
files to specify the paths to the server's profile and the Entrust initialization file:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = ENTR)
 (METHOD_DATA =
 (PROFILE = profile_location)
 (INIFILE = initialization_file_location)
)
)

3. Set the CLASSPATH environment variable to include the following paths:

$ORACLE_HOME/JRE/lib/rt.jar
$ORACLE_HOME/JRE/lib/i18n.jar
$ORACLE_HOME/jlib/ewt*.jar
$ORACLE_HOME/jlib/help*.jar
$ORACLE_HOME/jlib/share*.jar
$ORACLE_HOME/jlib/swingall*.jar
$ORACLE_HOME/network/jlib/netentrust.jar

1. Enter the etbinder command to create unattended login credentials, or.ual files
by using the following steps:

a. Set the PATH environment variable to include the path to the etbinder
command, which is located in the /bin directory where the Server Login
Toolkit is installed.

b. Set the LD_LIBRARY_PATH to include the path to the Entrust libraries.

c. Set the SSL_ENTRUST_INI environment variable to include the full path to
the Entrust initialization file.

d. Enter the command as follows:

etbinder

e. When prompted to enter the location of the profile file, enter the full path
name, including the name of the file. Then, when prompted, type in the
password.

A message displays indicating that the credentials file (filename.ual) has
been created.

2. Start the Oracle database instance.

Configuring Entrust on a Windows Server
If the server is on a Windows platform, perform the following steps:

1. Stop the Oracle database instance.

Note: Ensure that the listener has a TCPS listening endpoint, then
start the listener.

See Also: "Required System Components for Entrust-Enabled
Oracle Advanced Security" for information about downloading
Entrust Entelligence Desktop Manager.

Enabling Entrust Authentication

G-8 Oracle Database Advanced Security Administrator's Guide

2. Set the WALLET_LOCATION parameter in the sqlnet.ora and listener.ora
files to specify the paths to the server's profile and the Entrust initialization file:

WALLET_LOCATION =
(SOURCE =
(METHOD = ENTR)
(METHOD_DATA =
 (PROFILE = profile_location)
 (INIFILE = initialization_file_location)
)
)
1. Run the Entrust binder command to create unattended login credentials, which are

files with a.ual extension. Ensure that the owner of the.ual file is the same as
the owner of the Oracle service.

To run the binder command Select

Start, Programs, Entrust Toolkit, Server Login, Entrust Binder

Enter the path to the profile, the password, and the path to the Entrust
initialization file. A message informs you that you have successfully created a
credential file.

2. Start the Oracle database instance.

Creating Entrust-Enabled Database Users
Create global users in the database based on the distinguished name (DN) of each
Entrust user.

For example:

SQL> create user jdoe identified globally as 'cn=jdoe,o=oracle,c=us';

where "cn=jdoe, o=oracle, c=us" is the Entrust distinguished name of the
user.

Logging Into the Database Using Entrust-Enabled SSL
1. Use SQL*Plus to connect to the Oracle instance as follows:

sqlplus /@net_service_name

where net_service_name is the service name of the Oracle instance.

The Entrust_Login dialog box is displayed.

2. Enter the path to the profile and the password.

3. If you did not specify a value for the WALLET_LOCATION parameter, you are
prompted to enter the path to the Entrust initialization file.

Note: For all Windows environments, Oracle recommends that
you do not install Entrust Entelligence Desktop Manager on the
server computer.

Note: Oracle recommends that the initialization file be specified in
the WALLET_LOCATION parameter file.

Troubleshooting Entrust In Oracle Advanced Security

Entrust-Enabled SSL Authentication G-9

 Issues and Restrictions that Apply to Entrust-Enabled SSL
An application must be specifically modified to work with Entrust. If a product is
designated as Entrust-ready, then it has been integrated with Entrust by using an
Entrust toolkit.

For example, Oracle has modified its SSL libraries to access an Entrust profile instead
of an Oracle wallet.

In addition, the following restrictions apply:

■ The use of Entrust components for digital signatures in applications based on
Oracle is not supported.

■ The Entrust-enabled Oracle Advanced Security integration is only supported with
versions of Entrust Authority Release 6.0 and later running on Oracle Database.

■ The use of earlier releases of Entrust Authority with Entrust-enabled Oracle
Advanced Security is not supported.

■ Interoperability between Entrust and non-Entrust PKIs is not supported.

■ Entrust has certified Oracle Internet Directory version 2.1.1 for Release 8.1.7 and
subsequent releases.

Troubleshooting Entrust In Oracle Advanced Security
This section describes how to diagnose errors returned from Entrust to Oracle
Advanced Security users.

Error Messages Returned When Running Entrust on Any Platform
You may encounter the following error messages regardless of what platform you are
running Entrust on.

ORA-28890 Entrust Login Failed
Cause: SQL*Plus login on an Entrust-enabled Oracle client errors out with this
generic error message. This error can be caused by a number of problems,
including the following causes:

■ Entrust /Authority is not online

■ Invalid Entrust profile password specified

■ Invalid path to the Entrust profile specified

■ Invalid Entrust initialization file specified

■ Entrust Server Login program has not executed on the server

Action: To get more detail on the Entrust error, turn on tracing for SQL*Plus and
the trace output should indicate the Entrust failure code. Enable tracing by
specifying the following parameters in the sqlnet.ora file:

On the client:

Note: Entrust returns the following generic error message to
Oracle Advanced Security users:

ORA-28890 "Entrust Login Failed"

This troubleshooting section describes how to get more details
about the underlying error, and how to diagnose the problem.

Troubleshooting Entrust In Oracle Advanced Security

G-10 Oracle Database Advanced Security Administrator's Guide

■ TRACE_LEVEL_CLIENT=16

■ TRACE_DIRECTORY_CLIENT=valid_client_directory_name

■ TRACE_FILE_CLIENT=client

■ TRACE_UNIQUE_CLIENT=ON

On the server:

■ TRACE_LEVEL_SERVER=16

■ TRACE_DIRECTORY_SERVER=valid_server_directory name

■ TRACE_FILE_SERVER=server

■ TRACE_UNIQUE_SERVER=ON

Search for and locate the string IKMP in the generated trace file. Adjacent to this
string, error messages are listed that provide details about the problem you are
encountering. This detailed error code information is returned by the Entrust API.

ORA-28890 Entrust Login Failed (GUI does not display on the client)
Cause: The WALLET_LOCATION parameter does not specify the Entrust
initialization file location in the client side sqlnet.ora file.

Action: Ensure that the location of the Entrust initialization file is specified in the
WALLET_LOCATION parameter in the sqlnet.ora file on the client.

Error Messages Returned When Running Entrust on Windows Platforms
You may encounter the following error messages if you are running Entrust on a
Windows platform.

The software authentication failed. (error code - 162).
Cause: Due to a known FIPS mode incompatibility, Entrust logins may fail and
return this error message.

Action: Contact Entrust support to resolve this issue.

Algorithm self-test failed. (error code - 176).
Cause: Due to a known symbol conflict between Entrust and Oracle libraries,
Entrust login may fail and return this error message.

Action: Contact Entrust support to resolve this issue.

TNS-12560: TNS protocol adapter error TNS-00558> Entrust Login Failed ORACLE
SERVER (host_name)

Note: The following are examples of valid client directory names
for setting the TRACE_DIRECTORY_CLIENT or TRACE_
DIRECTORY_SERVER parameters in the sqlnet.ora file:

■ (UNIX) /tmp

■ (Windows) C:\TEMP

See Also:

■ "Configuring Entrust on a UNIX Client" on page G-6

■ "Configuring Entrust on a Windows Client" on page G-6

Troubleshooting Entrust In Oracle Advanced Security

Entrust-Enabled SSL Authentication G-11

This error may occur in the listener.log file on the server when you attempt to log in
to Entrust.
Cause: If you configure the client by making the following recommended
changes:

■ Remove the.ual file

■ De-install the Server Login

■ Specify the Entrust initialization file location in the SSL_ENTRUST_INI_FILE
parameter in the client sqlnet.ora file

then the server may not be able to authenticate the client when you enter the
following command:

sqlplus/@net_service_name

Action: Perform the following tasks to enable tracing on the server:

1. Select Control Panel, then Services.

2. In the Services dialog box, double click OracleTNSListener and change the
Log On As from the System Account to the account that is currently logged in.
This enables the server process to read the.ual file. Click OK to make the
change and you are returned to the Services dialog box.

In the Services dialog box, make the same changes for OracleService.

3. Make the following changes to the listener.ora file:

– Specify only TCPS as the PROTOCOL in the listener ADDRESS. For
example, change all of the PROTOCOL definitions to TCPS as follows:

listener_name=
(DESCRIPTION=

(ADDRESS=(PROTOCOL=TCPS) (KEY=extproc0))
(ADDRESS=(PROTOCOL=TCPS) (HOST=sales-pc) (PORT=1521)))

Bringing up the listener only using TCPS will show whether there is a problem
accessing the Entrust profile when you turn on tracing.

– Set the SSL_CLIENT_AUTHENTICATION parameter to FALSE as follows:

SSL_CLIENT_AUTHENTICATION=FALSE

– Turn on tracing by setting the following parameters:

TRACE_LEVEL_LISTENER=16
TRACE_DIRECTORY_LISTENER=C:\temp

The trace file is created in the C:\temp directory.

4. Make the following changes to the sqlnet.ora file to turn on tracing:

TRACE_LEVEL_SERVER=16
TRACE_DIRECTORY_SERVER=C:\temp

The trace file is created in the C:\temp directory.

5. Ensure that Entrust Entelligence Desktop Manager is not installed on the
server.

Search for and locate the string fail or ntz* function calls. Adjacent to these, error
messages are listed that provide details about the problem you are encountering.

Troubleshooting Entrust In Oracle Advanced Security

G-12 Oracle Database Advanced Security Administrator's Guide

General Checklist for Running Entrust on Any Platform
The following items apply to all platforms:

1. Confirm that the Entrust Authority is online.

2. Confirm that the.ual file is generated. These files are created for unattended
login credentials.

3. Confirm that the Entrust initialization file contains the following entry in the first
section that specifies the Entrust Settings:

IdentityLibrary=location

The full path to the location of the libidapi.so file should be specified in the
IdentityLibrary parameter. This parameter setting enables generating a.ual
file on the server.

4. Ensure that all Entrust toolkits, including the Entrust IPSEC Negotiator toolkit and
the Server Login toolkit, are the same version so they are compatible.

