

Oracle® Database
Concepts

11g Release 2 (11.2)

E25789-02

July 2013

Oracle Database Concepts, 11g Release 2 (11.2)

E25789-02

Copyright © 1993, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Lance Ashdown, Tom Kyte

Contributors: Drew Adams, David Austin, Vladimir Barriere, Hermann Baer, David Brower, Jonathan
Creighton, Bjørn Engsig, Steve Fogel, Bill Habeck, Bill Hodak, Yong Hu, Pat Huey, Vikram Kapoor, Feroz
Khan, Jonathan Klein, Sachin Kulkarni, Paul Lane, Adam Lee, Yunrui Li, Bryn Llewellyn, Rich Long, Barb
Lundhild, Neil Macnaughton, Vineet Marwah, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal
Mulagund, Paul Needham, Gregory Pongracz, John Russell, Vivian Schupmann, Shrikanth Shankar, Cathy
Shea, Susan Shepard, Jim Stenoish, Juan Tellez, Lawrence To, Randy Urbano, Badhri Varanasi, Simon Watt,
Steve Wertheimer, Daniel Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documentation.. xvi
Conventions ... xvi

1 Introduction to Oracle Database

About Relational Databases... 1-1
Database Management System (DBMS) ... 1-1
Relational Model .. 1-2
Relational Database Management System (RDBMS).. 1-2
Brief History of Oracle Database ... 1-3

Schema Objects... 1-4
Tables ... 1-4
Indexes ... 1-4

Data Access .. 1-5
Structured Query Language (SQL).. 1-5
PL/SQL and Java ... 1-5

Transaction Management.. 1-6
Transactions .. 1-6
Data Concurrency .. 1-6
Data Consistency.. 1-6

Oracle Database Architecture .. 1-7
Database and Instance ... 1-7
Database Storage Structures ... 1-8
Database Instance Structures.. 1-9
Application and Networking Architecture ... 1-10

Oracle Database Documentation Roadmap ... 1-12
Basic Group.. 1-12
Intermediate Group .. 1-12
Advanced Group... 1-13

Part I Oracle Relational Data Structures

vi

2 Tables and Table Clusters

Introduction to Schema Objects .. 2-1
Schema Object Types ... 2-2
Schema Object Storage .. 2-3
Schema Object Dependencies... 2-4
SYS and SYSTEM Schemas ... 2-5
Sample Schemas ... 2-6

Overview of Tables .. 2-6
Columns and Rows.. 2-7
Example: CREATE TABLE and ALTER TABLE Statements ... 2-7
Oracle Data Types .. 2-9
Integrity Constraints... 2-14
Object Tables .. 2-15
Temporary Tables .. 2-15
External Tables .. 2-16
Table Storage.. 2-18
Table Compression ... 2-19

Overview of Table Clusters ... 2-22
Overview of Indexed Clusters... 2-23

3 Indexes and Index-Organized Tables

Overview of Indexes .. 3-1
Index Characteristics ... 3-2
B-Tree Indexes .. 3-5
Bitmap Indexes .. 3-13
Function-Based Indexes ... 3-17
Application Domain Indexes... 3-19
Index Storage ... 3-20

Overview of Index-Organized Tables ... 3-20
Index-Organized Table Characteristics.. 3-21
Index-Organized Tables with Row Overflow Area ... 3-23
Secondary Indexes on Index-Organized Tables ... 3-23

4 Partitions, Views, and Other Schema Objects

Overview of Partitions .. 4-1
Partition Characteristics .. 4-2
Partitioned Tables .. 4-7
Partitioned Indexes .. 4-7
Partitioned Index-Organized Tables .. 4-12

Overview of Views.. 4-12
Characteristics of Views ... 4-13
Updatable Join Views ... 4-15
Object Views .. 4-16

Overview of Materialized Views ... 4-16
Characteristics of Materialized Views.. 4-17
Refresh Methods for Materialized Views .. 4-18

vii

Query Rewrite.. 4-19
Overview of Sequences.. 4-20

Sequence Characteristics .. 4-20
Concurrent Access to Sequences... 4-20

Overview of Dimensions ... 4-21
Hierarchical Structure of a Dimension... 4-21
Creation of Dimensions.. 4-21

Overview of Synonyms.. 4-22

5 Data Integrity

Introduction to Data Integrity.. 5-1
Techniques for Guaranteeing Data Integrity ... 5-1
Advantages of Integrity Constraints ... 5-1

Types of Integrity Constraints ... 5-2
NOT NULL Integrity Constraints.. 5-3
Unique Constraints .. 5-3
Primary Key Constraints... 5-5
Foreign Key Constraints.. 5-6
Check Constraints .. 5-9

States of Integrity Constraints .. 5-10
Checks for Modified and Existing Data... 5-10
Deferrable Constraints.. 5-11
Examples of Constraint Checking .. 5-12

6 Data Dictionary and Dynamic Performance Views

Overview of the Data Dictionary .. 6-1
Contents of the Data Dictionary .. 6-2
Storage of the Data Dictionary ... 6-4
How Oracle Database Uses the Data Dictionary .. 6-4

Overview of the Dynamic Performance Views .. 6-5
Contents of the Dynamic Performance Views ... 6-6
Storage of the Dynamic Performance Views.. 6-6

Database Object Metadata.. 6-6

Part II Oracle Data Access

7 SQL

Introduction to SQL ... 7-1
SQL Data Access... 7-1
SQL Standards .. 7-2

Overview of SQL Statements... 7-3
Data Definition Language (DDL) Statements .. 7-3
Data Manipulation Language (DML) Statements ... 7-4
Transaction Control Statements... 7-8
Session Control Statements... 7-8
System Control Statement... 7-9

viii

Embedded SQL Statements .. 7-9
Overview of the Optimizer ... 7-10

Use of the Optimizer... 7-10
Optimizer Components.. 7-11
Access Paths ... 7-12
Optimizer Statistics ... 7-13
Optimizer Hints... 7-14

Overview of SQL Processing .. 7-15
Stages of SQL Processing ... 7-15
How Oracle Database Processes DML... 7-22
How Oracle Database Processes DDL.. 7-23

8 Server-Side Programming: PL/SQL and Java

Introduction to Server-Side Programming .. 8-1
Overview of PL/SQL.. 8-2

PL/SQL Subprograms .. 8-3
PL/SQL Packages .. 8-6
PL/SQL Anonymous Blocks .. 8-9
PL/SQL Language Constructs ... 8-9
PL/SQL Collections and Records ... 8-10
How PL/SQL Runs... 8-11

Overview of Java in Oracle Database.. 8-12
Overview of the Java Virtual Machine (JVM) ... 8-13
Java Programming Environment .. 8-14

Overview of Triggers .. 8-16
Advantages of Triggers .. 8-17
Types of Triggers... 8-17
Timing for Triggers... 8-18
Creation of Triggers .. 8-18
Execution of Triggers.. 8-21
Storage of Triggers .. 8-21

Part III Oracle Transaction Management

9 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency ... 9-1
Multiversion Read Consistency ... 9-2
Locking Mechanisms ... 9-5
ANSI/ISO Transaction Isolation Levels ... 9-5

Overview of Oracle Database Transaction Isolation Levels .. 9-6
Read Committed Isolation Level ... 9-6
Serializable Isolation Level ... 9-8
Read-Only Isolation Level ... 9-11

Overview of the Oracle Database Locking Mechanism .. 9-11
Summary of Locking Behavior.. 9-12
Use of Locks ... 9-12

ix

Lock Modes .. 9-15
Lock Conversion and Escalation... 9-15
Lock Duration .. 9-16
Locks and Deadlocks .. 9-16

Overview of Automatic Locks .. 9-17
DML Locks ... 9-18
DDL Locks.. 9-24
System Locks.. 9-25

Overview of Manual Data Locks.. 9-26
Overview of User-Defined Locks... 9-27

10 Transactions

Introduction to Transactions ... 10-1
Sample Transaction: Account Debit and Credit ... 10-2
Structure of a Transaction .. 10-2
Statement-Level Atomicity .. 10-4
System Change Numbers (SCNs) ... 10-5

Overview of Transaction Control ... 10-6
Transaction Names ... 10-7
Active Transactions... 10-7
Savepoints .. 10-8
Rollback of Transactions .. 10-10
Committing Transactions... 10-10

Overview of Autonomous Transactions ... 10-11
Overview of Distributed Transactions .. 10-12

Two-Phase Commit .. 10-13
In-Doubt Transactions .. 10-13

Part IV Oracle Database Storage Structures

11 Physical Storage Structures

Introduction to Physical Storage Structures .. 11-1
Mechanisms for Storing Database Files ... 11-2
Oracle Automatic Storage Management (Oracle ASM) .. 11-3
Oracle Managed Files and User-Managed Files ... 11-6

Overview of Data Files... 11-7
Use of Data Files ... 11-7
Permanent and Temporary Data Files ... 11-8
Online and Offline Data Files .. 11-9
Data File Structure .. 11-9

Overview of Control Files ... 11-10
Use of Control Files .. 11-10
Multiple Control Files .. 11-11
Control File Structure ... 11-11

Overview of the Online Redo Log ... 11-12
Use of the Online Redo Log... 11-12

x

How Oracle Database Writes to the Online Redo Log .. 11-12
Structure of the Online Redo Log ... 11-15

12 Logical Storage Structures

Introduction to Logical Storage Structures .. 12-1
Logical Storage Hierarchy.. 12-2
Logical Space Management ... 12-2

Overview of Data Blocks ... 12-6
Data Blocks and Operating System Blocks.. 12-6
Data Block Format... 12-7
Data Block Compression .. 12-11
Space Management in Data Blocks... 12-11

Overview of Extents.. 12-18
Allocation of Extents .. 12-18
Deallocation of Extents .. 12-19
Storage Parameters for Extents .. 12-20

Overview of Segments ... 12-21
User Segments .. 12-21
Temporary Segments ... 12-23
Undo Segments.. 12-24
Segment Space and the High Water Mark .. 12-27

Overview of Tablespaces ... 12-30
Permanent Tablespaces .. 12-31
Temporary Tablespaces.. 12-34
Tablespace Modes ... 12-34
Tablespace File Size .. 12-35

Part V Oracle Instance Architecture

13 Oracle Database Instance

Introduction to the Oracle Database Instance ... 13-1
Database Instance Structure .. 13-1
Database Instance Configurations .. 13-2

Overview of Instance Startup and Shutdown ... 13-5
Overview of Instance and Database Startup .. 13-5
Overview of Database and Instance Shutdown ... 13-8

Overview of Checkpoints .. 13-11
Purpose of Checkpoints ... 13-11
When Oracle Database Initiates Checkpoints ... 13-11

Overview of Instance Recovery .. 13-12
Purpose of Instance Recovery ... 13-12
When Oracle Database Performs Instance Recovery... 13-12
Importance of Checkpoints for Instance Recovery .. 13-13
Instance Recovery Phases .. 13-14

Overview of Parameter Files ... 13-15
Initialization Parameters .. 13-15

xi

Server Parameter Files .. 13-16
Text Initialization Parameter Files .. 13-16
Modification of Initialization Parameter Values .. 13-17

Overview of Diagnostic Files.. 13-18
Automatic Diagnostic Repository... 13-19
Alert Log... 13-21
Trace Files... 13-22

14 Memory Architecture

Introduction to Oracle Database Memory Structures .. 14-1
Basic Memory Structures ... 14-1
Oracle Database Memory Management .. 14-3

Overview of the User Global Area... 14-3
Overview of the Program Global Area ... 14-4

Contents of the PGA ... 14-5
PGA Usage in Dedicated and Shared Server Modes ... 14-7

Overview of the System Global Area.. 14-8
Database Buffer Cache.. 14-9
Redo Log Buffer .. 14-14
Shared Pool ... 14-15
Large Pool... 14-21
Java Pool ... 14-22
Streams Pool... 14-23
Fixed SGA... 14-23

Overview of Software Code Areas... 14-23

15 Process Architecture

Introduction to Processes ... 15-1
Multiple-Process Oracle Database Systems .. 15-1
Types of Processes... 15-2

Overview of Client Processes ... 15-3
Client and Server Processes ... 15-4
Connections and Sessions .. 15-4

Overview of Server Processes ... 15-6
Dedicated Server Processes ... 15-6
Shared Server Processes ... 15-6

Overview of Background Processes... 15-7
Mandatory Background Processes ... 15-7
Optional Background Processes ... 15-11
Slave Processes .. 15-13

16 Application and Networking Architecture

Overview of Oracle Application Architecture... 16-1
Overview of Client/Server Architecture ... 16-1
Overview of Multitier Architecture.. 16-3
Overview of Grid Architecture ... 16-5

xii

Overview of Oracle Networking Architecture .. 16-5
How Oracle Net Services Works... 16-6
The Oracle Net Listener.. 16-6
Dedicated Server Architecture .. 16-9
Shared Server Architecture.. 16-11
Database Resident Connection Pooling ... 16-14

Overview of the Program Interface.. 16-15
Program Interface Structure .. 16-16
Program Interface Drivers ... 16-16
Communications Software for the Operating System ... 16-16

Part VI Oracle Database Administration and Development

17 Topics for Database Administrators and Developers

Overview of Database Security .. 17-1
User Accounts.. 17-1
Authentication ... 17-3
Encryption.. 17-4
Access Control ... 17-4
Monitoring ... 17-5

Overview of High Availability ... 17-6
High Availability and Unplanned Downtime .. 17-6
High Availability and Planned Downtime ... 17-9

Overview of Grid Computing... 17-11
Database Server Grid.. 17-12
Database Storage Grid.. 17-14

Overview of Data Warehousing and Business Intelligence ... 17-14
Data Warehousing and OLTP ... 17-15
Data Warehouse Architecture ... 17-16
Overview of Extraction, Transformation, and Loading (ETL) ... 17-18
Business Intelligence... 17-19

Overview of Oracle Information Integration .. 17-20
Federated Access ... 17-20
Information Sharing.. 17-21

18 Concepts for Database Administrators

Duties of Database Administrators ... 18-1
Tools for Database Administrators .. 18-2

Oracle Enterprise Manager .. 18-2
SQL*Plus... 18-4
Tools for Database Installation and Configuration.. 18-4
Tools for Oracle Net Configuration and Administration.. 18-4
Tools for Data Movement and Analysis .. 18-5

Topics for Database Administrators .. 18-9
Backup and Recovery ... 18-9
Memory Management .. 18-15

xiii

Resource Management and Task Scheduling ... 18-18
Performance Diagnostics and Tuning.. 18-20

19 Concepts for Database Developers

Duties of Database Developers .. 19-1
Tools for Database Developers ... 19-1

SQL Developer... 19-2
Oracle Application Express ... 19-2
Oracle JDeveloper ... 19-2
Oracle JPublisher... 19-3
Oracle Developer Tools for Visual Studio .NET... 19-3

Topics for Database Developers ... 19-3
Principles of Application Design and Tuning .. 19-4
Client-Side Database Programming ... 19-5
Globalization Support .. 19-8
Unstructured Data .. 19-11

Glossary

Index

xiv

xv

Preface

This manual provides an architectural and conceptual overview of the Oracle database
server, which is an object-relational database management system. It describes how the
Oracle database server functions, and it lays a conceptual foundation for much of the
practical information contained in other manuals. Information in this manual applies
to the Oracle database server running on all operating systems.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
Oracle Database Concepts is intended for technical users, primarily database
administrators and database application developers, who are new to Oracle Database.
Typically, the reader of this manual has had experience managing or developing
applications for other relational databases.

To use this manual, you must know the following:

■ Relational database concepts in general

■ Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

■ The operating system environment under which you are running Oracle

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xvi

Related Documentation
This manual is intended to be read with the following manuals:

■ Oracle Database 2 Day DBA

■ Oracle Database 2 Day Developer's Guide

For more related documentation, see "Oracle Database Documentation Roadmap" on
page 1-12.

Many manuals in the Oracle Database documentation set use the sample schemas of
the seed database, which is installed by default when you install Oracle Database.
Refer to Oracle Database Sample Schemas for information on how these schemas were
created and how you can use them.

Conventions
The following text conventions are used in this manual:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates manual titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle Database 1-1

1Introduction to Oracle Database

This chapter provides an overview of Oracle Database and contains the following
sections:

■ About Relational Databases

■ Schema Objects

■ Data Access

■ Transaction Management

■ Oracle Database Architecture

■ Oracle Database Documentation Roadmap

About Relational Databases
Every organization has information that it must store and manage to meet its
requirements. For example, a corporation must collect and maintain human resources
records for its employees. This information must be available to those who need it. An
information system is a formal system for storing and processing information.

An information system could be a set of cardboard boxes containing manila folders
along with rules for how to store and retrieve the folders. However, most companies
today use a database to automate their information systems. A database is an
organized collection of information treated as a unit. The purpose of a database is to
collect, store, and retrieve related information for use by database applications.

Database Management System (DBMS)
A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data. Typically, a DBMS has the following elements:

■ Kernel code

This code manages memory and storage for the DBMS.

■ Repository of metadata

This repository is usually called a data dictionary.

■ Query language

This language enables applications to access the data.

A database application is a software program that interacts with a database to access
and manipulate data.

The first generation of database management systems included the following types:

About Relational Databases

1-2 Oracle Database Concepts

■ Hierarchical

A hierarchical database organizes data in a tree structure. Each parent record has
one or more child records, similar to the structure of a file system.

■ Network

A network database is similar to a hierarchical database, except records have a
many-to-many rather than a one-to-many relationship.

The preceding database management systems stored data in rigid, predetermined
relationships. Because no data definition language existed, changing the structure of
the data was difficult. Also, these systems lacked a simple query language, which
hindered application development.

Relational Model
In his seminal 1970 paper "A Relational Model of Data for Large Shared Data Banks,"
E. F. Codd defined a relational model based on mathematical set theory. Today, the
most widely accepted database model is the relational model.

A relational database is a database that conforms to the relational model. The
relational model has the following major aspects:

■ Structures

Well-defined objects store or access the data of a database.

■ Operations

Clearly defined actions enable applications to manipulate the data and structures
of a database.

■ Integrity rules

Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of
tuples. A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)
and columns (attributes). Each row in a table has the same set of columns. A relational
database is a database that stores data in relations (tables). For example, a relational
database could store information about company employees in an employee table, a
department table, and a salary table.

Relational Database Management System (RDBMS)
The relational model is the basis for a relational database management system
(RDBMS). Essentially, an RDBMS moves data into a database, stores the data, and
retrieves it so that it can be manipulated by applications. An RDBMS distinguishes
between the following types of operations:

■ Logical operations

In this case, an application specifies what content is required. For example, an
application requests an employee name or adds an employee record to a table.

■ Physical operations

See Also: http://portal.acm.org/citation.cfm?id=362685 for an
abstract and link to Codd's paper

About Relational Databases

Introduction to Oracle Database 1-3

In this case, the RDBMS determines how things should be done and carries out the
operation. For example, after an application queries a table, the database may use
an index to find the requested rows, read the data into memory, and perform
many other steps before returning a result to the user. The RDBMS stores and
retrieves data so that physical operations are transparent to database applications.

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features
such as user-defined types, inheritance, and polymorphism is called an
object-relational database management system (ORDBMS). Oracle Database has
extended the relational model to an object-relational model, making it possible to store
complex business models in a relational database.

Brief History of Oracle Database
The current version of Oracle Database is the result of over 30 years of innovative
development. Highlights in the evolution of Oracle Database include the following:

■ Founding of Oracle

In 1977, Larry Ellison, Bob Miner, and Ed Oates started the consultancy Software
Development Laboratories, which became Relational Software, Inc. (RSI). In 1983,
RSI became Oracle Systems Corporation and then later Oracle Corporation.

■ First commercially available RDBMS

In 1979, RSI introduced Oracle V2 (Version 2) as the first commercially available
SQL-based RDBMS, a landmark event in the history of relational databases.

■ Portable version of Oracle Database

Oracle Version 3, released in 1983, was the first relational database to run on
mainframes, minicomputers, and PCs. The database was written in C, enabling the
database to be ported to multiple platforms.

■ Enhancements to concurrency control, data distribution, and scalability

Version 4 introduced multiversion read consistency. Version 5, released in 1985,
supported client/server computing and distributed database systems. Version 6
brought enhancements to disk I/O, row locking, scalability, and backup and
recovery. Also, Version 6 introduced the first version of the PL/SQL language, a
proprietary procedural extension to SQL.

■ PL/SQL stored program units

Oracle7, released in 1992, introduced PL/SQL stored procedures and triggers.

■ Objects and partitioning

Oracle8 was released in 1997 as the object-relational database, supporting many
new data types. Additionally, Oracle8 supported partitioning of large tables.

■ Internet computing

Oracle8i Database, released in 1999, provided native support for internet protocols
and server-side support for Java. Oracle8i was designed for internet computing,
enabling the database to be deployed in a multitier environment.

■ Oracle Real Application Clusters (Oracle RAC)

Oracle9i Database introduced Oracle RAC in 2001, enabling multiple instances to
access a single database simultaneously. Additionally, Oracle XML Database
(Oracle XML DB) introduced the ability to store and query XML.

■ Grid computing

Schema Objects

1-4 Oracle Database Concepts

Oracle Database 10g introduced grid computing in 2003. This release enabled
organizations to virtualize computing resources by building a grid infrastructure
based on low-cost commodity servers. A key goal was to make the database
self-managing and self-tuning. Oracle Automatic Storage Management (Oracle
ASM) helped achieve this goal by virtualizing and simplifying database storage
management.

■ Manageability, diagnosability, and availability

Oracle Database 11g, released in 2007, introduced a host of new features that
enable administrators and developers to adapt quickly to changing business
requirements. The key to adaptability is simplifying the information infrastructure
by consolidating information and using automation wherever possible.

Schema Objects
One characteristic of an RDBMS is the independence of physical data storage from
logical data structures. In Oracle Database, a database schema is a collection of logical
data structures, or schema objects. A database schema is owned by a database user
and has the same name as the user name.

Schema objects are user-created structures that directly refer to the data in the
database. The database supports many types of schema objects, the most important of
which are tables and indexes.

Tables
A table describes an entity such as employees. You define a table with a table name,
such as employees, and set of columns. In general, you give each column a name, a
data type, and a width when you create the table.

A table is a set of rows. A column identifies an attribute of the entity described by the
table, whereas a row identifies an instance of the entity. For example, attributes of the
employees entity correspond to columns for employee ID and last name. A row
identifies a specific employee.

You can optionally specify rules for each column of a table. These rules are called
integrity constraints. One example is a NOT NULL integrity constraint. This constraint
forces the column to contain a value in every row.

Indexes
An index is an optional data structure that you can create on one or more columns of a
table. Indexes can increase the performance of data retrieval. When processing a
request, the database can use available indexes to locate the requested rows efficiently.
Indexes are useful when applications often query a specific row or range of rows.

See Also:

http://www.oracle.com/technetwork/issue-archive/2007/07-jul/
o4730-090772.html for an article summarizing the evolution of Oracle
Database

See Also: "Introduction to Schema Objects" on page 2-1

See Also:

■ "Overview of Tables" on page 2-6

■ Chapter 5, "Data Integrity"

Data Access

Introduction to Oracle Database 1-5

Indexes are logically and physically independent of the data. Thus, you can drop and
create indexes with no effect on the tables or other indexes. All applications continue
to function after you drop an index.

Data Access
A general requirement for a DBMS is to adhere to accepted industry standards for a
data access language.

Structured Query Language (SQL)
SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database. In contrast to procedural languages such as C, which describe how
things should be done, SQL is nonprocedural and describes what should be done.
Users specify the result that they want (for example, the names of current employees),
not how to derive it. SQL is the ANSI standard language for relational databases.

All operations on the data in an Oracle database are performed using SQL statements.
For example, you use SQL to create tables and query and modify data in tables. A SQL
statement can be thought of as a very simple, but powerful, computer program or
instruction. A SQL statement is a string of SQL text such as the following:

SELECT first_name, last_name FROM employees;

SQL statements enable you to perform the following tasks:

■ Query data

■ Insert, update, and delete rows in a table

■ Create, replace, alter, and drop objects

■ Control access to the database and its objects

■ Guarantee database consistency and integrity

SQL unifies the preceding tasks in one consistent language. Oracle SQL is an
implementation of the ANSI standard. Oracle SQL supports numerous features that
extend beyond standard SQL.

PL/SQL and Java
 PL/SQL is a procedural extension to Oracle SQL. PL/SQL is integrated with Oracle
Database, enabling you to use all of the Oracle Database SQL statements, functions,
and data types. You can use PL/SQL to control the flow of a SQL program, use
variables, and write error-handling procedures.

A primary benefit of PL/SQL is the ability to store application logic in the database
itself. A procedure or function is a schema object that consists of a set of SQL
statements and other PL/SQL constructs, grouped together, stored in the database,
and run as a unit to solve a specific problem or to perform a set of related tasks. The
principal benefit of server-side programming is that built-in functionality can be
deployed anywhere.

Oracle Database can also store program units written in Java. A Java stored procedure
is a Java method published to SQL and stored in the database for general use. You can
call existing PL/SQL programs from Java and Java programs from PL/SQL.

See Also: "Overview of Indexes" on page 3-1

See Also: Chapter 7, "SQL"

Transaction Management

1-6 Oracle Database Concepts

Transaction Management
Oracle Database is designed as a multiuser database. The database must ensure that
multiple users can work concurrently without corrupting one another's data.

Transactions
An RDBMS must be able to group SQL statements so that they are either all
committed, which means they are applied to the database, or all rolled back, which
means they are undone. A transaction is a logical, atomic unit of work that contains
one or more SQL statements.

An illustration of the need for transactions is a funds transfer from a savings account
to a checking account. The transfer consists of the following separate operations:

1. Decrease the savings account.

2. Increase the checking account.

3. Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For
example, if a hardware failure prevents a statement in the transaction from executing,
then the other statements must be rolled back.

Transactions are one of the features that sets Oracle Database apart from a file system.
If you perform an atomic operation that updates several files, and if the system fails
halfway through, then the files will not be consistent. In contrast, a transaction moves
an Oracle database from one consistent state to another. The basic principle of a
transaction is "all or nothing": an atomic operation succeeds or fails as a whole.

Data Concurrency
A requirement of a multiuser RDBMS is the control of concurrency, which is the
simultaneous access of the same data by multiple users. Without concurrency controls,
users could change data improperly, compromising data integrity. For example, one
user could update a row while a different user simultaneously updates it.

If multiple users access the same data, then one way of managing concurrency is to
make users wait. However, the goal of a DBMS is to reduce wait time so it is either
nonexistent or negligible. All SQL statements that modify data must proceed with as
little interference as possible. Destructive interactions, which are interactions that
incorrectly update data or alter underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a mechanism
that prevents destructive interaction between transactions accessing a shared resource.
Locks help ensure data integrity while allowing maximum concurrent access to data.

Data Consistency
In Oracle Database, each user must see a consistent view of the data, including visible
changes made by a user's own transactions and committed transactions of other users.

See Also: Chapter 8, "Server-Side Programming: PL/SQL and Java"
and "Client-Side Database Programming" on page 19-5

See Also: Chapter 10, "Transactions"

See Also: "Overview of the Oracle Database Locking Mechanism"
on page 9-11

Oracle Database Architecture

Introduction to Oracle Database 1-7

For example, the database must prevent dirty reads, which occur when one transaction
sees uncommitted changes made by another concurrent transaction.

Oracle Database always enforces statement-level read consistency, which guarantees
that the data returned by a single query is committed and consistent with respect to a
single point in time. Depending on the transaction isolation level, this point is the time
at which the statement was opened or the time the transaction began. The Flashback
Query feature enables you to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known
as transaction-level read consistency. In this case, each statement in a transaction sees
data from the same point in time, which is the time at which the transaction began.

Oracle Database Architecture
A database server is the key to information management. In general, a server reliably
manages a large amount of data in a multiuser environment so that users can
concurrently access the same data. A database server also prevents unauthorized
access and provides efficient solutions for failure recovery.

Database and Instance
An Oracle database server consists of a database and at least one database instance
(commonly referred to as simply an instance). Because an instance and a database are
so closely connected, the term Oracle database is sometimes used to refer to both
instance and database. In the strictest sense the terms have the following meanings:

■ Database

A database is a set of files, located on disk, that store data. These files can exist
independently of a database instance.

■ Database instance

An instance is a set of memory structures that manage database files. The instance
consists of a shared memory area, called the system global area (SGA), and a set
of background processes. An instance can exist independently of database files.

Figure 1–1 shows a database and its instance. For each user connection to the instance,
the application is run by a client process. Each client process is associated with its own
server process. The server process has its own private session memory, known as the
program global area (PGA).

See Also:

■ Chapter 9, "Data Concurrency and Consistency"

■ Oracle Database Advanced Application Developer's Guide to learn
about Flashback Query

Oracle Database Architecture

1-8 Oracle Database Concepts

Figure 1–1 Oracle Instance and Database

A database can be considered from both a physical and logical perspective. Physical
data is data viewable at the operating system level. For example, operating system
utilities such as the Linux ls and ps can list database files and processes. Logical data
such as a table is meaningful only for the database. A SQL statement can list the tables
in an Oracle database, but an operating system utility cannot.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without
affecting access to logical storage structures. For example, renaming a physical
database file does not rename the tables whose data is stored in this file.

Database Storage Structures
An essential task of a relational database is data storage. This section briefly describes
the physical and logical storage structures used by Oracle Database.

See Also: Chapter 13, "Oracle Database Instance"

Background
Processes

Client
Process

PMON

SMON

RECO

MMON

MMNL

Others

Database
Buffer Cache Redo

Log
Buffer

ARCn RVWR

101011010110101
1010110101

101011010110101
1010110101

LGWRCKPTDBWn

Java
Pool

Streams
Pool

Fixed
SGA

Data
Files

Control
Files

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

Archived
Redo Log

Flashback
Log

Online
Redo Log

Database

System Global Area (SGA)

Large Pool

Instance

UGA
I/O Buffer Area
Free Memory

Large Pool

Response
Queue

Request
Queue

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM
 employees

Oracle Database Architecture

Introduction to Oracle Database 1-9

Physical Storage Structures
The physical database structures are the files that store the data. When you execute the
SQL command CREATE DATABASE, the following files are created:

■ Data files

Every Oracle database has one or more physical data files, which contain all the
database data. The data of logical database structures, such as tables and indexes,
is physically stored in the data files.

■ Control files

Every Oracle database has a control file. A control file contains metadata
specifying the physical structure of the database, including the database name and
the names and locations of the database files.

■ Online redo log files

Every Oracle Database has an online redo log, which is a set of two or more
online redo log files. An online redo log is made up of redo entries (also called
redo records), which record all changes made to data.

Many other files are important for the functioning of an Oracle database server. These
files include parameter files and diagnostic files. Backup files and archived redo log
files are offline files important for backup and recovery.

Logical Storage Structures
This section discusses logical storage structures. The following logical storage
structures enable Oracle Database to have fine-grained control of disk space use:

■ Data blocks

At the finest level of granularity, Oracle Database data is stored in data blocks.
One data block corresponds to a specific number of bytes on disk.

■ Extents

An extent is a specific number of logically contiguous data blocks, obtained in a
single allocation, used to store a specific type of information.

■ Segments

A segment is a set of extents allocated for a user object (for example, a table or
index), undo data, or temporary data.

■ Tablespaces

A database is divided into logical storage units called tablespaces. A tablespace is
the logical container for a segment. Each tablespace contains at least one data file.

Database Instance Structures
An Oracle database uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the RDBMS.

When applications connect to an Oracle database, they are connected to a database
instance. The instance services applications by allocating other memory areas in
addition to the SGA, and starting other processes in addition to background processes.

See Also: Chapter 11, "Physical Storage Structures"

See Also: Chapter 12, "Logical Storage Structures"

Oracle Database Architecture

1-10 Oracle Database Concepts

Oracle Database Processes
A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread. For the purpose of this discussion, a
thread is equivalent to a process. An Oracle database instance has the following types
of processes:

■ Client processes

These processes are created and maintained to run the software code of an
application program or an Oracle tool. Most environments have separate
computers for client processes.

■ Background processes

These processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each client process. Background
processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

■ Server processes

These processes communicate with client processes and interact with Oracle
Database to fulfill requests.

Oracle processes include server processes and background processes. In most
environments, Oracle processes and client processes run on separate computers.

Instance Memory Structures
Oracle Database creates and uses memory structures for purposes such as memory for
program code, data shared among users, and private data areas for each connected
user. The following memory structures are associated with an instance:

■ System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control
information for one database instance. Examples of SGA components include
cached data blocks and shared SQL areas.

■ Program Global Areas (PGA)

A PGA is a memory region that contain data and control information for a server
or background process. Access to the PGA is exclusive to the process. Each server
process and background process has its own PGA.

Application and Networking Architecture
To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client programs.
The computer running the RDBMS handles the database server responsibilities while
the computers running the applications handle the interpretation and display of data.

Application Architecture
The application architecture refers to the computing environment in which a database
application connects to an Oracle database. The two most common database
architectures are client/server and multitier.

See Also: Chapter 15, "Process Architecture"

See Also: Chapter 14, "Memory Architecture"

Oracle Database Architecture

Introduction to Oracle Database 1-11

In a client/server architecture, the client application initiates a request for an operation
to be performed on the database server. The server runs Oracle Database software and
handles the functions required for concurrent, shared data access. The server receives
and processes requests that originate from clients.

In a traditional multitier architecture, one or more application servers perform parts
of the operation. An application server contains a large part of the application logic,
provides access to the data for the client, and performs some query processing, thus
lessening the load on the database. The application server can serve as an interface
between clients and multiple databases and provide an additional level of security.

Service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as
Web services. Web services are accessible through HTTP and are based on XML-based
standards such as Web Services Description Language (WSDL) and SOAP.

Oracle Database can act as a Web service provider in a traditional multitier or SOA
environment.

Networking Architecture
Oracle Net Services is the interface between the database and the network
communication protocols that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. Oracle Net Services supports communications on all major
network protocols, including TCP/IP, HTTP, FTP, and WebDAV.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to a database server. After a network session is
established, Oracle Net acts as the data courier for both the client application and the
database server, exchanging messages between them. Oracle Net can perform these
jobs because it is located on each computer in the network.

An important component of Net Services is the Oracle Net Listener (called the
listener), which is a separate process that runs on the database server or elsewhere in
the network. Client applications can send connection requests to the listener, which
manages the traffic of these requests to the database server. When a connection is
established, the client and database communicate directly.

The most common ways to configure an Oracle database to service client requests are:

■ Dedicated server architecture

Each client process connects to a dedicated server process. The server process is
not shared by any other client for the duration of the client's session. Each new
session is assigned a dedicated server process.

■ Shared server architecture

The database uses a pool of shared processes for multiple sessions. A client
process communicates with a dispatcher, which is a process that enables many
clients to connect to the same database instance without the need for a dedicated
server process for each client.

See Also:

■ "Overview of Multitier Architecture" on page 16-3

■ Oracle XML DB Developer's Guide for more information about
using Web services with the database

Oracle Database Documentation Roadmap

1-12 Oracle Database Concepts

Oracle Database Documentation Roadmap
This section explains how this manual should be read and where it fits into the Oracle
Database documentation set as a whole.

To a new user, the Oracle Database documentation library can seem daunting. Not
only are there are over 175 manuals, but many of these manuals are several hundred
pages long. However, the documentation is designed with specific access paths to
ensure that users are able to find the information they need as efficiently as possible.

The documentation set is divided into three layers or groups: basic, intermediate, and
advanced. Users begin with the manuals in the basic group (Oracle Database 2 Day
DBA, Oracle Database 2 Day Developer's Guide, or this manual), proceed to the manuals
in the intermediate group (the 2 Day + series), and finally to the advanced manuals,
which include the remainder of the documentation set.

Basic Group
Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is designed
to be read in two days. In addition to this manual, the basic group includes:

■ Oracle Database 2 Day DBA

This manual is a task-based DBA quick start that teaches you how to perform
day-to-day database administrative tasks. It teaches you how to perform all
common administrative tasks needed to keep the database operational, including
how to perform basic troubleshooting and performance monitoring activities.

■ Oracle Database 2 Day Developer's Guide

This manual is a task-based database developer quick start guide that explains
how to use the basic features of Oracle Database through SQL and PL/SQL.

The manuals in the basic group are closely related, which is reflected in the number of
cross-references. For example, Oracle Database Concepts frequently sends users to a 2
Day manual to learn how to perform a task based on a concept. The 2 Day manuals
frequently references Oracle Database Concepts for conceptual background about a task.

Intermediate Group
The next step up from the basic group is the intermediate group. The manuals in this
group are prefixed with the word 2 Day + because they expand on and assume
information contained in the 2 Day manuals. These manuals cover topics in more
depth than was possible in the basic manuals, or cover topics of special interest. As
shown in Table 1–1, the 2 Day + manuals are divided into manuals for DBAs and
developers.

See Also:

■ "Overview of Oracle Networking Architecture" on page 16-5

■ Oracle Database Net Services Administrator's Guide to learn more
about Oracle Net architecture

■ Oracle XML DB Developer's Guide for information about using
WebDAV with the database

Oracle Database Documentation Roadmap

Introduction to Oracle Database 1-13

Advanced Group
The next step up from the intermediate group is the advanced group. These manuals
are intended for expert users who require more detailed information about a particular
topic than can be provided by the 2 Day + manuals. Essential reference manuals in the
advanced group include:

■ Oracle Database SQL Language Reference

This manual is the definitive source of information about Oracle SQL.

■ Oracle Database Reference

The manual is the definitive source of information about initialization parameters,
data dictionary views, and dynamic performance views.

The advanced guides are too numerous to list in this section. Table 1–2 lists guides that
are used by the majority of expert DBAs and developers at one time or another.

Other advanced guides required by a particular user depend on the area of
responsibility of this user. For example, a security officer will naturally refer to the
Oracle Database Security Guide.

Table 1–1 Intermediate Group: 2 Day + Guides

Database Administrators Database Developers

Oracle Database 2 Day + Performance Tuning
Guide

Oracle Database 2 Day + Application Express
Developer's Guide

Oracle Database 2 Day + Real Application
Clusters Guide

Oracle Database 2 Day + Java Developer's Guide

Oracle Database 2 Day + Data Warehousing
Guide

Oracle Database 2 Day + .NET Developer's Guide
for Microsoft Windows

Oracle Database 2 Day + Data Replication and
Integration Guide

Oracle Database 2 Day + PHP Developer's Guide

Oracle Database 2 Day + Security Guide

Table 1–2 Advanced Group

Database Administrators Database Developers

Oracle Database Administrator's Guide Oracle Database Advanced Application Developer's
Guide

Oracle Database Performance Tuning Guide Oracle Database PL/SQL Language Reference

Oracle Database Backup and Recovery User's
Guide

Oracle Database PL/SQL Packages and Types
Reference

Oracle Real Application Clusters Administration
and Deployment Guide

Oracle Database Documentation Roadmap

1-14 Oracle Database Concepts

Part I
Part I Oracle Relational Data Structures

This part describes the basic data structures of an Oracle database, including data
integrity rules, and the structures that store metadata.

This part contains the following chapters:

■ Chapter 2, "Tables and Table Clusters"

■ Chapter 3, "Indexes and Index-Organized Tables"

■ Chapter 4, "Partitions, Views, and Other Schema Objects"

■ Chapter 5, "Data Integrity"

■ Chapter 6, "Data Dictionary and Dynamic Performance Views"

2

Tables and Table Clusters 2-1

2Tables and Table Clusters

This chapter provides an introduction to schema objects and discusses tables, which
are the most common types of schema objects.

This chapter contains the following sections:

■ Introduction to Schema Objects

■ Overview of Tables

■ Overview of Table Clusters

Introduction to Schema Objects
A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. Schema objects are created and
manipulated with SQL.

A database user has a password and various database privileges. Each user owns a
single schema, which has the same name as the user. The schema contains the data for
the user owning the schema. For example, the hr user owns the hr schema, which
contains schema objects such as the employees table. In a production database, the
schema owner usually represents a database application rather than a person.

Within a schema, each schema object of a particular type has a unique name. For
example, hr.employees refers to the table employees in the hr schema. Figure 2–1
depicts a schema owner named hr and schema objects within the hr schema.

Figure 2–1 HR Schema

HR User

HR Schema

Schema
Objects

owns

Table

Indexes

Table
Table

Tables

Introduction to Schema Objects

2-2 Oracle Database Concepts

Schema Object Types
The most important schema objects in a relational database are tables. A table stores
data in rows.

Oracle SQL enables you to create and manipulate many other types of schema objects,
including the following:

■ Indexes

Indexes are schema objects that contains an entry for each indexed row of the table
or table cluster and provide direct, fast access to rows. Oracle Database supports
several types of index. An index-organized table is a table in which the data is
stored in an index structure. See Chapter 3, "Indexes and Index-Organized Tables".

■ Partitions

Partitions are pieces of large tables and indexes. Each partition has its own name
and may optionally have its own storage characteristics. See "Overview of
Partitions" on page 4-1.

■ Views

Views are customized presentations of data in one or more tables or other views.
You can think of them as stored queries. Views do not actually contain data. See
"Overview of Views" on page 4-12.

■ Sequences

A sequence is a user-created object that can be shared by multiple users to
generate integers. Typically, sequences are used to generate primary key values.
See "Overview of Sequences" on page 4-20.

■ Dimensions

A dimension defines a parent-child relationship between pairs of column sets,
where all the columns of a column set must come from the same table. Dimensions
are commonly used to categorize data such as customers, products, and time. See
"Overview of Dimensions" on page 2-22.

■ Synonyms

A synonym is an alias for another schema object. Because a synonym is simply an
alias, it requires no storage other than its definition in the data dictionary. See
"Overview of Synonyms" on page 4-22.

■ PL/SQL subprograms and packages

PL/SQL is the Oracle procedural extension of SQL. A PL/SQL subprogram is a
named PL/SQL block that can be invoked with a set of parameters. A PL/SQL
package groups logically related PL/SQL types, variables, and subprograms. See
"PL/SQL Subprograms" on page 8-3 and "PL/SQL Packages" on page 8-6.

Other types of objects are also stored in the database and can be created and
manipulated with SQL statements but are not contained in a schema. These objects
include database users, roles, contexts, and directory objects.

See Also: "Overview of Database Security" on page 17-1 to learn
more about users and privileges

Introduction to Schema Objects

Tables and Table Clusters 2-3

Schema Object Storage
Some schema objects store data in logical storage structures called segments. For
example, a nonpartitioned heap-organized table or an index creates a segment. Other
schema objects, such as views and sequences, consist of metadata only. This section
describes only schema objects that have segments.

Oracle Database stores a schema object logically within a tablespace. There is no
relationship between schemas and tablespaces: a tablespace can contain objects from
different schemas, and the objects for a schema can be contained in different
tablespaces. The data of each object is physically contained in one or more data files.

Figure 2–2 shows a possible configuration of table and index segments, tablespaces,
and data files. The data segment for one table spans two data files, which are both part
of the same tablespace. A segment cannot span multiple tablespaces.

Figure 2–2 Segments, Tablespaces, and Data Files

See Also:

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to manage schema objects

■ Oracle Database SQL Language Reference for more about schema
objects and database objects

Data Files
(physical structures associated
with only one tablespace)

Segments
(stored in tablespaces-
may span several data files)

Index

Index

Index

Index

Index

Index

Index

Index

Table

TableTable

Introduction to Schema Objects

2-4 Oracle Database Concepts

Schema Object Dependencies
Some schema objects reference other objects, creating schema object dependencies.
For example, a view contains a query that references tables or other views, while a
PL/SQL subprogram invokes other subprograms. If the definition of object A
references object B, then A is a dependent object with respect to B and B is a
referenced object with respect to A.

Oracle Database provides an automatic mechanism to ensure that a dependent object
is always up to date with respect to its referenced objects. When a dependent object is
created, the database tracks dependencies between the dependent object and its
referenced objects. When a referenced object changes in a way that might affect a
dependent object, the dependent object is marked invalid. For example, if a user drops
a table, no view based on the dropped table is usable.

An invalid dependent object must be recompiled against the new definition of a
referenced object before the dependent object is usable. Recompilation occurs
automatically when the invalid dependent object is referenced.

As an illustration of how schema objects can create dependencies, the following
sample script creates a table test_table and then a procedure that queries this table:

CREATE TABLE test_table (col1 INTEGER, col2 INTEGER);

CREATE OR REPLACE PROCEDURE test_proc
AS
BEGIN
 FOR x IN (SELECT col1, col2 FROM test_table)
 LOOP
 -- process data
 NULL;
 END LOOP;
END;
/

The following query of the status of procedure test_proc shows that it is valid:

SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';

OBJECT_NAME STATUS
----------- -------
TEST_PROC VALID

After adding the col3 column to test_table, the procedure is still valid because the
procedure has no dependencies on this column:

SQL> ALTER TABLE test_table ADD col3 NUMBER;

Table altered.

SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';

OBJECT_NAME STATUS

See Also:

■ Chapter 12, "Logical Storage Structures" to learn about tablespaces
and segments

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to manage storage for schema objects

Introduction to Schema Objects

Tables and Table Clusters 2-5

----------- -------
TEST_PROC VALID

However, changing the data type of the col1 column, which the test_proc procedure
depends on in, invalidates the procedure:

SQL> ALTER TABLE test_table MODIFY col1 VARCHAR2(20);

Table altered.

SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';

OBJECT_NAME STATUS
----------- -------
TEST_PROC INVALID

Running or recompiling the procedure makes it valid again, as shown in the following
example:

SQL> EXECUTE test_proc

PL/SQL procedure successfully completed.

SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';

OBJECT_NAME STATUS
----------- -------
TEST_PROC VALID

SYS and SYSTEM Schemas
All Oracle databases include default administrative accounts. Administrative accounts
are highly privileged and are intended only for DBAs authorized to perform tasks
such as starting and stopping the database, managing memory and storage, creating
and managing database users, and so on.

The administrative account SYS is automatically created when a database is created.
This account can perform all database administrative functions. The SYS schema stores
the base tables and views for the data dictionary. These base tables and views are
critical for the operation of Oracle Database. Tables in the SYS schema are manipulated
only by the database and must never be modified by any user.

The SYSTEM account is also automatically created when a database is created. The
SYSTEM schema stores additional tables and views that display administrative
information, and internal tables and views used by various Oracle Database options
and tools. Never use the SYSTEM schema to store tables of interest to nonadministrative
users.

See Also: Oracle Database Administrator's Guide and Oracle Database
Advanced Application Developer's Guide to learn how to manage schema
object dependencies

See Also:

■ "User Accounts" on page 17-1 and "Connection with
Administrator Privileges" on page 13-6

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn about SYS, SYSTEM, and other administrative
accounts

Overview of Tables

2-6 Oracle Database Concepts

Sample Schemas
An Oracle database may include sample schemas, which are a set of interlinked
schemas that enable Oracle documentation and Oracle instructional materials to
illustrate common database tasks. The hr schema is a sample schema that contains
information about employees, departments and locations, work histories, and so on.

Figure 2–3 is an entity-relationship diagram of the tables in the hr schema. Most
examples in this manual use objects from this schema.

Figure 2–3 HR Schema

Overview of Tables
A table is the basic unit of data organization in an Oracle database. A table describes
an entity, which is something of significance about which information must be
recorded. For example, an employee could be an entity.

Oracle Database tables fall into the following basic categories:

■ Relational tables

Relational tables have simple columns and are the most common table type.
Example 2–1 on page 2-8 shows a CREATE TABLE statement for a relational table.

■ Object tables

The columns correspond to the top-level attributes of an object type. See "Object
Tables" on page 2-15.

You can create a relational table with the following organizational characteristics:

■ A heap-organized table does not store rows in any particular order. The CREATE
TABLE statement creates a heap-organized table by default.

■ An index-organized table orders rows according to the primary key values. For
some applications, index-organized tables enhance performance and use disk
space more efficiently. See "Overview of Index-Organized Tables" on page 3-20.

See Also: Oracle Database Sample Schemas

HR

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id

DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_idJOB_HISTORY
employee_id

start_date
end_date

job_id
department_id

JOBS
job_id
job_title

min_salary
max_salary

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

Overview of Tables

Tables and Table Clusters 2-7

■ An external table is a read-only table whose metadata is stored in the database but
whose data in stored outside the database. See "External Tables" on page 2-16.

A table is either permanent or temporary. A permanent table definition and data
persist across sessions. A temporary table definition persists in the same way as a
permanent table definition, but the data exists only for the duration of a transaction or
session. Temporary tables are useful in applications where a result set must be held
temporarily, perhaps because the result is constructed by running multiple operations.

This section contains the following topics:

■ Columns and Rows

■ Example: CREATE TABLE and ALTER TABLE Statements

■ Oracle Data Types

■ Integrity Constraints

■ Object Tables

■ Temporary Tables

■ External Tables

■ Table Storage

■ Table Compression

Columns and Rows
A table definition includes a table name and set of columns. A column identifies an
attribute of the entity described by the table. For example, the column employee_id in
the employees table refers to the employee ID attribute of an employee entity.

In general, you give each column a column name, a data type, and a width when you
create a table. For example, the data type for employee_id is NUMBER(6), indicating that
this column can only contain numeric data up to 6 digits in width. The width can be
predetermined by the data type, as with DATE.

A table can contain a virtual column, which unlike a nonvirtual column does not
consume disk space. The database derives the values in a virtual column on demand
by computing a set of user-specified expressions or functions. For example, the virtual
column income could be a function of the salary and commission_pct columns.

After you create a table, you can insert, query, delete, and update rows using SQL. A
row is a collection of column information corresponding to a record in a table. For
example, a row in the employees table describes the attributes of a specific employee.

Example: CREATE TABLE and ALTER TABLE Statements
The Oracle SQL command to create a table is CREATE TABLE. Example 2–1 shows the
CREATE TABLE statement for the employees table in the hr sample schema. The
statement specifies columns such as employee_id, first_name, and so on, specifying a
data type such as NUMBER or DATE for each column.

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn how to manage tables

See Also: Oracle Database Administrator's Guide to learn how to
manage virtual columns

Overview of Tables

2-8 Oracle Database Concepts

Example 2–1 CREATE TABLE employees

CREATE TABLE employees
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE
 CONSTRAINT emp_hire_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL
 , salary NUMBER(8,2)
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , CONSTRAINT emp_salary_min
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk
 UNIQUE (email)
) ;

Example 2–2 shows an ALTER TABLE statement that adds integrity constraints to the
employees table. Integrity constraints enforce business rules and prevent the entry of
invalid information into tables.

Example 2–2 ALTER TABLE employees

ALTER TABLE employees
ADD (CONSTRAINT emp_emp_id_pk
 PRIMARY KEY (employee_id)
 , CONSTRAINT emp_dept_fk
 FOREIGN KEY (department_id)
 REFERENCES departments
 , CONSTRAINT emp_job_fk
 FOREIGN KEY (job_id)
 REFERENCES jobs (job_id)
 , CONSTRAINT emp_manager_fk
 FOREIGN KEY (manager_id)
 REFERENCES employees
) ;

Example 2–3 shows 8 rows and 6 columns of the hr.employees table.

Example 2–3 Rows in the employees Table

EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY COMMISSION_PCT DEPARTMENT_ID
----------- ----------- ------------- ------- -------------- -------------
 100 Steven King 24000 90
 101 Neena Kochhar 17000 90
 102 Lex De Haan 17000 90
 103 Alexander Hunold 9000 60
 107 Diana Lorentz 4200 60
 149 Eleni Zlotkey 10500 .2 80
 174 Ellen Abel 11000 .3 80
 178 Kimberely Grant 7000 .15

The output in Example 2–3 illustrates some of the following important characteristics
of tables, columns, and rows:

Overview of Tables

Tables and Table Clusters 2-9

■ A row of the table describes the attributes of one employee: name, salary,
department, and so on. For example, the first row in the output shows the record
for the employee named Steven King.

■ A column describes an attribute of the employee. In the example, the employee_id
column is the primary key, which means that every employee is uniquely
identified by employee ID. Any two employees are guaranteed not to have the
same employee ID.

■ A non-key column can contain rows with identical values. In the example, the
salary value for employees 101 and 102 is the same: 17000.

■ A foreign key column refers to a primary or unique key in the same table or a
different table. In this example, the value of 90 in department_id corresponds to
the department_id column of the departments table.

■ A field is the intersection of a row and column. It can contain only one value. For
example, the field for the department ID of employee 104 contains the value 60.

■ A field can lack a value. In this case, the field is said to contain a null value. The
value of the commission_pct column for employee 100 is null, whereas the value
in the field for employee 149 is .2. A column allows nulls unless a NOT NULL or
primary key integrity constraint has been defined on this column, in which case no
row can be inserted without a value for this column.

Oracle Data Types
Each column has a data type, which is associated with a specific storage format,
constraints, and valid range of values. The data type of a value associates a fixed set of
properties with the value. These properties cause Oracle Database to treat values of
one data type differently from values of another. For example, you can multiply values
of the NUMBER data type, but not values of the RAW data type.

When you create a table, you must specify a data type for each of its columns. Each
value subsequently inserted in a column assumes the column data type.

Oracle Database provides several built-in data types. The most commonly used data
types fall into the following categories:

■ Character Data Types

■ Numeric Data Types

■ Datetime Data Types

■ Rowid Data Types

■ Format Models and Data Types

Other important categories of built-in types include raw, large objects (LOBs), and
collections. PL/SQL has data types for constants and variables, which include
BOOLEAN, reference types, composite types (records), and user-defined types.

See Also: Oracle Database SQL Language Reference for CREATE TABLE
syntax and semantics

Overview of Tables

2-10 Oracle Database Concepts

Character Data Types
Character data types store character (alphanumeric) data in strings. The most
commonly used character data type is VARCHAR2, which is the most efficient option for
storing character data.

The byte values correspond to the character encoding scheme, generally called a
character set or code page. The database character set is established at database
creation. Examples of character sets are 7-bit ASCII, EBCDIC, and Unicode UTF-8.

The length semantics of character data types can be measured in bytes or characters.
Byte semantics treat strings as a sequence of bytes. This is the default for character
data types. Character semantics treat strings as a sequence of characters. A character is
technically a code point of the database character set.

VARCHAR2 and CHAR Data Types The VARCHAR2 data type stores variable-length character
literals. The terms literal and constant value are synonymous and refer to a fixed data
value. For example, 'LILA', 'St. George Island', and '101' are all character literals;
5001 is a numeric literal. Character literals are enclosed in single quotation marks so
that the database can distinguish them from schema object names.

When you create a table with a VARCHAR2 column, you specify a maximum string
length. In Example 2–1, the last_name column has a data type of VARCHAR2(25), which
means that any name stored in the column can have a maximum of 25 bytes.

For each row, Oracle Database stores each value in the column as a variable-length
field unless a value exceeds the maximum length, in which case the database returns
an error. For example, in a single-byte character set, if you enter 10 characters for the
last_name column value in a row, then the column in the row piece stores only 10
characters (10 bytes), not 25. Using VARCHAR2 reduces space consumption.

In contrast to VARCHAR2, CHAR stores fixed-length character strings. When you create a
table with a CHAR column, the column requires a string length. The default is 1 byte.
The database uses blanks to pad the value to the specified length.

See Also:

■ "Overview of LOBs" on page 19-12

■ Oracle Database SQL Language Reference to learn about built-in SQL
data types

■ Oracle Database PL/SQL Language Reference to learn about PL/SQL
data types

■ Oracle Database Advanced Application Developer's Guide for
information about how to use the built-in data types

See Also:

■ "Character Sets" on page 19-9

■ Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer's Guide and to learn how to
select a character data type

Note: This manual uses the terms text literal, character literal, and
string interchangeably.

Overview of Tables

Tables and Table Clusters 2-11

Oracle Database compares VARCHAR2 values using nonpadded comparison semantics
and compares CHAR values using blank-padded comparison semantics.

NCHAR and NVARCHAR2 Data Types The NCHAR and NVARCHAR2 data types store Unicode
character data. Unicode is a universal encoded character set that can store information
in any language using a single character set. NCHAR stores fixed-length character strings
that correspond to the national character set, whereas NVARCHAR2 stores variable length
character strings.

You specify a national character set when creating a database. The character set of
NCHAR and NVARCHAR2 data types must be either AL16UTF16 or UTF8. Both character sets
use Unicode encoding.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size is
always in character length semantics. Character length semantics is the default and
only length semantics for NCHAR or NVARCHAR2.

Numeric Data Types
The Oracle Database numeric data types store fixed and floating-point numbers, zero,
and infinity. Some numeric types also store values that are the undefined result of an
operation, which is known as "not a number" or NAN.

Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent. The database uses up to 20
bytes to store the mantissa, which is the part of a floating-point number that contains
its significant digits. Oracle Database does not store leading and trailing zeros.

NUMBER Data Type The NUMBER data type stores fixed and floating-point numbers. The
database can store numbers of virtually any magnitude. This data is guaranteed to be
portable among different operating systems running Oracle Database. The NUMBER data
type is recommended for most cases in which you must store numeric data.

You specify a fixed-point number in the form NUMBER(p,s), where p and s refer to the
following characteristics:

■ Precision

The precision specifies the total number of digits. If a precision is not specified,
then the column stores the values exactly as provided by the application without
any rounding.

■ Scale

The scale specifies the number of digits from the decimal point to the least
significant digit. Positive scale counts digits to the right of the decimal point up to
and including the least significant digit. Negative scale counts digits to the left of
the decimal point up to but not including the least significant digit. If you specify a
precision without a scale, as in NUMBER(6), then the scale is 0.

In Example 2–1, the salary column is type NUMBER(8,2), so the precision is 8 and the
scale is 2. Thus, the database stores a salary of 100,000 as 100000.00.

See Also: Oracle Database SQL Language Reference for details about
blank-padded and nonpadded comparison semantics

See Also: Oracle Database Globalization Support Guide for information
about Oracle's globalization support feature

Overview of Tables

2-12 Oracle Database Concepts

Floating-Point Numbers Oracle Database provides two numeric data types exclusively
for floating-point numbers: BINARY_FLOAT and BINARY_DOUBLE. These types support all
of the basic functionality provided by the NUMBER data type. However, while NUMBER
uses decimal precision, BINARY_FLOAT and BINARY_DOUBLE use binary precision, which
enables faster arithmetic calculations and usually reduces storage requirements.

BINARY_FLOAT and BINARY_DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either BINARY_DOUBLE or
BINARY_FLOAT. They are frequently used for scientific computations. Their behavior is
similar to the data types FLOAT and DOUBLE in Java and XMLSchema.

Datetime Data Types
The datetime data types are DATE and TIMESTAMP. Oracle Database provides
comprehensive time zone support for time stamps.

DATE Data Type The DATE data type stores date and time. Although datetimes can be
represented in character or number data types, DATE has special associated properties.
The hire_date column in Example 2–1 has a DATE data type.

The database stores dates internally as numbers. Dates are stored in fixed-length fields
of 7 bytes each, corresponding to century, year, month, day, hour, minute, and second.

The database displays dates according to the specified format model. A format model
is a character literal that describes the format of a datetime in a character string. The
standard date format is DD-MON-RR, which displays dates in the form 01-JAN-09.

RR is similar to YY (the last two digits of the year), but the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. Assume that in 1999 the database displays 01-JAN-09. If the date format uses RR,
then 09 specifies 2009, whereas if the format uses YY, then 09 specifies 1909. You can
change the default date format at both the instance and the session level.

Oracle Database stores time in 24-hour format—HH:MI:SS. If no time portion is
entered, then by default the time in a date field is 00:00:00 A.M. In a time-only entry,
the date portion defaults to the first day of the current month.

TIMESTAMP Data Type The TIMESTAMP data type is an extension of the DATE data type. It
stores fractional seconds in addition to the information stored in the DATE data type.
The TIMESTAMP data type is useful for storing precise time values, such as in
applications that must track event order.

See Also: Oracle Database SQL Language Reference to learn about
precision, scale, and other characteristics of numeric types

Note: Dates fully support arithmetic operations, so you add to and
subtract from dates just as you can with numbers. See Oracle Database
Advanced Application Developer's Guide.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about centuries and date format masks

■ Oracle Database SQL Language Reference for information about
datetime format codes

Overview of Tables

Tables and Table Clusters 2-13

The DATETIME data types TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE are time-zone aware. When a user selects the data, the value is adjusted to
the time zone of the user session. This data type is useful for collecting and evaluating
date information across geographic regions.

Rowid Data Types
Every row stored in the database has an address. Oracle Database uses a ROWID data
type to store the address (rowid) of every row in the database. Rowids fall into the
following categories:

■ Physical rowids store the addresses of rows in heap-organized tables, table
clusters, and table and index partitions.

■ Logical rowids store the addresses of rows in index-organized tables.

■ Foreign rowids are identifiers in foreign tables, such as DB2 tables accessed
through a gateway. They are not standard Oracle Database rowids.

A data type called the universal rowid, or UROWID, supports all kinds of rowids.

Use of Rowids Oracle Database uses rowids internally for the construction of indexes. A
B-tree index, which is the most common type, contains an ordered list of keys divided
into ranges. Each key is associated with a rowid that points to the associated row's
address for fast access. End users and application developers can also use rowids for
several important functions:

■ Rowids are the fastest means of accessing particular rows.

■ Rowids provide the ability to see how a table is organized.

■ Rowids are unique identifiers for rows in a given table.

You can also create tables with columns defined using the ROWID data type. For
example, you can define an exception table with a column of data type ROWID to store
the rowids of rows that violate integrity constraints. Columns defined using the ROWID
data type behave like other table columns: values can be updated, and so on.

ROWID Pseudocolumn Every table in an Oracle database has a pseudocolumn named
ROWID. A pseudocolumn behaves like a table column, but is not actually stored in the
table. You can select from pseudocolumns, but you cannot insert, update, or delete
their values. A pseudocolumn is also similar to a SQL function without arguments.
Functions without arguments typically return the same value for every row in the
result set, whereas pseudocolumns typically return a different value for each row.

Values of the ROWID pseudocolumn are strings representing the address of each row.
These strings have the data type ROWID. This pseudocolumn is not evident when listing
the structure of a table by executing SELECT or DESCRIBE, nor does the pseudocolumn
consume space. However, the rowid of each row can be retrieved with a SQL query
using the reserved word ROWID as a column name.

Example 2–4 queries the ROWID pseudocolumn to show the rowid of the row in the
employees table for employee 100.

Example 2–4 ROWID Pseudocolumn

SQL> SELECT ROWID FROM employees WHERE employee_id = 100;

ROWID

See Also: Oracle Database SQL Language Reference for details about
the syntax of creating and entering data in time stamp columns

Overview of Tables

2-14 Oracle Database Concepts

AAAPecAAFAAAABSAAA

Format Models and Data Types
A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database.

When you convert a character string into a date or number, a format model determines
how the database interprets the string. In SQL, you can use a format model as an
argument of the TO_CHAR and TO_DATE functions to format a value to be returned from
the database or to format a value to be stored in the database.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99':

SQL> SELECT last_name employee, TO_CHAR(salary, '$99,990.99')
 2 FROM employees
 3 WHERE department_id = 80 AND last_name = 'Russell';

EMPLOYEE TO_CHAR(SAL
------------------------- -----------
Russell $14,000.00

The following example updates a hire date using the TO_DATE function with the format
mask 'YYYY MM DD' to convert the string '1998 05 20' to a DATE value:

SQL> UPDATE employees
 2 SET hire_date = TO_DATE('1998 05 20','YYYY MM DD')
 3 WHERE last_name = 'Hunold';

Integrity Constraints
Integrity constraints are named rules that restrict the values for one or more columns
in a table. These rules prevent invalid data entry into tables. Also, constraints can
prevent the deletion of a table when certain dependencies exist.

If a constraint is enabled, then the database checks data as it is entered or updated.
Data that does not conform to the constraint is prevented from being entered. If a
constraint is disabled, then data that does not conform to the constraint can be allowed
to enter the database.

In Example 2–1 on page 2-8, the CREATE TABLE statement specifies NOT NULL
constraints for the last_name, email, hire_date, and job_id columns. The constraint
clauses identify the columns and the conditions of the constraint. These constraints
ensure that the specified columns contain no null values. For example, an attempt to
insert a new employee without a job ID generates an error.

See Also:

■ "Rowid Format" on page 12-10

■ Oracle Database Advanced Application Developer's Guide to learn
how to identify rows by address

■ Oracle Database SQL Language Reference to learn about rowid types

See Also: Oracle Database SQL Language Reference to learn more
about format models

Overview of Tables

Tables and Table Clusters 2-15

You can create a constraint when or after you create a table. Constraints can be
temporarily disabled if needed. The database stores constraints in the data dictionary.

Object Tables
An Oracle object type is a user-defined type with a name, attributes, and methods.
Object types make it possible to model real-world entities such as customers and
purchase orders as objects in the database.

An object type defines a logical structure, but does not create storage. Example 2–5
creates an object type named department_typ.

Example 2–5 Object Type

CREATE TYPE department_typ AS OBJECT
 (d_name VARCHAR2(100),
 d_address VARCHAR2(200));
/

An object table is a special kind of table in which each row represents an object. The
CREATE TABLE statement in Example 2–6 creates an object table named
departments_obj_t of the object type department_typ. The attributes (columns) of this
table are derived from the definition of the object type. The INSERT statement inserts a
row into this table.

Example 2–6 Object Table

CREATE TABLE departments_obj_t OF department_typ;
INSERT INTO departments_obj_t
 VALUES ('hr', '10 Main St, Sometown, CA');

Like a relational column, an object table can contain rows of just one kind of thing,
namely, object instances of the same declared type as the table. By default, every row
object in an object table has an associated logical object identifier (OID) that uniquely
identifies it in an object table. The OID column of an object table is a hidden column.

Temporary Tables
Oracle Database temporary tables hold data that exists only for the duration of a
transaction or session. Data in a temporary table is private to the session, which means
that each session can only see and modify its own data.

Temporary tables are useful in applications where a result set must be buffered. For
example, a scheduling application enables college students to create optional semester

See Also:

■ Chapter 5, "Data Integrity" to learn about integrity constraints

■ Oracle Database SQL Language Reference to learn about SQL
constraint clauses

See Also:

■ Oracle Database Object-Relational Developer's Guide to learn about
object-relational features in Oracle Database

■ Oracle Database SQL Language Reference for CREATE TYPE syntax
and semantics

Overview of Tables

2-16 Oracle Database Concepts

course schedules. Each schedule is represented by a row in a temporary table. During
the session, the schedule data is private. When the student decides on a schedule, the
application moves the row for the chosen schedule to a permanent table. At the end of
the session, the schedule data in the temporary data is automatically dropped.

Temporary Table Creation
The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table. The ON
COMMIT clause specifies whether the table data is transaction-specific (default) or
session-specific.

Unlike temporary tables in some other relational databases, when you create a
temporary table in an Oracle database, you create a static table definition. The
temporary table is a persistent object described in the data dictionary, but appears
empty until your session inserts data into the table. You create a temporary table for
the database itself, not for every PL/SQL stored procedure.

Because temporary tables are statically defined, you can create indexes for them with
the CREATE INDEX statement. Indexes created on temporary tables are also temporary.
The data in the index has the same session or transaction scope as the data in the
temporary table. You can also create a view or trigger on a temporary table.

Segment Allocation in Temporary Tables
Like permanent tables, temporary tables are defined in the data dictionary. Temporary
segments are allocated when data is first inserted. Until data is loaded in a session the
table appears empty. Temporary segments are deallocated at the end of the transaction
for transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

External Tables
An external table accesses data in external sources as if this data were in a table in the
database. You can use SQL, PL/SQL, and Java to query the external data.

External tables are useful for querying flat files. For example, a SQL-based application
may need to access records in a text file. The records are in the following form:

100,Steven,King,SKING,515.123.4567,17-JUN-03,AD_PRES,31944,150,90
101,Neena,Kochhar,NKOCHHAR,515.123.4568,21-SEP-05,AD_VP,17000,100,90
102,Lex,De Haan,LDEHAAN,515.123.4569,13-JAN-01,AD_VP,17000,100,90

You could create an external table, copy the file to the location specified in the external
table definition, and use SQL to query the records in the text file.

External tables are also valuable for performing ETL tasks common in data warehouse
environments. For example, external tables enable the pipelining of the data loading
phase with the transformation phase, eliminating the need to stage data inside the

See Also:

■ Oracle Database Administrator's Guide to learn how create and
manage temporary tables

■ Oracle Database SQL Language Reference for CREATE GLOBAL
TEMPORARY TABLE syntax and semantics

■ "Overview of Views" on page 4-12 and "Overview of Triggers" on
page 8-16

See Also: "Temporary Segments" on page 12-23

Overview of Tables

Tables and Table Clusters 2-17

database in preparation for further processing inside the database. See "Overview of
Data Warehousing and Business Intelligence" on page 17-14.

External Table Creation
Internally, creating an external table means creating metadata in the data dictionary.
Unlike an ordinary table, an external table does not describe data stored in the
database, nor does it describe how data is stored externally. Rather, external table
metadata describes how the external table layer must present data to the database.

A CREATE TABLE ... ORGANIZATION EXTERNAL statement has two parts. The external
table definition describes the column types. This definition is like a view that enables
SQL to query external data without loading it into the database. The second part of the
statement maps the external data to the columns.

External tables are read-only unless created with CREATE TABLE AS SELECT with the
ORACLE_DATAPUMP access driver. Restrictions for external tables include no support for
indexed columns, virtual columns, and column objects.

External Table Access Drivers
An access driver is an API that interprets the external data for the database. The access
driver runs inside the database, which uses the driver to read the data in the external
table. The access driver and the external table layer are responsible for performing the
transformations required on the data in the data file so that it matches the external
table definition. Figure 2–4 represents how external data is accessed.

Figure 2–4 External Tables

Oracle provides the ORACLE_LOADER (default) and ORACLE_DATAPUMP access drivers for
external tables. For both drivers, the external files are not Oracle data files.

ORACLE_LOADER enables read-only access to external files using SQL*Loader. You
cannot create, update, or append to an external file using the ORACLE_LOADER driver.

The ORACLE_DATAPUMP driver enables you to unload external data. This operation
involves reading data from the database and inserting the data into an external table,
represented by one or more external files. After external files are created, the database
cannot update or append data to them. The driver also enables you to load external
data, which involves reading an external table and loading its data into a database.

Access
Driver

Queries of
External
Table

External
Files

Database

Data
Dictionary

External Table
Metadata

Overview of Tables

2-18 Oracle Database Concepts

Table Storage
Oracle Database uses a data segment in a tablespace to hold table data. As explained
in "User Segments" on page 12-21, a segment contains extents made up of data blocks.

The data segment for a table (or cluster data segment, when dealing with a table
cluster) is located in either the default tablespace of the table owner or in a tablespace
named in the CREATE TABLE statement.

Table Organization
By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order. Thus, a heap-organized table
is an unordered collection of rows. As users add rows, the database places the rows in
the first available free space in the data segment. Rows are not guaranteed to be
retrieved in the order in which they were inserted.

The hr.departments table is a heap-organized table. It has columns for department ID,
name, manager ID, and location ID. As rows are inserted, the database stores them
wherever they fit. A data block in the table segment might contain the unordered rows
shown in Example 2–7.

Example 2–7 Rows in Departments Table

50,Shipping,121,1500
120,Treasury,,1700
70,Public Relations,204,2700
30,Purchasing,114,1700
130,Corporate Tax,,1700
10,Administration,200,1700
110,Accounting,205,1700

The column order is the same for all rows in a table. The database usually stores
columns in the order in which they were listed in the CREATE TABLE statement, but this
order is not guaranteed. For example, if a table has a column of type LONG, then Oracle
Database always stores this column last in the row. Also, if you add a new column to a
table, then the new column becomes the last column stored.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. The database derives the values in a virtual column on demand by
computing a set of user-specified expressions or functions. You can index virtual
columns, collect statistics on them, and create integrity constraints. Thus, virtual
columns are much like nonvirtual columns.

See Also:

■ Oracle Database Administrator's Guide to learn about managing
external tables, external connections, and directory objects

■ Oracle Database Utilities to learn about external tables

■ Oracle Database SQL Language Reference for information about
creating and querying external tables

Note: Index-organized tables use a different principle of
organization. See "Overview of Index-Organized Tables" on page 3-20.

Overview of Tables

Tables and Table Clusters 2-19

Row Storage
The database stores rows in data blocks. Each row of a table containing data for less
than 256 columns is contained in one or more row pieces.

If possible, Oracle Database stores each row as one row piece. However, if all of the
row data cannot be inserted into a single data block, or if an update to an existing row
causes the row to outgrow its data block, then the database stores the row using
multiple row pieces (see "Data Block Format" on page 12-7).

Rows in a table cluster contain the same information as rows in nonclustered tables.
Additionally, rows in a table cluster contain information that references the cluster key
to which they belong.

Rowids of Row Pieces
A rowid is effectively a 10-byte physical address of a row. As explained in "Rowid
Data Types" on page 2-13, every row in a heap-organized table has a rowid unique to
this table that corresponds to the physical address of a row piece. For table clusters,
rows in different tables that are in the same data block can have the same rowid.

Oracle Database uses rowids internally for the construction of indexes. For example,
each key in a B-tree index is associated with a rowid that points to the address of the
associated row for fast access (see "B-Tree Indexes" on page 3-5). Physical rowids
provide the fastest possible access to a table row, enabling the database to retrieve a
row in as little as a single I/O.

Storage of Null Values
A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

Nulls are stored in the database if they fall between columns with data values. In these
cases, they require 1 byte to store the length of the column (zero). Trailing nulls in a
row require no storage because a new row header signals that the remaining columns
in the previous row are null. For example, if the last three columns of a table are null,
then no data is stored for these columns.

Table Compression
The database can use table compression to reduce the amount of storage required for
the table. Compression saves disk space, reduces memory use in the database buffer
cache, and in some cases speeds query execution. Table compression is transparent to
database applications.

Basic and OLTP Table Compression
Dictionary-based table compression provides good compression ratios for
heap-organized tables. Oracle Database supports the following types of
dictionary-based table compression:

■ Basic table compression

See Also: Oracle Database SQL Language Reference to learn about
virtual columns

See Also: "Rowid Format" on page 12-10

See Also: Oracle Database SQL Language Reference to learn more
about null values

Overview of Tables

2-20 Oracle Database Concepts

This type of compression is intended for bulk load operations. The database does
not compress data modified using conventional DML. You must use direct path
loads, ALTER TABLE . . . MOVE operations, or online table redefinition to achieve
basic compression.

■ OLTP table compression

This type of compression is intended for OLTP applications and compresses data
manipulated by any SQL operation.

For basic and OLTP table compression, the database stores compressed rows in
row-major format. All columns of one row are stored together, followed by all
columns of the next row, and so on (see Figure 12–7 on page 12-9). Duplicate values
are replaced with a short reference to a symbol table stored at the beginning of the
block. Thus, information needed to re-create the uncompressed data is stored in the
data block itself.

Compressed data blocks look much like normal data blocks. Most database features
and functions that work on regular data blocks also work on compressed blocks.

You can declare compression at the tablespace, table, partition, or subpartition level. If
specified at the tablespace level, then all tables created in the tablespace are
compressed by default.

The following statement applies OLTP compression to the orders table:

ALTER TABLE oe.orders COMPRESS FOR OLTP;

The following example of a partial CREATE TABLE statement specifies OLTP
compression for one partition and basic compression for the other partition:

CREATE TABLE sales (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL, ...)
 PCTFREE 5 NOLOGGING NOCOMPRESS
 PARTITION BY RANGE (time_id)
 (partition sales_2008 VALUES LESS THAN(TO_DATE(...)) COMPRESS BASIC,
 partition sales_2009 VALUES LESS THAN (MAXVALUE) COMPRESS FOR OLTP);

Hybrid Columnar Compression
With Hybrid Columnar Compression, the database stores the same column for a group
of rows together. The data block does not store data in row-major format, but uses a
combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics,
dramatically increases the storage savings achieved from compression. The database
compresses data manipulated by any SQL operation, although compression levels are
higher for direct path loads. Database operations work transparently against
compressed objects, so no application changes are required.

See Also:

■ "Data Block Compression" on page 12-11 to learn about the format
of compressed data blocks

■ Oracle Database Administrator's Guide and Oracle Database
Performance Tuning Guide to learn about table compression

■ "SQL*Loader" on page 18-5 to learn about using SQL*Loader for
direct path loads

Overview of Tables

Tables and Table Clusters 2-21

Types of Hybrid Columnar Compression If your underlying storage supports Hybrid
Columnar Compression, then you can specify the following compression types,
depending on your requirements:

■ Warehouse compression

This type of compression is optimized to save storage space, and is intended for
data warehouse applications.

■ Online archival compression

This type of compression is optimized for maximum compression levels, and is
intended for historical data and data that does not change.

To achieve warehouse or online archival compression, you must use direct path loads,
ALTER TABLE . . . MOVE operations, or online table redefinition.

Hybrid Columnar Compression is optimized for Data Warehousing and decision
support applications on Exadata storage. Exadata maximizes the performance of
queries on tables that are compressed using Hybrid Columnar Compression, taking
advantage of the processing power, memory, and Infiniband network bandwidth that
are integral to the Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the
same space savings as on Exadata storage, but do not deliver the same level of query
performance. For these storage systems, Hybrid Columnar Compression is ideal for
in-database archiving of older data that is infrequently accessed.

Compression Units Hybrid Columnar Compression uses a logical construct called a
compression unit to store a set of rows. When you load data into a table, the database
stores groups of rows in columnar format, with the values for each column stored and
compressed together. After the database has compressed the column data for a set of
rows, the database fits the data into the compression unit.

For example, you apply Hybrid Columnar Compression to a daily_sales table. At the
end of every day, you populate the table with items and the number sold, with the
item ID and date forming a composite primary key. Table 2–1 shows a subset of the
rows in daily_sales.

Assume that the rows in Table 2–1 are stored in one compression unit. Hybrid
Columnar Compression stores the values for each column together, and then uses
multiple algorithms to compress each column. The database chooses the algorithms
based on a variety of factors, including the data type of the column, the cardinality of
the actual values in the column, and the compression level chosen by the user.

As shown in Figure 2–5, each compression unit can span multiple data blocks. The
values for a particular column may or may not span multiple blocks.

Table 2–1 Sample Table daily_sales

Item_ID Date Num_Sold Shipped_From Restock

1000 01-JUN-11 2 WAREHOUSE1 Y

1001 01-JUN-11 0 WAREHOUSE3 N

1002 01-JUN-11 1 WAREHOUSE3 N

1003 01-JUN-11 0 WAREHOUSE2 N

1004 01-JUN-11 2 WAREHOUSE1 N

1005 01-JUN-11 1 WAREHOUSE2 N

Overview of Table Clusters

2-22 Oracle Database Concepts

Figure 2–5 Compression Unit

Hybrid Columnar Compression has implications for row locking (see "Row Locks
(TX)" on page 9-18). When an update occurs for a row in an uncompressed data block,
only the updated row is locked. In contrast, the database must lock all rows in the
compression unit if an update is made to any row in the unit. Updates to rows using
Hybrid Columnar Compression cause rowids to change.

Overview of Table Clusters
A table cluster is a group of tables that share common columns and store related data
in the same blocks. When tables are clustered, a single data block can contain rows
from multiple tables. For example, a block can store rows from both the employees and
departments tables rather than from only a single table.

The cluster key is the column or columns that the clustered tables have in common.
For example, the employees and departments tables share the department_id column.
You specify the cluster key when creating the table cluster and when creating every
table added to the table cluster.

The cluster key value is the value of the cluster key columns for a particular set of
rows. All data that contains the same cluster key value, such as department_id=20, is
physically stored together. Each cluster key value is stored only once in the cluster and
the cluster index, no matter how many rows of different tables contain the value.

For an analogy, suppose an HR manager has two book cases: one with boxes of
employees folders and the other with boxes of departments folders. Users often ask for
the folders for all employees in a particular department. To make retrieval easier, the
manager rearranges all the boxes in a single book case. She divides the boxes by
department ID. Thus, all folders for employees in department 20 and the folder for

Note: When tables use Hybrid Columnar Compression, Oracle DML
locks larger blocks of data (compression units), which may reduce
concurrency.

See Also:

■ Oracle Database Licensing Information to learn about licensing
requirements for Hybrid Columnar Compression

■ Oracle Database Administrator's Guide to learn how to use Hybrid
Columnar Compression

Column 1 Column 2 Column 3 Column 4 Column 5

Data Block 1 Data Block 2 Data Block 3 Data Block 4

Overview of Table Clusters

Tables and Table Clusters 2-23

department 20 itself are in one box; the folders for employees in department 100 and
the folder for department 100 are in a different box, and so on.

You can consider clustering tables when they are primarily queried (but not modified)
and records from the tables are frequently queried together or joined. Because table
clusters store related rows of different tables in the same data blocks, properly used
table clusters offer the following benefits over nonclustered tables:

■ Disk I/O is reduced for joins of clustered tables.