5. Ensure that you have specified TCP/IP with SSL in the
SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file as
shown in the following example:

SQLNET.AUTHENTICATION_SERVICES=(tcps, authentication_type1, authentication_
type2)

Checklist for Entrust Installations on Windows
The following checklist items apply only to Entrust installations on the Windows
platform.

1. Ensure that you are logged into Entrust Entelligence Desktop Manager and retry.

2. Select Windows, then Control Panel, and click Services to confirm that the
Entrust Login Interface service has started and is running.

3. Confirm that the Entrust initialization file location is specified in the SSL_
ENTRUST_INI_FILE parameter of the sqlnet.ora file. However, if you select
not to specify the location there, then the Entrust initialization file must reside in
c:\WINNT.

4. Ensure that you are not running Entrust Entelligence Desktop Manager if your
database is running on a Microsoft platform. If this is the case, then only the.ual
file, which enables unattended login, is required.

Note: Oracle recommends that you generate an unattended login
credential file (.ual file) for the server only. If you generate a.ual
file for the server only, then when users attempt to log in, they are
presented a GUI that prompts them for their password and their
Entrust profile name. After users supply this information, the
connection request is forwarded to the Entrust server, which looks
up the revocation file and the.ual file to determine the
permissions for granting the request.

See Also: Step 4 of "Configuring Entrust on a Windows Server"
on page G-7 for information about creating a.ual file with the
Entrust binder command.

Troubleshooting Entrust In Oracle Advanced Security

Entrust-Enabled SSL Authentication G-13

5. Confirm that Entrust Authority, as specified in the Entrust Initialization file, is
accessible and running.

6. Confirm that the profile password is correctly entered.

7. If an Oracle database server fails to log in to Entrust, confirm that the unattended
login credential file (.ual) is generated using a valid password. Also, confirm that
the versions for Entrust Server Login toolkit and Entrust IPSEC Negotiator toolkit
match (that is, that the IPSec Toolkit 6.0 works with Server Login Toolkit 6.0).

8. Ensure that the Entrust initialization file has the following entry in the first section,
Entrust Settings:

IdentityLibrary = location

where location is the location of libidapi.so, including the file name.

Troubleshooting Entrust In Oracle Advanced Security

G-14 Oracle Database Advanced Security Administrator's Guide

Glossary-1

Glossary

access control

The ability of a system to grant or limit access to specific data for specific clients or
groups of clients.

Access Control Lists (ACLs)

The group of access directives that you define. The directives grant levels of access to
specific data for specific clients, or groups of clients, or both.

Advanced Encryption Standard

Advanced Encryption Standard (AES) is a new cryptographic algorithm that has been
approved by the National Institute of Standards and Technology as a replacement for
DES. The AES standard is available in Federal Information Processing Standards
Publication 197. The AES algorithm is a symmetric block cipher that can process data
blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.

AES

See Advanced Encryption Standard

attribute

An item of information that describes some aspect of an entry in an LDAP directory.
An entry comprises a set of attributes, each of which belongs to an object class.
Moreover, each attribute has both a type, which describes the kind of information in
the attribute, and a value, which contains the actual data.

authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to granting access to resources in a system. A recipient
of an authenticated message can be certain of the message's origin (its sender).
Authentication is presumed to preclude the possibility that another party has
impersonated the sender.

authentication method

A security method that verifies a user's, client's, or server's identity in distributed
environments. Network authentication methods can also provide the benefit of single
sign-on (SSO) for users. The following authentication methods are supported in
Oracle Database when Oracle Advanced Security is installed:

■ Kerberos

■ RADIUS

■ Secure Sockets Layer (SSL)

authorization

Glossary-2

■ Windows native authentication

authorization

Permission given to a user, program, or process to access an object or set of objects. In
Oracle, authorization is done through the role mechanism. A single person or a group
of people can be granted a role or a group of roles. A role, in turn, can be granted other
roles. The set of privileges available to an authenticated entity.

auto login wallet

An Oracle Wallet Manager feature that enables PKI- or password-based access to
services without providing credentials at the time of access. This auto login access
stays in effect until the auto login feature is disabled for that wallet. File system
permissions provide the necessary security for auto login wallets. When auto login is
enabled for a wallet, it is only available to the operating system user who created that
wallet. Sometimes these are called "SSO wallets" because they provide single sign-on
capability.

base

The root of a subtree search in an LDAP-compliant directory.

CA

See certificate authority

certificate

An ITU x.509 v3 standard data structure that securely binds an identify to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a
certificate authority. The certificate ensures that the entity's information is correct and
that the public key actually belongs to that entity.

A certificate contains the entity's name, identifying information, and public key. It is
also likely to contain a serial number, expiration date, and information about the
rights, uses, and privileges associated with the certificate. Finally, it contains
information about the certificate authority that issued it.

certificate authority

A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. When it certifies a user, the certificate
authority first seeks verification that the user is not on the certificate revocation list
(CRL), then verifies the user's identity and grants a certificate, signing it with the
certificate authority's private key. The certificate authority has its own certificate and
public key which it publishes. Servers and clients use these to verify signatures the
certificate authority has made. A certificate authority might be an external company
that offers certificate services, or an internal organization such as a corporate MIS
department.

certificate chain

An ordered list of certificates containing an end-user or subscriber certificate and its
certificate authority certificates.

certificate request

A certificate request, which consists of three parts: certification request information, a
signature algorithm identifier, and a digital signature on the certification request
information. The certification request information consists of the subject's
distinguished name, public key, and an optional set of attributes. The attributes may

connect descriptor

Glossary-3

provide additional information about the subject identity, such as postal address, or a
challenge password by which the subject entity may later request certificate
revocation. See PKCS #10

certificate revocation lists

(CRLs) Signed data structures that contain a list of revoked certificates. The
authenticity and integrity of the CRL is provided by a digital signature appended to it.
Usually, the CRL signer is the same entity that signed the issued certificate.

checksumming

A mechanism that computes a value for a message packet, based on the data it
contains, and passes it along with the data to authenticate that the data has not been
tampered with. The recipient of the data recomputes the cryptographic checksum and
compares it with the cryptographic checksum passed with the data; if they match, it is
"probabilistic" proof the data was not tampered with during transmission.

Cipher Block Chaining (CBC)

An encryption method that protects against block replay attacks by making the
encryption of a cipher block dependent on all blocks that precede it; it is designed to
make unauthorized decryption incrementally more difficult. Oracle Advanced
Security employs outer cipher block chaining because it is more secure than inner
cipher block chaining, with no material performance penalty.

cipher suite

A set of authentication, encryption, and data integrity algorithms used for exchanging
messages between network nodes. During an SSL handshake, for example, the two
nodes negotiate to see which cipher suite they will use when transmitting messages
back and forth.

cipher suite name

Cipher suites describe the kind of cryptographics protection that is used by
connections in a particular session.

ciphertext

Message text that has been encrypted.

cleartext

Unencrypted plain text.

client

A client relies on a service. A client can sometimes be a user, sometimes a process
acting on behalf of the user during a database link (sometimes called a proxy).

confidentiality

A function of cryptography. Confidentiality guarantees that only the intended
recipient(s) of a message can view the message (decrypt the ciphertext).

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information. The
destination service is indicated by using its service name for Oracle9i or Oracle8i
databases or its Oracle system identifier (SID) for Oracle databases version 8.0. The
network route provides, at a minimum, the location of the listener through use of a
network address. See connect identifier

connect identifier

Glossary-4

connect identifier

A name, net service name, or service name that resolves to a connect descriptor. Users
initiate a connect request by passing a user name and password along with a connect
identifier in a connect string for the service to which they want to connect.

For example:

CONNECT username@connect_identifier
Enter password: password

connect string

Information the user passes to a service to connect, such as user name, password and
net service name. For example:

CONNECT username@net_service_name
Enter password: password

credentials

A user name, password, or certificate used to gain access to the database.

CRL

See certificate revocation lists

CRL Distribution Point

(CRL DP) An optional extension specified by the X.509 version 3 certificate standard,
which indicates the location of the Partitioned CRL where revocation information for a
certificate is stored. Typically, the value in this extension is in the form of a URL. CRL
DPs allow revocation information within a single certificate authority domain to be
posted in multiple CRLs. CRL DPs subdivide revocation information into more
manageable pieces to avoid proliferating voluminous CRLs, thereby providing
performance benefits. For example, a CRL DP is specified in the certificate and can
point to a file on a Web server from which that certificate's revocation information can
be downloaded.

CRL DP

See CRL Distribution Point

cryptography

The practice of encoding and decoding data, resulting in secure messages.

data dictionary

A set of read-only tables that provide information about a database.

Data Encryption Standard (DES)

An older Federal Information Processing Standards encryption algorithm superseded
by the Advanced Encryption Standard (AES).

Database Administrator

(1) A person responsible for operating and maintaining an Oracle Server or a database
application. (2) An Oracle user name that has been given DBA privileges and can
perform database administration functions. Usually the two meanings coincide. Many
sites have multiple DBAs.

Diffie-Hellman key negotiation algorithm

Glossary-5

database alias

See net service name

Database Installation Administrator

Also called a database creator. This administrator is in charge of creating new
databases. This includes registering each database in the directory using the Database
Configuration Assistant. This administrator has create and modify access to database
service objects and attributes. This administrator can also modify the Default domain.

database link

A network object stored in the local database or in the network definition that
identifies a remote database, a communication path to that database, and optionally, a
user name and password. Once defined, the database link is used to access the remote
database.

A public or private database link from one database to another is created on the local
database by a DBA or user.

A global database link is created automatically from each database to every other
database in a network with Oracle Names. Global database links are stored in the
network definition.

database password verifier

A database password verifier is an irreversible value that is derived from the user's
database password. This value is used during password authentication to the database
to prove the identity of the connecting user.

Database Security Administrator

The highest level administrator for database enterprise user security. This
administrator has permissions on all of the enterprise domains and is responsible for:

■ Administering the Oracle DBSecurityAdmins and OracleDBCreators groups.

Creating new enterprise domains.

■ Moving databases from one domain to another within the enterprise.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

DES

See Data Encryption Standard (DES)

dictionary attack

A common attack on passwords. The attacker creates a list of many common
passwords and encrypts them. Then the attacker steals a file containing encrypted
passwords and compares it to his list of encrypted common passwords. If any of the
encrypted password values (called verifiers) match, then the attacker can steal the
corresponding password. Dictionary attacks can be avoided by using "salt" on the
password before encryption. See salt

Diffie-Hellman key negotiation algorithm

This is a method that lets two parties communicating over an insecure channel to
agree upon a random number known only to them. Though the parties exchange
information over the insecure channel during execution of the Diffie-Hellman key

digital signature

Glossary-6

negotiation algorithm, it is computationally infeasible for an attacker to deduce the
random number they agree upon by analyzing their network communications. Oracle
Advanced Security uses the Diffie-Hellman key negotiation algorithm to generate
session keys.

digital signature

A digital signature is created when a public key algorithm is used to sign the sender's
message with the sender's private key. The digital signature assures that the document
is authentic, has not been forged by another entity, has not been altered, and cannot be
repudiated by the sender.

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries in an LDAP
directory. See distinguished name (DN)

directory naming

A naming method that resolves a database service, net service name, or net service
alias to a connect descriptor stored in a central directory server. A

directory naming context

A subtree which is of significance within a directory server. It is usually the top of
some organizational subtree. Some directories only permit one such context which is
fixed; others permit none to many to be configured by the directory administrator.

distinguished name (DN)

The unique name of a directory entry. It is comprised of all of the individual names of
the parent entries back to the root entry of the directory information tree. See directory
information tree (DIT)

domain

Any tree or subtree within the Domain Name System (DNS) namespace. Domain
most commonly refers to a group of computers whose host names share a common
suffix, the domain name.

Domain Name System (DNS)

A system for naming computers and network services that is organized into a
hierarchy of domains. DNS is used in TCP/IP networks to locate computers through
user-friendly names. DNS resolves a friendly name into an IP address, which is
understood by computers.

In Oracle Net Services, DNS translates the host name in a TCP/IP address into an IP
address.

encrypted text

Text that has been encrypted, using an encryption algorithm; the output stream of an
encryption process. On its face, it is not readable or decipherable, without first being
subject to decryption. Also called ciphertext. Encrypted text ultimately originates as
plaintext.

encryption

The process of disguising a message rendering it unreadable to any but the intended
recipient.

global role

Glossary-7

enterprise domain

A directory construct that consists of a group of databases and enterprise roles. A
database should only exist in one enterprise domain at any time. Enterprise domains
are different from Windows 2000 domains, which are collections of computers that
share a common directory database.

Enterprise Domain Administrator

User authorized to manage a specific enterprise domain, including the authority to
add new enterprise domain administrators.

enterprise role

Access privileges assigned to enterprise users. A set of Oracle role-based
authorizations across one or more databases in an enterprise domain. Enterprise roles
are stored in the directory and contain one or more global roles.

enterprise user

A user defined and managed in a directory. Each enterprise user has a unique identify
across an enterprise.

entry

The building block of a directory, it contains information about an object of interest to
directory users.

external authentication

Verification of a user identity by a third party authentication service, such as Kerberos
or RADIUS.

Federal Information Processing Standard (FIPS)

A U.S. government standard that defines security requirements for cryptographic
modules—employed within a security system protecting unclassified information
within computer and telecommunication systems. Published by the National Institute
of Standards and Technology (NIST).

FIPS

See Federal Information Processing Standard (FIPS)

forest

A group of one or more Active Directory trees that trust each other. All trees in a forest
share a common schema, configuration, and global catalog. When a forest contains
multiple trees, the trees do not form a contiguous namespace. All trees in a given
forest trust each other through transitive bidirectional trust relationships.

forwardable ticket-granting ticket

In Kerberos. A service ticket with the FORWARDABLE flag set. This flag enables
authentication forwarding without requiring the user to enter a password again.

global role

A role managed in a directory, but its privileges are contained within a single database.
A global role is created in a database by using the following syntax:

CREATE ROLE role_name IDENTIFIED GLOBALLY;

grid computing

Glossary-8

grid computing

A computing architecture that coordinates large numbers of servers and storage to act
as a single large computer. Oracle Grid Computing creates a flexible, on-demand
computing resource for all enterprise computing needs. Applications running on the
Oracle 10g grid computing infrastructure can take advantage of common
infrastructure services for failover, software provisioning, and management. Oracle
Grid Computing analyzes demand for resources and adjusts supply accordingly.

HTTP

Hypertext Transfer Protocol: The set of rules for exchanging files (text, graphic images,
sound, video, and other multimedia files) on the World Wide Web. Relative to the
TCP/IP suite of protocols (which are the basis for information exchange on the
Internet), HTTP is an application protocol.

HTTPS

The use of Secure Sockets Layer (SSL) as a sublayer under the regular HTTP
application layer.

identity

The combination of the public key and any other public information for an entity. The
public information may include user identification data such as, for example, an e-mail
address. A user certified as being the entity it claims to be.

identity management

The creation, management, and use of online, or digital, entities. Identity management
involves securely managing the full life cycle of a digital identity from creation
(provisioning of digital identities) to maintenance (enforcing organizational policies
regarding access to electronic resources), and, finally, to termination.

identity management realm

A subtree in Oracle Internet Directory, including not only an Oracle Context, but also
additional subtrees for users and groups, each of which are protected with access
control lists.

initial ticket

In Kerberos authentication, an initial ticket or ticket granting ticket (TGT) identifies the
user as having the right to ask for additional service tickets. No tickets can be obtained
without an initial ticket. An initial ticket is retrieved by running the okinit program
and providing a password.

instance

Every running Oracle database is associated with an Oracle instance. When a database
is started on a database server (regardless of the type of computer), Oracle allocates a
memory area called the System Global Area (SGA) and starts an Oracle process. This
combination of the SGA and an Oracle process is called an instance. The memory and
the process of an instance manage the associated database's data efficiently and serve
the one or more users of the database.

integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

keytab file

Glossary-9

java code obfuscation

Java code obfuscation is used to protect Java programs from reverse engineering. A
special program (an obfuscator) is used to scramble Java symbols found in the code.
The process leaves the original program structure intact, letting the program run
correctly while changing the names of the classes, methods, and variables in order to
hide the intended behavior. Although it is possible to decompile and read
non-obfuscated Java code, the obfuscated Java code is sufficiently difficult to
decompile to satisfy U.S. government export controls.

Java Database Connectivity (JDBC)

An industry-standard Java interface for connecting to a relational database from a Java
program, defined by Sun Microsystems.

JDBC

See Java Database Connectivity (JDBC)

KDC

Key Distribution Center. In Kerberos authentication, the KDC maintains a list of user
principals and is contacted through the kinit (okinit is the Oracle version)
program for the user's initial ticket. Frequently, the KDC and the Ticket Granting
Service are combined into the same entity and are simply referred to as the KDC. The
Ticket Granting Service maintains a list of service principals and is contacted when a
user wants to authenticate to a server providing such a service. The KDC is a trusted
third party that must run on a secure host. It creates ticket-granting tickets and service
tickets.

Kerberos

A network authentication service developed under Massachusetts Institute of
Technology's Project Athena that strengthens security in distributed environments.
Kerberos is a trusted third-party authentication system that relies on shared secrets
and assumes that the third party is secure. It provides single sign-on capabilities and
database link authentication (MIT Kerberos only) for users, provides centralized
password storage, and enhances PC security.

key

When encrypting data, a key is a value which determines the ciphertext that a given
algorithm will produce from given plaintext. When decrypting data, a key is a value
required to correctly decrypt a ciphertext. A ciphertext is decrypted correctly only if
the correct key is supplied.

With a symmetric encryption algorithm, the same key is used for both encryption and
decryption of the same data. With an asymmetric encryption algorithm (also called a
public-key encryption algorithm or public-key cryptosystem), different keys are used
for encryption and decryption of the same data.

key pair

A public key and its associated private key. See public and private key pair

keytab file

A Kerberos key table file containing one or more service keys. Hosts or services use
keytab files in the same way as users use their passwords.

kinstance

Glossary-10

kinstance

An instantiation or location of a Kerberos authenticated service. This is an arbitrary
string, but the host Computer name for a service is typically specified.

kservice

An arbitrary name of a Kerberos service object.

LDAP

See Lightweight Directory Access Protocol (LDAP)

ldap.ora file

A file created by Oracle Net Configuration Assistant that contains the following
directory server access information:

■ Type of directory server

■ Location of the directory server

■ Default identity management realm or Oracle Context (including ports) that the
client or server will use

Lightweight Directory Access Protocol (LDAP)

A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet
Directory.

listener

A process that resides on the server whose responsibility is to listen for incoming client
connection requests and manage the traffic to the server.

Every time a client requests a network session with a server, a listener receives the
actual request. If the client information matches the listener information, then the
listener grants a connection to the server.

listener.ora file

A configuration file for the listener that identifies the:

■ Listener name

■ Protocol addresses that it is accepting connection requests on

■ Services it is listening for

The listener.ora file typically resides in $ORACLE_HOME/network/admin on
UNIX platforms and ORACLE_BASE\ORACLE_HOME\network\admin on Windows.

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message, wherein the third-party, the man-in-the-middle, decrypts the message,
re-encrypts it (with or without alteration of the original message), and re-transmits it
to the originally-intended recipient—all without the knowledge of the legitimate
sender and receiver. This type of security attack works only in the absence of
authentication.

MD5

An algorithm that assures data integrity by generating a 128-bit cryptographic
message digest value from given data. If as little as a single bit value in the data is

network authentication service

Glossary-11

modified, the MD5 checksum for the data changes. Forgery of data in a way that will
cause MD5 to generate the same result as that for the original data is considered
computationally infeasible.

message authentication code

Also known as data authentication code (DAC). A checksumming with the addition of
a secret key. Only someone with the key can verify the cryptographic checksum.

message digest

See checksumming

naming method

The resolution method used by a client application to resolve a connect identifier to a
connect descriptor when attempting to connect to a database service.

National Institute of Standards and Technology (NIST)

An agency within the U.S. Department of Commerce responsible for the development
of security standards related to the design, acquisition, and implementation of
cryptographic-based security systems within computer and telecommunication
systems, operated by a Federal agency or by a contractor of a Federal agency or other
organization that processes information on behalf of the Federal Government to
accomplish a Federal function.

net service alias

An alternative name for a directory naming object in a directory server. A directory
server stores net service aliases for any defined net service name or database service.
A net service alias entry does not have connect descriptor information. Instead, it only
references the location of the object for which it is an alias. When a client requests a
directory lookup of a net service alias, the directory determines that the entry is a net
service alias and completes the lookup as if it was actually the entry it is referencing.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they want to connect:

CONNECT username@net_service_name
Enter password: password

Depending on your needs, net service names can be stored in a variety of places,
including:

■ Local configuration file, tnsnames.ora, on each client

■ Directory server

■ External naming service, such as NIS

network authentication service

A means for authenticating clients to servers, servers to servers, and users to both
clients and servers in distributed environments. A network authentication service is a
repository for storing information about users and the services on different servers to
which they have access, as well as information about clients and servers on the
network. An authentication server can be a physically separate computer, or it can be a
facility co-located on another server within the system. To ensure availability, some
authentication services may be replicated to avoid a single point of failure.

network listener

Glossary-12

network listener

A listener on a server that listens for connection requests for one or more databases on
one or more protocols. See listener

NIST

See National Institute of Standards and Technology (NIST)

non-repudiation

Incontestable proof of the origin, delivery, submission, or transmission of a message.

obfuscation

A process by which information is scrambled into a non-readable form, such that it is
extremely difficult to de-scramble if the algorithm used for scrambling is not known.

obfuscator

A special program used to obfuscate Java source code. See obfuscation

object class

A named group of attributes. When you want to assign attributes to an entry, you do
so by assigning to that entry the object classes that hold those attributes. All objects
associated with the same object class share the same attributes.