■ Access time improves for joins of clustered tables.

■ Less storage is required to store related table and index data because the cluster
key value is not stored repeatedly for each row.

Typically, clustering tables is not appropriate in the following situations:

■ The tables are frequently updated.

■ The tables frequently require a full table scan.

■ The tables require truncating.

Overview of Indexed Clusters
An indexed cluster is a table cluster that uses an index to locate data. The cluster
index is a B-tree index on the cluster key. A cluster index must be created before any
rows can be inserted into clustered tables.

Assume that you create the cluster employees_departments_cluster with the cluster
key department_id, as shown in Example 2–8. Because the HASHKEYS clause is not
specified, this cluster is an indexed cluster. Afterward, you create an index named
idx_emp_dept_cluster on this cluster key.

Example 2–8 Indexed Cluster

CREATE CLUSTER employees_departments_cluster
 (department_id NUMBER(4))
SIZE 512;

CREATE INDEX idx_emp_dept_cluster ON CLUSTER employees_departments_cluster;

You then create the employees and departments tables in the cluster, specifying the
department_id column as the cluster key, as follows (the ellipses mark the place where
the column specification goes):

CREATE TABLE employees (...)
 CLUSTER employees_departments_cluster (department_id);

CREATE TABLE departments (...)
 CLUSTER employees_departments_cluster (department_id);

Finally, you add rows to the employees and departments tables. The database
physically stores all rows for each department from the employees and departments
tables in the same data blocks. The database stores the rows in a heap and locates them
with the index.

Figure 2–6 shows the employees_departments_cluster table cluster, which contains
employees and departments. The database stores rows for employees in department 20

See Also: Oracle Database Performance Tuning Guide for guidelines on
when to use table clusters

Overview of Table Clusters

2-24 Oracle Database Concepts

together, department 110 together, and so on. If the tables are not clustered, then the
database does not ensure that the related rows are stored together.

Figure 2–6 Clustered Table Data

Clustered Tables Unclustered Tables

department_name20 location_id

marketing 1800

employee_id last_name

201
202

Hartstein
Fay

. . .

. . .

. . .

department_name110 location_id

accounting 1700

employee_id last_name

205
206

Higgins
Gietz

. . .

. . .

. . .

employees_departments_cluster

last_nameemployee_id

201
202
203
204
205
206

department_id

Hartstein
Fay
Mavris
Baer
Higgins
Gietz

20
20
40
70
110
110

. . .

. . .

. . .

. . .

. . .

. . .

. . .

employees

department_namedepartment_id

20
110

location_id

Marketing
Accounting

1800
1700

departments

Tables Table Table

Cluster Key is
department_id

3

Indexes and Index-Organized Tables 3-1

3Indexes and Index-Organized Tables

This chapter discusses indexes, which are schema objects that can speed access to table
rows, and index-organized tables, which are tables stored in an index structure.

This chapter contains the following sections:

■ Overview of Indexes

■ Overview of Index-Organized Tables

Overview of Indexes
An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access. By creating an index on one or more columns of a table,
you gain the ability in some cases to retrieve a small set of randomly distributed rows
from the table. Indexes are one of many means of reducing disk I/O.

If a heap-organized table has no indexes, then the database must perform a full table
scan to find a value. For example, without an index, a query of location 2700 in the
hr.departments table requires the database to search every row in every table block
for this value. This approach does not scale well as data volumes increase.

For an analogy, suppose an HR manager has a shelf of cardboard boxes. Folders
containing employee information are inserted randomly in the boxes. The folder for
employee Whalen (ID 200) is 10 folders up from the bottom of box 1, whereas the
folder for King (ID 100) is at the bottom of box 3. To locate a folder, the manager looks
at every folder in box 1 from bottom to top, and then moves from box to box until the
folder is found. To speed access, the manager could create an index that sequentially
lists every employee ID with its folder location:

ID 100: Box 3, position 1 (bottom)
ID 101: Box 7, position 8
ID 200: Box 1, position 10
.
.
.

Similarly, the manager could create separate indexes for employee last names,
department IDs, and so on.

In general, consider creating an index on a column in any of the following situations:

■ The indexed columns are queried frequently and return a small percentage of the
total number of rows in the table.

■ A referential integrity constraint exists on the indexed column or columns. The
index is a means to avoid a full table lock that would otherwise be required if you

Overview of Indexes

3-2 Oracle Database Concepts

update the parent table primary key, merge into the parent table, or delete from
the parent table.

■ A unique key constraint will be placed on the table and you want to manually
specify the index and all index options.

Index Characteristics
Indexes are schema objects that are logically and physically independent of the data in
the objects with which they are associated. Thus, an index can be dropped or created
without physically affecting the table for the index.

The absence or presence of an index does not require a change in the wording of any
SQL statement. An index is a fast access path to a single row of data. It affects only the
speed of execution. Given a data value that has been indexed, the index points directly
to the location of the rows containing that value.

The database automatically maintains and uses indexes after they are created. The
database also automatically reflects changes to data, such as adding, updating, and
deleting rows, in all relevant indexes with no additional actions required by users.
Retrieval performance of indexed data remains almost constant, even as rows are
inserted. However, the presence of many indexes on a table degrades DML
performance because the database must also update the indexes.

Indexes have the following properties:

■ Usability

Indexes are usable (default) or unusable. An unusable index is not maintained by
DML operations and is ignored by the optimizer. An unusable index can improve
the performance of bulk loads. Instead of dropping an index and later re-creating
it, you can make the index unusable and then rebuild it. Unusable indexes and
index partitions do not consume space. When you make a usable index unusable,
the database drops its index segment.

■ Visibility

Indexes are visible (default) or invisible. An invisible index is maintained by DML
operations and is not used by default by the optimizer. Making an index invisible
is an alternative to making it unusable or dropping it. Invisible indexes are
especially useful for testing the removal of an index before dropping it or using
indexes temporarily without affecting the overall application.

See Also: Chapter 5, "Data Integrity"

Note: If you drop an index, then applications still work. However,
access of previously indexed data can be slower.

See Also:

■ "Overview of the Optimizer" on page 7-10

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to manage indexes

■ Oracle Database Performance Tuning Guide to learn how to tune
indexes

Overview of Indexes

Indexes and Index-Organized Tables 3-3

Keys and Columns
A key is a set of columns or expressions on which you can build an index. Although
the terms are often used interchangeably, indexes and keys are different. Indexes are
structures stored in the database that users manage using SQL statements. Keys are
strictly a logical concept.

The following statement creates an index on the customer_id column of the sample
table oe.orders:

CREATE INDEX ord_customer_ix ON orders (customer_id);

In the preceding statement, the customer_id column is the index key. The index itself
is named ord_customer_ix.

Composite Indexes
A composite index, also called a concatenated index, is an index on multiple columns
in a table. Columns in a composite index should appear in the order that makes the
most sense for the queries that will retrieve data and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important. In
general, the most commonly accessed columns go first.

For example, suppose an application frequently queries the last_name, job_id, and
salary columns in the employees table. Also assume that last_name has high
cardinality, which means that the number of distinct values is large compared to the
number of table rows. You create an index with the following column order:

CREATE INDEX employees_ix
 ON employees (last_name, job_id, salary);

Queries that access all three columns, only the last_name column, or only the
last_name and job_id columns use this index. In this example, queries that do not
access the last_name column do not use the index.

Multiple indexes can exist for the same table if the permutation of columns differs for
each index. You can create multiple indexes using the same columns if you specify
distinctly different permutations of the columns. For example, the following SQL
statements specify valid permutations:

CREATE INDEX employee_idx1 ON employees (last_name, job_id);
CREATE INDEX employee_idx2 ON employees (job_id, last_name);

Note: Primary and unique keys automatically have indexes, but you
might want to create an index on a foreign key.

See Also: Oracle Database SQL Language Reference CREATE INDEX
syntax and semantics

Note: In some cases, such as when the leading column has very low
cardinality, the database may use a skip scan of this index (see "Index
Skip Scan" on page 3-8).

Overview of Indexes

3-4 Oracle Database Concepts

Unique and Nonunique Indexes
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column or column. For example, no two
employees can have the same employee ID. Thus, in a unique index, one rowid exists
for each data value. The data in the leaf blocks is sorted only by key.

Nonunique indexes permit duplicates values in the indexed column or columns. For
example, the first_name column of the employees table may contain multiple Mike
values. For a nonunique index, the rowid is included in the key in sorted order, so
nonunique indexes are sorted by the index key and rowid (ascending).

Oracle Database does not index table rows in which all key columns are null, except
for bitmap indexes or when the cluster key column value is null.

Types of Indexes
Oracle Database provides several indexing schemes, which provide complementary
performance functionality. The indexes can be categorized as follows:

■ B-tree indexes

These indexes are the standard index type. They are excellent for primary key and
highly-selective indexes. Used as concatenated indexes, B-tree indexes can retrieve
data sorted by the indexed columns. B-tree indexes have the following subtypes:

– Index-organized tables

An index-organized table differs from a heap-organized because the data is
itself the index. See "Overview of Index-Organized Tables" on page 3-20.

– Reverse key indexes

In this type of index, the bytes of the index key are reversed, for example, 103
is stored as 301. The reversal of bytes spreads out inserts into the index over
many blocks. See "Reverse Key Indexes" on page 3-11.

– Descending indexes

This type of index stores data on a particular column or columns in
descending order. See "Ascending and Descending Indexes" on page 3-11.

– B-tree cluster indexes

This type of index is used to index a table cluster key. Instead of pointing to a
row, the key points to the block that contains rows related to the cluster key.
See "Overview of Indexed Clusters" on page 2-23.

■ Bitmap and bitmap join indexes

In a bitmap index, an index entry uses a bitmap to point to multiple rows. In
contrast, a B-tree index entry points to a single row. A bitmap join index is a
bitmap index for the join of two or more tables. See "Bitmap Indexes" on page 3-13.

■ Function-based indexes

This type of index includes columns that are either transformed by a function,
such as the UPPER function, or included in an expression. B-tree or bitmap indexes
can be function-based. See "Function-Based Indexes" on page 3-17.

■ Application domain indexes

See Also: Oracle Database Performance Tuning Guide for more
information about using composite indexes

Overview of Indexes

Indexes and Index-Organized Tables 3-5

This type of index is created by a user for data in an application-specific domain.
The physical index need not use a traditional index structure and can be stored
either in the Oracle database as tables or externally as a file. See "Application
Domain Indexes" on page 3-19.

B-Tree Indexes
B-trees, short for balanced trees, are the most common type of database index. A
B-tree index is an ordered list of values divided into ranges. By associating a key with
a row or range of rows, B-trees provide excellent retrieval performance for a wide
range of queries, including exact match and range searches.

Figure 3–1 illustrates the structure of a B-tree index. The example shows an index on
the department_id column, which is a foreign key column in the employees table.

Figure 3–1 Internal Structure of a B-tree Index

Branch Blocks and Leaf Blocks
A B-tree index has two types of blocks: branch blocks for searching and leaf blocks
that store values. The upper-level branch blocks of a B-tree index contain index data
that points to lower-level index blocks. In Figure 3–1, the root branch block has an
entry 0-40, which points to the leftmost block in the next branch level. This branch
block contains entries such as 0-10 and 11-19. Each of these entries points to a leaf
block that contains key values that fall in the range.

See Also: Oracle Database Performance Tuning Guide to learn about
different index types

. . .

41..48
49..53
54..65
....
78..80

11,rowid
11,rowid
12,rowid
....
19,rowid

221,rowid
222,rowid
223,rowid
....
228,rowid

246,rowid
248,rowid
248,rowid
....
250,rowid

0,rowid
0,rowid
....
10,rowid

0..40
41..80
81..120
....
200..250

.

0..10
11..19
20..25
....
32..40

200..209
210..220
221..228
....
246..250

Branch Blocks

Leaf Blocks

Overview of Indexes

3-6 Oracle Database Concepts

A B-tree index is balanced because all leaf blocks automatically stay at the same depth.
Thus, retrieval of any record from anywhere in the index takes approximately the
same amount of time. The height of the index is the number of blocks required to go
from the root block to a leaf block. The branch level is the height minus 1. In
Figure 3–1, the index has a height of 3 and a branch level of 2.

Branch blocks store the minimum key prefix needed to make a branching decision
between two keys. This technique enables the database to fit as much data as possible
on each branch block. The branch blocks contain a pointer to the child block
containing the key. The number of keys and pointers is limited by the block size.

The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each entry is sorted by (key, rowid). Within a leaf block, a key
and rowid is linked to its left and right sibling entries. The leaf blocks themselves are
also doubly linked. In Figure 3–1 the leftmost leaf block (0-10) is linked to the second
leaf block (11-19).

Index Scans
In an index scan, the database retrieves a row by traversing the index, using the
indexed column values specified by the statement. If the database scans the index for a
value, then it will find this value in n I/Os where n is the height of the B-tree index.
This is the basic principle behind Oracle Database indexes.

If a SQL statement accesses only indexed columns, then the database reads values
directly from the index rather than from the table. If the statement accesses columns in
addition to the indexed columns, then the database uses rowids to find the rows in the
table. Typically, the database retrieves table data by alternately reading an index block
and then a table block.

Full Index Scan In a full index scan, the database reads the entire index in order. A full
index scan is available if a predicate (WHERE clause) in the SQL statement references a
column in the index, and in some circumstances when no predicate is specified. A full
scan can eliminate sorting because the data is ordered by index key.

Suppose that an application runs the following query:

SELECT department_id, last_name, salary
FROM employees
WHERE salary > 5000
ORDER BY department_id, last_name;

Also assume that department_id, last_name, and salary are a composite key in an
index. Oracle Database performs a full scan of the index, reading it in sorted order
(ordered by department ID and last name) and filtering on the salary attribute. In this
way, the database scans a set of data smaller than the employees table, which contains
more columns than are included in the query, and avoids sorting the data.

For example, the full scan could read the index entries as follows:

50,Atkinson,2800,rowid
60,Austin,4800,rowid
70,Baer,10000,rowid

Note: Indexes in columns with character data are based on the
binary values of the characters in the database character set.

See Also: Oracle Database Performance Tuning Guide for detailed
information about index scans

Overview of Indexes

Indexes and Index-Organized Tables 3-7

80,Abel,11000,rowid
80,Ande,6400,rowid
110,Austin,7200,rowid
.
.
.

Fast Full Index Scan A fast full index scan is a full index scan in which the database
accesses the data in the index itself without accessing the table, and the database reads
the index blocks in no particular order.

Fast full index scans are an alternative to a full table scan when both of the following
conditions are met:

■ The index must contain all columns needed for the query.

■ A row containing all nulls must not appear in the query result set. For this result to
be guaranteed, at least one column in the index must have either:

– A NOT NULL constraint

– A predicate applied to it that prevents nulls from being considered in the
query result set

For example, an application issues the following query, which does not include an
ORDER BY clause:

SELECT last_name, salary
FROM employees;

The last_name column has a not null constraint. If the last name and salary are a
composite key in an index, then a fast full index scan can read the index entries to
obtain the requested information:

Baida,2900,rowid
Zlotkey,10500,rowid
Austin,7200,rowid
Baer,10000,rowid
Atkinson,2800,rowid
Austin,4800,rowid
.
.
.

Index Range Scan An index range scan is an ordered scan of an index that has the
following characteristics:

■ One or more leading columns of an index are specified in conditions. A condition
specifies a combination of one or more expressions and logical (Boolean) operators
and returns a value of TRUE, FALSE, or UNKNOWN.

■ 0, 1, or more values are possible for an index key.

The database commonly uses an index range scan to access selective data. The
selectivity is the percentage of rows in the table that the query selects, with 0 meaning
no rows and 1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE
last_name LIKE 'A%', or a combination of predicates. A predicate becomes more
selective as the value approaches 0 and less selective (or more unselective) as the value
approaches 1.

For example, a user queries employees whose last names begin with A. Assume that
the last_name column is indexed, with entries as follows:

Overview of Indexes

3-8 Oracle Database Concepts

Abel,rowid
Ande,rowid
Atkinson,rowid
Austin,rowid
Austin,rowid
Baer,rowid
.
.
.

The database could use a range scan because the last_name column is specified in the
predicate and multiples rowids are possible for each index key. For example, two
employees are named Austin, so two rowids are associated with the key Austin.

An index range scan can be bounded on both sides, as in a query for departments with
IDs between 10 and 40, or bounded on only one side, as in a query for IDs over 40. To
scan the index, the database moves backward or forward through the leaf blocks. For
example, a scan for IDs between 10 and 40 locates the first index leaf block that
contains the lowest key value that is 10 or greater. The scan then proceeds horizontally
through the linked list of leaf nodes until it locates a value greater than 40.

Index Unique Scan In contrast to an index range scan, an index unique scan must have
either 0 or 1 rowid associated with an index key. The database performs a unique scan
when a predicate references all of the columns in a UNIQUE index key using an equality
operator. An index unique scan stops processing as soon as it finds the first record
because no second record is possible.

As an illustration, suppose that a user runs the following query:

SELECT *
FROM employees
WHERE employee_id = 5;

Assume that the employee_id column is the primary key and is indexed with entries
as follows:

1,rowid
2,rowid
4,rowid
5,rowid
6,rowid
.
.
.

In this case, the database can use an index unique scan to locate the rowid for the
employee whose ID is 5.

Index Skip Scan An index skip scan uses logical subindexes of a composite index. The
database "skips" through a single index as if it were searching separate indexes. Skip
scanning is beneficial if there are few distinct values in the leading column of a
composite index and many distinct values in the nonleading key of the index.

The database may choose an index skip scan when the leading column of the
composite index is not specified in a query predicate. For example, assume that you
run the following query for a customer in the sh.customers table:

SELECT * FROM sh.customers WHERE cust_email = 'Abbey@company.com';

Overview of Indexes

Indexes and Index-Organized Tables 3-9

The customers table has a column cust_gender whose values are either M or F.
Assume that a composite index exists on the columns (cust_gender, cust_email).
Example 3–1 shows a portion of the index entries.

Example 3–1 Composite Index Entries

F,Wolf@company.com,rowid
F,Wolsey@company.com,rowid
F,Wood@company.com,rowid
F,Woodman@company.com,rowid
F,Yang@company.com,rowid
F,Zimmerman@company.com,rowid
M,Abbassi@company.com,rowid
M,Abbey@company.com,rowid

The database can use a skip scan of this index even though cust_gender is not
specified in the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of
distinct values in the leading column. In Example 3–1, the leading column has two
possible values. The database logically splits the index into one subindex with the key
F and a second subindex with the key M.

When searching for the record for the customer whose email is Abbey@company.com,
the database searches the subindex with the value F first and then searches the
subindex with the value M. Conceptually, the database processes the query as follows:

SELECT * FROM sh.customers WHERE cust_gender = 'F'
 AND cust_email = 'Abbey@company.com'
UNION ALL
SELECT * FROM sh.customers WHERE cust_gender = 'M'
 AND cust_email = 'Abbey@company.com';

Index Clustering Factor The index clustering factor measures row order in relation to an
indexed value such as employee last name. The more order that exists in row storage
for this value, the lower the clustering factor.

The clustering factor is useful as a rough measure of the number of I/Os required to
read an entire table by means of an index:

■ If the clustering factor is high, then Oracle Database performs a relatively high
number of I/Os during a large index range scan. The index entries point to
random table blocks, so the database may have to read and reread the same blocks
over and over again to retrieve the data pointed to by the index.

■ If the clustering factor is low, then Oracle Database performs a relatively low
number of I/Os during a large index range scan. The index keys in a range tend to
point to the same data block, so the database does not have to read and reread the
same blocks over and over.

The clustering factor is relevant for index scans because it can show:

■ Whether the database will use an index for large range scans

■ The degree of table organization in relation to the index key

■ Whether you should consider using an index-organized table, partitioning, or
table cluster if rows must be ordered by the index key

See Also: Oracle Database Performance Tuning Guide to learn more
about skip scans

Overview of Indexes

3-10 Oracle Database Concepts

For example, assume that the employees table fits into two data blocks. Table 3–1
depicts the rows in the two data blocks (the ellipses indicate data that is not shown).

Rows are stored in the blocks in order of last name (shown in bold). For example, the
bottom row in data block 1 describes Abel, the next row up describes Ande, and so on
alphabetically until the top row in block 1 for Steven King. The bottom row in block 2
describes Kochar, the next row up describes Kumar, and so on alphabetically until the
last row in the block for Zlotkey.

Assume that an index exists on the last name column. Each name entry corresponds to
a rowid. Conceptually, the index entries would look as follows:

Abel,block1row1
Ande,block1row2
Atkinson,block1row3
Austin,block1row4
Baer,block1row5
.
.
.
Assume that a separate index exists on the employee ID column. Conceptually, the
index entries might look as follows, with employee IDs distributed in almost random
locations throughout the two blocks:

100,block1row50
101,block2row1
102,block1row9
103,block2row19
104,block2row39
105,block1row4
.
.
.
Example 3–2 queries the ALL_INDEXES view for the clustering factor for these two
indexes. The clustering factor for EMP_NAME_IX is low, which means that adjacent index
entries in a single leaf block tend to point to rows in the same data blocks. The
clustering factor for EMP_EMP_ID_PK is high, which means that adjacent index entries in
the same leaf block are much less likely to point to rows in the same data blocks.

Example 3–2 Clustering Factor

SQL> SELECT INDEX_NAME, CLUSTERING_FACTOR
 2 FROM ALL_INDEXES

Table 3–1 Contents of Two Data Blocks in the Employees Table

Data Block 1 Data Block 2

100 Steven King SKING ...
156 Janette King JKING ...
115 Alexander Khoo AKHOO ...
.
.
.
116 Shelli Baida SBAIDA ...
204 Hermann Baer HBAER ...
105 David Austin DAUSTIN ...
130 Mozhe Atkinson MATKINSO ...
166 Sundar Ande SANDE ...
174 Ellen Abel EABEL ...

149 Eleni Zlotkey EZLOTKEY ...
200 Jennifer Whalen JWHALEN ...
.
.
.
137 Renske Ladwig RLADWIG ...
173 Sundita Kumar SKUMAR ...
101 Neena Kochar NKOCHHAR ...

Overview of Indexes

Indexes and Index-Organized Tables 3-11

 3 WHERE INDEX_NAME IN ('EMP_NAME_IX','EMP_EMP_ID_PK');

INDEX_NAME CLUSTERING_FACTOR
-------------------- -----------------
EMP_EMP_ID_PK 19
EMP_NAME_IX 2

Reverse Key Indexes
A reverse key index is a type of B-tree index that physically reverses the bytes of each
index key while keeping the column order. For example, if the index key is 20, and if
the two bytes stored for this key in hexadecimal are C1,15 in a standard B-tree index,
then a reverse key index stores the bytes as 15,C1.

Reversing the key solves the problem of contention for leaf blocks in the right side of a
B-tree index. This problem can be especially acute in an Oracle Real Application
Clusters (Oracle RAC) database in which multiple instances repeatedly modify the
same block. For example, in an orders table the primary keys for orders are sequential.
One instance in the cluster adds order 20, while another adds 21, with each instance
writing its key to the same leaf block on the right-hand side of the index.

In a reverse key index, the reversal of the byte order distributes inserts across all leaf
keys in the index. For example, keys such as 20 and 21 that would have been adjacent
in a standard key index are now stored far apart in separate blocks. Thus, I/O for
insertions of sequential keys is more evenly distributed.

Because the data in the index is not sorted by column key when it is stored, the reverse
key arrangement eliminates the ability to run an index range scanning query in some
cases. For example, if a user issues a query for order IDs greater than 20, then the
database cannot start with the block containing this ID and proceed horizontally
through the leaf blocks.

Ascending and Descending Indexes
In an ascending index, Oracle Database stores data in ascending order. By default,
character data is ordered by the binary values contained in each byte of the value,
numeric data from smallest to largest number, and date from earliest to latest value.

For an example of an ascending index, consider the following SQL statement:

CREATE INDEX emp_deptid_ix ON hr.employees(department_id);

Oracle Database sorts the hr.employees table on the department_id column. It loads
the ascending index with the department_id and corresponding rowid values in
ascending order, starting with 0. When it uses the index, Oracle Database searches the
sorted department_id values and uses the associated rowids to locate rows having the
requested department_id value.

By specifying the DESC keyword in the CREATE INDEX statement, you can create a
descending index. In this case, the index stores data on a specified column or columns
in descending order. If the index in Figure 3–1 on the employees.department_id
column were descending, then the leaf blocking containing 250 would be on the left
side of the tree and block with 0 on the right. The default search through a descending
index is from highest to lowest value.

See Also: Oracle Database Reference to learn about ALL_INDEXES

See Also: Oracle Database Performance Tuning Guide to learn about
design considerations for reverse key indexes

Overview of Indexes

3-12 Oracle Database Concepts

Descending indexes are useful when a query sorts some columns ascending and others
descending. For an example, assume that you create a composite index on the
last_name and department_id columns as follows:

CREATE INDEX emp_name_dpt_ix ON hr.employees(last_name ASC, department_id DESC);

If a user queries hr.employees for last names in ascending order (A to Z) and
department IDs in descending order (high to low), then the database can use this index
to retrieve the data and avoid the extra step of sorting it.

Key Compression
Oracle Database can use key compression to compress portions of the primary key
column values in a B-tree index or an index-organized table. Key compression can
greatly reduce the space consumed by the index.

In general, index keys have two pieces, a grouping piece and a unique piece. Key
compression breaks the index key into a prefix entry, which is the grouping piece, and
a suffix entry, which is the unique or nearly unique piece. The database achieves
compression by sharing the prefix entries among the suffix entries in an index block.

By default, the prefix of a unique index consists of all key columns excluding the last
one, whereas the prefix of a nonunique index consists of all key columns. For example,
suppose that you create a composite index on the oe.orders table as follows:

CREATE INDEX orders_mod_stat_ix ON orders (order_mode, order_status);

Many repeated values occur in the order_mode and order_status columns. An index
block may have entries as shown in Example 3–3.

Example 3–3 Index Entries in Orders Table

online,0,AAAPvCAAFAAAAFaAAa
online,0,AAAPvCAAFAAAAFaAAg
online,0,AAAPvCAAFAAAAFaAAl
online,2,AAAPvCAAFAAAAFaAAm
online,3,AAAPvCAAFAAAAFaAAq
online,3,AAAPvCAAFAAAAFaAAt

In Example 3–3, the key prefix would consist of a concatenation of the order_mode and
order_status values. If this index were created with default key compression, then
duplicate key prefixes such as online,0 and online,2 would be compressed.
Conceptually, the database achieves compression as shown in the following example:

online,0
AAAPvCAAFAAAAFaAAa
AAAPvCAAFAAAAFaAAg
AAAPvCAAFAAAAFaAAl

See Also:

■ Oracle Database Performance Tuning Guide to learn more about
ascending and descending index searches

■ Oracle Database SQL Language Reference for descriptions of the ASC
and DESC options of CREATE INDEX

Note: If a key is not defined to have a unique piece, then the
database provides one by appending a rowid to the grouping piece.

Overview of Indexes

Indexes and Index-Organized Tables 3-13

online,2
AAAPvCAAFAAAAFaAAm
online,3
AAAPvCAAFAAAAFaAAq
AAAPvCAAFAAAAFaAAt

Suffix entries form the compressed version of index rows. Each suffix entry references
a prefix entry, which is stored in the same index block as the suffix entry.

Alternatively, you could specify a prefix length when creating a compressed index. For
example, if you specified prefix length 1, then the prefix would be order_mode and the
suffix would be order_status,rowid. For the values in Example 3–3, the index would
factor out duplicate occurrences of online as follows:

online
0,AAAPvCAAFAAAAFaAAa
0,AAAPvCAAFAAAAFaAAg
0,AAAPvCAAFAAAAFaAAl
2,AAAPvCAAFAAAAFaAAm
3,AAAPvCAAFAAAAFaAAq
3,AAAPvCAAFAAAAFaAAt

The index stores a specific prefix once per leaf block at most. Only keys in the leaf
blocks of a B-tree index are compressed. In the branch blocks the key suffix can be
truncated, but the key is not compressed.

Bitmap Indexes
In a bitmap index, the database stores a bitmap for each index key. In a conventional
B-tree index, one index entry points to a single row. In a bitmap index, each index key
stores pointers to multiple rows.

Bitmap indexes are primarily designed for data warehousing or environments in
which queries reference many columns in an ad hoc fashion. Situations that may call
for a bitmap index include:

■ The indexed columns have low cardinality, that is, the number of distinct values is
small compared to the number of table rows.

■ The indexed table is either read-only or not subject to significant modification by
DML statements.

For a data warehouse example, the sh.customers table has a cust_gender column
with only two possible values: M and F. Suppose that queries for the number of
customers of a particular gender are common. In this case, the
customers.cust_gender column would be a candidate for a bitmap index.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then the row
with the corresponding rowid contains the key value. A mapping function converts
the bit position to an actual rowid, so the bitmap index provides the same functionality
as a B-tree index although it uses a different internal representation.

See Also:

■ Oracle Database Administrator's Guide to learn how to use
compressed indexes

■ Oracle Database VLDB and Partitioning Guide to learn how to use
key compression for partitioned indexes

■ Oracle Database SQL Language Reference for descriptions of the
key_compression clause of CREATE INDEX

Overview of Indexes

3-14 Oracle Database Concepts

If the indexed column in a single row is updated, then the database locks the index
key entry (for example, M or F) and not the individual bit mapped to the updated row.
Because a key points to many rows, DML on indexed data typically locks all of these
rows. For this reason, bitmap indexes are not appropriate for many OLTP applications.

Bitmap Indexes on a Single Table
Example 3–4 shows a query of the sh.customers table. Some columns in this table are
candidates for a bitmap index.

Example 3–4 Query of customers Table

SQL> SELECT cust_id, cust_last_name, cust_marital_status, cust_gender
 2 FROM sh.customers
 3 WHERE ROWNUM < 8 ORDER BY cust_id;

 CUST_ID CUST_LAST_ CUST_MAR C
---------- ---------- -------- -
 1 Kessel M
 2 Koch F
 3 Emmerson M
 4 Hardy M
 5 Gowen M
 6 Charles single F
 7 Ingram single F

7 rows selected.

The cust_marital_status and cust_gender columns have low cardinality, whereas
cust_id and cust_last_name do not. Thus, bitmap indexes may be appropriate on
cust_marital_status and cust_gender. A bitmap index is probably not useful for the
other columns. Instead, a unique B-tree index on these columns would likely provide
the most efficient representation and retrieval.

Table 3–2 illustrates the bitmap index for the cust_gender column output shown in
Example 3–4. It consists of two separate bitmaps, one for each gender.

A mapping function converts each bit in the bitmap to a rowid of the customers table.
Each bit value depends on the values of the corresponding row in the table. For
example, the bitmap for the M value contains a 1 as its first bit because the gender is M
in the first row of the customers table. The bitmap cust_gender='M' has a 0 for its the
bits in rows 2, 6, and 7 because these rows do not contain M as their value.

See Also:

■ Oracle Database Performance Tuning Guide to learn how to use
bitmap indexes for performance

■ Oracle Database Data Warehousing Guide to learn how to use bitmap
indexes in a data warehouse

Table 3–2 Sample Bitmap

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

M 1 0 1 1 1 0 0

F 0 1 0 0 0 1 1

Overview of Indexes

Indexes and Index-Organized Tables 3-15

An analyst investigating demographic trends of the customers may ask, "How many
of our female customers are single or divorced?" This question corresponds to the
following SQL query:

SELECT COUNT(*)
FROM customers
WHERE cust_gender = 'F'
AND cust_marital_status IN ('single', 'divorced');

Bitmap indexes can process this query efficiently by counting the number of 1 values
in the resulting bitmap, as illustrated in Table 3–3. To identify the customers who
satisfy the criteria, Oracle Database can use the resulting bitmap to access the table.

Bitmap indexing efficiently merges indexes that correspond to several conditions in a
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This technique improves response time, often dramatically.

Bitmap Join Indexes
A bitmap join index is a bitmap index for the join of two or more tables. For each
value in a table column, the index stores the rowid of the corresponding row in the
indexed table. In contrast, a standard bitmap index is created on a single table.

A bitmap join index is an efficient means of reducing the volume of data that must be
joined by performing restrictions in advance. For an example of when a bitmap join
index would be useful, assume that users often query the number of employees with a
particular job type. A typical query might look as follows:

SELECT COUNT(*)
FROM employees, jobs
WHERE employees.job_id = jobs.job_id
AND jobs.job_title = 'Accountant';

The preceding query would typically use an index on jobs.job_title to retrieve the
rows for Accountant and then the job ID, and an index on employees.job_id to find
the matching rows. To retrieve the data from the index itself rather than from a scan of
the tables, you could create a bitmap join index as follows:

CREATE BITMAP INDEX employees_bm_idx
ON employees (jobs.job_title)
FROM employees, jobs
WHERE employees.job_id = jobs.job_id;

Note: Bitmap indexes can include keys that consist entirely of null
values, unlike B-tree indexes. Indexing nulls can be useful for some
SQL statements, such as queries with the aggregate function COUNT.

Table 3–3 Sample Bitmap

Value Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

M 1 0 1 1 1 0 0

F 0 1 0 0 0 1 1

single 0 0 0 0 0 1 1

divorced 0 0 0 0 0 0 0

single or
divorced, and F

0 0 0 0 0 1 1

Overview of Indexes

3-16 Oracle Database Concepts

As illustrated in Figure 3–2, the index key is jobs.job_title and the indexed table is
employees.

Figure 3–2 Bitmap Join Index

Conceptually, employees_bm_idx is an index of the jobs.title column in the SQL
query shown in Example 3–5 (sample output included). The job_title key in the
index points to rows in the employees table. A query of the number of accountants can
use the index to avoid accessing the employees and jobs tables because the index itself
contains the requested information.

Example 3–5 Join of employees and jobs Tables

SELECT jobs.job_title AS "jobs.job_title", employees.rowid AS "employees.rowid"
FROM employees, jobs
WHERE employees.job_id = jobs.job_id
ORDER BY job_title;

jobs.job_title employees.rowid
----------------------------------- ------------------
Accountant AAAQNKAAFAAAABSAAL
Accountant AAAQNKAAFAAAABSAAN
Accountant AAAQNKAAFAAAABSAAM
Accountant AAAQNKAAFAAAABSAAJ
Accountant AAAQNKAAFAAAABSAAK
Accounting Manager AAAQNKAAFAAAABTAAH
Administration Assistant AAAQNKAAFAAAABTAAC
Administration Vice President AAAQNKAAFAAAABSAAC
Administration Vice President AAAQNKAAFAAAABSAAB
.
.

CREATE BITMAP INDEX employees_bm_idx
ON employees (jobs.job_title)
FROM employees, jobs
WHERE employees.job_id = jobs.job_id

Indexed table is employees

Index key is jobs.job_title

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

hire_date

07–Jun–94
07–Jun–94
07–Jun–94
07–Jun–94

salary

6500
10000
12000
8300

department_id

40
70
110
110

.

employees

job_id job_title min_salary

4000
4000
4500
6000

Marketing Representative
Human Resources Representative
Public Relations Representative
Sales Representative

MK_REP
HR_REP
PR_REP
SA_REP

max_salary

9000
9000
10500
12008

.

jobs

Overview of Indexes

Indexes and Index-Organized Tables 3-17

.

In a data warehouse, the join condition is an equijoin (it uses the equality operator)
between the primary key columns of the dimension tables and the foreign key
columns in the fact table. Bitmap join indexes are sometimes much more efficient in
storage than materialized join views, an alternative for materializing joins in advance.

Bitmap Storage Structure
Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.
For example, if jobs.job_title is the key column of a bitmap index, then the index
data is stored in one B-tree. The individual bitmaps are stored in the leaf blocks.

Assume that the jobs.job_title column has unique values Shipping Clerk, Stock
Clerk, and several others. A bitmap index entry for this index has the following
components:

■ The job title as the index key

■ A low rowid and high rowid for a range of rowids

■ A bitmap for specific rowids in the range

Conceptually, an index leaf block in this index could contain entries as follows:

Shipping Clerk,AAAPzRAAFAAAABSABQ,AAAPzRAAFAAAABSABZ,0010000100
Shipping Clerk,AAAPzRAAFAAAABSABa,AAAPzRAAFAAAABSABh,010010
Stock Clerk,AAAPzRAAFAAAABSAAa,AAAPzRAAFAAAABSAAc,1001001100
Stock Clerk,AAAPzRAAFAAAABSAAd,AAAPzRAAFAAAABSAAt,0101001001
Stock Clerk,AAAPzRAAFAAAABSAAu,AAAPzRAAFAAAABSABz,100001
.
.
.

The same job title appears in multiple entries because the rowid range differs.

Assume that a session updates the job ID of one employee from Shipping Clerk to
Stock Clerk. In this case, the session requires exclusive access to the index key entry
for the old value (Shipping Clerk) and the new value (Stock Clerk). Oracle Database
locks the rows pointed to by these two entries—but not the rows pointed to by
Accountant or any other key—until the UPDATE commits.

The data for a bitmap index is stored in one segment. Oracle Database stores each
bitmap in one or more pieces. Each piece occupies part of a single data block.

Function-Based Indexes
You can create indexes on functions and expressions that involve one or more columns
in the table being indexed. A function-based index computes the value of a function
or expression involving one or more columns and stores it in the index. A
function-based index can be either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a SQL function, user-defined PL/SQL function, package
function, or C callout. For example, a function could add the values in two columns.

See Also: Oracle Database Data Warehousing Guide for more
information on bitmap join indexes

See Also: "User Segments" on page 12-21

Overview of Indexes

3-18 Oracle Database Concepts

Uses of Function-Based Indexes
Function-based indexes are efficient for evaluating statements that contain functions in
their WHERE clauses. The database only uses the function-based index when the
function is included in a query. When the database processes INSERT and UPDATE
statements, however, it must still evaluate the function to process the statement.

For example, suppose you create the following function-based index:

CREATE INDEX emp_total_sal_idx
 ON employees (12 * salary * commission_pct, salary, commission_pct);

The database can use the preceding index when processing queries such as
Example 3–6 (partial sample output included).

Example 3–6 Query Containing an Arithmetic Expression

SELECT employee_id, last_name, first_name,
 12*salary*commission_pct AS "ANNUAL SAL"
FROM employees
WHERE (12 * salary * commission_pct) < 30000
ORDER BY "ANNUAL SAL" DESC;

EMPLOYEE_ID LAST_NAME FIRST_NAME ANNUAL SAL
----------- ------------------------- -------------------- ----------
 159 Smith Lindsey 28800
 151 Bernstein David 28500
 152 Hall Peter 27000
 160 Doran Louise 27000
 175 Hutton Alyssa 26400
 149 Zlotkey Eleni 25200
 169 Bloom Harrison 24000

Function-based indexes defined on the SQL functions UPPER(column_name) or
LOWER(column_name) facilitate case-insensitive searches. For example, suppose that the
first_name column in employees contains mixed-case characters. You create the
following function-based index on the hr.employees table:

CREATE INDEX emp_fname_uppercase_idx
ON employees (UPPER(first_name));

The emp_fname_uppercase_idx index can facilitate queries such as the following:

SELECT *
FROM employees
WHERE UPPER(first_name) = 'AUDREY';

A function-based index is also useful for indexing only specific rows in a table. For
example, the cust_valid column in the sh.customers table has either I or A as a value.
To index only the A rows, you could write a function that returns a null value for any
rows other than the A rows. You could create the index as follows:

See Also:

■ Oracle Database Administrator's Guide to learn how to create
function-based indexes

■ Oracle Database Performance Tuning Guide for more information
about using function-based indexes

■ Oracle Database SQL Language Reference for restrictions and
usage notes for function-based indexes

Overview of Indexes

Indexes and Index-Organized Tables 3-19

CREATE INDEX cust_valid_idx
ON customers (CASE cust_valid WHEN 'A' THEN 'A' END);

Optimization with Function-Based Indexes
The optimizer can use an index range scan on a function-based index for queries with
expressions in WHERE clause. The range scan access path is especially beneficial when
the predicate (WHERE clause) has low selectivity. In Example 3–6 the optimizer can use
an index range scan if an index is built on the expression 12*salary*commission_pct.

A virtual column is useful for speeding access to data derived from expressions. For
example, you could define virtual column annual_sal as 12*salary*commission_pct
and create a function-based index on annual_sal.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

Application Domain Indexes
An application domain index is a customized index specific to an application. Oracle
Database provides extensible indexing to do the following:

■ Accommodate indexes on customized, complex data types such as documents,
spatial data, images, and video clips (see "Unstructured Data" on page 19-11)

■ Make use of specialized indexing techniques

You can encapsulate application-specific index management routines as an indextype
schema object and define a domain index on table columns or attributes of an object
type. Extensible indexing can efficiently process application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The database interacts with the application to build, maintain, and
search the domain index. The index structure itself can be stored in the database as an
index-organized table or externally as a file.

See Also:

■ Oracle Database Globalization Support Guide for information about
linguistic indexes

■ Oracle Database SQL Language Reference to learn more about SQL
functions

See Also:

■ "Overview of the Optimizer" on page 7-10

■ Oracle Database Performance Tuning Guide for more information
about gathering statistics

■ Oracle Database Administrator's Guide to learn how to add virtual
columns to a table

See Also: Oracle Database Data Cartridge Developer's Guide for
information about using data cartridges within the Oracle Database
extensibility architecture

Overview of Index-Organized Tables

3-20 Oracle Database Concepts

Index Storage
Oracle Database stores index data in an index segment. Space available for index data
in a data block is the data block size minus block overhead, entry overhead, rowid,
and one length byte for each value indexed.

The tablespace of an index segment is either the default tablespace of the owner or a
tablespace specifically named in the CREATE INDEX statement. For ease of
administration you can store an index in a separate tablespace from its table. For
example, you may choose not to back up tablespaces containing only indexes, which
can be rebuilt, and so decrease the time and storage required for backups.

Overview of Index-Organized Tables
An index-organized table is a table stored in a variation of a B-tree index structure. In
a heap-organized table, rows are inserted where they fit. In an index-organized table,
rows are stored in an index defined on the primary key for the table. Each index entry
in the B-tree also stores the non-key column values. Thus, the index is the data, and the
data is the index. Applications manipulate index-organized tables just like
heap-organized tables, using SQL statements.

For an analogy of an index-organized table, suppose a human resources manager has a
book case of cardboard boxes. Each box is labeled with a number—1, 2, 3, 4, and so
on—but the boxes do not sit on the shelves in sequential order. Instead, each box
contains a pointer to the shelf location of the next box in the sequence.

Folders containing employee records are stored in each box. The folders are sorted by
employee ID. Employee King has ID 100, which is the lowest ID, so his folder is at the
bottom of box 1. The folder for employee 101 is on top of 100, 102 is on top of 101, and
so on until box 1 is full. The next folder in the sequence is at the bottom of box 2.

In this analogy, ordering folders by employee ID makes it possible to search efficiently
for folders without having to maintain a separate index. Suppose a user requests the
records for employees 107, 120, and 122. Instead of searching an index in one step and
retrieving the folders in a separate step, the manager can search the folders in
sequential order and retrieve each folder as found.

Index-organized tables provide faster access to table rows by primary key or a valid
prefix of the key. The presence of non-key columns of a row in the leaf block avoids an
additional data block I/O. For example, the salary of employee 100 is stored in the
index row itself. Also, because rows are stored in primary key order, range access by
the primary key or prefix involves minimal block I/Os. Another benefit is the
avoidance of the space overhead of a separate primary key index.

Index-organized tables are useful when related pieces of data must be stored together
or data must be physically stored in a specific order. This type of table is often used for
information retrieval, spatial (see "Overview of Oracle Spatial" on page 19-14), and
OLAP applications (see "OLAP" on page 17-19).

See Also: Chapter 12, "Logical Storage Structures"

Overview of Index-Organized Tables

Indexes and Index-Organized Tables 3-21

Index-Organized Table Characteristics
The database system performs all operations on index-organized tables by
manipulating the B-tree index structure. Table 3–4 summarizes the differences between
index-organized tables and heap-organized tables.

Figure 3–3 illustrates the structure of an index-organized departments table. The leaf
blocks contain the rows of the table, ordered sequentially by primary key. For example,
the first value in the first leaf block shows a department ID of 20, department name of
Marketing, manager ID of 201, and location ID of 1800.

See Also:

■ Oracle Database Administrator's Guide to learn how to manage
index-organized tables

■ Oracle Database Performance Tuning Guide to learn how to use
index-organized tables to improve performance

■ Oracle Database SQL Language Reference for CREATE TABLE ...
ORGANIZATION INDEX syntax and semantics

Table 3–4 Comparison of Heap-Organized Tables with Index-Organized Tables

Heap-Organized Table Index-Organized Table

The rowid uniquely identifies a row. Primary
key constraint may optionally be defined.

Primary key uniquely identifies a row.
Primary key constraint must be defined.

Physical rowid in ROWID pseudocolumn
allows building secondary indexes.

Logical rowid in ROWID pseudocolumn allows
building secondary indexes.

Individual rows may be accessed directly by
rowid.

Access to individual rows may be achieved
indirectly by primary key.

Sequential full table scan returns all rows in
some order.

A full index scan or fast full index scan
returns all rows in some order.

Can be stored in a table cluster with other
tables.

Cannot be stored in a table cluster.

Can contain a column of the LONG data type
and columns of LOB data types.

Can contain LOB columns but not LONG
columns.

Can contain virtual columns (only relational
heap tables are supported).

Cannot contain virtual columns.

Overview of Index-Organized Tables

3-22 Oracle Database Concepts

Figure 3–3 Index-Organized Table

An index-organized table stores all data in the same structure and does not need to
store the rowid. As shown in Figure 3–3, leaf block 1 in an index-organized table might
contain entries as follows, ordered by primary key:

20,Marketing,201,1800
30,Purchasing,114,1700

Leaf block 2 in an index-organized table might contain entries as follows:

50,Shipping,121,1500
60,IT,103,1400

A scan of the index-organized table rows in primary key order reads the blocks in the
following sequence:

1. Block 1

2. Block 2

To contrast data access in a heap-organized table to an index-organized table, suppose
block 1 of a heap-organized departments table segment contains rows as follows:

50,Shipping,121,1500
20,Marketing,201,1800

Block 2 contains rows for the same table as follows:

30,Purchasing,114,1700
60,IT,103,1400

. . .

61..68
69..73
74..85
....
98..100

50,Shipping,121,1500
60,IT,103,1400

200,Operations,,1700
210,IT Support,,1700
220,NOC,,1700

260,Recruiting,,1700
270,Payroll,,1700

20,Marketing,201,1800
30,Purchasing,114,1700

0..60
61..100
101..160
....
200..270

.

0..30
31..60

200..220
221..230
....
260..270

Branch Blocks

Leaf Blocks

Overview of Index-Organized Tables

Indexes and Index-Organized Tables 3-23

A B-tree index leaf block for this heap-organized table contains the following entries,
where the first value is the primary key and the second is the rowid:

20,AAAPeXAAFAAAAAyAAD
30,AAAPeXAAFAAAAAyAAA
50,AAAPeXAAFAAAAAyAAC
60,AAAPeXAAFAAAAAyAAB

A scan of the table rows in primary key order reads the table segment blocks in the
following sequence:

1. Block 1

2. Block 2

3. Block 1

4. Block 2

Thus, the number of block I/Os in this example is double the number in the
index-organized example.

Index-Organized Tables with Row Overflow Area
When creating an index-organized table, you can specify a separate segment as a row
overflow area. In index-organized tables, B-tree index entries can be large because
they contain an entire row, so a separate segment to contain the entries is useful. In
contrast, B-tree entries are usually small because they consist of the key and rowid.

If a row overflow area is specified, then the database can divide a row in an
index-organized table into the following parts:

■ The index entry

This part contains column values for all the primary key columns, a physical
rowid that points to the overflow part of the row, and optionally a few of the
non-key columns. This part is stored in the index segment.

■ The overflow part

This part contains column values for the remaining non-key columns. This part is
stored in the overflow storage area segment.

Secondary Indexes on Index-Organized Tables
A secondary index is an index on an index-organized table. In a sense, it is an index on
an index. The secondary index is an independent schema object and is stored
separately from the index-organized table.

See Also:

■ "Table Organization" on page 2-18

■ "Introduction to Logical Storage Structures" on page 12-1

See Also:

■ Oracle Database Administrator's Guide to learn how to use the
OVERFLOW clause of CREATE TABLE to set a row overflow area

■ Oracle Database SQL Language Reference for CREATE TABLE ...
OVERFLOW syntax and semantics

Overview of Index-Organized Tables

3-24 Oracle Database Concepts

As explained in "Rowid Data Types" on page 2-13, Oracle Database uses row
identifiers called logical rowids for index-organized tables. A logical rowid is a
base64-encoded representation of the table primary key. The logical rowid length
depends on the primary key length.

Rows in index leaf blocks can move within or between blocks because of insertions.
Rows in index-organized tables do not migrate as heap-organized rows do (see
"Chained and Migrated Rows" on page 12-16). Because rows in index-organized tables
do not have permanent physical addresses, the database uses logical rowids based on
primary key.

For example, assume that the departments table is index-organized. The location_id
column stores the ID of each department. The table stores rows as follows, with the
last value as the location ID:

10,Administration,200,1700
20,Marketing,201,1800
30,Purchasing,114,1700
40,Human Resources,203,2400

A secondary index on the location_id column might have index entries as follows,
where the value following the comma is the logical rowid:

1700,*BAFAJqoCwR/+
1700,*BAFAJqoCwQv+
1800,*BAFAJqoCwRX+
2400,*BAFAJqoCwSn+

Secondary indexes provide fast and efficient access to index-organized tables using
columns that are neither the primary key nor a prefix of the primary key. For example,
a query of the names of departments whose ID is greater than 1700 could use the
secondary index to speed data access.

Logical Rowids and Physical Guesses
Secondary indexes use the logical rowids to locate table rows. A logical rowid includes
a physical guess, which is the physical rowid of the index entry when it was first
made. Oracle Database can use physical guesses to probe directly into the leaf block of
the index-organized table, bypassing the primary key search. When the physical
location of a row changes, the logical rowid remains valid even if it contains a physical
guess that is stale.

For a heap-organized table, access by a secondary index involves a scan of the
secondary index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use and
accuracy of physical guesses:

■ Without physical guesses, access involves two index scans: a scan of the secondary
index followed by a scan of the primary key index.

■ With physical guesses, access depends on their accuracy:

– With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

See Also:

■ Oracle Database Administrator's Guide to learn how to create
secondary indexes on an index-organized table

■ Oracle Database VLDB and Partitioning Guide to learn about
creating secondary indexes on indexed-organized table partitions

Overview of Index-Organized Tables

Indexes and Index-Organized Tables 3-25

– With inaccurate physical guesses, access involves a secondary index scan and
an I/O to fetch the wrong data block (as indicated by the guess), followed by
an index unique scan of the index organized table by primary key value.

Bitmap Indexes on Index-Organized Tables
A secondary index on an index-organized table can be a bitmap index. As explained
in "Bitmap Indexes" on page 3-13, a bitmap index stores a bitmap for each index key.

When bitmap indexes exist on an index-organized table, all the bitmap indexes use a
heap-organized mapping table. The mapping table stores the logical rowids of the
index-organized table. Each mapping table row stores one logical rowid for the
corresponding index-organized table row.

The database accesses a bitmap index using a search key. If the database finds the key,
then the bitmap entry is converted to a physical rowid. With heap-organized tables,
the database uses the physical rowid to access the base table. With index-organized
tables, the database uses the physical rowid to access the mapping table, which in turn
yields a logical rowid that the database uses to access the index-organized table.
Figure 3–4 illustrates index access for a query of the departments_iot table.

Figure 3–4 Bitmap Index on Index-Organized Table

Note: Movement of rows in an index-organized table does not leave
the bitmap indexes built on that index-organized table unusable.

See Also: "Rowids of Row Pieces" on page 2-19

1800
Select * from departments_iot
where location_id = 1800

location id, physical rowid in mapping table

1800 AAAPeXAAFAAAAAyAAD1800, AAAPeXAAFAAAAAyAAD
1900, AABPeXAAFAAAAAyAAE

Index-Organized Table

20, Marketing, 201, 180020, Marketing, 201, 1800

Index of Mapping Table

logical rowid in IOT

*BAFAJqoCwRX+*BAFAJqoCwRX+
*BAGAJqoCwRX+

Mapping Table

Overview of Index-Organized Tables

3-26 Oracle Database Concepts

4

Partitions, Views, and Other Schema Objects 4-1

4Partitions, Views, and Other Schema Objects

Although tables and indexes are the most important and commonly used schema
objects, the database supports many other types of schema objects, the most common
of which are discussed in this chapter.

This chapter contains the following sections:

■ Overview of Partitions

■ Overview of Views

■ Overview of Materialized Views

■ Overview of Sequences

■ Overview of Dimensions

■ Overview of Synonyms

Overview of Partitions
Partitioning enables you to decompose very large tables and indexes into smaller and
more manageable pieces called partitions. Each partition is an independent object with
its own name and optionally its own storage characteristics.

For an analogy that illustrates partitioning, suppose an HR manager has one big box
that contains employee folders. Each folder lists the employee hire date. Queries are
often made for employees hired in a particular month. One approach to satisfying
such requests is to create an index on employee hire date that specifies the locations of
the folders scattered throughout the box. In contrast, a partitioning strategy uses many
smaller boxes, with each box containing folders for employees hired in a given month.

Using smaller boxes has several advantages. When asked to retrieve the folders for
employees hired in June, the HR manager can retrieve the June box. Furthermore, if
any small box is temporarily damaged, the other small boxes remain available.
Moving offices also becomes easier because instead of moving a single heavy box, the
manager can move several small boxes.

From the perspective of an application, only one schema object exists. DML statements
require no modification to access partitioned tables. Partitioning is useful for many
different types of database applications, particularly those that manage large volumes
of data. Benefits include:

■ Increased availability

The unavailability of a partition does not entail the unavailability of the object. The
query optimizer automatically removes unreferenced partitions from the query
plan so queries are not affected when the partitions are unavailable.

Overview of Partitions

4-2 Oracle Database Concepts

■ Easier administration of schema objects

A partitioned object has pieces that can be managed either collectively or
individually. DDL statements can manipulate partitions rather than entire tables
or indexes. Thus, you can break up resource-intensive tasks such as rebuilding an
index or table. For example, you can move one table partition at a time. If a
problem occurs, then only the partition move must be redone, not the table move.
Also, dropping a partition avoids executing numerous DELETE statements.

■ Reduced contention for shared resources in OLTP systems

In some OLTP systems, partitions can decrease contention for a shared resource.
For example, DML is distributed over many segments rather than one segment.

■ Enhanced query performance in data warehouses

In a data warehouse, partitioning can speed processing of ad hoc queries. For
example, a sales table containing a million rows can be partitioned by quarter.

Partition Characteristics
Each partition of a table or index must have the same logical attributes, such as
column names, data types, and constraints. For example, all partitions in a table share
the same column and constraint definitions, and all partitions in an index share the
same indexed columns. However, each partition can have separate physical attributes,
such as the tablespace to which it belongs.

Partition Key
The partition key is a set of one or more columns that determines the partition in
which each row in a partitioned table should go. Each row is unambiguously assigned
to a single partition.

In the sales table, you could specify the time_id column as the key of a range
partition. The database assigns rows to partitions based on whether the date in this
column falls in a specified range. Oracle Database automatically directs insert, update,
and delete operations to the appropriate partition by using the partition key.

Partitioning Strategies
Oracle Partitioning offers several partitioning strategies that control how the database
places data into partitions. The basic strategies are range, list, and hash partitioning.

A single-level partitioning strategy uses only one method of data distribution, for
example, only list partitioning or only range partitioning. In composite partitioning, a
table is partitioned by one data distribution method and then each partition is further
divided into subpartitions using a second data distribution method. For example, you
could use a list partition for channel_id and a range subpartition for time_id.

Range Partitioning In range partitioning, the database maps rows to partitions based on
ranges of values of the partitioning key. Range partitioning is the most common type
of partitioning and is often used with dates.

Suppose that you want to populate a partitioned table with the sales rows shown in
Example 4–1.

See Also: Oracle Database VLDB and Partitioning Guide for an
introduction to partitioning

Overview of Partitions

Partitions, Views, and Other Schema Objects 4-3

Example 4–1 Sample Row Set for Partitioned Table

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 116 11393 05-JUN-99 2 999 1 12.18
 40 100530 30-NOV-98 9 33 1 44.99
 118 133 06-JUN-01 2 999 1 17.12
 133 9450 01-DEC-00 2 999 1 31.28
 36 4523 27-JAN-99 3 999 1 53.89
 125 9417 04-FEB-98 3 999 1 16.86
 30 170 23-FEB-01 2 999 1 8.8
 24 11899 26-JUN-99 4 999 1 43.04
 35 2606 17-FEB-00 3 999 1 54.94
 45 9491 28-AUG-98 4 350 1 47.45

You create time_range_sales as a partitioned table using the statement in
Example 4–2. The time_id column is the partition key.

Example 4–2 Range-Partitioned Table

CREATE TABLE time_range_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
 (PARTITION SALES_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION SALES_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION SALES_2000 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY')),
 PARTITION SALES_2001 VALUES LESS THAN (MAXVALUE)
);

Afterward, you load time_range_sales with the rows from Example 4–1. Figure 4–1
shows the row distributions in the four partitions. The database chooses the partition
for each row based on the time_id value according to the rules specified in the
PARTITION BY RANGE clause.

Overview of Partitions

4-4 Oracle Database Concepts

Figure 4–1 Range Partitions

The range partition key value determines the high value of the range partitions, which
is called the transition point. In Figure 4–1, the SALES_1998 partition contains rows
with partitioning key time_id values less than the transition point 01-JAN-1999.

The database creates interval partitions for data beyond that transition point. Interval
partitions extend range partitioning by instructing the database to create partitions of
the specified range or interval automatically when data inserted into the table exceeds
all of the range partitions. In Figure 4–1, the SALES_2001 partition contains rows with
partitioning key time_id values greater than or equal to 01-JAN-2001.

List Partitioning In list partitioning, the database uses a list of discrete values as the
partition key for each partition. You can use list partitioning to control how individual
rows map to specific partitions. By using lists, you can group and organize related sets
of data when the key used to identify them is not conveniently ordered.

Assume that you create list_sales as a list-partitioned table using the statement in
Example 4–3. The channel_id column is the partition key.

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_1998

40
125

45

100530
9417
9491

30-NOV-98
04-FEB-98
28-AUG-98

9
3
4

33
999

350

1
1
1

44.99
16.86

 47.45

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_1999

116
36
24

11393
4523

11899

05-JUN-99
27-JAN-99
26-JUN-99

2
3
4

999
999
999

1
1
1

12.18
53.89

 43.04

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_2000

133
35

9450
2606

01-DEC-00
17-FEB-00

2
3

999
999

1
1

31.28
54.94

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_2001

118
30

133
170

06-JUN-01
23-FEB-01

2
2

999
999

1
1

17.12
8.8

Overview of Partitions

Partitions, Views, and Other Schema Objects 4-5

Example 4–3 List-Partitioned Table

CREATE TABLE list_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY LIST (channel_id)
 (PARTITION even_channels VALUES (2,4),
 PARTITION odd_channels VALUES (3,9)
);

Afterward, you load the table with the rows from Example 4–1. Figure 4–2 shows the
row distribution in the two partitions. The database chooses the partition for each row
based on the channel_id value according to the rules specified in the PARTITION BY
LIST clause. Rows with a channel_id value of 2 or 4 are stored in the EVEN_CHANNELS
partitions, while rows with a channel_id value of 3 or 9 are stored in the
ODD_CHANNELS partition.

Figure 4–2 List Partitions

Hash Partitioning In hash partitioning, the database maps rows to partitions based on a
hashing algorithm that the database applies to the user-specified partitioning key. The
destination of a row is determined by the internal hash function applied to the row by
the database. The hashing algorithm is designed to evenly distributes rows across
devices so that each partition contains about the same number of rows.

Hash partitioning is useful for dividing large tables to increase manageability. Instead
of one large table to manage, you have several smaller pieces. The loss of a single hash
partition does not affect the remaining partitions and can be recovered independently.
Hash partitioning is also useful in OLTP systems with high update contention. For

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition EVEN_CHANNELS

116
118
133

30
24
45

11393
133

9450
170

11899
9491

05-JUN-99
06-JUN-01
01-DEC-00
23-FEB-01
26-JUN-99
28-AUG-98

2
2
2
2
4
4

999
999
999
999
999
350

1
1
1
1
1
1

12.18
17.12
31.28

8.8
43.04
47.45

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition ODD_CHANNELS

40
36

125
35

100530
4523
9417
2606

30-NOV-98
27-JAN-99
04-FEB-98
17-FEB-00

9
3
3
3

33
999
999
999

1
1
1
1

44.99
53.89
16.86
54.94

Overview of Partitions

4-6 Oracle Database Concepts

example, a segment is divided into several pieces, each of which is updated, instead of
a single segment that experiences contention.

Assume that you create the partitioned hash_sales table using the statement in
Example 4–4. The prod_id column is the partition key.

Example 4–4 Hash-Partitioned Table

CREATE TABLE hash_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY HASH (prod_id)
PARTITIONS 2;

Afterward, you load the table with the rows from Example 4–1. Figure 4–3 shows a
possible row distribution in the two partitions. Note that the names of these partitions
are system-generated.

As you insert rows, the database attempts to randomly and evenly distribute them
across partitions. You cannot specify the partition into which a row is placed. The
database applies the hash function, whose outcome determines which partition
contains the row. If you change the number of partitions, then the database
redistributes the data over all of the partitions.

Figure 4–3 Hash Partitions

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SYS_P33

40
118

36
30
35

100530
133

4523
170

2606

30-NOV-98
06-JUN-01
27-JAN-99
23-FEB-01
17-FEB-00

9
2
3
2
3

33
999
999
999
999

1
1
1
1
1

44.99
17.12
53.89

8.8
54.94

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SYS_P34

116
133
125

24
45

11393
9450
9417

11899
9491

05-JUN-99
01-DEC-00
04-FEB-98
26-JUN-99
28-AUG-98

2
2
3
4
4

999
999
999
999
350

1
1
1
1
1

12.18
31.28
16.86
43.04
47.45

Overview of Partitions

Partitions, Views, and Other Schema Objects 4-7

Partitioned Tables
A partitioned table consists of one or more partitions, which are managed
individually and can operate independently of the other partitions. A table is either
partitioned or nonpartitioned. Even if a partitioned table consists of only one partition,
this table is different from a nonpartitioned table, which cannot have partitions added
to it. "Partition Characteristics" on page 4-2 gives examples of partitioned tables.

A partitioned table is made up of one or more table partition segments. If you create a
partitioned table named hash_products, then no table segment is allocated for this
table. Instead, the database stores data for each table partition in its own partition
segment. Each table partition segment contains a portion of the table data.

Some or all partitions of a heap-organized table can be stored in a compressed format.
Compression saves space and can speed query execution. Thus, compression can be
useful in environments such as data warehouses, where the amount of insert and
update operations is small, and in OLTP environments.

The attributes for table compression can be declared for a tablespace, table, or table
partition. If declared at the tablespace level, then tables created in the tablespace are
compressed by default. You can alter the compression attribute for a table, in which
case the change only applies to new data going into that table. Consequently, a single
table or partition may contain compressed and uncompressed blocks, which
guarantees that data size will not increase because of compression. If compression
could increase the size of a block, then the database does not apply it to the block.

Partitioned Indexes
A partitioned index is an index that, like a partitioned table, has been decomposed
into smaller and more manageable pieces. Global indexes are partitioned
independently of the table on which they are created, whereas local indexes are
automatically linked to the partitioning method for a table. Like partitioned tables,
partitioned indexes improve manageability, availability, performance, and scalability.

The following graphic shows index partitioning options.

See Also:

■ Oracle Database VLDB and Partitioning Guide to learn how to create
partitions

■ Oracle Database SQL Language Reference for CREATE TABLE ...
PARTITION BY examples

See Also:

■ "Table Compression" on page 2-19 and "Overview of Segments"
on page 12-21

■ Oracle Database Data Warehousing Guide to learn about table
compression in a data warehouse

Overview of Partitions

4-8 Oracle Database Concepts

Local Partitioned Indexes
In a local partitioned index, the index is partitioned on the same columns, with the
same number of partitions and the same partition bounds as its table. Each index
partition is associated with exactly one partition of the underlying table, so that all
keys in an index partition refer only to rows stored in a single table partition. In this
way, the database automatically synchronizes index partitions with their associated
table partitions, making each table-index pair independent.

Local partitioned indexes are common in data warehousing environments. Local
indexes offer the following advantages:

■ Availability is increased because actions that make data invalid or unavailable in a
partition affect this partition only.

■ Partition maintenance is simplified. When moving a table partition, or when data
ages out of a partition, only the associated local index partition must be rebuilt or
maintained. In a global index, all index partitions must be rebuilt or maintained.

■ If point-in-time recovery of a partition occurs, then the indexes can be recovered
to the recovery time (see "Data File Recovery" on page 18-14). The entire index
does not need to be rebuilt.

Example 4–4 shows the creation statement for the partitioned hash_sales table, using
the prod_id column as partition key. Example 4–5 creates a local partitioned index on
the time_id column of the hash_sales table.

Example 4–5 Local Partitioned Index

CREATE INDEX hash_sales_idx ON hash_sales(time_id) LOCAL;

In Figure 4–4, the hash_products table has two partitions, so hash_sales_idx has two
partitions. Each index partition is associated with a different table partition. Index
partition SYS_P38 indexes rows in table partition SYS_P33, whereas index partition
SYS_P39 indexes rows in table partition SYS_P34.

See Also:

■ "Overview of Indexes" on page 3-1

■ Oracle Database VLDB and Partitioning Guide and Oracle Database
Performance Tuning Guide for more information about partitioned
indexes and how to decide which type to use

Local Prefixed Index

Local Nonprefixed Index

Local Partitioned Index

Global Partitioned Index

Partitioned Index

Nonpartitioned Index

Overview of Partitions

Partitions, Views, and Other Schema Objects 4-9

Figure 4–4 Local Index Partitions

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

Like other indexes, you can create a bitmap index on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

Local Prefixed and Nonprefixed Indexes Local partitioned indexes are divided into the
following subcategories:

■ Local prefixed indexes

In this case, the partition keys are on the leading edge of the index definition. In
Example 4–2 on page 4-3, the table is partitioned by range on time_id. A local
prefixed index on this table would have time_id as the first column in its list.

■ Local nonprefixed indexes

In this case, the partition keys are not on the leading edge of the indexed column
list and need not be in the list at all. In Example 4–5 on page 4-8, the index is local
nonprefixed because the partition key product_id is not on the leading edge.

PROD_ID CUST_ID TIME_IDTIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SYS_P33

40
118

36
30
35

100530
133

4523
170

2606

30-NOV-98
06-JUN-01
27-JAN-99
23-FEB-01
17-FEB-00

30-NOV-98
06-JUN-01
27-JAN-99
23-FEB-01
17-FEB-00

9
2
3
2
3

33
999
999
999
999

1
1
1
1
1

44.99
17.12
53.89

8.8
54.94

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SYS_P34

116
133
125

24
45

11393
9450
9417

11899
9491

05-JUN-99
01-DEC-00
04-FEB-98
26-JUN-99
28-AUG-98

2
2
3
4
4

999
999
999
999
350

1
1
1
1
1

12.18
31.28
16.86
43.04
47.45

Local Index Partition SYS_P38

Index hash_sales_idx

Local Index Partition SYS_P39

IndexIndex

Overview of Partitions

4-10 Oracle Database Concepts

Both types of indexes can take advantage of partition elimination (also called
partition pruning), which occurs when the optimizer speeds data access by excluding
partitions from consideration. Whether a query can eliminate partitions depends on
the query predicate. A query that uses a local prefixed index always allows for index
partition elimination, whereas a query that uses a local nonprefixed index might not.

Local Partitioned Index Storage Like a table partition, a local index partition is stored in
its own segment. Each segment contains a portion of the total index data. Thus, a local
index made up of four partitions is not stored in a single index segment, but in four
separate segments.

Global Partitioned Indexes
A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all
table partitions, whereas in a locally partitioned index, a one-to-one parity exists
between index partitions and table partitions.

In general, global indexes are useful for OLTP applications, where rapid access, data
integrity, and availability are important. In an OLTP system, a table may be partitioned
by one key, for example, the employees.department_id column, but an application
may need to access the data with many different keys, for example, by employee_id or
job_id. Global indexes can be useful in this scenario.

You can partition a global index by range or by hash. If partitioned by range, then the
database partitions the global index on the ranges of values from the table columns
you specify in the column list. If partitioned by hash, then the database assigns rows to
the partitions using a hash function on values in the partitioning key columns.

As an illustration, suppose that you create a global partitioned index on the
time_range_sales table from Example 4–2. In this table, rows for sales from 1998 are
stored in one partition, rows for sales from 1999 are in another, and so on. Example 4–6
creates a global index partitioned by range on the channel_id column.

Example 4–6 Global Partitioned Index

CREATE INDEX time_channel_sales_idx ON time_range_sales (channel_id)
 GLOBAL PARTITION BY RANGE (channel_id)
 (PARTITION p1 VALUES LESS THAN (3),
 PARTITION p2 VALUES LESS THAN (4),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

As shown in Figure 4–5, a global index partition can contain entries that point to
multiple table partitions. Index partition p1 points to the rows with a channel_id of 2,
index partition p2 points to the rows with a channel_id of 3, and index partition p3
points to the rows with a channel_id of 4 or 9.

See Also: Oracle Database VLDB and Partitioning Guide to learn how
to use prefixed and nonprefixed indexes

See Also: Oracle Database SQL Language Reference for CREATE INDEX
... LOCAL examples

Overview of Partitions

Partitions, Views, and Other Schema Objects 4-11

Figure 4–5 Global Partitioned Index

See Also:

■ Oracle Database VLDB and Partitioning Guide to learn how to use
global partitioned indexes

■ Oracle Database SQL Language Reference for CREATE INDEX ...
GLOBAL examples

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_1998

40
125

45

100530
9417
9491

30-NOV-98
04-FEB-98
28-AUG-98

9
3
4

33
999

350

1
1
1

44.99
16.86

 47.45

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_1999

116
36
24

11393
4523

11899

05-JUN-99
27-JAN-99
26-JUN-99

2
3
4

999
999
999

1
1
1

12.18
53.89

 43.04

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_2000

133
35

9450
2606

01-DEC-00
17-FEB-00

2
3

999
999

1
1

31.28
54.94

PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

Table Partition SALES_2001

118
30

133
170

06-JUN-01
23-FEB-01

2
2

999
999

1
1

17.12
8.8

IndexGlobal Index
Partition p2

Index Global Index
Partition p3

Index Global Index
Partition p1

Overview of Views

4-12 Oracle Database Concepts

Partitioned Index-Organized Tables
You can partition an index-organized table (IOT) by range, list, or hash. Partitioning is
useful for providing improved manageability, availability, and performance for IOTs.
In addition, data cartridges that use IOTs can take advantage of the ability to partition
their stored data.

Note the following characteristics of partitioned IOTs:

■ Partition columns must be a subset of primary key columns.

■ Secondary indexes can be partitioned locally and globally.

■ OVERFLOW data segments are always equipartitioned with the table partitions.

Oracle Database supports bitmap indexes on partitioned and nonpartitioned
index-organized tables. A mapping table is required for creating bitmap indexes on an
index-organized table.

Overview of Views
A view is a logical representation of one or more tables. In essence, a view is a stored
query. A view derives its data from the tables on which it is based, called base tables.
Base tables can be tables or other views. All operations performed on a view actually
affect the base tables. You can use views in most places where tables are used.

Views enable you to tailor the presentation of data to different types of users. Views
are often used to:

■ Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 4–6 shows how the staff view does not show the salary or
commission_pct columns of the base table employees.

■ Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also
perform extensive calculations with table information. Thus, users can query a
view without knowing how to perform a join or calculations.

■ Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on
which the view is based.

■ Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

See Also: "Overview of Index-Organized Tables" on page 3-20

Note: Materialized views use a different data structure from
standard views. See "Overview of Materialized Views" on page 4-16.

Overview of Views

Partitions, Views, and Other Schema Objects 4-13

For an example of the use of views, consider the hr.employees table, which has
several columns and numerous rows. To allow users to see only five of these columns
or only specific rows, you could create a view as follows:

CREATE VIEW staff AS
 SELECT employee_id, last_name, job_id, manager_id, department_id
 FROM employees;

As with all subqueries, the query that defines a view cannot contain the FOR UPDATE
clause. Figure 4–6 graphically illustrates the view named staff. Notice that the view
shows only five of the columns in the base table.

Figure 4–6 View

Characteristics of Views
Unlike a table, a view is not allocated storage space, nor does a view contain data.
Rather, a view is defined by a query that extracts or derives data from the base tables
referenced by the view. Because a view is based on other objects, it requires no storage
other than storage for the query that defines the view in the data dictionary.

A view has dependencies on its referenced objects, which are automatically handled
by the database. For example, if you drop and re-create a base table of a view, then the
database determines whether the new base table is acceptable to the view definition.

Data Manipulation in Views
Because views are derived from tables, they have many similarities. For example, a
view can contain up to 1000 columns, just like a table. Users can query views, and with
some restrictions they can perform DML on views. Operations performed on a view

See Also:

■ Oracle Database Administrator's Guide to learn how to manage
views

■ Oracle Database SQL Language Reference for CREATE VIEW syntax
and semantics

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

hire_date

07–Jun–94
07–Jun–94
07–Jun–94
07–Jun–94

salary

6500
10000
12000
8300

department_id

40
70
110
110

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

department_id

40
70
110
110

employees

staffView

Base
Table

Overview of Views

4-14 Oracle Database Concepts

affect data in some base table of the view and are subject to the integrity constraints
and triggers of the base tables.

The following example creates a view of the hr.employees table:

CREATE VIEW staff_dept_10 AS
SELECT employee_id, last_name, job_id,
 manager_id, department_id
FROM employees
WHERE department_id = 10
WITH CHECK OPTION CONSTRAINT staff_dept_10_cnst;

The defining query references only rows for department 10. The CHECK OPTION creates
the view with a constraint so that INSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. Thus, rows for employees in
department 10 can be inserted, but not rows for department 30.

How Data Is Accessed in Views
Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view. When you reference a view in a SQL statement, Oracle Database
performs the following tasks:

1. Merges a query (whenever possible) against a view with the queries that define
the view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that
you create employees_view based on the employees and departments tables:

CREATE VIEW employees_view AS
 SELECT employee_id, last_name, salary, location_id
 FROM employees JOIN departments USING (department_id)
 WHERE departments.department_id = 10;

A user executes the following query of employees_view:

SELECT last_name
FROM employees_view
WHERE employee_id = 9876;

Oracle Database merges the view and the user query to construct the following query,
which it then executes to retrieve the data:

SELECT last_name

See Also: Oracle Database SQL Language Reference to learn about
subquery restrictions in CREATE VIEW statements

Overview of Views

Partitions, Views, and Other Schema Objects 4-15

FROM employees, departments
WHERE employees.department_id = departments.department_id
AND departments.department_id = 10
AND employees.employee_id = 9876;

Updatable Join Views
A join view is defined as a view that has multiple tables or views in its FROM clause. In
Example 4–7, the staff_dept_10_30 view joins the employees and departments tables,
including only employees in departments 10 or 30.

Example 4–7 Join View

CREATE VIEW staff_dept_10_30 AS
SELECT employee_id, last_name, job_id, e.department_id
FROM employees e, departments d
WHERE e.department_id IN (10, 30)
AND e.department_id = d.department_id;

An updatable join view, also called a modifiable join view, involves two or more
base tables or views and permits DML operations. An updatable view contains
multiple tables in the top-level FROM clause of the SELECT statement and is not
restricted by the WITH READ ONLY clause.

To be inherently updatable, a view must meet several criteria. For example, a general
rule is that an INSERT, UPDATE, or DELETE operation on a join view can modify only one
base table at a time. The following query of the USER_UPDATABLE_COLUMNS data
dictionary view shows that the view created in Example 4–7 is updatable:

SQL> SELECT TABLE_NAME, COLUMN_NAME, UPDATABLE
 2 FROM USER_UPDATABLE_COLUMNS
 3 WHERE TABLE_NAME = 'STAFF_DEPT_10_30';

TABLE_NAME COLUMN_NAME UPD
------------------------------ ------------------------------ ---
STAFF_DEPT_10_30 EMPLOYEE_ID YES
STAFF_DEPT_10_30 LAST_NAME YES
STAFF_DEPT_10_30 JOB_ID YES
STAFF_DEPT_10_30 DEPARTMENT_ID YES

All updatable columns of a join view must map to columns of a key-preserved table. A
key-preserved table in a join query is a table in which each row of the underlying
table appears at most one time in the output of the query. In Example 4–7,
department_id is the primary key of the departments table, so each row from the
employees table appears at most once in the result set, making the employees table
key-preserved. The departments table is not key-preserved because each of its rows
may appear many times in the result set.

See Also:

■ "Overview of the Optimizer" on page 7-10 and Oracle Database
Performance Tuning Guide to learn about query optimization

■ "Shared SQL Areas" on page 14-16

See Also: Oracle Database Administrator's Guide to learn how to
update join views

Overview of Materialized Views

4-16 Oracle Database Concepts

Object Views
Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object, which is an instance of an object type. An object type is a
user-defined data type.

You can retrieve, update, insert, and delete relational data as if it was stored as an
object type. You can also define views with columns that are object data types, such as
objects, REFs, and collections (nested tables and VARRAYs).

Like relational views, object views can present only the data that you want users to
see. For example, an object view could present data about IT programmers but omit
sensitive data about salaries. The following example creates an employee_type object
and then the view it_prog_view based on this object:

CREATE TYPE employee_type AS OBJECT
(
 employee_id NUMBER (6),
 last_name VARCHAR2 (25),
 job_id VARCHAR2 (10)
);
/

CREATE VIEW it_prog_view OF employee_type
 WITH OBJECT IDENTIFIER (employee_id) AS
SELECT e.employee_id, e.last_name, e.job_id
FROM employees e
WHERE job_id = 'IT_PROG';

Object views are useful in prototyping or transitioning to object-oriented applications
because the data in the view can be taken from relational tables and accessed as if the
table were defined as an object table. You can run object-oriented applications without
converting existing tables to a different physical structure.

Overview of Materialized Views
Materialized views are query results that have been stored or "materialized" in
advance as schema objects. The FROM clause of the query can name tables, views, and
materialized views. Collectively these objects are called master tables (a replication
term) or detail tables (a data warehousing term).

Materialized views are used to summarize, compute, replicate, and distribute data.
They are suitable in various computing environments, such as the following:

■ In data warehouses, you can use materialized views to compute and store data
generated from aggregate functions such as sums and averages.

A summary is an aggregate view that reduces query time by precalculating joins
and aggregation operations and storing the results in a table. Materialized views
are equivalent to summaries (see "Data Warehouse Architecture (Basic)" on
page 17-16). You can also use materialized views to compute joins with or without
aggregations. If compatibility is set to Oracle9i or higher, then materialized views
are usable for queries that include filter selections.

See Also:

■ Oracle Database Object-Relational Developer's Guide to learn about
object types and object views

■ Oracle Database SQL Language Reference to learn about the
CREATE TYPE command

Overview of Materialized Views

Partitions, Views, and Other Schema Objects 4-17

■ In materialized view replication, the view contains a complete or partial copy of a
table from a single point in time. Materialized views replicate data at distributed
sites and synchronize updates performed at several sites. This form of replication
is suitable for environments such as field sales when databases are not always
connected to the network.

■ In mobile computing environments, you can use materialized views to download
a data subset from central servers to mobile clients, with periodic refreshes from
the central servers and propagation of updates by clients to the central servers.

In a replication environment, a materialized view shares data with a table in a different
database, called a master database. The table associated with the materialized view at
the master site is the master table. Figure 4–7 illustrates a materialized view in one
database based on a master table in another database. Updates to the master table
replicate to the materialized view database.

Figure 4–7 Materialized View

Characteristics of Materialized Views
Materialized views share some characteristics of nonmaterialized views and indexes.
Materialized views are similar to indexes in the following ways:

■ They contain actual data and consume storage space.

■ They can be refreshed when the data in their master tables changes.

See Also:

■ "Information Sharing" on page 17-21 to learn about replication
with Oracle Streams

■ Oracle Database 2 Day + Data Replication and Integration Guide and
Oracle Database Advanced Replication to learn how to use
materialized views

■ Oracle Database SQL Language Reference to learn about the CREATE
MATERIALIZED VIEW statement

Replicate Table Data

Network

Refresh

Materialized View

Master
Database

Master Table

Client Applications

Remote Update

Local
Query

Materialized
View

Database

Overview of Materialized Views

4-18 Oracle Database Concepts

■ They can improve performance of SQL execution when used for query rewrite
operations.