Oracle Context

1. An entry in an LDAP-compliant internet directory called cn=OracleContext,
under which all Oracle software relevant information is kept, including entries for
Oracle Net Services directory naming and checksumming security.

There can be one or more Oracle Contexts in a directory. An Oracle Context is usually
located in an identity management realm.

Oracle Net Services

An Oracle product that enables two or more computers that run the Oracle server or
Oracle tools such as Designer/2000 to exchange data through a third-party network.
Oracle Net Services support distributed processing and distributed database
capability. Oracle Net Services is an open system because it is independent of the
communication protocol, and users can interface Oracle Net to many network
environments.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Password-Accessible Domains List

A group of enterprise domains configured to accept connections from
password-authenticated users.

PCMCIA cards

Small credit card-sized computing devices that comply with the Personal Computer
Memory Card International Association (PCMCIA) standard. These devices, also
called PC cards, are used for adding memory, modems, or as hardware security
modules. PCMCIA cards that are used as hardware security modules securely store
the private key component of a public and private key pair and some also perform
the cryptographic operations as well.

proxy authentication

Glossary-13

peer identity

SSL connect sessions are between a particular client and a particular server. The
identity of the peer may have been established as part of session setup. Peers are
identified by X.509 certificate chains.

PEM

The Internet Privacy-Enhanced Mail protocols standard, adopted by the Internet
Architecture Board to provide secure electronic mail over the Internet. The PEM
protocols provide for encryption, authentication, message integrity, and key
management. PEM is an inclusive standard, intended to be compatible with a wide
range of key-management approaches, including both symmetric and public-key
schemes to encrypt data-encrypting keys. The specifications for PEM come from four
Internet Engineering Task Force (IETF) documents: RFCs 1421, 1422, 1423, and 1424.

PKCS #10

An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
describes a syntax for certification requests. A certification request consists of a
distinguished name, a public key, and optionally a set of attributes, collectively signed
by the entity requesting certification. Certification requests are referred to as certificate
requests in this manual. See certificate request

PKCS #11

An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
defines an application programming interface (API), called Cryptoki, to devices which
hold cryptographic information and perform cryptographic operations. See PCMCIA
cards

PKCS #12

An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
describes a transfer syntax for storing and transferring personal authentication
credentials—typically in a format called a wallet.

PKI

See public key infrastructure (PKI)

plaintext

Message text that has not been encrypted.

principal

A string that uniquely identifies a client or server to which a set of Kerberos
credentials is assigned. It generally has three parts: kservice/kinstance@REALM.
In the case of a user, kservice is the user name. See also kservice, kinstance, and
realm

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures. See public and
private key pair

proxy authentication

A process typically employed in an environment with a middle tier such as a firewall,
wherein the end user authenticates to the middle tier, which thence authenticates to
the directory on the user's behalf—as its proxy. The middle tier logs into the directory

public key

Glossary-14

as a proxy user. A proxy user can switch identities and, once logged into the directory,
switch to the end user's identity. It can perform operations on the end user's behalf,
using the authorization appropriate to that particular end user.

public key

In public-key cryptography, this key is made public to all. It is primarily
used for encryption but can be used for verifying signatures. See public and private
key pair

public key encryption

The process where the sender of a message encrypts the message with the public key
of the recipient. Upon delivery, the message is decrypted by the recipient using its
private key.

public key infrastructure (PKI)

Information security technology utilizing the principles of public key cryptography.
Public key cryptography involves encrypting and decrypting information using a
shared public and private key pair. Provides for secure, private communications
within a public network.

public and private key pair

A set of two numbers used for encryption and decryption, where one is called the
private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Though
mathematically related, it is generally viewed as computationally infeasible to derive
the private key from the public key. Public and private keys are used only with
asymmetric encryption algorithms, also called public-key encryption algorithms, or
public-key cryptosystems. Data encrypted with either a public key or a private key
from a key pair can be decrypted with its associated key from the key-pair. However,
data encrypted with a public key cannot be decrypted with the same public key, and
data enwrapped with a private key cannot be decrypted with the same private key.

RADIUS

Remote Authentication Dial-In User Service (RADIUS) is a client/server protocol and
software that enables remote access servers to communicate with a central server to
authenticate dial-in users and authorize their access to the requested system or service.

realm

1. Short for identity management realm. 2. A Kerberos object. A set of clients and
servers operating under a single key distribution center/ticket-granting service
(KDC/TGS). Services (see kservice) in different realms that share the same name are
unique.

realm Oracle Context

An Oracle Context that is part of an identity management realm in Oracle Internet
Directory.

registry

A Windows repository that stores configuration information for a computer.

remote computer

A computer on a network other than the local computer.

service name

Glossary-15

root key certificate

See trusted certificate

salt

1. In cryptography, generally speaking, "salt" is a way to strengthen the security of
encrypted data. Salt is a random string that is added to the data before it is encrypted.
Then, it is more difficult for attackers to steal the data by matching patterns of
ciphertext to known ciphertext samples. 2. Salt is also used to avoid dictionary attacks,
a method that unethical hackers (attackers) use to steal passwords. It is added to
passwords before the passwords are encrypted. Then it is difficult for attackers to
match the hash value of encrypted passwords (sometimes called verifiers) with their
dictionary lists of common password hash values. See dictionary attack

schema

1. Database schema: A named collection of objects, such as tables, views, clusters,
procedures, packages, attributes, object classes, and their corresponding matching
rules, which are associated with a particular user. 2. LDAP directory schema: The
collection of attributes, object classes, and their corresponding matching rules.

schema mapping

See user-schema mapping

Secure Hash Algorithm (SHA)

An algorithm that assures data integrity by generating a 160-bit cryptographic
message digest value from given data. If as little as a single bit in the data is modified,
the Secure Hash Algorithm checksum for the data changes. Forgery of a given data set
in a way that will cause the Secure Hash Algorithm to generate the same result as that
for the original data is considered computationally infeasible.

An algorithm that takes a message of less than 264 bits in length and produces a
160-bit message digest. The algorithm is slightly slower than MD5, but the larger
message digest makes it more secure against brute-force collision and inversion
attacks.

Secure Sockets Layer (SSL)

An industry standard protocol designed by Netscape Communications Corporation
for securing network connections. SSL provides authentication, encryption, and data
integrity using public key infrastructure (PKI).

The Transport Layer Security (TLS) protocol is the successor to the SSL protocol.

server

A provider of a service.

service

1. A network resource used by clients; for example, an Oracle database server.

2. An executable process installed in the Windows registry and administered by
Windows. Once a service is created and started, it can run even when no user is logged
on to the computer.

service name

For Kerberos-based authentication, the kservice portion of a service principal.

service principal

Glossary-16

service principal

See principal

service key table

In Kerberos authentication, a service key table is a list of service principals that exist on
a kinstance. This information must be extracted from Kerberos and copied to the
Oracle server computer before Kerberos can be used by Oracle.

service ticket

A service ticket is trusted information used to authenticate the client, to a specific
service or server, for a predetermined period of time. It is obtained from the KDC
using the initial ticket.

session key

A key shared by at least two parties (usually a client and a server) that is used for data
encryption for the duration of a single communication session. Session keys are
typically used to encrypt network traffic; a client and a server can negotiate a session
key at the beginning of a session, and that key is used to encrypt all network traffic
between the parties for that session. If the client and server communicate again in a
new session, they negotiate a new session key.

session layer

A network layer that provides the services needed by the presentation layer entities
that enable them to organize and synchronize their dialogue and manage their data
exchange. This layer establishes, manages, and terminates network sessions between
the client and server. An example of a session layer is Network Session.

SHA

See Secure Hash Algorithm (SHA)

shared schema

A database or application schema that can be used by multiple enterprise users. Oracle
Advanced Security supports the mapping of multiple enterprise users to the same
shared schema on a database, which lets an administrator avoid creating an account
for each user in every database. Instead, the administrator can create a user in one
location, the enterprise directory, and map the user to a shared schema that other
enterprise users can also map to. Sometimes called user/schema separation.

single key-pair wallet

A PKCS #12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

single password authentication

The ability of a user to authenticate with multiple databases by using a single
password. In the Oracle Advanced Security implementation, the password is stored in
an LDAP-compliant directory and protected with encryption and Access Control Lists.

single sign-on (SSO)

The ability of a user to authenticate once, combined with strong authentication
occurring transparently in subsequent connections to other databases or applications.
Single sign-on lets a user access multiple accounts and applications with a single
password, entered during a single connection. Single password, single authentication.
Oracle Advanced Security supports Kerberos and SSL-based single sign-on.

tnsnames.ora

Glossary-17

smart card

A plastic card (like a credit card) with an embedded integrated circuit for storing
information, including such information as user names and passwords, and also for
performing computations associated with authentication exchanges. A smart card is
read by a hardware device at any client or server.

A smartcard can generate random numbers which can be used as one-time use
passwords. In this case, smartcards are synchronized with a service on the server so
that the server expects the same password generated by the smart card.

sniffer

Device used to surreptitiously listen to or capture private data traffic from a network.

sqlnet.ora file

A configuration file for the client or server that specifies:

■ Client domain to append to unqualified service names or net service names

■ Order of naming methods the client should use when resolving a name

■ Logging and tracing features to use

■ Route of connections

■ Preferred Oracle Names servers

■ External naming parameters

■ Oracle Advanced Security parameters

The sqlnet.ora file typically resides in $ORACLE_HOME/network/admin on UNIX
platforms and ORACLE_BASE\ORACLE_HOME\network\admin on Windows
platforms.

SSO

See single sign-on (SSO)

System Global Area (SGA)

A group of shared memory structures that contain data and control information for an
Oracle instance.

system identifier (SID)

A unique name for an Oracle instance. To switch between Oracle databases, users
must specify the desired SID. The SID is included in the CONNECT DATA parts of the
connect descriptor in a tnsnames.ora file, and in the definition of the network listener
in a listener.ora file.

ticket

A piece of information that helps identify who the owner is. See initial ticket and
service ticket.

tnsnames.ora

A file that contains connect descriptors; each connect descriptor is mapped to a net
service name. The file may be maintained centrally or locally, for use by all or
individual clients. This file typically resides in the following locations depending on
your platform:

■ (UNIX) ORACLE_HOME/network/admin

token card

Glossary-18

■ (Windows) ORACLE_BASE\ORACLE_HOME\network\admin

token card

A device for providing improved ease-of-use for users through several different
mechanisms. Some token cards offer one-time passwords that are synchronized with
an authentication service. The server can verify the password provided by the token
card at any given time by contacting the authentication service. Other token cards
operate on a challenge-response basis. In this case, the server offers a challenge (a
number) which the user types into the token card. The token card then provides
another number (cryptographically-derived from the challenge), which the user then
offers to the server.

transport layer

A networking layer that maintains end-to-end reliability through data flow control
and error recovery methods. Oracle Net Services uses Oracle protocol supports for the
transport layer.

Transport Layer Security (TLS)

An industry standard protocol for securing network connections. The TLS protocol is a
successor to the SSL protocol. It provides authentication, encryption, and data
integrity using public key infrastructure (PKI). The TLS protocol is developed by the
Internet Engineering Task Force (IETF).

trusted certificate

A trusted certificate, sometimes called a root key certificate, is a third party identity
that is qualified with a level of trust. The trusted certificate is used when an identity is
being validated as the entity it claims to be. Typically, the certificate authorities you
trust are called trusted certificates. If there are several levels of trusted certificates, a
trusted certificate at a lower level in the certificate chain does not need to have all its
higher level certificates reverified.

trusted certificate authority

See certificate authority

trust point

See trusted certificate

user name

A name that can connect to and access objects in a database.

user-schema mapping

An LDAP directory entry that contains a pair of values: the base in the directory at
which users exist, and the name of the database schema to which they are mapped.
The users referenced in the mapping are connected to the specified schema when they
connect to the database. User-schema mapping entries can apply only to one database
or they can apply to all databases in a domain. See shared schema

user/schema separation

See shared schema

user search base

The node in the LDAP directory under which the user resides.

X.509

Glossary-19

views

Selective presentations of one or more tables (or other views), showing both their
structure and their data.

wallet

A wallet is a data structure used to store and manage security credentials for an
individual entity. A Wallet Resource Locator (WRL) provides all the necessary
information to locate the wallet.

wallet obfuscation

Wallet obfuscation is used to store and access an Oracle wallet without querying the
user for a password prior to access (supports single sign-on (SSO)).

Wallet Resource Locator

A wallet resource locator (WRL) provides all necessary information to locate a wallet.
It is a path to an operating system directory that contains a wallet.

Windows native authentication

An authentication method that enables a client single login access to a Windows
server and a database running on that server.

WRL

See Wallet Resource Locator

X.509

An industry-standard specification for digital certificates.

X.509

Glossary-20

Index-1

Index

A
accounting, RADIUS, 6-14
activating checksumming and encryption, 4-4
adapters, 1-10
ALTER SYSTEM SET command

closing encryption wallets, 3-24
opening encryption wallets, 3-8, 3-24, 3-36
opening HSM wallets, 3-23
setting master encryption key, 3-7, 3-22, 3-36

anonymous, 8-11
asynchronous authentication mode in RADIUS, 6-4
authentication, 1-10

configuring multiple methods, 10-2
methods, 1-8
modes in RADIUS, 6-2

auto login wallets
and Transparent Data Encryption (TDE), 3-6, 3-8

B
benefits of Oracle Advanced Security, 1-3
BFILE, 3-15
browser certificates, using with Oracle Wallet

Manager, 9-19

C
certificate, 8-4

browser, using with Oracle Wallet Manager, 9-19
certificate authority, 8-4
certificate revocation lists, 8-4

manipulating with orapki tool, 8-27
uploading to LDAP directory, 8-27
where to store them, 8-25

certificate revocation status checking
disabling on server, 8-25

certificate validation error message
CRL could not be found, 8-31
CRL date verification failed with RSA status, 8-31
CRL signature verification failed with RSA

status, 8-31
Fetch CRL from CRL DP

No CRLs found, 8-32
OID hostname or port number not set, 8-32

challenge-response authentication in RADIUS, 6-4

change data capture, synchronous, 3-16
cipher block chaining mode, 1-5
cipher suites

Secure Sockets Layer (SSL), B-6
client authentication in SSL, 8-13
compression of Transparent Data Encryption

data, 3-32
configuration files

Kerberos, B-1
configuring

Entrust-enabled Secure Sockets Layer (SSL)
on the client, G-5

Kerberos authentication service parameters, 7-4
Oracle server with Kerberos, 7-2
RADIUS authentication, 6-7
SSL, 8-8

on the client, 8-15
on the server, 8-9

thin JDBC support, 5-1
connecting

with username and password, 10-1
CRL, 8-4
CRLAdmins directory administrative group, F-11
CRLs

disabling on server, 8-25
where to store them, 8-25

cryptographic hardware devices, 8-5

D
data deduplication of Transparent Data Encryption

data, 3-32
Data Encryption Standard (DES), 4-2

DES encryption algorithm, 1-5
DES40 encryption algorithm, 4-2
Triple-DES encryption algorithm, 1-5, 4-2

data integrity, 1-5
database links

RADIUS not supported, 6-2
DES. See Data Encryption Standard (DES)
Diffie-Hellman, 8-11
Diffie-Hellman key negotiation algorithm, 4-3

E
encryption and checksumming

Index-2

activating, 4-4
negotiating, 4-5
parameter settings, 4-6

ENCRYPTION_WALLET_LOCATION parameter, 3-6,
3-17, 3-20, 3-25, 3-36

Entrust Authority
creating database users, G-8

Entrust Authority for Oracle, G-2
Entrust Authority Software

authentication, G-4
certificate revocation, G-2
components, G-2, G-3
configuring

client, G-5
server, G-6

Entelligence, G-3
etbinder command, G-7
issues and restrictions, G-9
key management, G-2
profiles, G-4

administrator-created, G-4
user-created, G-5

Self-Administration Server, G-3
versions supported, G-2

Entrust, Inc., G-1
Entrust-enabled SSL

troubleshooting, G-9
Entrust/PKI Software, 1-9
error messages

ORA-12650, 4-4, 4-5, A-4, A-5, A-6
ORA-28890, G-9

etbinder command, G-7
external large objects (BFILE), 3-15

F
Federal Information Processing Standard

configuration, 0-xxi
Federal Information Processing Standard (FIPS), 1-6,

D-1
sqlnet.ora parameters, D-1

FIPS 140-2 Level 2 certification, E-1
FIPS Parameter

Configuring, E-1
FIPS. See Federal Information Processing Standard

(FIPS)

G
grid computing

benefits, 1-1
defined, 1-1

GT GlossaryTitle, Glossary-1

H
handshake

SSL, 8-2
hardware acceleration

for Solaris, xxv
HSMs (hardware security modules)

PKCS#11 library, 3-21
sqlnet.ora file, 3-20
user_Id:password string, 3-22

I
import/export utilities, original, 3-16
index range scans, 3-5
initialization parameter file

parameters for clients and servers using
Kerberos, B-1

parameters for clients and servers using
RADIUS, B-1

parameters for clients and servers using SSL, B-5
Internet Explorer certificates

using with Oracle Wallet Manager, 9-19

J
Java Byte Code Obfuscation, 5-3
Java Database Connectivity (JDBC)

configuration parameters, 5-3
Oracle extensions, 5-1
thin driver features, 5-2

Java Database connectivity (JDBC)
implementation of Oracle Advanced Security, 5-1

JDBC. See Java Database Connectivity

K
Kerberos, 1-8

authentication adapter utilities, 7-8
configuring authentication, 7-1, 7-4
kinstance, 7-2
kservice, 7-2
realm, 7-2
sqlnet.ora file sample, A-2
system requirements, 1-11

kinstance (Kerberos), 7-2
kservice (Kerberos), 7-2

L
LAN environments

vulnerabilities of, 1-2
large objects

BFILE, 3-16
BLOB, 3-16
CLOB, 3-16
external, 3-15
LOB, 3-16

ldap.ora
which directory SSL port to use for no

authentication, 8-29
listener

endpoint
SSL configuration, 8-14

M
managing roles with RADIUS server, 6-15

Index-3

MD5 message digest algorithm, 4-3
Microsoft Internet Explorer certificates

using with Oracle Wallet Manager, 9-19

N
nCipher hardware security module

using Oracle Net tracing to troubleshoot, 8-35
Netscape certificates

using with Oracle Wallet Manager, 9-18
Netscape Communications Corporation, 8-1
NOMAC parameter (TDE), 3-11

O
obfuscation, 5-3
okdstry

Kerberos adapter utility, 7-8
okinit

Kerberos adapter utility, 7-8
oklist

Kerberos adapter utility, 7-8
ORA-12650 error message, A-5
ORA-28330, 3-39
ORA-28331, 3-39
ORA-28332, 3-39
ORA-28333, 3-39
ORA-28334, 3-39
ORA-28335, 3-39
ORA-28336, 3-39
ORA-28337, 3-39
ORA-28338, 3-39
ORA-28339, 3-39
ORA-28340, 3-40
ORA-28341, 3-40
ORA-28342, 3-40
ORA-28343, 3-40
ORA-28344, 3-40
ORA-28345, 3-40
ORA-28346, 3-40
ORA-28347, 3-40
ORA-28348, 3-40
ORA-28349, 3-40
ORA-28350, 3-41
ORA-28351, 3-41
ORA-28353, 3-41
ORA-28354, 3-41
ORA-28356, 3-41
ORA-28357, 3-41
ORA-28358, 3-41
ORA-28359, 3-41
ORA-28361, 3-41
ORA-28362, 3-41
ORA-28363, 3-42
ORA-28364, 3-42
ORA-28365, 3-42
ORA-28366, 3-42
ORA-28367, 3-42
ORA-28368, 3-42
ORA-28369, 3-42