■ Their existence is transparent to SQL applications and users.

A materialized view is similar to a nonmaterialized view because it represents data in
other tables and views. Unlike indexes, users can query materialized views directly
using SELECT statements. Depending on the types of refresh that are required, the
views can also be updated with DML statements.

The following example creates and populates a materialized aggregate view based on
three master tables in the sh sample schema:

CREATE MATERIALIZED VIEW sales_mv AS
 SELECT t.calendar_year, p.prod_id, SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id
 AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

The following example drops table sales, which is a master table for sales_mv, and
then queries sales_mv. The query selects data because the rows are stored
(materialized) separately from the data in the master tables.

SQL> DROP TABLE sales;

Table dropped.

SQL> SELECT * FROM sales_mv WHERE ROWNUM < 4;

CALENDAR_YEAR PROD_ID SUM_SALES
------------- ---------- ----------
 1998 13 936197.53
 1998 26 567533.83
 1998 27 107968.24

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

Refresh Methods for Materialized Views
The database maintains data in materialized views by refreshing them after changes to
their master tables. The refresh method can be incremental, known as fast refresh, or a
complete refresh.

A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. The refresh
involves executing the query that defines the materialized view. This process can be
slow, especially if the database must read and process huge amounts of data.

A fast refresh eliminates the need to rebuild materialized views from scratch. Thus,
processing only the changes can result in a very fast refresh time. Materialized views
can be refreshed either on demand or at regular time intervals. Alternatively,
materialized views in the same database as their master tables can be refreshed
whenever a transaction commits its changes to the master tables.

For materialized views that use the fast refresh method, a materialized view log or
direct loader log keeps a record of changes to the master tables. A materialized view

See Also: Oracle Database Data Warehousing Guide to learn how to use
materialized views in a data warehouse

Overview of Materialized Views

Partitions, Views, and Other Schema Objects 4-19

log is a schema object that records changes to master table data so that a materialized
view defined on the master table can be refreshed incrementally. Each materialized
view log is associated with a single master table. The materialized view log resides in
the same database and schema as its master table.

Query Rewrite
Query rewrite is an optimization technique that transforms a user request written in
terms of master tables into a semantically equivalent request that includes
materialized views. When base tables contain large amounts of data, computing an
aggregate or join is expensive and time-consuming. Because materialized views
contain precomputed aggregates and joins, query rewrite can quickly answer queries
using materialized views.

The optimizer query transformer transparently rewrites the request to use the
materialized view, requiring no user intervention and no reference to the materialized
view in the SQL statement. Because query rewrite is transparent, materialized views
can be added or dropped without invalidating the SQL in the application code.

In general, rewriting queries to use materialized views rather than detail tables
improves response time. Figure 4–8 shows the database generating an execution plan
for the original and rewritten query and choosing the lowest-cost plan.

Figure 4–8 Query Rewrite

See Also:

■ Oracle Database Data Warehousing Guide to learn how to refresh
materialized views

■ Oracle Database Advanced Replication to learn about materialized
view logs

See Also:

■ "Overview of the Optimizer" on page 7-10

■ Oracle Database Data Warehousing Guide to learn how to use query
rewrite

StrategyGenerate Plan
Strategy

Query is
rewritten

User enters
query

Compare plan cost
and pick the best

StrategyGenerate Plan

StrategyQuery Results

Oracle Database

Overview of Sequences

4-20 Oracle Database Concepts

Overview of Sequences
A sequence is a schema object from which multiple users can generate unique
integers. A sequence generator provides a highly scalable and well-performing
method to generate surrogate keys for a number data type.

Sequence Characteristics
A sequence definition indicates general information, such as the following:

■ The name of the sequence

■ Whether the sequence ascends or descends

■ The interval between numbers

■ Whether the database should cache sets of generated sequence numbers in
memory

■ Whether the sequence should cycle when a limit is reached

The following example creates the sequence customers_seq in the sample schema oe.
An application could use this sequence to provide customer ID numbers when rows
are added to the customers table.

CREATE SEQUENCE customers_seq
START WITH 1000
INCREMENT BY 1
NOCACHE
NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001.
Each subsequent reference returns a value 1 greater than the previous reference.

Concurrent Access to Sequences
The same sequence generator can generate numbers for multiple tables. In this way,
the database can generate primary keys automatically and coordinate keys across
multiple rows or tables. For example, a sequence can generate primary keys for an
orders table and a customers table.

The sequence generator is useful in multiuser environments for generating unique
numbers without the overhead of disk I/O or transaction locking. For example, two
users simultaneously insert new rows into the orders table. By using a sequence to
generate unique numbers for the order_id column, neither user has to wait for the
other to enter the next available order number. The sequence automatically generates
the correct values for each user.

Each user that references a sequence has access to his or her current sequence number,
which is the last sequence generated in the session. A user can issue a statement to
generate a new sequence number or use the current number last generated by the
session. After a statement in a session generates a sequence number, it is available only
to this session. Individual sequence numbers can be skipped if they were generated
and used in a transaction that was ultimately rolled back.

See Also:

■ Oracle Database 2 Day Developer's Guide and Oracle Database
Administrator's Guide to learn how to manage sequences

■ Oracle Database SQL Language Reference for CREATE SEQUENCE
syntax and semantics

Overview of Dimensions

Partitions, Views, and Other Schema Objects 4-21

Overview of Dimensions
A typical data warehouse has two important components: dimensions and facts. A
dimension is any category used in specifying business questions, for example, time,
geography, product, department, and distribution channel. A fact is an event or entity
associated with a particular set of dimension values, for example, units sold or profits.

Examples of multidimensional requests include the following:

■ Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 2007 and 2008.

■ Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 2007 and 2008. Include all possible subtotals.

■ List the top 10 sales representatives in Asia according to 2008 sales revenue for
automotive products, and rank their commissions.

Many multidimensional questions require aggregated data and comparisons of data
sets, often across time, geography or budgets.

Creating a dimension permits the broader use of the query rewrite feature. By
transparently rewriting queries to use materialized views, the database can improve
query performance.

Hierarchical Structure of a Dimension
A dimension table is a logical structure that defines hierarchical relationships between
pairs of columns or column sets. A dimension has no data storage assigned to it.
Dimensional information is stored in dimension tables, whereas fact information is
stored in a fact table.

Within a customer dimension, customers could roll up to city, state, country,
subregion, and region. Data analysis typically starts at higher levels in the dimensional
hierarchy and gradually drills down if the situation warrants such analysis.

Each value at the child level is associated with one and only one value at the parent
level. A hierarchical relationship is a functional dependency from one level of a
hierarchy to the next level in the hierarchy.

Creation of Dimensions
Dimensions are created with SQL statements. The CREATE DIMENSION statement
specifies:

Caution: If your application requires a gap-free set of numbers,
then you cannot use Oracle sequences. You must serialize activities
in the database using your own developed code.

See Also: Chapter 9, "Data Concurrency and Consistency"

See Also: "Overview of Data Warehousing and Business
Intelligence" on page 17-14

See Also:

■ Oracle Database Data Warehousing Guide to learn about dimensions

■ Oracle OLAP User's Guide to learn how to create dimensions

Overview of Synonyms

4-22 Oracle Database Concepts

■ Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

■ One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

■ Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The following statement was used to create the customers_dim dimension in the
sample schema sh:

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name);

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). For example, a normalized time
dimension can include a date table, a month table, and a year table, with join
conditions that connect each date row to a month row, and each month row to a year
row. In a fully denormalized time dimension, the date, month, and year columns are in
the same table. Whether normalized or denormalized, the hierarchical relationships
among the columns must be specified in the CREATE DIMENSION statement.

Overview of Synonyms
A synonym is an alias for a schema object. For example, you can create a synonym for
a table or view, sequence, PL/SQL program unit, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful
for hiding the identity and location of an underlying schema object. If the underlying

See Also:

■ Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide for information about how dimensions are used in a
warehousing environment

■ Oracle Database SQL Language Reference for CREATE DIMENSION
syntax and semantics

Overview of Synonyms

Partitions, Views, and Other Schema Objects 4-23

object must be renamed or moved, then only the synonym must be redefined.
Applications based on the synonym continue to work without modification.

You can create both private and public synonyms. A private synonym is in the schema
of a specific user who has control over its availability to others. A public synonym is
owned by the user group named PUBLIC and is accessible by every database user.

In Example 4–9, a database administrator creates a public synonym named people for
the hr.employees table. The user then connects to the oe schema and counts the
number of rows in the table referenced by the synonym.

Example 4–8 Public Synonym

SQL> CREATE PUBLIC SYNONYM people FOR hr.employees;

Synonym created.

SQL> CONNECT oe
Enter password: password
Connected.

SQL> SELECT COUNT(*) FROM people;

 COUNT(*)

 107

Use public synonyms sparingly because they make database consolidation more
difficult. As shown in Example 4–9, if another administrator attempts to create the
public synonym people, then the creation fails because only one public synonym
people can exist in the database. Overuse of public synonyms causes namespace
conflicts between applications.

Example 4–9 Public Synonym

SQL> CREATE PUBLIC SYNONYM people FOR oe.customers;
CREATE PUBLIC SYNONYM people FOR oe.customers
 *
ERROR at line 1:
ORA-00955: name is already used by an existing object

SQL> SELECT OWNER, SYNONYM_NAME, TABLE_OWNER, TABLE_NAME
 2 FROM DBA_SYNONYMS
 3 WHERE SYNONYM_NAME = 'PEOPLE';

OWNER SYNONYM_NAME TABLE_OWNER TABLE_NAME
---------- ------------ ----------- ----------
PUBLIC PEOPLE HR EMPLOYEES

Synonyms themselves are not securable. When you grant object privileges on a
synonym, you are really granting privileges on the underlying object. The synonym is
acting only as an alias for the object in the GRANT statement.

See Also:

■ Oracle Database Administrator's Guide to learn how to manage
synonyms

■ Oracle Database SQL Language Reference for CREATE SYNONYM syntax
and semantics

Overview of Synonyms

4-24 Oracle Database Concepts

5

Data Integrity 5-1

5Data Integrity

This chapter explains how integrity constraints enforce the business rules associated
with a database and prevent the entry of invalid information into tables.

This chapter contains the following sections:

■ Introduction to Data Integrity

■ Types of Integrity Constraints

■ States of Integrity Constraints

Introduction to Data Integrity
Business rules specify conditions and relationships that must always be true or must
always be false. For example, each company defines its own policies about salaries,
employee numbers, inventory tracking, and so on. It is important that data maintain
data integrity, which is adherence to these rules, as determined by the database
administrator or application developer.

Techniques for Guaranteeing Data Integrity
When designing a database application, developers have various options for
guaranteeing the integrity of data stored in the database. These options include:

■ Enforcing business rules with triggered stored database procedures, as described
in "Overview of Triggers" on page 8-16

■ Using stored procedures to completely control access to data, as described in
"Introduction to Server-Side Programming" on page 8-1

■ Enforcing business rules in the code of a database application

■ Using Oracle Database integrity constraints, which are rules defined at the
column or object level that restrict values in the database

This chapter explains the basic concepts of integrity constraints.

Advantages of Integrity Constraints
An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints unless it is not possible. Advantages of
integrity constraints over alternatives for enforcing data integrity include:

■ Declarative ease

See Also: "Overview of Tables" on page 2-6

Types of Integrity Constraints

5-2 Oracle Database Concepts

Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors.

■ Centralized rules

Integrity constraints are defined for tables and are stored in the data dictionary
(see "Overview of the Data Dictionary" on page 6-1). Thus, data entered by all
applications must adhere to the same integrity constraints. If the rules change at
the table level, then applications need not change. Also, applications can use
metadata in the data dictionary to immediately inform users of violations, even
before the database checks the SQL statement.

■ Flexibility when loading data

You can disable integrity constraints temporarily to avoid performance overhead
when loading large amounts of data. When the data load is complete, you can
re-enable the integrity constraints.

Types of Integrity Constraints
Oracle Database enables you to apply constraints both at the table and column level. A
constraint specified as part of the definition of a column or attribute is called an inline
specification. A constraint specified as part of the table definition is called an
out-of-line specification.

The term key is used in the definitions of several types of integrity constraints. A key
is the column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the tables and columns of a
relational database. Individual values in a key are called key values.

Table 5–1 describes the types of constraints. Each can be specified either inline or
out-of-line, except for NOT NULL, which must be inline.

See Also:

■ Oracle Database 2 Day Developer's Guide and Oracle Database 2 Day
Developer's Guide to learn how to maintain data integrity

■ Oracle Database 2 Day DBAand Oracle Database Administrator's
Guide to learn how to manage integrity constraints

Table 5–1 Types of Constraints

Constraint Type Description See Also

NOT NULL Allows or disallows inserts or updates of rows
containing a null in a specified column.

"NOT NULL Integrity Constraints"
on page 5-3

Unique key Prohibits multiple rows from having the same value in
the same column or combination of columns but allows
some values to be null.

"Unique Constraints" on page 5-3

Primary key Combines a NOT NULL constraint and a unique
constraint. It prohibits multiple rows from having the
same value in the same column or combination of
columns and prohibits values from being null.

"Primary Key Constraints" on
page 5-5

Types of Integrity Constraints

Data Integrity 5-3

NOT NULL Integrity Constraints
A NOT NULL constraint requires that a column of a table contain no null values. A null is
the absence of a value. By default, all columns in a table allow nulls.

NOT NULL constraints are intended for columns that must not lack values. For example,
the hr.employees table requires a value in the last_name column. An attempt to insert
an employee row without a last name generates an error:

SQL> INSERT INTO hr.employees (employee_id, last_name) values (999, 'Smith');
.
.
.
ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."LAST_NAME")

You can only add a column with a NOT NULL constraint if the table does not contain
any rows or if you specify a default value.

Unique Constraints
A unique key constraint requires that every value in a column or set of columns be
unique. No rows of a table may have duplicate values in a column (the unique key) or
set of columns (the composite unique key) with a unique key constraint.

Foreign key Designates a column as the foreign key and establishes
a relationship between the foreign key and a primary or
unique key, called the referenced key.

"Foreign Key Constraints" on
page 5-6

Check Requires a database value to obey a specified condition. "Check Constraints" on page 5-9

REF Dictates types of data manipulation allowed on values
in a REF column and how these actions affect
dependent values. In an object-relational database, a
built-in data type called a REF encapsulates a reference
to a row object of a specified object type. Referential
integrity constraints on REF columns ensure that there
is a row object for the REF.

Oracle Database Object-Relational
Developer's Guide to learn about REF
constraints

See Also:

■ "Overview of Tables" on page 2-6

■ Oracle Database SQL Language Reference to learn more about the
types of constraints

See Also:

■ Oracle Database 2 Day Developer's Guide for examples of adding NOT
NULL constraints to a table

■ Oracle Database SQL Language Reference for restrictions on using
NOT NULL constraints

■ Oracle Database Advanced Application Developer's Guide to learn
when to use the NOT NULL constraint

Table 5–1 (Cont.) Types of Constraints

Constraint Type Description See Also

Types of Integrity Constraints

5-4 Oracle Database Concepts

Unique key constraints are appropriate for any column where duplicate values are not
allowed. Unique constraints differ from primary key constraints, whose purpose is to
identify each table row uniquely, and typically contain values that have no significance
other than being unique. Examples of unique keys include:

■ A customer phone number, where the primary key is the customer number

■ A department name, where the primary key is the department number

As shown in Example 2–1 on page 2-8, a unique key constraint exists on the email
column of the hr.employees table. The relevant part of the statement is as follows:

CREATE TABLE employees
 (...
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL ...
 , CONSTRAINT emp_email_uk UNIQUE (email) ...);

The emp_email_uk constraint ensures that no two employees have the same email
address, as shown in Example 5–1.

Example 5–1 Unique Constraint

SQL> SELECT employee_id, last_name, email FROM employees WHERE email = 'PFAY';

EMPLOYEE_ID LAST_NAME EMAIL
----------- ------------------------- -------------------------
 202 Fay PFAY

SQL> INSERT INTO employees (employee_id, last_name, email, hire_date, job_id)
 1 VALUES (999,'Fay','PFAY',SYSDATE,'ST_CLERK');
.
.
.
ERROR at line 1:
ORA-00001: unique constraint (HR.EMP_EMAIL_UK) violated

Unless a NOT NULL constraint is also defined, a null always satisfies a unique key
constraint. Thus, columns with both unique key constraints and NOT NULL constraints
are typical. This combination forces the user to enter values in the unique key and
eliminates the possibility that new row data conflicts with existing row data.

Note: The term key refers only to the columns defined in the
integrity constraint. Because the database enforces a unique constraint
by implicitly creating or reusing an index on the key columns, the
term unique key is sometimes incorrectly used as a synonym for
unique key constraint or unique index.

Note: Because of the search mechanism for unique key constraints
on multiple columns, you cannot have identical values in the non-null
columns of a partially null composite unique key constraint.

Types of Integrity Constraints

Data Integrity 5-5

Primary Key Constraints
In a primary key constraint, the values in the group of one or more columns subject to
the constraint uniquely identify the row. Each table can have one primary key, which
in effect names the row and ensures that no duplicate rows exist.

A primary key can be natural or a surrogate. A natural key is a meaningful identifier
made of existing attributes in a table. For example, a natural key could be a postal code
in a lookup table. In contrast, a surrogate key is a system-generated incrementing
identifier that ensures uniqueness within a table. Typically, surrogate keys are
generated by a sequence.

The Oracle Database implementation of the primary key constraint guarantees that the
following statements are true:

■ No two rows have duplicate values in the specified column or set of columns.

■ The primary key columns do not allow nulls.

A typical situation calling for a primary key is the numeric identifier for an employee.
Each employee must have a unique ID. A employee must be described by one and
only one row in the employees table.

Example 5–1 indicates that an existing employee has the employee ID of 202, where
the employee ID is the primary key. The following example shows an attempt to add
an employee with the same employee ID and an employee with no ID:

SQL> INSERT INTO employees (employee_id, last_name, email, hire_date, job_id)
 1 VALUES (202,'Chan','ICHAN',SYSDATE,'ST_CLERK');
.
.
.
ERROR at line 1:
ORA-00001: unique constraint (HR.EMP_EMP_ID_PK) violated

SQL> INSERT INTO employees (last_name) VALUES ('Chan');
.
.
.
ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."EMPLOYEE_ID")

The database enforces primary key constraints with an index. Usually, a primary key
constraint created for a column implicitly creates a unique index and a NOT NULL
constraint. Note the following exceptions to this rule:

■ In some cases, as when you create a primary key with a deferrable constraint, the
generated index is not unique.

See Also:

■ "Unique and Nonunique Indexes" on page 3-4

■ Oracle Database 2 Day Developer's Guide for examples of adding
UNIQUE constraints to a table

Note: You can explicitly create a unique index with the CREATE
UNIQUE INDEX statement.

Types of Integrity Constraints

5-6 Oracle Database Concepts

■ If a usable index exists when a primary key constraint is created, then the
constraint reuses this index and does not implicitly create a new one.

By default the name of the implicitly created index is the name of the primary key
constraint. You can also specify a user-defined name for an index. You can specify
storage options for the index by including the ENABLE clause in the CREATE TABLE or
ALTER TABLE statement used to create the constraint.

Foreign Key Constraints
Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a foreign key constraint, also
called a referential integrity constraint. The constraint requires that for each value in
the column on which the constraint is defined, the value in the other specified other
table and column must match. An example of a referential integrity rule is an
employee can work for only an existing department.

Table 5–2 lists terms associated with referential integrity constraints.

Figure 5–1 shows a foreign key on the employees.department_id column. It
guarantees that every value in this column must match a value in the
departments.department_id column. Thus, no erroneous department numbers can
exist in the employees.department_id column.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer's Guide to learn how to add primary
key constraints to a table

Table 5–2 Referential Integrity Constraint Terms

Term Definition

Foreign key The column or set of columns included in the definition of the constraint
that reference a referenced key. For example, the department_id column in
employees is a foreign key that references the department_id column in
departments.

Foreign keys may be defined as multiple columns. However, a composite
foreign key must reference a composite primary or unique key with the
same number of columns and the same data types.

The value of foreign keys can match either the referenced primary or
unique key value, or be null. If any column of a composite foreign key is
null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.

Referenced key The unique key or primary key of the table referenced by a foreign key. For
example, the department_id column in departments is the referenced key
for the department_id column in employees.

Dependent or
child table

The table that includes the foreign key. This table is dependent on the
values present in the referenced unique or primary key. For example, the
employees table is a child of departments.

Referenced or
parent table

The table that is referenced by the foreign key of the child table. It is this
table's referenced key that determines whether specific inserts or updates
are allowed in the child table. For example, the departments table is a
parent of employees.

Types of Integrity Constraints

Data Integrity 5-7

Figure 5–1 Referential Integrity Constraints

Self-Referential Integrity Constraints
Figure 5–2 shows a self-referential integrity constraint. In this case, a foreign key
references a parent key in the same table.

In Figure 5–2, the referential integrity constraint ensures that every value in the
employees.manager_id column corresponds to an existing value in the
employees.employee_id column. For example, the manager for employee 102 must
exist in the employees table. This constraint eliminates the possibility of erroneous
employee numbers in the manager_id column.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer's Guide to learn how to add foreign key
constraints to a table

INSERT
INTO

Table DEPARTMENTS

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID

This row violates the referential
constraint because "99" is not
present in the referenced table's
primary key; therefore, the row
is not allowed in the table.

This row is allowed in the table
because a null value is entered
in the DEPARTMENT_ID column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.

60
90

IT
Executive

103
100

LOCATION_ID

1400
1700 Foreign Key

(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

EMPLOYEE_ID LAST_NAME EMAIL HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

Table EMPLOYEES

100
101
102
103

King
Kochhar
De Hann
Hunold

SKING
NKOCHHAR
LDEHANN
AHUNOLD

17-JUN-87
21-SEP-89
13-JAN-93
03-JAN-90

AD_PRES
AD_VP
AD_VP
IT_PROG

100
100
102

90
90
90
60

Dependent or Child Table

Referenced or Parent Table

Parent Key
Primary key of
referenced table

207 Ashdown AASHDOWN 17-DEC-07 MK_MAN 100 99

208 Green BGREEN 17-DEC-07 AC_MGR 101

Types of Integrity Constraints

5-8 Oracle Database Concepts

Figure 5–2 Single Table Referential Constraints

Nulls and Foreign Keys
The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. For example, a user could insert a row into
hr.employees without specifying a department ID.

If any column of a composite foreign key is null, then the non-null portions of the key
do not have to match any corresponding portion of a parent key.

Parent Key Modifications and Foreign Keys
The relationship between foreign key and parent key has implications for deletion of
parent keys. For example, if a user attempts to delete the record for this department,
then what happens to the records for employees in this department?

When a parent key is modified, referential integrity constraints can specify the
following actions to be performed on dependent rows in a child table:

■ No action on deletion or update

In the normal case, users cannot modify referenced key values if the results would
violate referential integrity. For example, if employees.department_id is a foreign
key to departments, and if employees belong to a particular department, then an
attempt to delete the row for this department violates the constraint.

■ Cascading deletions

A deletion cascades (DELETE CASCADE) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key
values to also be deleted. For example, the deletion of a row in departments causes
rows for all employees in this department to be deleted.

■ Deletions that set null

A deletion sets null (DELETE SET NULL) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key

INSERT
INTO

EMPLOYEE_ID LAST_NAME EMAIL HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

Table EMPLOYEES

Dependent or Child Table
Referenced or Parent Table

This row violates the referential
constraint, because "400" is
not present in the referenced
table's primary key; therefore,
it is not allowed in the table.

100
101
102
103

King
Kochhar
De Hann
Hunold

SKING
NKOCHHAR
LDEHANN
AHUNOLD

17-JUN-87
21-SEP-89
13-JAN-93
03-JAN-90

AD_PRES
AD_VP
AD_VP
IT_PROG

100
100
102

90
90
90
60

Primary Key
of referenced table

Foreign Key
(values in dependent table must match
a value in unique key or primary key of
referenced table)

207 Ashdown AASHDOWN 01-DEC-07 IT_PROG 400 60

Types of Integrity Constraints

Data Integrity 5-9

values to set those values to null. For example, the deletion of a department row
sets the department_id column value to null for employees in this department.

Table 5–3 outlines the DML statements allowed by the different referential actions on
the key values in the parent table, and the foreign key values in the child table.

Indexes and Foreign Keys
As a rule, foreign keys should be indexed. The only exception is when the matching
unique or primary key is never updated or deleted. Indexing the foreign keys in child
tables provides the following benefits:

■ Prevents a full table lock on the child table. Instead, the database acquires a row
lock on the index.

■ Removes the need for a full table scan of the child table. As an illustration,
assume that a user removes the record for department 10 from the departments
table. If employees.department_id is not indexed, then the database must scan
employees to see if any employees exist in department 10.

Check Constraints
A check constraint on a column or set of columns requires that a specified condition
be true or unknown for every row. If DML results in the condition of the constraint
evaluating to false, then the SQL statement is rolled back.

The chief benefit of check constraints is the ability to enforce very specific integrity
rules. For example, you could use check constraints to enforce the following rules in
the hr.employees table:

■ The salary column must not have a value greater than 10000.

Table 5–3 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is
unique

OK only if the foreign key value
exists in the parent key or is
partially or all null

UPDATE NO ACTION Allowed if the statement does not
leave any rows in the child table
without a referenced parent key value

Allowed if the new foreign key
value still references a
referenced key value

DELETE NO ACTION Allowed if no rows in the child table
reference the parent key value

Always OK

DELETE CASCADE Always OK Always OK

DELETE SET NULL Always OK Always OK

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle Database can be enforced using
database triggers. See "Overview of Triggers" on page 8-16.

See Also: Oracle Database SQL Language Reference to learn about the
ON DELETE clause

See Also: "Locks and Foreign Keys" on page 9-21 and "Overview of
Indexes" on page 3-1

States of Integrity Constraints

5-10 Oracle Database Concepts

■ The commission column must have a value that is not greater than the salary.

The following example creates a maximum salary constraint on employees and
demonstrates what happens when a statement attempts to insert a row containing a
salary that exceeds the maximum:

SQL> ALTER TABLE employees ADD CONSTRAINT max_emp_sal CHECK (salary < 10001);
SQL> INSERT INTO employees (employee_id,last_name,email,hire_date,job_id,salary)
 1 VALUES (999,'Green','BGREEN',SYSDATE,'ST_CLERK',20000);
.
.
.
ERROR at line 1:
ORA-02290: check constraint (HR.MAX_EMP_SAL) violated

A single column can have multiple check constraints that reference the column in its
definition. For example, the salary column could have one constraint that prevents
values over 10000 and a separate constraint that prevents values less than 500.

If multiple check constraints exist for a column, then they must be designed so their
purposes do not conflict. No order of evaluation of the conditions can be assumed. The
database does not verify that check conditions are not mutually exclusive.

States of Integrity Constraints
As part of constraint definition, you can specify how and when Oracle Database
should enforce the constraint, thereby determining the constraint state.

Checks for Modified and Existing Data
The database enables you to specify whether a constraint applies to existing data or
future data. If a constraint is enabled, then the database checks new data as it is
entered or updated. Data that does not conform to the constraint cannot enter the
database. For example, enabling a NOT NULL constraint on employees.department_id
guarantees that every future row has a department ID. If a constraint is disabled, then
the table can contain rows that violate the constraint.

You can set constraints to validate (VALIDATE) or not validate (NOVALIDATE) existing
data. If VALIDATE is specified, then existing data must conform to the constraint. For
example, enabling a NOT NULL constraint on employees.department_id and setting it
to VALIDATE checks that every existing row has a department ID. If NOVALIDATE is
specified, then existing data need not conform to the constraint.

The behavior of VALIDATE and NOVALIDATE always depends on whether the constraint
is enabled or disabled. Table 5–4 summarizes the relationships.

See Also: Oracle Database SQL Language Reference to learn about
restrictions for check constraints

Table 5–4 Checks on Modified and Existing Data

Modified Data Existing Data Summary

ENABLE VALIDATE Existing and future data must obey the constraint. An
attempt to apply a new constraint to a populated table
results in an error if existing rows violate the constraint.

ENABLE NOVALIDATE The database checks the constraint, but it need not be true
for all rows. Thus, existing rows can violate the constraint,
but new or modified rows must conform to the rules.

States of Integrity Constraints

Data Integrity 5-11

Deferrable Constraints
Every constraint is either in a not deferrable (default) or deferrable state. This state
determines when Oracle Database checks the constraint for validity. The following
graphic depicts the options for deferrable constraints.

Nondeferrable Constraints
If a constraint is not deferrable, then Oracle Database never defers the validity check of
the constraint to the end of the transaction. Instead, the database checks the constraint
at the end of each statement. If the constraint is violated, then the statement rolls back.

For example, assume that you create a nondeferrable NOT NULL constraint for the
employees.last_name column. If a user attempts to insert a row with no last name,
then the database immediately rolls back the statement because the NOT NULL
constraint is violated. No row is inserted.

Deferrable Constraints
A deferrable constraint permits a transaction to use the SET CONSTRAINT clause to
defer checking of this constraint until a COMMIT statement is issued. If you make
changes to the database that might violate the constraint, then this setting effectively
lets you disable the constraint until all the changes are complete.

You can set the default behavior for when the database checks the deferrable
constraint. You can specify either of the following attributes:

■ INITIALLY IMMEDIATE

The database checks the constraint immediately after each statement executes. If
the constraint is violated, then the database rolls back the statement.

■ INITIALLY DEFERRED

The database checks the constraint when a COMMIT is issued. If the constraint is
violated, then the database rolls back the transaction.

Assume that a deferrable NOT NULL constraint on employees.last_name is set to
INITIALLY DEFERRED. A user creates a transaction with 100 INSERT statements, some of

DISABLE VALIDATE The database disables the constraint, drops its index, and
prevents modification of the constrained columns.

DISABLE NOVALIDATE The constraint is not checked and is not necessarily true.

See Also: Oracle Database SQL Language Reference to learn about
constraint states

Table 5–4 (Cont.) Checks on Modified and Existing Data

Modified Data Existing Data Summary

Initially Immediate

Initially Deferred

Deferrable

Nondeferrable and Initially Immediate

States of Integrity Constraints

5-12 Oracle Database Concepts

which have null values for last_name. When the user attempts to commit, the
database rolls back all 100 statements. However, if this constraint were set to
INITIALLY IMMEDIATE, then the database would not roll back the transaction.

If a constraint causes an action, then the database considers this action as part of the
statement that caused it, whether the constraint is deferred or immediate. For example,
deleting a row in departments causes the deletion of all rows in employees that
reference the deleted department row. In this case, the deletion from employees is
considered part of the DELETE statement executed against departments.

Examples of Constraint Checking
Some examples may help illustrate when Oracle Database performs the checking of
constraints. Assume the following:

■ The employees table has the structure shown in Figure 5–2 on page 5-8.

■ The self-referential constraint makes entries in the manager_id column dependent
on the values of the employee_id column.

Insertion of a Value in a Foreign Key Column When No Parent Key Value Exists
Consider the insertion of the first row into the employees table. No rows currently
exist, so how can a row be entered if the value in the manager_id column cannot
reference any existing value in the employee_id column? Some possibilities are:

■ A null can be entered for the manager_id column of the first row, if the manager_id
column does not have a NOT NULL constraint defined on it.

Because nulls are allowed in foreign keys, this row is inserted into the table.

■ The same value can be entered in the employee_id and manager_id columns,
specifying that the employee is his or her own manager.

This case reveals that Oracle Database performs its constraint checking after the
statement has been completely run. To allow a row to be entered with the same
values in the parent key and the foreign key, the database must first run the
statement (that is, insert the new row) and then determine whether any row in the
table has an employee_id that corresponds to the manager_id of the new row.

■ A multiple row INSERT statement, such as an INSERT statement with nested SELECT
statement, can insert rows that reference one another.

For example, the first row might have 200 for employee ID and 300 for manager
ID, while the second row has 300 for employee ID and 200 for manager. Constraint
checking is deferred until the complete execution of the statement. All rows are
inserted first, and then all rows are checked for constraint violations.

Default values are included as part of an INSERT statement before the statement is
parsed. Thus, default column values are subject to all integrity constraint checking.

An Update of All Foreign Key and Parent Key Values
Consider the same self-referential integrity constraint in a different scenario. The
company has been sold. Because of this sale, all employee numbers must be updated
to be the current value plus 5000 to coordinate with the employee numbers of the new
company. Because manager numbers are really employee numbers (see Figure 5–3),
the manager numbers must also increase by 5000.

See Also: Oracle Database SQL Language Reference for information
about constraint attributes and their default values

States of Integrity Constraints

Data Integrity 5-13

Figure 5–3 The employees Table Before Updates

You could execute the following SQL statement to update the values:

UPDATE employees SET employee_id = employee_id + 5000,
 manager_id = manager_id + 5000;

Although a constraint is defined to verify that each manager_id value matches an
employee_id value, the preceding statement is legal because the database effectively
checks constraints after the statement completes. Figure 5–4 shows that the database
performs the actions of the entire SQL statement before checking constraints.

Figure 5–4 Constraint Checking

The examples in this section illustrate the constraint checking mechanism during
INSERT and UPDATE statements, but the database uses the same mechanism for all types
of DML statements. The same mechanism is used for all types of constraints, not just
self-referential constraints.

Note: Operations on a view or synonym are subject to the
integrity constraints defined on the base tables.

EMPLOYEE_ID MANAGER_ID

210
211
212

210
211

Update to
first row

Update to
second row

Update to
third row

Constraints
checked

EMPLOYEE_ID MANAGER_ID EMPLOYEE_ID MANAGER_ID EMPLOYEE_ID MANAGER_ID

5210
211
212

210
211

5210
5211
5212

5210
5211

5210
211

5210
5211
212

States of Integrity Constraints

5-14 Oracle Database Concepts

6

Data Dictionary and Dynamic Performance Views 6-1

6Data Dictionary and Dynamic Performance
Views

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary. The chapter also describes
the dynamic performance views, which are special views that are continuously
updated while a database is open and in use.

This chapter contains the following sections:

■ Overview of the Data Dictionary

■ Overview of the Dynamic Performance Views

■ Database Object Metadata

Overview of the Data Dictionary
An important part of an Oracle database is its data dictionary, which is a read-only set
of tables that provides administrative metadata about the database. A data dictionary
contains information such as the following:

■ The definitions of every schema object in the database, including default values
for columns and integrity constraint information

■ The amount of space allocated for and currently used by the schema objects

■ The names of Oracle Database users, privileges and roles granted to users, and
auditing information related to users (see "User Accounts" on page 17-1)

The data dictionary is a central part of data management for every Oracle database.
For example, the database performs the following actions:

■ Accesses the data dictionary to find information about users, schema objects, and
storage structures

■ Modifies the data dictionary every time that a DDL statement is issued (see "Data
Definition Language (DDL) Statements" on page 7-3)

Because Oracle Database stores data dictionary data in tables, just like other data,
users can query the data with SQL. For example, users can run SELECT statements to
determine their privileges, which tables exist in their schema, which columns are in
these tables, whether indexes are built on these columns, and so on.

See Also: "Introduction to Schema Objects" on page 2-1

Overview of the Data Dictionary

6-2 Oracle Database Concepts

Contents of the Data Dictionary
The data dictionary consists of the following types of objects:

■ Base tables

These underlying tables store information about the database. Only Oracle
Database should write to and read these tables. Users rarely access the base tables
directly because they are normalized and most data is stored in a cryptic format.

■ Views

These views decode the base table data into useful information, such as user or
table names, using joins and WHERE clauses to simplify the information. These
views contain the names and description of all objects in the data dictionary. Some
views are accessible to all database users, whereas others are intended for
administrators only.

Typically, data dictionary views are grouped in sets. In many cases, a set consists of
three views containing similar information and distinguished from each other by their
prefixes, as shown in Table 6–1. By querying the appropriate views, you can access
only the information relevant for you.

Not all views sets have three members. For example, the data dictionary contains a
DBA_LOCK view but no ALL_LOCK view.

The system-supplied DICTIONARY view contains the names and abbreviated
descriptions of all data dictionary views. The following query of this view includes
partial sample output:

SQL> SELECT * FROM DICTIONARY
 2 ORDER BY TABLE_NAME;

TABLE_NAME COMMENTS
------------------------------ --
ALL_ALL_TABLES Description of all object and relational
 tables accessible to the user

ALL_APPLY Details about each apply process that
 dequeues from the queue visible to the
 current user
.
.
.

Table 6–1 Data Dictionary View Sets

Prefix User Access Contents Notes

DBA_ Database
administrators

All objects Some DBA_ views have additional columns
containing information useful to the
administrator.

ALL_ All users Objects to which
user has privileges

Includes objects owned by user. These views
obey the current set of enabled roles.

USER_ All users Objects owned by
user

Views with the prefix USER_ usually exclude the
column OWNER. This column is implied in the
USER_ views to be the user issuing the query.

Overview of the Data Dictionary

Data Dictionary and Dynamic Performance Views 6-3

Views with the Prefix DBA_
Views with the prefix DBA_ show all relevant information in the entire database. DBA_
views are intended only for administrators.

For example, the following query shows information about all objects in the database:

SELECT OWNER, OBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
ORDER BY OWNER, OBJECT_NAME;

Views with the Prefix ALL_
Views with the prefix ALL_ refer to the user's overall perspective of the database. These
views return information about schema objects to which the user has access through
public or explicit grants of privileges and roles, in addition to schema objects that the
user owns.

For example, the following query returns information about all the objects to which
you have access:

SELECT OWNER, OBJECT_NAME, OBJECT_TYPE
FROM ALL_OBJECTS
ORDER BY OWNER, OBJECT_NAME;

Because the ALL_ views obey the current set of enabled roles, query results depend on
which roles are enabled, as shown in the following example:

SQL> SET ROLE ALL;

Role set.

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

COUNT(*)

68295

SQL> SET ROLE NONE;

Role set.

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

COUNT(*)

53771

Application developers should be cognizant of the effect of roles when using ALL_
views in a stored procedure, where roles are not enabled by default.

See Also:

■ Oracle Database Reference for a complete list of data dictionary
views and their columns

■ "Overview of Views" on page 4-12

See Also: Oracle Database Administrator's Guide for detailed
information on administrative privileges

See Also: "PL/SQL Subprograms" on page 8-3

Overview of the Data Dictionary

6-4 Oracle Database Concepts

Views with the Prefix USER_
The views most likely to be of interest to typical database users are those with the
prefix USER_. These views:

■ Refer to the user's private environment in the database, including metadata about
schema objects created by the user, grants made by the user, and so on

■ Display only rows pertinent to the user, returning a subset of the information in
the ALL_ views

■ Has columns identical to the other views, except that the column OWNER is implied

■ Can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT OBJECT_NAME, OBJECT_TYPE
FROM USER_OBJECTS
ORDER BY OBJECT_NAME;

The DUAL Table
DUAL is a small table in the data dictionary that Oracle Database and user-written
programs can reference to guarantee a known result. The dual table is useful when a
value must be returned only once, for example, the current date and time. All database
users have access to DUAL.

The DUAL table has one column called DUMMY and one row containing the value X. The
following example queries DUAL to perform an arithmetical operation:

SQL> SELECT ((3*4)+5)/3 FROM DUAL;

((3*4)+5)/3

 5.66666667

Storage of the Data Dictionary
The data dictionary base tables are the first objects created in any Oracle database. All
data dictionary tables and views for a database are stored in the SYSTEM tablespace.
Because the SYSTEM tablespace is always online when the database is open, the data
dictionary is always available when the database is open.

How Oracle Database Uses the Data Dictionary
The Oracle Database user SYS owns all base tables and user-accessible views of the
data dictionary. Data in the base tables of the data dictionary is necessary for Oracle
Database to function. Therefore, only Oracle Database should write or change data
dictionary information. No Oracle Database user should ever alter rows or schema
objects contained in the SYS schema because such activity can compromise data
integrity. The security administrator must keep strict control of this central account.

See Also: Oracle Database SQL Language Reference for more
information about the DUAL table

See Also: "The SYSTEM Tablespace" on page 12-32 for more
information about the SYSTEM tablespace

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect database operation.

Overview of the Dynamic Performance Views

Data Dictionary and Dynamic Performance Views 6-5

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database also
updates the data dictionary continuously to reflect changes in database structures,
auditing, grants, and data.

For example, if user hr creates a table named interns, then new rows are added to the
data dictionary that reflect the new table, columns, segment, extents, and the
privileges that hr has on the table. This new information is visible the next time the
dictionary views are queried.

Public Synonyms for Data Dictionary Views
Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access
Much of the data dictionary information is in the data dictionary cache because the
database constantly requires the information to validate user access and verify the
state of schema objects. Parsing information is typically kept in the caches. The
COMMENTS columns describing the tables and their columns are not cached in the
dictionary cache, but may be cached in the database buffer cache.

Other Programs and the Data Dictionary
Other Oracle Database products can reference existing views and create additional
data dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms rather
than the underlying tables. Synonyms are less likely to change between releases.

Overview of the Dynamic Performance Views
Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity. These views are called dynamic performance views because
they are continuously updated while a database is open and in use. The views, also
sometimes called V$ views, contain information such as the following:

■ System and session parameters

■ Memory usage and allocation

■ File states (including RMAN backup files)

■ Progress of jobs and tasks

■ SQL execution

■ Statistics and metrics

The dynamic performance views have the following primary uses:

■ Oracle Enterprise Manager uses the views to obtain information about the
database (see "Oracle Enterprise Manager" on page 18-2).

See Also: "SYS and SYSTEM Schemas" on page 2-5

See Also: "Overview of Synonyms" on page 4-22

See Also: "Data Dictionary Cache" on page 14-19

Database Object Metadata

6-6 Oracle Database Concepts

■ Administrators can use the views for performance monitoring and debugging.

Contents of the Dynamic Performance Views
Dynamic performance views are sometimes called fixed views because they cannot be
altered or removed by a database administrator. However, database administrators can
query and create views on the tables and grant access to these views to other users.

SYS owns the dynamic performance tables, whose names begin with V_$. Views are
created on these tables, and then public synonyms prefixed with V$. For example, the
V$DATAFILE view contains information about data files. The V$FIXED_TABLE view
contains information about all of the dynamic performance tables and views.

For almost every V$ view, a corresponding GV$ view exists. In Oracle Real Application
Clusters (Oracle RAC), querying a GV$ view retrieves the V$ view information from all
qualified database instances (see "Database Server Grid" on page 17-12).

When you use the Database Configuration Assistant (DBCA) to create a database,
Oracle automatically creates the data dictionary. Oracle Database automatically runs
the catalog.sql script, which contains definitions of the views and public synonyms
for the dynamic performance views. You must run catalog.sql to create these views
and synonyms.

Storage of the Dynamic Performance Views
Dynamic performance views are based on virtual tables built from database memory
structures. Thus, they are not conventional tables stored in the database. Read
consistency is not guaranteed for the views because the data is updated dynamically.

Because the dynamic performance views are not true tables, the data is dependent on
the state of the database and instance. For example, you can query V$INSTANCE and
V$BGPROCESS when the database is started but not mounted. However, you cannot
query V$DATAFILE until the database has been mounted.

Database Object Metadata
The DBMS_METADATA package provides interfaces for extracting complete definitions of
database objects. The definitions can be expressed either as XML or as SQL DDL. Two
styles of interface are provided: a flexible, sophisticated interface for programmatic
control, and a simplified interface for ad hoc querying.

See Also: Oracle Database Reference for a complete list of the
dynamic performance views

See Also:

■ "Tools for Database Installation and Configuration" on page 18-4
to learn about DBCA

■ Oracle Database Administrator's Guide to learn how to run
catalog.sql manually

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn about using performance views in Oracle RAC

See Also: Chapter 9, "Data Concurrency and Consistency"

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about DBMS_METADATA

Part II
Part II Oracle Data Access

This part contains the following chapters:

■ Chapter 7, "SQL"

■ Chapter 8, "Server-Side Programming: PL/SQL and Java"

7

SQL 7-1

7 SQL

This chapter provides an overview of the Structured Query Language (SQL) and how
Oracle Database processes SQL statements.

This chapter includes the following topics:

■ Introduction to SQL

■ Overview of SQL Statements

■ Overview of the Optimizer

■ Overview of SQL Processing

Introduction to SQL
SQL (pronounced sequel) is the set-based, high-level declarative computer language
with which all programs and users access data in an Oracle database. Although some
Oracle tools and applications mask SQL use, all database operations are performed
using SQL. Any other data access method circumvents the security built into Oracle
Database and potentially compromises data security and integrity.

SQL provides an interface to a relational database such as Oracle Database. SQL
unifies tasks such as the following in one consistent language:

■ Creating, replacing, altering, and dropping objects

■ Inserting, updating, and deleting table rows

■ Querying data

■ Controlling access to the database and its objects

■ Guaranteeing database consistency and integrity

SQL can be used interactively, which means that statements are entered manually into
a program. SQL statements can also be embedded within a program written in a
different language such as C or Java.

SQL Data Access
There are two broad families of computer languages: declarative languages that are
nonprocedural and describe what should be done, and procedural languages such as

See Also:

■ Oracle Database SQL Language Reference for an introduction to SQL

■ "Introduction to Server-Side Programming" on page 8-1 and
"Client-Side Database Programming" on page 19-5

Introduction to SQL

7-2 Oracle Database Concepts

C++ and Java that describe how things should be done. SQL is declarative in the sense
that users specify the result that they want, not how to derive it. The SQL language
compiler performs the work of generating a procedure to navigate the database and
perform the desired task.

SQL enables you to work with data at the logical level. You need be concerned with
implementation details only when you want to manipulate the data. For example, the
following statement queries records for employees whose last name begins with K:

SELECT last_name, first_name
FROM hr.employees
WHERE last_name LIKE 'K%'
ORDER BY last_name, first_name;

The database retrieves all rows satisfying the WHERE condition, also called the
predicate, in a single step. These rows can be passed as a unit to the user, to another
SQL statement, or to an application. You do not need to process the rows one by one,
nor are you required to know how the rows are physically stored or retrieved.

All SQL statements use the optimizer, a part of Oracle Database that determines the
most efficient means of accessing the specified data. Oracle Database also supports
techniques that you can use to make the optimizer perform its job better.

SQL Standards
Oracle strives to follow industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO). Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. One
part of the SQL standard, Part 14, SQL/XML (ISO/IEC 9075-14) was revised in 2006
and is often referred to as SQL/XML:2006.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language, and
Oracle Database tools and applications provide additional statements. The tools
SQL*Plus, SQL Developer, and Oracle Enterprise Manager enable you to run any
ANSI/ISO standard SQL statement against an Oracle database and any additional
statements or functions available for those tools.

See Also: Oracle Database SQL Language Reference for detailed
information about SQL statements and other parts of SQL (such as
operators, functions, and format models)

See Also:

■ Oracle Database SQL Language Reference for an explanation of the
differences between Oracle SQL and standard SQL

■ SQL*Plus User's Guide and Reference for SQL*Plus commands,
including their distinction from SQL statements

■ "Tools for Database Administrators" on page 18-2 and "Tools for
Database Developers" on page 19-1

Overview of SQL Statements

SQL 7-3

Overview of SQL Statements
All operations performed on the information in an Oracle database are run using SQL
statements. A SQL statement is a computer program or instruction that consists of
identifiers, parameters, variables, names, data types, and SQL reserved words.

A SQL statement must be the equivalent of a complete SQL sentence, such as:

SELECT last_name, department_id FROM employees

Oracle Database only runs complete SQL statements. A fragment such as the following
generates an error indicating that more text is required:

SELECT last_name;

Oracle SQL statements are divided into the following categories:

■ Data Definition Language (DDL) Statements

■ Data Manipulation Language (DML) Statements

■ Transaction Control Statements

■ Session Control Statements

■ System Control Statement

■ Embedded SQL Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements define, structurally change, and drop
schema objects. For example, DDL statements enable you to:

■ Create, alter, and drop schema objects and other database structures, including the
database itself and database users. Most DDL statements start with the keywords
CREATE, ALTER, or DROP.

■ Delete all the data in schema objects without removing the structure of these
objects (TRUNCATE).

■ Grant and revoke privileges and roles (GRANT, REVOKE).

■ Turn auditing options on and off (AUDIT, NOAUDIT).

■ Add a comment to the data dictionary (COMMENT).

DDL enables you to alter attributes of an object without altering the applications that
access the object. For example, you can add a column to a table accessed by a human
resources application without rewriting the application. You can also use DDL to alter
the structure of objects while database users are performing work in the database.

Note: SQL reserved words have special meaning in SQL and should
not be used for any other purpose. For example, SELECT and UPDATE
are reserved words and should not be used as table names.

Note: Unlike DELETE, TRUNCATE generates no undo data, which
makes it faster than DELETE. Also, TRUNCATE does not invoke delete
triggers.

Overview of SQL Statements

7-4 Oracle Database Concepts

Example 7–1 uses DDL statements to create the plants table and then uses DML to
insert two rows in the table. The example then uses DDL to alter the table structure,
grant and revoke privileges on this table to a user, and then drop the table.

Example 7–1 DDL Statements

CREATE TABLE plants
 (plant_id NUMBER PRIMARY KEY,
 common_name VARCHAR2(15));

INSERT INTO plants VALUES (1, 'African Violet'); # DML statement

INSERT INTO plants VALUES (2, 'Amaryllis'); # DML statement

ALTER TABLE plants ADD
 (latin_name VARCHAR2(40));

GRANT SELECT ON plants TO scott;

REVOKE SELECT ON plants FROM scott;

DROP TABLE plants;

An implicit COMMIT occurs immediately before the database executes a DDL statement
and a COMMIT or ROLLBACK occurs immediately afterward. In Example 7–1, two INSERT
statements are followed by an ALTER TABLE statement, so the database commits the
two INSERT statements. If the ALTER TABLE statement succeeds, then the database
commits this statement; otherwise, the database rolls back this statement. In either case
the two INSERT statements have already been committed.

Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements query or manipulate data in existing
schema objects. Whereas DDL statements enable you to change the structure of the
database, DML statements enable you to query or change the contents. For example,
ALTER TABLE changes the structure of a table, whereas INSERT adds one or more rows
to the table.

DML statements are the most frequently used SQL statements and enable you to:

■ Retrieve or fetch data from one or more tables or views (SELECT).

■ Add new rows of data into a table or view (INSERT) by specifying a list of column
values or using a subquery to select and manipulate existing data.

■ Change column values in existing rows of a table or view (UPDATE).

■ Update or insert rows conditionally into a table or view (MERGE).

■ Remove rows from tables or views (DELETE).

See Also:

■ "Overview of Database Security" on page 17-1 to learn about
privileges and roles

■ Oracle Database 2 Day Developer's Guide and Oracle Database
Administrator's Guide to learn how to create schema objects

■ Oracle Database SQL Language Reference for a list of DDL
statements

Overview of SQL Statements

SQL 7-5

■ View the execution plan for a SQL statement (EXPLAIN PLAN). See "How Oracle
Database Processes DML" on page 7-22.

■ Lock a table or view, temporarily limiting access by other users (LOCK TABLE).

The following example uses DML to query the employees table. The example uses
DML to insert a row into employees, update this row, and then delete it:

SELECT * FROM employees;

INSERT INTO employees (employee_id, last_name, email, job_id, hire_date, salary)
 VALUES (1234, 'Mascis', 'JMASCIS', 'IT_PROG', '14-FEB-2008', 9000);

UPDATE employees SET salary=9100 WHERE employee_id=1234;

DELETE FROM employees WHERE employee_id=1234;

A collection of DML statements that forms a logical unit of work is called a
transaction. For example, a transaction to transfer money could involve three discrete
operations: decreasing the savings account balance, increasing the checking account
balance, and recording the transfer in an account history table. Unlike DDL
statements, DML statements do not implicitly commit the current transaction.

SELECT Statements
A query is an operation that retrieves data from a table or view. SELECT is the only SQL
statement that you can use to query data. The set of data retrieved from execution of a
SELECT statement is known as a result set.

Table 7–1 shows two required keywords and two keywords that are commonly found
in a SELECT statement. The table also associates capabilities of a SELECT statement with
the keywords.

See Also:

■ "Introduction to Transactions" on page 10-1

■ Oracle Database 2 Day Developer's Guide to learn how to query and
manipulate data

■ Oracle Database SQL Language Reference for a list of DML
statements

Table 7–1 Keywords in a SQL Statement

Keyword Required? Description Capability

SELECT Yes Specifies which columns should be shown in the
result. Projection produces a subset of the columns in
the table.

An expression is a combination of one or more values,
operators, and SQL functions that resolves to a value.
The list of expressions that appears after the SELECT
keyword and before the FROM clause is called the select
list.

Projection

FROM Yes Specifies the tables or views from which the data
should be retrieved.

Joining

WHERE No Specifies a condition to filter rows, producing a subset
of the rows in the table. A condition specifies a
combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE, FALSE,
or UNKNOWN.

Selection

Overview of SQL Statements

7-6 Oracle Database Concepts

Joins
A join is a query that combines rows from two or more tables, views, or materialized
views. Example 7–2 joins the employees and departments tables (FROM clause), selects
only rows that meet specified criteria (WHERE clause), and uses projection to retrieve
data from two columns (SELECT). Sample output follows the SQL statement.

Example 7–2 Sample Join

SELECT email, department_name
FROM employees JOIN departments
ON employees.department_id = departments.department_id
WHERE employee_id IN (100,103)
ORDER BY email;

EMAIL DEPARTMENT_NAME
------------------------- ------------------------------
AHUNOLD IT
SKING Executive

Figure 7–1 graphically represents the operations of projection and selection in the join
shown in Example 7–2.

Figure 7–1 Projection and Selection

Most joins have at least one join condition, either in the FROM clause or in the WHERE
clause, that compares two columns, each from a different table. The database combines
pairs of rows, each containing one row from each table, for which the join condition

ORDER BY No Specifies the order in which the rows should be
shown.

See Also: Oracle Database SQL Language Reference for SELECT syntax
and semantics

Table 7–1 (Cont.) Keywords in a SQL Statement

Keyword Required? Description Capability

Table DEPARTMENTS

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

103
100

1400
1700

60
90

IT
Executive

EMPLOYEE_ID LAST_NAME HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

Table EMPLOYEES

17-JUN-87
21-SEP-89
13-JAN-93
03-JAN-90

SELECT email,department_name
FROM employees JOIN
departments
ON employees.department_id =
departments.department_id
WHERE employee_id IN (100,103)
ORDER BY email

EMAIL

King
Kochhar
De Hann
Hunold

100
101
102
103

SKING
NKOCHHAR
LDEHANN
AHUNOLD

AD_PRES
AD_VP
AD_VP
IT_PROG

100
100
102

90
90
90
60

Projection

Selection

Overview of SQL Statements

SQL 7-7

evaluates to TRUE. The optimizer determines the order in which the database joins
tables based on the join conditions, indexes, and any available statistics for the tables.

Join types include the following:

■ Inner joins

An inner join is a join of two or more tables that returns only rows that satisfy the
join condition. For example, if the join condition is
employees.department_id=departments.department_id, then rows that do not
satisfy this condition are not returned.

■ Outer joins

An outer join returns all rows that satisfy the join condition and also returns rows
from one table for which no rows from the other table satisfy the condition. For
example, a left outer join of employees and departments retrieves all rows in the
employees table even if there is no match in departments. A right outer join
retrieves all rows in departments even if there is no match in employees.

■ Cartesian products

If two tables in a join query have no join condition, then the database returns their
Cartesian product. Each row of one table combines with each row of the other. For
example, if employees has 107 rows and departments has 27, then the Cartesian
product contains 107*27 rows. A Cartesian product is rarely useful.

Subqueries and Implicit Queries
A subquery is a SELECT statement nested within another SQL statement. Subqueries
are useful when you must execute multiple queries to solve a single problem.

Each query portion of a statement is called a query block. In Example 7–3, the
subquery in parentheses is the inner query block. The inner SELECT statement
retrieves the IDs of departments with location ID 1800. These department IDs are
needed by the outer query block, which retrieves names of employees in the
departments whose IDs were supplied by the subquery.

Example 7–3 Subquery

SELECT first_name, last_name
FROM employees
WHERE department_id
IN (SELECT department_id FROM departments WHERE location_id = 1800);

The structure of the SQL statement does not force the database to execute the inner
query first. For example, the database could rewrite the entire query as a join of
employees and departments, so that the subquery never executes by itself. As another
example, the Virtual Private Database (VPD) feature could restrict the query of
employees using a WHERE clause, so that the database decides to query the employees
first and then obtain the department IDs. The optimizer determines the best sequence
of steps to retrieve the requested rows.

An implicit query is a component of a DML statement that retrieves data without
using a subquery. An UPDATE, DELETE, or MERGE statement that does not explicitly
include a SELECT statement uses an implicit query to retrieve rows to be modified. For
example, the following statement includes an implicit query for the Baer record:

UPDATE employees

See Also: Oracle Database SQL Language Reference for detailed
descriptions and examples of joins

Overview of SQL Statements

7-8 Oracle Database Concepts

 SET salary = salary*1.1
 WHERE last_name = 'Baer';

The only DML statement that does not necessarily include a query component is an
INSERT statement with a VALUES clause. For example, an INSERT INTO TABLE mytable
VALUES (1) statement does not retrieve rows before inserting a row.

Transaction Control Statements
Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. These statements enable you to:

■ Make changes to a transaction permanent (COMMIT).

■ Undo the changes in a transaction, since the transaction started (ROLLBACK) or since
a savepoint (ROLLBACK TO SAVEPOINT). A savepoint is a user-declared
intermediate marker within the context of a transaction.

■ Set a point to which you can roll back (SAVEPOINT).

■ Establish properties for a transaction (SET TRANSACTION).

■ Specify whether a deferrable integrity constraint is checked following each DML
statement or when the transaction is committed (SET CONSTRAINT).

The following example starts a transaction named Update salaries. The example
creates a savepoint, updates an employee salary, and then rolls back the transaction to
the savepoint. The example updates the salary to a different value and commits.

SET TRANSACTION NAME 'Update salaries';

SAVEPOINT before_salary_update;

UPDATE employees SET salary=9100 WHERE employee_id=1234 # DML

ROLLBACK TO SAVEPOINT before_salary_update;

UPDATE employees SET salary=9200 WHERE employee_id=1234 # DML

COMMIT COMMENT 'Updated salaries';

Session Control Statements
Session control statements dynamically manage the properties of a user session. As
explained in "Connections and Sessions" on page 15-4, a session is a logical entity in
the database instance memory that represents the state of a current user login to a

See Also: "Virtual Private Database (VPD)" on page 17-4

Note: The ROLLBACK command ends a transaction, but ROLLBACK TO
SAVEPOINT does not.

See Also:

■ "Introduction to Transactions" on page 10-1

■ "Deferrable Constraints" on page 5-11

■ Oracle Database SQL Language Reference

Overview of SQL Statements

SQL 7-9

database. A session lasts from the time the user is authenticated by the database until
the user disconnects or exits the database application.

Session control statements enable you to:

■ Alter the current session by performing a specialized function, such as enabling
and disabling SQL tracing (ALTER SESSION).

■ Enable and disable roles, which are groups of privileges, for the current session
(SET ROLE).

The following example turns on SQL tracing for the session and then enables all roles
granted in the current session except dw_manager:

ALTER SESSION SET SQL_TRACE = TRUE;

SET ROLE ALL EXCEPT dw_manager;

Session control statements do not implicitly commit the current transaction.

System Control Statement
System control statements change the properties of the database instance. The only
system control statement is ALTER SYSTEM. It enables you to change settings such as the
minimum number of shared servers, terminate a session, and perform other
system-level tasks.

Following are examples of system control statements:

ALTER SYSTEM SWITCH LOGFILE;

ALTER SYSTEM KILL SESSION '39, 23';

The ALTER SYSTEM statement does not implicitly commit the current transaction.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control statements
within a procedural language program. They are used with the Oracle precompilers.
Embedded SQL is one approach to incorporating SQL in your procedural language
applications. Another approach is to use a procedural API such as Open Database
Connectivity (ODBC) or Java Database Connectivity (JDBC).

Embedded SQL statements enable you to:

■ Define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE).

■ Specify a database and connect to it (DECLARE DATABASE, CONNECT).

■ Assign variable names (DECLARE STATEMENT).

■ Initialize descriptors (DESCRIBE).

■ Specify how error and warning conditions are handled (WHENEVER).

■ Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE).

■ Retrieve data from the database (FETCH).

See Also: Oracle Database SQL Language Reference for ALTER SESSION
syntax and semantics

See Also: Oracle Database SQL Language Reference for ALTER SYSTEM
syntax and semantics

Overview of the Optimizer

7-10 Oracle Database Concepts

Overview of the Optimizer
To understand how Oracle Database processes SQL statements, it is necessary to
understand the part of the database called the optimizer (also known as the query
optimizer or cost-based optimizer). All SQL statements use the optimizer to
determine the most efficient means of accessing the specified data.

Use of the Optimizer
To execute a DML statement, Oracle Database may have to perform many steps. Each
step either retrieves rows of data physically from the database or prepares them for the
user issuing the statement.

Many different ways of processing a DML statement are often possible. For example,
the order in which tables or indexes are accessed can vary. The steps that the database
uses to execute a statement greatly affect how quickly the statement runs. The
optimizer generates execution plans describing possible methods of execution.

The optimizer determines which execution plan is most efficient by considering
several sources of information, including query conditions, available access paths,
statistics gathered for the system, and hints. For any SQL statement processed by
Oracle, the optimizer performs the following operations:

■ Evaluation of expressions and conditions

■ Inspection of integrity constraints to learn more about the data and optimize based
on this metadata

■ Statement transformation

■ Choice of optimizer goals

■ Choice of access paths

■ Choice of join orders

The optimizer generates most of the possible ways of processing a query and assigns a
cost to each step in the generated execution plan. The plan with the lowest cost is
chosen as the query plan to be executed.

You can influence optimizer choices by setting the optimizer goal and by gathering
representative statistics for the optimizer. For example, you may set the optimizer goal
to either of the following:

■ Total throughput

The ALL_ROWS hint instructs the optimizer to get the last row of the result to the
client application as fast as possible.

■ Initial response time

The FIRST_ROWS hint instructs the optimizer to get the first row to the client as fast
as possible.

See Also: "Introduction to Server-Side Programming" on page 8-1
and "Client-Side APIs" on page 19-7

Note: You can obtain an execution plan for a SQL statement without
executing the plan. Only an execution plan that the database actually
uses to execute a query is correctly termed a query plan.

Overview of the Optimizer

SQL 7-11

A typical end-user, interactive application would benefit from initial response time
optimization, whereas a batch-mode, non-interactive application would benefit from
total throughput optimization.

Optimizer Components
The optimizer contains three main components, which are shown in Figure 7–2.

Figure 7–2 Optimizer Components

The input to the optimizer is a parsed query (see "SQL Parsing" on page 7-16). The
optimizer performs the following operations:

1. The optimizer receives the parsed query and generates a set of potential plans for
the SQL statement based on available access paths and hints.

2. The optimizer estimates the cost of each plan based on statistics in the data
dictionary. The cost is an estimated value proportional to the expected resource
use needed to execute the statement with a particular plan.

3. The optimizer compares the costs of plans and chooses the lowest-cost plan,
known as the query plan, to pass to the row source generator (see "SQL Row
Source Generation" on page 7-19).

Query Transformer
The query transformer determines whether it is helpful to change the form of the
query so that the optimizer can generate a better execution plan. The input to the
query transformer is a parsed query, which is represented by a set of query blocks.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about using DBMS_STATS

■ Oracle Database Performance Tuning Guide for more information
about the optimizer and using hints

Query
Transformer

Estimator

Plan
Generator

Parsed Query
(from Parser)

Query Plan
(to Row Source Generator)

Transformed query

Query + estimates

Data
Dictionary

statistics

Overview of the Optimizer

7-12 Oracle Database Concepts

Estimator
The estimator determines the overall cost of a given execution plan. The estimator
generates three different types of measures to achieve this goal:

■ Selectivity

This measure represents a fraction of rows from a row set. The selectivity is tied to
a query predicate, such as last_name='Smith', or a combination of predicates.

■ Cardinality

This measure represents the number of rows in a row set.

■ Cost

This measure represents units of work or resource used. The query optimizer uses
disk I/O, CPU usage, and memory usage as units of work.

If statistics are available, then the estimator uses them to compute the measures. The
statistics improve the degree of accuracy of the measures.

Plan Generator
The plan generator tries out different plans for a submitted query and picks the plan
with the lowest cost. The optimizer generates subplans for each of the nested
subqueries and unmerged views, which is represented by a separate query block. The
plan generator explores various plans for a query block by trying out different access
paths, join methods, and join orders.

The optimizer automatically manages plans and ensures that only verified plans are
used. SQL Plan Management (SPM) allows controlled plan evolution by only using a
new plan after it has been verified to be perform better than the current plan.

Diagnostic tools such as the EXPLAIN PLAN statement enable you to view execution
plans chosen by the optimizer. EXPLAIN PLAN shows the query plan for the specified
SQL query if it were executed now in the current session. Other diagnostic tools are
Oracle Enterprise Manager and the SQL*Plus AUTOTRACE command. Example 7–6 on
page 7-20 shows the execution plan of a query when AUTOTRACE is enabled.

Access Paths
An access path is the way in which data is retrieved from the database. For example, a
query that uses an index has a different access path from a query that does not. In
general, index access paths are best for statements that retrieve a small subset of table
rows. Full scans are more efficient for accessing a large portion of a table.

The database can use several different access paths to retrieve data from a table. The
following is a representative list:

■ Full table scans

See Also: "Query Rewrite" on page 4-19

See Also:

■ "Tools for Database Administrators" on page 18-2

■ Oracle Database SQL Language Reference to learn about EXPLAIN
PLAN

■ Oracle Database Performance Tuning Guide to learn about the
optimizer components

Overview of the Optimizer

SQL 7-13

This type of scan reads all rows from a table and filters out those that do not meet
the selection criteria. The database sequentially scans all data blocks in the
segment, including those under the high water mark that separates used from
unused space (see "Segment Space and the High Water Mark" on page 12-27).

■ Rowid scans

The rowid of a row specifies the data file and data block containing the row and
the location of the row in that block. The database first obtains the rowids of the
selected rows, either from the statement WHERE clause or through an index scan,
and then locates each selected row based on its rowid.

■ Index scans

This scan searches an index for the indexed column values accessed by the SQL
statement (see "Index Scans" on page 3-6). If the statement accesses only columns
of the index, then Oracle Database reads the indexed column values directly from
the index.

■ Cluster scans

A cluster scan is used to retrieve data from a table stored in an indexed table
cluster, where all rows with the same cluster key value are stored in the same data
block (see "Overview of Indexed Clusters" on page 2-23). The database first
obtains the rowid of a selected row by scanning the cluster index. Oracle Database
locates the rows based on this rowid.

■ Hash scans

A hash scan is used to locate rows in a hash cluster, where all rows with the same
hash value are stored in the same data block (see "Overview of Hash Clusters" on
page 2-HIDDEN. The database first obtains the hash value by applying a hash
function to a cluster key value specified by the statement. Oracle Database then
scans the data blocks containing rows with this hash value.

The optimizer chooses an access path based on the available access paths for the
statement and the estimated cost of using each access path or combination of paths.

Optimizer Statistics
Optimizer statistics are a collection of data that describe details about the database
and the objects in the database. The statistics provide a statistically correct picture of
data storage and distribution usable by the optimizer when evaluating access paths.

Optimizer statistics include the following:

■ Table statistics

These include the number of rows, number of blocks, and average row length.

■ Column statistics

These include the number of distinct values and nulls in a column and the
distribution of data.

■ Index statistics

These include the number of leaf blocks and index levels.

■ System statistics

These include CPU and I/O performance and utilization.

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide to learn about access paths

Overview of the Optimizer

7-14 Oracle Database Concepts

Oracle Database gathers optimizer statistics on all database objects automatically and
maintains these statistics as an automated maintenance task. You can also gather
statistics manually using the DBMS_STATS package. This PL/SQL package can modify,
view, export, import, and delete statistics.

Optimizer statistics are created for the purposes of query optimization and are stored
in the data dictionary. These statistics should not be confused with performance
statistics visible through dynamic performance views.

Optimizer Hints
A hint is a comment in a SQL statement that acts as an instruction to the optimizer.
Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way to
run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run.

For example, suppose that your interactive application runs a query that returns 50
rows. This application initially fetches only the first 25 rows of the query to present to
the end user. You want the optimizer to generate a plan that gets the first 25 records as
quickly as possible so that the user is not forced to wait. You can use a hint to pass this
instruction to the optimizer as shown in the SELECT statement and AUTOTRACE output in
Example 7–4.

Example 7–4 Execution Plan for SELECT with FIRST_ROWS Hint

SELECT /*+ FIRST_ROWS(25) */ employee_id, department_id
FROM hr.employees
WHERE department_id > 50;

--
| Id | Operation | Name | Rows | Bytes
--
| 0 | SELECT STATEMENT | | 26 | 182
| 1 | TABLE ACCESS BY INDEX ROWID | EMPLOYEES | 26 | 182
|* 2 | INDEX RANGE SCAN | EMP_DEPARTMENT_IX | |
--

The execution plan in Example 7–4 shows that the optimizer chooses an index on the
employees.department_id column to find the first 25 rows of employees whose
department ID is over 50. The optimizer uses the rowid retrieved from the index to
retrieve the record from the employees table and return it to the client. Retrieval of the
first record is typically almost instantaneous.

Example 7–5 shows the same statement, but without the optimizer hint.

Example 7–5 Execution Plan for SELECT with No Hint

SELECT employee_id, department_id
FROM hr.employees
WHERE department_id > 50;

See Also:

■ Oracle Database 2 Day + Performance Tuning Guide and Oracle
Database Performance Tuning Guide to learn how to gather and
manage statistics

■ Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_STATS

Overview of SQL Processing

SQL 7-15

--
| Id | Operation | Name | Rows | Bytes | Cos
--
0	SELECT STATEMENT		50	350
* 1	VIEW	index$_join$_001	50	350
* 2	HASH JOIN			
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	50	350
4	INDEX FAST FULL SCAN	EMP_EMP_ID_PK	50	350

The execution plan in Example 7–5 joins two indexes to return the requested records as
fast as possible. Rather than repeatedly going from index to table as in Example 7–4,
the optimizer chooses a range scan of EMP_DEPARTMENT_IX to find all rows where the
department ID is over 50 and place these rows in a hash table. The optimizer then
chooses to read the EMP_EMP_ID_PK index. For each row in this index, it probes the hash
table to find the department ID.

In this case, the database cannot return the first row to the client until the index range
scan of EMP_DEPARTMENT_IX completes. Thus, this generated plan would take longer to
return the first record. Unlike the plan in Example 7–4, which accesses the table by
index rowid, the plan in Example 7–5 uses multiblock I/O, resulting in large reads.
The reads enable the last row of the entire result set to be returned more rapidly.

Overview of SQL Processing
This section explains how Oracle Database processes SQL statements. Specifically, the
section explains the way in which the database processes DDL statements to create
objects, DML to modify data, and queries to retrieve data.

Stages of SQL Processing
Figure 7–3 depicts the general stages of SQL processing: parsing, optimization, row
source generation, and execution. Depending on the statement, the database may omit
some of these steps.

See Also: Oracle Database Performance Tuning Guide to learn how to
use optimizer hints

Overview of SQL Processing

7-16 Oracle Database Concepts

Figure 7–3 Stages of SQL Processing

SQL Parsing
As shown in Figure 7–3, the first stage of SQL processing is parsing. This stage
involves separating the pieces of a SQL statement into a data structure that can be
processed by other routines. The database parses a statement when instructed by the
application, which means that only the application, and not the database itself, can
reduce the number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a
cursor, which is a handle for the session-specific private SQL area that holds a parsed
SQL statement and other processing information. The cursor and private SQL area are
in the PGA.

During the parse call, the database performs the following checks:

■ Syntax Check

■ Semantic Check

■ Shared Pool Check

The preceding checks identify the errors that can be found before statement execution.
Some errors cannot be caught by parsing. For example, the database can encounter

Generation of
multiple
execution plans

Generation of
query plan

Parsing

Optimization

Row Source
Generation

Execution

Hard Parse

Soft Parse

Semantic
Check

Syntax
Check

Shared Pool
Check

SQL Statement

Overview of SQL Processing

SQL 7-17

deadlocks or errors in data conversion only during statement execution (see "Locks
and Deadlocks" on page 9-16).

Syntax Check Oracle Database must check each SQL statement for syntactic validity. A
statement that breaks a rule for well-formed SQL syntax fails the check. For example,
the following statement fails because the keyword FROM is misspelled as FORM:

SQL> SELECT * FORM employees;
SELECT * FORM employees
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

Semantic Check The semantics of a statement are its meaning. Thus, a semantic check
determines whether a statement is meaningful, for example, whether the objects and
columns in the statement exist. A syntactically correct statement can fail a semantic
check, as shown in the following example of a query of a nonexistent table:

SQL> SELECT * FROM nonexistent_table;
SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Shared Pool Check During the parse, the database performs a shared pool check to
determine whether it can skip resource-intensive steps of statement processing. To this
end, the database uses a hashing algorithm to generate a hash value for every SQL
statement. The statement hash value is the SQL ID shown in V$SQL.SQL_ID.

When a user submits a SQL statement, the database searches the shared SQL area to
see if an existing parsed statement has the same hash value. The hash value of a SQL
statement is distinct from the following values:

■ Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this
way, the database obtains possible memory addresses of the statement.

■ Hash value of an execution plan for the statement

A SQL statement can have multiple plans in the shared pool. Each plan has a
different hash value. If the same SQL ID has multiple plan hash values, then the
database knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

■ Hard parse

If Oracle Database cannot reuse existing code, then it must build a new executable
version of the application code. This operation is known as a hard parse, or a
library cache miss. The database always perform a hard parse of DDL.

During the hard parse, the database accesses the library cache and data dictionary
cache numerous times to check the data dictionary. When the database accesses
these areas, it uses a serialization device called a latch on required objects so that
their definition does not change (see "Latches" on page 9-25). Latch contention
increases statement execution time and decreases concurrency.

■ Soft parse

Overview of SQL Processing

7-18 Oracle Database Concepts

A soft parse is any parse that is not a hard parse. If the submitted statement is the
same as a reusable SQL statement in the shared pool, then Oracle Database reuses
the existing code. This reuse of code is also called a library cache hit.

Soft parses can vary in the amount of work they perform. For example,
configuring the session shared SQL area can sometimes reduce the amount of
latching in the soft parses, making them "softer."

In general, a soft parse is preferable to a hard parse because the database skips the
optimization and row source generation steps, proceeding straight to execution.

Figure 7–4 is a simplified representation of a shared pool check of an UPDATE statement
in a dedicated server architecture.

Figure 7–4 Shared Pool Check

If a check determines that a statement in the shared pool has the same hash value, then
the database performs semantic and environment checks to determine whether the
statements mean the same. Identical syntax is not sufficient. For example, suppose two
different users log in to the database and issue the following SQL statements:

CREATE TABLE my_table (some_col INTEGER);
SELECT * FROM my_table;

The SELECT statements for the two users are syntactically identical, but two separate
schema objects are named my_table. This semantic difference means that the second
statement cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can
force a hard parse. In this case, the environment is the totality of session settings that
can affect execution plan generation, such as the work area size or optimizer settings.
Consider the following series of SQL statements executed by a single user:

ALTER SYSTEM FLUSH SHARED_POOL;
SELECT * FROM my_table;

Comparison of hash values

User

Server
Process

Client
Process

Private SQL Area
User

Update ...

PGA

SQL Work Areas

Session Memory 3967354608

System Global Area (SGA)

Shared Pool

Private
SQL Area

Shared SQL Area
3667723989
3967354608
2190280494

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

Overview of SQL Processing

SQL 7-19

ALTER SESSION SET OPTIMIZER_MODE=FIRST_ROWS;
SELECT * FROM my_table;

ALTER SESSION SET SQL_TRACE=TRUE;
SELECT * FROM my_table;

In the preceding example, the same SELECT statement is executed in three different
optimizer environments. Consequently, the database creates three separate shared SQL
areas for these statements and forces a hard parse of each statement.

SQL Optimization
As explained in "Overview of the Optimizer" on page 7-10, query optimization is the
process of choosing the most efficient means of executing a SQL statement. The
database optimizes queries based on statistics collected about the actual data being
accessed. The optimizer uses the number of rows, the size of the data set, and other
factors to generate possible execution plans, assigning a numeric cost to each plan. The
database uses the plan with the lowest cost.

The database must perform a hard parse at least once for every unique DML statement
and performs optimization during this parse. DDL is never optimized unless it
includes a DML component such as a subquery that requires optimization.

SQL Row Source Generation
The row source generator is software that receives the optimal execution plan from the
optimizer and produces an iterative plan, called the query plan, that is usable by the
rest of the database. The iterative plan is a binary program that, when executed by the
SQL virtual machine, produces the result set.

The query plan takes the form of a combination of steps. Each step returns a row set.
The rows in this set are either used by the next step or, in the last step, are returned to
the application issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control
structure that can iteratively process the rows. The row source can be a table, view, or
result of a join or grouping operation.

The row source generator produces a row source tree, which is a collection of row
sources. The row source tree shows the following information:

■ An ordering of the tables referenced by the statement

■ An access method for each table mentioned in the statement

■ A join method for tables affected by join operations in the statement

■ Data operations such as filter, sort, or aggregation

Example 7–6 shows the execution plan of a SELECT statement when AUTOTRACE is
enabled. The statement selects the last name, job title, and department name for all

See Also:

■ "Private SQL Area" on page 14-5 and "Shared SQL Areas" on
page 14-16

■ Oracle Database Performance Tuning Guide to learn how to
configure the shared pool

See Also: Oracle Database Performance Tuning Guide for detailed
information about the query optimizer

Overview of SQL Processing

7-20 Oracle Database Concepts

employees whose last names begin with the letter A. The execution plan for this
statement is the output of the row source generator.

Example 7–6 Execution Plan

SELECT e.last_name, j.job_title, d.department_name
FROM hr.employees e, hr.departments d, hr.jobs j
WHERE e.department_id = d.department_id
AND e.job_id = j.job_id
AND e.last_name LIKE 'A%' ;

Execution Plan
--
Plan hash value: 975837011

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		3	189	7 (15)	00:00:01
* 1	HASH JOIN		3	189	7 (15)	00:00:01
* 2	HASH JOIN		3	141	5 (20)	00:00:01
3	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	3	60	2 (0)	00:00:01
* 4	INDEX RANGE SCAN	EMP_NAME_IX	3		1 (0)	00:00:01
5	TABLE ACCESS FULL	JOBS	19	513	2 (0)	00:00:01
6	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 2 - access("E"."JOB_ID"="J"."JOB_ID")
 4 - access("E"."LAST_NAME" LIKE 'A%')
 filter("E"."LAST_NAME" LIKE 'A%')

SQL Execution
During execution, the SQL engine executes each row source in the tree produced by
the row source generator. This step is the only mandatory step in DML processing.

Figure 7–5 is an execution tree, also called a parse tree, that shows the flow of row
sources from one step to another. In general, the order of the steps in execution is the
reverse of the order in the plan, so you read the plan from the bottom up. Initial spaces
in the Operation column indicate hierarchical relationships. For example, if the name
of an operation is preceded by two spaces, then this operation is a child of an
operation preceded by one space. Operations preceded by one space are children of
the SELECT statement itself.

Overview of SQL Processing

SQL 7-21

Figure 7–5 Row Source Tree

In Figure 7–5, each node of the tree acts as a row source, which means that each step of
the execution plan either retrieves rows from the database or accepts rows from one or
more row sources as input. The SQL engine executes each row source as follows:

■ Steps indicated by the black boxes physically retrieve data from an object in the
database. These steps are the access paths, or techniques for retrieving data from
the database.

– Step 6 uses a full table scan to retrieve all rows from the departments table.

– Step 5 uses a full table scan to retrieve all rows from the jobs table.

– Step 4 scans the emp_name_ix index in order, looking for each key that begins
with the letter A and retrieving the corresponding rowid (see "Index Range
Scan" on page 3-7). For example, the rowid corresponding to Atkinson is
AAAPzRAAFAAAABSAAe.

– Step 3 retrieves from the employees table the rows whose rowids were
returned by Step 4. For example, the database uses rowid AAAPzRAAFAAAABSAAe
to retrieve the row for Atkinson.

■ Steps indicated by the clear boxes operate on row sources.

– Step 2 performs a hash join, accepting row sources from Steps 3 and 5, joining
each row from the Step 5 row source to its corresponding row in Step 3, and
returning the resulting rows to Step 1.