ORA-28370, 3-42
ORA-28371, 3-42
ORA-28372, 3-43
ORA-28373, 3-43
ORA-28374, 3-43
ORA-28375, 3-43
ORA-28376, 3-43
ORA-28377, 3-43
ORA-28378, 3-43
ORA-28885 error, 9-5
ORA-40300 error message, 8-35
ORA-40301 error message, 8-36
ORA-40302 error message, 8-36
Oracle Advanced Security

checksum sample for sqlnet.ora file, A-2
configuration parameters, 5-3
disabling authentication, 10-1
encryption sample for sqlnet.ora file, A-1
Java implementation, 5-1, 5-3
SSL features, 8-2

Oracle Applications wallet location, 9-13
Oracle Internet Directory

Diffie-Hellman SSL port, 8-29
Oracle parameters

authentication, 10-3
Oracle Password Protocol, 5-3
Oracle Wallet Manager

importing PKCS #7 certificate chains, 9-17
orapki

adding a root certificate to a wallet with, F-5
adding a trusted certificate to a wallet with, F-5
adding user certificates to a wallet with, F-5
changing the wallet password with, F-4
creating a local auto login wallet with, F-4
creating a signed certificate for testing, F-2
creating a wallet with, F-3
creating an auto login wallet with, F-3
exporting a certificate from a wallet with, F-6
exporting a certificate request from a wallet

with, F-6
viewing a test certificate with, F-2
viewing a wallet with, F-4

orapki tool, 8-27
original import/export utilities, 3-16
OS_AUTHENT_PREFIX parameter, 10-3
OSS.SOURCE.MY_WALLET parameter, 8-10, 8-18

P
paragraph tags

GT GlossaryTitle, Glossary-1
parameters

authentication
Kerberos, B-1
RADIUS, B-1
Secure Sockets Layer (SSL), B-5

configuration for JDBC, 5-3
encryption and checksumming, 4-6

PIN, xxv
PKCS #11 devices, 8-5

Index-4

PKCS #11 error messages
ORA-40300, 8-35
ORA-40301, 8-36
ORA-40302, 8-36

PKCS #7 certificate chain, 9-17
difference from X.509 certificate, 9-17

Public Key Infrastructure (PKI)
certificate, 8-4
certificate authority, 8-4
certificate revocation lists, 8-4
PKCS #11 hardware devices, 8-5
wallet, 8-5

public key infrastructure (PKI), 1-9

R
RAC (Real Application Clusters)

and TDE (transparent data encryption), 3-24
RADIUS, 1-8

accounting, 6-14
asynchronous authentication mode, 6-4
authentication modes, 6-2
authentication parameters, B-1
challenge-response

authentication, 6-4
user interface, C-1

configuring, 6-7
database links not supported, 6-2
location of secret key, 6-11
smartcards and, 1-8, 6-6, 6-11, C-1
sqlnet.ora file sample, A-2
synchronous authentication mode, 6-3
system requirements, 1-11

RC4 encryption algorithm, 1-4, 4-2
realm (Kerberos), 7-2
restrictions, 1-11
revocation, G-2
roles

managing with RADIUS server, 6-15
RSA Security, Inc. (RSA), 1-4

S
salt (TDE)

adding, 3-14
removing, 3-14
See also TDE (transparent data encryption)

secret key
location in RADIUS, 6-11

Secure Sockets Layer (SSL), 1-8
architecture, 8-6
authentication parameters, B-5
authentication process in an Oracle

environment, 8-3
cipher suites, B-6
client authentication parameter, B-7
client configuration, 8-15
combining with other authentication

methods, 8-6
configuring, 8-8

configuring Entrust-enabled SSL on the
client, G-5

enabling, 8-8
enabling Entrust-enabled SSL, G-4
handshake, 8-2
industry standard protocol, 8-1
requiring client authentication, 8-13
server configuration, 8-9
sqlnet.ora file sample, A-2
system requirements, 1-11
version parameter, B-7
wallet location, parameter, B-9

SecurID, 6-3
token cards, 6-3

security
Internet, 1-2
Intranet, 1-2
threats, 1-2

data tampering, 1-2
dictionary attacks, 1-3
eavesdropping, 1-2
falsifying identities, 1-3
password-related, 1-3

Security Sockets Layer (SSL)
use of term includes TLS, 8-2

SHA-2 support, xxv
single sign-on (SSO), 1-9, G-1
smart cards, xxv
smartcards, 1-8

and RADIUS, 1-8, 6-6, 6-11, C-1
SQLNET.AUTHENTICATION_KERBEROS5_

SERVICE parameter, 7-5
SQLNET.AUTHENTICATION_SERVICES

parameter, 6-8, 7-5, 8-14, 8-20, 10-2, 10-3
SQLNET.CRYPTO_CHECKSUM_CLIENT

parameter, 4-9
SQLNET.CRYPTO_CHECKSUM_SERVER

parameter, 4-9
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

parameter, 4-9, A-6
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

parameter, 4-9, A-6
SQLNET.ENCRYPTION_CLIENT parameter, 4-8,

A-4
SQLNET.ENCRYPTION_SERVER parameter, 4-8,

A-3
SQLNET.ENCRYPTION_TYPES_CLIENT

parameter, 4-8, A-5
SQLNET.ENCRYPTION_TYPES_SERVER

parameter, 4-8, A-4
SQLNET.FIPS_140 parameter, D-2
SQLNET.KERBEROS5_CC_NAME parameter, 7-6
SQLNET.KERBEROS5_CLOCKSKEW

parameter, 7-6
SQLNET.KERBEROS5_CONF parameter, 7-6
SQLNET.KERBEROS5_CONF_MIT parameter, 7-7
SQLNET.KERBEROS5_KEYTAB parameter, 7-7
SQLNET.KERBEROS5_REALMS parameter, 7-7
sqlnet.ora file

Common sample, A-2

Index-5

FIPS 140-1 parameters, D-1
Kerberos sample, A-2
Oracle Advanced Security checksum sample, A-2
Oracle Advanced Security encryption

sample, A-1
OSS.SOURCE.MY_WALLET parameter, 8-10,

8-18
parameters for clients and servers using

Kerberos, B-1
parameters for clients and servers using

RADIUS, B-1
parameters for clients and servers using SSL, B-5
RADIUS sample, A-2
sample, A-1
SQLNET.AUTHENTICATION_KERBEROS5_

SERVICE parameter, 7-5
SQLNET.AUTHENTICATION_SERVICES

parameter, 7-5, 8-14, 8-20, 10-2, 10-3
SQLNET.CRYPTO_CHECKSUM_CLIENT

parameter, 4-9
SQLNET.CRYPTO_CHECKSUM_SERVER

parameter, 4-9
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

parameter, 4-9, A-6
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

parameter, 4-9, A-6
SQLNET.ENCRYPTION_CLIENT

parameter, A-4
SQLNET.ENCRYPTION_SERVER

parameter, 4-8, A-3
SQLNET.ENCRYPTION_TYPES_CLIENT

parameter, 4-8, A-5
SQLNET.ENCRYPTION_TYPES_SERVER

parameter, 4-8, A-4
SQLNET.FIPS_140 parameter, D-2
SQLNET.KERBEROS5_CC_NAME

parameter, 7-6
SQLNET.KERBEROS5_CLOCKSKEW

parameter, 7-6
SQLNET.KERBEROS5_CONF parameter, 7-6
SQLNET.KERBEROS5_CONF_MIT

parameter, 7-7
SQLNET.KERBEROS5_KEYTAB parameter, 7-7
SQLNET.KERBEROS5_REALMS parameter, 7-7
SSL sample, A-2
SSL_CLIENT_AUTHENTICATION

parameter, 8-14
SSL_CLIENT_AUTHETNICATION

parameter, 8-18
SSL_VERSION parameter, 8-13, 8-20
Trace File Set Up sample, A-1

sqlnet.ora file, TDE (transparent data
encryption), 3-7, 3-17, 3-20, 3-36, 3-42

SQLNET.RADIUS_ALTERNATE parameter, 6-12
SQLNET.RADIUS_ALTERNATE_PORT

parameter, 6-12
SQLNET.RADIUS_ALTERNATE_RETRIES

parameter, 6-12
SQLNET.RADIUS_ALTERNATE_TIMEOUT

parameter, 6-12

SQLNET.RADIUS_SEND_ACCOUNTING
parameter, 6-14

SSL. See Secure Sockets Layer (SSL)
SSL wallet location, 9-8, 9-13
SSL_CLIENT_AUTHENTICATION parameter, 8-14,

8-18
SSL_VERSION parameter, 8-13, 8-20
SSO. See single sign-on (SSO)
SSO wallets, 9-14
synchronous authentication mode, RADIUS, 6-3
synchronous change data capture, 3-16
system requirements, 1-10

Kerberos, 1-11
RADIUS, 1-11
SSL, 1-11

T
tablespace encryption

creating encrypted tablespaces, 3-18
editing the sqlnet.ora file, 3-17
opening wallet, 3-17
setting tablespace key, 3-17

tablespace master encryption key, 3-17
TDE (transparent data encryption)

and Oracle RAC (Real Application Clusters), 3-24
concepts, 3-1 to ??

figure, 3-5
HSMs (hardware security modules)

PKCS#11 library, 3-21
user_Id:password string, 3-22

managing, 3-24 to 3-34
backing up and recovering keys, 3-26
managing wallets, 3-25

reference, 3-43 to 3-44
restrictions, 3-15
tablespace encryption

creating encrypted tablespaces, 3-18
opening wallet, 3-17
setting tablespace key, 3-17

troubleshooting, 3-39 to 3-43
using, 3-5 to 3-15

creating tables, 3-10
editing the sqlnet.ora file, 3-36
encrypting columns, 3-13
opening wallet, 3-8
setting master encryption key, 3-6

thin JDBC support, 5-1
TLS See Secure Sockets Layer (SSL)
token cards, 1-8
trace file

set up sample for sqlnet.ora file, A-1
transparent data encryption

See TDE
Transparent Data Encryption (TDE)

compression of encrypted data, 3-32
data deduplication of encrypted data, 3-32
multi-database environments, 3-31, 3-32

transportable tablespaces, 3-16
Triple-DES encryption algorithm, 1-5

Index-6

troubleshooting, 7-14
Entrust-enabled SSL, G-9

U
utilities, import/export, 3-16

W
wallet, 8-5
wallets

auto login, 3-6, 3-8, 9-14
changing a password, 9-13
closing, 3-23, 3-24, 9-10
creating, 9-8
deleting, 9-13
managing, 9-7
managing certificates, 9-14
managing trusted certificates, 9-20
opening, 3-8, 3-23, 3-24, 3-36, 3-44, 9-9
Oracle Applications wallet location, 9-13
saving, 9-12
setting location, 8-10
SSL wallet location, 9-8, 9-13
SSO wallets, 9-14

X
X.509 certificate

difference from PKCS #7 certificate chain, 9-17
X.509 PKI certificate standard, G-1

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	What's New in Oracle Advanced Security?
	Oracle Database 11g Release 2 (11.2.0.3) New Features in Oracle Advanced Security
	Oracle Database 11g Release 2 (11.2) New Features in Oracle Advanced Security
	Oracle Database 11g Release 1 (11.1) New Features in Oracle Advanced Security

	Part I Getting Started with Oracle Advanced Security
	1 Introduction to Oracle Advanced Security
	Security Challenges in an Enterprise Environment
	Security in Enterprise Grid Computing Environments
	Security in an Intranet or Internet Environment
	Common Security Threats
	Eavesdropping and Data Theft
	Data Tampering
	Falsifying User Identities
	Password-Related Threats

	Solving Security Challenges with Oracle Advanced Security
	Data Encryption
	Supported Encryption Algorithms
	RC4 Encryption:
	DES Encryption :
	Triple-DES Encryption :
	Advanced Encryption Standard:

	Data Integrity
	Federal Information Processing Standard

	Strong Authentication
	Centralized Authentication and Single Sign-On
	How Centralized Network Authentication Works

	Supported Authentication Methods
	Kerberos
	Remote Authentication Dial-In User Service (RADIUS) :
	Secure Sockets Layer
	Entrust/PKI :

	Oracle Advanced Security Architecture
	System Requirements
	Oracle Advanced Security Restrictions

	2 Configuration and Administration Tools Overview
	Network Encryption and Strong Authentication Configuration Tools
	Oracle Net Manager
	Starting Oracle Net Manager
	Navigating to the Oracle Advanced Security Profile
	Oracle Advanced Security Profile Property Sheets
	Authentication Property Sheet
	Other Params Property Sheet
	Integrity Property Sheet
	Encryption Property Sheet
	SSL Property Sheet

	Oracle Advanced Security Kerberos Adapter Command-Line Utilities

	Public Key Infrastructure Credentials Management Tools
	Oracle Wallet Manager
	Starting Oracle Wallet Manager
	Navigating the Oracle Wallet Manager User Interface
	Navigator Pane
	Right Pane

	Toolbar
	Menus
	Wallet Menu
	Operations Menu
	Help Menu

	orapki Utility

	Duties of a Security Administrator/DBA

	Part II Data Encryption and Integrity
	3 Securing Stored Data Using Transparent Data Encryption
	About Transparent Data Encryption
	Benefits of Using Transparent Data Encryption
	Types of Transparent Data Encryption
	TDE Column Encryption
	TDE Tablespace Encryption

	Using Transparent Data Encryption
	Enabling Transparent Data Encryption
	Specifying a Wallet Location for Transparent Data Encryption
	Using Wallets with Automatic Login Enabled

	Setting and Resetting the Master Encryption Key
	Setting the Master Encryption Key
	Resetting the Master Encryption Key

	Opening and Closing the Encrypted Wallet
	Encrypting Columns in Tables
	Creating Tables with Encrypted Columns
	Creating a Table with an Encrypted Column
	Creating a Table with an Encrypted Column Using a Nondefault Algorithm and No Salt
	Using the NOMAC Parameter to Save Disk Space and Improve Performance
	Creating an Encrypted Column in an External Table

	Encrypting Columns in Existing Tables
	Adding an Encrypted Column to an Existing Table
	Encrypting an Unencrypted Column
	Disabling Encryption on a Column

	Creating an Index on an Encrypted Column
	Adding or Removing Salt from an Encrypted Column
	Changing the Encryption Key or Algorithm for Tables Containing Encrypted Columns
	Data Types That Can Be Encrypted with TDE Column Encryption
	Restrictions on Using TDE Column Encryption

	Encrypting Entire Tablespaces
	Setting the Tablespace Master Encryption Key
	Resetting the Tablespace Master Encryption Key

	Opening the Oracle Wallet
	Creating an Encrypted Tablespace
	Restrictions on Using TDE Tablespace Encryption

	Using Hardware Security Modules with TDE
	Set the ENCRYPTION_WALLET_LOCATION Parameter in the sqlnet.ora File
	Copy the PKCS#11 Library to Its Correct Path
	Set Up the HSM
	Generate a Master Encryption Key for HSM-Based Encryption
	Reconfigure the Software Wallet (Optional)
	Ensure that the HSM Is Accessible
	Encrypt and Decrypt Data

	Using Transparent Data Encryption with Oracle RAC
	Using a Non-Shared File System to Store the Wallet

	Managing Transparent Data Encryption
	Oracle Wallet Management
	Specifying a Separate Wallet for Transparent Data Encryption
	Using an Auto Login Wallet
	Creating Wallets

	Backup and Recovery of Master Encryption Keys
	Backup and Recovery of Oracle Wallet
	Backup and Recovery of PKI Key Pair

	Export and Import of Tables with Encrypted Columns
	Performance and Storage Overheads
	Performance Overheads
	Storage Overheads

	Security Considerations
	Using Transparent Data Encryption in a Multi-Database Environment
	Replication in Distributed Environments
	Compression and Data Deduplication of Encrypted Data
	Transparent Data Encryption with OCI
	Transparent Data Encryption in a Multi-Database Environment
	Transparent Data Encryption Data Dictionary Views

	Example: Getting Started with TDE Column Encryption and TDE Tablespace Encryption
	Prepare the Database for Transparent Data Encryption
	Specify an Oracle Wallet Location in the sqlnet.ora File
	Create the Master Encryption Key
	Open the Oracle Wallet

	Create a Table with an Encrypted Column
	Create an Index on an Encrypted Column
	Alter a Table to Encrypt an Existing Column
	Create an Encrypted Tablespace
	Create a Table in an Encrypted Tablespace

	Troubleshooting Transparent Data Encryption
	Transparent Data Encryption Reference Information
	Supported Encryption and Integrity Algorithms
	Quick Reference: Transparent Data Encryption SQL Commands

	4 Configuring Network Data Encryption and Integrity for Oracle Servers and Clients
	Oracle Advanced Security Encryption
	Advanced Encryption Standard
	DES Algorithm Support
	Triple-DES Support
	DES40 Algorithm

	RSA RC4 Algorithm for High Speed Encryption

	Oracle Advanced Security Data Integrity
	Data Integrity Algorithms Supported

	Diffie-Hellman Based Key Negotiation
	Authentication Key Fold-in

	How To Configure Data Encryption and Integrity
	About Activating Encryption and Integrity
	About Negotiating Encryption and Integrity
	REJECTED
	ACCEPTED
	REQUESTED
	REQUIRED

	Configuring Encryption and Integrity Parameters Using Oracle Net Manager
	Configuring Encryption on the Client and the Server
	Configuring Integrity on the Client and the Server

	5 Configuring Network Authentication, Encryption, and Integrity for Thin JDBC Clients
	About the Java Implementation
	Java Database Connectivity Support
	Securing Thin JDBC
	Implementation Overview
	Obfuscation

	Configuration Parameters
	Client Encryption Level: CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL
	Client Encryption Selected List: CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES
	Client Integrity Level: CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL
	Client Integrity Selected List: CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES
	Client Authentication Service: CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES
	AnoServices Constants

	Part III Oracle Advanced Security Strong Authentication
	6 Configuring RADIUS Authentication
	RADIUS Overview
	RADIUS Authentication Modes
	Synchronous Authentication Mode
	Challenge-Response (Asynchronous) Authentication Mode

	Enabling RADIUS Authentication, Authorization, and Accounting
	Task 1: Install RADIUS on the Oracle Database Server and on the Oracle Client
	Task 2: Configure RADIUS Authentication
	Step 1: Configure RADIUS on the Oracle Client
	Step 2: Configure RADIUS on the Oracle Database Server
	Step 3: Configure Additional RADIUS Features

	Task 3: Create a User and Grant Access
	Task 4: Configure External RADIUS Authorization (optional)
	Task 5: Configure RADIUS Accounting
	Set RADIUS Accounting on the Oracle Database Server
	Configure the RADIUS Accounting Server

	Task 6: Add the RADIUS Client Name to the RADIUS Server Database
	Task 7: Configure the Authentication Server for Use with RADIUS
	Task 8: Configure the RADIUS Server for Use with the Authentication Server
	Task 9: Configure Mapping Roles

	Using RADIUS to Log In to a Database
	RSA ACE/Server Configuration Checklist

	7 Configuring Kerberos Authentication
	Enabling Kerberos Authentication
	Task 1: Install Kerberos
	Task 2: Configure a Service Principal for an Oracle Database Server
	Task 3: Extract a Service Key Table from Kerberos
	Task 4: Install an Oracle Database Server and an Oracle Client
	Task 5: Install Oracle Net Services and Oracle Advanced Security
	Task 6: Configure Oracle Net Services and Oracle Database
	Task 7: Configure Kerberos Authentication
	Step 1: Configure Kerberos on the Client and on the Database Server
	Step 2: Set the Initialization Parameters
	Step 3: Set sqlnet.ora Parameters (optional)

	Task 8: Create a Kerberos User
	Task 9: Create an Externally Authenticated Oracle User
	Task 10: Get an Initial Ticket for the Kerberos/Oracle User

	Utilities for the Kerberos Authentication Adapter
	Obtaining the Initial Ticket with the okinit Utility
	Displaying Credentials with the oklist Utility
	Removing Credentials from the Cache File with the okdstry Utility
	Connecting to an Oracle Database Server Authenticated by Kerberos

	Configuring Interoperability with a Windows 2000 Domain Controller KDC
	Task 1: Configure an Oracle Kerberos Client to Interoperate with a Windows 2000 Domain Controller KDC
	Step 1: Create the Client Kerberos Configuration Files to Use a Windows Domain Controller KDC
	Step 2: Specify the Oracle Configuration Parameters in the sqlnet.ora File
	Step 3: Specify the Listening Port Number

	Task 2: Configure a Windows 2000 Domain Controller KDC to Interoperate with an Oracle Client
	Step 1: Create the User
	Step 2: Create the Oracle Database Principal

	Task 3: Configure an Oracle Database to Interoperate with a Windows 2000 Domain Controller KDC
	Step 1: Set Configuration Parameters in the sqlnet.ora File
	Step 2: Create an Externally Authenticated Oracle User

	Task 4: Obtain an Initial Ticket for the Kerberos/Oracle User

	Troubleshooting

	8 Configuring Secure Sockets Layer Authentication
	SSL and TLS in an Oracle Environment
	Difference between SSL and TLS
	Using SSL
	How SSL Works in an Oracle Environment: The SSL Handshake