TABLE ACCESS
FULL
jobs

5 3

TABLE ACCESS
BY INDEX ROWID

employees

4

INDEX RANGE
SCAN

emp_name_ix

6

TABLE ACCESS
FULL

departments

1

HASH JOIN

2

HASH JOIN

Overview of SQL Processing

7-22 Oracle Database Concepts

For example, the row for employee Atkinson is associated with the job name
Stock Clerk.

– Step 1 performs another hash join, accepting row sources from Steps 2 and 6,
joining each row from the Step 6 source to its corresponding row in Step 2, and
returning the result to the client.

For example, the row for employee Atkinson is associated with the
department named Shipping.

In some execution plans the steps are iterative and in others sequential. The plan
shown in Example 7–6 is iterative because the SQL engine moves from index to table
to client and then repeats the steps.

During execution, the database reads the data from disk into memory if the data is not
in memory. The database also takes out any locks and latches necessary to ensure data
integrity and logs any changes made during the SQL execution. The final stage of
processing a SQL statement is closing the cursor.

How Oracle Database Processes DML
Most DML statements have a query component. In a query, execution of a cursor
places the results of the query into a set of rows called the result set.

Result set rows can be fetched either a row at a time or in groups. In the fetch stage,
the database selects rows and, if requested by the query, orders the rows. Each
successive fetch retrieves another row of the result until the last row has been fetched.

In general, the database cannot determine for certain the number of rows to be
retrieved by a query until the last row is fetched. Oracle Database retrieves the data in
response to fetch calls, so that the more rows the database reads, the more work it
performs. For some queries the database returns the first row as quickly as possible,
whereas for others it creates the entire result set before returning the first row.

Read Consistency
In general, a query retrieves data by using the Oracle Database read consistency
mechanism. This mechanism, which uses undo data to show past versions of data,
guarantees that all data blocks read by a query are consistent to a single point in time.

For an example of read consistency, suppose a query must read 100 data blocks in a
full table scan. The query processes the first 10 blocks while DML in a different
session modifies block 75. When the first session reaches block 75, it realizes the
change and uses undo data to retrieve the old, unmodified version of the data and
construct a noncurrent version of block 75 in memory.

Data Changes
DML statements that must change data use the read consistency mechanism to retrieve
only the data that matched the search criteria when the modification began.
Afterward, these statements retrieve the data blocks as they exist in their current state
and make the required modifications. The database must perform other actions related
to the modification of the data such as generating redo and undo data.

See Also: Oracle Database Performance Tuning Guide for detailed
information about execution plans and the EXPLAIN PLAN statement

See Also: "Multiversion Read Consistency" on page 9-2

See Also: "Overview of the Online Redo Log" on page 11-12

Overview of SQL Processing

SQL 7-23

How Oracle Database Processes DDL
Oracle Database processes DDL differently from DML. For example, when you create
a table, the database does not optimize the CREATE TABLE statement. Instead, Oracle
Database parses the DDL statement and carries out the command.

The database process DDL differently because it is a means of defining an object in the
data dictionary. Typically, Oracle Database must parse and execute many recursive
SQL statements to execute a DDL command. Suppose you create a table as follows:

CREATE TABLE mytable (mycolumn INTEGER);

Typically, the database would run dozens of recursive statements to execute the
preceding statement. The recursive SQL would perform actions such as the following:

■ Issue a COMMIT before executing the CREATE TABLE statement

■ Verify that user privileges are sufficient to create the table

■ Determine which tablespace the table should reside in

■ Ensure that the tablespace quota has not been exceeded

■ Ensure that no object in the schema has the same name

■ Insert rows that define the table into the data dictionary

■ Issue a COMMIT if the DDL statement succeeded or a ROLLBACK if it did not

See Also: Oracle Database Advanced Application Developer's Guide to
learn about SQL processing for application developers

Overview of SQL Processing

7-24 Oracle Database Concepts

8

Server-Side Programming: PL/SQL and Java 8-1

8Server-Side Programming: PL/SQL and Java

Chapter 7, "SQL" explains the Structured Query Language (SQL) language and how
the database processes SQL statements. This chapter explains how Procedural
Language/SQL (PL/SQL) or Java programs stored in the database can use SQL.

This chapter includes the following topics:

■ Introduction to Server-Side Programming

■ Overview of PL/SQL

■ Overview of Java in Oracle Database

■ Overview of Triggers

Introduction to Server-Side Programming
In a nonprocedural language such as SQL, the set of data to be operated on is
specified, but not the operations to be performed or the manner in which they are to be
carried out. In a procedural language program, most statement execution depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, that are not available in SQL.

For an illustration of the difference between procedural and nonprocedural languages,
suppose that the following SQL statement queries the employees table:

SELECT employee_id, department_id, last_name, salary FROM employees;

The preceding statement requests data, but does not apply logic to the data. However,
suppose you want an application to determine whether each employee in the data set
deserves a raise based on salary and department performance. A necessary condition
of a raise is that the employee did not receive more than three raises in the last five
years. If a raise is called for, then the application must adjust the salary and email the
manager; otherwise, the application must update a report.

The problem is how procedural database applications requiring conditional logic and
program flow control can use SQL. The basic development approaches are as follows:

■ Use client-side programming to embed SQL statements in applications written in
procedural languages such as C, C++, or Java

You can place SQL statements in source code and submit it to a precompiler or
Java translator before compilation. Alternatively, you can eliminate the
precompilation step and use an API such as Java Database Connectivity (JDBC) or
Oracle Call Interface (OCI) to enable the application to interact with the database.

See Also: Chapter 7, "SQL"

Overview of PL/SQL

8-2 Oracle Database Concepts

■ Use server-side programming to develop data logic that resides in the database

An application can explicitly invoke stored subprograms (procedures and
functions), written in PL/SQL (pronounced P L sequel) or Java. You can also create
a trigger, which is named program unit that is stored in the database and invoked
in response to a specified event.

This chapter explains the second approach. The principal benefit of server-side
programming is that functionality built into the database can be deployed anywhere.
The database and not the application determines the best way to perform tasks on a
given operating system. Also, subprograms increase scalability by centralizing
application processing on the server, enabling clients to reuse code. Because
subprogram calls are quick and efficient, a single call can start a compute-intensive
stored subprogram, reducing network traffic.

You can use the following languages to store data logic in Oracle Database:

■ PL/SQL

PL/SQL is the Oracle Database procedural extension to SQL. PL/SQL is
integrated with the database, supporting all Oracle SQL statements, functions, and
data types. Applications written in database APIs can invoke PL/SQL stored
subprograms and send PL/SQL code blocks to the database for execution.

■ Java

Oracle Database also provides support for developing, storing, and deploying Java
applications. Java stored subprograms run in the database and are independent of
programs that run in the middle tier. Java stored subprograms interface with SQL
using a similar execution model to PL/SQL.

Overview of PL/SQL
PL/SQL provides a server-side, stored procedural language that is easy-to-use,
seamless with SQL, robust, portable, and secure. You can access and manipulate
database data using procedural schema objects called PL/SQL program units.

PL/SQL program units generally are categorized as follows:

■ A subprogram is a PL/SQL block that is stored in the database and can be called
by name from an application. When you create a subprogram, the database parses
the subprogram and stores its parsed representation in the database. You can
declare a subprogram as a procedure or a function.

■ An anonymous block is a PL/SQL block that appears in your application and is
not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appear.

The PL/SQL compiler and interpreter are embedded in Oracle SQL Developer, giving
developers a consistent and leveraged development model on both client and server.

See Also:

■ "Client-Side Database Programming" on page 19-5 to learn
about embedding SQL with precompilers and APIs

■ Oracle Database 2 Day Developer's Guide for an introduction to
Oracle Database application development

■ Oracle Database Advanced Application Developer's Guide to learn
how to choose a programming environment

Overview of PL/SQL

Server-Side Programming: PL/SQL and Java 8-3

Also, PL/SQL stored procedures can be called from several database clients, such as
Pro*C, JDBC, ODBC, or OCI, and from Oracle Reports and Oracle Forms.

PL/SQL Subprograms
A PL/SQL subprogram is a named PL/SQL block that permits the caller to supply
parameters that can be input only, output only, or input and output values. A
subprogram solves a specific problem or performs related tasks and serves as a
building block for modular, maintainable database applications.

A subprogram is either a procedure or a function. Procedures and functions are
identical except that functions always return a single value to the caller, whereas
procedures do not. The term procedure in this chapter means procedure or function.

Advantages of PL/SQL Subprograms
As explained in "Introduction to Server-Side Programming" on page 8-1, server-side
programming has many advantages over client-side programming. PL/SQL
subprograms provide the following advantages:

■ Improved performance

– The amount of information that an application must send over a network is
small compared with issuing individual SQL statements or sending the text of
an entire PL/SQL block to Oracle Database, because the information is sent
only once and thereafter invoked when it is used.

– The compiled form of a procedure is readily available in the database, so no
compilation is required at execution time.

– If the procedure is present in the shared pool of the SGA, then the database
need not retrieve it from disk and can begin execution immediately.

■ Memory allocation

Because stored procedures take advantage of the shared memory capabilities of
Oracle Database, it must load only a single copy of the procedure into memory for
execution by multiple users. Sharing code among users results in a substantial
reduction in database memory requirements for applications.

■ Improved productivity

Stored procedures increase development productivity. By designing applications
around a common set of procedures, you can avoid redundant coding. For
example, you can write procedures to manipulate rows in the employees table.
Any application can call these procedures without requiring SQL statements to be
rewritten. If the methods of data management change, then only the procedures
must be modified, not the applications that use the procedures.

See Also:

■ "Tools for Database Developers" on page 19-1

■ Oracle Database PL/SQL Language Reference for complete
information about PL/SQL, including packages

See Also:

■ Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's
Guide to learn about stored procedures in these languages

■ Oracle Database PL/SQL Language Reference

Overview of PL/SQL

8-4 Oracle Database Concepts

Stored procedures are perhaps the best way to achieve code reuse. Because any
client application written in any language that connects to the database can invoke
stored procedures, they provide maximum code reuse in all environments.

■ Integrity

Stored procedures improve the integrity and consistency of your applications. By
developing applications around a common group of procedures, you reduce the
likelihood of coding errors.

For example, you can test a subprogram to guarantee that it returns an accurate
result and, after it is verified, reuse it in any number of applications without
retesting. If the data structures referenced by the procedure are altered, then you
must only recompile the procedure. Applications that call the procedure do not
necessarily require modifications.

■ Security with definer's rights procedures

Stored procedures can help enforce data security (see "Overview of Database
Security" on page 17-1). A definer's rights procedure executes with the privileges
of its owner, not its current user. Thus, you can restrict the database operations
that users perform by allowing them to access data only through procedures and
functions that run with the definer's privileges.

For example, you can grant users access to a procedure that updates a table but
not grant access to the table itself. When a user invokes the procedure, it runs with
the privileges of its owner. Users who have only the privilege to run the procedure
(but not privileges to query, update, or delete from the underlying tables) can
invoke the procedure but not manipulate table data in any other way.

■ Inherited privileges and schema context with invoker's rights procedures

An invoker's rights procedure executes in the current user's schema with the
current user's privileges. In other words, an invoker's rights procedure is not tied
to a particular user or schema. Invoker's rights procedures make it easy for
application developers to centralize application logic, even when the underlying
data is divided among user schemas.

For example, an hr_manager user who runs an update procedure on the
hr.employees table can update salaries, whereas an hr_clerk who runs the same
procedure is restricted to updating address data.

Creation of PL/SQL Subprograms
A subprogram created at the schema level with the CREATE PROCEDURE or CREATE
FUNCTION statement is a standalone stored subprogram. Subprograms defined in a
package are called package subprograms and are considered a part of the package.
The database stores subprograms in the data dictionary as schema objects.

A subprogram has a specification, which includes descriptions of any parameters, and
a body. Example 8–1 shows part of a creation statement for the standalone PL/SQL
procedure hire_employees. The procedure inserts a row into the employees table.

See Also:

■ Oracle Database PL/SQL Language Reference for an overview of
PL/SQL subprograms

■ Oracle Database Security Guide to learn more about definer's and
invoker's rights

Overview of PL/SQL

Server-Side Programming: PL/SQL and Java 8-5

Example 8–1 PL/SQL Procedure

CREATE PROCEDURE hire_employees
 (p_last_name VARCHAR2, p_job_id VARCHAR2, p_manager_id NUMBER, p_hire_date DATE,
 p_salary NUMBER, p_commission_pct NUMBER, p_department_id NUMBER)
IS
BEGIN
.
.
.
 INSERT INTO employees (employee_id, last_name, job_id, manager_id, hire_date,
 salary, commission_pct, department_id)
 VALUES (emp_sequence.NEXTVAL, p_last_name, p_job_id, p_manager_id, p_hire_date,
 p_salary, p_commission_pct, p_department_id);
.
.
.
END;

Execution of PL/SQL Subprograms
Users can execute a subprogram interactively by:

■ Using an Oracle tool, such as SQL*Plus or SQL Developer (see "Tools for Database
Developers" on page 19-1)

■ Calling it explicitly in the code of a database application, such as an Oracle Forms
or precompiler application (see "Client-Side Database Programming" on page 19-5)

■ Calling it explicitly in the code of another procedure or trigger

Figure 8–1 shows different database applications calling hire_employees.

See Also:

■ Oracle Database 2 Day Developer's Guide to learn how to create
subprograms

■ Oracle Database PL/SQL Language Reference to learn about the
CREATE PROCEDURE command

Overview of PL/SQL

8-6 Oracle Database Concepts

Figure 8–1 Calling a PL/SQL Stored Procedure

Alternatively, a privileged user can use Oracle Enterprise Manager or SQL*Plus to run
the hire_employees procedure using a statement such as the following:

EXECUTE hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE, 500, NULL, 20);

The preceding statement inserts a new record for TSMITH in the employees table.

A stored procedure depends on the objects referenced in its body. The database
automatically tracks and manages these dependencies. For example, if you alter the
definition of the employees table referenced by the hire_employees procedure in a
manner that would affect this procedure, then the procedure must be recompiled to
validate that it still works as designed. Usually, the database automatically administers
such dependency management.

PL/SQL Packages
A PL/SQL package is a group of related subprograms, along with the cursors and
variables they use, stored together in the database for continued use as a unit.
Packaged subprograms can be called explicitly by applications or users.

Oracle Database includes many supplied packages that extend database functionality
and provide PL/SQL access to SQL features. For example, the UTL_HTTP package
enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call
Oracle Web Server Cartridges. You can use the supplied packages when creating
applications or as a source of ideas when creating your own stored procedures.

Advantages of PL/SQL Packages
PL/SQL packages provide the following advantages:

See Also:

■ Oracle Database PL/SQL Language Reference to learn how to use
PL/SQL subprograms

■ SQL*Plus User's Guide and Reference to learn about the EXECUTE
command

Program code

Program code

.

.

Program code

Database Applications

.

.

.
hire_employees(...);
.
Program code

Program code
.
hire_employees(...);
.
Program code

codeProgram
.

codeProgram

codeProgram

hire_employees(...)

BEGIN
.
.
END;

.

.
hire_employees(...);
.

Database

Stored Procedure

Overview of PL/SQL

Server-Side Programming: PL/SQL and Java 8-7

■ Encapsulation

Packages enable you to encapsulate or group stored procedures, variables, data
types, and so on in a named, stored unit. Encapsulation provides better
organization during development and also more flexibility. You can create
specifications and reference public procedures without actually creating the
package body. Encapsulation simplifies privilege management. Granting the
privilege for a package makes package constructs accessible to the grantee.

■ Data security

The methods of package definition enable you to specify which variables, cursors,
and procedures are public and private. Public means that it is directly accessible to
the user of a package. Private means that it is hidden from the user of a package.

For example, a package can contain 10 procedures. You can define the package so
that only three procedures are public and therefore available for execution by a
user of the package. The remaining procedures are private and can only be
accessed by the procedures within the package. Do not confuse public and private
package variables with grants to PUBLIC.

■ Better performance

An entire package is loaded into memory in small chunks when a procedure in the
package is called for the first time. This load is completed in one operation, as
opposed to the separate loads required for standalone procedures. When calls to
related packaged procedures occur, no disk I/O is needed to run the compiled
code in memory.

A package body can be replaced and recompiled without affecting the
specification. As a result, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations can
be minimized, resulting in less impact on overall database performance.

Creation of PL/SQL Packages
You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package, whereas the body defines
all constructs (public and private) of the package.

Example 8–1 shows part of a statement that creates the package specification for
employees_management, which encapsulates several subprograms used to manage an
employee database. Each part of the package is created with a different statement.

Example 8–2 PL/SQL Package

CREATE PACKAGE employees_management AS
 FUNCTION hire_employees (last_name VARCHAR2, job_id VARCHAR2, manager_id NUMBER,
 salary NUMBER, commission_pct NUMBER, department_id NUMBER) RETURN NUMBER;
 PROCEDURE fire_employees(employee_id NUMBER);
 PROCEDURE salary_raise(employee_id NUMBER, salary_incr NUMBER);
.
.
.
 no_sal EXCEPTION;
END employees_management;

The specification declares the function hire_employees, the procedures
fire_employees and salary_raise, and the exception no_sal. All of these public
program objects are available to users who have access to the package.

Overview of PL/SQL

8-8 Oracle Database Concepts

The CREATE PACKAGE BODY command defines objects declared in the specification. The
package body must be created in the same schema as the package. After creating the
package, you can develop applications that call any of these public procedures or
functions or raise any of the public exceptions of the package.

Execution of PL/SQL Package Subprograms
You can reference package contents from database triggers, stored subprograms, 3GL
application programs, and Oracle tools. Figure 8–2 shows database applications
invoking procedures and functions in the employees_management package.

Figure 8–2 Calling Subprograms in a PL/SQL Package

Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the employees_management package, a user can explicitly run
any of the procedures contained in it. For example, SQL*Plus can issue the following
statement to run the hire_employees package procedure:

EXECUTE employees_management.hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE,
500, NULL, 20);

See Also: Oracle Database PL/SQL Language Reference to learn
about the CREATE PACKAGE command

See Also:

■ Oracle Database PL/SQL Language Reference for an introduction
to PL/SQL packages

■ Oracle Database Advanced Application Developer's Guide to learn
how to code PL/SQL packages

Database Applications employees_management

Program code
.
employees_management.fire_employees(...);

Program code
.
Program code
.
employees_management.hire_employees(...);
.
Program code

Program code
.
employees_management.hire_employees(...);

Program code
.
Program code
.
employees_management.salary_raise(...);
.
Program code

Database

BEGIN

fire_employees(...)

.

.
END;

hire_employees(...)

BEGIN
.
.
END;

salary_raise(...)

BEGIN
.
.
END;

Overview of PL/SQL

Server-Side Programming: PL/SQL and Java 8-9

PL/SQL Anonymous Blocks
An anonymous block is an unnamed, nonpersistent PL/SQL unit. Typical uses for
anonymous blocks include:

■ Initiating calls to subprograms and package constructs

■ Isolating exception handling

■ Managing control by nesting code within other PL/SQL blocks

Anonymous blocks do not have the code reuse advantages of stored subprograms.
Table 8–1 summarizes the differences between the two types of program units.

An anonymous block consists of an optional declarative part, an executable part, and
one or more optional exception handlers. The following sample anonymous block
selects an employee last name into a variable and prints the name:

DECLARE
 v_lname VARCHAR2(25);
BEGIN
 SELECT last_name INTO v_lname
 FROM employees
 WHERE employee_id = 101;
 DBMS_OUTPUT.PUT_LINE('Employee last name is '||v_lname);
END;

Oracle Database compiles the PL/SQL block and places it in the shared pool of the
SGA, but it does not store the source code or compiled version in the database for
reuse beyond the current instance. Unlike triggers, an anonymous block is compiled
each time it is loaded into memory. Shared SQL allows anonymous PL/SQL blocks in
the shared pool to be reused and shared until they are flushed out of the shared pool.

PL/SQL Language Constructs
PL/SQL blocks can include a variety of different PL/SQL language constructs. These
constructs including the following:

■ Variables and constants

You can declare these constructs within a procedure, function, or package. You can
use a variable or constant in a SQL or PL/SQL statement to capture or provide a
value when one is needed.

Table 8–1 Differences Between Anonymous Blocks and Subprograms

Is the PL/SQL Unit ... Anonymous Blocks Subprograms

Specified with a name? No Yes

Compiled with every reuse? No No

Stored in the database? No Yes

Invocable by other applications? No Yes

Capable of returning bind variable values? Yes Yes

Capable of returning function values? No Yes

Capable of accepting parameters? No Yes

See Also: Oracle Database Advanced Application Developer's Guide to
learn more about anonymous PL/SQL blocks

Overview of PL/SQL

8-10 Oracle Database Concepts

■ Cursors

You can declare a cursor explicitly within a procedure, function, or package to
facilitate record-oriented processing of Oracle Database data. The PL/SQL engine
can also declare cursors implicitly.

■ Exceptions

PL/SQL lets you explicitly handle internal and user-defined error conditions,
called exceptions, that arise during processing of PL/SQL code.

PL/SQL can run dynamic SQL statements whose complete text is not known until run
time. Dynamic SQL statements are stored in character strings that are entered into, or
built by, the program at run time. This technique enables you to create general purpose
procedures. For example, you can create a procedure that operates on a table whose
name is not known until run time.

PL/SQL Collections and Records
Many programming techniques use collection types such as arrays, bags, lists, nested
tables, sets, and trees. To support these techniques in database applications, PL/SQL
provides the data types TABLE and VARRAY, which enable you to declare associative
arrays, nested tables, and variable-size arrays.

Collections
A collection is an ordered group of elements, all of the same type. Each element has a
unique subscript that determines its position in the collection. To create a collection,
you first define a collection type, and then declare a variable of that type.

Collections work like the arrays found in most third-generation programming
languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side
applications and stored subprograms.

Records
A record is a composite variable that can store data values of different types, similar to
a struct type in C, C++, or Java. Records are useful for holding data from table rows, or
certain columns from table rows.

Suppose you have data about an employee such as name, salary, and hire date. These
items are dissimilar in type but logically related. A record containing a field for each
item lets you treat the data as a logical unit.

You can use the %ROWTYPE attribute to declare a record that represents a table row or
row fetched from a cursor. With user-defined records, you can declare your own fields.

See Also:

■ Oracle Database PL/SQL Language Reference for details about
dynamic SQL

■ Oracle Database PL/SQL Packages and Types Reference to learn how
to use dynamic SQL in the DBMS_SQL package

See Also: Oracle Database PL/SQL Language Reference for detailed
information on using collections and records

Overview of PL/SQL

Server-Side Programming: PL/SQL and Java 8-11

How PL/SQL Runs
PL/SQL supports both native execution and interpreted execution. In interpreted
execution, PL/SQL source code is compiled into a so-called bytecode representation,
which is run by a portable virtual computer implemented as part of Oracle Database.
In native execution, which offers the best performance on computationally intensive
program units, the source code of PL/SQL program units is compiled directly to object
code for the given platform. This object code is linked into Oracle Database.

The PL/SQL engine is the tool used to define, compile, and run PL/SQL program
units. This engine is a special component of many Oracle products, including Oracle
Database. While many Oracle products have PL/SQL components, this section
specifically covers the program units that can be stored in Oracle Database and
processed using Oracle Database PL/SQL engine. The PL/SQL capabilities of each
Oracle tool are described in the documentation for this tool.

Figure 8–3 illustrates the PL/SQL engine contained in Oracle Database.

Figure 8–3 The PL/SQL Engine and Oracle Database

The program unit is stored in a database. When an application calls a stored
procedure, the database loads the compiled program unit into the shared pool in the
system global area (SGA) (see "Shared Pool" on page 14-15). The PL/SQL and SQL
statement executors work together to process the statements in the procedure.

You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored
procedure from Oracle Forms.

A PL/SQL procedure executing on Oracle Database can call an external procedure or
function written in the C programming language and stored in a shared library. The C
routine runs in a separate address space from that of Oracle Database.

Instance

Database

PL/SQL Engine

SQL

SQL
Statement
Executor

Procedural
Statement
Executor

Database Application
System Global Area
(SGA)

Program code
.
.
Program code
.
hire_employees(...);
.
Program code

Procedure

BEGIN
 Procedural SQL
 Procedural SQL
 Procedural SQL
END;

Overview of Java in Oracle Database

8-12 Oracle Database Concepts

Overview of Java in Oracle Database
Java has emerged as the object-oriented programming language of choice. Java
includes the following features:

■ A Java Virtual Machine (JVM), which provides the basis for platform
independence

■ Automated storage management techniques, such as garbage collection

■ Language syntax that borrows from C and enforces strong typing

The database provides Java programs with a dynamic data-processing engine that
supports complex queries and multiple views of data. Client requests are assembled as
data queries for immediate processing. Query results are generated dynamically.

The combination of Java and Oracle Database helps you create component-based,
network-centric applications that can be easily updated as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More importantly, you can access
these applications and data stores from any client device.

Figure 8–4 shows a traditional two-tier, client/server configuration in which clients
call Java stored procedures in the same way that they call PL/SQL subprograms.

Figure 8–4 Two-Tier Client/Server Configuration

See Also:

■ Oracle Database PL/SQL Language Reference to learn about
PL/SQL architecture

■ Oracle Database Advanced Application Developer's Guide to learn
more about external procedures

Note: This chapter assumes that you have some familiarity with the
Java language.

Oracle Net

Oracle Net

Oracle Net

Client

Client

Client

Java Stored
Procedures

PL/SQL Stored
Procedures

Table
Table

Table

Relational Data

Overview of Java in Oracle Database

Server-Side Programming: PL/SQL and Java 8-13

Overview of the Java Virtual Machine (JVM)
A JVM is a virtual processor that runs compiled Java code. Java source code compiles
to low-level machine instructions, known as bytecodes, that are platform independent.
The Java bytecodes are interpreted through the JVM into platform-dependent actions.

Overview of Oracle JVM
Oracle JVM is a complete, Java2-compliant environment for running pure Java
applications. It is compatible with the JLS and the JVM specifications. It supports the
standard Java binary format and APIs. In addition, Oracle Database adheres to
standard Java language semantics, including dynamic class loading at run time.

Figure 8–5 illustrates how Oracle Java applications reside on top of the Java core class
libraries, which reside on top of the Oracle JVM. Because the Oracle Java support
system is located within the database, the JVM interacts with database libraries,
instead of directly interacting with the operating system.

Figure 8–5 Java Component Structure

Unlike other Java environments, Oracle JVM is embedded within Oracle Database.
Some important differences exist between Oracle JVM and typical client JVMs. For
example, in a standard Java environment, you run a Java application through the
interpreter by issuing the following command on the command line, where classname
is the name of the class that you want the JVM to interpret first:

java classname

The preceding command causes the application to run within a process on your
operating system. However, if you are not using the command-line interface, then you

See Also: Oracle Database 2 Day + Java Developer's Guide for an
introduction to using Java with Oracle Database

Data / Persistence Logic

Oracle Database JVM

JDBC

Java Core Class Libraries

Oracle Database Libraries

Operating System

Overview of Java in Oracle Database

8-14 Oracle Database Concepts

must load the application into the database, publish the interface, and then run the
application within a database data dictionary.

Main Components of Oracle JVM
Oracle JVM runs in the same process space and address space as the database kernel
by sharing its memory heaps and directly accessing its relational data. This design
optimizes memory use and increases throughput.

Oracle JVM provides a run-time environment for Java objects. It fully supports Java
data structures, method dispatch, exception handling, and language-level threads. It
also supports all the core Java class libraries, including java.lang, java.io, java.net,
java.math, and java.util.

Figure 8–6 shows the main components of Oracle JVM.

Figure 8–6 Main Components of Oracle JVM

Oracle JVM embeds the standard Java namespace in the database schemas. This
feature lets Java programs access Java objects stored in Oracle Database and
application servers across the enterprise.

In addition, Oracle JVM is tightly integrated with the scalable, shared memory
architecture of the database. Java programs use call, session, and object lifetimes
efficiently without user intervention. As a result, Oracle JVM and middle-tier Java
business objects can be scaled, even when they have session-long state.

Java Programming Environment
Oracle furnishes enterprise application developers with an end-to-end Java solution
for creating, deploying, and managing Java applications. The solution consists of
client-side and server-side programmatic interfaces, tools to support Java
development, and a Java Virtual Machine integrated with Oracle Database. All these
products are compatible with Java standards.

The Java programming environment consists of the following additional features:

See Also: See Oracle Database Java Developer's Guide for a description
of other differences between the Oracle JVM and typical client JVMs

See Also: Oracle Database Java Developer's Guide for a description of
the main components of Oracle JVM

Interpreter &
Run-Time System

Memory

Oracle JVM

loadjava Utility
CREATE JAVA Statement

RDBMS
Library Manager

RDBMS
Memory Manager

Class Loader Garbage CollectorSQL Calls

Natively
Compiled Code

Overview of Java in Oracle Database

Server-Side Programming: PL/SQL and Java 8-15

■ Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call Java stored
procedures from PL/SQL packages and procedures from Java stored procedures.

■ The JDBC and SQLJ programming interfaces for accessing SQL data.

■ Tools and scripts that assist in developing, loading, and managing classes.

Java Stored Procedures
A Java stored procedure is a Java method published to SQL and stored in the
database. Like a PL/SQL subprogram, a Java procedure can be invoked directly with
products like SQL*Plus or indirectly with a trigger. You can access it from any Oracle
Net client—OCI, precompiler, or JDBC.

To publish Java methods, you write call specifications, which map Java method
names, parameter types, and return types to their SQL counterparts. When called by
client applications, a Java stored procedure can accept arguments, reference Java
classes, and return Java result values.

Applications calling the Java method by referencing the name of the call specification.
The run-time system looks up the call specification definition in the Oracle data
dictionary and runs the corresponding Java method.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle Database provides a fully compliant implementation of the Java
programming language and JVM.

Java and PL/SQL Integration
You can call existing PL/SQL programs from Java and Java programs from PL/SQL.
This solution protects and leverages your PL/SQL and Java code.

Oracle Database offers two different approaches for accessing SQL data from Java,
JDBC and SQLJ. Both approaches are available on the client and server. As a result,
you can deploy applications on the client and server without modifying the code.

JDBC Drivers JDBC is a database access protocol that enables you to connect to a
database and run SQL statements and queries to the database. The core Java class
libraries provide only one JDBC API, java.sql. However, JDBC is designed to enable
vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle provides the distinct JDBC drivers shown in the following table.

See Also: Oracle Database Java Developer's Guide explains how to
write stored procedures in Java, how to access them from PL/SQL,
and how to access PL/SQL functionality from Java

Driver Description

JDBC Thin driver You can use the JDBC Thin driver to write pure Java applications and
applets that access Oracle SQL data. The JDBC Thin driver is especially
well-suited for Web-based applications and applets, because you can
dynamically download it from a Web page, similar to any other Java applet.

JDBC OCI driver The JDBC OCI driver accesses Oracle-specific native code, that is, non-Java
code, and libraries on the client or middle tier, providing a performance
boost compared to the JDBC Thin driver, at the cost of significantly larger
size and client-side installation.

Overview of Triggers

8-16 Oracle Database Concepts

SQLJ SQLJ is an ANSI standard for embedding SQL statements in Java programs.
You can use SQLJ in stored procedures, triggers, and methods within the Oracle
Database environment. In addition, you can combine SQLJ programs with JDBC.

SQLJ provides a simple, but powerful, way to develop client-side and middle-tier
applications that access databases from Java (see "SQLJ" on page 19-6). A developer
writes a program using SQLJ and then uses the SQLJ translator to translate embedded
SQL to pure JDBC-based Java code. At run time, the program can communicate with
multi-vendor databases using standard JDBC drivers.

The following example shows a simple SQLJ executable statement:

String name;
#sql { SELECT first_name INTO :name FROM employees WHERE employee_id=112 };
System.out.println("Name is " + name + ", employee number = " + employee_id);

Because Oracle Database provides a complete Java environment, you cannot compile
SQLJ programs on a client that will run on the database. Instead, you can compile
them directly on the server.

Overview of Triggers
A database trigger is a compiled stored program unit, written in either PL/SQL or
Java, that Oracle Database invokes ("fires") automatically whenever one of the
following operations occurs:

1. DML statements on a particular table or view, issued by any user

DML statements modify data in schema objects. For example, inserting and
deleting rows are DML operations.

2. DDL statements issued either by a particular user or any user

DDL statements define schema objects. For example, creating a table and adding a
column are DDL operations.

3. Database events

User login or logoff, errors, and database startup or shutdown are events that can
invoke triggers.

JDBC server-side
internal driver

Oracle Database uses the server-side internal driver when the Java code
runs on the server. It allows Java applications running in Oracle JVM on the
server to access locally defined data, that is, data on the same system and in
the same process, with JDBC. It provides a performance boost, because of its
ability to use the underlying Oracle RDBMS libraries directly, without the
overhead of an intervening network connection between the Java code and
SQL data. By supporting the same Java-SQL interface on the server, Oracle
Database does not require you to rework code when deploying it.

See Also:

■ "ODBC and JDBC" on page 19-8

■ Oracle Database 2 Day + Java Developer's Guide and Oracle Database
JDBC Developer's Guide

See Also: Oracle Database SQLJ Developer's Guide

Driver Description

Overview of Triggers

Server-Side Programming: PL/SQL and Java 8-17

Triggers are schema objects that are similar to subprograms but differ in the way they
are invoked. A subprogram is explicitly run by a user, application, or trigger. Triggers
are implicitly invoked by the database when a triggering event occurs.

Advantages of Triggers
The correct use of triggers enables you to build and deploy applications that are more
robust and that use the database more effectively. You can use triggers to:

■ Automatically generate derived column values

■ Prevent invalid transactions

■ Provide auditing and event logging

■ Record information about table access

You can use triggers to enforce low-level business rules common for all client
applications. For example, several applications may access the employees table. If a
trigger on this table ensures the format of inserted data, then this business logic does
not need to be reproduced in every client. Because the trigger cannot be circumvented
by the application, the business logic in the trigger is used automatically.

You can use both triggers and integrity constraints to define and enforce any type of
integrity rule. However, Oracle strongly recommends that you only use triggers to
enforce complex business rules not definable using an integrity constraint (see
"Introduction to Data Integrity" on page 5-1).

Excessive use of triggers can result in complex interdependencies that can be difficult
to maintain in a large application. For example, when a trigger is invoked, a SQL
statement within its trigger action potentially can fire other triggers, resulting in
cascading triggers that can produce unintended effects.

Types of Triggers
Triggers can be categorized according to their means of invocation and the type of
actions they perform. Oracle Database supports the following types of triggers:

■ Row triggers

A row trigger fires each time the table is affected by the triggering statement. For
example, if a statement updates multiple rows, then a row trigger fires once for
each row affected by the UPDATE. If a triggering statement affects no rows, then a
row trigger is not run. Row triggers are useful if the code in the trigger action
depends on data provided by the triggering statement or rows that are affected.

■ Statement triggers

A statement trigger is fired once on behalf of the triggering statement, regardless
of the number of rows affected by the triggering statement. For example, if a
statement deletes 100 rows from a table, a statement-level DELETE trigger is fired

See Also:

■ "Overview of SQL Statements" on page 7-3 to learn about DML
and DDL

■ "Overview of Instance Startup and Shutdown" on page 13-5

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
PL/SQL Language Reference for guidelines and restrictions when
planning triggers for your application

Overview of Triggers

8-18 Oracle Database Concepts

only once. Statement triggers are useful if the code in the trigger action does not
depend on the data provided by the triggering statement or the rows affected.

■ INSTEAD OF triggers

An INSTEAD OF trigger is fired by Oracle Database instead of executing the
triggering statement. These triggers are useful for transparently modifying views
that cannot be modified directly through DML statements.

■ Event triggers

You can use triggers to publish information about database events to subscribers.
Event triggers are divided into the following categories:

– A system event trigger can be caused by events such as database instance
startup and shutdown or error messages.

– A user event trigger is fired because of events related to user logon and logoff,
DDL statements, and DML statements.

Timing for Triggers
You can define the trigger timing—whether the trigger action is to be run before or
after the triggering statement. A simple trigger is a single trigger on a table that
enables you to specify actions for exactly one of the following timing points:

■ Before the firing statement

■ Before each row affected by the firing statement

■ After each row affected by the firing statement

■ After the firing statement

For statement and row triggers, a BEFORE trigger can enhance security and enable
business rules before making changes to the database. The AFTER trigger is ideal for
logging actions.

A compound trigger can fire at multiple timing points. Compound triggers help
program an approach in which the actions that you implement for various timing
points share common data.

Creation of Triggers
The CREATE TRIGGER statement creates or replaces a database trigger. A PL/SQL
trigger has the following general syntactic form:

CREATE TRIGGER trigger_name
 triggering_statement
 [trigger_restriction]
BEGIN
 triggered_action;
END;

A PL/SQL trigger has the following basic components:

See Also:

■ Oracle Database 2 Day Developer's Guide

■ Oracle Database PL/SQL Language Reference

See Also: Oracle Database PL/SQL Language Reference to learn about
compound triggers

Overview of Triggers

Server-Side Programming: PL/SQL and Java 8-19

■ Trigger name

The name must be unique with respect to other triggers in the same schema. For
example, the name may be part_reorder_trigger.

■ The trigger event or statement

A triggering event or statement is the SQL statement, database event, or user event
that causes a trigger to be invoked. For example, a user updates a table.

■ Trigger restriction

A trigger restriction specifies a Boolean expression that must be true for the
trigger to fire. For example, the trigger is not invoked unless the number of
available parts is less than a present reorder amount.

■ Triggered action

A triggered action is the procedure that contains the SQL statements and code to
be run when a triggering statement is issued and the trigger restriction evaluates
to true. For example, a user inserts a row into a pending orders table.

Suppose that you create the orders and lineitems tables as follows:

CREATE TABLE orders
(order_id NUMBER PRIMARY KEY,
 /* other attributes */
 line_items_count NUMBER DEFAULT 0);

CREATE TABLE lineitems
(order_id REFERENCES orders,
 seq_no NUMBER,
 /* other attributes */
 CONSTRAINT lineitems PRIMARY KEY(order_id,seq_no));

The orders table contains a row for each unique order, whereas the lineitems table
contains a row for each item in an order. Example 8–3 shows a sample trigger that
automatically updates the orders table with the number of items in an order.

Example 8–3 lineitems_trigger

CREATE OR REPLACE TRIGGER lineitems_trigger
 AFTER INSERT OR UPDATE OR DELETE ON lineitems
 FOR EACH ROW
BEGIN
 IF (INSERTING OR UPDATING)
 THEN
 UPDATE orders SET line_items_count = NVL(line_items_count,0)+1
 WHERE order_id = :new.order_id;
 END IF;
 IF (DELETING OR UPDATING)
 THEN
 UPDATE orders SET line_items_count = NVL(line_items_count,0)-1
 WHERE order_id = :old.order_id;
 END IF;
END;
/

In Example 8–3, the triggering statement is an INSERT, UPDATE, or DELETE on the
lineitems table. No triggering restriction exists. The trigger is invoked for each row
changed. The trigger has access to the old and new column values of the current row

Overview of Triggers

8-20 Oracle Database Concepts

affected by the triggering statement. Two correlation names exist for every column of
the table being modified: the old value (:old), and the new value (:new).

If rows in lineitems are inserted or updated for an order, then after the action the
trigger calculates the number of items in this order and updates the orders table with
the count. Table 8–2 illustrates a scenario in which a customer initiates two orders and
adds and removes line items from the orders.

Table 8–2 Row-Level Trigger Scenario

SQL Statement Triggered SQL Statement Description

SQL> INSERT INTO orders
(order_id) VALUES (78);

1 row created.

The customer creates an order with ID 78. At
this point the customer has no items in the
order.

Because no action is performed on the
lineitems table, the trigger is not invoked.

SQL> INSERT INTO orders
(order_id) VALUES (92);

1 row created.

The customer creates a separate order with
ID 92. At this point the customer has no
items in the order.

Because no action is performed on the
lineitems table, the trigger is not invoked.

SQL> INSERT INTO lineitems
(order_id, seq_no) VALUES (78,1);

1 row created.

UPDATE orders SET
line_items_count = NVL(NULL,0)+1
WHERE order_id = 78;

The customer adds an item to order 78.

The INSERT invokes the trigger. The
triggered statement increases the line item
count for order 78 from 0 to 1.

SQL> INSERT INTO lineitems
(order_id, seq_no) VALUES (78,2);

1 row created.

UPDATE orders SET
line_items_count = NVL(1,0)+1
WHERE order_id = 78;

The customer adds an additional item to
order 78.

The INSERT invokes the trigger. The
triggered statement increases the line item
count for order 78 from 1 to 2.

SQL> SELECT * FROM orders;

 ORDER_ID LINE_ITEMS_COUNT
--------- ----------------
 78 2
 92 0

The customer queries the status of the two
orders. Order 78 contains two items. Order
92 contains no items.

SQL> SELECT * FROM lineitems;

 ORDER_ID SEQ_NO
---------- ----------
 78 1
 78 2

The customer queries the status of the line
items. Each item is uniquely identified by
the order ID and the sequence number.

SQL> UPDATE lineitems SET order_id
= 92;

2 rows updated.

UPDATE orders SET
line_items_count = NVL(NULL,0)+1
WHERE order_id = 92;

UPDATE orders SET
line_items_count = NVL(2,0)-1
WHERE order_id = 78;

UPDATE orders SET
line_items_count = NVL(1,0)+1
WHERE order_id = 92;

UPDATE orders SET
line_items_count = NVL(1,0)-1
WHERE order_id = 78;

The customer moves the line items that were
in order 78 to order 92.

The UPDATE statement changes 2 rows in the
lineitems tables, which invokes the trigger
once for each row.

Each time the trigger is invoked, both IF
conditions in the trigger are met. The first
condition increments the count for order 92,
whereas the second condition decreases the
count for order 78. Thus, four total UPDATE
statements are run.

Overview of Triggers

Server-Side Programming: PL/SQL and Java 8-21

Execution of Triggers
Oracle Database executes a trigger internally using the same steps as for subprogram
execution. The only subtle difference is that a user has the right to fire a trigger if he or
she has the privilege to run the triggering statement. With this exception, the database
validates and runs triggers the same way as stored subprograms.

Storage of Triggers
Oracle Database stores PL/SQL triggers in compiled form in a database schema, just
like PL/SQL stored procedures. When a CREATE TRIGGER statement commits, the
compiled PL/SQL code is stored in the database and the source code of the PL/SQL
trigger is removed from the shared pool.

SQL> SELECT * FROM orders;

 ORDER_ID LINE_ITEMS_COUNT
--------- ----------------
 78 0
 92 2

The customer queries the status of the two
orders. The net effect is that the line item
count for order 92 has increased from 0 to 2,
whereas the count for order 78 has
decreased from 2 to 0.

SQL> SELECT * FROM lineitems;

 ORDER_ID SEQ_NO
---------- ----------
 92 1
 92 2

The customer queries the status of the line
items. Each item is uniquely identified by
the order ID and the sequence number.

SQL> DELETE FROM lineitems;

2 rows deleted.

UPDATE orders SET
line_items_count = NVL(2,0)-1
WHERE order_id = 92;

UPDATE orders SET
line_items_count = NVL(1,0)-1
WHERE order_id = 92;

The customer now removes all line items
from all orders.

The DELETE statement changes 2 rows in the
lineitems tables, which invokes the trigger
once for each row. For each trigger
invocation, only one IF condition in the
trigger is met. Each time the condition
decreases the count for order 92 by 1. Thus,
two total UPDATE statements are run.

SQL> SELECT * FROM orders;

 ORDER_ID LINE_ITEMS_COUNT
--------- ----------------
 78 0
 92 0

SQL> SELECT * FROM lineitems;

no rows selected

The customer queries the status of the two
orders. Neither order contains line items.

The customer also queries the status of the
line items. No items exist.

See Also:

■ Oracle Database 2 Day Developer's Guide and Oracle Database
PL/SQL Language Reference to learn how to create triggers

■ Oracle Database PL/SQL Language Reference to learn about the
CREATE TRIGGER command

See Also: Oracle Database PL/SQL Language Reference to learn more
about trigger execution

Table 8–2 (Cont.) Row-Level Trigger Scenario

SQL Statement Triggered SQL Statement Description

Overview of Triggers

8-22 Oracle Database Concepts

Figure 8–7 shows a database application with SQL statements that implicitly invoke
PL/SQL triggers. The triggers are stored separately from their associated tables.

Figure 8–7 Triggers

Java triggers are stored in the same manner as PL/SQL triggers. However, a Java
trigger references Java code that was separately compiled with a CALL statement. Thus,
creating a Java trigger involves creating Java code and creating the trigger that
references this Java code.

See Also: Oracle Database PL/SQL Language Reference to learn
about compiling and storing triggers

Oracle Database

 Update Trigger

BEGIN
. . . Insert Trigger

BEGIN
. . . Delete Trigger

BEGIN
. . .

Data Dictionary

Table t

Database Application

Program code
.
.
UPDATE t SET ...;
.
.
INSERT INTO t ...;
.
.
DELETE FROM t ...;

Part III
Part III Oracle Transaction Management

This part contains the following chapters:

■ Chapter 10, "Transactions"

■ Chapter 9, "Data Concurrency and Consistency"

9

Data Concurrency and Consistency 9-1

9Data Concurrency and Consistency

This chapter explains how Oracle Database maintains consistent data in a multiuser
database environment.

This chapter contains the following sections:

■ Introduction to Data Concurrency and Consistency

■ Overview of Oracle Database Transaction Isolation Levels

■ Overview of the Oracle Database Locking Mechanism

■ Overview of Automatic Locks

■ Overview of Manual Data Locks

■ Overview of User-Defined Locks

Introduction to Data Concurrency and Consistency
In a single-user database, a user can modify data without concern for other users
modifying the same data at the same time. However, in a multiuser database,
statements within multiple simultaneous transactions can update the same data.
Transactions executing simultaneously must produce meaningful and consistent
results. Therefore, a multiuser database must provide the following:

■ Data concurrency, which ensures that users can access data at the same time

■ Data consistency, which ensures that each user sees a consistent view of the data,
including visible changes made by the user's own transactions and committed
transactions of other users

To describe consistent transaction behavior when transactions run concurrently,
database researchers have defined a transaction isolation model called serializability.
A serializable transaction operates in an environment that makes it appear as if no
other users were modifying data in the database.

While this degree of isolation between transactions is generally desirable, running
many applications in serializable mode can seriously compromise application
throughput. Complete isolation of concurrently running transactions could mean that
one transaction cannot perform an insertion into a table being queried by another
transaction. In short, real-world considerations usually require a compromise between
perfect transaction isolation and performance.

Oracle Database maintains data consistency by using a multiversion consistency
model and various types of locks and transactions. In this way, the database can
present a view of data to multiple concurrent users, with each view consistent to a
point in time. Because different versions of data blocks can exist simultaneously,

Introduction to Data Concurrency and Consistency

9-2 Oracle Database Concepts

transactions can read the version of data committed at the point in time required by a
query and return results that are consistent to a single point in time.

Multiversion Read Consistency
In Oracle Database, multiversioning is the ability to simultaneously materialize
multiple versions of data. Oracle Database maintains multiversion read consistency,
which means that database queries have the following characteristics:

■ Read-consistent queries

The data returned by a query is committed and consistent with respect to a single
point in time.

To illustrate the problem with dirty reads, suppose one transaction updates a
column value without committing. A second transaction reads the updated and
dirty (uncommitted) value. The first session rolls back the transaction so that the
column has its old value, but the second transaction proceeds using the updated
value, corrupting the database. Dirty reads compromise data integrity, violate
foreign keys, and ignore unique constraints.

■ Nonblocking queries

Readers and writers of data do not block one another (see "Summary of Locking
Behavior" on page 9-12).

Statement-Level Read Consistency
Oracle Database always enforces statement-level read consistency, which guarantees
that data returned by a single query is committed and consistent with respect to a
single point in time. The point in time to which a single SQL statement is consistent
depends on the transaction isolation level and the nature of the query:

■ In the read committed isolation level, this point is the time at which the statement
was opened. For example, if a SELECT statement opens at SCN 1000, then this
statement is consistent to SCN 1000.

■ In a serializable or read-only transaction this point is the time the transaction
began. For example, if a transaction begins at SCN 1000, and if multiple SELECT
statements occur in this transaction, then each statement is consistent to SCN 1000.

■ In a Flashback Query operation (SELECT ... AS OF), the SELECT statement
explicitly specifies the point in time. For example, you can query a table as it
appeared last Thursday at 2 p.m.

Transaction-Level Read Consistency
Oracle Database can also provide read consistency to all queries in a transaction,
known as transaction-level read consistency. In this case, each statement in a

See Also: Chapter 5, "Data Integrity" and Chapter 10,
"Transactions"

Important: Oracle Database never permits dirty reads, which occur
when a transaction reads uncommitted data in another transaction.

See Also: Oracle Database Advanced Application Developer's Guide to
learn about Flashback Query

Introduction to Data Concurrency and Consistency

Data Concurrency and Consistency 9-3

transaction sees data from the same point in time, which is the time at which the
transaction began.

Queries made by a serializable transaction see changes made by the transaction itself.
For example, a transaction that updates employees and then queries employees will
see the updates. Transaction-level read consistency produces repeatable reads and
does not expose a query to phantom reads.

Read Consistency and Undo Segments
To manage the multiversion read consistency model, the database must create a
read-consistent set of data when a table is simultaneously queried and updated. Oracle
Database achieves this goal through undo data.

Whenever a user modifies data, Oracle Database creates undo entries, which it writes
to undo segments ("Undo Segments" on page 12-24). The undo segments contain the
old values of data that have been changed by uncommitted or recently committed
transactions. Thus, multiple versions of the same data, all at different points in time,
can exist in the database. The database can use snapshots of data at different points in
time to provide read-consistent views of the data and enable nonblocking queries.

Read consistency is guaranteed in single-instance and Oracle Real Application
Clusters (Oracle RAC) environments. Oracle RAC uses a cache-to-cache block transfer
mechanism known as Cache Fusion to transfer read-consistent images of data blocks
from one database instance to another.

Read Consistency: Example Figure 9–1 shows a query that uses undo data to provide
statement-level read consistency in the read committed isolation level.

See Also:

■ "Internal LOBs" on page 19-12 to learn about read consistency
mechanisms for LOBs

■ Oracle Database 2 Day + Real Application Clusters Guide to learn
about Cache Fusion

Introduction to Data Concurrency and Consistency

9-4 Oracle Database Concepts

Figure 9–1 Read Consistency in the Read Committed Isolation Level

As the database retrieves data blocks on behalf of a query, the database ensures that
the data in each block reflects the contents of the block when the query began. The
database rolls back changes to the block as needed to reconstruct the block to the point
in time the query started processing.

The database uses a mechanism called an SCN to guarantee the order of transactions.
As the SELECT statement enters the execution phase, the database determines the SCN
recorded at the time the query began executing. In Figure 9–1, this SCN is 10023. The
query only sees committed data with respect to SCN 10023.

In Figure 9–1, blocks with SCNs after 10023 indicate changed data, as shown by the
two blocks with SCN 10024. The SELECT statement requires a version of the block that
is consistent with committed changes. The database copies current data blocks to a
new buffer and applies undo data to reconstruct previous versions of the blocks. These
reconstructed data blocks are called consistent read (CR) clones.

In Figure 9–1, the database creates two CR clones: one block consistent to SCN 10006
and the other block consistent to SCN 10021. The database returns the reconstructed
data for the query. In this way, Oracle Database prevents dirty reads.

See Also: "Database Buffer Cache" on page 14-9 and "System
Change Numbers (SCNs)" on page 10-5

SELECT . . .
(SCN 10023)

Undo
Segment

SCN 10021

SCN 10021

SCN 10024

SCN 10008

SCN 10024

SCN 10011

SCN 10021

SCN 10021SCN 10006

Introduction to Data Concurrency and Consistency

Data Concurrency and Consistency 9-5

Read Consistency and Transaction Tables The database uses a transaction table, also
called an interested transaction list (ITL), to determine if a transaction was
uncommitted when the database began modifying the block. The block header of
every segment block contains a transaction table.

Entries in the transaction table describe which transactions have rows locked and
which rows in the block contain committed and uncommitted changes. The
transaction table points to the undo segment, which provides information about the
timing of changes made to the database.

In a sense, the block header contains a recent history of transactions that affected each
row in the block. The INITRANS parameter of the CREATE TABLE and ALTER TABLE
statements controls the amount of transaction history that is kept.

Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same resource.

ANSI/ISO Transaction Isolation Levels
The SQL standard, which has been adopted by both ANSI and ISO/IEC, defines four
levels of transaction isolation. These levels have differing degrees of impact on
transaction processing throughput.

These isolation levels are defined in terms of phenomena that must be prevented
between concurrently executing transactions. The preventable phenomena are:

■ Dirty reads

A transaction reads data that has been written by another transaction that has not
been committed yet.

■ Nonrepeatable (fuzzy) reads

A transaction rereads data it has previously read and finds that another committed
transaction has modified or deleted the data. For example, a user queries a row
and then later queries the same row, only to discover that the data has changed.

■ Phantom reads

A transaction reruns a query returning a set of rows that satisfies a search
condition and finds that another committed transaction has inserted additional
rows that satisfy the condition.

For example, a transaction queries the number of employees. Five minutes later it
performs the same query, but now the number has increased by one because
another user inserted a record for a new hire. More data satisfies the query criteria
than before, but unlike in a fuzzy read the previously read data is unchanged.

The SQL standard defines four levels of isolation in terms of the phenomena that a
transaction running at a particular isolation level is permitted to experience. Table 9–1
shows the levels.

See Also: Oracle Database SQL Language Reference to learn about the
INITRANS parameter

See Also: "Overview of the Oracle Database Locking Mechanism"
on page 9-11

Overview of Oracle Database Transaction Isolation Levels

9-6 Oracle Database Concepts

Oracle Database offers the read committed (default) and serializable isolation levels.
Also, the database offers a read-only mode.

Overview of Oracle Database Transaction Isolation Levels
Table 9–1 summarizes the ANSI standard for transaction isolation levels. The standard
is defined in terms of the phenomena that are either permitted or prevented for each
isolation level. Oracle Database provides the transaction isolation levels:

■ Read Committed Isolation Level

■ Serializable Isolation Level

■ Read-Only Isolation Level

Read Committed Isolation Level
In the read committed isolation level, which is the default, every query executed by a
transaction sees only data committed before the query—not the transaction—began.
This level of isolation is appropriate for database environments in which few
transactions are likely to conflict.

A query in a read committed transaction avoids reading data that commits while the
query is in progress. For example, if a query is halfway through a scan of a million-row
table, and if a different transaction commits an update to row 950,000, then the query
does not see this change when it reads row 950,000. However, because the database
does not prevent other transactions from modifying data read by a query, other
transactions may change data between query executions. Thus, a transaction that runs
the same query twice may experience fuzzy reads and phantoms.

Table 9–1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

See Also:

■ "Overview of Oracle Database Transaction Isolation Levels" on
page 9-6 to learn about read committed, serializable, and
read-only isolation levels

■ Oracle Database SQL Language Reference for a discussion of Oracle
Database conformance to SQL standards

See Also:

■ Oracle Database Advanced Application Developer's Guide to learn
more about transaction isolation levels

■ Oracle Database SQL Language Reference and Oracle Database
PL/SQL Language Reference to learn about SET TRANSACTION
ISOLATION LEVEL

Overview of Oracle Database Transaction Isolation Levels

Data Concurrency and Consistency 9-7

Read Consistency in the Read Committed Isolation Level
A consistent result set is provided for every query, guaranteeing data consistency, with
no action by the user. An implicit query, such as a query implied by a WHERE clause in
an UPDATE statement, is guaranteed a consistent set of results. However, each statement
in an implicit query does not see the changes made by the DML statement itself, but
sees the data as it existed before changes were made.

If a SELECT list contains a PL/SQL function, then the database applies statement-level
read consistency at the statement level for SQL run within the PL/SQL function code,
rather than at the parent SQL level. For example, a function could access a table whose
data is changed and committed by another user. For each execution of the SELECT in
the function, a new read-consistent snapshot is established.

Conflicting Writes in Read Committed Transactions
In a read committed transaction, a conflicting write occurs when the transaction
attempts to change a row updated by an uncommitted concurrent transaction,
sometimes called a blocking transaction. The read committed transaction waits for the
blocking transaction to end and release its row lock. The options are as follows:

■ If the blocking transaction rolls back, then the waiting transaction proceeds to
change the previously locked row as if the other transaction never existed.

■ If the blocking transaction commits and releases its locks, then the waiting
transaction proceeds with its intended update to the newly changed row.

Table 9–2 shows how transaction 1, which can be either serializable or read committed,
interacts with read committed transaction 2. Table 9–2 shows a classic situation known
as a lost update (see "Use of Locks" on page 9-12). The update made by transaction 1 is
not in the table even though transaction 1 committed it. Devising a strategy to handle lost
updates is an important part of application development.

See Also: "Subqueries and Implicit Queries" on page 7-7

Table 9–2 Conflicting Writes and Lost Updates in a READ COMMITTED Transaction

Session 1 Session 2 Explanation

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9500

Session 1 queries the salaries for Banda,
Greene, and Hintz. No employee named
Hintz is found.

SQL> UPDATE employees SET salary
= 7000 WHERE last_name = 'Banda';

Session 1 begins a transaction by updating
the Banda salary. The default isolation level
for transaction 1 is READ COMMITTED.

SQL> SET TRANSACTION ISOLATION
LEVEL READ COMMITTED;

Session 2 begins transaction 2 and sets the
isolation level explicitly to READ COMMITTED.

SQL> SELECT last_name, salary
FROM employees WHERE last_name IN
('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9500

Transaction 2 queries the salaries for
Banda, Greene, and Hintz. Oracle Database
uses read consistency to show the salary for
Banda before the uncommitted update
made by transaction 1.

Overview of Oracle Database Transaction Isolation Levels

9-8 Oracle Database Concepts

Serializable Isolation Level
In the serialization isolation level, a transaction sees only changes committed at the
time the transaction—not the query—began and changes made by the transaction
itself. A serializable transaction operates in an environment that makes it appear as if
no other users were modifying data in the database.

Serializable isolation is suitable for environments:

■ With large databases and short transactions that update only a few rows

SQL> UPDATE employees SET salary =
9900 WHERE last_name = 'Greene';

Transaction 2 updates the salary for Greene
successfully because transaction 1 locked
only the Banda row (see "Row Locks (TX)"
on page 9-18).

SQL> INSERT INTO employees
(employee_id, last_name, email,
hire_date, job_id) VALUES (210,
'Hintz', 'JHINTZ', SYSDATE,
'SH_CLERK');

Transaction 1 inserts a row for employee
Hintz, but does not commit.

SQL> SELECT last_name, salary
FROM employees WHERE last_name IN
('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9900

Transaction 2 queries the salaries for
employees Banda, Greene, and Hintz.

Transaction 2 sees its own update to the
salary for Greene. Transaction 2 does not
see the uncommitted update to the salary
for Banda or the insertion for Hintz made
by transaction 1.

SQL> UPDATE employees SET salary =
6300 WHERE last_name = 'Banda';

-- prompt does not return

Transaction 2 attempts to update the row
for Banda, which is currently locked by
transaction 1, creating a conflicting write.
Transaction 2 waits until transaction 1 ends.

SQL> COMMIT; Transaction 1 commits its work, ending the
transaction.

1 row updated.

SQL>

The lock on the Banda row is now released,
so transaction 2 proceeds with its update to
the salary for Banda.

SQL> SELECT last_name, salary
FROM employees WHERE last_name IN
('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6300
Greene 9900
Hintz

Transaction 2 queries the salaries for
employees Banda, Greene, and Hintz. The
Hintz insert committed by transaction 1 is
now visible to transaction 2. Transaction 2
sees its own update to the Banda salary.

COMMIT; Transaction 2 commits its work, ending the
transaction.

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6300
Greene 9900
Hintz

Session 1 queries the rows for Banda,
Greene, and Hintz. The salary for Banda is
6300, which is the update made by
transaction 2. The update of Banda's salary
to 7000 made by transaction 1 is now "lost."

Table 9–2 (Cont.) Conflicting Writes and Lost Updates in a READ COMMITTED Transaction

Session 1 Session 2 Explanation

Overview of Oracle Database Transaction Isolation Levels

Data Concurrency and Consistency 9-9

■ Where the chance that two concurrent transactions will modify the same rows is
relatively low

■ Where relatively long-running transactions are primarily read only

In serializable isolation, the read consistency normally obtained at the statement level
extends to the entire transaction. Any row read by the transaction is assured to be the
same when reread. Any query is guaranteed to return the same results for the duration
of the transaction, so changes made by other transactions are not visible to the query
regardless of how long it has been running. Serializable transactions do not experience
dirty reads, fuzzy reads, or phantom reads.

Oracle Database permits a serializable transaction to modify a row only if changes to
the row made by other transactions were already committed when the serializable
transaction began. The database generates an error when a serializable transaction
tries to update or delete data changed by a different transaction that committed after
the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the ORA-08177 error, an application can take
several actions, including the following:

■ Commit the work executed to that point

■ Execute additional (but different) statements, perhaps after rolling back to a
savepoint established earlier in the transaction

■ Roll back the entire transaction

Table 9–3 shows how a serializable transaction interacts with other transactions. If the
serializable transaction does not try to change a row committed by another transaction
after the serializable transaction began, then a serialized access problem is avoided.

Table 9–3 Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1 Session 2 Explanation

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9500

Session 1 queries the salaries for Banda,
Greene, and Hintz. No employee named
Hintz is found.

SQL> UPDATE employees SET salary
= 7000 WHERE last_name = 'Banda';

Session 1 begins transaction 1 by updating
the Banda salary. The default isolation level
for is READ COMMITTED.

SQL> SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE;

Session 2 begins transaction 2 and sets it to
the SERIALIZABLE isolation level.

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9500

Transaction 2 queries the salaries for
Banda, Greene, and Hintz. Oracle Database
uses read consistency to show the salary for
Banda before the uncommitted update made
by transaction 1.

SQL> UPDATE employees SET salary =
9900 WHERE last_name = 'Greene';

Transaction 2 updates the Greene salary
successfully because only the Banda row is
locked.

Overview of Oracle Database Transaction Isolation Levels

9-10 Oracle Database Concepts

SQL> INSERT INTO employees
(employee_id, last_name, email,
hire_date, job_id) VALUES (210,
'Hintz', 'JHINTZ', SYSDATE,
'SH_CLERK');

Transaction 1 inserts a row for employee
Hintz.

SQL> COMMIT; Transaction 1 commits its work, ending the
transaction.

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 7000
Greene 9500
Hintz

SQL> SELECT last_name, salary
FROM employees WHERE last_name IN
('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 6200
Greene 9900

Session 1 queries the salaries for employees
Banda, Greene, and Hintz and sees changes
committed by transaction 1. Session 1 does
not see the uncommitted Greene update
made by transaction 2.

Transaction 2 queries the salaries for
employees Banda, Greene, and Hintz.
Oracle Database read consistency ensures
that the Hintz insert and Banda update
committed by transaction 1 are not visible
to transaction 2. Transaction 2 sees its own
update to the Banda salary.

COMMIT; Transaction 2 commits its work, ending the
transaction.

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 7000
Greene 9900
Hintz

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 7000
Greene 9900
Hintz

Both sessions query the salaries for Banda,
Greene, and Hintz. Each session sees all
committed changes made by transaction 1
and transaction 2.

SQL> UPDATE employees SET salary
= 7100 WHERE last_name = 'Hintz';

Session 1 begins transaction 3 by updating
the Hintz salary. The default isolation level
for transaction 3 is READ COMMITTED.

SQL> SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE;

Session 2 begins transaction 4 and sets it to
the SERIALIZABLE isolation level.

SQL> UPDATE employees SET salary =
7200 WHERE last_name = 'Hintz';

-- prompt does not return

Transaction 4 attempts to update the salary
for Hintz, but is blocked because
transaction 3 locked the Hintz row (see
"Row Locks (TX)" on page 9-18).
Transaction 4 queues behind transaction 3.

SQL> COMMIT; Transaction 3 commits its update of the
Hintz salary, ending the transaction.

UPDATE employees SET salary = 7200
WHERE last_name = 'Hintz'
*
ERROR at line 1:
ORA-08177: can't serialize access
for this transaction

The commit that ends transaction 3 causes
the Hintz update in transaction 4 to fail
with the ORA-08177 error. The problem
error occurs because transaction 3
committed the Hintz update after
transaction 4 began.

SQL> ROLLBACK; Session 2 rolls back transaction 4, which
ends the transaction.

SQL> SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE;

Session 2 begins transaction 5 and sets it to
the SERIALIZABLE isolation level.

Table 9–3 (Cont.) Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1 Session 2 Explanation

Overview of the Oracle Database Locking Mechanism

Data Concurrency and Consistency 9-11

Read-Only Isolation Level
The read-only isolation level is similar to the serializable isolation level, but read-only
transactions do not permit data to be modified in the transaction unless the user is SYS.
Thus, read-only transactions are not susceptible to the ORA-08177 error. Read-only
transactions are useful for generating reports in which the contents must be consistent
with respect to the time when the transaction began.

Oracle Database achieves read consistency by reconstructing data as needed from the
undo segments. Because undo segments are used in a circular fashion, the database
can overwrite undo data. Long-running reports run the risk that undo data required
for read consistency may have been reused by a different transaction, raising a
snapshot too old error. Setting an undo retention period, which is the minimum
amount of time that the database attempts to retain old undo data before overwriting
it, appropriately avoids this problem.

Overview of the Oracle Database Locking Mechanism
A lock is a mechanism that prevents destructive interactions, which are interactions
that incorrectly update data or incorrectly alter underlying data structures, between
transactions accessing shared data. Locks play a crucial row in maintaining database
concurrency and consistency.

SQL> SELECT last_name, salary
FROM employees WHERE last_name
IN ('Banda','Greene','Hintz');

LAST_NAME SALARY
------------- ----------
Banda 7100
Greene 9500
Hintz 7100

Transaction 5 queries the salaries for
Banda, Greene, and Hintz. The Hintz salary
update committed by transaction 3 is
visible.

SQL> UPDATE employees SET salary =
7200 WHERE last_name = 'Hintz';

1 row updated.

Transaction 5 updates the Hintz salary to a
different value. Because the Hintz update
made by transaction 3 committed before the
start of transaction 5, the serialized access
problem is avoided.

Note: If a different transaction updated and
committed the Hintz row after transaction
transaction 5 began, then the serialized
access problem would occur again.

SQL> COMMIT; Session 2 commits the update without any
problems, ending the transaction.

See Also: "Overview of Transaction Control" on page 10-6

See Also:

■ "Undo Segments" on page 12-24

■ Oracle Database Administrator's Guide to learn how to set the undo
retention period

Table 9–3 (Cont.) Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1 Session 2 Explanation

Overview of the Oracle Database Locking Mechanism

9-12 Oracle Database Concepts

Summary of Locking Behavior
The database maintains several different types of locks, depending on the operation
that acquired the lock. In general, the database uses two types of locks: exclusive locks
and share locks. Only one exclusive lock can be obtained on a resource such as a row
or a table, but many share locks can be obtained on a single resource.

Locks affect the interaction of readers and writers. A reader is a query of a resource,
whereas a writer is a statement modifying a resource. The following rules summarize
the locking behavior of Oracle Database for readers and writers:

■ A row is locked only when modified by a writer.

When a statement updates one row, the transaction acquires a lock for this row
only. By locking table data at the row level, the database minimizes contention for
the same data. Under normal circumstances1 the database does not escalate a row
lock to the block or table level.

■ A writer of a row blocks a concurrent writer of the same row.

If one transaction is modifying a row, then a row lock prevents a different
transaction from modifying the same row simultaneously.

■ A reader never blocks a writer.

Because a reader of a row does not lock it, a writer can modify this row. The only
exception is a SELECT ... FOR UPDATE statement, which is a special type of SELECT
statement that does lock the row that it is reading.

■ A writer never blocks a reader.

When a row is being changed by a writer, the database uses undo data data to
provide readers with a consistent view of the row.

Use of Locks
In a single-user database, locks are not necessary because only one user is modifying
information. However, when multiple users are accessing and modifying data, the
database must provide a way to prevent concurrent modification of the same data.
Locks achieve the following important database requirements:

■ Consistency

The data a session is viewing or changing must not be changed by other sessions
until the user is finished.

1 When processing a distributed two-phase commit, the database may briefly prevent read
access in special circumstances. Specifically, if a query starts between the prepare and commit
phases and attempts to read the data before the commit, then the database may escalate a lock
from row-level to block-level to guarantee read consistency.

Note: Readers of data may have to wait for writers of the same data
blocks in very special cases of pending distributed transactions.

See Also:

■ Oracle Database SQL Language Reference to learn about SELECT ...
FOR UPDATE

■ Oracle Database Administrator's Guide to learn about waits
associated with in-doubt distributed transactions

Overview of the Oracle Database Locking Mechanism

Data Concurrency and Consistency 9-13

■ Integrity

The data and structures must reflect all changes made to them in the correct
sequence.

Oracle Database provides data concurrency, consistency, and integrity among
transactions through its locking mechanisms. Locking is performed automatically and
requires no user action.

The need for locks can be illustrated by a concurrent update of a single row. In the
following example, a simple web-based application presents the end user with an
employee email and phone number. The application uses an UPDATE statement such as
the following to modify the data:

UPDATE employees
SET email = ?, phone_number = ?
WHERE employee_id = ?
AND email = ?
AND phone_number = ?

In the preceding UPDATE statement, the email and phone number values in the WHERE
clause are the original, unmodified values for the specified employee. This update
ensures that the row that the application modifies was not changed after the
application last read and displayed it to the user. In this way, the application avoids
the lost update database problem in which one user overwrites changes made by
another user, effectively losing the update by the second user (Table 9–2 on page 9-7
shows an example of a lost update).

Table 9–4 shows the sequence of events when two sessions attempt to modify the same
row in the employees table at roughly the same time.

Table 9–4 Row Locking Example

Time Session 1 Session 2 Explanation

t0 SELECT employee_id, email,
 phone_number
FROM hr.employees
WHERE last_name = 'Himuro';

EMPLOYEE_ID EMAIL PHONE_NUMBER
----------- ------- ------------
 118 GHIMURO 515.127.4565

In session 1, the hr1 user queries
hr.employees for the Himuro record
and displays the employee_id (118),
email (GHIMURO), and phone number
(515.127.4565) attributes.

t1 SELECT employee_id, email,
 phone_number
FROM hr.employees
WHERE last_name = 'Himuro';

EMPLOYEE_ID EMAIL PHONE_NUMBER
----------- ------- ------------
 118 GHIMURO 515.127.4565

In session 2, the hr2 user queries
hr.employees for the Himuro record
and displays the employee_id (118),
email (GHIMURO), and phone number
(515.127.4565) attributes.

t2 UPDATE hr.employees
SET phone_number='515.555.1234'
WHERE employee_id=118
AND email='GHIMURO'
AND phone_number='515.127.4565';

1 row updated.

In session 1, the hr1 user updates the
phone number in the row to
515.555.1234, which acquires a lock on
the GHIMURO row.

Overview of the Oracle Database Locking Mechanism

9-14 Oracle Database Concepts

Oracle Database automatically obtains necessary locks when executing SQL
statements. For example, before the database permits a session to modify data, the

t3 UPDATE hr.employees
SET phone_number='515.555.1235'
WHERE employee_id=118
AND email='GHIMURO'
AND phone_number='515.127.4565';

-- SQL*Plus does not show
-- a row updated message or
-- return the prompt.

In session 2, the hr2 user attempts to
update the same row, but is blocked
because hr1 is currently processing the
row.

The attempted update by hr2 occurs
almost simultaneously with the hr1
update.

t4 COMMIT;

Commit complete.

In session 1, the hr1 user commits the
transaction.

The commit makes the change for
Himuro permanent and unblocks
session 2, which has been waiting.

t5 0 rows updated. In session 2, the hr2 user discovers that
the GHIMURO row was modified in such a
way that it no longer matches its
predicate.

Because the predicates do not match,
session 2 updates no records.

t6 UPDATE hr.employees
SET phone_number='515.555.1235'
WHERE employee_id=118
AND email='GHIMURO'
AND phone_number='515.555.1234';

1 row updated.

In session 1, the hr1 user realizes that it
updated the GHIMURO row with the
wrong phone number. The user starts a
new transaction and updates the phone
number in the row to 515.555.1235,
which locks the GHIMURO row.

t7 SELECT employee_id, email,
 phone_number
FROM hr.employees
WHERE last_name = 'Himuro';

EMPLOYEE_ID EMAIL PHONE_NUMBER
----------- ------- ------------
 118 GHIMURO 515.555.1234

In session 2, the hr2 user queries
hr.employees for the Himuro record.
The record shows the phone number
update committed by session 1 at t4.
Oracle Database read consistency
ensures that session 2 does not see the
uncommitted change made at t6.

t8 UPDATE hr.employees
SET phone_number='515.555.1235'
WHERE employee_id=118
AND email='GHIMURO'
AND phone_number='515.555.1234';

-- SQL*Plus does not show
-- a row updated message or
-- return the prompt.

In session 2, the hr2 user attempts to
update the same row, but is blocked
because hr1 is currently processing the
row.

t9 ROLLBACK;

Rollback complete.

In session 1, the hr1 user rolls back the
transaction, which ends it.

t10 1 row updated. In session 2, the update of the phone
number succeeds because the session 1
update was rolled back. The GHIMURO
row matches its predicate, so the update
succeeds.

t11 COMMIT;

Commit complete.

Session 2 commits the update, ending
the transaction.

Table 9–4 (Cont.) Row Locking Example

Time Session 1 Session 2 Explanation

Overview of the Oracle Database Locking Mechanism

Data Concurrency and Consistency 9-15

session must first lock the data. The lock gives the session exclusive control over the
data so that no other transaction can modify the locked data until the lock is released.

Because the locking mechanisms of Oracle Database are tied closely to transaction
control, application designers need only define transactions properly, and Oracle
Database automatically manages locking. Users never need to lock any resource
explicitly, although Oracle Database also enables users to lock data manually.

The following sections explain concepts that are important for understanding how
Oracle Database achieves data concurrency.

Lock Modes
Oracle Database automatically uses the lowest applicable level of restrictiveness to
provide the highest degree of data concurrency yet also provide fail-safe data integrity.
The less restrictive the level, the more available the data is for access by other users.
Conversely, the more restrictive the level, the more limited other transactions are in the
types of locks that they can acquire.

Oracle Database uses two modes of locking in a multiuser database:

■ Exclusive lock mode

This mode prevents the associated resource from being shared. A transaction
obtains an exclusive lock when it modifies data. The first transaction to lock a
resource exclusively is the only transaction that can alter the resource until the
exclusive lock is released.

■ Share lock mode

This mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding share
locks to prevent concurrent access by a writer who needs an exclusive lock.
Several transactions can acquire share locks on the same resource.

Assume that a transaction uses a SELECT ... FOR UPDATE statement to select a single
table row. The transaction acquires an exclusive row lock and a row share table lock.
The row lock allows other sessions to modify any rows other than the locked row, while
the table lock prevents sessions from altering the structure of the table. Thus, the
database permits as many statements as possible to execute.

Lock Conversion and Escalation
Oracle Database performs lock conversion as necessary. In lock conversion, the
database automatically converts a table lock of lower restrictiveness to one of higher
restrictiveness.

For example, suppose a transaction issues a SELECT ... FOR UPDATE for an employee
and later updates the locked row. In this case, the database automatically converts the
row share table lock to a row exclusive table lock. A transaction holds exclusive row
locks for all rows inserted, updated, or deleted within the transaction. Because row
locks are acquired at the highest degree of restrictiveness, no lock conversion is
required or performed.

Lock conversion is different from lock escalation, which occurs when numerous locks
are held at one level of granularity (for example, rows) and a database raises the locks
to a higher level of granularity (for example, table). If a user locks many rows in a

See Also: Oracle Database PL/SQL Packages and Types Reference to
learn about the OWA_OPT_LOCK package, which contains subprograms
that can help prevent lost updates

Overview of the Oracle Database Locking Mechanism

9-16 Oracle Database Concepts

table, then some databases automatically escalate the row locks to a single table. The
number of locks decreases, but the restrictiveness of what is locked increases.

Oracle Database never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Assume that a system is trying to escalate locks on behalf of transaction 1
but cannot because of the locks held by transaction 2. A deadlock is created if
transaction 2 also requires lock escalation of the same data before it can proceed.

Lock Duration
Oracle Database automatically releases a lock when some event occurs so that the
transaction no longer requires the resource. In most cases, the database holds locks
acquired by statements within a transaction for the duration of the transaction. These
locks prevent destructive interference such as dirty reads, lost updates, and destructive
DDL from concurrent transactions.

Oracle Database releases all locks acquired by the statements within a transaction
when it commits or rolls back. Oracle Database also releases locks acquired after a
savepoint when rolling back to the savepoint. However, only transactions not waiting
for the previously locked resources can acquire locks on the now available resources.
Waiting transactions continue to wait until after the original transaction commits or
rolls back completely (see Table 10–2 on page 10-9 for an example).

Locks and Deadlocks
A deadlock is a situation in which two or more users are waiting for data locked by
each other. Deadlocks prevent some transactions from continuing to work.

Oracle Database automatically detects deadlocks and resolves them by rolling back
one statement involved in the deadlock, releasing one set of the conflicting row locks.
The database returns a corresponding message to the transaction that undergoes
statement-level rollback. The statement rolled back belongs to the transaction that
detects the deadlock. Usually, the signalled transaction should be rolled back explicitly,
but it can retry the rolled-back statement after waiting.

Table 9–5 illustrates two transactions in a deadlock.

Note: A table lock taken on a child table because of an unindexed
foreign key is held for the duration of the statement, not the
transaction. Also, as explained in "Overview of User-Defined Locks"
on page 9-27, the DBMS_LOCK package enables user-defined locks to be
released and allocated at will and even held over transaction
boundaries.

See Also: "Rollback to Savepoint" on page 10-8

Table 9–5 Deadlock Example

Time Session 1 Session 2 Explanation

t0 SQL> UPDATE employees
 SET salary = salary*1.1
 WHERE employee_id = 100;

1 row updated.

SQL> UPDATE employees
 SET salary = salary*1.1
 WHERE employee_id = 200;

1 row updated.

Session 1 starts transaction 1 and updates
the salary for employee 100. Session 2 starts
transaction 2 and updates the salary for
employee 200. No problem exists because
each transaction locks only the row that it
attempts to update.

Overview of Automatic Locks

Data Concurrency and Consistency 9-17

Deadlocks most often occur when transactions explicitly override the default locking
of Oracle Database. Because Oracle Database does not escalate locks and does not use
read locks for queries, but does use row-level (rather than page-level) locking,
deadlocks occur infrequently.

Overview of Automatic Locks
Oracle Database automatically locks a resource on behalf of a transaction to prevent
other transactions from doing something that requires exclusive access to the same
resource. The database automatically acquires different types of locks at different
levels of restrictiveness depending on the resource and the operation being performed.

Oracle Database locks are divided into the following categories.

t1 SQL> UPDATE employees
 SET salary = salary*1.1
 WHERE employee_id = 200;

-- prompt does not return

SQL> UPDATE employees
 salary = salary*1.1
 WHERE employee_id = 100;

-- prompt does not return

Transaction 1 attempts to update the
employee 200 row, which is currently locked
by transaction 2. Transaction 2 attempts to
update the employee 100 row, which is
currently locked by transaction 1.

A deadlock results because neither
transaction can obtain the resource it needs
to proceed or terminate. No matter how long
each transaction waits, the conflicting locks
are held.

t2 UPDATE employees
 *
ERROR at line 1:
ORA-00060: deadlock detected
while waiting for resource

SQL>

Transaction 1 signals the deadlock and rolls
back the UPDATE statement issued at t1.
However, the update made at t0 is not rolled
back. The prompt is returned in session 1.

Note: Only one session in the deadlock
actually gets the deadlock error, but either
session could get the error.

t3 SQL> COMMIT;

Commit complete.

Session 1 commits the update made at t0,
ending transaction 1. The update
unsuccessfully attempted at t1 is not
committed.

t4 1 row updated.

SQL>

The update at t1 in transaction 2, which was
being blocked by transaction 1, is executed.
The prompt is returned.

t5 SQL> COMMIT;

Commit complete.

Session 2 commits the updates made at t0
and t1, which ends transaction 2.

See Also:

■ "Overview of Manual Data Locks" on page 9-26

■ Oracle Database Advanced Application Developer's Guide to learn
how to handle deadlocks when you lock tables explicitly

Note: The database never locks rows when performing simple reads.

Lock Description

DML Locks Protect data. For example, table locks lock entire tables, while
row locks lock selected rows. See "DML Locks" on page 9-18.

Table 9–5 (Cont.) Deadlock Example

Time Session 1 Session 2 Explanation

Overview of Automatic Locks

9-18 Oracle Database Concepts

DML Locks
A DML lock, also called a data lock, guarantees the integrity of data accessed
concurrently by multiple users. For example, a DML lock prevents two customers
from buying the last copy of a book available from an online bookseller. DML locks
prevent destructive interference of simultaneous conflicting DML or DDL operations.

DML statements automatically acquire the following types of locks:

■ Row Locks (TX)

■ Table Locks (TM)

In the following sections, the acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Oracle Enterprise Manager
(Enterprise Manager). Enterprise Manager might display TM for any table lock, rather
than indicate the mode of table lock (such as RS or SRX).

Row Locks (TX)
A row lock, also called a TX lock, is a lock on a single row of table. A transaction
acquires a row lock for each row modified by an INSERT, UPDATE, DELETE, MERGE, or
SELECT ... FOR UPDATE statement. The row lock exists until the transaction commits or
rolls back.

Row locks primarily serve as a queuing mechanism to prevent two transactions from
modifying the same row. The database always locks a modified row in exclusive mode
so that other transactions cannot modify the row until the transaction holding the lock
commits or rolls back. Row locking provides the finest grain locking possible and so
provides the best possible concurrency and throughput.

If a transaction obtains a lock for a row, then the transaction also acquires a lock for the
table containing the row. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction. Figure 9–2 illustrates an update
of the third row in a table. Oracle Database automatically places an exclusive lock on
the updated row and a subexclusive lock on the table.

DDL Locks Protect the structure of schema objects—for example, the
dictionary definitions of tables and views. See "DDL Locks" on
page 9-24.

System Locks Protect internal database structures such as data files. Latches,
mutexes, and internal locks are entirely automatic. See "System
Locks" on page 9-25.

See Also: "Oracle Enterprise Manager" on page 18-2

Note: If a transaction terminates because of database instance
failure, then block-level recovery makes a row available before the
entire transaction is recovered.

Lock Description

Overview of Automatic Locks

Data Concurrency and Consistency 9-19

Figure 9–2 Row and Table Locks

Row Locks and Concurrency Table 9–6 illustrates how Oracle Database uses row locks for
concurrency. Three sessions query the same rows simultaneously. Session 1 and 2
proceed to make uncommitted updates to different rows, while session 3 makes no
updates. Each session sees its own uncommitted updates but not the uncommitted
updates of any other session.

Table 9–6 Data Concurrency Example

Time Session 1 Session 2 Session 3 Explanation

t0 SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

Three different sessions
simultaneously query the ID and
salary of employees 100 and 101.
The results returned by each
query are identical.

t1 UPDATE hr.employees
SET salary=salary+100
WHERE employee_id=100;

Session 1 updates the salary of
employee 100, but does not
commit. In the update, the writer
acquires a row-level lock for the
updated row only, thereby
preventing other writers from
modifying this row.

EMPLOYEE_ID

Table EMPLOYEES

Exclusive row lock (TX) acquired

Row being updated

Table lock acquired

LAST_NAME EMAIL HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

100

101

102

103

King

Kochhar

De Hann

Hunold

SKING

NKOCHHAR

LDEHANN

AHUNOLD

17-JUN-87

21-SEP-89

13-JAN-93

03-JAN-90

AD_PRES

AD_VP

AD_VP

IT_PROG

100

100

102

90

90

90

60

Overview of Automatic Locks

9-20 Oracle Database Concepts

Storage of Row Locks Unlike some databases, which use a lock manager to maintain a
list of locks in memory, Oracle Database stores lock information in the data block that
contains the locked row.

The database uses a queuing mechanism for acquisition of row locks. If a transaction
requires a lock for an unlocked row, then the transaction places a lock in the data
block. Each row modified by this transaction points to a copy of the transaction ID
stored in the block header (see "Overview of Data Blocks" on page 12-6).

When a transaction ends, the transaction ID remains in the block header. If a different
transaction wants to modify a row, then it uses the transaction ID to determine
whether the lock is active. If the lock is active, then the session asks to be notified
when the lock is released. Otherwise, the transaction acquires the lock.

Table Locks (TM)
A table lock, also called a TM lock, is acquired by a transaction when a table is
modified by an INSERT, UPDATE, DELETE, MERGE, SELECT with the FOR UPDATE clause, or
LOCK TABLE statement. DML operations require table locks to reserve DML access to
the table on behalf of a transaction and to prevent DDL operations that would conflict
with the transaction.

t2 SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 612
101 600

SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

Each session simultaneously
issues the original query. Session
1 shows the salary of 612
resulting from the t1 update. The
readers in session 2 and 3 return
rows immediately and do not
wait for session 1 to end its
transaction. The database uses
multiversion read consistency to
show the salary as it existed
before the update in session 1.

t3 UPDATE hr.employees
SET salary=salary+100
WHERE employee_id=101;

Session 2 updates the salary of
employee 101, but does not
commit the transaction. In the
update, the writer acquires a
row-level lock for the updated
row only, preventing other
writers from modifying this row.

t4 SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 612
101 600

SELECT employee_id,
salaryFROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 700

SELECT employee_id,
salary FROM employees
WHERE employee_id
IN (100, 101);

EMPLOYEE_ID SALARY
----------- ------
100 512
101 600

Each session simultaneously
issues the original query. Session
1 shows the salary of 612
resulting from the t1 update, but
not the salary update for
employee 101 made in session 2.
The reader in session 2 shows the
salary update made in session 2,
but not the salary update made in
session 1. The reader in session 3
uses read consistency to show the
salaries before modification by
session 1 and 2.

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database Reference to learn about V$LOCK

See Also: Oracle Database Reference to learn about V$TRANSACTION

Table 9–6 (Cont.) Data Concurrency Example

Time Session 1 Session 2 Session 3 Explanation

Overview of Automatic Locks

Data Concurrency and Consistency 9-21

A table lock can be held in any of the following modes:

■ Row Share (RS)

This lock, also called a subshare table lock (SS), indicates that the transaction
holding the lock on the table has locked rows in the table and intends to update
them. A row share lock is the least restrictive mode of table lock, offering the
highest degree of concurrency for a table.

■ Row Exclusive Table Lock (RX)

This lock, also called a subexclusive table lock (SX), generally indicates that the
transaction holding the lock has updated table rows or issued SELECT ... FOR
UPDATE. An SX lock allows other transactions to query, insert, update, delete, or
lock rows concurrently in the same table. Therefore, SX locks allow multiple
transactions to obtain simultaneous SX and subshare table locks for the same table.

■ Share Table Lock (S)

A share table lock held by a transaction allows other transactions to query the
table (without using SELECT ... FOR UPDATE), but updates are allowed only if a
single transaction holds the share table lock. Because multiple transactions may
hold a share table lock concurrently, holding this lock is not sufficient to ensure
that a transaction can modify the table.

■ Share Row Exclusive Table Lock (SRX)

This lock, also called a share-subexclusive table lock (SSX), is more restrictive
than a share table lock. Only one transaction at a time can acquire an SSX lock on a
given table. An SSX lock held by a transaction allows other transactions to query
the table (except for SELECT ... FOR UPDATE) but not to update the table.

■ Exclusive Table Lock (X)

This lock is the most restrictive, prohibiting other transactions from performing
any type of DML statement or placing any type of lock on the table.

Locks and Foreign Keys
Oracle Database maximizes the concurrency control of parent keys in relation to
dependent foreign keys. Locking behavior depends on whether foreign key columns
are indexed. If foreign keys are not indexed, then the child table will probably be
locked more frequently, deadlocks will occur, and concurrency will be decreased. For
this reason foreign keys should almost always be indexed. The only exception is when
the matching unique or primary key is never updated or deleted.

Locks and Unindexed Foreign Keys When both of the following conditions are true, the
database acquires a full table lock on the child table:

■ No index exists on the foreign key column of the child table.

■ A session modifies a primary key in the parent table (for example, deletes a row or
modifies primary key attributes) or merges rows into the parent table. Inserts into
the parent table do not acquire table locks on the child table.

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database Advanced Application Developer's Guide to learn
more about table locks

Overview of Automatic Locks

9-22 Oracle Database Concepts

Suppose that hr.departments table is a parent of hr.employees, which contains
the unindexed foreign key department_id. Figure 9–3 shows a session modifying
the primary key attributes of department 60 in the departments table.

Figure 9–3 Locking Mechanisms with Unindexed Foreign Key

In Figure 9–3, the database acquires a full table lock on employees during the primary
key modification of department 60. This lock enables other sessions to query but not
update the employees table. For example, employee phone numbers cannot be
updated. The table lock on employees releases immediately after the primary key
modification on the departments table completes. If multiple rows in departments
undergo primary key modifications, then a table lock on employees is obtained and
released once for each row that is modified in departments.

Locks and Indexed Foreign Keys When both of the following conditions are true, the
database does not acquire a full table lock on the child table:

■ A foreign key column in the child table is indexed.

Note: DML on a child table does not acquire a table lock on the
parent table.

Unindexed
Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID

60
90

IT
Executive

103
100

LOCATION_ID

1400
1700

Parent Key
Primary key of
referenced table

EMPLOYEE_ID

Table EMPLOYEES

Exclusive row lock (TX) acquired

Primary key modified

Full table lock acquired

LAST_NAME EMAIL HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

100

101

102

103

King

Kochhar

De Hann

Hunold

SKING

NKOCHHAR

LDEHANN

AHUNOLD

17-JUN-87

21-SEP-89

13-JAN-93

03-JAN-90

AD_PRES

AD_VP

AD_VP

IT_PROG

100

100

102

90

90

90

60

Dependent or Child Table

Table DEPARTMENTS

Referenced or Parent Table

10,rowid
20,rowid
. . . .
60,rowid

Index Leaf Block

Overview of Automatic Locks

Data Concurrency and Consistency 9-23

■ A session modifies a primary key in the parent table (for example, deletes a row or
modifies primary key attributes) or merges rows into the parent table.

A lock on the parent table prevents transactions from acquiring exclusive table locks,
but does not prevent DML on the parent or child table during the primary key
modification. This situation is preferable if primary key modifications occur on the
parent table while updates occur on the child table.

Figure 9–4 shows child table employees with an indexed department_id column. A
transaction deletes department 280 from departments. This deletion does not cause the
database to acquire a full table lock on the employees table as in the scenario described
in "Locks and Unindexed Foreign Keys" on page 9-21.

Figure 9–4 Locking Mechanisms with Indexed Foreign Key

If the child table specifies ON DELETE CASCADE, then deletions from the parent table can
result in deletions from the child table. For example, the deletion of department 280
can cause the deletion of records from employees for employees in the deleted
department. In this case, waiting and locking rules are the same as if you deleted rows
from the child table after deleting rows from the parent table.

Indexed
Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID

60
90

IT 103
100

LOCATION_ID

1400
1700

280
Executive
Event Planning 1700

Parent Key
Primary key of
referenced table

EMPLOYEE_ID

Table EMPLOYEES

Exclusive row lock (TX) acquired

Row being deleted

Full table lock acquired

LAST_NAME EMAIL HIRE_DATE JOB_ID MANAGER_ID DEPARTMENT_ID

100

101

102

103

King

Kochhar

De Hann

Hunold

SKING

NKOCHHAR

LDEHANN

AHUNOLD

17-JUN-87

21-SEP-89

13-JAN-93

03-JAN-90

AD_PRES

AD_VP

AD_VP

IT_PROG

100

100

102

90

90

90

60

Dependent or Child Table

Table DEPARTMENTS

Referenced or Parent Table

10,rowid
20,rowid
. . . .
280,rowid

Index Leaf Block

Overview of Automatic Locks

9-24 Oracle Database Concepts

DDL Locks
A data dictionary (DDL) lock protects the definition of a schema object while an
ongoing DDL operation acts on or refers to the object. Only individual schema objects
that are modified or referenced are locked during DDL operations. The database never
locks the whole data dictionary.

Oracle Database acquires a DDL lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. For example, if a user creates a
stored procedure, then Oracle Database automatically acquires DDL locks for all
schema objects referenced in the procedure definition. The DDL locks prevent these
objects from being altered or dropped before procedure compilation is complete.

Exclusive DDL Locks
An exclusive DDL lock prevents other sessions from obtaining a DDL or DML lock.
Most DDL operations, except for those described in "Share DDL Locks" on page 9-24,
require exclusive DDL locks for a resource to prevent destructive interference with
other DDL operations that might modify or reference the same schema object. For
example, DROP TABLE is not allowed to drop a table while ALTER TABLE is adding a
column to it, and vice versa.

Exclusive DDL locks last for the duration of DDL statement execution and automatic
commit. During the acquisition of an exclusive DDL lock, if another DDL lock is held
on the schema object by another operation, then the acquisition waits until the older
DDL lock is released and then proceeds.

Share DDL Locks
A share DDL lock for a resource prevents destructive interference with conflicting
DDL operations, but allows data concurrency for similar DDL operations.

For example, when a CREATE PROCEDURE statement is run, the containing transaction
acquires share DDL locks for all referenced tables. Other transactions can concurrently
create procedures that reference the same tables and acquire concurrent share DDL
locks on the same tables, but no transaction can acquire an exclusive DDL lock on any
referenced table.

A share DDL lock lasts for the duration of DDL statement execution and automatic
commit. Thus, a transaction holding a share DDL lock is guaranteed that the definition
of the referenced schema object remains constant during the transaction.

Breakable Parse Locks
A parse lock is held by a SQL statement or PL/SQL program unit for each schema
object that it references. Parse locks are acquired so that the associated shared SQL
area can be invalidated if a referenced object is altered or dropped. A parse lock is
called a breakable parse lock because it does not disallow any DDL operation and can
be broken to allow conflicting DDL operations.

A parse lock is acquired in the shared pool during the parse phase of SQL statement
execution. The lock is held as long as the shared SQL area for that statement remains in
the shared pool.

See Also:

■ "Foreign Key Constraints" on page 5-6

■ "Overview of Indexes" on page 3-1

Overview of Automatic Locks

Data Concurrency and Consistency 9-25

System Locks
Oracle Database uses various types of system locks to protect internal database and
memory structures. These mechanisms are inaccessible to users because users have no
control over their occurrence or duration.

Latches
Latches are simple, low-level serialization mechanisms that coordinate multiuser
access to shared data structures, objects, and files. Latches protect shared memory
resources from corruption when accessed by multiple processes. Specifically, latches
protect data structures from the following situations:

■ Concurrent modification by multiple sessions

■ Being read by one session while being modified by another session

■ Deallocation (aging out) of memory while being accessed

Typically, a single latch protects multiple objects in the SGA. For example, background
processes such as DBWn and LGWR allocate memory from the shared pool to create
data structures. To allocate this memory, these processes use a shared pool latch that
serializes access to prevent two processes from trying to inspect or modify the shared
pool simultaneously. After the memory is allocated, other processes may need to
access shared pool areas such as the library cache, which is required for parsing. In
this case, processes latch only the library cache, not the entire shared pool.

Unlike enqueue latches such as row locks, latches do not permit sessions to queue.
When a latch becomes available, the first session to request the latch obtains exclusive
access to it. Latch spinning occurs when a process repeatedly requests a latch in a
loop, whereas latch sleeping occurs when a process releases the CPU before renewing
the latch request.

Typically, an Oracle process acquires a latch for an extremely short time while
manipulating or looking at a data structure. For example, while processing a salary
update of a single employee, the database may obtain and release thousands of
latches. The implementation of latches is operating system-dependent, especially in
respect to whether and how long a process waits for a latch.

An increase in latching means a decrease in concurrency. For example, excessive hard
parse operations create contention for the library cache latch. The V$LATCH view
contains detailed latch usage statistics for each latch, including the number of times
each latch was requested and waited for.

Mutexes
A mutual exclusion object (mutex) is a low-level mechanism that prevents an object in
memory from aging out or from being corrupted when accessed by concurrent
processes. A mutex is similar to a latch, but whereas a latch typically protects a group
of objects, a mutex protects a single object.

See Also: "Shared Pool" on page 14-15

See Also:

■ "SQL Parsing" on page 7-16

■ Oracle Database Reference to learn about V$LATCH

■ Oracle Database Performance Tuning Guide to learn about wait event
statistics

Overview of Manual Data Locks

9-26 Oracle Database Concepts

Mutexes provide several benefits:

■ A mutex can reduce the possibility of contention.

Because a latch protects multiple objects, it can become a bottleneck when
processes attempt to access any of these objects concurrently. By serializing access
to an individual object rather than a group, a mutex increases availability.

■ A mutex consumes less memory than a latch.

■ When in shared mode, a mutex permits concurrent reference by multiple sessions.

Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and mutexes
and serve various purposes. The database uses the following types of internal locks:

■ Dictionary cache locks

These locks are of very short duration and are held on entries in dictionary caches
while the entries are being modified or used. They guarantee that statements being
parsed do not see inconsistent object definitions. Dictionary cache locks can be
shared or exclusive. Shared locks are released when the parse is complete, whereas
exclusive locks are released when the DDL operation is complete.

■ File and log management locks

These locks protect various files. For example, an internal lock protects the control
file so that only one process at a time can change it. Another lock coordinates the
use and archiving of the online redo log files. Data files are locked to ensure that
multiple instances mount a database in shared mode or that one instance mounts
it in exclusive mode. Because file and log locks indicate the status of files, these
locks are necessarily held for a long time.

■ Tablespace and undo segment locks

These locks protect tablespaces and undo segments. For example, all instances
accessing a database must agree on whether a tablespace is online or offline. Undo
segments are locked so that only one database instance can write to a segment.

Overview of Manual Data Locks
Oracle Database performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can manually override
the Oracle Database default locking mechanisms. Overriding the default locking is
useful in situations such as the following:

■ Applications require transaction-level read consistency or repeatable reads.

In this case, queries must produce consistent data for the duration of the
transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only transactions,
serializable transactions, or by overriding default locking.

■ Applications require that a transaction have exclusive access to a resource so that
the transaction does not have to wait for other transactions to complete.

You can override Oracle Database automatic locking at the session or transaction level.
At the session level, a session can set the required transaction isolation level with the
ALTER SESSION statement. At the transaction level, transactions that include the
following SQL statements override Oracle Database default locking:

See Also: "Data Dictionary Cache" on page 14-19

Overview of User-Defined Locks

Data Concurrency and Consistency 9-27

■ The SET TRANSACTION ISOLATION LEVEL statement

■ The LOCK TABLE statement (which locks either a table or, when used with views,
the base tables)

■ The SELECT ... FOR UPDATE statement

Locks acquired by the preceding statements are released after the transaction ends or a
rollback to savepoint releases them.

If Oracle Database default locking is overridden at any level, then the database
administrator or application developer should ensure that the overriding locking
procedures operate correctly. The locking procedures must satisfy the following
criteria: data integrity is guaranteed, data concurrency is acceptable, and deadlocks are
not possible or are appropriately handled.

Overview of User-Defined Locks
With Oracle Database Lock Management services, you can define your own locks for a
specific application. For example, you might create a lock to serialize access to a
message log on the file system. Because a reserved user lock is the same as an Oracle
Database lock, it has all the Oracle Database lock functionality including deadlock
detection. User locks never conflict with Oracle Database locks, because they are
identified with the prefix UL.

The Oracle Database Lock Management services are available through procedures in
the DBMS_LOCK package. You can include statements in PL/SQL blocks that:

■ Request a lock of a specific type

■ Give the lock a unique name recognizable in another procedure in the same or in
another instance

■ Change the lock type

■ Release the lock

See Also:

■ Oracle Database SQL Language Reference for descriptions of LOCK
TABLE and SELECT ... FOR UPDATE

■ Oracle Database Advanced Application Developer's Guide to learn
how to manually lock tables

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about Oracle Database Lock Management services

■ Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_LOCK

Overview of User-Defined Locks

9-28 Oracle Database Concepts

10

Transactions 10-1

10 Transactions

This chapter defines a transaction and describes how the database processes
transactions.

This chapter contains the following sections:

■ Introduction to Transactions

■ Overview of Transaction Control

■ Overview of Autonomous Transactions

■ Overview of Distributed Transactions

Introduction to Transactions
A transaction is a logical, atomic unit of work that contains one or more SQL
statements. A transaction groups SQL statements so that they are either all committed,
which means they are applied to the database, or all rolled back, which means they
are undone from the database. Oracle Database assigns every transaction a unique
identifier called a transaction ID.

All Oracle transactions comply with the basic properties of a database transaction,
known as ACID properties. ACID is an acronym for the following:

■ Atomicity

All tasks of a transaction are performed or none of them are. There are no partial
transactions. For example, if a transaction starts updating 100 rows, but the system
fails after 20 updates, then the database rolls back the changes to these 20 rows.

■ Consistency

The transaction takes the database from one consistent state to another consistent
state. For example, in a banking transaction that debits a savings account and
credits a checking account, a failure must not cause the database to credit only one
account, which would lead to inconsistent data.

■ Isolation

The effect of a transaction is not visible to other transactions until the transaction is
committed. For example, one user updating the hr.employees table does not see
the uncommitted changes to employees made concurrently by another user. Thus,
it appears to users as if transactions are executing serially.

■ Durability

Introduction to Transactions

10-2 Oracle Database Concepts

Changes made by committed transactions are permanent. After a transaction
completes, the database ensures through its recovery mechanisms that changes
from the transaction are not lost.

The use of transactions is one of the most important ways that a database management
system differs from a file system.

Sample Transaction: Account Debit and Credit
To illustrate the concept of a transaction, consider a banking database. When a
customer transfers money from a savings account to a checking account, the
transaction must consist of three separate operations:

■ Decrement the savings account

■ Increment the checking account

■ Record the transaction in the transaction journal

Oracle Database must allow for two situations. If all three SQL statements maintain
the accounts in proper balance, then the effects of the transaction can be applied to the
database. However, if a problem such as insufficient funds, invalid account number, or
a hardware failure prevents one or two of the statements in the transaction from
completing, then the database must roll back the entire transaction so that the balance
of all accounts is correct.

Figure 10–1 illustrates a banking transaction. The first statement subtracts $500 from
savings account 3209. The second statement adds $500 to checking account 3208. The
third statement inserts a record of the transfer into the journal table. The final
statement commits the transaction.

Figure 10–1 A Banking Transaction

Structure of a Transaction
A database transaction consists of one or more statements. Specifically, a transaction
consists of one of the following:

Transaction
Begins

Transaction
Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement
Savings
Account

Increment
Checking
Account

Record in
Transaction
Journal

End
Transaction

Introduction to Transactions

Transactions 10-3

■ One or more data manipulation language (DML) statements that together
constitute an atomic change to the database

■ One data definition language (DDL) statement

A transaction has a beginning and an end.

Beginning of a Transaction
A transaction begins when the first executable SQL statement is encountered. An
executable SQL statement is a SQL statement that generates calls to a database
instance, including DML and DDL statements and the SET TRANSACTION statement.

When a transaction begins, Oracle Database assigns the transaction to an available
undo data segment to record the undo entries for the new transaction. A transaction
ID is not allocated until an undo segment and transaction table slot are allocated,
which occurs during the first DML statement. A transaction ID is unique to a
transaction and represents the undo segment number, slot, and sequence number.

The following example execute an UPDATE statement to begin a transaction and queries
V$TRANSACTION for details about the transaction:

SQL> UPDATE hr.employees SET salary=salary;

107 rows updated.

SQL> SELECT XID AS "txn id", XIDUSN AS "undo seg", XIDSLOT AS "slot",
 2 XIDSQN AS "seq", STATUS AS "txn status"
 3 FROM V$TRANSACTION;

txn id undo seg slot seq txn status
---------------- ---------- ---------- ---------- ----------------
0600060037000000 6 6 55 ACTIVE

End of a Transaction
A transaction ends when any of the following actions occurs:

■ A user issues a COMMIT or ROLLBACK statement without a SAVEPOINT clause.

In a commit, a user explicitly or implicitly requested that the changes in the
transaction be made permanent. Changes made by the transaction are permanent
and visible to other users only after a transaction commits. The transaction shown
in Figure 10–1 ends with a commit.

■ A user runs a DDL command such as CREATE, DROP, RENAME, or ALTER.

The database issues an implicit COMMIT statement before and after every DDL
statement. If the current transaction contains DML statements, then Oracle
Database first commits the transaction and then runs and commits the DDL
statement as a new, single-statement transaction.

■ A user exits normally from most Oracle Database utilities and tools, causing the
current transaction to be implicitly committed. The commit behavior when a user
disconnects is application-dependent and configurable.

See Also: "Overview of SQL Statements" on page 7-3

See Also: "Undo Segments" on page 12-24

Introduction to Transactions

10-4 Oracle Database Concepts

■ A client process terminates abnormally, causing the transaction to be implicitly
rolled back using metadata stored in the transaction table and the undo segment.

After one transaction ends, the next executable SQL statement automatically starts the
following transaction. The following example executes an UPDATE to start a transaction,
ends the transaction with a ROLLBACK statement, and then executes an UPDATE to start a
new transaction (note that the transaction IDs are different):

SQL> UPDATE hr.employees SET salary=salary;
107 rows updated.

SQL> SELECT XID, STATUS FROM V$TRANSACTION;

XID STATUS
---------------- ----------------
0800090033000000 ACTIVE

SQL> ROLLBACK;

Rollback complete.

SQL> SELECT XID FROM V$TRANSACTION;

no rows selected

SQL> UPDATE hr.employees SET last_name=last_name;

107 rows updated.

SQL> SELECT XID, STATUS FROM V$TRANSACTION;

XID STATUS
---------------- ----------------
0900050033000000 ACTIVE

Statement-Level Atomicity
Oracle Database supports statement-level atomicity, which means that a SQL
statement is an atomic unit of work and either completely succeeds or completely fails.

A successful statement is different from a committed transaction. A single SQL
statement executes successfully if the database parses and runs it without error as an
atomic unit, as when all rows are changed in a multirow update.

If a SQL statement causes an error during execution, then it is not successful and so all
effects of the statement are rolled back. This operation is a statement-level rollback.
This operation has the following characteristics:

■ A SQL statement that does not succeed causes the loss only of work it would have
performed itself.

Note: Applications should always explicitly commit or undo
transactions before program termination.

See Also:

■ "Tools for Database Administrators" on page 18-2 and "Tools for
Database Developers" on page 19-1

■ Oracle Database SQL Language Reference to learn about COMMIT

Introduction to Transactions

Transactions 10-5

The unsuccessful statement does not cause the loss of any work that preceded it in
the current transaction. For example, if the execution of the second UPDATE
statement in Figure 10–1 causes an error and is rolled back, then the work
performed by the first UPDATE statement is not rolled back. The first UPDATE
statement can be committed or rolled back explicitly by the user.

■ The effect of the rollback is as if the statement had never been run.

Any side effects of an atomic statement, for example, triggers invoked upon
execution of the statement, are considered part of the atomic statement. Either all
work generated as part of the atomic statement succeeds or none does.

An example of an error causing a statement-level rollback is an attempt to insert a
duplicate primary key. Single SQL statements involved in a deadlock, which is
competition for the same data, can also cause a statement-level rollback. However,
errors discovered during SQL statement parsing, such as a syntax error, have not yet
been run and so do not cause a statement-level rollback.

System Change Numbers (SCNs)
A system change number (SCN) is a logical, internal time stamp used by Oracle
Database. SCNs order events that occur within the database, which is necessary to
satisfy the ACID properties of a transaction. Oracle Database uses SCNs to mark the
SCN before which all changes are known to be on disk so that recovery avoids
applying unnecessary redo. The database also uses SCNs to mark the point at which
no redo exists for a set of data so that recovery can stop.

SCNs occur in a monotonically increasing sequence. Oracle Database can use an SCN
like a clock because an observed SCN indicates a logical point in time and repeated
observations return equal or greater values. If one event has a lower SCN than another
event, then it occurred at an earlier time with respect to the database. Several events
may share the same SCN, which means that they occurred at the same time with
respect to the database.

Every transaction has an SCN. For example, if a transaction updates a row, then the
database records the SCN at which this update occurred. Other modifications in this
transaction have the same SCN. When a transaction commits, the database records an
SCN for this commit.

Oracle Database increments SCNs in the system global area (SGA). When a
transaction modifies data, the database writes a new SCN to the undo data segment
assigned to the transaction. The log writer process then writes the commit record of
the transaction immediately to the online redo log. The commit record has the unique
SCN of the transaction. Oracle Database also uses SCNs as part of its instance
recovery and media recovery mechanisms.

See Also:

■ "SQL Parsing" on page 7-16

■ "Locks and Deadlocks" on page 9-16

■ "Overview of Triggers" on page 8-16

See Also: "Overview of Instance Recovery" on page 13-12 and
"Backup and Recovery" on page 18-9

Overview of Transaction Control

10-6 Oracle Database Concepts

Overview of Transaction Control
Transaction control is the management of changes made by DML statements and the
grouping of DML statements into transactions. In general, application designers are
concerned with transaction control so that work is accomplished in logical units and
data is kept consistent.

Transaction control involves using the following statements, as described in
"Transaction Control Statements" on page 7-8:

■ The COMMIT statement ends the current transaction and makes all changes
performed in the transaction permanent. COMMIT also erases all savepoints in the
transaction and releases transaction locks.

■ The ROLLBACK statement reverses the work done in the current transaction; it
causes all data changes since the last COMMIT or ROLLBACK to be discarded. The
ROLLBACK TO SAVEPOINT statement undoes the changes since the last savepoint but
does not end the entire transaction.

■ The SAVEPOINT statement identifies a point in a transaction to which you can later
roll back.

The session in Table 10–1 illustrates the basic concepts of transaction control.

Table 10–1 Transaction Control

Time Session Explanation

t0 COMMIT; This statement ends any existing transaction
in the session.

t1 SET TRANSACTION NAME 'sal_update'; This statement begins a transaction and
names it sal_update.

t2 UPDATE employees
 SET salary = 7000
 WHERE last_name = 'Banda';

This statement updates the salary for Banda
to 7000.

t3 SAVEPOINT after_banda_sal; This statement creates a savepoint named
after_banda_sal, enabling changes in this
transaction to be rolled back to this point.

t4 UPDATE employees
 SET salary = 12000
 WHERE last_name = 'Greene';

This statement updates the salary for
Greene to 12000.

t5 SAVEPOINT after_greene_sal; This statement creates a savepoint named
after_greene_sal, enabling changes in this
transaction to be rolled back to this point.

t6 ROLLBACK TO SAVEPOINT
 after_banda_sal;

This statement rolls back the transaction to
t3, undoing the update to Greene's salary at
t4. The sal_update transaction has not
ended.

t7 UPDATE employees
 SET salary = 11000
 WHERE last_name = 'Greene';

This statement updates the salary for
Greene to 11000 in transaction sal_update.

t8 ROLLBACK; This statement rolls back all changes in
transaction sal_update, ending the
transaction.

t9 SET TRANSACTION NAME 'sal_update2'; This statement begins a new transaction in
the session and names it sal_update2.

Overview of Transaction Control

Transactions 10-7

Transaction Names
A transaction name is an optional, user-specified tag that serves as a reminder of the
work that the transaction is performing. You name a transaction with the SET
TRANSACTION ... NAME statement, which if used must be first statement of the
transaction. In Table 10–1 on page 10-6, the first transaction was named sal_update
and the second was named sal_update2.

Transaction names provide the following advantages:

■ It is easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

■ You can view transaction names along with transaction IDs in applications. For
example, a database administrator can view transaction names in Oracle
Enterprise Manager (Enterprise Manager) when monitoring system activity.

■ The database writes transaction names to the transaction auditing redo record, so
you can use LogMiner to search for a specific transaction in the redo log.

■ You can use transaction names to find a specific transaction in data dictionary
views such as V$TRANSACTION.

Active Transactions
An active transaction has started but not yet committed or rolled back. In Table 10–1
on page 10-6, the first statement to modify data in the sal_update transaction is the
update to Banda's salary. From the successful execution of this update until the
ROLLBACK statement ends the transaction, the sal_update transaction is active.

Data changes made by a transaction are temporary until the transaction is committed
or rolled back. Before the transaction ends, the state of the data is as follows:

t10 UPDATE employees
 SET salary = 7050
 WHERE last_name = 'Banda';

This statement updates the salary for Banda
to 7050.

t11 UPDATE employees
 SET salary = 10950
 WHERE last_name = 'Greene';

This statement updates the salary for
Greene to 10950.

t12 COMMIT; This statement commits all changes made in
transaction sal_update2, ending the
transaction. The commit guarantees that the
changes are saved in the online redo log
files.

See Also: Oracle Database SQL Language Reference to learn about
transaction control statements

See Also:

■ "Oracle Enterprise Manager" on page 18-2

■ Oracle Database Reference to learn about V$TRANSACTION

■ Oracle Database SQL Language Reference to learn about SET
TRANSACTION

Table 10–1 (Cont.) Transaction Control

Time Session Explanation

Overview of Transaction Control

10-8 Oracle Database Concepts

■ Oracle Database has generated undo data information in the system global area
(SGA).

The undo data contains the old data values changed by the SQL statements of the
transaction. See "Read Consistency in the Read Committed Isolation Level" on
page 9-7.

■ Oracle Database has generated redo in the online redo log buffer of the SGA.

The redo log record contains the change to the data block and the change to the
undo block. See "Redo Log Buffer" on page 14-14.

■ Changes have been made to the database buffers of the SGA.

The data changes for a committed transaction, stored in the database buffers of the
SGA, are not necessarily written immediately to the data files by the database
writer (DBWn). The disk write can happen before or after the commit. See
"Database Buffer Cache" on page 14-9.

■ The rows affected by the data change are locked.

Other users cannot change the data in the affected rows, nor can they see the
uncommitted changes. See "Summary of Locking Behavior" on page 9-12.

Savepoints
A savepoint is a user-declared intermediate marker within the context of a transaction.
Internally, this marker resolves to an SCN. Savepoints divide a long transaction into
smaller parts.

If you use savepoints in a long transaction, then you have the option later of rolling
back work performed before the current point in the transaction but after a declared
savepoint within the transaction. Thus, if you make an error, you do not need to
resubmit every statement. Table 10–1 on page 10-6 creates savepoint after_banda_sal
so that the update to the Greene salary can be rolled back to this savepoint.

Rollback to Savepoint
A rollback to a savepoint in an uncommitted transaction means undoing any changes
made after the specified savepoint, but it does not mean a rollback of the transaction
itself. When a transaction is rolled back to a savepoint, as when the ROLLBACK TO
SAVEPOINT after_banda_sal is run in Table 10–1 on page 10-6, the following occurs:

1. Oracle Database rolls back only the statements run after the savepoint.

In Table 10–1 on page 10-6, the ROLLBACK TO SAVEPOINT causes the UPDATE for
Greene to be rolled back, but not the UPDATE for Banda.

2. Oracle Database preserves the savepoint specified in the ROLLBACK TO SAVEPOINT
statement, but all subsequent savepoints are lost.

In Table 10–1 on page 10-6, the ROLLBACK TO SAVEPOINT causes the
after_greene_sal savepoint to be lost.

3. Oracle Database releases all table and row locks acquired after the specified
savepoint but retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

Overview of Transaction Control

Transactions 10-9

Enqueued Transactions
Depending on the scenario, transactions waiting for previously locked resources may
still be blocked after a rollback to savepoint. When a transaction is blocked by another
transaction it enqueues on the blocking transaction itself, so that the entire blocking
transaction must commit or roll back for the blocked transaction to continue.

In the scenario shown in Table 10–2, session 1 rolls back to a savepoint created before it
executed a DML statement. However, session 2 is still blocked because it is waiting for
the session 1 transaction to complete.

See Also:

■ Oracle Database SQL Language Reference to learn about the
ROLLBACK and SAVEPOINT statements

■ Oracle Database PL/SQL Language Reference to learn about
transaction processing and control

Table 10–2 Rollback to Savepoint Example

Time Session 1 Session 2 Session 3 Explanation

t0 UPDATE employees
 SET salary = 7000
 WHERE last_name =
 'Banda';

Session 1 begins a transaction. The
session places an exclusive lock on the
Banda row (TX) and a subexclusive table
lock (SX) on the table.

t1 SAVEPOINT
 after_banda_sal;

Session 1 creates a savepoint named
after_banda_sal.

t2 UPDATE employees
 SET salary = 12000
 WHERE last_name =
 'Greene';

Session 1 locks the Greene row.

t3 UPDATE employees
 SET salary = 14000
 WHERE last_name =
 'Greene';

Session 2 attempts to update the Greene
row, but fails to acquire a lock because
session 1 has a lock on this row. No
transaction has begun in session 2.

t4 ROLLBACK
 TO SAVEPOINT
 after_banda_sal;

Session 1 rolls back the update to the
salary for Greene, which releases the
row lock for Greene. The table lock
acquired at t0 is not released.

At this point, session 2 is still blocked
by session 1 because session 2 enqueues
on the session 1 transaction, which has
not yet completed.

t5 UPDATE employees
 SET salary = 11000
 WHERE last_name =
 'Greene';

The Greene row is currently unlocked,
so session 3 acquires a lock for an
update to the Greene row. This
statement begins a transaction in
session 3.

t6 COMMIT; Session 1 commits, ending its
transaction. Session 2 is now enqueued
for its update to the Greene row behind
the transaction in session 3.

See Also: "Lock Duration" on page 9-16 to learn more about when
Oracle Database releases locks

Overview of Transaction Control

10-10 Oracle Database Concepts

Rollback of Transactions
A rollback of an uncommitted transaction undoes any changes to data that have been
performed by SQL statements within the transaction. After a transaction has been
rolled back, the effects of the work done in the transaction no longer exist.

In rolling back an entire transaction, without referencing any savepoints, Oracle
Database performs the following actions:

■ Undoes all changes made by all the SQL statements in the transaction by using the
corresponding undo segments

The transaction table entry for every active transaction contains a pointer to all the
undo data (in reverse order of application) for the transaction. The database reads
the data from the undo segment, reverses the operation, and then marks the undo
entry as applied. Thus, if a transaction inserts a row, then a rollback deletes it. If a
transaction updates a row, then a rollback reverses the update. If a transaction
deletes a row, then a rollback reinserts it. In Table 10–1 on page 10-6, the ROLLBACK
reverses the updates to the salaries of Greene and Banda.

■ Releases all the locks of data held by the transaction

■ Erases all savepoints in the transaction

In Table 10–1 on page 10-6, the ROLLBACK deletes the savepoint after_banda_sal.
The after_greene_sal savepoint was removed by the ROLLBACK TO SAVEPOINT
statement.

■ Ends the transaction

In Table 10–1 on page 10-6, the ROLLBACK leaves the database in the same state as it
was after the initial COMMIT was executed.

The duration of a rollback is a function of the amount of data modified.

Committing Transactions
A commit ends the current transaction and makes permanent all changes performed
in the transaction. In Table 10–1 on page 10-6, a second transaction begins with
sal_update2 and ends with an explicit COMMIT statement. The changes that resulted
from the two UPDATE statements are now made permanent.

When a transaction commits, the following actions occur:

■ A system change number (SCN) is generated for the COMMIT.

The internal transaction table for the associated undo tablespace records that the
transaction has committed. The corresponding unique SCN of the transaction is
assigned and recorded in the transaction table. See "Serializable Isolation Level" on
page 9-8.

■ The log writer (LGWR) process writes remaining redo log entries in the redo log
buffers to the online redo log and writes the transaction SCN to the online redo
log. This atomic event constitutes the commit of the transaction.

■ Oracle Database releases locks held on rows and tables.

Users who were enqueued waiting on locks held by the uncommitted transaction
are allowed to proceed with their work.

■ Oracle Database deletes savepoints.

See Also: "Undo Segments" on page 12-24

Overview of Autonomous Transactions

Transactions 10-11

In Table 10–1 on page 10-6, no savepoints existed in the sal_update transaction so
no savepoints were erased.

■ Oracle Database performs a commit cleanout.

If modified blocks containing data from the committed transaction are still in the
SGA, and if no other session is modifying them, then the database removes
lock-related transaction information from the blocks. Ideally, the COMMIT cleans out
the blocks so that a subsequent SELECT does not have to perform this task.

■ Oracle Database marks the transaction complete.

After a transaction commits, users can view the changes.

Typically, a commit is a fast operation, regardless of the transaction size. The speed of a
commit does not increase with the size of the data modified in the transaction. The
lengthiest part of the commit is the physical disk I/O performed by LGWR. However,
the amount of time spent by LGWR is reduced because it has been incrementally
writing the contents of the redo log buffer in the background.

The default behavior is for LGWR to write redo to the online redo log synchronously
and for transactions to wait for the buffered redo to be on disk before returning a
commit to the user. However, for lower transaction commit latency, application
developers can specify that redo be written asynchronously so that transactions need
not wait for the redo to be on disk and can return from the COMMIT call immediately.

Overview of Autonomous Transactions
An autonomous transaction is an independent transaction that can be called from
another transaction, called the main transaction. You can suspend the calling
transaction, perform SQL operations and commit or undo them in the autonomous
transaction, and then resume the calling transaction.

Autonomous transactions are useful for actions that must be performed
independently, regardless of whether the calling transaction commits or rolls back. For
example, in a stock purchase transaction, you want to commit customer data
regardless of whether the overall stock purchase goes through. Additionally, you want
to log error messages to a debug table even if the overall transaction rolls back.

Autonomous transactions have the following characteristics:

■ The autonomous transaction does not see uncommitted changes made by the main
transaction and does not share locks or resources with the main transaction.

■ Changes in an autonomous transaction are visible to other transactions upon
commit of the autonomous transactions. Thus, users can access the updated
information without having to wait for the main transaction to commit.

Note: Because a block cleanout generates redo, a query may generate
redo and thus cause blocks to be written during the next checkpoint.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
on asynchronous commit

■ "Locking Mechanisms" on page 9-5

■ "Overview of Background Processes" on page 15-7 for more
information about LGWR

Overview of Distributed Transactions

10-12 Oracle Database Concepts

■ Autonomous transactions can start other autonomous transactions. There are no
limits, other than resource limits, on how many levels of autonomous transactions
can be called.

In PL/SQL, an autonomous transaction executes within an autonomous scope, which
is a routine marked with the pragma AUTONOMOUS_TRANSACTION. In this context,
routines include top-level anonymous PL/SQL blocks and PL/SQL subprograms and
triggers. A pragma is a directive that instructs the compiler to perform a compilation
option. The pragma AUTONOMOUS_TRANSACTION instructs the database that this
procedure, when executed, is to be executed as a new autonomous transaction that is
independent of its parent transaction.

Figure 10–2 shows how control flows from the main routine (MT) to an autonomous
routine and back again. The main routine is proc1 and the autonomous routine is
proc2. The autonomous routine can commit multiple transactions (AT1 and AT2)
before control returns to the main routine.

Figure 10–2 Transaction Control Flow

When you enter the executable section of an autonomous routine, the main routine
suspends. When you exit the autonomous routine, the main routine resumes.

In Figure 10–2, the COMMIT inside proc1 makes permanent not only its own work but
any outstanding work performed in its session. However, a COMMIT in proc2 makes
permanent only the work performed in the proc2 transaction. Thus, the COMMIT
statements in transactions AT1 and AT2 have no effect on the MT transaction.

Overview of Distributed Transactions
A distributed database is a set of databases in a distributed system that can appear to
applications as a single data source. A distributed transaction is a transaction that
includes one or more statements that update data on two or more distinct nodes of a
distributed database, using a schema object called a database link. A database link
describes how one database instance can log in to another database instance.

Unlike a transaction on a local database, a distributed transaction alters data on
multiple databases. Consequently, distributed transaction processing is more
complicated because the database must coordinate the committing or rolling back of
the changes in a transaction as an atomic unit. The entire transaction must commit or

See Also: Oracle Database Advanced Application Developer's Guide
and Oracle Database PL/SQL Language Reference to learn how to use
autonomous transactions

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ...
SELECT ...
 proc2;
 DELETE ...
 COMMIT;
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN
 dept_id := 20;
 UPDATE ...
 INSERT ...
 UPDATE ...
 COMMIT;
 INSERT ...
 INSERT ...
 COMMIT;
END;

Main Transaction Autonomous Transaction

MT ends

MT begins
MT suspends

AT1 begins

AT1 ends
AT2 begins

AT2 ends
MT resumes

Overview of Distributed Transactions

Transactions 10-13

roll back. Oracle Database must coordinate transaction control over a network and
maintain data consistency, even if a network or system failure occurs.

Two-Phase Commit
The two-phase commit mechanism guarantees that all databases participating in a
distributed transaction either all commit or all undo the statements in the transaction.
The mechanism also protects implicit DML performed by integrity constraints, remote
procedure calls, and triggers.

In a two-phase commit among multiple databases, one database coordinates the
distributed transaction. The initiating node is called the global coordinator. The
coordinator asks the other databases if they are prepared to commit. If any database
responds with a no, then the entire transaction is rolled back. If all databases vote yes,
then the coordinator broadcasts a message to make the commit permanent on each of
the databases.

The two-phase commit mechanism is transparent to users who issue distributed
transactions. In fact, users need not even know the transaction is distributed. A COMMIT
statement denoting the end of a transaction automatically triggers the two-phase
commit mechanism. No coding or complex statement syntax is required to include
distributed transactions within the body of a database application.

In-Doubt Transactions
An in-doubt distributed transaction occurs when a two-phase commit was
interrupted by any type of system or network failure. For example, two databases
report to the coordinating database that they were prepared to commit, but the
coordinating database instance fails immediately after receiving the messages. The two
databases who are prepared to commit are now left hanging while they await
notification of the outcome.

The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions. After the failure is repaired and communication is
reestablished, the RECO process of each local Oracle database automatically commits or
rolls back any in-doubt distributed transactions consistently on all involved nodes.

In the event of a long-term failure, Oracle Database enables each local administrator to
manually commit or undo any distributed transactions that are in doubt because of the
failure. This option enables the local database administrator to free any locked
resources that are held indefinitely because of the long-term failure.

If a database must be recovered to a past time, then database recovery facilities enable
database administrators at other sites to return their databases to the earlier point in
time. This operation ensures that the global database remains consistent.

See Also: Oracle Database Administrator's Guide

See Also: Oracle Database Administrator's Guide to learn about the
two-phase commit mechanism

See Also:

■ "Recoverer Process (RECO)" on page 15-11

■ Oracle Database Administrator's Guide to learn how to manage
in-doubt transactions

Overview of Distributed Transactions

10-14 Oracle Database Concepts

Part IV
Part IV Oracle Database Storage Structures

This part describes the basic structural architecture of the Oracle database, including
logical and physical storage structures.

This part contains the following chapters:

■ Chapter 11, "Physical Storage Structures"

■ Chapter 12, "Logical Storage Structures"

11

Physical Storage Structures 11-1

11Physical Storage Structures

This chapter describes the primary physical database structures of an Oracle database.
Physical structures are viewable at the operating system level.

This chapter contains the following sections:

■ Introduction to Physical Storage Structures

■ Overview of Data Files

■ Overview of Control Files

■ Overview of the Online Redo Log

Introduction to Physical Storage Structures
One characteristic of an RDBMS is the independence of logical data structures such as
tables, views, and indexes from physical storage structures. Because physical and
logical structures are separate, you can manage physical storage of data without
affecting access to logical structures. For example, renaming a database file does not
rename the tables stored in it.

An Oracle database is a set of files that store Oracle data in persistent disk storage.
This section discusses the database files generated when you issue a CREATE DATABASE
statement:

■ Data files and temp files

A data file is a physical file on disk that was created by Oracle Database and
contains data structures such as tables and indexes. A temp file is a data file that
belongs to a temporary tablespace. The data is written to these files in an Oracle
proprietary format that cannot be read by other programs.

■ Control files

A control file is a root file that tracks the physical components of the database.

■ Online redo log files

The online redo log is a set of files containing records of changes made to data.

A database instance is a set of memory structures that manage database files.
Figure 11–1 shows the relationship between the instance and the files that it manages.

Introduction to Physical Storage Structures

11-2 Oracle Database Concepts

Figure 11–1 Database Instance and Database Files

Mechanisms for Storing Database Files
Several mechanisms are available for allocating and managing the storage of these
files. The most common mechanisms include:

■ Oracle Automatic Storage Management (Oracle ASM)

Oracle ASM includes a file system designed exclusively for use by Oracle
Database. "Oracle Automatic Storage Management (Oracle ASM)" on page 11-3
describes Oracle ASM.

■ Operating system file system

Most Oracle databases store files in a file system, which is a data structure built
inside a contiguous disk address space. All operating systems have file managers
that allocate and deallocate disk space into files within a file system.

A file system enables disk space to be allocated to many files. Each file has a name
and is made to appear as a contiguous address space to applications such as
Oracle Database. The database can create, read, write, resize, and delete files.

A file system is commonly built on top of a logical volume constructed by a
software package called a logical volume manager (LVM). The LVM enables
pieces of multiple physical disks to be combined into a single contiguous address
space that appears as one disk to higher layers of software.

■ Raw device

Raw devices are disk partitions or logical volumes not formatted with a file
system. The primary benefit of raw devices is the ability to perform direct I/O and
to write larger buffers. In direct I/O, applications write to and read from the
storage device directly, bypassing the operating system buffer cache.

■ Cluster file system

See Also:

■ Oracle Database Administrator's Guide to learn how to create a
database

■ Oracle Database SQL Language Reference for CREATE DATABASE
semantics and syntax

Note: Many file systems now support direct I/O for databases and
other applications that manage their own caches. Historically, raw
devices were the only means of implementing direct I/O.

Database Instance

Memory

Disk

101011010110101
1010110101

Control
Files

101011010110101
1010110101

Data
Files

Online
Redo Log

Introduction to Physical Storage Structures

Physical Storage Structures 11-3

A cluster file system is software that enables multiple computers to share file
storage while maintaining consistent space allocation and file content. In an Oracle
RAC environment, a cluster file system makes shared storage appears as a file
system shared by many computers in a clustered environment. With a cluster file
system, the failure of a computer in the cluster does not make the file system
unavailable. In an operating system file system, however, if a computer sharing
files through NFS or other means fails, then the file system is unavailable.

A database employs a combination of the preceding storage mechanisms. For example,
a database could store the control files and online redo log files in a traditional file
system, some user data files on raw partitions, the remaining data files in Oracle ASM,
and archived the redo log files to a cluster file system.

Oracle Automatic Storage Management (Oracle ASM)
Oracle ASM is a high-performance, ease-of-management storage solution for Oracle
Database files. Oracle ASM is a volume manager and provides a file system designed
exclusively for use by the database.

Oracle ASM provides several advantages over conventional file systems and storage
managers, including the following:

■ Simplifies storage-related tasks such as creating and laying out databases and
managing disk space

■ Distributes data across physical disks to eliminate hot spots and to provide
uniform performance across the disks

■ Rebalances data automatically after storage configuration changes

To use Oracle ASM, you allocate partitioned disks for Oracle Database with
preferences for striping and mirroring. Oracle ASM manages the disk space,
distributing the I/O load across all available resources to optimize performance while
removing the need for manual I/O tuning. For example, you can increase the size of
the disk for the database or move parts of the database to new devices without having
to shut down the database.

Oracle ASM Storage Components
Oracle Database can store a data file as an Oracle ASM file in an Oracle ASM disk
group, which is a collection of disks that Oracle ASM manages as a unit. Within a disk
group, Oracle ASM exposes a file system interface for database files.

Figure 11–2 shows the relationships between storage components in a database that
uses Oracle ASM. The diagram depicts the relationship between an Oracle ASM file
and a data file, although Oracle ASM can store other types of files. The crow's foot
notation represents a one-to-many relationship.

See Also:

■ Oracle Database 2 Day DBA to learn how to view database storage
structures with Oracle Enterprise Manager (Enterprise Manager)

■ Oracle Database Administrator's Guide to view database storage
structures by querying database views

Introduction to Physical Storage Structures

11-4 Oracle Database Concepts

Figure 11–2 Oracle ASM Components

Figure 11–2 illustrates the following Oracle ASM concepts:

■ Oracle ASM Disks

An Oracle ASM disk is a storage device that is provisioned to an Oracle ASM disk
group. An Oracle ASM disk can be a physical disk or partition, a Logical Unit
Number (LUN) from a storage array, a logical volume, or a network-attached file.

Oracle ASM disks can be added or dropped from a disk group while the database
is running. When you add a disk to a disk group, you either assign a disk name or
the disk is given an Oracle ASM disk name automatically.

■ Oracle ASM Disk Groups

An Oracle ASM disk group is a collection of Oracle ASM disks managed as a
logical unit. The data structures in a disk group are self-contained and consume
some disk space in a disk group.

Within a disk group, Oracle ASM exposes a file system interface for Oracle
database files. The content of files that are stored in a disk group are evenly
distributed, or striped, to eliminate hot spots and to provide uniform performance
across the disks. The performance is comparable to the performance of raw
devices.

■ Oracle ASM Files

An Oracle ASM file is a file stored in an Oracle ASM disk group. Oracle Database
communicates with Oracle ASM in terms of files. The database can store data files,
control files, online redo log files, and other types of files as Oracle ASM files.
When requested by the database, Oracle ASM creates an Oracle ASM file and
assigns it a fully qualified name beginning with a plus sign (+) followed by a disk
group name, as in +DISK1.

■ Oracle ASM Extents

An Oracle ASM extent is the raw storage used to hold the contents of an Oracle
ASM file. An Oracle ASM file consists of one or more file extents. Each Oracle
ASM extent consists of one or more allocation units on a specific disk.

Note: Oracle ASM files can coexist with other storage management
options such as raw disks and third-party file systems. This capability
simplifies the integration of Oracle ASM into pre-existing
environments.

Data File

File System

ASM File

ASM Allocation
Unit

ASM Extent

ASM Disk
Group

ASM Disk

Oracle ASM

Introduction to Physical Storage Structures

Physical Storage Structures 11-5

■ Oracle ASM Allocation Units

An allocation unit is the fundamental unit of allocation within a disk group. An
allocation unit is the smallest contiguous disk space that Oracle ASM allocates.
One or more allocation units form an Oracle ASM extent.

Oracle ASM Instances
An Oracle ASM instance is a special Oracle instance that manages Oracle ASM disks.
Both the ASM and the database instances require shared access to the disks in an ASM
disk group. ASM instances manage the metadata of the disk group and provide file
layout information to the database instances. Database instances direct I/O to ASM
disks without going through an ASM instance.

An ASM instance is built on the same technology as a database instance. For example,
an ASM instance has a system global area (SGA) and background processes that are
similar to those of a database instance. However, an ASM instance cannot mount a
database and performs fewer tasks than a database instance.

Figure 11–3 shows a single-node configuration with one Oracle ASM instance and two
database instances, each associated with a different single-instance database. The ASM
instance manages the metadata and provides space allocation for the ASM files storing
the data for the two databases. One ASM disk group has four ASM disks and the other
has two disks. Both database instances can access the disk groups.

Note: An Oracle ASM extent is different from the extent used to
store data in a segment.

See Also:

■ Oracle Database 2 Day DBA to learn how to administer Oracle
ASM disks with Oracle Enterprise Manager (Enterprise
Manager)

■ Oracle Automatic Storage Management Administrator's Guide to
learn more about Oracle ASM

Introduction to Physical Storage Structures

11-6 Oracle Database Concepts

Figure 11–3 Oracle ASM Instance and Database Instances

Oracle Managed Files and User-Managed Files
Oracle Managed Files is a file naming strategy that enables you to specify operations
in terms of database objects rather than file names. For example, you can create a
tablespace without specifying the names of its data files. In this way, Oracle Managed
Files eliminates the need for administrators to directly manage the operating system
files in a database. Oracle ASM requires Oracle Managed Files.

With user-managed files, you directly manage the operating system files in the
database. You make the decisions regarding file structure and naming. For example,
when you create a tablespace you set the name and path of the tablespace data files.

See Also:

■ Oracle Database 2 Day DBA to learn how to administer Oracle
ASM disks with Oracle Enterprise Manager (Enterprise
Manager)

■ Oracle Automatic Storage Management Administrator's Guide to
learn more about Oracle ASM

Note: This feature does not affect the creation or naming of
administrative files such as trace files, audit files, and alert logs (see
"Overview of Diagnostic Files" on page 13-18).

Disk Group B

Oracle
Recovery
Catalog

Oracle
Recovery
Catalog

Oracle
Recovery
Catalog

Oracle
Recovery
Catalog

Oracle
Recovery
Catalog

Oracle
Recovery
Catalog

Disk Group A

Metadata
Requests

ASM
Instance

Database
Instance

DB1

Database
Instance

DB2

ASM Disk Groups

I/O I/O

Overview of Data Files

Physical Storage Structures 11-7

Through initialization parameters, you specify the file system directory for a specific
type of file. The Oracle Managed Files feature ensures that the database creates a
unique file and deletes it when no longer needed. The database internally uses
standard file system interfaces to create and delete files for data files and temp files,
control files, and recovery-related files stored in the fast recovery area.

Oracle Managed Files does not eliminate existing functionality. You can create new
files while manually administering old files. Thus, a database can have a mixture of
Oracle Managed Files and user-managed files.

Overview of Data Files
At the operating system level, Oracle Database stores database data in data files.
Every database must have at least one data file.

Use of Data Files
Part I, "Oracle Relational Data Structures" explains the logical structures in which
users store data, the most important of which are tables. Each nonpartitioned schema
object and each partition of an object is stored in its own segment.

For ease of administration, Oracle Database allocates space for user data in
tablespaces, which like segments are logical storage structures. Each segment belongs
to only one tablespace. For example, the data for a nonpartitioned table is stored in a
single segment, which is turn is stored in one tablespace.

Oracle Database physically stores tablespace data in data files. Tablespaces and data
files are closely related, but have important differences:

■ Each tablespace consists of one or more data files, which conform to the operating
system in which Oracle Database is running.

■ The data for a database is collectively stored in the data files located in each
tablespace of the database.

■ A segment can span one or more data files, but it cannot span multiple
tablespaces.

■ A database must have the SYSTEM and SYSAUX tablespaces. Oracle Database
automatically allocates the first data files of any database for the SYSTEM tablespace
during database creation.

The SYSTEM tablespace contains the data dictionary, a set of tables that contains
database metadata. Typically, a database also has an undo tablespace and a
temporary tablespace (usually named TEMP).

Figure 11–4 shows the relationship between tablespaces, data files, and segments.

See Also: Oracle Database Administrator's Guide to learn how to
use Oracle Managed Files

Overview of Data Files

11-8 Oracle Database Concepts

Figure 11–4 Data Files and Tablespaces

Permanent and Temporary Data Files
A permanent tablespace contains persistent schema objects. Objects in permanent
tablespaces are stored in data files.

A temporary tablespace contains schema objects only for the duration of a session.
Locally managed temporary tablespaces have temporary files (temp files), which are
special files designed to store data in hash, sort, and other operations. Temp files also
store result set data when insufficient space exists in memory.

Temp files are similar to permanent data files, with the following exceptions:

■ Permanent database objects such as tables are never stored in temp files.

■ Temp files are always set to NOLOGGING mode, which means that they never have
redo generated for them. Media recovery does not recognize temp files.

■ You cannot make a temp file read-only.

■ You cannot create a temp file with the ALTER DATABASE statement.

■ When you create or resize temp files, they are not always guaranteed allocation of
disk space for the file size specified. On file systems such as Linux and UNIX,
temp files are created as sparse files. In this case, disk blocks are allocated not at
file creation or resizing, but as the blocks are accessed for the first time.

See Also:

■ "Overview of Tablespaces" on page 12-30

■ Oracle Database Administrator's Guide and Oracle Database 2 Day
DBA to learn how to manage data files

Tablespace
(one or more data files)

Table

Index

Index

Index

Index

Index

Index

Index

Table

Table

Index

Index

Index

Data Files
(physical structures associated
with only one tablespace)

Segments
(stored in tablespaces-
may span several data files)

Overview of Data Files

Physical Storage Structures 11-9

■ Temp file information is shown in the data dictionary view DBA_TEMP_FILES and
the dynamic performance view V$TEMPFILE, but not in DBA_DATA_FILES or the
V$DATAFILE view.

Online and Offline Data Files
Every data file is either online (available) or offline (unavailable). You can alter the
availability of individual data files or temp files by taking them offline or bringing
them online. Offline data files cannot be accessed until they are brought back online.

Administrators may take data files offline for many reasons, including performing
offline backups, renaming a data file, or block corruption. The database takes a data
file offline automatically if the database cannot write to it.

Like a data file, a tablespace itself is offline or online. When you take a data file offline
in an online tablespace, the tablespace itself remains online. You can make all data files
of a tablespace temporarily unavailable by taking the tablespace itself offline

Data File Structure
Oracle Database creates a data file for a tablespace by allocating the specified amount
of disk space plus the overhead for the data file header. The operating system under
which Oracle Database runs is responsible for clearing old information and
authorizations from a file before allocating it to the database.

The data file header contains metadata about the data file such as its size and
checkpoint SCN. Each header contains an absolute file number and a relative file
number. The absolute file number uniquely identifies the data file within the database.
The relative file number uniquely identifies a data file within a tablespace.

When Oracle Database first creates a data file, the allocated disk space is formatted but
contains no user data. However, the database reserves the space to hold the data for
future segments of the associated tablespace. As the data grows in a tablespace, Oracle
Database uses the free space in the data files to allocate extents for the segment.

Figure 11–5 illustrates the different types of space in a data file. Extents are either used,
which means they contain segment data, or free, which means they are available for
reuse. Over time, updates and deletions of objects within a tablespace can create
pockets of empty space that individually are not large enough to be reused for new
data. This type of empty space is referred to as fragmented free space.

Caution: Sparse files enable fast temp file creation and resizing;
however, the disk could run out of space later when the temp files are
accessed.

See Also:

■ "Temporary Tablespaces" on page 12-34

■ Oracle Database Administrator's Guide to learn how to manage temp
files

See Also:

■ "Online and Offline Tablespaces" on page 12-35

■ Oracle Database Administrator's Guide to learn how to alter data file
availability

Overview of Control Files

11-10 Oracle Database Concepts

Figure 11–5 Space in a Data File

Overview of Control Files
The database control file is a small binary file associated with only one database. Each
database has one unique control file, although it may maintain identical copies of it.

Use of Control Files
The control file is the root file that Oracle Database uses to find database files and to
manage the state of the database generally. A control file contains information such as
the following:

■ The database name and database unique identifier (DBID)

■ The time stamp of database creation

■ Information about data files, online redo log files, and archived redo log files

■ Tablespace information

■ RMAN backups

The control file serves the following purposes:

■ It contains information about data files, online redo log files, and so on that are
required to open the database.

The control file tracks structural changes to the database. For example, when an
administrator adds, renames, or drops a data file or online redo log file, the
database updates the control file to reflect this change.

■ It contains metadata that must be accessible when the database is not open.

For example, the control file contains information required to recover the database,
including checkpoints. A checkpoint indicates the SCN in the redo stream where
instance recovery would be required to begin (see "Overview of Instance
Recovery" on page 13-12). Every committed change before a checkpoint SCN is
guaranteed to be saved on disk in the data files. At least every three seconds the
checkpoint process records information in the control file about the checkpoint
position in the online redo log.

Oracle Database reads and writes to the control file continuously during database use
and must be available for writing whenever the database is open. For example,
recovering a database involves reading from the control file the names of all the data

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn how to view data file information

Data File Header

Used

Free (Formatted, Never Used)

Free (Previously Used, Currently Unused)

Overview of Control Files

Physical Storage Structures 11-11

files contained in the database. Other operations, such as adding a data file, update the
information stored in the control file.

Multiple Control Files
Oracle Database enables multiple, identical control files to be open concurrently and
written for the same database. By multiplexing a control file on different disks, the
database can achieve redundancy and thereby avoid a single point of failure.

If a control file becomes unusable, then the database instance fails when it attempts to
access the damaged control file. When other current control file copies exist, the
database can be remounted and opened without media recovery. If all control files of a
database are lost, however, then the instance fails and media recovery is required.
Media recovery is not straightforward if an older backup of a control file must be used
because a current copy is not available.

Control File Structure
Information about the database is stored in different sections of the control file. Each
section is a set of records about an aspect of the database. For example, one section in
the control file tracks data files and contains a set of records, one for each data file.
Each section is stored in multiple logical control file blocks. Records can span blocks
within a section.

The control file contains the following types of records:

■ Circular reuse records

These records contain noncritical information that is eligible to be overwritten if
needed. When all available record slots are full, the database either expands the
control file to make room for a new record or overwrites the oldest record.
Examples include records about archived redo log files and RMAN backups.

■ Noncircular reuse records

These records contain critical information that does not change often and cannot
be overwritten. Examples of information include tablespaces, data files, online
redo log files, and redo threads. Oracle Database never reuses these records unless
the corresponding object is dropped from the tablespace.

As explained in "Overview of the Dynamic Performance Views" on page 6-5, you can
query the dynamic performance views, also known as V$ views, to view the

See Also:

■ "Checkpoint Process (CKPT)" on page 15-10

■ Oracle Database Administrator's Guide to learn how to manage the
control file

Note: Oracle recommends that you maintain multiple control file
copies, each on a different disk.

See Also:

■ Oracle Database Administrator's Guide to learn how to maintain
multiple control files

■ Oracle Database Backup and Recovery User's Guide to learn how to
back up and restore control files

Overview of the Online Redo Log

11-12 Oracle Database Concepts

information stored in the control file. For example, you can query V$DATABASE to
obtain the database name and DBID. However, only the database can modify the
information in the control file.

Reading and writing the control file blocks is different from reading and writing data
blocks. For the control file, Oracle Database reads and writes directly from the disk to
the program global area (PGA). Each process allocates a certain amount of its PGA
memory for control file blocks.

Overview of the Online Redo Log
The most crucial structure for recovery is the online redo log, which consists of two or
more preallocated files that store changes to the database as they occur. The online
redo log records changes to the data files.

Use of the Online Redo Log
The database maintains online redo log files to protect against data loss. Specifically,
after an instance failure the online redo log files enable Oracle Database to recover
committed data not yet written to the data files.

Oracle Database writes every transaction synchronously to the redo log buffer, which
is then written to the online redo logs. The contents of the log include uncommitted
transactions, undo data, and schema and object management statements.

Oracle Database uses the online redo log only for recovery. However, administrators
can query online redo log files through a SQL interface in the Oracle LogMiner utility
(see "Oracle LogMiner" on page 18-8). Redo log files are a useful source of historical
information about database activity.

How Oracle Database Writes to the Online Redo Log
The online redo log for a database instance is called a redo thread. In single-instance
configurations, only one instance accesses a database, so only one redo thread is
present. In an Oracle Real Application Clusters (Oracle RAC) configuration, however,
two or more instances concurrently access a database, with each instance having its
own redo thread. A separate redo thread for each instance avoids contention for a
single set of online redo log files.

An online redo log consists of two or more online redo log files. Oracle Database
requires a minimum of two files to guarantee that one is always available for writing
while the other is being archived (if the database is in ARCHIVELOG mode).

See Also:

■ Oracle Database Reference to learn about the
V$CONTROLFILE_RECORD_SECTION view

■ Oracle Database Reference to learn about the
CONTROL_FILE_RECORD_KEEP_TIME initialization parameter

See Also: "Overview of Instance Recovery" on page 13-12

See Also: Oracle Database 2 Day + Real Application Clusters Guide and
Oracle Real Application Clusters Administration and Deployment Guide to
learn about online redo log groups in Oracle RAC

Overview of the Online Redo Log

Physical Storage Structures 11-13

Online Redo Log Switches
Oracle Database uses only one online redo log file at a time to store records written
from the redo log buffer. The online redo log file to which the log writer (LGWR)
process is actively writing is called the current online redo log file.

A log switch occurs when the database stops writing to one online redo log file and
begins writing to another. Normally, a switch occurs when the current online redo log
file is full and writing must continue. However, you can configure log switches to
occur at regular intervals, regardless of whether the current online redo log file is
filled, and force log switches manually.

Log writer writes to online redo log files circularly. When log writer fills the last
available online redo log file, the process writes to the first log file, restarting the cycle.
Figure 11–6 illustrates the circular writing of the redo log.

Figure 11–6 Reuse of Online Redo Log Files

The numbers in Figure 11–6 shows the sequence in which LGWR writes to each online
redo log file. The database assigns each file a new log sequence number when a log
switches and log writers begins writing to it. When the database reuses an online redo
log file, this file receives the next available log sequence number.

Filled online redo log files are available for reuse depending on the archiving mode:

■ If archiving is disabled, which means that the database is in NOARCHIVELOG mode,
then a filled online redo log file is available after the changes recorded in it have
been checkpointed (written) to disk by database writer (DBWn).

■ If archiving is enabled, which means that the database is in ARCHIVELOG mode,
then a filled online redo log file is available to log writer after the changes have
been written to the data files and the file has been archived.

In some circumstances, log writer may be prevented from reusing an existing online
redo log file. For example, an online redo log file may be active (required for instance

LGWR

1, 4, 7, ...

3, 6, 9, ...

2, 5, 8, ...

Online Redo
Log File

#3

Online Redo
Log File

#2

Online Redo
Log File

#1

Overview of the Online Redo Log

11-14 Oracle Database Concepts

recovery) rather than inactive (not required for instance recovery). Also, an online
redo log file may be in the process of being cleared.

Multiple Copies of Online Redo Log Files
Oracle Database can automatically maintain two or more identical copies of the online
redo log in separate locations. An online redo log group consists of an online redo log
file and its redundant copies. Each identical copy is a member of the online redo log
group. Each group is defined by a number, such as group 1, group 2, and so on.

Maintaining multiple members of an online redo log group protects against the loss of
the redo log. Ideally, the locations of the members should be on separate disks so that
the failure of one disk does not cause the loss of the entire online redo log.

In Figure 11–7, A_LOG1 and B_LOG1 are identical members of group 1, while A_LOG2 and
B_LOG2 are identical members of group 2. Each member in a group must be the same
size. LGWR writes concurrently to group 1 (members A_LOG1 and B_LOG1), then writes
concurrently to group 2 (members A_LOG2 and B_LOG2), then writes to group 1, and so
on. LGWR never writes concurrently to members of different groups.

Figure 11–7 Multiple Copies of Online Redo Log Files

See Also:

■ "Overview of Background Processes" on page 15-7

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to manage the online redo log

Note: Oracle recommends that you multiplex the online redo log.
The loss of log files can be catastrophic if recovery is required.
When you multiplex the online redo log, the database must
increase the amount of I/O it performs. Depending on your system,
this additional I/O may impact overall database performance.

Disk BDisk A

1, 3, 5, ...

2, 4, 6, ...

LGWR

Group 1
Members

Group 2
Members

redo01a.log

redo02a.log

redo01b.log

redo02b.log

System Global Area (SGA)

Redo
Log

Buffer

Overview of the Online Redo Log

Physical Storage Structures 11-15

Archived Redo Log Files
An archived redo log file is a copy of a filled member of an online redo log group.
This file is not considered part of the database, but is an offline copy of an online redo
log file created by the database and written to a user-specified location.

Archived redo log files are a crucial part of a backup and recovery strategy. You can
use archived redo log files to:

■ Recover a database backup

■ Update a standby database (see "Computer Failures" on page 17-7)

■ Obtain information about the history of a database using the LogMiner utility (see
"Oracle LogMiner" on page 18-8)

Archiving is the operation of generating an archived redo log file. Archiving is either
automatic or manual and is only possible when the database is in ARCHIVELOG mode.

An archived redo log file includes the redo entries and the log sequence number of the
identical member of the online redo log group. In Figure 11–7, files A_LOG1 and B_LOG1
are identical members of Group 1. If the database is in ARCHIVELOG mode, and if
automatic archiving is enabled, then the archiver process (ARCn) will archive one of
these files. If A_LOG1 is corrupted, then the process can archive B_LOG1. The archived
redo log contains a copy of every group created since you enabled archiving.

Structure of the Online Redo Log
Online redo log files contain redo records. A redo record is made up of a group of
change vectors, each of which describes a change to a data block. For example, an
update to a salary in the employees table generates a redo record that describes
changes to the data segment block for the table, the undo segment data block, and the
transaction table of the undo segments.

The redo records have all relevant metadata for the change, including the following:

■ SCN and time stamp of the change

■ Transaction ID of the transaction that generated the change

■ SCN and time stamp when the transaction committed (if it committed)

■ Type of operation that made the change

■ Name and type of the modified data segment

See Also: Oracle Database Administrator's Guide to learn how to
maintain multiple copies of the online redo log files

See Also:

■ "Data File Recovery" on page 18-14

■ Oracle Database Administrator's Guide to learn how to manage the
archived redo log

See Also: "Overview of Data Blocks" on page 12-6

Overview of the Online Redo Log

11-16 Oracle Database Concepts

12

Logical Storage Structures 12-1

12Logical Storage Structures

This chapter describes the nature of and relationships among logical storage
structures. These structures are created and recognized by Oracle Database and are not
known to the operating system.

This chapter contains the following sections:

■ Introduction to Logical Storage Structures

■ Overview of Data Blocks

■ Overview of Extents

■ Overview of Segments

■ Overview of Tablespaces

Introduction to Logical Storage Structures
Oracle Database allocates logical space for all data in the database. The logical units of
database space allocation are data blocks, extents, segments, and tablespaces. At a
physical level, the data is stored in data files on disk (see Chapter 11, "Physical Storage
Structures"). The data in the data files is stored in operating system blocks.

Figure 12–1 is an entity-relationship diagram for physical and logical storage. The
crow's foot notation represents a one-to-many relationship.

Figure 12–1 Logical and Physical Storage

Oracle data
block

Extent

Segment

Tablespace

OS block

Data File

Logical Physical

Introduction to Logical Storage Structures

12-2 Oracle Database Concepts

Logical Storage Hierarchy
Figure 12–2 shows the relationships among data blocks, extents, and segments within
a tablespace. In this example, a segment has two extents stored in different data files.

Figure 12–2 Segments, Extents, and Data Blocks Within a Tablespace

At the finest level of granularity, Oracle Database stores data in data blocks. One
logical data block corresponds to a specific number of bytes of physical disk space, for
example, 2 KB. Data blocks are the smallest units of storage that Oracle Database can
use or allocate.

An extent is a set of logically contiguous data blocks allocated for storing a specific
type of information. In Figure 12–2, the 24 KB extent has 12 data blocks, while the 72
KB extent has 36 data blocks.

A segment is a set of extents allocated for a specific database object, such as a table.
For example, the data for the employees table is stored in its own data segment,
whereas each index for employees is stored in its own index segment. Every database
object that consumes storage consists of a single segment.

Each segment belongs to one and only one tablespace. Thus, all extents for a segment
are stored in the same tablespace. Within a tablespace, a segment can include extents
from multiple data files, as shown in Figure 12–2. For example, one extent for a
segment may be stored in users01.dbf, while another is stored in users02.dbf. A
single extent can never span data files.

Logical Space Management
Oracle Database must use logical space management to track and allocate the extents
in a tablespace. When a database object requires an extent, the database must have a
method of finding and providing it. Similarly, when an object no longer requires an
extent, the database must have a method of making the free extent available.

Oracle Database manages space within a tablespace based on the type that you create.
You can create either of the following types of tablespaces:

See Also: "Overview of Data Files" on page 11-7

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

2 KB

Data BlocksData Blocks

Extent
72 KB

Extent
24 KB

Data
File

Data
File

Segment
96Kb

Introduction to Logical Storage Structures

Logical Storage Structures 12-3

■ Locally managed tablespaces (default)

The database uses bitmaps in the tablespaces themselves to manage extents. Thus,
locally managed tablespaces have a part of the tablespace set aside for a bitmap.
Within a tablespace, the database can manage segments with automatic segment
space management (ASSM) or manual segment space management (MSSM).

■ Dictionary-managed tablespaces

The database uses the data dictionary to manage extents (see "Overview of the
Data Dictionary" on page 6-1).

Figure 12–3 shows the alternatives for logical space management in a tablespace.

Figure 12–3 Logical Space Management

Locally Managed Tablespaces
A locally managed tablespace maintains a bitmap in the data file header to track free
and used space in the data file body. Each bit corresponds to a group of blocks. When
space is allocated or freed, Oracle Database changes the bitmap values to reflect the
new status of the blocks.

The following graphic is a conceptual representation of bitmap-managed storage. A 1
in the header refers to used space, whereas a 0 refers to free space.

A locally managed tablespace has the following advantages:

Locally Managed Tablespace

Dictionary-Managed Tablespace

Automatic Segment Space Management

Manual Segment Space Management

1 0 0 1 0 1 . . .

Used Space
Free Space

Data File Header

Data File Body

Introduction to Logical Storage Structures

12-4 Oracle Database Concepts

■ Avoids using the data dictionary to manage extents

Recursive operations can occur in dictionary-managed tablespaces if consuming or
releasing space in an extent results in another operation that consumes or releases
space in a data dictionary table or undo segment.

■ Tracks adjacent free space automatically

In this way, the database eliminates the need to coalesce free extents.

■ Determines the size of locally managed extents automatically

Alternatively, all extents can have the same size in a locally managed tablespace
and override object storage options.

Segment space management is an attribute inherited from the tablespace that contains
the segment. Within a locally managed tablespace, the database can manage segments
automatically or manually. For example, segments in tablespace users can be
managed automatically while segments in tablespace tools are managed manually.

Automatic Segment Space Management The ASSM method uses bitmaps to manage space.
Bitmaps provide the following advantages:

■ Simplified administration

ASSM avoids the need to manually determine correct settings for many storage
parameters. Only one crucial SQL parameter controls space allocation: PCTFREE.
This parameter specifies the percentage of space to be reserved in a block for
future updates (see "Percentage of Free Space in Data Blocks" on page 12-12).

■ Increased concurrency

Multiple transactions can search separate lists of free data blocks, thereby
reducing contention and waits. For many standard workloads, application
performance with ASSM is better than the performance of a well-tuned
application that uses MSSM.

■ Dynamic affinity of space to instances in an Oracle Real Application Clusters
(Oracle RAC) environment

ASSM is more efficient and is the default for permanent, locally managed tablespaces.

Manual Segment Space Management The legacy MSSM method uses a linked list called a
free list to manage free space in the segment. For a database object that has free space,
a free list keeps track of blocks under the high water mark (HWM), which is the
dividing line between segment space that is used and not yet used. As blocks are used,
the database puts blocks on or removes blocks from the free list as needed.

In addition to PCTFREE, MSSM requires you to control space allocation with SQL
parameters such as PCTUSED, FREELISTS, and FREELIST GROUPS. PCTUSED sets the
percentage of free space that must exist in a currently used block for the database to
put it on the free list. For example, if you set PCTUSED to 40 in a CREATE TABLE

Note: Oracle strongly recommends the use of locally managed
tablespaces with Automatic Segment Space Management.

Note: This chapter assumes the use of ASSM in all of its discussions
of logical storage space.

Introduction to Logical Storage Structures

Logical Storage Structures 12-5

statement, then you cannot insert rows into a block in the segment until less than 40%
of the block space is used.

As an illustration, suppose you insert a row into a table. The database checks a free list
of the table for the first available block. If the row cannot fit in the block, and if the
used space in the block is greater than or equal to PCTUSED, then the database takes the
block off the list and searches for another block. If you delete rows from the block, then
the database checks whether used space in the block is now less than PCTUSED. If so,
then the database places the block at the beginning of the free list.

An object may have multiple free lists. In this way, multiple sessions performing DML
on a table can use different lists, which can reduce contention. Each database session
uses only one free list for the duration of its session.

As shown in Figure 12–4, you can also create an object with one or more free list
groups, which are collections of free lists. Each group has a master free list that
manages the individual process free lists in the group. Space overhead for free lists,
especially for free list groups, can be significant.

Figure 12–4 Free List Groups

Managing segment space manually can be complex. You must adjust PCTFREE and
PCTUSED to reduce row migration (see "Chained and Migrated Rows" on page 12-16)
and avoid wasting space. For example, if every used block in a segment is half full,
and if PCTUSED is 40, then the database does not permit inserts into any of these blocks.
Because of the difficulty of fine-tuning space allocation parameters, Oracle strongly
recommends ASSM. In ASSM, PCTFREE determines whether a new row can be inserted
into a block, but it does not use free lists and ignores PCTUSED.

See Also:

■ Oracle Database Administrator's Guide to learn about locally
managed tablespaces

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn more about automatic segment space management

■ Oracle Database SQL Language Reference to learn about storage
parameters such as PCTFREE and PCTUSED

Master
Free
List

Master
Free
List

Free List Group Free List Group

Process Free Lists Process Free Lists

Table Segment

Overview of Data Blocks

12-6 Oracle Database Concepts

Dictionary-Managed Tablespaces
A dictionary-managed tablespace uses the data dictionary to manage its extents.
Oracle Database updates tables in the data dictionary whenever an extent is allocated
or freed for reuse. For example, when a table needs an extent, the database queries the
data dictionary tables, and searches for free extents. If the database finds space, then it
modifies one data dictionary table and inserts a row into another. In this way, the
database manages space by modifying and moving data.