	Public Key Infrastructure in an Oracle Environment
	About Public Key Cryptography
	Public Key Infrastructure Components in an Oracle Environment
	Certificate Authority
	Certificates
	Certificate Revocation Lists
	Wallets
	Hardware Security Modules

	SSL Combined with Other Authentication Methods
	Architecture: Oracle Advanced Security and SSL
	How SSL Works with Other Authentication Methods

	SSL and Firewalls
	SSL Usage Issues
	Enabling SSL
	Task 1: Install Oracle Advanced Security and Related Products
	Task 2: Configure SSL on the Server
	Step 1: Confirm Wallet Creation on the Server
	Step 2: Specify the Database Wallet Location on the Server
	Step 3: Set the SSL Cipher Suites on the Server (Optional)
	Step 4: Set the Required SSL Version on the Server (Optional)
	Step 5: Set SSL Client Authentication on the Server (Optional)
	Step 6: Set SSL as an Authentication Service on the Server (Optional)
	Step 7: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server

	Task 3: Configure SSL on the Client
	Step 1: Confirm Client Wallet Creation
	Step 2: Configure Oracle Net Service Name to Include Server DNs and Use TCP/IP with SSL on the Client
	Step 3: Specify Required Client SSL Configuration (Wallet Location)
	Step 4: Set the Client SSL Cipher Suites (Optional)
	Step 5: Set the Required SSL Version on the Client (Optional)
	Step 6: Set SSL as an Authentication Service on the Client (Optional)

	Task 4: Log on to the Database

	Troubleshooting SSL
	Certificate Validation with Certificate Revocation Lists
	What CRLs Should You Use?
	How CRL Checking Works
	Configuring Certificate Validation with Certificate Revocation Lists
	Certificate Revocation List Management
	Displaying orapki Help
	Renaming CRLs with a Hash Value for Certificate Validation
	Uploading CRLs to Oracle Internet Directory
	Listing CRLs Stored in Oracle Internet Directory
	Viewing CRLs in Oracle Internet Directory
	Deleting CRLs from Oracle Internet Directory

	Troubleshooting Certificate Validation
	Oracle Net Tracing File Error Messages Associated with Certificate Validation

	Configuring Your System to Use Hardware Security Modules
	General Guidelines for Using Hardware Security Modules with Oracle Advanced Security
	Configuring Your System to Use nCipher Hardware Security Modules
	Oracle Components Required To Use an nCipher Hardware Security Module
	About Installing an nCipher Hardware Security Module

	Configuring Your System to Use SafeNET Hardware Security Modules
	Oracle Components Required To Use a SafeNET Luna SA Hardware Security Module
	About Installing a SafeNET Hardware Security Module

	Troubleshooting Using Hardware Security Modules
	Error Messages Associated with Using Hardware Security Modules

	9 Using Oracle Wallet Manager
	Oracle Wallet Manager Overview
	Wallet Password Management
	Strong Wallet Encryption
	Microsoft Windows Registry Wallet Storage
	Options Supported:

	Backward Compatibility
	Public-Key Cryptography Standards (PKCS) Support
	Multiple Certificate Support
	LDAP Directory Support

	Starting Oracle Wallet Manager
	How to Create a Complete Wallet: Process Overview
	Managing Wallets
	Required Guidelines for Creating Wallet Passwords
	Creating a New Wallet
	Creating a Standard Wallet
	Creating a Wallet to Store Hardware Security Module Credentials

	Opening an Existing Wallet
	Closing a Wallet
	Exporting Oracle Wallets to Third-Party Environments
	Exporting Oracle Wallets to Tools that Do Not Support PKCS #12
	Uploading a Wallet to an LDAP Directory
	Downloading a Wallet from an LDAP Directory
	Saving Changes
	Saving the Open Wallet to a New Location
	Saving in System Default
	Deleting the Wallet
	Changing the Password
	Using Auto Login
	Enabling Auto Login
	Disabling Auto Login

	Managing Certificates
	Managing User Certificates
	Adding a Certificate Request
	Importing the User Certificate into the Wallet
	To import the user certificate from the text of the Certificate Authority's e-mail
	To import the certificate from a file

	Importing Certificates and Wallets Created by Third Parties
	Importing User Certificates Created with a Third-Party Tool

	Removing a User Certificate from a Wallet
	Removing a Certificate Request
	Exporting a User Certificate
	Exporting a User Certificate Request

	Managing Trusted Certificates
	Importing a Trusted Certificate
	To copy and paste the text only (BASE64) trusted certificate
	To import a file that contains the trusted certificate

	Removing a Trusted Certificate
	Exporting a Trusted Certificate
	Exporting All Trusted Certificates

	10 Configuring Multiple Authentication Methods and Disabling Oracle Advanced Security
	Connecting with User Name and Password
	Disabling Oracle Advanced Security Authentication
	Configuring Multiple Authentication Methods
	Configuring Oracle Database for External Authentication
	Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora
	Setting OS_AUTHENT_PREFIX to a Null Value

	Part IV Appendixes
	A Data Encryption and Integrity Parameters
	Sample sqlnet.ora File
	Data Encryption and Integrity Parameters
	SQLNET.ENCRYPTION_SERVER Parameter
	SQLNET.ENCRYPTION_CLIENT Parameter
	SQLNET.CRYPTO_CHECKSUM_SERVER Parameter
	SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter
	SQLNET.ENCRYPTION_TYPES_SERVER Parameter
	SQLNET.ENCRYPTION_TYPES_CLIENT Parameter
	SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter
	SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter

	B Authentication Parameters
	Parameters for Clients and Servers using Kerberos Authentication
	Parameters for Clients and Servers using RADIUS Authentication
	sqlnet.ora File Parameters
	SQLNET.AUTHENTICATION_SERVICES
	SQLNET.RADIUS_AUTHENTICATION
	SQLNET.RADIUS_AUTHENTICATION_PORT
	SQLNET.RADIUS_AUTHENTICATION_TIMEOUT
	SQLNET.RADIUS_AUTHENTICATION_RETRIES
	SQLNET.RADIUS_SEND_ACCOUNTING
	SQLNET.RADIUS_SECRET
	SQLNET.RADIUS_ALTERNATE
	SQLNET.RADIUS_ALTERNATE_PORT
	SQLNET.RADIUS_ALTERNATE_TIMEOUT
	SQLNET.RADIUS_ALTERNATE_RETRIES
	SQLNET.RADIUS_CHALLENGE_RESPONSE
	SQLNET.RADIUS_CHALLENGE_KEYWORD
	SQLNET.RADIUS_AUTHENTICATION_INTERFACE
	SQLNET.RADIUS_CLASSPATH

	Minimum RADIUS Parameters
	Initialization File Parameters

	Parameters for Clients and Servers using SSL
	SSL Authentication Parameters
	Cipher Suite Parameters
	Supported SSL Cipher Suites

	SSL Version Parameters
	SSL Client Authentication Parameters
	SSL X.509 Server Match Parameters
	SSL_SERVER_DN_MATCH
	SSL_SERVER_CERT_DN

	Wallet Location

	C Integrating Authentication Devices Using RADIUS
	About the RADIUS Challenge-Response User Interface
	Customizing the RADIUS Challenge-Response User Interface

	D Oracle Advanced Security FIPS 140-1 Settings
	Configuration Parameters
	Server Encryption Level Setting
	Client Encryption Level Setting
	Server Encryption Selection List
	Client Encryption Selection List
	FIPS Parameter

	Post Installation Checks
	Status Information
	Physical Security

	E Oracle Advanced Security FIPS 140-2 Settings
	Configuring FIPS Parameter
	Selecting Cipher Suites
	Post-Installation Checks
	Verifying FIPS Connections

	F orapki Utility
	orapki Utility Overview
	orapki Utility Syntax

	Creating Signed Certificates for Testing Purposes
	Managing Oracle Wallets with orapki Utility
	Creating, Viewing, and Modifying Wallets with orapki
	Creating a PKCS#12 Wallet
	Creating an Auto Login Wallet
	Viewing a Wallet
	Modifying the Password for a Wallet

	Adding Certificates and Certificate Requests to Oracle Wallets with orapki
	Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

	Managing Certificate Revocation Lists (CRLs) with orapki Utility
	orapki Usage Examples
	orapki Utility Commands Summary
	orapki cert create
	Purpose
	Syntax

	orapki cert display
	Purpose
	Syntax

	orapki crl delete
	Purpose
	Prerequisites
	Syntax

	orapki crl display
	Purpose
	Syntax

	orapki crl hash
	Purpose
	Syntax

	orapki crl list
	Purpose
	Syntax

	orapki crl upload
	Purpose
	Syntax

	orapki wallet add
	Purpose
	Syntax

	orapki wallet create
	Purpose
	Syntax

	orapki wallet display
	Purpose
	Syntax

	orapki wallet export
	Purpose
	Syntax

	G Entrust-Enabled SSL Authentication
	Benefits of Entrust-Enabled Oracle Advanced Security
	Enhanced X.509-Based Authentication and Single Sign-On
	Integration with Entrust Authority Key Management
	Integration with Entrust Authority Certificate Revocation

	Required System Components for Entrust-Enabled Oracle Advanced Security
	Entrust Authority for Oracle
	Entrust Authority Security Manager
	Entrust Authority Self-Administration Server
	Entrust Entelligence Desktop Manager

	Entrust Authority Server Login Feature
	Entrust Authority IPSec Negotiator Toolkit

	Entrust Authentication Process
	Enabling Entrust Authentication
	Creating Entrust Profiles
	Administrator-Created Entrust Profiles
	User-Created Entrust Profiles

	Installing Oracle Advanced Security and Related Products for Entrust-Enabled SSL
	Configuring SSL on the Client and Server for Entrust-Enabled SSL
	Configuring Entrust on the Client
	Configuring Entrust on a UNIX Client
	Configuring Entrust on a Windows Client

	Configuring Entrust on the Server
	Configuring Entrust on a UNIX Server
	Configuring Entrust on a Windows Server

	Creating Entrust-Enabled Database Users
	Logging Into the Database Using Entrust-Enabled SSL

	Issues and Restrictions that Apply to Entrust-Enabled SSL
	Troubleshooting Entrust In Oracle Advanced Security
	Error Messages Returned When Running Entrust on Any Platform
	Error Messages Returned When Running Entrust on Windows Platforms
	General Checklist for Running Entrust on Any Platform
	Checklist for Entrust Installations on Windows

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