The SQL that the database executes in the background to obtain space for database
objects is recursive SQL. Frequent use of recursive SQL can have a negative impact on
performance because updates to the data dictionary must be serialized. Locally
managed tablespaces, which are the default, avoid this performance problem.

Overview of Data Blocks
Oracle Database manages the logical storage space in the data files of a database in
units called data blocks, also called Oracle blocks or pages. A data block is the
minimum unit of database I/O.

Data Blocks and Operating System Blocks
At the physical level, database data is stored in disk files made up of operating system
blocks. An operating system block is the minimum unit of data that the operating
system can read or write. In contrast, an Oracle block is a logical storage structure
whose size and structure are not known to the operating system.

Figure 12–5 shows that operating system blocks may differ in size from data blocks.
The database requests data in multiples of data blocks, not operating system blocks.

Figure 12–5 Data Blocks and Operating System Blocks

When the database requests a data block, the operating system translates this
operation into a requests for data in permanent storage. The logical separation of data
blocks from operating system blocks has the following implications:

■ Applications do not need to determine the physical addresses of data on disk.

■ Database data can be striped or mirrored on multiple physical disks.

See Also: Oracle Database Administrator's Guide to learn how to
migrate tablespaces from dictionary-managed to locally managed

Oracle
Data Block

Operating
System Blocks

8 KB

1 KB

1 KB

1 KB

1 KB

1 KB

1 KB

1 KB

1 KB

Overview of Data Blocks

Logical Storage Structures 12-7

Database Block Size
Every database has a database block size. The DB_BLOCK_SIZE initialization parameter
sets the data block size for a database when it is created. The size is set for the SYSTEM
and SYSAUX tablespaces and is the default for all other tablespaces. The database block
size cannot be changed except by re-creating the database.

If DB_BLOCK_SIZE is not set, then the default data block size is operating
system-specific. The standard data block size for a database is 4 KB or 8 KB. If the size
differs for data blocks and operating system blocks, then the data block size must be a
multiple of the operating system block size.

Tablespace Block Size
You can create individual tablespaces whose block size differs from the DB_BLOCK_SIZE
setting. A nonstandard block size can be useful when moving a transportable
tablespace to a different platform.

Data Block Format
Every data block has a format or internal structure that enables the database to track
the data and free space in the block. This format is similar whether the data block
contains table, index, or table cluster data. Figure 12–6 shows the format of an
uncompressed data block (see "Data Block Compression" on page 12-11 to learn about
compressed blocks).

Figure 12–6 Data Block Format

See Also:

■ Oracle Database Reference to learn about the DB_BLOCK_SIZE
initialization parameter

■ Oracle Database Administrator's Guide and Oracle Database
Performance Tuning Guide to learn how to choose block sizes

See Also: Oracle Database Administrator's Guide to learn how to
specify a nonstandard block size for a tablespace

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data

Overview of Data Blocks

12-8 Oracle Database Concepts

Data Block Overhead
Oracle Database uses the block overhead to manage the block itself. The block
overhead is not available to store user data. As shown in Figure 12–6, the block
overhead includes the following parts:

■ Block header

This part contains general information about the block, including disk address and
segment type. For blocks that are transaction-managed, the block header contains
active and historical transaction information.

A transaction entry is required for every transaction that updates the block. Oracle
Database initially reserves space in the block header for transaction entries. In data
blocks allocated to segments that support transactional changes, free space can
also hold transaction entries when the header space is depleted. The space
required for transaction entries is operating system dependent. However,
transaction entries in most operating systems require approximately 23 bytes.

■ Table directory

For a heap-organized table, this directory contains metadata about tables whose
rows are stored in this block. Multiple tables can store rows in the same block.

■ Row directory

For a heap-organized table, this directory describes the location of rows in the data
portion of the block.

After space has been allocated in the row directory, the database does not reclaim
this space after row deletion. Thus, a block that is currently empty but formerly
had up to 50 rows continues to have 100 bytes allocated for the row directory. The
database reuses this space only when new rows are inserted in the block.

Some parts of the block overhead are fixed in size, but the total size is variable. On
average, the block overhead totals 84 to 107 bytes.

Row Format
The row data part of the block contains the actual data, such as table rows or index key
entries. Just as every data block has an internal format, every row has a row format
that enables the database to track the data in the row.

Oracle Database stores rows as variable-length records. A row is contained in one or
more row pieces. Each row piece has a row header and column data.

Figure 12–7 shows the format of a row.

Overview of Data Blocks

Logical Storage Structures 12-9

Figure 12–7 The Format of a Row Piece

Row Header Oracle Database uses the row header to manage the row piece stored in the
block. The row header contains information such as the following:

■ Columns in the row piece

■ Pieces of the row located in other data blocks

If an entire row can be inserted into a single data block, then Oracle Database
stores the row as one row piece. However, if all of the row data cannot be inserted
into a single block or an update causes an existing row to outgrow its block, then
the database stores the row in multiple row pieces (see "Chained and Migrated
Rows" on page 12-16). A data block usually contains only one row piece per row.

■ Cluster keys for table clusters (see "Overview of Table Clusters" on page 2-22)

A row fully contained in one block has at least 3 bytes of row header.

Column Data After the row header, the column data section stores the actual data in the
row. The row piece usually stores columns in the order listed in the CREATE TABLE
statement, but this order is not guaranteed. For example, columns of type LONG are
created last.

As shown in Figure 12–7, for each column in a row piece, Oracle Database stores the
column length and data separately. The space required depends on the data type. If the
data type of a column is variable length, then the space required to hold a value can
grow and shrink with updates to the data.

Each row has a slot in the row directory of the data block header. The slot points to the
beginning of the row.

See Also: "Table Storage" on page 2-18 and "Index Storage" on
page 3-20

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value

Overview of Data Blocks

12-10 Oracle Database Concepts

Rowid Format Oracle Database uses a rowid to uniquely identify a row. Internally, the
rowid is a structure that holds information that the database needs to access a row. A
rowid is not physically stored in the database, but is inferred from the file and block on
which the data is stored.

An extended rowid includes a data object number. This rowid type uses a base 64
encoding of the physical address for each row. The encoding characters are A-Z, a-z,
0-9, +, and /.

Example 12–1 queries the ROWID pseudocolumn to show the extended rowid of the
row in the employees table for employee 100.

Example 12–1 ROWID Pseudocolumn

SQL> SELECT ROWID FROM employees WHERE employee_id = 100;

ROWID

AAAPecAAFAAAABSAAA

Figure 12–8 illustrates the format of an extended rowid.

Figure 12–8 ROWID Format

An extended rowid is displayed in a four-piece format, OOOOOOFFFBBBBBBRRR, with the
format divided into the following components:

■ OOOOOO

The data object number identifies the segment (data object AAAPec in
Example 12–1). A data object number is assigned to every database segment.
Schema objects in the same segment, such as a table cluster, have the same data
object number.

■ FFF

The tablespace-relative data file number identifies the data file that contains the
row (file AAF in Example 12–1).

■ BBBBBB

The data block number identifies the block that contains the row (block AAAABS in
Example 12–1). Block numbers are relative to their data file, not their tablespace.
Thus, two rows with identical block numbers could reside in different data files of
the same tablespace.

■ RRR

The row number identifies the row in the block (row AAA in Example 12–1).

After a rowid is assigned to a row piece, the rowid can change in special
circumstances. For example, if row movement is enabled, then the rowid can change
because of partition key updates, Flashback Table operations, shrink table operations,
and so on. If row movement is disabled, then a rowid can change if the row is exported
and imported using Oracle Database utilities.

AAAPec AAF AAAABS..

Data Object Number Relative File Number Block Number

AAA

Row Number

.

Overview of Data Blocks

Logical Storage Structures 12-11

Data Block Compression
The database can use table compression to eliminate duplicate values in a data block
(see "Table Compression" on page 2-19). This section describes the format of data
blocks that use compression.

The format of a data block that uses basic and OLTP table compression is essentially
the same as an uncompressed block. The difference is that a symbol table at the
beginning of the block stores duplicate values for the rows and columns. The database
replaces occurrences of these values with a short reference to the symbol table.

Assume that the rows in Example 12–2 are stored in a data block for the seven-column
sales table.

Example 12–2 Rows in sales Table

2190,13770,25-NOV-00,S,9999,23,161
2225,15720,28-NOV-00,S,9999,25,1450
34005,120760,29-NOV-00,P,9999,44,2376
9425,4750,29-NOV-00,I,9999,11,979
1675,46750,29-NOV-00,S,9999,19,1121

When basic or OLTP table compression is applied to this table, the database replaces
duplicate values with a symbol reference. Example 12–3 is a conceptual representation
of the compression in which the symbol * replaces 29-NOV-00 and % replaces 9999.

Example 12–3 OLTP Compressed Rows in sales Table

2190,13770,25-NOV-00,S,%,23,161
2225,15720,28-NOV-00,S,%,25,1450
34005,120760,*,P,%,44,2376
9425,4750,*,I,%,11,979
1675,46750,*,S,%,19,1121

Table 12–1 conceptually represents the symbol table that maps symbols to values.

Space Management in Data Blocks
As the database fills a data block from the bottom up, the amount of free space
between the row data and the block header decreases. This free space can also shrink

Note: Internally, the database performs row movement as if the row
were physically deleted and reinserted. However, row movement is
considered an update, which has implications for triggers.

See Also:

■ "Rowid Data Types" on page 2-13

■ Oracle Database SQL Language Reference to learn about rowids

Table 12–1 Symbol Table

Symbol Value Column Rows

* 29-NOV-00 3 958-960

% 9999 5 956-960

Overview of Data Blocks

12-12 Oracle Database Concepts

during updates, as when changing a trailing null to a nonnull value. The database
manages free space in the data block to optimize performance and avoid wasted space.

Percentage of Free Space in Data Blocks
The PCTFREE storage parameter is essential to how the database manages free space.
This SQL parameter sets the minimum percentage of a data block reserved as free
space for updates to existing rows. Thus, PCTFREE is important for preventing row
migration and avoiding wasted space.

For example, assume that you create a table that will require only occasional updates,
most of which will not increase the size of the existing data. You specify the PCTFREE
parameter within a CREATE TABLE statement as follows:

CREATE TABLE test_table (n NUMBER) PCTFREE 20;

Figure 12–9 shows how a PCTFREE setting of 20 affects space management. The
database adds rows to the block over time, causing the row data to grow upwards
toward the block header, which is itself expanding downward toward the row data.
The PCTFREE setting ensures that at least 20% of the data block is free. For example, the
database prevents an INSERT statement from filling the block so that the row data and
header occupy a combined 90% of the total block space, leaving only 10% free.

Figure 12–9 PCTFREE

Note: This section assumes the use of automatic segment space
management.

Note: This discussion does not apply to LOB data types, which do
not use the PCTFREE storage parameter or free lists. See "Overview of
LOBs" on page 19-12.

See Also: Oracle Database SQL Language Reference for the syntax and
semantics of the PCTFREE parameter

PCTFREE = 20
Data Block

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Overview of Data Blocks

Logical Storage Structures 12-13

Optimization of Free Space in Data Blocks
While the percentage of free space cannot be less than PCTFREE, the amount of free
space can be greater. For example, a PCTFREE setting of 20% prevents the total amount
of free space from dropping to 5% of the block, but permits 50% of the block to be free
space. The following SQL statements can increase free space:

■ DELETE statements

■ UPDATE statements that either update existing values to smaller values or increase
existing values and force a row to migrate

■ INSERT statements on a table that uses OLTP compression

If inserts fill a block with data, then the database invokes block compression,
which may result in the block having more free space.

The space released is available for INSERT statements under the following conditions:

■ If the INSERT statement is in the same transaction and after the statement that frees
space, then the statement can use the space.

■ If the INSERT statement is in a separate transaction from the statement that frees
space (perhaps run by another user), then the statement can use the space made
available only after the other transaction commits and only if the space is needed.

Coalescing Fragmented Space Released space may or may not be contiguous with the
main area of free space in a data block, as shown in Figure 12–10. Noncontiguous free
space is called fragmented space.

Figure 12–10 Data Block with Fragmented Space

Oracle Database automatically and transparently coalesces the free space of a data
block only when the following conditions are true:

■ An INSERT or UPDATE statement attempts to use a block that contains sufficient free
space to contain a new row piece.

See Also: Oracle Database Administrator's Guide to learn about OLTP
compression

Database Block

Data Block Header

Free Space

Overview of Data Blocks

12-14 Oracle Database Concepts

■ The free space is fragmented so that the row piece cannot be inserted in a
contiguous section of the block.

After coalescing, the amount of free space is identical to the amount before the
operation, but the space is now contiguous. Figure 12–11 shows a data block after
space has been coalesced.

Figure 12–11 Data Block After Coalescing Free Space

Oracle Database performs coalescing only in the preceding situations because
otherwise performance would decrease because of the continuous coalescing of the
free space in data blocks.

Reuse of Index Space The database can reuse space within an index block. For example,
if you insert a value into a column and delete it, and if an index exists on this column,
then the database can reuse the index slot when a row requires it.

The database can reuse an index block itself. Unlike a table block, an index block only
becomes free when it is empty. The database places the empty block on the free list of
the index structure and makes it eligible for reuse. However, Oracle Database does not
automatically compact the index: an ALTER INDEX REBUILD or COALESCE statement is
required.

Figure 12–12 represents an index of the employees.department_id column before the
index is coalesced. The first three leaf blocks are only partially full, as indicated by the
gray fill lines.

Database Block

Data Block Header

Free Space

Overview of Data Blocks

Logical Storage Structures 12-15

Figure 12–12 Index Before Coalescing

Figure 12–13 shows the index in Figure 12–12 after the index has been coalesced. The
first two leaf blocks are now full, as indicated by the gray fill lines, and the third leaf
block has been freed.

. . .

26..48
49..53
54..65
....
78..80

11,rowid
12,rowid
12,rowid
19,rowid

22,rowid
23,rowid

221,rowid
222,rowid
223,rowid
....
228,rowid

246,rowid
248,rowid
248,rowid
....
250,rowid

0,rowid
0,rowid
1,rowid
5,rowid

0..25
26..80
81..120
....
200..250

.

0..10
11..19
20..25

200..209
210..220
221..228
....
246..250

Branch Blocks

Leaf Blocks

Overview of Data Blocks

12-16 Oracle Database Concepts

Figure 12–13 Index After Coalescing

Chained and Migrated Rows
Oracle Database must manage rows that are too large to fit into a single block. The
following situations are possible:

■ The row is too large to fit into one data block when it is first inserted.

In row chaining, Oracle Database stores the data for the row in a chain of one or
more data blocks reserved for the segment. Row chaining most often occurs with
large rows. Examples include rows that contain a column of data type LONG or LONG
RAW, a VARCHAR2(4000) column in a 2 KB block, or a row with a huge number of
columns. Row chaining in these cases is unavoidable.

■ A row that originally fit into one data block is updated so that the overall row
length increases, but insufficient free space exists to hold the updated row.

In row migration, Oracle Database moves the entire row to a new data block,
assuming the row can fit in a new block. The original row piece of a migrated row
contains a pointer or "forwarding address" to the new block containing the
migrated row. The rowid of a migrated row does not change.

■ A row has more than 255 columns.

See Also:

■ Oracle Database Administrator's Guide to learn how to coalesce and
rebuild indexes

■ Oracle Database SQL Language Reference to learn about the
COALESCE statement

. . .

24..48
49..53
54..65
....
78..80

12,rowid
12,rowid
19,rowid
22,rowid
23,rowid

221,rowid
222,rowid
223,rowid
....
228,rowid

246,rowid
248,rowid
248,rowid
....
250,rowid

0,rowid
0,rowid
1,rowid
5,rowid
11,rowid

0..23
24..80
81..120
....
200..250

.

0..11
12..23

200..209
210..220
221..228
....
246..250

Branch Blocks

Leaf Blocks

Overview of Data Blocks

Logical Storage Structures 12-17

Oracle Database can only store 255 columns in a row piece. Thus, if you insert a
row into a table that has 1000 columns, then the database creates 4 row pieces,
typically chained over multiple blocks.

Figure 12–14 depicts shows the insertion of a large row in a data block. The row is too
large for the left block, so the database chains the row by placing the first row piece in
the left block and the second row piece in the right block.

Figure 12–14 Row Chaining

Figure 12–15, the left block contains a row that is updated so that the row is now too
large for the block. The database moves the entire row to the right block and leaves a
pointer to the migrated row in the left block.

Figure 12–15 Row Migration

Database Block

Data Block Header

Piece 1 of Inserted Row
Row Piece Pointer

Database Block

Data Block
Header

Free Space

Piece 2 of
Inserted
Row

Database Block

Data Block
Header

Free Space

Pointer to Updated
Row

Database Block

Data Block
Header

Free
Space

Updated
Row

Overview of Extents

12-18 Oracle Database Concepts

When a row is chained or migrated, the I/O needed to retrieve the data increases. This
situation results because Oracle Database must scan multiple blocks to retrieve the
information for the row. For example, if the database performs one I/O to read an
index and one I/O to read a nonmigrated table row, then an additional I/O is required
to obtain the data for a migrated row.

The Segment Advisor, which can be run both manually and automatically, is an Oracle
Database component that identifies segments that have space available for
reclamation. The advisor can offer advice about objects that have significant free space
or too many chained rows.

Overview of Extents
An extent is a logical unit of database storage space allocation made up of contiguous
data blocks. Data blocks in an extent are logically contiguous but can be physically
spread out on disk because of RAID striping and file system implementations.

Allocation of Extents
By default, the database allocates an initial extent for a data segment when the
segment is created. An extent is always contained in one data file.

Although no data has been added to the segment, the data blocks in the initial extent
are reserved for this segment exclusively. The first data block of every segment
contains a directory of the extents in the segment. Figure 12–16 shows the initial extent
in a segment in a data file that previously contained no data.

Figure 12–16 Initial Extent of a Segment

See Also:

■ "Row Storage" on page 2-19 and "Rowids of Row Pieces" on
page 2-19

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to reclaim wasted space

■ Oracle Database Performance Tuning Guide to learn about reducing
chained and migrated rows

Data File Header

Used

Free (Formatted, Never Used)

Initial Extent
of Segment

Data Block
(logically contiguous
with other blocks
in the extent)

First Block of Segment
(contains directory
of extents)

Overview of Extents

Logical Storage Structures 12-19

If the initial extent become full, and if more space is required, then the database
automatically allocates an incremental extent for this segment. An incremental extent
is a subsequent extent created for the segment.

The allocation algorithm depends on whether the tablespace is locally managed or
dictionary-managed. In the locally managed case, the database searches the bitmap of
a data file for adjacent free blocks. If the data file has insufficient space, then the
database looks in another data file. Extents for a segment are always in the same
tablespace but may be in different data files.

Figure 12–17 shows that the database can allocate extents for a segment in any data file
in the tablespace. For example, the segment can allocate the initial extent in
users01.dbf, allocate the first incremental extent in users02.dbf, and allocate the next
extent in users01.dbf.

Figure 12–17 Incremental Extent of a Segment

The blocks of a newly allocated extent, although they were free, may not be empty of
old data. In ASSM, Oracle Database formats the blocks of a newly allocated extent
when it starts using the extent, but only as needed (see "Segment Space and the High
Water Mark" on page 12-27).

Deallocation of Extents
In general, the extents of a user segment do not return to the tablespace unless you
drop the object using a DROP command. In Oracle Database 11g Release 2 (11.2.0.2), you
can also drop the segment using the DBMS_SPACE_ADMIN package. For example, if you
delete all rows in a table, then the database does not reclaim the data blocks for use by
other objects in the tablespace.

Note: This section applies to serial operations, in which one server
process parses and runs a statement. Extents are allocated differently
in parallel SQL statements, which entail multiple server processes.

See Also: Oracle Database Administrator's Guide to learn how to
manually allocate extents

Initial
Extent

users01.dbf

Incremental
Extents

Space Used by Other Segments

users02.dbf

Data File Header

Used

Free (Formatted, Never Used)

Overview of Extents

12-20 Oracle Database Concepts

In some circumstances, you can manually deallocate space. The Oracle Segment
Advisor helps determine whether an object has space available for reclamation based
on the level of fragmentation in the object. The following techniques can free extents:

■ You can use an online segment shrink to reclaim fragmented space in a segment.
Segment shrink is an online, in-place operation. In general, data compaction leads
to better cache utilization and requires fewer blocks to be read in a full table scan.

■ You can move the data of a nonpartitioned table or table partition into a new
segment, and optionally into a different tablespace for which you have quota.

■ You can rebuild or coalesce the index (see "Reuse of Index Space" on page 12-14).

■ You can truncate a table or table cluster, which removes all rows. By default,
Oracle Database deallocates all space used by the removed rows except that
specified by the MINEXTENTS storage parameter. In Oracle Database 11g Release 2
(11.2.0.2), you can also use TRUNCATE with the DROP ALL STORAGE option to drop
entire segments.

■ You can deallocate unused space, which frees the unused space at the high water
mark end of the database segment and makes the space available for other
segments in the tablespace (see "Segment Space and the High Water Mark" on
page 12-27).

When extents are freed, Oracle Database modifies the bitmap in the data file for locally
managed tablespaces to reflect the regained extents as available space. Any data in the
blocks of freed extents becomes inaccessible.

Storage Parameters for Extents
Every segment is defined by storage parameters expressed in terms of extents. These
parameters control how Oracle Database allocates free space for a segment.

The storage settings are determined in the following order of precedence, with setting
higher on the list overriding settings lower on the list:

1. Segment storage clause

2. Tablespace storage clause

3. Oracle Database default

A locally managed tablespace can have either uniform extent sizes or variable extent
sizes determined automatically by the system:

■ For uniform extents, you can specify an extent size or use the default size of 1 MB.
All extents in the tablespace are of this size. Locally managed temporary
tablespaces can only use this type of allocation.

■ For automatically allocated extents, Oracle Database determines the optimal size
of additional extents.

Note: In an undo segment, Oracle Database periodically deallocates
one or more extents if it has the OPTIMAL size specified or if the
database is in automatic undo management mode (see "Undo
Tablespaces" on page 12-33).

See Also: Oracle Database Administrator's Guide to learn how to
reclaim segment space

Overview of Segments

Logical Storage Structures 12-21

For locally managed tablespaces, some storage parameters cannot be specified at the
tablespace level. However, you can specify these parameters at the segment level. In
this case, the databases uses all parameters together to compute the initial size of the
segment. Internal algorithms determine the subsequent size of each extent.

Overview of Segments
A segment is a set of extents that contains all the data for a logical storage structure
within a tablespace. For example, Oracle Database allocates one or more extents to
form the data segment for a table. The database also allocates one or more extents to
form the index segment for a table.

As explained in "Logical Space Management", Oracle Database manages segment
space automatically or manually. This section assumes the use of ASSM.

User Segments
A single data segment in a database stores the data for one user object. There are
different types of segments. Examples of user segments include:

■ Table, table partition, or table cluster

■ LOB or LOB partition

■ Index or index partition

Each nonpartitioned object and object partition is stored in its own segment. For
example, if an index has five partitions, then five segments contain the index data.

User Segment Creation
By default, the database uses deferred segment creation to update only database
metadata when creating tables and indexes. Starting in Oracle Database 11g Release 2
(11.2.0.2), the database also defers segment creation when creating partitions. When a
user inserts the first row into a table or partition, the database creates segments for the
table or partition, its LOB columns, and its indexes.

Deferred segment creation enables you to avoid using database resources
unnecessarily. For example, installation of an application can create thousands of
objects, consuming significant disk space. Many of these objects may never be used.

You can use the DBMS_SPACE_ADMIN package to manage segments for empty objects.
Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use this PL/SQL
package to do the following:

■ Manually materialize segments for empty tables or partitions that do not have
segments created

■ Remove segments from empty tables or partitions that currently have an empty
segment allocated

To best illustrate the relationship between object creation and segment creation,
assume that deferred segment creation is disabled. You create a table as follows:

See Also:

■ Oracle Database Administrator's Guide to learn about extent
management considerations when creating a locally managed
tablespace

■ Oracle Database SQL Language Reference to learn about options in
the storage clause

Overview of Segments

12-22 Oracle Database Concepts

CREATE TABLE test_table (my_column NUMBER);

As shown in Figure 12–18, the database creates one segment for the table.

Figure 12–18 Creation of a User Segment

When you create a table with a primary key or unique key, Oracle Database
automatically creates an index for this key. Again assume that deferred segment
creation is disabled. You create a table as follows:

CREATE TABLE lob_table (my_column NUMBER PRIMARY KEY, clob_column CLOB);

Figure 12–19 shows that the data for lob_table is stored in one segment, while the
implicitly created index is in a different segment. Also, the CLOB data is stored in its
own segment, as is its associated CLOB index (see "Internal LOBs" on page 19-12).
Thus, the CREATE TABLE statement results in the creation of four different segments.

Figure 12–19 Multiple Segments

The database allocates one or more extents when a segment is created. Storage
parameters for the object determine how the extents for each segment are allocated
(see "Storage Parameters for Extents" on page 12-20). The parameters affect the
efficiency of data retrieval and storage for the data segment associated with the object.

Note: The segments of a table and the index for this table do not
have to occupy the same tablespace.

SegmentSchema ObjectSQL Statement

test_table
CREATE TABLE
test_table
(my_column
NUMBER);

SegmentSchema ObjectSQL Statement

Table
lob_table

Index on
my_column

CLOB

Index on
CLOB

CREATE TABLE
lob_table
(my_column
NUMBER PRIMARY
KEY, clob_column
CLOB);

Overview of Segments

Logical Storage Structures 12-23

Temporary Segments
When processing a query, Oracle Database often requires temporary workspace for
intermediate stages of SQL statement execution. Typical operations that may require a
temporary segment include sorting, hashing, and merging bitmaps. While creating an
index, Oracle Database also places index segments into temporary segments and then
converts them into permanent segments when the index is complete.

Oracle Database does not create a temporary segment if an operation can be
performed in memory. However, if memory use is not possible, then the database
automatically allocates a temporary segment on disk.

Allocation of Temporary Segments for Queries
Oracle Database allocates temporary segments for queries as needed during a user
session and drops them when the query completes. Changes to temporary segments
are not recorded in the online redo log, except for space management operations on
the temporary segment (see "Overview of the Online Redo Log" on page 11-12).

The database creates temporary segments in the temporary tablespace assigned to the
user. The default storage characteristics of the tablespace determine the characteristics
of the extents in the temporary segment. Because allocation and deallocation of
temporary segments occurs frequently, the best practice is to create at least one special
tablespace for temporary segments. The database distributes I/O across disks and
avoids fragmenting SYSTEM and other tablespaces with temporary segments.

Allocation of Temporary Segments for Temporary Tables and Indexes
Oracle Database can also allocate temporary segments for temporary tables and their
indexes. Temporary tables hold data that exists only for the duration of a transaction
or session. Each session accesses only the extents allocated for the session and cannot
access extents allocated for other sessions.

Oracle Database allocates segments for a temporary table when the first INSERT into
that table occurs. The insertion can occur explicitly or because of CREATE TABLE AS
SELECT. The first INSERT into a temporary table allocates the segments for the table and
its indexes, creates the root page for the indexes, and allocates any LOB segments.

See Also:

■ Oracle Database Administrator's Guide to learn how to manage
deferred segment creation

■ Oracle Database Advanced Replication for information on
materialized views and materialized view logs

■ Oracle Database SQL Language Reference for CREATE TABLE syntax

Note: When SYSTEM is locally managed, you must define a default
temporary tablespace at database creation. A locally managed SYSTEM
tablespace cannot be used for default temporary storage.

See Also:

■ Oracle Database Administrator's Guide to learn how to create
temporary tablespaces

■ Oracle Database SQL Language Reference for CREATE TEMPORARY
TABLESPACE syntax and semantics

Overview of Segments

12-24 Oracle Database Concepts

Segments for a temporary table are allocated in a temporary tablespace of the current
user. Assume that the temporary tablespace assigned to user1 is temp1 and the
temporary tablespace assigned to user2 is temp2. In this case, user1 stores temporary
data in the temp1 segments, while user2 stores temporary data in the temp2 segments.

Undo Segments
Oracle Database maintains records of the actions of transactions, collectively known as
undo data. Oracle Database uses undo to do the following:

■ Roll back an active transaction

■ Recover a terminated transaction

■ Provide read consistency

■ Perform some logical flashback operations

Oracle Database stores undo data inside the database rather than in external logs.
Undo data is stored in blocks that are updated just like data blocks, with changes to
these blocks generating redo. In this way, Oracle Database can efficiently access undo
data without needing to read external logs.

Undo data is stored in an undo tablespace. Oracle Database provides a fully
automated mechanism, known as automatic undo management mode, for managing
undo segments and space in an undo tablespace.

Undo Segments and Transactions
When a transaction starts, the database binds (assigns) the transaction to an undo
segment, and therefore to a transaction table, in the current undo tablespace. In rare
circumstances, if the database instance does not have a designated undo tablespace,
then the transaction binds to the system undo segment.

Multiple active transactions can write concurrently to the same undo segment or to
different segments. For example, transactions T1 and T2 can both write to undo
segment U1, or T1 can write to U1 while T2 writes to undo segment U2.

Conceptually, the extents in an undo segment form a ring. Transactions write to one
undo extent, and then to the next extent in the ring, and so on in cyclical fashion.
Figure 12–20 shows two transactions, T1 and T2, which begin writing in the third
extent (E3) of an undo segment and continue writing to the fourth extent (E4).

See Also:

■ "Temporary Tables" on page 2-15

■ Oracle Database Administrator's Guide to learn how to create
temporary tables

Overview of Segments

Logical Storage Structures 12-25

Figure 12–20 Ring of Allocated Extents in an Undo Segment

At any given time, a transaction writes sequentially to only one extent in an undo
segment, known as the current extent for the transaction. Multiple active transactions
can write simultaneously to the same current extent or to different current extents.
Figure 12–20 shows transactions T1 and T2 writing simultaneously to extent E3.
Within an undo extent, a data block contains data for only one transaction.

As the current undo extent fills, the first transaction needing space checks the
availability of the next allocated extent in the ring. If the next extent does not contain
data from an active transaction, then this extent becomes the current extent. Now all
transactions that need space can write to the new current extent. In Figure 12–21, when
E4 is full, T1 and T2 continue writing to E1, overwriting the nonactive undo data in E1.

E1

E2

E3

E4

E1

E2

E3

E4
UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

Undo Segment

Active extent without space

Nonactive extent with space

T2

T1

Overview of Segments

12-26 Oracle Database Concepts

Figure 12–21 Cyclical Use of Allocated Extents in an Undo Segment

If the next extent does contain data from an active transaction, then the database must
allocate a new extent. Figure 12–22 shows a scenario in which T1 and T2 are writing to
E4. When E4 fills up, the transactions cannot continue writing to E1 because E1
contains active undo entries. Therefore, the database allocates a new extent (E5) for
this undo segment. The transactions continue writing to E5.

E
1

E
2

E
3

E
4

E1

E2

E3

E4

E
1

E
2

E
3

E
4

E2

E3

E4

E1

Undo Segment

Active extent without space

Nonactive extent with space

T1

T2
UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

Overview of Segments

Logical Storage Structures 12-27

Figure 12–22 Allocation of a New Extent for an Undo Segment

Transaction Rollback
When a ROLLBACK statement is issued, the database uses undo records to roll back
changes made to the database by the uncommitted transaction. During recovery, the
database rolls back any uncommitted changes applied from the online redo log to the
data files. Undo records provide read consistency by maintaining the before image of
the data for users accessing data at the same time that another user is changing it.

Segment Space and the High Water Mark
To manage space, Oracle Database tracks the state of blocks in the segment. The high
water mark (HWM) is the point in a segment beyond which data blocks are
unformatted and have never been used.

MSSM uses free lists to manage segment space. At table creation, no blocks in the
segment are formatted. When a session first inserts rows into the table, the database
searches the free list for usable blocks. If the database finds no usable blocks, then it
preformats a group of blocks, places them on the free list, and begins inserting data
into the blocks. In MSSM, a full table scan reads all blocks below the HWM.

ASSM does not use free lists and so must manage space differently. When a session
first inserts data into a table, the database formats a single bitmap block instead of
preformatting a group of blocks as in MSSM. The bitmap tracks the state of blocks in
the segment, taking the place of the free list. The database uses the bitmap to find free
blocks and then formats each block before filling it with data. ASSM spread out inserts
among blocks to avoid concurrency issues.

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn how to manage undo segments

E2

E3

E4

E5

E1

New Extent

Active extent without space

Nonactive extent with space

Undo Segment

T1

T2
UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

UPDATE

UPDATE

INSERT

INSERT

UPDATE

. . .

Overview of Segments

12-28 Oracle Database Concepts

Every data block in an ASSM segment is in one of the following states:

■ Above the HWM

These blocks are unformatted and have never been used.

■ Below the HWM

These blocks are in one of the following states:

– Allocated, but currently unformatted and unused

– Formatted and contain data

– Formatted and empty because the data was deleted

Figure 12–23 depicts an ASSM segment as a horizontal series of blocks. At table
creation, the HWM is at the beginning of the segment on the left. Because no data has
been inserted yet, all blocks in the segment are unformatted and never used.

Figure 12–23 HWM at Table Creation

Suppose that a transaction inserts rows into the segment. The database must allocate a
group of blocks to hold the rows. The allocated blocks fall below the HWM. The
database formats a bitmap block in this group to hold the metadata, but does not
preformat the remaining blocks in the group.

In Figure 12–24, the blocks below the HWM are allocated, whereas blocks above the
HWM are neither allocated or formatted. As inserts occur, the database can write to
any block with available space. The low high water mark (low HWM) marks the point
below which all blocks are known to be formatted because they either contain data or
formerly contained data.

HWM at Table Creation

Never Used,
Unformatted

Overview of Segments

Logical Storage Structures 12-29

Figure 12–24 HWM and Low HWM

In Figure 12–25, the database chooses a block between the HWM and low HWM and
writes to it. The database could have just as easily chosen any other block between the
HWM and low HWM, or any block below the low HWM that had available space. In
Figure 12–25, the blocks to either side of the newly filled block are unformatted.

Figure 12–25 HWM and Low HWM

The low HWM is important in a full table scan. Because blocks below the HWM are
formatted only when used, some blocks could be unformatted, as in Figure 12–25. For
this reason, the database reads the bitmap block to obtain the location of the low
HWM. The database reads all blocks up to the low HWM because they are known to
be formatted, and then carefully reads only the formatted blocks between the low
HWM and the HWM.

Assume that a new transaction inserts rows into the table, but the bitmap indicates
that insufficient free space exists under the HWM. In Figure 12–26, the database
advances the HWM to the right, allocating a new group of unformatted blocks.

Low HWM HWM

Never Used,
Unformatted

Used

Low HWM HWM

Never Used,
Unformatted

Used

Overview of Tablespaces

12-30 Oracle Database Concepts

Figure 12–26 Advancing HWM and Low HWM

When the blocks between the HWM and low HWM are full, the HWM advances to the
right and the low HWM advances to the location of the old HWM. As the database
inserts data over time, the HWM continues to advance to the right, with the low HWM
always trailing behind it. Unless you manually rebuild, truncate, or shrink the object,
the HWM never retreats.

Overview of Tablespaces
A tablespace is a logical storage container for segments. Segments are database
objects, such as tables and indexes, that consume storage space. At the physical level, a
tablespace stores data in one or more data files or temp files.

A database must have the SYSTEM and SYSAUX tablespaces. Figure 12–27 shows the
tablespaces in a typical database. The following sections describe the tablespace types.

See Also:

■ Oracle Database Administrator's Guide to learn how to shrink
segments online

■ Oracle Database SQL Language Reference for TRUNCATE TABLE syntax
and semantics

Low HWM HWM

Never Used,
Unformatted

Used

Overview of Tablespaces

Logical Storage Structures 12-31

Figure 12–27 Tablespaces

Permanent Tablespaces
A permanent tablespace groups persistent schema objects. The segments for objects in
the tablespace are stored physically in data files.

Each database user is assigned a default permanent tablespace. A very small database
may need only the default SYSTEM and SYSAUX tablespaces. However, Oracle
recommends that you create at least one tablespace to store user and application data.
You can use tablespaces to achieve the following goals:

■ Control disk space allocation for database data

■ Assign a quota (space allowance or limit) to a database user

■ Take individual tablespaces online or offline without affecting the availability of
the whole database

■ Perform backup and recovery of individual tablespaces

■ Import or export application data by using the Oracle Data Pump utility (see
"Oracle Data Pump Export and Import" on page 18-7)

■ Create a transportable tablespace that you can copy or move from one database to
another, even across platforms

Moving data by transporting tablespaces can be orders of magnitude faster than
either export/import or unload/load of the same data, because transporting a
tablespace involves only copying data files and integrating the tablespace
metadata. When you transport tablespaces you can also move index data.

See Also:

■ Oracle Database Administrator's Guide to learn how to transport
tablespaces

■ Oracle Database Utilities to learn about Oracle Data Pump

■ Oracle Streams Concepts and Administration for more information on
ways to copy or transport files

Optional User
Tablespace

1010110101

SYSTEM SYSAUX UNDO
Optional User
Tablespace TEMP

Permanent
Tablespaces

Temporary
Tablespaces

10101
1010110101

10101
10101101011010110101

10101
1010110101

10101
1010110101

Temp FilesData Files

Logical

Physical

Overview of Tablespaces

12-32 Oracle Database Concepts

The SYSTEM Tablespace
The SYSTEM tablespace is a necessary administrative tablespace included with the
database when it is created. Oracle Database uses SYSTEM to manage the database.

The SYSTEM tablespace includes the following information, all owned by the SYS user:

■ The data dictionary

■ Tables and views that contain administrative information about the database

■ Compiled stored objects such as triggers, procedures, and packages

The SYSTEM tablespace is managed as any other tablespace, but requires a higher level
of privilege and is restricted in some ways. For example, you cannot rename or drop
the SYSTEM tablespace.

By default, Oracle Database sets all newly created user tablespaces to be locally
managed. In a database with a locally managed SYSTEM tablespace, you cannot create
dictionary-managed tablespaces (which are deprecated). However, if you execute the
CREATE DATABASE statement manually and accept the defaults, then the SYSTEM
tablespace is dictionary managed. You can migrate an existing dictionary-managed
SYSTEM tablespace to a locally managed format.

The SYSAUX Tablespace
The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace. The SYSAUX
tablespace provides a centralized location for database metadata that does not reside
in the SYSTEM tablespace. It reduces the number of tablespaces created by default, both
in the seed database and in user-defined databases.

Several database components, including Oracle Enterprise Manager and Oracle
Streams, use the SYSAUX tablespace as their default storage location. Therefore, the
SYSAUX tablespace is created automatically during database creation or upgrade.

During normal database operation, the database does not allow the SYSAUX tablespace
to be dropped or renamed. If the SYSAUX tablespace becomes unavailable, then core
database functionality remains operational. The database features that use the SYSAUX
tablespace could fail, or function with limited capability.

Note: Oracle strongly recommends that you use Database
Configuration Assistant (DBCA) to create new databases so that all
tablespaces, including SYSTEM, are locally managed by default.

See Also:

■ "Online and Offline Tablespaces" on page 12-35 for information
about the permanent online condition of the SYSTEM tablespace

■ "Tools for Database Installation and Configuration" on page 18-4
to learn about DBCA

■ Oracle Database Administrator's Guide to learn how to create or
migrate to a locally managed SYSTEM tablespace

■ Oracle Database SQL Language Reference for CREATE DATABASE
syntax and semantics

See Also: Oracle Database Administrator's Guide to learn about the
SYSAUX tablespace

Overview of Tablespaces

Logical Storage Structures 12-33

Undo Tablespaces
An undo tablespace is a locally managed tablespace reserved for system-managed
undo data (see "Undo Segments" on page 12-24). Like other permanent tablespaces,
undo tablespaces contain data files. Undo blocks in these files are grouped in extents.

Automatic Undo Management Mode Undo tablespaces require the database to be in the
default automatic undo management mode. This mode eliminates the complexities of
manually administering undo segments. The database automatically tunes itself to
provide the best possible retention of undo data to satisfy long-running queries that
may require this data.

An undo tablespace is automatically created with a new installation of Oracle
Database. Earlier versions of Oracle Database may not include an undo tablespace and
use legacy rollback segments instead, known as manual undo management mode.
When upgrading to Oracle Database 11g, you can enable automatic undo management
mode and create an undo tablespace. Oracle Database contains an Undo Advisor that
provides advice on and helps automate your undo environment.

A database can contain multiple undo tablespaces, but only one can be in use at a time.
When an instance attempts to open a database, Oracle Database automatically selects
the first available undo tablespace. If no undo tablespace is available, then the instance
starts without an undo tablespace and stores undo data in the SYSTEM tablespace.
Storing undo data in SYSTEM is not recommended.

Automatic Undo Retention The undo retention period is the minimum amount of time
that Oracle Database attempts to retain old undo data before overwriting it. Undo
retention is important because long-running queries may require older block images to
supply read consistency. Also, some Oracle Flashback features can depend on undo
availability.

In general, it is desirable to retain old undo data as long as possible. After a transaction
commits, undo data is no longer needed for rollback or transaction recovery. The
database can retain old undo data if the undo tablespace has space for new
transactions. When available space is low, the database begins to overwrite old undo
data for committed transactions.

Oracle Database automatically provides the best possible undo retention for the
current undo tablespace. The database collects usage statistics and tunes the retention
period based on these statistics and the undo tablespace size. If the undo tablespace is
configured with the AUTOEXTEND option, and if the maximum size is not specified, then
undo retention tuning is different. In this case, the database tunes the undo retention
period to be slightly longer than the longest-running query, if space allows.

See Also:

■ Oracle Database Administrator's Guide to learn about automatic
undo management

■ Oracle Database Upgrade Guide to learn how to migrate to
automatic undo management mode

■ Oracle Database 2 Day DBA for information on the Undo Advisor
and on how to use advisors

See Also: Oracle Database Administrator's Guide for more details on
automatic tuning of undo retention

Overview of Tablespaces

12-34 Oracle Database Concepts

Temporary Tablespaces
A temporary tablespace contains transient data that persists only for the duration of a
session. No permanent schema objects can reside in a temporary tablespace. The
database stores temporary tablespace data in temp files.

Temporary tablespaces can improve the concurrency of multiple sort operations that
do not fit in memory. These tablespaces also improve the efficiency of space
management operations during sorts.

When the SYSTEM tablespace is locally managed, a default temporary tablespace is
included in the database by default during database creation. A locally managed
SYSTEM tablespace cannot serve as default temporary storage.

You can specify a user-named default temporary tablespace when you create a
database by using the DEFAULT TEMPORARY TABLESPACE extension to the CREATE
DATABASE statement. If SYSTEM is dictionary managed, and if a default temporary
tablespace is not defined at database creation, then SYSTEM is the default temporary
storage. However, the database writes a warning in the alert log saying that a default
temporary tablespace is recommended.

Tablespace Modes
The tablespace mode determines the accessibility of the tablespace.

Read/Write and Read-Only Tablespaces
Every tablespace is in a write mode that specifies whether it can be written to. The
mutually exclusive modes are as follows:

■ Read/write mode

Users can read and write to the tablespace. All tablespaces are initially created as
read/write. The SYSTEM and SYSAUX tablespaces and temporary tablespaces are
permanently read/write, which means that they cannot be made read-only.

■ Read-only mode

Write operations to the data files in the tablespace are prevented. A read-only
tablespace can reside on read-only media such as DVDs or WORM drives.

Read-only tablespaces eliminate the need to perform backup and recovery of
large, static portions of a database. Read-only tablespaces do not change and thus
do not require repeated backup. If you recover a database after a media failure,
then you do not need to recover read-only tablespaces.

Note: You cannot make a default temporary tablespace permanent.

See Also:

■ "Permanent and Temporary Data Files" on page 11-8

■ Oracle Database Administrator's Guide to learn how to create a
default temporary tablespace

■ Oracle Database SQL Language Reference for the syntax of the
DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE and
ALTER DATABASE

Overview of Tablespaces

Logical Storage Structures 12-35

Online and Offline Tablespaces
A tablespace can be online (accessible) or offline (not accessible) whenever the
database is open. A tablespace is usually online so that its data is available to users.
The SYSTEM tablespace and temporary tablespaces cannot be taken offline.

A tablespace can go offline automatically or manually. For example, you can take a
tablespace offline for maintenance or backup and recovery. The database automatically
takes a tablespace offline when certain errors are encountered, as when the database
writer (DBWn) process fails in several attempts to write to a data file. Users trying to
access tables in an offline tablespace receive an error.

When a tablespace goes offline, the database does the following:

■ The database does not permit subsequent DML statements to reference objects in
the offline tablespace. An offline tablespace cannot be read or edited by any utility
other than Oracle Database.

■ Active transactions with completed statements that refer to data in that tablespace
are not affected at the transaction level.

■ The database saves undo data corresponding to those completed statements in a
deferred undo segment in the SYSTEM tablespace. When the tablespace is brought
online, the database applies the undo data to the tablespace, if needed.

Tablespace File Size
A tablespace is either a bigfile tablespace or a smallfile tablespace. These tablespaces
are indistinguishable in terms of execution of SQL statements that do not explicitly
refer to data files or temp files. The difference is as follows:

■ A smallfile tablespace can contain multiple data files or temp files, but the files
cannot be as large as in a bigfile tablespace. This is the default tablespace type.

■ A bigfile tablespace contains one very large data file or temp file. This type of
tablespaces can do the following:

– Increase the storage capacity of a database

The maximum number of data files in a database is limited (usually to 64 KB
files), so increasing the size of each data file increases the overall storage.

– Reduce the burden of managing many data files and temp files

See Also:

■ Oracle Database Administrator's Guide to learn how to change a
tablespace to read only or read/write mode

■ Oracle Database SQL Language Reference for ALTER TABLESPACE
syntax and semantics

■ Oracle Database Backup and Recovery User's Guide for more
information about recovery

See Also:

■ "Online and Offline Data Files" on page 11-9

■ "Database Writer Process (DBWn)" on page 15-8

■ Oracle Database Administrator's Guide to learn how to alter
tablespace availability

Overview of Tablespaces

12-36 Oracle Database Concepts

Bigfile tablespaces simplify file management with Oracle Managed Files and
Automatic Storage Management (Oracle ASM) by eliminating the need for
adding new files and dealing with multiple files.

– Perform operations on tablespaces rather than individual files

Bigfile tablespaces make the tablespace the main unit of the disk space
administration, backup and recovery, and so on.

Bigfile tablespaces are supported only for locally managed tablespaces with
ASSM. However, locally managed undo and temporary tablespaces can be bigfile
tablespaces even when segments are manually managed.

See Also:

■ "Backup and Recovery" on page 18-9

■ Oracle Database Administrator's Guide to learn how to manage
bigfile tablespaces

Part V
Part V Oracle Instance Architecture

This part describes the basic structural architecture of the Oracle database instance.
This part contains the following chapters:

■ Chapter 13, "Oracle Database Instance"

■ Chapter 14, "Memory Architecture"

■ Chapter 15, "Process Architecture"

■ Chapter 16, "Application and Networking Architecture"

13

Oracle Database Instance 13-1

13Oracle Database Instance

This chapter explains the nature of an Oracle database instance, the parameter and
diagnostic files associated with an instance, and what occurs during instance creation
and the opening and closing of a database.

This chapter contains the following sections:

■ Introduction to the Oracle Database Instance

■ Overview of Instance Startup and Shutdown

■ Overview of Checkpoints

■ Overview of Instance Recovery

■ Overview of Parameter Files

■ Overview of Diagnostic Files

Introduction to the Oracle Database Instance
A database instance is a set of memory structures that manage database files. A
database is a set of physical files on disk created by the CREATE DATABASE statement.
The instance manages its associated data and serves the users of the database.

Every running Oracle database is associated with at least one Oracle database instance.
Because an instance exists in memory and a database exists on disk, an instance can
exist without a database and a database can exist without an instance.

Database Instance Structure
When an instance is started, Oracle Database allocates a memory area called the
system global area (SGA) and starts one or more background processes. The SGA
serves various purposes, including the following:

■ Maintaining internal data structures that are accessed by many processes and
threads concurrently

■ Caching data blocks read from disk

■ Buffering redo data before writing it to the online redo log files

■ Storing SQL execution plans

The SGA is shared by the Oracle processes, which include server processes and
background processes, running on a single computer. The way in which Oracle
processes are associated with the SGA varies according to operating system.

Introduction to the Oracle Database Instance

13-2 Oracle Database Concepts

A database instance includes background processes. Server processes, and the process
memory allocated in these processes, also exist in the instance. The instance continues
to function when server processes terminate.

Figure 13–1 shows the main components of an Oracle database instance.

Figure 13–1 Database Instance

Database Instance Configurations
You can run Oracle Database in either of the following mutually exclusive
configurations:

■ Single-instance configuration

A one-to-one relationship exists between the database and an instance.

■ Oracle Real Application Clusters (Oracle RAC) configuration

A one-to-many relationship exists between the database and instances.

Figure 13–2 shows possible database instance configurations.

See Also:

■ "Overview of the System Global Area" on page 14-8

■ "Overview of Background Processes" on page 15-7

System Global Area (SGA)

Large Pool

Instance

Large Pool

Response
Queue

Request
Queue

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM
 employees

OthersCKPTLGWRDBWnSMONPMON

Background Processes

Database
Buffer Cache Redo

Log
Buffer

Java
Pool

Streams
Pool

Fixed
SGA

Introduction to the Oracle Database Instance

Oracle Database Instance 13-3

Figure 13–2 Database Instance Configurations

Whether in a single-instance or Oracle RAC configuration, a database instance is
associated with only one database at a time. You can start a database instance and
mount (associate the instance with) one database, but not mount two databases
simultaneously with the same instance.

Multiple instances can run concurrently on the same computer, each accessing its own
database. For example, a computer can host two distinct databases: prod1 and prod2.
One database instance manages prod1, while a separate instance manages prod2.

Duration of an Instance
An instance begins when it is created with the STARTUP command and ends when it is
terminated. During this period, an instance can associate itself with one and only one
database. Furthermore, the instance can mount a database only once, close it only
once, and open it only once. After a database has been closed or shut down, you must
start a different instance to mount and open this database.

Table 13–1 illustrates a database instance attempting to reopen a database that it
previously closed.

Note: This chapter discusses a single-instance database configuration
unless otherwise noted.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information specific to Oracle RAC

Database Instance

Single-Instance Database Oracle RAC Database

101011010110101
1010110101

101011010110101
1010110101

Data
Files

Control
Files

Online
Redo Log

Database

101011010110101
1010110101

101011010110101
1010110101

Data
Files

Control
Files

Online
Redo Log

Database

Database Instance Database Instance

Introduction to the Oracle Database Instance

13-4 Oracle Database Concepts

Oracle System Identifier (SID)
The system identifier (SID) is a unique name for an Oracle database instance on a
specific host. On UNIX and Linux, Oracle Database uses the SID and Oracle home
values to create a key to shared memory. Also, the SID is used by default to locate the
parameter file, which is used to locate relevant files such as the database control files.

On most platforms, the ORACLE_SID environment variable sets the SID, whereas the
ORACLE_HOME variable sets the Oracle home. When connecting to an instance, clients
can specify the SID in an Oracle Net connection or use a net service name. Oracle
Database converts a service name into an ORACLE_HOME and ORACLE_SID.

Table 13–1 Duration of an Instance

Statement Explanation

SQL> STARTUP
ORACLE instance started.

Total System Global Area 468729856 bytes
Fixed Size 1333556 bytes
Variable Size 440403660 bytes
Database Buffers 16777216 bytes
Redo Buffers 10215424 bytes
Database mounted.
Database opened.

The STARTUP command creates an
instance, which mounts and opens the
database.

SQL> SELECT
TO_CHAR(STARTUP_TIME,'MON-DD-RR HH24:MI:SS')
AS "Inst Start Time" FROM V$INSTANCE;

Inst Start Time

JUN-18-09 13:14:48

This query shows the time that the
current instance was started.

SQL> ALTER DATABASE CLOSE;

Database altered.

The instance closes the database, leaving
it in a mounted state. The instance can
read and write to the control file but not
the data files.

SQL> ALTER DATABASE OPEN;
ALTER DATABASE OPEN
*
ERROR at line 1:
ORA-16196: database has been
previously opened and closed

The instance attempts to reopen the
database that it previously closed.
Oracle Database issues an error because
the same instance cannot open a
database twice.

SQL> SHUTDOWN IMMEDIATE At this stage, the only option for the
instance is to shut down, ending the life
of this instance.

SQL> STARTUP
Oracle instance started.
. . .

The STARTUP command creates a new
instance and mounts and open the
database.

SQL> SELECT
TO_CHAR(STARTUP_TIME,'MON-DD-RR HH24:MI:SS')
AS "Inst Start Time" FROM V$INSTANCE;

Inst Start Time

JUN-18-09 13:16:40

This query shows the time that the
current instance was started. The
different start time shows that this
instance is different from the one that
shut down the database.

Overview of Instance Startup and Shutdown

Oracle Database Instance 13-5

Overview of Instance Startup and Shutdown
A database instance provides user access to a database. This section explains the
possible states of the instance and the database.

Overview of Instance and Database Startup
In a typical use case, you manually start an instance and then mount and open the
database, making it available for users. You can use the SQL*Plus STARTUP command,
Oracle Enterprise Manager (Enterprise Manager), or the SRVCTL utility to perform
these steps. Figure 13–3 shows how a database progresses from a shutdown state to an
open state.

Figure 13–3 Instance and Database Startup Sequence

A database goes through the following phases when it proceeds from a shutdown
state to an open database state:

1. Instance started without mounting database

The instance is started, but is not yet associated with a database.

"How an Instance Is Started" on page 13-6 explains this stage.

2. Database mounted

The instance is started and is associated with a database by reading its control file
(see "Overview of Control Files" on page 11-10). The database is closed to users.

"How a Database Is Mounted" on page 13-7 explains this stage.

3. Database open

The instance is started and is associated with an open database. The data
contained in the data files is accessible to authorized users.

"How a Database Is Opened" on page 13-7 explains this stage.

See Also:

■ "Service Names" on page 16-8

■ Oracle Database Administrator's Guide to learn how to specify an
Oracle SID

Instance
started

Control file
opened for
this
instance

Database
opened
for this
instance

STARTUP

OPEN

MOUNT

NOMOUNT

SHUTDOWN

Overview of Instance Startup and Shutdown

13-6 Oracle Database Concepts

Connection with Administrator Privileges
Database startup and shutdown are powerful administrative options that are restricted
to users who connect to Oracle Database with administrator privileges. Normal users
do not have control over the current status of an Oracle database.

Depending on the operating system, one of the following conditions establishes
administrator privileges for a user:

■ The operating system privileges of the user enable him or her to connect using
administrator privileges.

■ The user is granted the SYSDBA or SYSOPER system privileges and the database uses
password files to authenticate database administrators over the network.

SYSDBA and SYSOPER are special system privileges that enable access to a database
instance even when the database is not open. Control of these privileges is outside of
the database itself.

When you connect with the SYSDBA system privilege, you are in the schema owned by
SYS. When you connect as SYSOPER, you are in the public schema. SYSOPER privileges
are a subset of SYSDBA privileges.

How an Instance Is Started
When Oracle Database starts an instance, it performs the following basic steps:

1. Searches for a server parameter file in a platform-specific default location and, if
not found, for a text initialization parameter file (specifying STARTUP with the
SPFILE or PFILE parameters overrides the default behavior)

2. Reads the parameter file to determine the values of initialization parameters

3. Allocates the SGA based on the initialization parameter settings

4. Starts the Oracle background processes

5. Opens the alert log and trace files and writes all explicit parameter settings to the
alert log in valid parameter syntax

At this stage, no database is associated with the instance. Scenarios that require a
NOMOUNT state include database creation and certain backup and recovery operations.

See Also:

■ "Oracle Enterprise Manager" on page 18-2

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to start an instance

■ Oracle Database Administrator's Guide to learn how to use SRVCTL

See Also:

■ "SYS and SYSTEM Schemas" on page 2-5

■ "Overview of Database Security" on page 17-1 to learn about
password files and authentication for database administrators

■ Oracle Database Administrator's Guide to learn about SYSDBA and
SYSOPER

See Also: Oracle Database Administrator's Guide to learn how to
manage initialization parameters using a server parameter file

Overview of Instance Startup and Shutdown

Oracle Database Instance 13-7

How a Database Is Mounted
The instance mounts a database to associate the database with this instance. To mount
the database, the instance obtains the names of the database control files specified in
the CONTROL_FILES initialization parameter and opens the files. Oracle Database reads
the control files to find the names of the data files and the online redo log files that it
will attempt to access when opening the database.

In a mounted database, the database is closed and accessible only to database
administrators. Administrators can keep the database closed while completing specific
maintenance operations. However, the database is not available for normal operations.

If Oracle Database allows multiple instances to mount the same database concurrently,
then the CLUSTER_DATABASE initialization parameter setting can make the database
available to multiple instances. Database behavior depends on the setting:

■ If CLUSTER_DATABASE is false (default) for the first instance that mounts a
database, then only this instance can mount the database.

■ If CLUSTER_DATABASE is true for the first instance, then other instances can mount
the database if their CLUSTER_DATABASE parameter settings are set to true. The
number of instances that can mount the database is subject to a predetermined
maximum specified when creating the database.

How a Database Is Opened
Opening a mounted database makes it available for normal database operations. Any
valid user can connect to an open database and access its information. Usually, a
database administrator opens the database to make it available for general use.

When you open the database, Oracle Database performs the following actions:

■ Opens the online data files in tablespaces other than undo tablespaces

If a tablespace was offline when the database was previously shut down (see
"Online and Offline Tablespaces" on page 12-35), then the tablespace and its
corresponding data files will be offline when the database reopens.

■ Acquires an undo tablespace

If multiple undo tablespaces exists, then the UNDO_TABLESPACE initialization
parameter designates the undo tablespace to use. If this parameter is not set, then
the first available undo tablespace is chosen.

■ Opens the online redo log files

Read-Only Mode By default, the database opens in read/write mode. In this mode, users
can make changes to the data, generating redo in the online redo log. Alternatively,
you can open in read-only mode to prevent data modification by user transactions.

See Also:

■ Oracle Database Administrator's Guide to learn how to mount a
database

■ Oracle Real Application Clusters Administration and Deployment
Guide for more information about the use of multiple instances
with a single database

See Also: "Data Repair" on page 18-12

Overview of Instance Startup and Shutdown

13-8 Oracle Database Concepts

Read-only mode restricts database access to read-only transactions, which cannot
write to data files or to online redo log files. However, the database can perform
recovery or operations that change the database state without generating redo. For
example, in read-only mode:

■ Data files can be taken offline and online. However, you cannot take permanent
tablespaces offline.

■ Offline data files and tablespaces can be recovered.

■ The control file remains available for updates about the state of the database.

■ Temporary tablespaces created with the CREATE TEMPORARY TABLESPACE statement
are read/write.

■ Writes to operating system audit trails, trace files, and alert logs can continue.

Database File Checks If any of the data files or redo log files are not present when the
instance attempts to open the database, or if the files are present but fail consistency
tests, then the database returns an error. Media recovery may be required.

Overview of Database and Instance Shutdown
In a typical use case, you manually shut down the database, making it unavailable for
users while you perform maintenance or other administrative tasks. You can use the
SQL*Plus SHUTDOWN command or Enterprise Manager to perform these steps.
Figure 13–4 shows the progression from an open state to a consistent shutdown.

Figure 13–4 Instance and Database Shutdown Sequence

Oracle Database automatically performs the following steps whenever an open
database is shut down consistently:

Note: By default, a physical standby database opens in read-only
mode. See Oracle Data Guard Concepts and Administration.

See Also: Oracle Database Administrator's Guide to learn how to
open a database in read-only mode

See Also: "Backup and Recovery" on page 18-9

Control file
closed and
instance
started

Database
closed and
control file
opened

Database
opened
for this
instance

SHUTDOWN

OPEN

CLOSE

NOMOUNT

SHUTDOWN

Overview of Instance Startup and Shutdown

Oracle Database Instance 13-9

1. Database closed

The database is mounted, but online data files and redo log files are closed.

"How a Database Is Closed" explains this stage.

2. Database unmounted

The instance is started, but is no longer associated with the control file of the
database.

"How a Database Is Unmounted" explains this stage.

3. Database instance shut down

The database instance is no longer started.

"How an Instance Is Shut Down" explains this stage.

Oracle Database does not go through all of the preceding steps in an instance failure or
SHUTDOWN ABORT, which immediately terminates the instance.

Shutdown Modes
A database administrator with SYSDBA or SYSOPER privileges can shut down the
database using the SQL*Plus SHUTDOWN command or Enterprise Manager. The
SHUTDOWN command has options that determine shutdown behavior. Table 13–2
summarizes the behavior of the different shutdown modes.

The possible SHUTDOWN statements are:

■ SHUTDOWN ABORT

This mode is intended for emergency situations, such as when no other form of
shutdown is successful. This mode of shutdown is the fastest. However, a
subsequent open of this database may take substantially longer because instance
recovery must be performed to make the data files consistent.

■ SHUTDOWN IMMEDIATE

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn how to shut down a database

Table 13–2 Shutdown Modes

Database Behavior ABORT IMMEDIATE TRANSACTIONAL NORMAL

Permits new user
connections

No No No No

Waits until current
sessions end

No No No Yes

Waits until current
transactions end

No No Yes Yes

Performs a checkpoint
and closes open files

No Yes Yes Yes

Note: Because SHUTDOWN ABORT does not checkpoint the open data
files, instance recovery is necessary before the database can reopen.
The other shutdown modes do not require instance recovery before
the database can reopen.

Overview of Instance Startup and Shutdown

13-10 Oracle Database Concepts

This mode is typically the fastest next to SHUTDOWN ABORT. Oracle Database
terminates any executing SQL statements and disconnects users. Active
transactions are terminated and uncommitted changes are rolled back.

■ SHUTDOWN TRANSACTIONAL

This mode prevents users from starting new transactions, but waits for all current
transactions to complete before shutting down. This mode can take a significant
amount of time depending on the nature of the current transactions.

■ SHUTDOWN NORMAL

This is the default mode of shutdown. The database waits for all connected users
to disconnect before shutting down.

How a Database Is Closed
The database close operation is implicit in a database shutdown. The nature of the
operation depends on whether the database shutdown is normal or abnormal.

How a Database Is Closed During Normal Shutdown When a database is closed as part of a
SHUTDOWN with any option other than ABORT, Oracle Database writes data in the SGA to
the data files and online redo log files. Next, the database closes online data files and
online redo log files. Any offline data files of offline tablespaces have been closed
already. When the database reopens, any tablespace that was offline remains offline.

At this stage, the database is closed and inaccessible for normal operations. The control
files remain open after a database is closed.

How a Database Is Closed During Abnormal Shutdown If a SHUTDOWN ABORT or abnormal
termination occurs, then the instance of an open database closes and shuts down the
database instantaneously. Oracle Database does not write data in the buffers of the
SGA to the data files and redo log files. The subsequent reopening of the database
requires instance recovery, which Oracle Database performs automatically.

How a Database Is Unmounted
After the database is closed, Oracle Database unmounts the database to disassociate it
from the instance. After a database is unmounted, Oracle Database closes the control
files of the database. At this point, the instance remains in memory.

How an Instance Is Shut Down
The final step in database shutdown is shutting down the instance. When the database
instance is shut down, the SGA is removed from memory and the background
processes are terminated.

In unusual circumstances, shutdown of an instance may not occur cleanly. Memory
structures may not be removed from memory or one of the background processes may
not be terminated. When remnants of a previous instance exist, a subsequent instance
startup may fail. In such situations, you can force the new instance to start by
removing the remnants of the previous instance and then starting a new instance, or
by issuing a SHUTDOWN ABORT statement in SQL*Plus or using Enterprise Manager.

See Also:

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn about the different shutdown modes

■ SQL*Plus User's Guide and Reference to learn about the SHUTDOWN
command

Overview of Checkpoints

Oracle Database Instance 13-11

Overview of Checkpoints
A checkpoint is a crucial mechanism in consistent database shutdowns, instance
recovery, and Oracle Database operation generally. The term checkpoint has the
following related meanings:

■ A data structure that indicates the checkpoint position, which is the SCN in the
redo stream where instance recovery must begin

The checkpoint position is determined by the oldest dirty buffer in the database
buffer cache. The checkpoint position acts as a pointer to the redo stream and is
stored in the control file and in each data file header.

■ The writing of modified database buffers in the database buffer cache to disk

Purpose of Checkpoints
Oracle Database uses checkpoints to achieve the following goals:

■ Reduce the time required for recovery in case of an instance or media failure

■ Ensure that dirty buffers in the buffer cache are written to disk regularly

■ Ensure that all committed data is written to disk during a consistent shutdown

When Oracle Database Initiates Checkpoints
The checkpoint process (CKPT) is responsible for writing checkpoints to the data file
headers and control file. Checkpoints occur in a variety of situations. For example,
Oracle Database uses the following types of checkpoints:

■ Thread checkpoints

The database writes to disk all buffers modified by redo in a specific thread before
a certain target. The set of thread checkpoints on all instances in a database is a
database checkpoint. Thread checkpoints occur in the following situations:

– Consistent database shutdown

– ALTER SYSTEM CHECKPOINT statement

– Online redo log switch

– ALTER DATABASE BEGIN BACKUP statement

■ Tablespace and data file checkpoints

The database writes to disk all buffers modified by redo before a specific target. A
tablespace checkpoint is a set of data file checkpoints, one for each data file in the
tablespace. These checkpoints occur in a variety of situations, including making a
tablespace read-only or taking it offline normal, shrinking a data file, or executing
ALTER TABLESPACE BEGIN BACKUP.

■ Incremental checkpoints

An incremental checkpoint is a type of thread checkpoint partly intended to avoid
writing large numbers of blocks at online redo log switches. DBWn checks at least
every three seconds to determine whether it has work to do. When DBWn writes

See Also: Oracle Database Administrator's Guide for more detailed
information about database shutdown

See Also: "System Change Numbers (SCNs)" on page 10-5

Overview of Instance Recovery

13-12 Oracle Database Concepts

dirty buffers, it advances the checkpoint position, causing CKPT to write the
checkpoint position to the control file, but not to the data file headers.

Other types of checkpoints include instance and media recovery checkpoints and
checkpoints when schema objects are dropped or truncated.

Overview of Instance Recovery
Instance recovery is the process of applying records in the online redo log to data files
to reconstruct changes made after the most recent checkpoint. Instance recovery
occurs automatically when an administrator attempts to open a database that was
previously shut down inconsistently.

Purpose of Instance Recovery
Instance recovery ensures that the database is in a consistent state after an instance
failure. The files of a database can be left in an inconsistent state because of how Oracle
Database manages database changes.

A redo thread is a record of all of the changes generated by an instance. A
single-instance database has one thread of redo, whereas an Oracle RAC database has
multiple redo threads, one for each database instance.

When a transaction is committed, log writer (LGWR) writes both the remaining redo
entries in memory and the transaction SCN to the online redo log. However, the
database writer (DBWn) process writes modified data blocks to the data files
whenever it is most efficient. For this reason, uncommitted changes may temporarily
exist in the data files while committed changes do not yet exist in the data files.

If an instance of an open database fails, either because of a SHUTDOWN ABORT statement
or abnormal termination, then the following situations can result:

■ Data blocks committed by a transaction are not written to the data files and appear
only in the online redo log. These changes must be reapplied to the database.

■ The data files contains changes that had not been committed when the instance
failed. These changes must be rolled back to ensure transactional consistency.

Instance recovery uses only online redo log files and current online data files to
synchronize the data files and ensure that they are consistent.

When Oracle Database Performs Instance Recovery
Whether instance recovery is required depends on the state of the redo threads. A redo
thread is marked open in the control file when a database instance opens in read/write
mode, and is marked closed when the instance is shut down consistently. If redo

See Also:

■ "Checkpoint Process (CKPT)" on page 15-10

■ Oracle Real Application Clusters Administration and Deployment
Guide for information about global checkpoints in Oracle RAC

See Also:

■ "Database Writer Process (DBWn)" on page 15-8 and "Database
Buffer Cache" on page 14-9

■ "Introduction to Data Concurrency and Consistency" on page 9-1

Overview of Instance Recovery

Oracle Database Instance 13-13

threads are marked open in the control file, but no live instances hold the thread
enqueues corresponding to these threads, then the database requires instance recovery.

Oracle Database performs instance recovery automatically in the following situations:

■ The database opens for the first time after the failure of a single-instance database
or all instances of an Oracle RAC database. This form of instance recovery is also
called crash recovery. Oracle Database recovers the online redo threads of the
terminated instances together.

■ Some but not all instances of an Oracle RAC database fail. Instance recovery is
performed automatically by a surviving instance in the configuration.

The SMON background process performs instance recovery, applying online redo
automatically. No user intervention is required.

Importance of Checkpoints for Instance Recovery
Instance recovery uses checkpoints to determine which changes must be applied to the
data files. The checkpoint position guarantees that every committed change with an
SCN lower than the checkpoint SCN is saved to the data files.

Figure 13–5 depicts the redo thread in the online redo log.

Figure 13–5 Checkpoint Position in Online Redo Log

During instance recovery, the database must apply the changes that occur between the
checkpoint position and the end of the redo thread. As shown in Figure 13–5, some
changes may already have been written to the data files. However, only changes with
SCNs lower than the checkpoint position are guaranteed to be on disk.

See Also:

■ "System Monitor Process (SMON)" on page 15-8

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn about instance recovery in an Oracle RAC database

See Also: Oracle Database Performance Tuning Guide to learn how to
limit instance recovery time

Change in
Data File
Change Not
in Data File

End of Redo
Thread

Checkpoint
Position

Instance Recovery

Writes to Online Redo Log

Committed
Change
Uncommitted
Change

Overview of Instance Recovery

13-14 Oracle Database Concepts

Instance Recovery Phases
The first phase of instance recovery is called cache recovery or rolling forward, and
involves reapplying all of the changes recorded in the online redo log to the data files.
Because rollback data is recorded in the online redo log, rolling forward also
regenerates the corresponding undo segments.

Rolling forward proceeds through as many online redo log files as necessary to bring
the database forward in time. After rolling forward, the data blocks contain all
committed changes recorded in the online redo log files. These files could also contain
uncommitted changes that were either saved to the data files before the failure, or
were recorded in the online redo log and introduced during cache recovery.

After the roll forward, any changes that were not committed must be undone. Oracle
Database uses the checkpoint position, which guarantees that every committed change
with an SCN lower than the checkpoint SCN is saved on disk. Oracle Database applies
undo blocks to roll back uncommitted changes in data blocks that were written before
the failure or introduced during cache recovery. This phase is called rolling back or
transaction recovery.

Figure 13–6 illustrates rolling forward and rolling back, the two steps necessary to
recover from database instance failure.

Figure 13–6 Basic Instance Recovery Steps: Rolling Forward and Rolling Back

Oracle Database can roll back multiple transactions simultaneously as needed. All
transactions that were active at the time of failure are marked as terminated. Instead of
waiting for the SMON process to roll back terminated transactions, new transactions
can roll back individual blocks themselves to obtain the required data.

Database with
Committed and
Uncommitted

Changes

Changes from
Online Redo Log

Applied

Uncommitted Changes
Rolled Back

Database Requiring
Instance Recovery

Database with
Only Committed

Transactions

DatabaseDatabase
Online

Redo Log

Change in
Data File
Change Not
in Data File
Committed
Change
Uncommitted
Change

Database

Undo
Segments

Overview of Parameter Files

Oracle Database Instance 13-15

Overview of Parameter Files
To start a database instance, Oracle Database must read either a server parameter file,
which is recommended, or a text initialization parameter file, which is a legacy
implementation. These files contain a list of configuration parameters.

To create a database manually, you must start an instance with a parameter file and
then issue a CREATE DATABASE command. Thus, the instance and parameter file can
exist even when the database itself does not exist.

Initialization Parameters
Initialization parameters are configuration parameters that affect the basic operation
of an instance. The instance reads initialization parameters from a file at startup.

Oracle Database provides many initialization parameters to optimize its operation in
diverse environments. Only a few of these parameters must be explicitly set because
the default values are adequate in most cases.

Functional Groups of Initialization Parameters
Most initialization parameters belong to one of the following functional groups:

■ Parameters that name entities such as files or directories

■ Parameters that set limits for a process, database resource, or the database itself

■ Parameters that affect capacity, such as the size of the SGA (these parameters are
called variable parameters)

Variable parameters are of particular interest to database administrators because they
can use these parameters to improve database performance.

Basic and Advanced Initialization Parameters
Initialization parameters are divided into two groups: basic and advanced. In most
cases, you must set and tune only the approximately 30 basic parameters to obtain
reasonable performance. The basic parameters set characteristics such as the database
name, locations of the control files, database block size, and undo tablespace.

In rare situations, modification to the advanced parameters may be required for
optimal performance. The advanced parameters enable expert DBAs to adapt the
behavior of the Oracle Database to meet unique requirements.

Oracle Database provides values in the starter initialization parameter file provided
with your database software, or as created for you by the Database Configuration
Assistant (see "Tools for Database Installation and Configuration" on page 18-4). You
can edit these Oracle-supplied initialization parameters and add others, depending on
your configuration and how you plan to tune the database. For relevant initialization
parameters not included in the parameter file, Oracle Database supplies defaults.

See Also:

■ "Undo Segments" on page 12-24 to learn more about undo data

■ Oracle Database Performance Tuning Guide for a discussion of
instance recovery mechanics and tuning

Overview of Parameter Files

13-16 Oracle Database Concepts

Server Parameter Files
A server parameter file is a repository for initialization parameters that is managed by
Oracle Database. A server parameter file has the following key characteristics:

■ Only one server parameter file exists for a database. This file must reside on the
database host.

■ The server parameter file is written to and read by only by Oracle Database, not by
client applications.

■ The server parameter file is binary and cannot be modified by a text editor.

■ Initialization parameters stored in the server parameter file are persistent. Any
changes made to the parameters while a database instance is running can persist
across instance shutdown and startup.

A server parameter file eliminates the need to maintain multiple text initialization
parameter files for client applications. A server parameter file is initially built from a
text initialization parameter file using the CREATE SPFILE statement. It can also be
created directly by the Database Configuration Assistant.

Text Initialization Parameter Files
A text initialization parameter file is a text file that contains a list of initialization
parameters. This type of parameter file, which is a legacy implementation of the
parameter file, has the following key characteristics:

■ When starting up or shutting down a database, the text initialization parameter
file must reside on the same host as the client application that connects to the
database.

■ A text initialization parameter file is text-based, not binary.

■ Oracle Database can read but not write to the text initialization parameter file. To
change the parameter values you must manually alter the file with a text editor.

■ Changes to initialization parameter values by ALTER SYSTEM are only in effect for
the current instance. You must manually update the text initialization parameter
file and restart the instance for the changes to be known.

The text initialization parameter file contains a series of key=value pairs, one per line.
For example, a portion of an initialization parameter file could look as follows:

db_name=sample

See Also:

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to specify initialization parameters

■ Oracle Database Reference for an explanation of the types of
initialization parameters

■ Oracle Database Reference for a description of V$PARAMETER and
SQL*Plus User's Guide and Reference for SHOW PARAMETER syntax

See Also:

■ Oracle Database Administrator's Guide to learn more about server
parameter files

■ Oracle Database SQL Language Reference to learn about CREATE
SPFILE

Overview of Parameter Files

Oracle Database Instance 13-17

control_files=/disk1/oradata/sample_cf.dbf
db_block_size=8192
open_cursors=52
undo_management=auto
shared_pool_size=280M
pga_aggregate_target=29M
.
.
.

To illustrate the manageability problems that text parameter files can create, assume
that you use computers clienta and clientb and must be able to start the database
with SQL*Plus on either computer. In this case, two separate text initialization
parameter files must exist, one on each computer, as shown in Figure 13–7. A server
parameter file solves the problem of the proliferation of parameter files.

Figure 13–7 Multiple Initialization Parameter Files

Modification of Initialization Parameter Values
You can adjust initialization parameters to modify the behavior of a database. The
classification of parameters as static or dynamic determines how they can be
modified. Table 13–3 summarizes the differences.

See Also:

■ Oracle Database Administrator's Guide to learn more about text
initialization parameter files

■ Oracle Database SQL Language Reference to learn about CREATE
PFILE

Table 13–3 Static and Dynamic Initialization Parameters

Characteristic Static Dynamic

Requires modification of the parameter file
(text or server)

Yes No

Requires database instance restart before
setting takes affect

Yes No

Application

pfile

Database

spfile

Binary, located only
on database
server

Clientb

Application

pfile

Text, located
on same
computer
as client
application

Text, located on
same computer as
client application

Clienta

Database
Server

Overview of Diagnostic Files

13-18 Oracle Database Concepts

Static parameters include DB_BLOCK_SIZE, DB_NAME, and COMPATIBLE. Dynamic
parameters are grouped into session-level parameters, which affect only the current
user session, and system-level parameters, which affect the database and all sessions.
For example, MEMORY_TARGET is a system-level parameter, while NLS_DATE_FORMAT is a
session-level parameter (see "Locale-Specific Settings" on page 19-10).

The scope of a parameter change depends on when the change takes effect. When an
instance has been started with a server parameter file, you can use the ALTER SYSTEM
SET statement to change values for system-level parameters as follows:

■ SCOPE=MEMORY

Changes apply to the database instance only. The change will not persist if the
database is shut down and restarted.

■ SCOPE=SPFILE

Changes are written to the server parameter file but do not affect the current
instance. Thus, the changes do not take effect until the instance is restarted.

■ SCOPE=BOTH

Changes are written both to memory and to the server parameter file. This is the
default scope when the database is using a server parameter file.

The database prints the new value and the old value of an initialization parameter to
the alert log. As a preventative measure, the database validates changes of basic
parameter to prevent illegal values from being written to the server parameter file.

Overview of Diagnostic Files
Oracle Database includes a fault diagnosability infrastructure for preventing,
detecting, diagnosing, and resolving database problems. Problems include critical
errors such as code bugs, metadata corruption, and customer data corruption.

The goals of the advanced fault diagnosability infrastructure are the following:

■ Detecting problems proactively

Described as "Modifiable" in Oracle Database
Reference initialization parameter entry

No Yes

Modifiable only for the database or instance Yes No

Note: You must specify SPFILE when changing the value of a
parameter described as not modifiable in Oracle Database Reference.

See Also:

■ Oracle Database Administrator's Guide to learn how to change
initialization parameter settings

■ Oracle Database Reference for descriptions of all initialization
parameters

■ Oracle Database SQL Language Reference for ALTER SYSTEM syntax
and semantics

Table 13–3 (Cont.) Static and Dynamic Initialization Parameters

Characteristic Static Dynamic

Overview of Diagnostic Files

Oracle Database Instance 13-19

■ Limiting damage and interruptions after a problem is detected

■ Reducing problem diagnostic and resolution time

■ Simplifying customer interaction with Oracle Support

Automatic Diagnostic Repository
Automatic Diagnostic Repository (ADR) is a file-based repository that stores
database diagnostic data such as trace files, the alert log, and Health Monitor reports.
Key characteristics of ADR include:

■ Unified directory structure

■ Consistent diagnostic data formats

■ Unified tool set

The preceding characteristics enable customers and Oracle Support to correlate and
analyze diagnostic data across multiple Oracle instances, components, and products.

ADR is located outside the database, which enables Oracle Database to access and
manage ADR when the physical database is unavailable. An instance can create ADR
before a database has been created.

Problems and Incidents
ADR proactively tracks problems, which are critical errors in the database. Critical
errors manifest as internal errors, such as ORA-600, or other severe errors. Each
problem has a problem key, which is a text string that describes the problem.

When a problem occurs multiple times, ADR creates a time-stamped incident for each
occurrence. An incident is uniquely identified by a numeric incident ID. When an
incident occurs, ADR sends an incident alert to Enterprise Manager. Diagnosis and
resolution of a critical error usually starts with an incident alert.

Because a problem could generate many incidents in a short time, ADR applies flood
control to incident generation after certain thresholds are reached. A flood-controlled
incident generates an alert log entry, but does not generate incident dumps. In this
way, ADR informs you that a critical error is ongoing without overloading the system
with diagnostic data.

ADR Structure
The ADR base is the ADR root directory. The ADR base can contain multiple ADR
homes, where each ADR home is the root directory for all diagnostic data—traces,
dumps, the alert log, and so on—for an instance of an Oracle product or component.
For example, in an Oracle RAC environment with shared storage and ASM, each
database instance and each ASM instance has its own ADR home.

Figure 13–8 illustrates the ADR directory hierarchy for a database instance. Other ADR
homes for other Oracle products or components, such as ASM or Oracle Net Services,
can exist within this hierarchy, under the same ADR base.

See Also: Oracle Database Administrator's Guide for detailed
information about the fault diagnosability infrastructure

Overview of Diagnostic Files

13-20 Oracle Database Concepts

Figure 13–8 ADR Directory Structure for an Oracle Database Instance

As the following Linux example shows, when you start an instance with a unique SID
and database name before creating a database, Oracle Database creates ADR by default
as a directory structure in the host file system. The SID and database name form part
of the path name for files in the ADR Home.

Example 13–1 Creation of ADR

% setenv ORACLE_SID osi
% echo "DB_NAME=dbn" > init.ora
% sqlplus / as sysdba
.
.
.
Connected to an idle instance.

SQL> STARTUP NOMOUNT PFILE="./init.ora"
ORACLE instance started.

Total System Global Area 146472960 bytes
Fixed Size 1317424 bytes
Variable Size 92276176 bytes
Database Buffers 50331648 bytes
Redo Buffers 2547712 bytes

SQL> SELECT NAME, VALUE FROM V$DIAG_INFO;

NAME VALUE
--------------------- --
Diag Enabled TRUE
ADR Base /u01/oracle/log
ADR Home /u01/oracle/log/diag/rdbms/dbn/osi
Diag Trace /u01/oracle/log/diag/rdbms/dbn/osi/trace
Diag Alert /u01/oracle/log/diag/rdbms/dbn/osi/alert
Diag Incident /u01/oracle/log/diag/rdbms/dbn/osi/incident
Diag Cdump /u01/oracle/log/diag/rdbms/dbn/osi/cdump
Health Monitor /u01/oracle/log/diag/rdbms/dbn/osi/hm
Default Trace File /u01/oracle/log/diag/rdbms/dbn/osi/trace/osi_ora_10533.trc

diag

rdbms

alert cdump incident trace (others)

ADR
base

ADR
home

database name

SID

Overview of Diagnostic Files

Oracle Database Instance 13-21

Active Problem Count 0
Active Incident Count 0

The following sections describe the contents of ADR.

Alert Log
Each database has an alert log, which is an XML file containing a chronological log of
database messages and errors. The alert log contents include the following:

■ All internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock
errors (ORA-60)

■ Administrative operations such as DDL statements and the SQL*Plus commands
STARTUP, SHUTDOWN, ARCHIVE LOG, and RECOVER

■ Several messages and errors relating to the functions of shared server and
dispatcher processes

■ Errors during the automatic refresh of a materialized view

Oracle Database uses the alert log as an alternative to displaying information in the
Enterprise Manager GUI. If an administrative operation is successful, then Oracle
Database writes a message to the alert log as "completed" along with a time stamp.

Oracle Database creates an alert log in the alert subdirectory shown in Figure 13–8
when you first start a database instance, even if no database has been created yet. The
following example shows a portion of a text-only alert log:

Fri Jun 19 17:05:34 2009
Starting ORACLE instance (normal)
LICENSE_MAX_SESSION = 0
LICENSE_SESSIONS_WARNING = 0
Shared memory segment for instance monitoring created
Picked latch-free SCN scheme 2
Autotune of undo retention is turned on.
IMODE=BR
ILAT =12
LICENSE_MAX_USERS = 0
SYS auditing is disabled
Starting up ORACLE RDBMS Version: 11.2.0.0.0.
Using parameter settings in client-side pfile
.
.
.
System parameters with nondefault values:
 db_name = "my_test"
Fri Jun 19 17:05:37 2009
PMON started with pid=2, OS id=10329
Fri Jun 19 17:05:37 2009
VKTM started with pid=3, OS id=10331 at elevated priority
VKTM running at (20)ms precision
Fri Jun 19 17:05:37 2009
DIAG started with pid=4, OS id=10335

As shown in Example 13–1, query V$DIAG_INFO to locate the alert log.

Overview of Diagnostic Files

13-22 Oracle Database Concepts

Trace Files
A trace file is an administrative file that contain diagnostic data used to investigate
problems. Also, trace files can provide guidance for tuning applications or an instance,
as explained in "Performance Diagnostics and Tuning" on page 18-20.

Types of Trace Files
Each server and background process can periodically write to an associated trace file.
The files information on the process environment, status, activities, and errors.

The SQL trace facility also creates trace files, which provide performance information
on individual SQL statements. To enable tracing for a client identifier, service, module,
action, session, instance, or database, you must execute the appropriate procedures in
the DBMS_MONITOR package or use Oracle Enterprise Manager.

A dump is a special type of trace file. Whereas a trace tends to be continuous output of
diagnostic data, a dump is typically a one-time output of diagnostic data in response
to an event (such as an incident). When an incident occurs, the database writes one or
more dumps to the incident directory created for the incident. Incident dumps also
contain the incident number in the file name.

Locations of Trace Files
ADR stores trace files in the trace subdirectory, as shown in Figure 13–8. Trace file
names are platform-dependent and use the extension .trc.

Typically, database background process trace file names contain the Oracle SID, the
background process name, and the operating system process number. An example of a
trace file for the RECO process is mytest_reco_10355.trc.

Server process trace file names contain the Oracle SID, the string ora, and the
operating system process number. An example of a server process trace file name is
mytest_ora_10304.trc.

Sometimes trace files have corresponding trace map (.trm) files. These files contain
structural information about trace files and are used for searching and navigation.

See Also:

■ "Session Control Statements" on page 7-8

■ Oracle Database Administrator's Guide to learn about trace files,
dumps, and core files

■ Oracle Database Performance Tuning Guide to learn about
application tracing

See Also: Oracle Database Administrator's Guide to learn how to find
trace files

14

Memory Architecture 14-1

14Memory Architecture

This chapter discusses the memory architecture of an Oracle Database instance.

This chapter contains the following sections:

■ Introduction to Oracle Database Memory Structures

■ Overview of the User Global Area

■ Overview of the Program Global Area

■ Overview of the System Global Area

■ Overview of Software Code Areas

Introduction to Oracle Database Memory Structures
When an instance is started, Oracle Database allocates a memory area and starts
background processes. The memory area stores information such as the following:

■ Program code

■ Information about each connected session, even if it is not currently active

■ Information needed during program execution, for example, the current state of a
query from which rows are being fetched

■ Information such as lock data that is shared and communicated among processes

■ Cached data, such as data blocks and redo records, that also exists on disk

Basic Memory Structures
The basic memory structures associated with Oracle Database include:

■ System global area (SGA)

The SGA is a group of shared memory structures, known as SGA components,
that contain data and control information for one Oracle Database instance. The
SGA is shared by all server and background processes. Examples of data stored in
the SGA include cached data blocks and shared SQL areas.

■ Program global area (PGA)

See Also: Oracle Database Administrator's Guide for instructions for
configuring and managing memory

See Also: Chapter 15, "Process Architecture"

Introduction to Oracle Database Memory Structures

14-2 Oracle Database Concepts

A PGA is a nonshared memory region that contains data and control information
exclusively for use by an Oracle process. The PGA is created by Oracle Database
when an Oracle process is started.

One PGA exists for each server process and background process. The collection of
individual PGAs is the total instance PGA, or instance PGA. Database
initialization parameters set the size of the instance PGA, not individual PGAs.

■ User Global Area (UGA)

The UGA is memory associated with a user session.

■ Software code areas

Software code areas are portions of memory used to store code that is being run or
can be run. Oracle Database code is stored in a software area that is typically at a
different location from user programs—a more exclusive or protected location.

Figure 14–1 illustrates the relationships among these memory structures.

Figure 14–1 Oracle Database Memory Structures

System Global Area (SGA)

Large Pool

Client
Process

Instance

Database
Buffer Cache Redo

Log
Buffer

Java
Pool

Streams
Pool

Fixed
SGA

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

UGA
I/O Buffer Area
Free Memory

Large Pool

Response
Queue

Request
Queue

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM
 employees

Overview of the User Global Area

Memory Architecture 14-3

Oracle Database Memory Management
Memory management involves maintaining optimal sizes for the Oracle instance
memory structures as demands on the database change. Oracle Database manages
memory based on the settings of memory-related initialization parameters. The basic
options for memory management are as follows:

■ Automatic memory management

You specify the target size for instance memory. The database instance
automatically tunes to the target memory size, redistributing memory as needed
between the SGA and the instance PGA.

■ Automatic shared memory management

This management mode is partially automated. You set a target size for the SGA
and then have the option of setting an aggregate target size for the PGA or
managing PGA work areas individually.

■ Manual memory management

Instead of setting the total memory size, you set many initialization parameters to
manage components of the SGA and instance PGA individually.

If you create a database with Database Configuration Assistant (DBCA) and choose
the basic installation option, then automatic memory management is the default.

Overview of the User Global Area
The UGA is session memory, which is memory allocated for session variables, such as
logon information, and other information required by a database session. Essentially,
the UGA stores the session state. Figure 14–2 depicts the UGA.

Figure 14–2 User Global Area (UGA)

If a session loads a PL/SQL package into memory, then the UGA contains the package
state, which is the set of values stored in all the package variables at a specific time
(see "PL/SQL Packages" on page 8-6). The package state changes when a package
subprogram changes the variables. By default, the package variables are unique to and
persist for the life of the session.

See Also:

■ "Memory Management" on page 18-15 for more information about
memory management options for DBAs

■ "Tools for Database Installation and Configuration" to learn about
DBCA

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn about memory management options

Session Variables

UGA

OLAP Pool

Overview of the Program Global Area

14-4 Oracle Database Concepts

The OLAP page pool is also stored in the UGA. This pool manages OLAP data pages,
which are equivalent to data blocks. The page pool is allocated at the start of an OLAP
session and released at the end of the session. An OLAP session opens automatically
whenever a user queries a dimensional object such as a cube.

The UGA must be available to a database session for the life of the session. For this
reason, the UGA cannot be stored in the PGA when using a shared server connection
because the PGA is specific to a single process. Therefore, the UGA is stored in the
SGA when using shared server connections, enabling any shared server process access
to it. When using a dedicated server connection, the UGA is stored in the PGA.

Overview of the Program Global Area
The PGA is memory specific to an operating process or thread that is not shared by
other processes or threads on the system. Because the PGA is process-specific, it is
never allocated in the SGA.

The PGA is a memory heap that contains session-dependent variables required by a
dedicated or shared server process. The server process allocates memory structures
that it requires in the PGA.

An analogy for a PGA is a temporary countertop workspace used by a file clerk. In this
analogy, the file clerk is the server process doing work on behalf of the customer (client
process). The clerk clears a section of the countertop, uses the workspace to store
details about the customer request and to sort the folders requested by the customer,
and then gives up the space when the work is done.

Figure 14–3 shows an instance PGA (collection of all PGAs) for an instance that is not
configured for shared servers. You can use an initialization parameter to set a target
maximum size of the instance PGA (see "Summary of Memory Management Methods"
on page 18-17). Individual PGAs can grow as needed up to this target size.

See Also:

■ "Connections and Sessions" on page 15-4

■ Oracle Database Net Services Administrator's Guide to learn about
shared server connections

■ Oracle OLAP User's Guide for an overview of Oracle OLAP

Overview of the Program Global Area

Memory Architecture 14-5

Figure 14–3 Instance PGA

Contents of the PGA
The PGA is subdivided into different areas, each with a different purpose. Figure 14–4
shows the possible contents of the PGA for a dedicated server session. Not all of the
PGA areas will exist in every case.

Figure 14–4 PGA Contents

Private SQL Area
A private SQL area holds information about a parsed SQL statement and other
session-specific information for processing. When a server process executes SQL or
PL/SQL code, the process uses the private SQL area to store bind variable values,
query execution state information, and query execution work areas.

Do not confuse a private SQL area, which is in the UGA, with the shared SQL area,
which stores execution plans in the SGA. Multiple private SQL areas in the same or
different sessions can point to a single execution plan in the SGA. For example, 20
executions of SELECT * FROM employees in one session and 10 executions of the same
query in a different session can share the same plan. The private SQL areas for each
execution are not shared and may contain different values and data.

A cursor is a name or handle to a specific private SQL area. As shown in Figure 14–5,
you can think of a cursor as a pointer on the client side and as a state on the server

Note: Background processes also allocate their own PGAs. This
discussion focuses on server process PGAs only.

Instance PGA

PGA

SQL Work Areas

SQL Work Areas

SQL Work Areas

PGA

PGA

Server
Process

Server
Process

Server
Process

Session Memory

Session Memory

Session Memory

Private SQL Area

Private SQL Area

Private SQL Area

Sort Area Hash Area

PGA

Bitmap Merge Area

Session Memory Runtime
Area

Private SQL Area

SQL Work Areas

Persistent
Area

Overview of the Program Global Area

14-6 Oracle Database Concepts

side. Because cursors are closely associated with private SQL areas, the terms are
sometimes used interchangeably.

Figure 14–5 Cursor

A private SQL area is divided into the following areas:

■ The run-time area

This area contains query execution state information. For example, the run-time
area tracks the number of rows retrieved so far in a full table scan.

Oracle Database creates the run-time area as the first step of an execute request.
For DML statements, the run-time area is freed when the SQL statement is closed.

■ The persistent area

This area contains bind variable values. A bind variable value is supplied to a
SQL statement at run time when the statement is executed. The persistent area is
freed only when the cursor is closed.

The client process is responsible for managing private SQL areas. The allocation and
deallocation of private SQL areas depends largely on the application, although the
number of private SQL areas that a client process can allocate is limited by the
initialization parameter OPEN_CURSORS.

Although most users rely on the automatic cursor handling of database utilities, the
Oracle Database programmatic interfaces offer developers more control over cursors.
In general, applications should close all open cursors that will not be used again to free
the persistent area and to minimize the memory required for application users.

SQL Work Areas
A work area is a private allocation of PGA memory used for memory-intensive
operations. For example, a sort operator uses the sort area to sort a set of rows.
Similarly, a hash join operator uses a hash area to build a hash table from its left
input, whereas a bitmap merge uses the bitmap merge area to merge data retrieved
from scans of multiple bitmap indexes.

Example 14–1 shows a join of employees and departments with its query plan.

See Also:

■ "Shared SQL Areas" on page 14-16

■ Oracle Database Advanced Application Developer's Guide and Oracle
Database PL/SQL Language Reference to learn how to use cursors

PGA

SQL Work Areas

Cursor
Data Area

Server
Process

Client
Process

Session Memory Private SQL Area

Pointer

Overview of the Program Global Area

Memory Architecture 14-7

Example 14–1 Query Plan for Table Join

SQL> SELECT *
 2 FROM employees e JOIN departments d
 3 ON e.department_id=d.department_id
 4 ORDER BY last_name;
.
.
.
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		106	9328	7 (29)	00:00:01
1	SORT ORDER BY		106	9328	7 (29)	00:00:01
* 2	HASH JOIN		106	9328	6 (17)	00:00:01
3	TABLE ACCESS FULL	DEPARTMENTS	27	540	2 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	7276	3 (0)	00:00:01
--

In Example 14–1, the run-time area tracks the progress of the full table scans. The
session performs a hash join in the hash area to match rows from the two tables. The
ORDER BY sort occurs in the sort area.

If the amount of data to be processed by the operators does not fit into a work area,
then Oracle Database divides the input data into smaller pieces. In this way, the
database processes some data pieces in memory while writing the rest to temporary
disk storage for processing later.

The database automatically tunes work area sizes when automatic PGA memory
management is enabled. You can also manually control and tune the size of a work
area. See "Memory Management" on page 18-15 for more information.

Generally, larger work areas can significantly improve performance of an operator at
the cost of higher memory consumption. Optimally, the size of a work area is sufficient
to accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. If not, response time increases because part of the input data
must be cached on disk. In the extreme case, if the size of a work area is too small
compared to input data size, then the database must perform multiple passes over the
data pieces, dramatically increasing response time.

PGA Usage in Dedicated and Shared Server Modes
PGA memory allocation depends on whether the database uses dedicated or shared
server connections. Table 14–1 shows the differences.

See Also:

■ Oracle Database Administrator's Guide to learn how to use
automatic PGA management

■ Oracle Database Performance Tuning Guide to learn how to tune
PGA memory

Table 14–1 Differences in Memory Allocation Between Dedicated and Shared Servers

Memory Area
Dedicated
Server

Shared
Server

Nature of session memory Private Shared

Location of the persistent area PGA SGA

Location of the run-time area for DML/DDL statements PGA PGA

Overview of the System Global Area

14-8 Oracle Database Concepts

Overview of the System Global Area
The SGA is a read/write memory area that, along with the Oracle background
processes, make up a database instance. All server processes that execute on behalf of
users can read information in the instance SGA. Several processes write to the SGA
during database operation.

Each database instance has its own SGA. Oracle Database automatically allocates
memory for an SGA at instance startup and reclaims the memory at instance
shutdown. When you start an instance with SQL*Plus or Oracle Enterprise Manager,
the size of the SGA is shown as in the following example:

SQL> STARTUP
ORACLE instance started.

Total System Global Area 368283648 bytes
Fixed Size 1300440 bytes
Variable Size 343935016 bytes
Database Buffers 16777216 bytes
Redo Buffers 6270976 bytes
Database mounted.
Database opened.

As shown in Figure 14–1, the SGA consists of several memory components, which are
pools of memory used to satisfy a particular class of memory allocation requests. All
SGA components except the redo log buffer allocate and deallocate space in units of
contiguous memory called granules. Granule size is platform-specific and is
determined by total SGA size.

You can query the V$SGASTAT view for information about SGA components.

The most important SGA components are the following:

■ Database Buffer Cache

■ Redo Log Buffer

■ Shared Pool

■ Large Pool

■ Java Pool

■ Streams Pool

■ Fixed SGA

See Also: Oracle Database Net Services Administrator's Guide to learn
how to configure a database for shared server

Note: The server and background processes do not reside within the
SGA, but exist in a separate memory space.

See Also:

■ "Introduction to the Oracle Database Instance" on page 13-1

■ Oracle Database Performance Tuning Guide to learn more about
granule sizing

Overview of the System Global Area

Memory Architecture 14-9

Database Buffer Cache
The database buffer cache, also called the buffer cache, is the memory area that stores
copies of data blocks read from data files. A buffer is a main memory address in which
the buffer manager temporarily caches a currently or recently used data block. All
users concurrently connected to a database instance share access to the buffer cache.

Oracle Database uses the buffer cache to achieve the following goals:

■ Optimize physical I/O

The database updates data blocks in the cache and stores metadata about the
changes in the redo log buffer. After a COMMIT, the database writes the redo buffers
to disk but does not immediately write data blocks to disk. Instead, database
writer (DBWn) performs lazy writes in the background.

■ Keep frequently accessed blocks in the buffer cache and write infrequently
accessed blocks to disk

When Database Smart Flash Cache (flash cache) is enabled, part of the buffer
cache can reside in the flash cache. This buffer cache extension is stored on a flash
disk device, which is a solid state storage device that uses flash memory. The
database can improve performance by caching buffers in flash memory instead of
reading from magnetic disk.

Buffer States
The database uses internal algorithms to manage buffers in the cache. A buffer can be
in any of the following mutually exclusive states:

■ Unused

The buffer is available for use because it has never been used or is currently
unused. This type of buffer is the easiest for the database to use.

■ Clean

This buffer was used earlier and now contains a read-consistent version of a block
as of a point in time. The block contains data but is "clean" so it does not need to be
checkpointed. The database can pin the block and reuse it.

■ Dirty

The buffer contain modified data that has not yet been written to disk. The
database must checkpoint the block before reusing it.

Every buffer has an access mode: pinned or free (unpinned). A buffer is "pinned" in
the cache so that it does not age out of memory while a user session accesses it.
Multiple sessions cannot modify a pinned buffer at the same time.

The database uses a sophisticated algorithm to make buffer access efficient. Pointers to
dirty and nondirty buffers exist on the same least recently used (LRU) list, which has
a hot end and cold end. A cold buffer is one that has not been recently used. A hot
buffer is frequently accessed and has been recently used.

Note: Database Smart Flash Cache is available only in Solaris and
Oracle Enterprise Linux.

Note: Conceptually, there is only one LRU, but for concurrency the
database actually uses several LRUs.

Overview of the System Global Area

14-10 Oracle Database Concepts

Buffer Modes
When a client requests data, Oracle Database retrieves buffers from the database buffer
cache in either of the following modes:

■ Current mode

A current mode get, also called a db block get, is a retrieval of a block as it
currently appears in the buffer cache. For example, if an uncommitted transaction
has updated two rows in a block, then a current mode get retrieves the block with
these uncommitted rows. The database uses db block gets most frequently during
modification statements, which must update only the current version of the block.

■ Consistent mode

A consistent read get is a retrieval of a read-consistent version of a block. This
retrieval may use undo data. For example, if an uncommitted transaction has
updated two rows in a block, and if a query in a separate session requests the
block, then the database uses undo data to create a read-consistent version of this
block (called a consistent read clone) that does not include the uncommitted
updates. Typically, a query retrieves blocks in consistent mode.

Buffer I/O
A logical I/O, also known as a buffer I/O, refers to reads and writes of buffers in the
buffer cache. When a requested buffer is not found in memory, the database performs
a physical I/O to copy the buffer from either the flash cache or disk into memory, and
then a logical I/O to read the cached buffer.

Buffer Writes The database writer (DBWn) process periodically writes cold, dirty
buffers to disk. DBWn writes buffers in the following circumstances:

■ A server process cannot find clean buffers for reading new blocks into the
database buffer cache.

As buffers are dirtied, the number of free buffers decreases. If the number drops
below an internal threshold, and if clean buffers are required, then server
processes signal DBWn to write.

The database uses the LRU to determine which dirty buffers to write. When dirty
buffers reach the cold end of the LRU, the database moves them off the LRU to a
write queue. DBWn writes buffers in the queue to disk, using multiblock writes if
possible. This mechanism prevents the end of the LRU from becoming clogged
with dirty buffers and allows clean buffers to be found for reuse.

■ The database must advance the checkpoint, which is the position in the redo
thread from which instance recovery must begin.

■ Tablespaces are changed to read-only status or taken offline.

See Also:

■ "Read Consistency and Undo Segments" on page 9-3

■ Oracle Database Reference for descriptions of database statistics
such as db block get and consistent read get

See Also:

■ "Database Writer Process (DBWn)" on page 15-8

■ Oracle Database Performance Tuning Guide to learn how to diagnose
and tune buffer write issues

Overview of the System Global Area

Memory Architecture 14-11

Buffer Reads When the number of clean or unused buffers is low, the database must
remove buffers from the buffer cache. The algorithm depends on whether the flash
cache is enabled:

■ Flash cache disabled

The database re-uses each clean buffer as needed, overwriting it. If the overwritten
buffer is needed later, then the database must read it from magnetic disk.

■ Flash cache enabled

DBWn can write the body of a clean buffer to the flash cache, enabling reuse of its
in-memory buffer. The database keeps the buffer header in an LRU list in main
memory to track the state and location of the buffer body in the flash cache. If this
buffer is needed later, then the database can read it from the flash cache instead of
from magnetic disk.

When a client process requests a buffer, the server process searches the buffer cache for
the buffer. A cache hit occurs if the database finds the buffer in memory. The search
order is as follows:

1. The server process searches for the whole buffer in the buffer cache.

If the process finds the whole buffer, then the database performs a logical read of
this buffer.

2. The server process searches for the buffer header in the flash cache LRU list.

If the process finds the buffer header, then the database performs an optimized
physical read of the buffer body from the flash cache into the in-memory cache.

3. If the process does not find the buffer in memory (a cache miss), then the server
process performs the following steps:

a. Copies the block from a data file into memory (a physical read)

b. Performs a logical read of the buffer that was read into memory

Figure 14–6 illustrates the buffer search order. The extended buffer cache includes both
the in-memory buffer cache, which contains whole buffers, and the flash cache, which
contains buffer bodies. In the figure, the database searches for a buffer in the buffer
cache and, not finding the buffer, reads it into memory from magnetic disk.

Overview of the System Global Area

14-12 Oracle Database Concepts

Figure 14–6 Buffer Search

In general, accessing data through a cache hit is faster than through a cache miss. The
buffer cache hit ratio measures how often the database found a requested block in the
buffer cache without needing to read it from disk.

The database can perform physical reads from either a data file or a temp file. Reads
from a data file are followed by logical I/Os. Reads from a temp file occur when
insufficient memory forces the database write data to a temporary table and read it
back later. These physical reads bypass the buffer cache and do not incur a logical I/O.

Buffer Touch Counts The database measures the frequency of access of buffers on the
LRU list using a touch count. This mechanism enables the database to increment a
counter when a buffer is pinned instead of constantly shuffling buffers on the LRU list.

When a buffer is pinned, the database determines when its touch count was last
incremented. If the count was incremented over three seconds ago, then the count is
incremented; otherwise, the count stays the same. The three-second rule prevents a
burst of pins on a buffer counting as many touches. For example, a session may insert
several rows in a data block, but the database considers these inserts as one touch.

If a buffer is on the cold end of the LRU, but its touch count is high, then the buffer
moves to the hot end. If the touch count is low, then the buffer ages out of the cache.

See Also: Oracle Database Performance Tuning Guide to learn how to
calculate the buffer cache hit ratio

Note: The database does not physically move blocks in memory. The
movement is the change in location of a pointer on a list.

In-Memory Buffer Cache Flash Cache

Server
Process

Extended Database Buffer Cache

1

2

Magnetic
Disk

3

Overview of the System Global Area

Memory Architecture 14-13

Buffers and Full Table Scans When buffers must be read from disk, the database inserts
the buffers into the middle of the LRU list. In this way, hot blocks can remain in the
cache so that they do not need to be read from disk again.

A problem is posed by a full table scan, which sequentially reads all rows under the
table high water mark (see "Segment Space and the High Water Mark" on page 12-27).
Suppose that the total size of the blocks in a table segment is greater than the size of
the buffer cache. A full scan of this table could clean out the buffer cache, preventing
the database from maintaining a cache of frequently accessed blocks.

Blocks read into the database cache as the result of a full scan of a large table are
treated differently from other types of reads. The blocks are immediately available for
reuse to prevent the scan from effectively cleaning out the buffer cache.

In the rare case where the default behavior is not desired, you can change the CACHE
attribute of the table. In this case, the database does not force or pin the blocks in the
buffer cache, but ages them out of the cache in the same way as any other block. Use
care when exercising this option because a full scan of a large table may clean most of
the other blocks out of the cache.

Buffer Pools
A buffer pool is a collection of buffers. The database buffer cache is divided into one
or more buffer pools.

You can manually configure separate buffer pools that either keep data in the buffer
cache or make the buffers available for new data immediately after using the data
blocks. You can then assign specific schema objects to the appropriate buffer pool to
control how blocks age out of the cache.

The possible buffer pools are as follows:

■ Default pool

This pool is the location where blocks are normally cached. Unless you manually
configure separate pools, the default pool is the only buffer pool.

■ Keep pool

This pool is intended for blocks that were accessed frequently, but which aged out
of the default pool because of lack of space. The goal of the keep buffer pool is to
retain objects in memory, thus avoiding I/O operations.

■ Recycle pool

This pool is intended for blocks that are used infrequently. A recycle pool prevent
objects from consuming unnecessary space in the cache.

A database has a standard block size (see "Database Block Size" on page 12-7). You can
create a tablespace with a block size that differs from the standard size. Each
nondefault block size has its own pool. Oracle Database manages the blocks in these
pools in the same way as in the default pool.

Figure 14–7 shows the structure of the buffer cache when multiple pools are used. The
cache contains default, keep, and recycle pools. The default block size is 8 KB. The

See Also:

■ Oracle Database SQL Language Reference for information about
the CACHE clause

■ Oracle Database Performance Tuning Guide to learn how to
interpret buffer cache advisory statistics

Overview of the System Global Area

14-14 Oracle Database Concepts

cache contains separate pools for tablespaces that use the nonstandard block sizes of 2
KB, 4 KB, and 16 KB.

Figure 14–7 Database Buffer Cache

Redo Log Buffer
The redo log buffer is a circular buffer in the SGA that stores redo entries describing
changes made to the database. Redo entries contain the information necessary to
reconstruct, or redo, changes made to the database by DML or DDL operations.
Database recovery applies redo entries to data files to reconstruct lost changes.

Oracle Database processes copy redo entries from the user memory space to the redo
log buffer in the SGA. The redo entries take up continuous, sequential space in the
buffer. The background process log writer (LGWR) writes the redo log buffer to the
active online redo log group on disk. Figure 14–8 shows this redo buffer activity.

See Also:

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn more about buffer pools

■ Oracle Database Performance Tuning Guide to learn how to use
multiple buffer pools

Database Buffer Cache

Default 2K

4K

16KRecycleKeep

Overview of the System Global Area

Memory Architecture 14-15

Figure 14–8 Redo Log Buffer

LGWR writes redo sequentially to disk while DBWn performs scattered writes of data
blocks to disk. Scattered writes tend to be much slower than sequential writes. Because
LGWR enable users to avoid waiting for DBWn to complete its slow writes, the
database delivers better performance.

The LOG_BUFFER initialization parameter specifies the amount of memory that Oracle
Database uses when buffering redo entries. Unlike other SGA components, the redo
log buffer and fixed SGA buffer do not divide memory into granules.

Shared Pool
The shared pool caches various types of program data. For example, the shared pool
stores parsed SQL, PL/SQL code, system parameters, and data dictionary
information. The shared pool is involved in almost every operation that occurs in the
database. For example, if a user executes a SQL statement, then Oracle Database
accesses the shared pool.

The shared pool is divided into several subcomponents, the most important of which
are shown in Figure 14–9.

See Also:

■ "Log Writer Process (LGWR)" on page 15-9 and "Importance of
Checkpoints for Instance Recovery" on page 13-13

■ Oracle Database Administrator's Guide for information about the
online redo log

Database
Buffer Cache Redo

Log
Buffer

LGWR

Online
Redo Log

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

Overview of the System Global Area

14-16 Oracle Database Concepts

Figure 14–9 Shared Pool

This section includes the following topics:

■ Library Cache

■ Data Dictionary Cache

■ Server Result Cache

■ Reserved Pool

Library Cache
The library cache is a shared pool memory structure that stores executable SQL and
PL/SQL code. This cache contains the shared SQL and PL/SQL areas and control
structures such as locks and library cache handles. In a shared server architecture, the
library cache also contains private SQL areas.

When a SQL statement is executed, the database attempts to reuse previously executed
code. If a parsed representation of a SQL statement exists in the library cache and can
be shared, then the database reuses the code, known as a soft parse or a library cache
hit. Otherwise, the database must build a new executable version of the application
code, known as a hard parse or a library cache miss.

Shared SQL Areas The database represents each SQL statement that it runs in the
following SQL areas:

■ Shared SQL area

The database uses the shared SQL area to process the first occurrence of a SQL
statement. This area is accessible to all users and contains the statement parse tree
and execution plan. Only one shared SQL area exists for a unique statement.

■ Private SQL area

Each session issuing a SQL statement has a private SQL area in its PGA (see
"Private SQL Area" on page 14-5). Each user that submits the same statement has a
private SQL area pointing to the same shared SQL area. Thus, many private SQL
areas in separate PGAs can be associated with the same shared SQL area.

Shared Pool

(Shared Server Only)

Private SQL Area

· Parsed SQL Statements
· SQL Execution Plans
· Parsed and Compiled PL/SQL Program Units

Shared SQL Area

Library Cache

Dictionary
Data Stored
in Rows

Data Dictionary
Cache

SQL Query
Result Cache

PL/SQL Function
Result Cache

Server Result
Cache

Other Reserved
Pool

Overview of the System Global Area

Memory Architecture 14-17

The database automatically determines when applications submit similar SQL
statements. The database considers both SQL statements issued directly by users and
applications and recursive SQL statements issued internally by other statements.

The database performs the following steps:

1. Checks the shared pool to see if a shared SQL area exists for a syntactically and
semantically identical statement:

■ If an identical statement exists, then the database uses the shared SQL area for
the execution of the subsequent new instances of the statement, thereby
reducing memory consumption.

■ If an identical statement does not exist, then the database allocates a new
shared SQL area in the shared pool. A statement with the same syntax but
different semantics uses a child cursor.

In either case, the private SQL area for the user points to the shared SQL area that
contains the statement and execution plan.

2. Allocates a private SQL area on behalf of the session

The location of the private SQL area depends on the connection established for the
session. If a session is connected through a shared server, then part of the private
SQL area is kept in the SGA.

Figure 14–10 shows a dedicated server architecture in which two sessions keep a copy
of the same SQL statement in their own PGAs. In a shared server, this copy is in the
UGA, which is in the large pool or in the shared pool when no large pool exists.

Overview of the System Global Area

14-18 Oracle Database Concepts

Figure 14–10 Private SQL Areas and Shared SQL Area

Program Units and the Library Cache The library cache holds executable forms of PL/SQL
programs and Java classes. These items are collectively referred to as program units.

The database processes program units similarly to SQL statements. For example, the
database allocates a shared area to hold the parsed, compiled form of a PL/SQL
program. The database allocates a private area to hold values specific to the session
that runs the program, including local, global, and package variables, and buffers for
executing SQL. If multiple users run the same program, then each user maintains a
separate copy of his or her private SQL area, which holds session-specific values, and
accesses a single shared SQL area.

The database processes individual SQL statements within a PL/SQL program unit as
previously described. Despite their origins within a PL/SQL program unit, these SQL
statements use a shared area to hold their parsed representations and a private area for
each session that runs the statement.

See Also:

■ Oracle Database Performance Tuning Guide to learn more about
managing the library cache

■ Oracle Database Advanced Application Developer's Guide for more
information about shared SQL

System Global Area (SGA)

Instance

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM employees

Client
Process

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

SELECT * FROM
 employees

Client
Process

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

SELECT * FROM employees

Overview of the System Global Area

Memory Architecture 14-19

Allocation and Reuse of Memory in the Shared Pool The database allocates shared pool
memory when a new SQL statement is parsed. The memory size depends on the
complexity of the statement.

In general, an item in the shared pool stays until it is removed according to an LRU
algorithm. The database allows shared pool items used by many sessions to remain in
memory as long as they are useful, even if the process that created the item terminates.
This mechanism minimizes the overhead and processing of SQL statements.

If space is needed for new items, then the database frees memory for infrequently used
items. A shared SQL area can be removed from the shared pool even if the shared SQL
area corresponds to an open cursor that has not been used for some time. If the open
cursor is subsequently used to run its statement, then Oracle Database reparses the
statement and allocates a new shared SQL area.

The database also removes a shared SQL area from the shared pool in the following
circumstances:

■ If statistics are gathered for a table, table cluster, or index, then by default the
database gradually removes all shared SQL areas that contain statements
referencing the analyzed object after a period of time. The next time a removed
statement is run, the database parses it in a new shared SQL area to reflect the new
statistics for the schema object.

■ If a schema object is referenced in a SQL statement, and if this object is later
modified by a DDL statement, then the database invalidates the shared SQL area.
The optimizer must reparse the statement the next time it is run.

■ If you change the global database name, then the database removes all information
from the shared pool.

You can use the ALTER SYSTEM FLUSH SHARED_POOL statement to manually remove all
information in the shared pool to assess the performance that can be expected after an
instance restart.

Data Dictionary Cache
The data dictionary is a collection of database tables and views containing reference
information about the database, its structures, and its users. Oracle Database accesses
the data dictionary frequently during SQL statement parsing.

The data dictionary is accessed so often by Oracle Database that the following special
memory locations are designated to hold dictionary data:

■ Data dictionary cache

This cache holds information about database objects. The cache is also known as
the row cache because it holds data as rows instead of buffers.

■ Library cache

All server processes share these caches for access to data dictionary information.

See Also:

■ Oracle Database SQL Language Reference for information about
using ALTER SYSTEM FLUSH SHARED_POOL

■ Oracle Database Reference for information about V$SQL and
V$SQLAREA dynamic views

Overview of the System Global Area

14-20 Oracle Database Concepts

Server Result Cache
Unlike the buffer pools, the server result cache holds result sets and not data blocks.
The server result cache contains the SQL query result cache and PL/SQL function
result cache, which share the same infrastructure.

A client result cache differs from the server result cache. A client cache is configured
at the application level and is located in client memory, not in database memory.

SQL Query Result Cache The database can store the results of queries and query
fragments in the SQL query result cache, using the cached results for future queries
and query fragments. Most applications benefit from this performance improvement.

For example, suppose an application runs the same SELECT statement repeatedly. If the
results are cached, then the database returns them immediately. In this way, the
database avoids the expensive operation of rereading blocks and recomputing results.
The database automatically invalidates a cached result whenever a transaction
modifies the data or metadata of database objects used to construct that cached result.

Users can annotate a query or query fragment with a RESULT_CACHE hint to indicate
that the database should store results in the SQL query result cache. The
RESULT_CACHE_MODE initialization parameter determines whether the SQL query result
cache is used for all queries (when possible) or only for annotated queries.

PL/SQL Function Result Cache The PL/SQL function result cache stores function result
sets. Without caching, 1000 calls of a function at 1 second per call would take 1000
seconds. With caching, 1000 function calls with the same inputs could take 1 second
total. Good candidates for result caching are frequently invoked functions that depend
on relatively static data.

PL/SQL function code can include a request to cache its results. Upon invocation of
this function, the system checks the cache. If the cache contains the result from a
previous function call with the same parameter values, then the system returns the
cached result to the invoker and does not reexecute the function body. If the cache

See Also:

■ Chapter 6, "Data Dictionary and Dynamic Performance Views"

■ Oracle Database Performance Tuning Guide to learn how to
allocate additional memory to the data dictionary cache

See Also:

■ Oracle Database Administrator's Guide for information about sizing
the result cache

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESULT_CACHE package

■ Oracle Database Performance Tuning Guide for more information
about the client result cache

See Also:

■ Oracle Database Reference to learn more about the
RESULT_CACHE_MODE initialization parameter

■ Oracle Database SQL Language Reference to learn about the
RESULT_CACHE hint

Overview of the System Global Area

Memory Architecture 14-21

does not contain the result, then the system executes the function body and adds the
result (for these parameter values) to the cache before returning control to the invoker.

The cache can accumulate many results—one result for every unique combination of
parameter values with which each result-cached function was invoked. If the database
needs more memory, then it ages out one or more cached results.

Reserved Pool
The reserved pool is a memory area in the shared pool that Oracle Database can use to
allocate large contiguous chunks of memory.

Allocation of memory from the shared pool is performed in chunks. Chunking allows
large objects (over 5 KB) to be loaded into the cache without requiring a single
contiguous area. In this way, the database reduces the possibility of running out of
contiguous memory because of fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared
pool that are larger than 5 KB. To allow these allocations to occur most efficiently, the
database segregates a small amount of the shared pool for the reserved pool.

Large Pool
The large pool is an optional memory area intended for memory allocations that are
larger than is appropriate for the shared pool. The large pool can provide large
memory allocations for the following:

■ UGA for the shared server and the Oracle XA interface (used where transactions
interact with multiple databases)

■ Message buffers used in the parallel execution of statements

■ Buffers for Recovery Manager (RMAN) I/O slaves

By allocating session memory from the large pool for shared SQL, the database avoids
performance overhead caused by shrinking the shared SQL cache. By allocating
memory in large buffers for RMAN operations, I/O server processes, and parallel
buffers, the large pool can satisfy large memory requests better than the shared pool.

Figure 14–11 is a graphical depiction of the large pool.

Note: You can specify the database objects that are used to compute
a cached result so that if any of them are updated, the cached result
becomes invalid and must be recomputed.

See Also:

■ Oracle Database Advanced Application Developer's Guide to learn
more about the PL/SQL function result cache

■ Oracle Database PL/SQL Language Reference to learn more about
the PL/SQL function result cache

See Also: Oracle Database Performance Tuning Guide to learn how to
configure the reserved pool

Overview of the System Global Area

14-22 Oracle Database Concepts

Figure 14–11 Large Pool

The large pool is different from reserved space in the shared pool, which uses the same
LRU list as other memory allocated from the shared pool. The large pool does not have
an LRU list. Pieces of memory are allocated and cannot be freed until they are done
being used. As soon as a chunk of memory is freed, other processes can use it.

Java Pool
The Java pool is an area of memory that stores all session-specific Java code and data
within the Java Virtual Machine (JVM). This memory includes Java objects that are
migrated to the Java session space at end-of-call.

For dedicated server connections, the Java pool includes the shared part of each Java
class, including methods and read-only memory such as code vectors, but not the
per-session Java state of each session. For shared server, the pool includes the shared
part of each class and some UGA used for the state of each session. Each UGA grows
and shrinks as necessary, but the total UGA size must fit in the Java pool space.

The Java Pool Advisor statistics provide information about library cache memory used
for Java and predict how changes in the size of the Java pool can affect the parse rate.
The Java Pool Advisor is internally turned on when statistics_level is set to
TYPICAL or higher. These statistics reset when the advisor is turned off.

See Also:

■ "Dispatcher Request and Response Queues" on page 16-12 to learn
about allocating session memory for shared server

■ Oracle Database Advanced Application Developer's Guide to learn
about Oracle XA

■ Oracle Database Performance Tuning Guide for more information
about the large pool

■ "Parallel Execution" on page 15-15 for information about
allocating memory for parallel execution

See Also:

■ Oracle Database Java Developer's Guide

■ Oracle Database Performance Tuning Guide to learn about views
containing Java pool advisory statistics

Response Queue

Large Pool

Request Queue UGA
I/O Buffer Area
Free Memory

Overview of Software Code Areas

Memory Architecture 14-23

Streams Pool
The Streams pool stores buffered queue messages and provides memory for Oracle
Streams capture processes and apply processes. The Streams pool is used exclusively
by Oracle Streams.

Unless you specifically configure it, the size of the Streams pool starts at zero. The pool
size grows dynamically as required by Oracle Streams.

Fixed SGA
The fixed SGA is an internal housekeeping area. For example, the fixed SGA contains:

■ General information about the state of the database and the instance, which the
background processes need to access

■ Information communicated between processes, such as information about locks
(see "Overview of Automatic Locks" on page 9-17)

The size of the fixed SGA is set by Oracle Database and cannot be altered manually.
The fixed SGA size can change from release to release.

Overview of Software Code Areas
Software code areas are portions of memory that store code that is being run or can be
run. Oracle Database code is stored in a software area that is typically more exclusive
and protected than the location of user programs.

Software areas are usually static in size, changing only when software is updated or
reinstalled. The required size of these areas varies by operating system.

Software areas are read-only and can be installed shared or nonshared. Some database
tools and utilities, such as Oracle Forms and SQL*Plus, can be installed shared, but
some cannot. When possible, database code is shared so that all users can access it
without having multiple copies in memory, resulting in reduced main memory and
overall improvement in performance. Multiple instances of a database can use the
same database code area with different databases if running on the same computer.

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide and Oracle Streams Replication Administrator's Guide

Note: The option of installing software shared is not available for all
operating systems, for example, on PCs operating Windows. See your
operating system-specific documentation for more information.

Overview of Software Code Areas

14-24 Oracle Database Concepts

15

Process Architecture 15-1

15Process Architecture

This chapter discusses the processes in an Oracle database.

This chapter contains the following sections:

■ Introduction to Processes

■ Overview of Client Processes

■ Overview of Server Processes

■ Overview of Background Processes

Introduction to Processes
A process is a mechanism in an operating system that can run a series of steps. The
mechanism depends on the operating system. For example, on Linux an Oracle
background process is a Linux process. On Windows, an Oracle background process is
a thread of execution within a process.

Code modules are run by processes. All connected Oracle Database users must run the
following modules to access a database instance:

■ Application or Oracle Database utility

A database user runs a database application, such as a precompiler program or a
database tool such as SQL*Plus, that issues SQL statements to a database.

■ Oracle database code

Each user has Oracle database code executing on his or her behalf that interprets
and processes the application's SQL statements.

A process normally runs in its own private memory area. Most processes can
periodically write to an associated trace file (see "Trace Files" on page 13-22).

Multiple-Process Oracle Database Systems
Multiple-process Oracle (also called multiuser Oracle) uses several processes to run
different parts of the Oracle Database code and additional processes for the
users—either one process for each connected user or one or more processes shared by
multiple users. Most databases are multiuser because a primary advantages of a
database is managing data needed by multiple users simultaneously.

See Also: "Tools for Database Administrators" on page 18-2 and
"Tools for Database Developers" on page 19-1

Introduction to Processes

15-2 Oracle Database Concepts

Each process in a database instance performs a specific job. By dividing the work of
the database and applications into several processes, multiple users and applications
can connect to an instance simultaneously while the system gives good performance.

Types of Processes
A database instance contains or interacts with the following types of processes:

■ Client processes run the application or Oracle tool code.

■ Oracle processes run the Oracle database code. Oracle processes including the
following subtypes:

– Background processes start with the database instance and perform
maintenance tasks such as performing instance recovery, cleaning up
processes, writing redo buffers to disk, and so on.

– Server processes perform work based on a client request.

For example, these processes parse SQL queries, place them in the shared
pool, create and execute a query plan for each query, and read buffers from
the database buffer cache or from disk.

– Slave processes perform additional tasks for a background or server process.

The process structure varies depending on the operating system and the choice of
Oracle Database options. For example, the code for connected users can be configured
for dedicated server or shared server connections. In a shared server architecture, each
server process that runs database code can serve multiple client processes.

Figure 15–1 shows a system global area (SGA) and background processes using
dedicated server connections. For each user connection, the application is run by a
client process that is different from the dedicated server process that runs the database
code. Each client process is associated with its own server process, which has its own
program global area (PGA).

Note: Server processes, and the process memory allocated in these
processes, run in the instance. The instance continues to function
when server processes terminate.

Overview of Client Processes

Process Architecture 15-3

Figure 15–1 Oracle Processes and the SGA

Overview of Client Processes
When a user runs an application such as a Pro*C program or SQL*Plus, the operating
system creates a client process (sometimes called a user process) to run the user
application. The client application has Oracle Database libraries linked into it that
provide the APIs required to communicate with the database.

See Also:

■ "Dedicated Server Architecture" on page 16-9 and "Shared
Server Architecture" on page 16-11

■ Your Oracle Database operating system-specific documentation
for more details on configuration choices

■ Oracle Database Reference to learn about the V$PROCESS view

System Global Area (SGA)

Large Pool

Instance

UGA
I/O Buffer Area
Free Memory

Large Pool

Response
Queue

Request
Queue

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

SELECT * FROM
 employees

Background
Processes

Client
Process

PMON

SMON

RECO

MMON

MMNL

Others

Database
Buffer Cache Redo

Log
Buffer

ARCn RVWRLGWRCKPTDBWn

Java
Pool

Streams
Pool

Fixed
SGA

Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

Overview of Client Processes

15-4 Oracle Database Concepts

Client and Server Processes
Client processes differ in important ways from the Oracle processes interacting
directly with the instance. The Oracle processes servicing the client process can read
from and write to the SGA, whereas the client process cannot. A client process can run
on a host other than the database host, whereas Oracle processes cannot.

For example, assume that a user on a client host starts SQL*Plus and connects over the
network to database sample on a different host (the database instance is not started):

SQL> CONNECT SYS@inst1 AS SYSDBA
Enter password: *********
Connected to an idle instance.

On the client host, a search of the processes for either sqlplus or sample shows only
the sqlplus client process:

% ps -ef | grep -e sample -e sqlplus | grep -v grep
clientuser 29437 29436 0 15:40 pts/1 00:00:00 sqlplus as sysdba

On the database host, a search of the processes for either sqlplus or sample shows a
server process with a nonlocal connection, but no client process:

% ps -ef | grep -e sample -e sqlplus | grep -v grep
serveruser 29441 1 0 15:40 ? 00:00:00 oraclesample (LOCAL=NO)

Connections and Sessions
A connection is a physical communication pathway between a client process and a
database instance. A communication pathway is established using available
interprocess communication mechanisms or network software. Typically, a connection
occurs between a client process and a server process or dispatcher, but it can also occur
between a client process and Oracle Connection Manager (CMAN).

A session is a logical entity in the database instance memory that represents the state
of a current user login to a database. For example, when a user is authenticated by the
database with a password, a session is established for this user. A session lasts from
the time the user is authenticated by the database until the time the user disconnects or
exits the database application.

A single connection can have 0, 1, or more sessions established on it. The sessions are
independent: a commit in one session does not affect transactions in other sessions.

Multiple sessions can exist concurrently for a single database user. As shown in
Figure 15–2, user hr can have multiple connections to a database. In dedicated server
connections, the database creates a server process on behalf of each connection. Only
the client process that causes the dedicated server to be created uses it. In a shared
server connection, many client processes access a single shared server process.

Note: If Oracle Net connection pooling is configured, then it is
possible for a connection to drop but leave the sessions intact.

Overview of Client Processes

Process Architecture 15-5

Figure 15–2 One Session for Each Connection

Figure 15–3 illustrates a case in which user hr has a single connection to a database,
but this connection has two sessions.

Figure 15–3 Two Sessions in One Connection

Generating an autotrace report of SQL statement execution statistics re-creates the
scenario in Figure 15–3. Example 15–2 connects SQL*Plus to the database as user
SYSTEM and enables tracing, thus creating a new session (sample output included).

Example 15–1 One Connection with Two Sessions

SQL> SELECT SID, SERIAL#, PADDR FROM V$SESSION WHERE USERNAME = USER;

SID SERIAL# PADDR
--- ------- --------
 90 91 3BE2E41C

SQL> SET AUTOTRACE ON STATISTICS;
SQL> SELECT SID, SERIAL#, PADDR FROM V$SESSION WHERE USERNAME = USER;

SID SERIAL# PADDR
--- ------- --------
 88 93 3BE2E41C
 90 91 3BE2E41C
...
SQL> DISCONNECT

Connection 1

Connection 2

User hr

User hr

Session

Session

Server
Process

Server
Process

Client
Process

Client
Process

Session

Session

Server
Process

Client
Process

Connection

User hr

Overview of Server Processes

15-6 Oracle Database Concepts

The DISCONNECT command in Example 15–1 actually ends the sessions, not the
connection. Opening a new terminal and connecting to the instance as a different user,
the query in Example 15–2 shows that the connection from Example 15–1 is still active.

Example 15–2 Connection with No Sessions

SQL> CONNECT dba1@inst1
Password: ********
Connected.
SQL> SELECT PROGRAM FROM V$PROCESS WHERE ADDR = HEXTORAW('3BE2E41C');

PROGRAM
--
oracle@stbcs09-1 (TNS V1-V3)

Overview of Server Processes
Oracle Database creates server processes to handle the requests of client processes
connected to the instance. A client process always communicates with a database
through a separate server process.

Server processes created on behalf of a database application can perform one or more
of the following tasks:

■ Parse and run SQL statements issued through the application, including creating
and executing the query plan (see "Stages of SQL Processing" on page 7-15)

■ Execute PL/SQL code

■ Read data blocks from data files into the database buffer cache (the DBWn
background process has the task of writing modified blocks back to disk)

■ Return results in such a way that the application can process the information

Dedicated Server Processes
In dedicated server connections, the client connection is associated with one and only
one server process (see "Dedicated Server Architecture" on page 16-9). On Linux, 20
client processes connected to a database instance are serviced by 20 server processes.

Each client process communicates directly with its server process. This server process
is dedicated to its client process for the duration of the session. The server process
stores process-specific information and the UGA in its PGA (see "PGA Usage in
Dedicated and Shared Server Modes" on page 14-7).

Shared Server Processes
In shared server connections, client applications connect over a network to a
dispatcher process, not a server process (see "Shared Server Architecture" on
page 16-11). For example, 20 client processes can connect to a single dispatcher
process.

The dispatcher process receives requests from connected clients and puts them into a
request queue in the large pool (see "Large Pool" on page 14-21). The first available
shared server process takes the request from the queue and processes it. Afterward,
the shared server place the result into the dispatcher response queue. The dispatcher
process monitors this queue and transmits the result to the client.

See Also: "Shared Server Architecture" on page 16-11

Overview of Background Processes

Process Architecture 15-7

Like a dedicated server process, a shared server process has its own PGA. However,
the UGA for a session is in the SGA so that any shared server can access session data.

Overview of Background Processes
A multiprocess Oracle database uses some additional processes called background
processes. The background processes perform maintenance tasks required to operate
the database and to maximize performance for multiple users.

Each background process has a separate task, but works with the other processes. For
example, the LGWR process writes data from the redo log buffer to the online redo
log. When a filled log file is ready to be archived, LGWR signals another process to
archive the file.

Oracle Database creates background processes automatically when a database instance
starts. An instance can have many background processes, not all of which always exist
in every database configuration. The following query lists the background processes
running on your database:

SELECT PNAME
FROM V$PROCESS
WHERE PNAME IS NOT NULL
ORDER BY PNAME;

This section includes the following topics:

■ Mandatory Background Processes

■ Optional Background Processes

■ Slave Processes

Mandatory Background Processes
The mandatory background processes are present in all typical database
configurations. These processes run by default in a database instance started with a
minimally configured initialization parameter file (see Example 13–1 on page 13-20).

This section describes the following mandatory background processes:

■ Process Monitor Process (PMON)

■ System Monitor Process (SMON)

■ Database Writer Process (DBWn)

■ Log Writer Process (LGWR)

■ Checkpoint Process (CKPT)

■ Manageability Monitor Processes (MMON and MMNL)

■ Recoverer Process (RECO)

See Also: Oracle Database Reference for descriptions of all the
background processes

Overview of Background Processes

15-8 Oracle Database Concepts

Process Monitor Process (PMON)
The process monitor (PMON) monitors the other background processes and performs
process recovery when a server or dispatcher process terminates abnormally. PMON is
responsible for cleaning up the database buffer cache and freeing resources that the
client process was using. For example, PMON resets the status of the active
transaction table, releases locks that are no longer required, and removes the process
ID from the list of active processes.

PMON also registers information about the instance and dispatcher processes with the
Oracle Net listener (see "The Oracle Net Listener" on page 16-6). When an instance
starts, PMON polls the listener to determine whether it is running. If the listener is
running, then PMON passes it relevant parameters. If it is not running, then PMON
periodically attempts to contact it.

System Monitor Process (SMON)
The system monitor process (SMON) is in charge of a variety of system-level cleanup
duties. The duties assigned to SMON include:

■ Performing instance recovery, if necessary, at instance startup. In an Oracle RAC
database, the SMON process of one database instance can perform instance
recovery for a failed instance.

■ Recovering terminated transactions that were skipped during instance recovery
because of file-read or tablespace offline errors. SMON recovers the transactions
when the tablespace or file is brought back online.

■ Cleaning up unused temporary segments. For example, Oracle Database allocates
extents when creating an index. If the operation fails, then SMON cleans up the
temporary space.

■ Coalescing contiguous free extents within dictionary-managed tablespaces.

SMON checks regularly to see whether it is needed. Other processes can call SMON if
they detect a need for it.

Database Writer Process (DBWn)
The database writer process (DBWn) writes the contents of database buffers to data
files. DBWn processes write modified buffers in the database buffer cache to disk (see
"Database Buffer Cache" on page 14-9).

Although one database writer process (DBW0) is adequate for most systems, you can
configure additional processes—DBW1 through DBW9 and DBWa through DBWj—to
improve write performance if your system modifies data heavily. These additional
DBWn processes are not useful on uniprocessor systems.

The DBWn process writes dirty buffers to disk under the following conditions:

See Also:

■ Oracle Database Reference for descriptions of other mandatory
processes, including MMAN, DIAG, VKTM, DBRM, and PSP0

■ Oracle Real Application Clusters Administration and Deployment
Guide and Oracle Clusterware Administration and Deployment Guide
for more information about background processes specific to
Oracle RAC and Oracle Clusterware

Overview of Background Processes

Process Architecture 15-9

■ When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty buffers
to disk asynchronously if possible while performing other processing.

■ DBWn periodically writes buffers to advance the checkpoint, which is the position
in the redo thread from which instance recovery begins (see "Overview of
Checkpoints" on page 13-11). The log position of the checkpoint is determined by
the oldest dirty buffer in the buffer cache.

In many cases the blocks that DBWn writes are scattered throughout the disk. Thus,
the writes tend to be slower than the sequential writes performed by LGWR. DBWn
performs multiblock writes when possible to improve efficiency. The number of blocks
written in a multiblock write varies by operating system.

Log Writer Process (LGWR)
The log writer process (LGWR) manages the redo log buffer. LGWR writes one
contiguous portion of the buffer to the online redo log. By separating the tasks of
modifying database buffers, performing scattered writes of dirty buffers to disk, and
performing fast sequential writes of redo to disk, the database improves performance.

In the following circumstances, LGWR writes all redo entries that have been copied
into the buffer since the last time it wrote:

■ A user commits a transaction (see "Committing Transactions" on page 10-10).

■ An online redo log switch occurs.

■ Three seconds have passed since LGWR last wrote.

■ The redo log buffer is one-third full or contains 1 MB of buffered data.

■ DBWn must write modified buffers to disk.

Before DBWn can write a dirty buffer, redo records associated with changes to the
buffer must be written to disk (the write-ahead protocol). If DBWn finds that
some redo records have not been written, it signals LGWR to write the records to
disk and waits for LGWR to complete before writing the data buffers to disk.

LGWR and Commits Oracle Database uses a fast commit mechanism to improve
performance for committed transactions. When a user issues a COMMIT statement, the
transaction is assigned a system change number (SCN). LGWR puts a commit record
in the redo log buffer and writes it to disk immediately, along with the commit SCN
and transaction's redo entries.

The redo log buffer is circular. When LGWR writes redo entries from the redo log
buffer to an online redo log file, server processes can copy new entries over the entries
in the redo log buffer that have been written to disk. LGWR normally writes fast
enough to ensure that space is always available in the buffer for new entries, even
when access to the online redo log is heavy.

The atomic write of the redo entry containing the transaction's commit record is the
single event that determines the transaction has committed. Oracle Database returns a
success code to the committing transaction although the data buffers have not yet been
written to disk. The corresponding changes to data blocks are deferred until it is
efficient for DBWn to write them to the data files.

See Also: Oracle Database Performance Tuning Guide for advice on
configuring, monitoring, and tuning DBWn

Overview of Background Processes

15-10 Oracle Database Concepts

When activity is high, LGWR can use group commits. For example, a user commits,
causing LGWR to write the transaction's redo entries to disk. During this write other
users commit. LGWR cannot write to disk to commit these transactions until its
previous write completes. Upon completion, LGWR can write the list of redo entries of
waiting transactions (not yet committed) in one operation. In this way, the database
minimizes disk I/O and maximizes performance. If commits requests continue at a
high rate, then every write by LGWR can contain multiple commit records.

LGWR and Inaccessible Files LGWR writes synchronously to the active mirrored group
of online redo log files. If a log file is inaccessible, then LGWR continues writing to
other files in the group and writes an error to the LGWR trace file and the alert log. If
all files in a group are damaged, or if the group is unavailable because it has not been
archived, then LGWR cannot continue to function.

Checkpoint Process (CKPT)
The checkpoint process (CKPT) updates the control file and data file headers with
checkpoint information and signals DBWn to write blocks to disk. Checkpoint
information includes the checkpoint position, SCN, location in online redo log to begin
recovery, and so on. As shown in Figure 15–4, CKPT does not write data blocks to data
files or redo blocks to online redo log files.

Note: LGWR can write redo log entries to disk before a transaction
commits. The redo entries become permanent only if the transaction
later commits.

See Also:

■ "How Oracle Database Writes to the Online Redo Log" on
page 11-12 and "Redo Log Buffer" on page 14-14

■ Oracle Database Performance Tuning Guide for information about
how to monitor and tune the performance of LGWR

Overview of Background Processes

Process Architecture 15-11

Figure 15–4 Checkpoint Process

Manageability Monitor Processes (MMON and MMNL)
The manageability monitor process (MMON) performs many tasks related to the
Automatic Workload Repository (AWR). For example, MMON writes when a metric
violates its threshold value, taking snapshots, and capturing statistics value for
recently modified SQL objects.

The manageability monitor lite process (MMNL) writes statistics from the Active
Session History (ASH) buffer in the SGA to disk. MMNL writes to disk when the ASH
buffer is full.

Recoverer Process (RECO)
In a distributed database, the recoverer process (RECO) automatically resolves
failures in distributed transactions. The RECO process of a node automatically
connects to other databases involved in an in-doubt distributed transaction. When
RECO reestablishes a connection between the databases, it automatically resolves all
in-doubt transactions, removing from each database's pending transaction table any
rows that correspond to the resolved transactions.

Optional Background Processes
An optional background process is any background process not defined as
mandatory. Most optional background processes are specific to tasks or features. For
example, background processes that support Oracle Streams Advanced Queuing (AQ)

See Also: "Overview of Checkpoints" on page 13-11

See Also: "Automatic Workload Repository (AWR)" on page 18-21
and "Active Session History (ASH)" on page 18-23

See Also: Oracle Database Administrator's Guide for more information
about transaction recovery in distributed systems

Data File
Body

101011010110101
1010110101

Control
Files

1010110101
10101

Data File
Header

CKPT DBWn

System Global Area
(SGA)

Database
Buffer Cache

Overview of Background Processes

15-12 Oracle Database Concepts

or Oracle Automatic Storage Management (Oracle ASM) are only available when
these features are enabled.

This section describes some common optional processes:

■ Archiver Processes (ARCn)

■ Job Queue Processes (CJQ0 and Jnnn)

■ Flashback Data Archiver Process (FBDA)

■ Space Management Coordinator Process (SMCO)

Archiver Processes (ARCn)
The archiver processes (ARCn) copy online redo log files to offline storage after a redo
log switch occurs. These processes can also collect transaction redo data and transmit
it to standby database destinations. ARCn processes exist only when the database is in
ARCHIVELOG mode and automatic archiving is enabled.

Job Queue Processes (CJQ0 and Jnnn)
Oracle Database uses job queue processes to run user jobs, often in batch mode. A job
is a user-defined task scheduled to run one or more times. For example, you can use a
job queue to schedule a long-running update in the background. Given a start date
and a time interval, the job queue processes attempt to run the job at the next
occurrence of the interval.

Oracle Database manages job queue processes dynamically, thereby enabling job
queue clients to use more job queue processes when required. The database releases
resources used by the new processes when they are idle.

Dynamic job queue processes can run a large number of jobs concurrently at a given
interval. The sequence of events is as follows:

1. The job coordinator process (CJQ0) is automatically started and stopped as
needed by Oracle Scheduler (see "Oracle Scheduler" on page 18-19). The
coordinator process periodically selects jobs that need to be run from the system
JOB$ table. New jobs selected are ordered by time.

2. The coordinator process dynamically spawns job queue slave processes (Jnnn) to
run the jobs.

3. The job queue process runs one of the jobs that was selected by the CJQ0 process
for execution. Each job queue process runs one job at a time to completion.

4. After the process finishes execution of a single job, it polls for more jobs. If no jobs
are scheduled for execution, then it enters a sleep state, from which it wakes up at

See Also:

■ "Oracle Streams Advanced Queuing (AQ)" on page 17-23

■ Oracle Database Reference for descriptions of background processes
specific to AQ and ASM

See Also:

■ "Archived Redo Log Files" on page 11-15

■ Oracle Database Administrator's Guide to learn how to adjust the
number of archiver processes

■ Oracle Database Performance Tuning Guide to learn how to tune
archiver performance

Overview of Background Processes

Process Architecture 15-13

periodic intervals and polls for more jobs. If the process does not find any new
jobs, then it terminates after a preset interval.

The initialization parameter JOB_QUEUE_PROCESSES represents the maximum number
of job queue processes that can concurrently run on an instance. However, clients
should not assume that all job queue processes are available for job execution.

Flashback Data Archiver Process (FBDA)
The flashback data archiver process (FBDA) archives historical rows of tracked tables
into Flashback Data Archives. When a transaction containing DML on a tracked table
commits, this process stores the pre-image of the rows into the Flashback Data
Archive. It also keeps metadata on the current rows.

FBDA automatically manages the flashback data archive for space, organization, and
retention. Additionally, the process keeps track of how far the archiving of tracked
transactions has occurred.

Space Management Coordinator Process (SMCO)
The SMCO process coordinates the execution of various space management related
tasks, such as proactive space allocation and space reclamation. SMCO dynamically
spawns slave processes (Wnnn) to implement the task.

Slave Processes
Slave processes are background processes that perform work on behalf of other
processes. This section describes some slave processes used by Oracle Database.

I/O Slave Processes
I/O slave processes (Innn) simulate asynchronous I/O for systems and devices that
do not support it. In asynchronous I/O, there is no timing requirement for
transmission, enabling other processes to start before the transmission has finished.

For example, assume that an application writes 1000 blocks to a disk on an operating
system that does not support asynchronous I/O. Each write occurs sequentially and
waits for a confirmation that the write was successful. With asynchronous disk, the
application can write the blocks in bulk and perform other work while waiting for a
response from the operating system that all blocks were written.

Note: The coordinator process is not started if the initialization
parameter JOB_QUEUE_PROCESSES is set to 0.

See Also:

■ Oracle Database Administrator's Guide to learn about Oracle
Scheduler jobs

■ Oracle Streams Advanced Queuing User's Guide to learn about AQ
background processes

See Also: Oracle Database Advanced Application Developer's Guide to
learn about Flashback Data Archive

See Also: Oracle Database Reference for descriptions of Oracle
Database slave processes

Overview of Background Processes

15-14 Oracle Database Concepts

To simulate asynchronous I/O, one process oversees several slave processes. The
invoker process assigns work to each of the slave processes, who wait for each write
to complete and report back to the invoker when done. In true asynchronous I/O the
operating system waits for the I/O to complete and reports back to the process, while
in simulated asynchronous I/O the slaves wait and report back to the invoker.

The database supports different types of I/O slaves, including the following:

■ I/O slaves for Recovery Manager (RMAN)

When using RMAN to back up or restore data, you can make use of I/O slaves for
both disk and tape devices.

■ Database writer slaves

If it is not practical to use multiple database writer processes, such as when the
computer has one CPU, then the database can distribute I/O over multiple slave
processes. DBWR is the only process that scans the buffer cache LRU list for blocks
to be written to disk. However, I/O slaves perform the I/O for these blocks.

Parallel Query Slaves
In parallel execution or parallel processing, multiple processes work together
simultaneously to run a single SQL statement. By dividing the work among multiple
processes, Oracle Database can run the statement more quickly. For example, four
processes handle four different quarters in a year instead of one process handling all
four quarters by itself.

Parallel execution reduces response time for data-intensive operations on large
databases such as data warehouses. Symmetric multiprocessing (SMP) and clustered
system gain the largest performance benefits from parallel execution because
statement processing can be split up among multiple CPUs. Parallel execution can also
benefit certain types of OLTP and hybrid systems.

In Oracle RAC systems, the service placement of a particular service controls parallel
execution. Specifically, parallel processes run on the nodes on which you have
configured the service. By default, Oracle Database runs the parallel process only on
the instance that offers the service used to connect to the database. This does not affect
other parallel operations such as parallel recovery or the processing of GV$ queries.

Serial Execution In serial execution, a single server process performs all necessary
processing for the sequential execution of a SQL statement. For example, to perform a
full table scan such as SELECT * FROM employees, one server process performs all of the
work, as shown in Figure 15–5.

See Also:

■ Oracle Database Backup and Recovery User's Guide to learn more
about I/O slaves for backup and restore operations

■ Oracle Database Performance Tuning Guide to learn more about
database writer slaves

See Also:

■ Oracle Database Data Warehousing Guide and Oracle Database VLDB
and Partitioning Guide to learn more about parallel execution

■ Oracle Real Application Clusters Administration and Deployment
Guide for considerations regarding parallel execution in Oracle
RAC environments

Overview of Background Processes

Process Architecture 15-15

Figure 15–5 Serial Full Table Scan

Parallel Execution In parallel execution, the server process acts as the parallel execution
coordinator responsible for parsing the query, allocating and controlling the slave
processes, and sending output to the user. Given a query plan for a SQL query, the
coordinator breaks down each operator in a SQL query into parallel pieces, runs them
in the order specified in the query, and integrates the partial results produced by the
slave processes executing the operators.

Figure 15–6 shows a parallel scan of the employees table. The table is divided
dynamically (dynamic partitioning) into load units called granules. Each granule is a
range of data blocks of the table read by a single slave process, called a parallel
execution server, which uses Pnnn as a name format.

Figure 15–6 Parallel Full Table Scan

The database maps granules to execution servers at execution time. When an execution
server finishes reading the rows corresponding to a granule, and when granules
remain, it obtains another granule from the coordinator. This operation continues until
the table has been read. The execution servers send results back to the coordinator,
which assembles the pieces into the desired full table scan.

The number of parallel execution servers assigned to a single operation is the degree
of parallelism for an operation. Multiple operations within the same SQL statement all
have the same degree of parallelism.

See Also:

■ Oracle Database VLDB and Partitioning Guide to learn how to use
parallel execution

■ Oracle Database Data Warehousing Guide to learn about
recommended initialization parameters for parallelism

SELECT COUNT(*)
FROM employees
WHERE phone_number LIKE '650%';

employees Table

Serial Process

Server
Process

SELECT COUNT(*)
FROM employees
WHERE phone_number LIKE '650%';

Parallel Execution
Coordinator

Parallel Execution
Server Processes

employees Table

Granules

Server
Process

Server
Process

Server
Process

Server
Process

Overview of Background Processes

15-16 Oracle Database Concepts

16

Application and Networking Architecture 16-1

16 Application and Networking Architecture

This chapter defines application architecture and describes how an Oracle database
and database applications work in a distributed processing environment. This material
applies to almost every type of Oracle Database environment.

This chapter contains the following sections:

■ Overview of Oracle Application Architecture

■ Overview of Oracle Networking Architecture

■ Overview of the Program Interface

Overview of Oracle Application Architecture
In the context of this chapter, application architecture refers to the computing
environment in which a database application connects to an Oracle database.

Overview of Client/Server Architecture
In the Oracle Database environment, the database application and the database are
separated into a client/server architecture:

■ The client runs the database application, for example, SQL*Plus or a Visual Basic
data entry program, that accesses database information and interacts with a user.

■ The server runs the Oracle Database software and handles the functions required
for concurrent, shared data access to an Oracle database.

Although the client application and database can run on the same computer, greater
efficiency is often achieved when the client portions and server portion are run by
different computers connected through a network. The following sections discuss
variations in the Oracle Database client/server architecture.

Distributed Processing
Using multiple hosts to process an individual task is known as distributed processing.
Front-end and back-end processing occurs on different computers. In Figure 16–1, the
client and server are located on different hosts connected through Oracle Net Services.

Overview of Oracle Application Architecture

16-2 Oracle Database Concepts

Figure 16–1 Client/Server Architecture and Distributed Processing

Figure 16–2 is a variation that depicts a distributed database. In this example, a
database on one host accesses data on a separate database located on a different host.

Figure 16–2 Client/Server Architecture and Distributed Database

Advantages of a Client/Server Architecture
Oracle Database client/server architecture in a distributed processing environment
provides the following benefits:

■ Client applications are not responsible for performing data processing. Rather,
they request input from users, request data from the server, and then analyze and
present this data using the display capabilities of the client workstation or the
terminal (for example, using graphics or spreadsheets).

Note: This rest of this chapter applies to environments with one
database on one server.

Network

Database Server

Client Client

Network

Client Client

Network

Database Server Database Server

Overview of Oracle Application Architecture

Application and Networking Architecture 16-3

■ Client applications are not dependent on the physical location of the data. Even if
the data is moved or distributed to other database servers, the application
continues to function with little or no modification.

■ Oracle Database exploits the multitasking and shared-memory facilities of its
underlying operating system. As a result, it delivers the highest possible degree of
concurrency, data integrity, and performance to its client applications.

■ Client workstations or terminals can be optimized for the presentation of data (for
example, by providing graphics and mouse support), while the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

■ In networked environments, you can use inexpensive client workstations to access
the remote data of the server effectively.

■ The database can be scaled as your system grows. You can add multiple servers to
distribute the database processing load throughout the network (horizontally
scaled), or you can move the database to a minicomputer or mainframe to take
advantage of a larger system's performance (vertically scaled). In either case, data
and applications are maintained with little or no modification because Oracle
Database is portable between systems.

■ In networked environments, shared data is stored on the servers rather than on all
computers, making it easier and more efficient to manage concurrent access.

■ In networked environments, client applications submit database requests to the
server using SQL statements. After it is received, each SQL statement is processed
by the server, which returns results to the client. Network traffic is minimized
because only the requests and the results are shipped over the network.

Overview of Multitier Architecture
In a traditional multitier architecture environment, an application server provides data
for clients and serves as an interface between clients and database servers. This
architecture enables use of an application server to:

■ Validate the credentials of a client, such as a Web browser

■ Connect to a database server

■ Perform the requested operation

An example of a multitier architecture appears in Figure 16–3.

See Also: Oracle Database Administrator's Guide to learn more about
distributed databases

Overview of Oracle Application Architecture

16-4 Oracle Database Concepts

Figure 16–3 A Multitier Architecture Environment

Clients
A client initiates a request for an operation to be performed on the database server.
The client can be a Web browser or other end-user program. In a multitier architecture,
the client connects to the database server through one or more application servers.

Application Servers
An application server provides access to the data for the client. It serves as an interface
between the client and one or more database servers, and hosts the applications.

An application server permits thin clients, which are clients equipped with minimal
software configurations, to access applications without requiring ongoing maintenance
of the client computers. The application server can also perform some data
reformatting for the client, reducing the load on the client workstation.

The application server assumes the identity of the client when it is performing
operations on the database server for that client. The privileges of the application
server should be restricted to prevent it from performing unneeded and unwanted
operations during a client operation.

Database Servers
A database server provides the data requested by an application server on behalf of a
client. The database performs all of the query processing.

The database server can audit operations performed by the application server on
behalf of clients and operations performed by the application server on its own behalf
(see "Monitoring" on page 17-5). For example, a client operation can request
information to display on the client, while an application server operation can request
a connection to the database server.

Database Server

Database Server

Thin Client

Thin Client

Thin Client

Application
Server 1

Database Server

Database Server

Application
Server n

Database Server

Database Server

Application
Server 2

Request

Query

Data

Overview of Oracle Networking Architecture

Application and Networking Architecture 16-5

Service Oriented Architecture (SOA)
The database can serve as a Web service provider in traditional multitier or
service-oriented architecture (SOA) environments. SOA is a multitier architecture
relying on services that support computer-to-computer interaction over a network.
The services can be dynamically discovered and queried on available functions and
calling sequences.

SOA services are usually implemented as Web services accessible through the HTTP
protocol. They are based on XML standards such as WSDL and SOAP.

The Oracle Database Web service capability, which is implemented as part of XML DB,
must be specifically enabled by the DBA. Applications can then accomplish the
following through database Web services:

■ Submit SQL or XQuery queries and receive results as XML

■ Invoke standalone PL/SQL functions and receive results (see "PL/SQL
Subprograms" on page 8-3)

■ Invoke PL/SQL package functions and receive results

Database Web services provide a simple way to add Web services to an application
environment without the need for an application server. However, invoking Web
services through application servers such as Oracle Fusion Middleware offers security,
scalability, UDDI registration, and reliable messaging in an SOA environment.
However, because database Web services integrate easily with Oracle Fusion
Middleware, they may be appropriate for optimizing SOA solutions.

Overview of Grid Architecture
In an Oracle Database environment, grid computing is a computing architecture that
effectively pools large numbers of servers and storage into a flexible, on-demand
computing resource. Modular hardware and software components can be connected
and rejoined on demand to meet the changing needs of businesses.

Overview of Oracle Networking Architecture
Oracle Net Services is a suite of networking components that provides
enterprise-wide connectivity solutions in distributed, heterogeneous computing
environments. Oracle Net Services enables a network session from an application to a
database instance and a database instance to another database instance.

Oracle Net Services provides location transparency, centralized configuration and
management, and quick installation and configuration. It also lets you maximize
system resources and improve performance. The Oracle Database shared server
architecture increases the scalability of applications and the number of clients
simultaneously connected to the database. The Virtual Interface (VI) protocol places
most of the messaging burden on high-speed network hardware, freeing the CPU.

See Also:

■ Oracle XML DB Developer's Guide for information on enabling and
using database Web services

■ Oracle Fusion Middleware documentation for more information
on SOA and Web services

See Also: "Overview of Grid Computing" on page 17-11 for more
detailed information about server and storage grids

Overview of Oracle Networking Architecture

16-6 Oracle Database Concepts

Oracle Net Services uses the communication protocols or application programmatic
interfaces (APIs) supported by a wide range of networks to provide distributed
database and distributed processing. After a network session is established, Oracle Net
Services acts as a data courier for the client application and the database server,
establishing and maintaining a connection and exchanging messages. Oracle Net
Services can perform these tasks because it exists on each computer in the network.

How Oracle Net Services Works
Oracle Database protocols take SQL statements from the interface of the Oracle
applications and package them for transmission to Oracle Database through a
supported industry-standard higher level protocol or API. Replies from Oracle
Database are packaged through the same higher level communications mechanism.
This work occurs independently of the network operating system.

Depending on the operating system that runs Oracle Database, the Oracle Net Services
software of the database server could include the driver software and start an
additional background process.

The Oracle Net Listener
The Oracle Net Listener, also called the listener, is a server-side process that listens
for incoming client connection requests and manages traffic to the database. When a
database instance starts, and at various times during its life, the instance contacts a
listener and establishes a communication pathway to this instance.

Service registration enables the listener to determine whether a database service and
its service handlers are available. A service handler is a dedicated server process or
dispatcher that acts as a connection point to a database. During registration, the
PMON process provides the listener with the instance name, database service names,
and the type and addresses of service handlers. This information enables the listener to
start a service handler when a client request arrives.

Figure 16–4 shows two databases, each on a separate host. The database environment
is serviced by two listeners, each on a separate host. The PMON process running in
each database instance communicates with both listeners to register the database.

See Also: Oracle Database Net Services Administrator's Guide for an
overview of Oracle Net architecture

See Also: Oracle Database Net Services Administrator's Guide for
more information about how Oracle Net Services works

Overview of Oracle Networking Architecture

Application and Networking Architecture 16-7

Figure 16–4 shows a browser making an HTTP connection and a client making a
database connection through a listener. The listener does not need to reside on the
database host.

Figure 16–4 Listener Architecture

The basic steps by which a client establishes a connection through a listener are:

1. A client process or another database requests a connection.

2. The listener selects an appropriate service handler to service the client request and
forwards the request to the handler.

3. The client process connects directly to the service handler. The listener is no longer
involved in the communication.

Database
Server

Database
Server

Database Instance

Database Instance

Service names, instance names,
network addresses

Listener

Listener

Database

Database

PMON

PMON

Client

2
1

3

3

Database

Client

Web
Browser

HTTP(S)
Presentation

over TCP/IP

Database
Connection

over TCP/IP

Listener

Overview of Oracle Networking Architecture

16-8 Oracle Database Concepts

Service Names
In the context of net services, a service is a set of one or more database instances. A
service name is a logical representation of a service used for client connections.

When a client connects to a listener, it requests a connection to a service. When a
database instance starts, it registers itself with a listener as providing one or more
services by name. Thus, the listener acts as a mediator between the client and instances
and routes the connection request to the right place.

A single service, as known by a listener, can identify one or more database instances.
Also, a single database instance can register one or more services with a listener.
Clients connecting to a service need not specify which instance they require.

Figure 16–5 shows one single-instance database associated with two services,
book.example.com and soft.example.com. The services enable the same database to
be identified differently by different clients. A database administrator can limit or
reserve system resources, permitting better resource allocation to clients requesting
one of these services.

Figure 16–5 Multiple Services Associated with One Database

Service Registration
Service registration is a feature by which the PMON process dynamically registers
instance information with a listener, which enables the listener to forward client
connection requests to the appropriate service handler. PMON provides the listener
with information about the following:

See Also: "Overview of Client Processes" on page 15-3 and
"Overview of Server Processes" on page 15-6

See Also: Oracle Database Net Services Administrator's Guide to learn
more about naming methods

book.example.com

soft.example.com

Database
Host

HTTPS

HTTPS

HTTPS

Client

Client

Client

Database

Overview of Oracle Networking Architecture

Application and Networking Architecture 16-9

■ Names of the database services provided by the database

■ Name of the database instance associated with the services and its current and
maximum load

■ Service handlers (dispatchers and dedicated servers) available for the instance,
including their type, protocol addresses, and current and maximum load

Service registration is dynamic and does not require configuration in the listener.ora
file. Dynamic registration reduces administrative overhead for multiple databases or
instances.

The initialization parameter SERVICE_NAMES lists the services an instance belongs to.
On startup, each instance registers with the listeners of other instances belonging to
the same services. During database operations, the instances of each service pass
information about CPU use and current connection counts to all listeners in the same
services. This communication enables dynamic load balancing and connection failover.

Dedicated Server Architecture
In a dedicated server architecture, the server process created on behalf of each client
process is called a dedicated server process (or shadow process). This server process is
separate from the client process and acts only on its behalf, as shown in Figure 16–6.

See Also:

■ "Process Monitor Process (PMON)" on page 15-8

■ Oracle Database Net Services Administrator's Guide to learn more
about service registration

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn about instance registration and client/service
connections in Oracle RAC

Overview of Oracle Networking Architecture

16-10 Oracle Database Concepts

Figure 16–6 Oracle Database Using Dedicated Server Processes

A one-to-one ratio exists between the client processes and server processes. Even when
the user is not actively making a database request, the dedicated server process
remains—although it is inactive and can be paged out on some operating systems.

Figure 16–6 shows user and server processes running on networked computers.
However, the dedicated server architecture is also used if the same computer runs
both the client application and the database code but the host operating system could
not maintain the separation of the two programs if they were run in a single process.
Linux is an example of such an operating system.

In the dedicated server architecture, the user and server processes communicate using
different mechanisms:

■ If the client process and the dedicated server process run on the same computer,
then the program interface uses the host operating system's interprocess
communication mechanism to perform its job.

■ If the client process and the dedicated server process run on different computers,
then the program interface provides the communication mechanisms (such as the
network software and Oracle Net Services) between the programs.

Underutilized dedicated servers sometimes result in inefficient use of operating
system resources. Consider an order entry system with dedicated server processes. A
customer places an order as a clerk enters the order into the database. For most of the
transaction, the clerk is talking to the customer while the server process dedicated to
the clerk's client process is idle. The server process is not needed during most of the

System Global Area (SGA)

Instance

Shared Pool

Private
SQL Area
(Shared
Server Only)

Shared SQL Area

Library Cache

Data
Dictionary
Cache

Server
Result
Cache

Other Reserved
Pool

Client
Process

Dedicated Server
Process

Dedicated Server
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

Client
Process

PGA

Session Memory Private SQL Area

SQL Work Areas

TCP/IP Connection TCP/IP Connection

Overview of Oracle Networking Architecture

Application and Networking Architecture 16-11

transaction, and the system may be slower for other clerks entering orders if the
system is managing too many processes. For applications of this type, the shared
server architecture may be preferable.

Shared Server Architecture
In a shared server architecture, a dispatcher directs multiple incoming network
session requests to a pool of shared server processes, eliminating the need for a
dedicated server process for each connection. An idle shared server process from the
pool picks up a request from a common queue.

The potential benefits of shared server are as follows:

■ Reduces the number of processes on the operating system

A small number of shared servers can perform the same amount of processing as
many dedicated servers.

■ Reduces instance PGA memory

Every dedicated or shared server has a PGA. Fewer server processes means fewer
PGAs and less process management.

■ Increases application scalability and the number of clients that can simultaneously
connect to the database

■ May be faster than dedicated server when the rate of client connections and
disconnections is high

Shared server has several disadvantages, including slower response time in some
cases, incomplete feature support, and increased complexity for setup and tuning. As a
general guideline, only use shared server when you have more concurrent connections
to the database than the operating system can handle.

The following processes are needed in a shared server architecture:

■ A network listener that connects the client processes to dispatchers or dedicated
servers (the listener is part of Oracle Net Services, not Oracle Database)

■ One or more dispatcher process (Dnnn)

■ One or more shared server processes

Note that a database can support both shared server and dedicated server connections
simultaneously. For example, one client can connect using a dedicated server while a
different client connects to the same database using a shared server.

See Also: Oracle Database Net Services Administrator's Guide to learn
more about dedicated server processes

Note: To use shared servers, a client process must connect through
Oracle Net Services, even if the process runs on the same computer as
the Oracle Database instance.

See Also:

■ Oracle Database Net Services Administrator's Guide for more
information about the shared server architecture

■ Oracle Database Administrator's Guide to learn how to configure
a database for shared server

Overview of Oracle Networking Architecture

16-12 Oracle Database Concepts

Dispatcher Request and Response Queues
A request from a user is a single API call that is part of the user's SQL statement. When
a user makes a call, the following actions occur:

1. The dispatcher places the request on the request queue, where it is picked up by
the next available shared server process.

The request queue is in the SGA and is common to all dispatcher processes of an
instance (see "Large Pool" on page 14-21).

2. The shared server processes check the common request queue for new requests,
picking up new requests on a first-in-first-out basis.

3. One shared server process picks up one request in the queue and makes all
necessary calls to the database to complete this request.

A different server process can handle each database call. Therefore, requests to
parse a query, fetch the first row, fetch the next row, and close the result set may
each be processed by a different shared server.

4. When the server process completes the request, it places the response on the
calling dispatcher's response queue. Each dispatcher has its own response queue.

5. The dispatcher returns the completed request to the appropriate client process.

For example, in an order entry system, each clerk's client process connects to a
dispatcher. Each request made by the clerk is sent to this dispatcher, which places the
request in the queue. The next available shared server picks up the request, services it,
and puts the response in the response queue. When a request is completed, the clerk
remains connected to the dispatcher, but the shared server that processed the request is
released and available for other requests. While one clerk talks to a customer, another
clerk can use the same shared server process.

Figure 16–7 shows how client processes communicate with the dispatcher across the
API and how the dispatcher communicates user requests to shared server processes.

Overview of Oracle Networking Architecture

Application and Networking Architecture 16-13

Figure 16–7 The Shared Server Configuration and Processes

Dispatcher Processes (Dnnn) The dispatcher processes enable client processes to share a
limited number of server processes. You can create multiple dispatcher processes for a
single database instance. The optimum number of dispatcher processes depending on
the operating system limitation and the number of connections for each process.

Dispatcher processes establish communication as follows:

1. When an instance starts, the network listener process opens and establishes a
communication pathway through which users connect to Oracle Database.

2. Each dispatcher process gives the listener process an address at which the
dispatcher listens for connection requests.

At least one dispatcher process must be configured and started for each network
protocol that the database clients will use.

3. When a client process makes a connection request, the listener determines whether
the client process should use a shared server process:

■ If the listener determines that a shared server process is required, then the
listener returns the address of the dispatcher process that has the lightest load,
and the client process connects to the dispatcher directly.

■ If the process cannot communicate with the dispatcher, or if the client process
requests a dedicated server, then the listener creates a dedicated server and
establishes an appropriate connection.

Note: Each client process that connects to a dispatcher must use
Oracle Net Services, even if both processes run on the same host.

Instance

System Global Area (SGA)

Large Pool

Large Pool

Request
Queue

101011010110101
1010110101

Data
Files

Response
Queue

Shared
Server

Processes
Dispatcher

Client Server

Client

Overview of Oracle Networking Architecture

16-14 Oracle Database Concepts

Shared Server Processes (Snnn) Each shared server process serves multiple client
requests in the shared server configuration. Shared and dedicated server processes
provide the same functionality, except shared server processes are not associated with
a specific client process. Instead, a shared server process serves any client request in
the shared server configuration.

The PGA of a shared server process does not contain UGA data, which must be
accessible to all shared server processes (see "Overview of the Program Global Area"
on page 14-4). The shared server PGA contains only process-specific data.

All session-related information is contained in the SGA. Each shared server process
must be able to access all sessions' data spaces so that any server can handle requests
from any session. Space is allocated in the SGA for each session's data space.

Restricted Operations of the Shared Server
Certain administrative activities cannot be performed while connected to a dispatcher
process, including shutting down or starting an instance and media recovery. These
activities are typically performed when connected with administrator privileges. To
connect with administrator privileges in a system configured with shared servers, you
must specify that you want to use a dedicated server process.

Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool of
dedicated servers for typical Web application scenarios. A Web application typically
makes a database connection, uses the connection briefly, and then releases it. Through
DRCP, the database can scale to tens of thousands of simultaneous connections.

DRCP provides the following advantages:

■ Complements middle-tier connection pools that share connections between
threads in a middle-tier process.

■ Enables database connections to be shared across multiple middle-tier processes.
These middle-tier processes may belong to the same or different middle-tier host.

■ Enables a significant reduction in key database resources required to support
many client connections. For example, DRCP reduces the memory required for the
database and boosts the scalability of the database and middle tier. The pool of
available servers also reduces the cost of re-creating client connections.

■ Provides pooling for architectures with multi-process, single-threaded application
servers, such as PHP and Apache, that cannot do middle-tier connection pooling.

DRCP uses a pooled server, which is the equivalent of a dedicated server process (not
a shared server process) and a database session combined. The pooled server model
avoids the overhead of dedicating a server for every connection that requires the
server for a short period.

Clients obtaining connections from the database resident connection pool connect to
an Oracle background process known as the connection broker. The connection
broker implements the pool functionality and multiplexes pooled servers among
inbound connections from client processes.

See Also: Oracle Database Net Services Administrator's Guide to
learn how to configure dispatchers

See Also: Oracle Database Net Services Administrator's Guide for the
proper connect string syntax

Overview of the Program Interface

Application and Networking Architecture 16-15

As shown in Figure 16–8, when a client requires database access, the connection broker
picks up a server process from the pool and hands it off to the client. The client is
directly connected to the server process until the request is served. After the server has
finished, the server process is released into the pool. The connection from the client is
restored to the broker.

Figure 16–8 DRCP

In DRCP, releasing resources leaves the session intact, but no longer associated with a
connection (server process). Unlike in shared server, this session stores its UGA in the
PGA, not in the SGA. A client can reestablish a connection transparently upon
detecting activity.

Overview of the Program Interface
The program interface is the software layer between a database application and Oracle
Database. The program interface performs the following functions:

See Also:

■ "Connections and Sessions" on page 15-4

■ Oracle Database Administrator's Guide and Oracle Call Interface
Programmer's Guide to learn more about DRCP

Database

Database
Instance

Middle
Tier

Connection
BrokerServer

Process

Server
Process

handoff

Database
Server

Middle Tier
Client

Middle-Tier
Process

Persistent connections to
Connection Broker

After Handoff-Direct
connection

Middle-Tier
Process

Overview of the Program Interface

16-16 Oracle Database Concepts

■ Provides a security barrier, preventing destructive access to the SGA by client
client processes

■ Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

■ Converts and translates data, particularly between different types of computers or
to external user program data types

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. The program interface
consists of several parts, provided by both Oracle Database software and operating
system-specific software.

Program Interface Structure
The program interface consists of the following pieces:

■ Oracle call interface (OCI) or the Oracle run-time library (SQLLIB)

■ The client or user side of the program interface

■ Various Oracle Net Services drivers (protocol-specific communications software)

■ Operating system communications software

■ The server or Oracle Database side of the program interface (also called the OPI)

The user and Oracle Database sides of the program interface run Oracle software, as
do the drivers.

Program Interface Drivers
Drivers are pieces of software that transport data, usually across a network. They
perform operations such as connect, disconnect, signal errors, and test for errors.
Drivers are specific to a communications protocol.

There is always a default driver. You can install multiple drivers, such as the
asynchronous or DECnet drivers, and select one as the default driver, but allow a user
to use other drivers by specifying a driver when connecting.

Different processes can use different drivers. A process can have concurrent
connections to a single database or to multiple databases using different Oracle Net
Services drivers.

Communications Software for the Operating System
The lowest-level software connecting the user side to the Oracle Database side of the
program interface is the communications software, which is provided by the host
operating system. DECnet, TCP/IP, LU6.2, and ASYNC are examples. The
communication software can be supplied by Oracle, but it is usually purchased
separately from the hardware vendor or a third-party software supplier.

See Also:

■ Your system installation and configuration guide for details about
choosing, installing, and adding drivers

■ Oracle Database Net Services Administrator's Guide to learn about
JDBC drivers

Part VI
Part VI Oracle Database Administration and

Development

This part describes summarizes topics that are essential for database administrators
and developers.

This part contains the following chapters:

■ Chapter 17, "Topics for Database Administrators and Developers"

■ Chapter 18, "Concepts for Database Administrators"

■ Chapter 19, "Concepts for Database Developers"

17

Topics for Database Administrators and Developers 17-1

17Topics for Database Administrators and
Developers

The previous parts of this manual described the basic architecture of Oracle Database.
This chapter summarizes common database topics that are important for both
database administrators and developers, and provides pointers to other manuals, not
an exhaustive account of database features.

This chapter contains the following sections:

■ Overview of Database Security

■ Overview of High Availability

■ Overview of Grid Computing

■ Overview of Data Warehousing and Business Intelligence

■ Overview of Oracle Information Integration

Overview of Database Security
In general, database security involves user authentication, encryption, access control,
and monitoring.

User Accounts
Each Oracle database has a list of valid database users. The database contains several
default accounts, including the default administrative account SYSTEM (see "SYS and
SYSTEM Schemas" on page 2-5). You can create user accounts as needed.

To access a database, a user must provide a valid user name and authentication
credential. The credential may be a password, Kerberos ticket, or public key
infrastructure (PKI) certificate. You can configure database security to lock accounts
based on failed login attempts.

Privilege and Role Authorization
In general, database access control involves restricting data access and database
activities. For example, you can restrict users from querying specified tables or
executing specified database commands.

See Also: Chapter 18, "Concepts for Database Administrators"
discusses topics specific to DBAs. Chapter 19, "Concepts for Database
Developers" discusses topics for developers.

Overview of Database Security

17-2 Oracle Database Concepts

A user privilege is the right to run specific SQL statements. Privileges can be divided
into the following categories:

■ System privilege

This is the right to perform a specific action in the database, or perform an action
on any objects of a specific type. For example, CREATE USER and CREATE SESSION
are system privileges.

■ Object privilege

This is the right to perform a specific action on an object, for example, query the
employees table. Privilege types are defined by the database.

Privileges are granted to users at the discretion of other users. Administrators should
grant privileges to users so they can accomplish tasks required for their jobs. Good
security practice involves granting a privilege only to a user who requires that
privilege to accomplish the necessary work.

A role is a named group of related privileges that you grant to users or other roles. A
role helps manage privileges for a database application or user group.

Figure 17–1 depicts a common use for roles. The roles PAY_CLERK, MANAGER, and
REC_CLERK are assigned to different users. The application role ACCTS_PAY, which
includes the privilege to execute the ACCTS_PAY application, is assigned to users with
the PAY_CLERK and MANAGER role. The application role ACCTS_REC, which includes the
privilege to execute the ACCTS_REC application, is assigned to users with the REC_CLERK
and MANAGER role.

Figure 17–1 Common Uses for Roles

See Also:

■ Oracle Database 2 Day + Security Guide and Oracle Database Security
Guide to learn how to manage privileges

■ Oracle Database Security Guide to learn about using roles for
security

■ Oracle Database 2 Day DBA and Oracle Database Administrator's
Guide to learn how to administer roles

■ Oracle Database Reference to learn about the SESSION_PRIVS view

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users

Overview of Database Security

Topics for Database Administrators and Developers 17-3

Profiles
In the context of system resources, a profile is a named set of resource limits and
password parameters that restrict database usage and instance resources for a user.
Profiles can limit the number of concurrent sessions for a user, CPU processing time
available for each session, and amount of logical I/O available (see "Buffer I/O" on
page 14-10). For example, the clerk profile could limit a user to system resources
required for clerical tasks.

Profiles provide a single point of reference for users that share a set of attributes. You
can assign a profile to one set of users, and a default profile to all others. Each user has
at most one profile assigned at any point in time.

Authentication
Authentication is the process by which a user presents credentials to the database,
which verifies the credentials and allows access to the database. Validating the identity
establishes a trust relationship for further interactions. Authentication also enables
accountability by making it possible to link access and actions to specific identities.

Oracle Database provides different authentication methods, including the following:

■ Authentication by the database

Oracle database can authenticate users using a password, Kerberos ticket, or PKI
certificate. Oracle also supports RADIUS-compliant devices for other forms of
authentication, including biometrics. The type of authentication must be specified
when a user is created in the Oracle database.

■ Authentication by the operating system

Some operating systems permit Oracle Database to use information they maintain
to authenticate users. After being authenticated by the operating system, users can
connect to a database without specifying a user name or password.

Database operations such as shutting down or starting up the database should not be
performed by non-administrative database users. These operations require SYSDBA or
SYSOPER privileges (see "Connection with Administrator Privileges" on page 13-6).

Note: It is preferable to use Database Resource Manager to limit
resources and to use profiles to manage passwords.

See Also:

■ Oracle Database Security Guide to learn how to manage resources
with profiles

■ Oracle Database SQL Language Reference for CREATE PROFILE syntax
and semantics

See Also:

■ Oracle Database Security Guide and Oracle Database Advanced
Security Administrator's Guide for more information about
authentication methods

■ Oracle Database Administrator's Guide to learn about administrative
authentication

Overview of Database Security

17-4 Oracle Database Concepts

Encryption
Encryption is the process of transforming data into an unreadable format using a
secret key and an encryption algorithm. Encryption is often used to meet regulatory
compliance requirements, such as those associated with the Payment Card Industry
Data Security Standard (PCI-DSS) or breach notification laws. For example, credit card
numbers, social security numbers, or patient health information must be encrypted.

Network Encryption
Network encryption refers to encrypting data as it travels across the network between
a client and server. An intruder can use a network packet sniffer to capture
information as it travels on the network, and then spool it to a file for malicious use.
Encrypting data on the network prevents this sort of activity.

Transparent Data Encryption
Oracle Advanced Security transparent data encryption enables you to encrypt
individual table columns or a tablespace. When a user inserts data into an encrypted
column, the database automatically encrypts the data. When users select the column,
the data is decrypted. This form of encryption is transparent, provides high
performance, and is easy to implement.

Transparent data encryption includes industry-standard encryption algorithms such as
the Advanced Encryption Standard (AES) and built-in key management.

Access Control
Oracle Database provides many techniques to control access to data. This section
summarizes some of these techniques.

Oracle Database Vault
Oracle Database Vault is a security option that restricts privileged user access to
application data. You can use Oracle Database Vault to control when, where, and how
the databases, data, and applications are accessed. Thus, you can address common
security problems such as protecting against insider threats, complying with
regulatory requirements, and enforcing separation of duty.

Virtual Private Database (VPD)
Virtual Private Database (VPD) enables you to enforce security at the row and
column level. A security policy establishes methods for protecting a database from
accidental or malicious destruction of data or damage to the database infrastructure.

VPD is useful when security protections such as privileges and roles are not
sufficiently fine-grained. For example, you can allow all users to access the employees
table, but create security policies to restrict access to employees in the same
department as the user.

Essentially, the database adds a dynamic WHERE clause to a SQL statement issued
against the table, view, or synonym to which an Oracle VPD security policy was
applied. The WHERE clause allows only users whose credentials pass the security policy
to access the protected data.

See Also: Oracle Database 2 Day + Security Guide and Oracle Database
Advanced Security Administrator's Guide

See Also: Oracle Database 2 Day + Security Guide and Oracle Database
Vault Administrator's Guide

Overview of Database Security

Topics for Database Administrators and Developers 17-5

Oracle Label Security (OLS)
Oracle Label Security (OLS) is a security option that enables you to assign data
classification and control access using security labels. You can assign a label to both
data and users.

When assigned to data, the label can be attached as a hidden column to existing tables,
providing transparency to existing SQL. For example, rows that contain highly
sensitive data can be labeled HIGHLY SENSITIVE, while rows that are less sensitive can
be labeled SENSITIVE, and so on. When a user attempts to access data, OLS compares
the user label with the data label and determines whether access should be granted.
Unlike VPD, OLS provides an out-of-the-box security policy and the metadata
repository for defining and storing labels.

Monitoring
Oracle Database provides multiple tools and techniques for monitoring user activity.

Database Auditing
Database auditing is the monitoring and recording of selected user database actions.
You can use standard auditing to audit SQL statements, privileges, schemas, objects,
and network and multitier activity. Alternatively, you can use fine-grained auditing to
monitor specific database activities, such as actions on a database table or times that
activities occur. For example, you can audit a table accessed after 9:00 p.m.

Reasons for using auditing include:

■ Enabling future accountability for current actions

■ Deterring users (or others, such as intruders) from inappropriate actions based on
their accountability

■ Investigating, monitoring, and recording suspicious activity

■ Addressing auditing requirements for compliance

Oracle Audit Vault
Oracle Audit Vault enables you to consolidate, report, and configure alerts for audited
data. You can consolidate audit data generated by Oracle Database and other relational
databases. You can also use Oracle Audit Vault to monitor audit settings on target
databases.

See Also: Oracle Database 2 Day + Security Guide and Oracle Database
Security Guide

See Also: Oracle Database 2 Day + Security Guide and Oracle Label
Security Administrator's Guide

See Also:

■ Oracle Database 2 Day + Security Guide and Oracle Database
Security Guide to learn how to enable and disable auditing

■ Oracle Label Security Administrator's Guide to learn about Oracle
Label Security auditing, which supplements standard auditing

See Also: Oracle Audit Vault Administrator's Guide

Overview of High Availability

17-6 Oracle Database Concepts

Enterprise Manager Auditing Support
Oracle Enterprise Manager (Enterprise Manager) enables you to view and configure
audit-related initialization parameters. Also, you can administer objects when auditing
statements and schema objects. For example, Enterprise Manager enables you to
display and search for the properties of current audited statements, privileges, and
objects. You can enable and disable auditing as needed.

Overview of High Availability
Availability is the degree to which an application, service, or functionality is available
on demand. For example, an OLTP database used by an online bookseller is available
to the extent that it is accessible by customers making purchases. Reliability,
recoverability, timely error detection, and continuous operations are the primary
characteristics of high availability.

The importance of high availability in a database environment is tied to the cost of
downtime, which is the time that a resource is unavailable. Downtime can be
categorized as either planned or unplanned. The main challenge when designing a
highly available environment is examining all possible causes of downtime and
developing a plan to deal with them.

High Availability and Unplanned Downtime
Oracle Database provides high availability solutions to prevent, tolerate, and reduce
downtime for all types of unplanned failures. Unplanned downtime can be
categorized by its causes:

■ Site Failures

■ Computer Failures

■ Storage Failures

■ Data Corruption

■ Human Errors

Site Failures
A site failure occurs when an event causes all or a significant portion of an application
to stop processing or slow to an unusable service level. A site failure may affect all
processing at a data center, or a subset of applications supported by a data center.
Examples include an extended site-wide power or network failure, a natural disaster
making a data center inoperable, or a malicious attack on operations or the site.

The simplest form of protection against site failures is to create database backups using
RMAN and store them offsite. You can restore the database to another host. However,
this technique can be time-consuming, and the backup may not be current.
Maintaining one or more standby databases in a Data Guard environment enables you
to provide continuous database service if the production site fails.

See Also: Oracle Database High Availability Overview for an
introduction to high availability

See Also: Oracle Database High Availability Overview to learn about
protecting against unplanned downtime

Overview of High Availability

Topics for Database Administrators and Developers 17-7

Computer Failures
A computer failure outage occurs when the system running the database becomes
unavailable because it has shut down or is no longer accessible. Examples of
computers failures include hardware and operating system failures.

The following Oracle features protect against or help respond to computer failures:

■ Enterprise Grids

In an Oracle Real Applications Cluster (Oracle RAC) environment, Oracle
Database runs on two or more systems in a cluster while concurrently accessing a
single shared database. A single database system spans multiple hardware
systems yet appears to the application as a single database. See "Overview of Grid
Computing" on page 17-11.

■ Oracle Data Guard

Data Guard enables you to maintain a copy of a production database, called a
standby database, that can reside on a different continent or in the same data
center. If the primary database is unavailable because of an outage, then Data
Guard can switch any standby database to the primary role, minimizing
downtime. See Oracle Data Guard Concepts and Administration.

■ Oracle Restart

Components in the Oracle Database software stack, including the database
instance, listener, and Oracle ASM instance, can restart automatically after a
component failure or whenever the database host computer restarts. Oracle
Restart ensures that Oracle components are started in the proper order, in
accordance with component dependencies. See Oracle Database Administrator's
Guide to learn how to configure Oracle Restart.

■ Fast Start Fault Recovery

A common cause of unplanned downtime is a system fault or crash. The fast start
fault recovery technology in Oracle Database automatically bounds database
instance recovery time. See Oracle Database Performance Tuning Guide for
information on fast start fault recovery.

Storage Failures
A storage failure outage occurs when the storage holding some or all of the database
contents becomes unavailable because it has shut down or is no longer accessible.
Examples of storage failures include the failure of a disk drive or storage array.

In addition to Oracle Data Guard, solutions for storage failures include the following:

See Also:

■ Oracle Database High Availability Overview to learn about site
failures

■ Oracle Database Backup and Recovery User's Guide for information
on RMAN and backup and recovery solutions

■ Oracle Data Guard Concepts and Administration for an introduction
to standby databases

See Also: Oracle Database High Availability Best Practices to learn how
to use High Availability for processes and applications that run in a
single-instance database

Overview of High Availability

17-8 Oracle Database Concepts

■ Oracle Automatic Storage Management (Oracle ASM)

Oracle ASM is a vertically integrated file system and volume manager in the
database kernel (see "Oracle Automatic Storage Management (Oracle ASM)" on
page 11-3). Oracle ASM eliminates the complexity associated with managing data
and disks, and simplifies mirroring and the process of adding and removing disks.

■ Backup and recovery

The Recovery Manager (RMAN) utility can back up data, restore data from a
previous backup, and recover changes to that data up to the time before the failure
occurred (see "Backup and Recovery" on page 18-9).

Data Corruption
A data corruption occurs when a hardware, software or network component causes
corrupt data to be read or written. For example, a volume manager error causes bad
disk read or writes. Data corruptions are rare but can have a catastrophic effect on a
database, and therefore a business.

In addition to Data Guard and Recovery Manager, Oracle Database supports the
following forms of protection against data corruption:

■ Lost write protection

A data block lost write occurs when an I/O subsystem acknowledges the
completion of the block write when the write did not occur. You can configure the
database so that it records buffer cache block reads in the redo log. Lost write
detection is most effective when used with Data Guard.

■ Data block corruption detection

A block corruption is a data block that is not in a recognized Oracle format, or
whose contents are not internally consistent. Several database components and
utilities, including RMAN, can detect a corrupt block and record it in
V$DATABASE_BLOCK_CORRUPTION. If the environment uses a real-time standby
database, then RMAN can automatically repair corrupt blocks.

■ Data Recovery Advisor

Data Recovery Advisor is an Oracle tool that automatically diagnoses data
failures, determines and presents appropriate repair options, and executes repairs
at the user's request.

See Also:

■ Oracle Database 2 Day DBA to learn how to administer Oracle
ASM disks with Oracle Enterprise Manager (Enterprise
Manager)

■ Oracle Automatic Storage Management Administrator's Guide to
learn more about Oracle ASM

See Also:

■ Oracle Database High Availability Best Practices to learn how to
protect against data corruptions

■ Oracle Database Backup and Recovery User's Guide for information
on RMAN and backup and recovery solutions

Overview of High Availability

Topics for Database Administrators and Developers 17-9

Human Errors
A human error outage occurs when unintentional or malicious actions are committed
that cause data in the database to become logically corrupt or unusable. The service
level impact of a human error outage can vary significantly depending on the amount
and critical nature of the affected data.

Much research cites human error as the largest cause of downtime. Oracle Database
provides powerful tools to help administrators quickly diagnose and recover from
these errors. It also includes features that enable end users to recover from problems
without administrator involvement.

Oracle Database recommends the following forms of protection against human error:

■ Restriction of user access

The best way to prevent errors is to restrict user access to data and services. Oracle
Database provides a wide range of security tools to control user access to
application data by authenticating users and then allowing administrators to grant
users only those privileges required to perform their duties (see "Overview of
Database Security" on page 17-1).

■ Oracle Flashback Technology

Oracle Flashback Technology is a family of human error correction features in
Oracle Database. Oracle Flashback provides a SQL interface to quickly analyze
and repair human errors. For example, you can perform:

– Fine-grained surgical analysis and repair for localized damage

– Rapid correction of more widespread damage

– Recovery at the row, transaction, table, tablespace, and database level

■ Oracle LogMiner

Oracle LogMiner is a relational tool that enables online redo log files to be read,
analyzed, and interpreted using SQL (see "Oracle LogMiner" on page 18-8).

High Availability and Planned Downtime
Planned downtime can be just as disruptive to operations, especially in global
enterprises that support users in multiple time zones. In this case, it is important to
design a system to minimize planned interruptions such as routine operations,
periodic maintenance, and new deployments.

Planned downtime can be categorized by its causes:

■ System and Database Changes

■ Data Changes

■ Application Changes

See Also:

■ Oracle Database High Availability Best Practices to learn how to
recover from human errors

■ Oracle Database Backup and Recovery User's Guide and Oracle
Database Advanced Application Developer's Guide to learn more
about Oracle Flashback features

■ Oracle Database Utilities to learn more about Oracle LogMiner

Overview of High Availability

17-10 Oracle Database Concepts

System and Database Changes
Planned system changes occur when you perform routine and periodic maintenance
operations and new deployments, including scheduled changes to the operating
environment that occur outside of the organizational data structure in the database.
Examples include adding or removing CPUs and cluster nodes (a node is a computer
on which a database instance resides), upgrading system hardware or software, and
migrating the system platform.

Oracle Database provides dynamic resource provisioning as a solution to planned
system and database changes:

■ Dynamic reconfiguration of the database

Oracle Database dynamically accommodates various changes to hardware and
database configurations, including adding and removing processors from an SMP
server and adding and remove storage arrays using Oracle ASM. For example,
Oracle Database monitors the operating system to detect changes in the number of
CPUs. If the CPU_COUNT initialization parameter is set to the default, then the
database workload can dynamically take advantage of newly added processors.

■ Autotuning memory management

Oracle Database uses a noncentralized policy to free and acquire memory in each
subcomponent of the SGA and the PGA. Oracle Database autotunes memory by
prompting the operating system to transfer granules of memory to components
that require it. See "Memory Management" on page 18-15.

■ Automated distributions of data files, control files, and online redo log files

Oracle ASM automates and simplifies the layout of data files, control files, and log
files by automatically distributing them across all available disks. See Oracle
Automatic Storage Management Administrator's Guide to learn more about Oracle
ASM.

Data Changes
Planned data changes occur when there are changes to the logical structure or
physical organization of Oracle Database objects. The primary objective of these
changes is to improve performance or manageability. Examples include table
redefinition, adding table partitions, and creating or rebuilding indexes.

Oracle Database minimizes downtime for data changes through online reorganization
and redefinition. This architecture enables you to perform the following tasks when
the database is open:

■ Perform online table redefinition, which enables you to make table structure
modifications without significantly affecting the availability of the table

■ Create, analyze, and reorganize indexes (see Chapter 3, "Indexes and
Index-Organized Tables")

■ Move table partitions (see "Overview of Partitions" on page 4-1)

See Also: Oracle Database High Availability Overview to learn about
features and solutions for planned downtime

See Also: Oracle Database Administrator's Guide to learn how to
change data structures online

Overview of Grid Computing

Topics for Database Administrators and Developers 17-11

Application Changes
Planned application changes may include changes to data, schemas, and programs.
The primary objective of these changes is to improve performance, manageability, and
functionality. An example is an application upgrade.

Oracle Database supports the following solutions for minimizing application
downtime required to make changes to an application's database objects:

■ Rolling patch updates

Oracle Database supports the application of patches to the nodes of an Oracle
RAC system in a rolling fashion. See Oracle Database High Availability Best Practices.

■ Rolling release upgrades

Oracle Database supports the installation of database software upgrades, and the
application of patchsets, in a rolling fashion—with near zero database
downtime—by using Data Guard SQL Apply and logical standby databases. See
Oracle Database Upgrade Guide.

■ Edition-based redefinition

Edition-based redefinition enables you to upgrade the database objects of an
application while the application is in use, thus minimizing or eliminating down
time. Oracle Database accomplishes this task by changing (redefining) database
objects in a private environment known as an edition. See Oracle Database
Advanced Application Developer's Guide.

■ DDL with the default WAIT option

DDL commands require exclusive locks on internal structures (see "DDL Locks"
on page 9-24). In previous releases, DDL commands would fail if they could not
obtain the locks. DDL specified with the WAIT option resolves this issue. See Oracle
Database High Availability Overview.

■ Creation of triggers in a disabled state

You can create a trigger in the disabled state so that you can ensure that your code
compiles successfully before you enable the trigger. See Oracle Database PL/SQL
Language Reference.

Overview of Grid Computing
Grid computing is a computing architecture that effectively pools large numbers of
servers and storage into a flexible, on-demand resource for all enterprise computing
needs. A Database Server Grid is a collection of commodity servers connected
together to run on one or more databases. A Database Storage Grid is a collection of
low-cost modular storage arrays combined together and accessed by the computers in
the Database Server Grid.

With the Database Server and Storage Grid, you can build a pool of system resources.
You can dynamically allocate and deallocate these resources based on business
priorities.

Figure 17–2 illustrates the Database Server Grid and Database Storage Grid in a Grid
enterprise computing environment.

Overview of Grid Computing

17-12 Oracle Database Concepts

Figure 17–2 Grid Computing Environment

Database Server Grid
Oracle Real Application Clusters (Oracle RAC) enables multiple instances that are
linked by an interconnect to share access to an Oracle database. In an Oracle RAC
environment, Oracle Database runs on two or more systems in a cluster while
concurrently accessing a single shared database. Oracle RAC enables a Database
Server Grid by providing a single database that spans multiple low-cost servers yet
appears to the application as a single, unified database system.

Oracle Clusterware is software that enables servers to operate together as if they are
one server. Each server looks like any standalone server. However, each server has
additional processes that communicate with each other so that separate servers work
together as if they were one server. Oracle Clusterware provides all of the features
required to run the cluster, including node membership and messaging services.

See Also:

■ Oracle Database High Availability Overview for an overview of Grid
Computing

■ http://www.gridforum.org/ to learn about the standards
organization Global Grid Forum (GGF)

Database Server Grid

Database Storage Grid

Storage Switches

Databases DatabasesDatabases

Database
Servers

Database
Servers

Database
Servers

 Interconnect

Overview of Grid Computing

Topics for Database Administrators and Developers 17-13

Scalability
In a Database Server Grid, Oracle RAC enables you to add nodes to the cluster as the
demand for capacity increases. The Cache Fusion technology implemented in Oracle
RAC enables you to scale capacity without changing your applications. Thus, you can
scale the system incrementally to save costs and eliminate the need to replace smaller
single-node systems with larger ones.

You can incrementally add nodes to a cluster instead of replacing existing systems
with larger nodes. Grid Plug and Play simplifies addition and removal of nodes from a
cluster, making it easier to deploy clusters in a dynamically provisioned environment.
Grid Plug and Play also enables databases and services to be managed in a
location-independent manner. SCAN enables clients to connect to the database service
without regard for its location within the grid.

Fault Tolerance
Fault tolerance is the protection provided by a high availability architecture against
the failure of a component in the architecture. A key advantage of the Oracle RAC
architecture is the inherent fault tolerance provided by multiple nodes. Because the
physical nodes run independently, the failure of one or more nodes does not affect
other nodes in the cluster.

Failover can happen to any node on the Grid. In the extreme case, an Oracle RAC
system provides database service even when all but one node is down. This
architecture allows a group of nodes to be transparently put online or taken offline, for
maintenance, while the rest of the cluster continues to provide database service.

Oracle RAC provides built-in integration with Oracle Clients and connection pools.
With this capability, an application is immediately notified of any failure through the
pool that terminates the connection. The application avoids waiting for a TCP timeout
and can immediately take the appropriate recovery action. Oracle RAC integrates the
listener with Oracle Clients and the connection pools to create optimal application
throughput. Oracle RAC can balance cluster workload based on the load at the time of
the transaction.

See Also:

■ Oracle Database 2 Day + Real Application Clusters Guide for an
introduction to Oracle Clusterware and Oracle RAC

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn how to manage an Oracle RAC database

■ Oracle Clusterware Administration and Deployment Guide to learn
how to administer and deploy Oracle Clusterware

See Also:

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn more about Cache Fusion

■ Oracle Database Installation Guide to learn how to install Grid Plug
and Play

Overview of Data Warehousing and Business Intelligence

17-14 Oracle Database Concepts

Services
Oracle RAC supports services that can group database workloads and route work to
the optimal instances assigned to offer the services. A service represents the workload
of applications with common attributes, performance thresholds, and priorities.

You define and apply business policies to these services to perform tasks such as to
allocate nodes for times of peak processing or to automatically handle a server failure.
Using services ensures the application of system resources where and when they are
needed to achieve business goals.

Services are integrated with the Database Resource Manager, which enables you to
restrict the resources that are used by a service within an instance. In addition, Oracle
Scheduler jobs can run using a service, as opposed to using a specific instance.

Database Storage Grid
A DBA or storage administrator can use the Oracle ASM interface to specify the disks
within the Database Storage Grid that ASM should manage across all server and
storage platforms. ASM partitions the disk space and evenly distributes the data
across the disks provided to ASM. Additionally, ASM automatically redistributes data
as disks from storage arrays are added or removed from the Database Storage Grid.

Overview of Data Warehousing and Business Intelligence
A data warehouse is a relational database designed for query and analysis rather than
for transaction processing. For example, a data warehouse could track historical stock
prices or income tax records. A warehouse usually contains data derived from
historical transaction data, but it can include data from other sources.

A data warehouse environment includes several tools in addition to a relational
database. A typical environment includes an ETL solution, an OLAP engine, Oracle

See Also:

■ "Database Resident Connection Pooling" on page 16-14

■ Oracle Real Application Clusters Administration and Deployment
Guide to learn more about automatic workload management

■ Oracle Database High Availability Best Practices for an overview of
fault tolerance in Oracle RAC

See Also:

■ Oracle Database 2 Day + Real Application Clusters Guide to learn
about Oracle services

■ Oracle Database Administrator's Guide to learn about the Database
Resource Manager and Oracle Scheduler

See Also:

■ "Oracle Automatic Storage Management (Oracle ASM)" on
page 11-3

■ Oracle Database High Availability Overview for an overview of the
Database Storage Grid

■ Oracle Automatic Storage Management Administrator's Guide for
more information about clustered Oracle ASM

Overview of Data Warehousing and Business Intelligence

Topics for Database Administrators and Developers 17-15

Warehouse Builder, client analysis tools, and other applications that gather data and
deliver it to users.

Data Warehousing and OLTP
A common way of introducing data warehousing is to refer to the characteristics of a
data warehouse as set forth by William Inmon1:

■ Subject-Oriented

Data warehouses enable you to define a database by subject matter, such as sales.

■ Integrated

Data warehouses must put data from disparate sources into a consistent format.
They must resolve such problems as naming conflicts and inconsistencies among
units of measure. When they achieve this goal, they are said to be integrated.

■ Nonvolatile

The purpose of a warehouse is to enable you to analyze what has occurred. Thus,
after data has entered into the warehouse, data should not change.

■ Time-Variant

The focus of a data warehouse is on change over time.

Data warehouses and OLTP database have different requirements. For example, to
discover trends in business, data warehouses must maintain large amounts of data. In
contrast, good performance requires historical data to be moved regularly from OLTP
systems to an archive. Table 17–1 lists differences between data warehouses and OLTP.

1 Building the Data Warehouse, John Wiley and Sons, 1996.

Table 17–1 Data Warehouses and OLTP Systems

Characteristics Data Warehouse OLTP

Workload Designed to accommodate ad hoc
queries. You may not know the
workload of your data warehouse
in advance, so it should be
optimized to perform well for a
wide variety of possible queries.

Supports only predefined operations.
Your applications might be
specifically tuned or designed to
support only these operations.

Data
modifications

Updated on a regular basis by the
ETL process using bulk data
modification techniques. End users
of a data warehouse do not directly
update the database.

Subject to individual DML
statements routinely issued by end
users. The OLTP database is always
up to date and reflects the current
state of each business transaction.

Schema design Uses denormalized or partially
denormalized schemas (such as a
star schema) to optimize query
performance.

Uses fully normalized schemas to
optimize DML performance and to
guarantee data consistency.

Typical
operations

A typical query scans thousands or
millions of rows. For example, a
user may request the total sales for
all customers last month.

A typical operation accesses only a
handful of records. For example, a
user may retrieve the current order
for a single customer.

Historical data Stores many months or years of
data to support historical analysis.

Stores data from only a few weeks or
months. Historical data retained as
needed to meet the requirements of
the current transaction.

Overview of Data Warehousing and Business Intelligence

17-16 Oracle Database Concepts

Data Warehouse Architecture
Data warehouses and their architectures vary depending on the business
requirements. This section describes common data warehouse architectures.

Data Warehouse Architecture (Basic)
Figure 17–3 shows a simple architecture for a data warehouse. End users directly
access data that was transported from several source systems to the data warehouse.

Figure 17–3 Architecture of a Data Warehouse

Figure 17–3 shows both the metadata and raw data of a traditional OLTP system and
summary data. A summary is an aggregate view that improves query performance by
precalculating expensive joins and aggregation operations and storing the results in a
table. For example, a summary table can contain the sums of sales by region and by
product. Summaries are also called materialized views.

Data Warehouse Architecture (with a Staging Area)
In the architecture shown in Figure 17–3, operational data must be cleaned and
processed before being put into the warehouse. Figure 17–4 shows a data warehouse
with a staging area, which is a place where data is preprocessed before entering the
warehouse. A staging area simplifies the tasks of building summaries and managing
the warehouse.

See Also:

■ Oracle Database Data Warehousing Guide for a more detailed
description of a database warehouse

■ Oracle Database VLDB and Partitioning Guide for a more detailed
description of an OLTP system

See Also: Oracle Database Data Warehousing Guide to learn about
basic materialized views

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining

Overview of Data Warehousing and Business Intelligence

Topics for Database Administrators and Developers 17-17

Figure 17–4 Architecture of a Data Warehouse with a Staging Area

Data Warehouse Architecture (with a Staging Area and Data Marts)
You may want to customize your warehouse architecture for different groups within
your organization. You can achieve this goal by transporting data in the warehouse to
data marts, which are independent databases designed for a specific business or
project. Typically, data marts include many summary tables.

Figure 17–5 separates purchasing, sales, and inventory information into independent
data marts. A financial analyst can query the data marts for historical information
about purchases and sales.

Figure 17–5 Architecture of a Data Warehouse with a Staging Area and Data Marts

See Also: Oracle Database Data Warehousing Guide to learn about
different transportation mechanisms

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Overview of Data Warehousing and Business Intelligence

17-18 Oracle Database Concepts

Overview of Extraction, Transformation, and Loading (ETL)
The process of extracting data from source systems and bringing it into the warehouse
is commonly called ETL: extraction, transformation, and loading. ETL refers to a broad
process rather than three well-defined steps.

In a typical scenario, data from one or more operational systems is extracted and then
physically transported to the target system or an intermediate system for processing.
Depending on the method of transportation, some transformations can occur during
this process. For example, a SQL statement that directly accesses a remote target
through a gateway can concatenate two columns as part of the SELECT statement.

Oracle Database is not itself an ETL tool. However, Oracle Database provides a rich set
of capabilities usable by ETL tools such as Oracle Warehouse Builder and customized
ETL solutions. ETL capabilities provided by Oracle Database include:

■ Transportable tablespaces

You can transport tablespaces between different computer architectures and
operating systems. Transportable tablespaces are the fastest way for moving large
volumes of data between two Oracle databases. See Oracle Database Administrator's
Guide to learn about transportable tablespaces.

■ Table functions

A table function can produce a set of rows as output and can accept a set of rows
as input. Table functions provide support for pipelined and parallel execution of
transformations implemented in PL/SQL, C, or Java without requiring the use of
intermediate staging tables. See Oracle Database Data Warehousing Guide to learn
about table functions.

■ External tables

External tables enable external data to be joined directly and in parallel without
requiring it to be first loaded in the database (see "External Tables" on page 2-16).
Thus, external tables enable the pipelining of the loading phase with the
transformation phase.

■ Table compression

To reduce disk use and memory use, you can store tables and partitioned tables in
a compressed format (see "Table Compression" on page 2-19). The use of table
compression often leads to a better scaleup for read-only operations and faster
query execution.

■ Change Data Capture

This feature efficiently identifies and captures data that has been added to,
updated in, or removed from, relational tables and makes this change data
available for use by applications or individuals.

See Also: Oracle Database Data Warehousing Guide to learn about
transformation mechanisms

See Also:

■ Oracle Database Data Warehousing Guide to learn about Change
Data Capture

■ Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide for an overview of ETL

Overview of Data Warehousing and Business Intelligence

Topics for Database Administrators and Developers 17-19

Business Intelligence
Business intelligence is the analysis of an organization's information as an aid to
making business decisions. Business intelligence and analytical applications are
dominated by actions such as drilling up and down hierarchies and comparing
aggregate values. Oracle Database provides several technologies to support business
intelligence operations.

Analytic SQL
Oracle Database has introduced many SQL operations for performing analytic
operations. These operations include ranking, moving averages, cumulative sums,
ratio-to-reports, and period-over-period comparisons. For example, Oracle Database
supports the following forms of analytic SQL:

■ SQL for aggregation

Aggregate functions such as COUNT return a single result row based on groups of
rows rather than on single rows. Aggregation is fundamental to data warehousing.
To improve aggregation performance in a warehouse, the database provides
extensions to the GROUP BY clause to make querying and reporting easier and
faster. See Oracle Database Data Warehousing Guide to learn about aggregation.

■ SQL for analysis

Analytic functions compute an aggregate value based on a group of rows. They
differ from aggregate functions in that they return multiple rows for each group.
Oracle has advanced SQL analytical processing capabilities using a family of
analytic SQL functions. For example, these analytic functions enable you to
calculate rankings and percentiles and moving windows. See Oracle Database Data
Warehousing Guide to learn about SQL for analysis and reporting.

■ SQL for modeling

With the MODEL clause, you can create a multidimensional array from query results
and apply rules to this array to calculate new values. For example, you can
partition data in a sales view by country and perform a model computation, as
defined by multiple rules, on each country. One rule could calculate the sales of a
product in 2008 as the sum of sales in 2006 and 2007. See Oracle Database Data
Warehousing Guide to learn about SQL modeling.

OLAP
Oracle online analytical processing (OLAP) provides native multidimensional storage
and rapid response times when analyzing data across multiple dimensions. OLAP
enables analysts to quickly obtain answers to complex, iterative queries during
interactive sessions.

Oracle OLAP has the following primary characteristics:

■ Oracle OLAP is integrated in the database so that you can use standard SQL
administrative, querying, and reporting tools.

■ The OLAP engine runs within the kernel of Oracle Database.

■ Dimensional objects are stored in Oracle Database in their native
multidimensional format.

See Also: Oracle Database SQL Language Reference to learn about SQL
functions

Overview of Oracle Information Integration

17-20 Oracle Database Concepts

■ Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

■ Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

Oracle OLAP offers the power of simplicity: one database, standard administration
and security, and standard interfaces and development tools.

Data Mining
Data mining involves automatically searching large stores of data for patterns and
trends that go beyond simple analysis. Data mining uses sophisticated mathematical
algorithms to segment data and evaluate the probability of future events. Typical
applications of data mining include call centers, ATMs, E-business relational
management (ERM), and business planning.

With Oracle Data Mining, the data, data preparation, model building, and model
scoring results all remain in the database. Oracle Data Mining supports a PL/SQL API,
a Java API, SQL functions for model scoring, and a GUI called Oracle Data Miner.
Thus, Oracle Database provides an infrastructure for application developers to
integrate data mining seamlessly with database applications.

Overview of Oracle Information Integration
As an organization evolves, it becomes increasingly important for it to be able to share
information among multiple databases and applications. The basic approaches to
sharing information are as follows:

■ Consolidation

You can consolidate the information into a single database, which eliminates the
need for further integration. Oracle RAC, Grid computing, and Oracle VPD can
enable you to consolidate information into a single database.

■ Federation

You can leave information distributed, and provide tools to federate this
information, making it appear to be in a single virtual database.

■ Sharing

You can share information, which lets you maintain the information in multiple
data stores and applications.

This section focuses on Oracle solutions for federating and sharing information.

Federated Access
The foundation of federated access is a distributed environment, which is a network
of disparate systems that seamlessly communicate with each other. Each system in the

See Also:

■ "Overview of Dimensions" on page 4-21

■ Oracle OLAP User's Guide for an overview of Oracle OLAP

See Also: Oracle Data Mining Concepts

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide for an introduction to data replication and integration

Overview of Oracle Information Integration

Topics for Database Administrators and Developers 17-21

environment is called a node. The system to which a user is directly connected is
called the local system. Additional systems accessed by this user are remote systems.

A distributed environment enables applications to access and exchange data from the
local and remote systems. All the data can be simultaneously accessed and modified.

Distributed SQL
Distributed SQL synchronously accesses and updates data distributed among
multiple databases. An Oracle distributed database system can be transparent to users,
making it appear as a single Oracle database.

Distributed SQL includes distributed queries and distributed transactions. The Oracle
distributed database architecture provides query and transaction transparency. For
example, standard DML statements work just as they do in a non-distributed database
environment. Additionally, applications control transactions using the standard SQL
statements COMMIT, SAVEPOINT, and ROLLBACK.

Database Links
A database link is a connection between two physical databases that enables a client
to access them as one logical database. Oracle Database uses database links to enable
users on one database to access objects in a remote database. A local user can access a
link to a remote database without being a user on the remote database.

Figure 17–6 shows an example of user hr accessing the employees table on the remote
database with the global name hq.example.com. The employees synonym hides the
identity and location of the remote schema object.

Figure 17–6 Database Link

Information Sharing
At the heart of any integration is the sharing of data among applications in the
enterprise. Oracle Streams is the asynchronous information sharing infrastructure in
Oracle Database. This infrastructure enables the propagation and management of data,
transactions, and events in a data stream either within a database, or from one
database to another.

See Also:

■ "Overview of Distributed Transactions" on page 10-12

■ Oracle Database 2 Day + Data Replication and Integration Guide to
learn about distributed SQL

■ Oracle Database Administrator's Guide to learn how to manage
distributed transactions

See Also: Oracle Database Administrator's Guide to learn about
database links

Local
database

User HR

Remote
database

SELECT *
FROM employees

Database
Link
(unidirectional)

EMPLOYEES table

PUBLIC SYNONYM
employees -> employees@HQ.EXAMPLE.COM

Overview of Oracle Information Integration

17-22 Oracle Database Concepts

Oracle Streams includes replication and messaging. Replication is the process of
sharing database objects and data at multiple databases. Messaging is the sharing of
information between applications and users.

Oracle Streams Replication
In Oracle Streams replication, a change to a database object at one database can be
shared with other databases in the replication environment. For example, Oracle
Streams propagates an update to an employees table to an identical employees table in
a different database. In this way, the database objects and data are kept synchronized
at all databases in the replication environment.

Typical uses for Oracle Streams replication include:

■ Creating a reporting site to offload processing from a primary OLTP site.

■ Providing load balancing and improved scalability and availability for a call center
or similar application.

■ Providing site autonomy between locations to satisfy certain common business
requirements.

■ Transforming and consolidating data from multiple locations.

■ Replicating data between different platforms and Oracle Database releases, and
across a wide area network (WAN).

Oracle Streams Information Flow The architecture of Oracle Streams is very flexible.
Figure 17–7 depicts the basic information flow in a replication environment.

Figure 17–7 Oracle Streams Information Flow

As shown in Figure 17–7, Oracle Streams contains the following basic elements:

■ Capture

Oracle Streams can implicitly capture DML and DDL changes. Rules determine
which changes are captured. Changes are formatted into logical change records
(LCRs), which are messages with a specific format describing a database change.

■ Staging

LCRs are placed in a staging area, which is a queue that stores and manages
captured messages. Message staging provides a holding area with security, as well
as auditing and tracking of message data. Propagations can send messages from
one queue to another. The queues can reside in the same or different databases.

■ Consumption

LCRs remain in a staging area until subscribers consume them implicitly or
explicitly. An apply process implicitly applies changes encapsulated in LCRs.

See Also:

■ Oracle Streams Concepts and Administration

■ Oracle Streams Replication Administrator's Guide

ConsumptionStagingCapture

Overview of Oracle Information Integration

Topics for Database Administrators and Developers 17-23

Oracle Streams Replication Environments Oracle Streams enables you to configure many
different types of custom replication environments. However, the following types of
replication environments are the most common:

■ Two-Database

Only two databases share the replicated database objects. The changes made to
replicated database objects at one database are captured and sent directly to the
other database, where they are applied.

In a one-way replication environment, only one database allows changes to the
replicated database objects, with the other database containing read-only replicas
of these objects. In a bi-directional replication environment, both databases can
allow changes to the replicated objects. In this case, both databases capture
changes to these database objects and send the changes to the other database,
where they are applied.

■ Hub-and-Spoke

A central database, or hub, communicates with secondary databases, or spokes.
The spokes do not communicate directly with each other. In a hub-and-spoke
replication environment, the spokes might or might not allow changes to the
replicated database objects.

■ N-Way

Each database communicates directly with every other database in the
environment. The changes made to replicated database objects at one database are
captured and sent directly to each of the other databases in the environment,
where they are applied.

Oracle Streams Advanced Queuing (AQ)
Oracle Streams Advanced Queuing (AQ) is a robust and feature-rich message queuing
system integrated with Oracle Database. When an organization has different systems
that must communicate with each other, a messaging environment can provide a
standard, reliable way to transport critical information between these systems.

A sample use case is a business that enters orders in an Oracle database at
headquarters. When an order is entered, the business uses AQ to send the order ID
and order date to a database in a warehouse. These messages alert employees at the
warehouse about the orders so that they can fill and ship them.

Message Queuing and Dequeuing Advanced Queuing stores user messages in abstract
storage units called queues. Enqueuing is the process by which producers place
messages into queues. Dequeuing is the process by which consumers retrieve
messages from queues.

Note: Oracle Streams is fully inter-operational with materialized
views, which you can use to maintain updatable or read-only copies
of data (see "Overview of Materialized Views" on page 4-16).

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide to learn how to replicate data using Oracle Streams

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide to learn more about common replication environments

Overview of Oracle Information Integration

17-24 Oracle Database Concepts

Support for explicit dequeue allows developers to use Oracle Streams to reliably
exchange messages. They can also notify applications of changes by leveraging the
change capture and propagation features of Oracle Streams.

Figure 17–8 shows a sample application that explicitly enqueues and dequeues
messages through Advanced Queuing, enabling it to share information with partners
using different messaging systems. After being enqueued, messages can be
transformed and propagated before being dequeued to the partner's application.

Figure 17–8 Oracle Streams Message Queuing

Advanced Queuing Features Oracle Streams Advanced Queuing supports all the
standard features of message queuing systems. These features include:

■ Asynchronous application integration

Oracle Streams Advanced Queuing offers several ways to enqueue messages. A
capture process or synchronous capture can capture the messages implicitly, or
applications and users can capture messages explicitly.

■ Extensible integration architecture

Many applications are integrated with a distributed hub and spoke model with
Oracle Database as the hub. The distributed applications on an Oracle database
communicate with queues in the same hub. Multiple applications share the same
queue, eliminating the need to add queues to support additional applications.

■ Heterogeneous application integration

Advanced Queuing provides applications with the full power of the Oracle type
system. It includes support for scalar data types, Oracle Database object types with
inheritance, XMLType with additional operators for XML data, and ANYDATA.

■ Legacy application integration

The Oracle Messaging Gateway integrates Oracle Database applications with other
message queuing systems, such as Websphere MQ and Tibco.

■ Standards-Based API support

Oracle Streams Advanced Queuing supports industry-standard APIs: SQL, JMS,
and SOAP. Changes made using SQL are captured automatically as messages.

Oracle Streams Use Case
For a sample use case, assume that a company uses Oracle Streams to maintain
multiple copies of a corporate Web site. The business requirements include:

See Also:

■ Oracle Database 2 Day + Data Replication and Integration Guide to
learn how to send messages using Advanced Queuing

■ Oracle Streams Advanced Queuing User's Guide

ApplicationApplication
Dequeue

Enqueue

Dequeue

Enqueue

Oracle
Database

Advanced
queues

Overview of Oracle Information Integration

Topics for Database Administrators and Developers 17-25

■ A reporting database must contain the most current data for analysts in a New
York office to perform ad hoc querying.

■ Updatable materialized views must support the field sales staff.

■ Data must be shared with applications hosted on a Sybase database.

Figure 17–9 illustrates this Streams configuration.

Figure 17–9 Streams Configuration

Oracle Streams is used to replicate data in an n-way configuration consisting of sites in
New York, London, and Tokyo. At each site, Streams implicit capture collects any
changes that occur for subscribed tables in each local region, and stages them locally in
the queue. Changes captured in each region are then forwarded to each of the other
region's databases. Changes made at each database can be reflected at every other
database, providing complete data for the subscribed objects throughout the world.

At each regional database, an Oracle Streams apply process applies the changes
automatically. As changes are applied, Oracle Streams checks for and resolves any
conflicts. Streams can also be used to exchange data for particular tables with
non-Oracle databases. Using the Oracle Database Gateway for Sybase, a Streams apply
process applies the changes to a Sybase database using the same mechanisms as it
does for Oracle databases.

The reporting database is hosted in New York. This database is a fully functional
Oracle database that has a read-only copy of the relevant application tables. The
reporting site is not configured to capture changes on these application tables. Oracle
Streams imposes no restrictions on the configuration or use of this reporting database.

The London site also serves as the master site for several updatable materialized view
sites. Each salesperson receives an updatable copy of the required portion of data.
These sites typically only connect once a day to upload their orders and download any
changes made after their last refresh.

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide for examples of configuring Oracle Streams

Tokyo

London

NY

Report

Gateway

Sybase

Clients

Overview of Oracle Information Integration

17-26 Oracle Database Concepts

18

Concepts for Database Administrators 18-1

18Concepts for Database Administrators

This chapter contains the following sections:

■ Duties of Database Administrators

■ Tools for Database Administrators

■ Topics for Database Administrators

Duties of Database Administrators
The principal responsibility of a database administrator (DBA) is to make enterprise
data available to its users. DBAs must work closely with the developers to ensure that
their applications make efficient use of the database, and with system administrators
to ensure that physical resources are adequate and used efficiently.

Oracle DBAs are responsible for understanding the Oracle Database architecture and
how the database works. DBAs can expect to perform the following tasks:

■ Installing, upgrading, and patching Oracle Database software

■ Designing databases, including identifying requirements, creating the logical
design (conceptual model), and physical database design

■ Creating Oracle databases

■ Developing and testing a backup and recovery strategy, backing up Oracle
databases regularly, and recovering them in case of failures

■ Configuring the network environment to enable clients to connect to databases

■ Starting up and shutting down the database

■ Managing storage for the database

■ Managing users and security

■ Managing database objects such as tables, indexes, and views

■ Monitoring and tuning database performance

■ Investigating, gathering diagnostic data for, and reporting to Oracle Support
Services any critical database errors

■ Evaluating and testing new database features

The preceding tasks, and many others, are described in Oracle Database 2 Day DBA and
Oracle Database Administrator's Guide.

The types of users and their roles and responsibilities depend on the database
environment. A small database may have one DBA. A very large database may divide

Tools for Database Administrators

18-2 Oracle Database Concepts

the DBA duties among several specialists, for example, security officers, backup
operators, and application administrators.

Tools for Database Administrators
Oracle provides several tools for use in administering a database. This section
describes some commonly used tools:

■ Oracle Enterprise Manager

■ SQL*Plus

■ Tools for Database Installation and Configuration

■ Tools for Oracle Net Configuration and Administration

■ Tools for Data Movement and Analysis

Oracle Enterprise Manager
Oracle Enterprise Manager (Enterprise Manager) is a system management tool that
provides centralized management of a database environment. Combining a graphical
console, Oracle Management Servers, Oracle Intelligent Agents, common services, and
administrative tools, Enterprise Manager provides a comprehensive systems
management platform for Oracle products.

The Web-based Enterprise Manager Database Control (Database Control) is the
primary tool for managing an Oracle database. It is installed with Oracle Database.
You can use Database Control to perform administrative tasks such as:

■ Diagnosing, modifying, and tuning the database

■ Grouping related targets together to facilitate administration tasks, sharing tasks
with other administrators, and scheduling tasks at varying time intervals

■ Configuring and managing Oracle Net Services for an Oracle home (see
"Overview of Oracle Networking Architecture" on page 16-5)

■ Launching integrated Oracle and third-party tools

The following figure shows the Database Home page of Database Control. The
subpage links across the top of the page enable you to access performance, availability,
and other database administration pages. The subsections of the Database Home page
provide information about the environment and status of the database.

Tools for Database Administrators

Concepts for Database Administrators 18-3

The following figure shows the basic architecture of Enterprise Manager. The
management repository is stored inside the database. Both the agent and the
management service run on the database host. You can run the Database Control
Console from any Web browser that can connect securely to the management service.

See Also: Oracle Database 2 Day DBA to learn how to administer the
database with Enterprise Manager

Database

Management
Repository

Management
Agent

HTTP(S)

HTTPS

Thin
JDBC

Management Service
(J2EE Web Application)

Database Control
Console

ServerClient

Tools for Database Administrators

18-4 Oracle Database Concepts

SQL*Plus
SQL*Plus is an interactive and batch query tool included in every Oracle Database
installation. It has a command-line user interface that acts as the client when
connecting to the database.

SQL*Plus has its own commands and environment. It enables you to enter and execute
SQL, PL/SQL, SQL*Plus and operating system commands to perform tasks such as:

■ Formatting, performing calculations on, storing, and printing from query results

■ Examining table and object definitions

■ Developing and running batch scripts

■ Administering a database

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility.

Tools for Database Installation and Configuration
Oracle provides several tools to simplify the task of installing and configuring Oracle
Database software. The tools include:

■ Oracle Universal Installer (OUI)

OUI is a GUI utility that enables you to view, install, and deinstall Oracle Database
software. Online Help is available to guide you through the installation. See Oracle
Database Installation Guide to learn how to install Oracle Database software.

■ Database Upgrade Assistant (DBUA)

DBUA interactively guides you through a database upgrade and configures the
database for the new release. DBUA automates the upgrade by performing all
tasks normally performed manually. DBUA makes recommendations for
configuration options such as tablespaces and the online redo log. See Oracle
Database 2 Day DBA to learn how to upgrade a database with DBUA.

■ Database Configuration Assistant (DBCA)

DBCA provides a graphical interface and guided workflow for creating and
configuring a database. This tool enables you to create a database from
Oracle-supplied templates or create your own database and templates. See Oracle
Database Administrator's Guide to learn how to create a database with DBCA.

Tools for Oracle Net Configuration and Administration
Oracle Net Services provides enterprise wide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net, a component of Oracle Net
Services, enables a network session from a client application to an database. You can
use the following tools to configure and administer Oracle Net Services:

■ Oracle Net Manager

This tool enables you to configure Oracle Net Services for an Oracle home on a
local client or server host. You can use Oracle Net Manager to configure naming,
naming methods, profiles, and listeners. You can start Oracle Net Manager using
the Oracle Enterprise Manager Console or as an independent application.

See Also: Oracle Database 2 Day DBA and SQL*Plus User's Guide and
Reference to learn more about SQL*Plus

Tools for Database Administrators

Concepts for Database Administrators 18-5

■ Oracle Net Configuration Assistant

This tools runs automatically during software installation. The Assistant enables
you to configure basic network components during installation, including listener
names and protocol addresses, naming methods, net service names in a
tnsnames.ora file, and directory server usage.

■ Listener Control Utility

The Listener Control utility enables you to configure listeners to receive client
connections (see "The Oracle Net Listener" on page 16-6). You can access the utility
through Enterprise Manager or as a standalone command-line application.

■ Oracle Connection Manager Control Utility

This command-line utility enables you to administer an Oracle Connection
Manager, which is a router through which a client connection request may be sent
either to its next hop or directly to the database. You can use utility commands to
perform basic management functions on one or more Oracle Connection
Managers. Additionally, you can view and change parameter settings.

Tools for Data Movement and Analysis
Oracle Database includes several utilities to assist in database movement and analysis.
For example, you can use database utilities to:

■ Load data into Oracle Database tables from operating system files, as explained in
"SQL*Loader" on page 18-5

■ Move data and metadata from one database to another database, as explained in
"Oracle Data Pump Export and Import" on page 18-7

■ Query redo log files through a SQL interface, as explained in "Oracle LogMiner"
on page 18-8

■ Manage Oracle Database diagnostic data, as explained in "ADR Command
Interpreter (ADRCI)" on page 18-8

Other tasks include performing physical data structure integrity checks on an offline
database or data file with DBVERIFY, or changing the database identifier (DBID) or
database name for an operational database using the DBNEWID utility.

SQL*Loader
SQL*Loader loads data from external files, called data files, into database tables. It
has a powerful data parsing engine that puts little limitation on the format of the data
in the data file. You can use SQL*Loader to perform tasks such as:

See Also:

■ "Overview of Oracle Networking Architecture" on page 16-5

■ Oracle Database Net Services Administrator's Guide and Oracle
Database Net Services Reference to learn more about Oracle Net
Services tools

Note: Tools related to backup and recovery are covered in "Backup
and Recovery" on page 18-9.

See Also: Oracle Database Utilities to learn about DBVERIFY and
DBNEWID

Tools for Database Administrators

18-6 Oracle Database Concepts

■ Loading data from multiple data files into multiple tables

You store the data to be loaded in SQL*Loader data files. The SQL*Loader control
file is a text file that contains DDL instructions that SQL*Loader uses to determine
where to find the data, how to parse and interpret it, where to insert it, and more.

■ Control various aspects of the load operation

For example, you can selectively load data, specify the data character set (see
"Character Sets" on page 19-9), manipulate the data with SQL functions, generate
unique sequential key values in specified columns, and so on. You can also
generate sophisticated error reports.

■ Use either conventional or direct path loading

A conventional path load executes SQL INSERT statements to populate tables. In
contrast, a direct path load eliminates much of the database overhead by
formatting data blocks and writing them directly to the database files. Direct
writes operate on blocks above the high water mark and write directly to disk,
bypassing the database buffer cache. Direct reads read directly from disk into the
PGA, again bypassing the buffer cache.

A typical SQL*Loader session takes as input a SQL*Loader control file and one or
more data files. The output is an Oracle database, a log file, a bad file, and potentially,
a discard file. Figure 18–1 illustrates the flow of a typical SQL*Loader session.

Figure 18–1 SQL*Loader Session

Note: The SQL*Loader data files and control file are unrelated to the
Oracle Database data files and control file.

See Also: Oracle Database 2 Day DBA and Oracle Database Utilities to
learn about SQL*Loader

Database

Indexes

Loader
Control
File

Bad
Files

Discard
Files

Input
Data
Files

TableTableTables

Log
File

SQL*Loader

Tools for Database Administrators

Concepts for Database Administrators 18-7

Oracle Data Pump Export and Import
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another. This technology is the basis for the following Oracle Database
data movement utilities:

■ Data Pump Export (Export)

Export is a utility for unloading data and metadata into a set of operating system
files called a dump file set. The dump file set is made up of one or more binary
files that contain table data, database object metadata, and control information.

■ Data Pump Import (Import)

Import is a utility for loading an export dump file set into a database. You can also
use Import to load a destination database directly from a source database with no
intervening files, which allows export and import operations to run concurrently,
minimizing total elapsed time.

Oracle Data Pump is made up of the following distinct parts:

■ The command-line clients expdp and impdp

These client make calls to the DBMS_DATAPUMP package to perform Oracle Data
Pump operations (see "PL/SQL Packages" on page 8-6).

■ The DBMS_DATAPUMP PL/SQL package, also known as the Data Pump API

This API provides high-speed import and export functionality.

■ The DBMS_METADATA PL/SQL package, also known as the Metadata API

This API, which stores object definitions in XML, is used by all processes that load
and unload metadata.

Figure 18–2 shows how Oracle Data Pump integrates with SQL*Loader and external
tables. As shown, SQL*Loader is integrated with the External Table API and the Data
Pump API to load data into external tables (see "External Tables" on page 2-16).
Clients such as Database Control and transportable tablespaces can use the Oracle
Data Pump infrastructure.

Tools for Database Administrators

18-8 Oracle Database Concepts

Figure 18–2 Oracle Data Pump Architecture

Oracle LogMiner
Oracle LogMiner enables you to query redo log files through a SQL interface.
Potential uses for data contained in redo log files include:

■ Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun

■ Detecting user error

■ Determining what actions you would have to take to perform fine-grained
recovery at the transaction level

■ Using trend analysis to determine which tables get the most updates and inserts

■ Analyzing system behavior and auditing database use through the LogMiner
comprehensive relational interface to redo log files

LogMiner is accessible through a command-line interface or through the Oracle
LogMiner Viewer GUI, which is a part of Enterprise Manager.

ADR Command Interpreter (ADRCI)
ADRCI is a command-line utility that enables you to investigate problems, view
health check reports, and package and upload first-failure diagnostic data to Oracle

See Also:

■ Oracle Database Utilities for an overview of Oracle Data Pump

■ Oracle Database PL/SQL Packages and Types Reference for a
description of DBMS_DATAPUMP and DBMS_METADATA

See Also: Oracle Database Utilities to learn more about LogMiner

Other Clients

Oracle Data
Pump Export

(expdp)

Oracle Data
Pump Import

(impdb)

Data Pump API (DBMS_DATAPUMP)

SQL*Loader

ORACLE_LOADER
Access Driver

External Table API

Direct Path API Metadata API
(DBMS_METADATA)

ORACLE_DATAPUMP
Access Driver

Oracle Data Pump

Topics for Database Administrators

Concepts for Database Administrators 18-9

Support. You can also use the utility to view the names of the trace files in the
Automatic Diagnostic Repository (ADR) (ADR) and to view the alert log. ADRCI has
a rich command set that you can use interactively or in scripts.

Topics for Database Administrators
Chapter 17 describes topics important for both developers and DBAs. This section
covers topics that are most essential to DBAs and that have not been discussed
elsewhere in the manual.

This section contains the following topics:

■ Backup and Recovery

■ Memory Management

■ Resource Management and Task Scheduling

■ Performance Diagnostics and Tuning

Backup and Recovery
Backup and recovery is the set of concepts, procedures, and strategies involved in
protecting the database against data loss caused by media failure or users errors. In
general, the purpose of a backup and recovery strategy is to protect the database
against data loss and reconstruct lost data.

A backup is a copy of data. A backup can include crucial parts of the database such as
data files, the server parameter file, and control file. A sample backup and recovery
scenario is a failed disk drive that causes the loss of a data file. If a backup of the lost
file exists, then you can restore and recover it. Media recovery refers to the operations
involved in restoring data to its state before the loss occurred.

Backup and Recovery Techniques
You can use the following means to back up and recover an Oracle database:

■ Recovery Manager (RMAN)

RMAN is an Oracle Database utility that integrates with an Oracle database to
perform backup and recovery activities, including maintaining a repository of
historical backup metadata in the control file of every database that it backs up.
RMAN can also maintain a centralized backup repository called a recovery
catalog in a different database. RMAN is an Oracle Database feature and does not
require separate installation.

RMAN is integrated with Oracle Secure Backup, which provides reliable,
centralized tape backup management, protecting file system data and Oracle
Database files. The Oracle Secure Backup SBT interface enables you to use RMAN
to back up and restore database files to and from tape and internet-based Web

See Also:

■ "Automatic Diagnostic Repository" on page 13-19

■ Oracle Database Utilities and Oracle Database Administrator's Guide
for more information on ADR and ADRCI

See Also: Oracle Database 2 Day DBA and Oracle Database Backup and
Recovery User's Guide for backup and recovery concepts and tasks

Topics for Database Administrators

18-10 Oracle Database Concepts

Services such as Amazon S3. Oracle Secure Backup supports almost every tape
drive and tape library in SAN and SCSI environments.

RMAN and Oracle Secure Backup are accessible both from the command line and
from Enterprise Manager.

■ User-Managed techniques

As an alternative to RMAN, you can use operating system commands such as the
Linux dd for backing up and restoring files and the SQL*Plus RECOVER command
for media recovery. User-managed backup and recovery is fully supported by
Oracle, although RMAN is recommended because it is integrated with Oracle
Database and simplifies administration.

Figure 18–3 shows basic RMAN architecture. The RMAN client, accessible through
Enterprise Manager, uses server sessions on a target database to back up data to disk
or tape. RMAN can update an external recovery catalog with backup metadata.

Figure 18–3 RMAN Architecture

Whichever backup and recovery technique you use, Oracle recommends that you
configure a fast recovery area. This database-managed directory, file system, or Oracle
ASM disk group centralizes backup and recovery files, including active control files,
online and archived redo log files, and backups. Oracle Database recovery
components interact with the fast recovery area to ensure database recoverability.

Target
Host

Client Host

Oracle
ASM

Tape

Target
Database Server ProcessServer Process

Recovery
Catalog

Database
Catalog
Host

RMAN Client

Oracle Net

Oracle Net

Topics for Database Administrators

Concepts for Database Administrators 18-11

Database Backups
Database backups can be either physical or logical. Physical backups, which are the
primary concern in a backup and recovery strategy, are copies of physical database
files. You can make physical backups with RMAN or operating system utilities.

In contrast, logical backups contain logical data such as tables and stored procedures.
You can extract logical data with an Oracle Database utility such as Data Pump Export
and store it in a binary file. Logical backups can supplement physical backups.

Physical backups have large granularity and limited transportability, but are very fast.
Logical backups have fine granularity and complete transportability, but are slower
than physical backups.

Whole and Partial Database Backups A whole database backup is a backup of every data
file in the database, plus the control file. Whole database backups are the most
common type of backup.

A partial database backup includes a subset of the database: individual tablespaces or
data files. A tablespace backup is a backup of all the data files in a tablespace or in
multiple tablespaces. Tablespace backups, whether consistent or inconsistent, are valid
only if the database is operating in ARCHIVELOG mode because redo is required to make
the restored tablespace consistent with the rest of the database.

Consistent and Inconsistent Backups A whole database backup is either consistent or
inconsistent. In a consistent backup, all read/write data files and control files have the
same checkpoint SCN, guaranteeing that these files contain all changes up to this
SCN. This type of backup does not require recovery after it is restored.

A consistent backup of the database is only possible after a consistent shutdown (see
"Shutdown Modes" on page 13-9) and is the only valid backup option for a database
operating in NOARCHIVELOG mode. Other backup options require media recovery for
consistency, which is not possible without applying archived redo log files.

In an inconsistent backup, read/write data files and control files are not guaranteed
to have the same checkpoint SCN, so changes can be missing. All online backups are
necessarily inconsistent because data files can be modified while backups occur.

See Also:

■ Oracle Database 2 Day DBA to learn how to perform backup and
recovery with Enterprise Manager

■ Oracle Database Backup and Recovery User's Guide for an
overview of backup and recovery solutions

■ Oracle Database Administrator's Guide for information about how
to set up and administer the fast recovery area

■ Oracle Secure Backup Administrator's Guide for an overview of
Oracle Secure Backup

See Also: Oracle Database Backup and Recovery User's Guide to learn
about physical and logical backups

Note: If you restore a consistent whole database backup without
applying redo, then you lose all transactions made after the backup.

Topics for Database Administrators

18-12 Oracle Database Concepts

Inconsistent backups offer superior availability because you do not have to shut down
the database to make backups that fully protect the database. If the database runs in
ARCHIVELOG mode, and if you back up the archived redo logs and data files, then
inconsistent backups can be the foundation for a sound backup and recovery strategy.

Backup Sets and Image Copies The RMAN BACKUP command generates either image
copies or backup sets. An image copy is a bit-for-bit, on-disk duplicate of a data file,
control file, or archived redo log file. You can create image copies of physical files with
operating system utilities or RMAN and use either tool to restore them.

RMAN can also create backups in a proprietary format called a backup set. A backup
set contains the data from one or more data files, archived redo log files, or control files
or server parameter file. The smallest unit of a backup set is a binary file called a
backup piece. Backup sets are the only form in which RMAN can write backups to
sequential devices such as tape drives.

Backup sets enable tape devices to stream continuously. For example, RMAN can
mingle blocks from slow, medium, and fast disks into one backup set so that the tape
device has a constant input of blocks. Image copies are useful for disk because you can
update them incrementally, and also recover them in place.

Data Repair
While several problems can halt the normal operation of a database or affect I/O
operations, only the following typically require DBA intervention and data repair:

■ Media failures

A media failure occurs when a problem external to the database prevents it from
reading from or writing to a file. Typical media failures include physical failures,
such as head crashes, and the overwriting, deletion, or corruption of a database
file. Media failures are less common than user or application errors, but a sound
recovery strategy must prepare for them.

■ User errors

A user or application may make unwanted changes to your database, such as
erroneous updates, deleting the contents of a table, or dropping database objects
(see "Human Errors" on page 17-9). A good backup and recovery strategy enables
you to return your database to the desired state, with the minimum possible
impact upon database availability, and minimal DBA effort.

Typically, you have multiple ways to solve the preceding problems. This section
summarizes some of these solutions.

See Also: Oracle Database Backup and Recovery User's Guide to learn
more about inconsistent backups

Note: Unlike operating system copies, RMAN validates the blocks
in the file and records the image copy in the RMAN repository.

See Also: Oracle Database Backup and Recovery User's Guide to learn
more about backup sets and image copies

See Also: Oracle Database 2 Day DBA and Oracle Database Backup and
Recovery User's Guide for data repair concepts

Topics for Database Administrators

Concepts for Database Administrators 18-13

Data Recovery Advisor The Data Recovery Advisor tool automatically diagnoses
persistent data failures, presents appropriate repair options, and executes repairs at the
user's request. By providing a centralized tool for automated data repair, Data
Recovery Advisor improves the manageability and reliability of an Oracle database
and thus helps reduce recovery time.

The database includes a framework called Health Monitor for running diagnostic
checks. A checker is a diagnostic operation or procedure registered with Health
Monitor to assess the health of the database or its components. The health assessment
is known as a data integrity check and can be invoked reactively or proactively.

A failure is a persistent data corruption detected by a data integrity check. Failures are
normally detected reactively. A database operation involving corrupted data results in
an error, which automatically invokes a data integrity check that searches the database
for failures related to the error. If failures are diagnosed, then the database records
them in the Automatic Diagnostic Repository (ADR).

After failures have been detected by the database and stored in ADR, Data Recovery
Advisor automatically determines the best repair options and their impact on the
database. Typically, Data Recovery Advisor generates both manual and automated
repair options for each failure or group of failures.

Before presenting an automated repair option, Data Recovery Advisor validates it for
the specific environment and for the availability of media components required to
complete the proposed repair. If you choose an automatic repair, then Oracle Database
executes it for you. The Data Recovery Advisor tool verifies the repair success and
closes the appropriate failures.

Oracle Flashback Technology Oracle Database provides a group of features known as
Oracle Flashback Technology that support viewing past states of data, and winding
data back and forth in time, without needing to restore backups. Depending on the
database changes, flashback features can often reverse unwanted changes more
quickly and with less impact on availability than media recovery.

The following flashback features are most relevant for backup and recovery:

■ Flashback Database

You can rewind an Oracle database to a previous time to correct problems caused
by logical data corruptions or user errors. Flashback Database can also be used to
complement Data Guard, Data Recovery Advisor, and for synchronizing clone
databases. Flashback Database does not restore or perform media recovery on
files, so you cannot use it to correct media failures such as disk crashes.

■ Flashback Table

You can rewind tables to a specified point in time with a single SQL statement.
You can restore table data along with associated indexes, triggers, and constraints,
while the database is online, undoing changes to only the specified tables.
Flashback Table does not address physical corruption such as bad disks or data
segment and index inconsistencies.

■ Flashback Drop

You can reverse the effects of a DROP TABLE operation. Flashback Drop is
substantially faster than recovery mechanisms such as point-in-time recovery and
does not lead to loss of recent transactions or downtime.

See Also: Oracle Database 2 Day DBA and Oracle Database Backup and
Recovery User's Guide to learn how to use Data Recovery Advisor

Topics for Database Administrators

18-14 Oracle Database Concepts

Block Media Recovery A block corruption is a data block that is not in a recognized
Oracle format, or whose contents are not internally consistent (see "Data Corruption"
on page 17-8). Block media recovery is a technique for restoring and recovering
corrupt data blocks while data files are online. If only a few blocks are corrupt, then
block recovery may be preferable to data file recovery.

Data File Recovery Data file recovery repairs a lost or damaged current data file or
control file. It can also recover changes lost when a tablespace went offline without the
OFFLINE NORMAL option.

Media recovery is necessary if you restore a backup of a data file or control file or a
data file is taken offline without the OFFLINE NORMAL option. The database cannot be
opened if online data files needs media recovery, nor can a data file that needs media
recovery be brought online until media recovery completes.

To restore a physical backup of a data file or control file is to reconstruct it and make it
available to Oracle Database. To recover a backup is to apply archived redo log files,
thereby reconstructing lost changes. RMAN can also recover data files with
incremental backups, which contain only blocks modified after a previous backup.

Unlike instance recovery, which automatically applies changes to online files, media
recovery must be invoked by a user and applies archived redo log files to restored
backups. Data file media recovery can only operate on offline data files or data files in
a database that is not opened by any instance.

Data file media recovery differs depending on whether all changes are applied:

■ Complete recovery

Complete recovery applies all redo changes contained in the archived and online
logs to a backup. Typically, you perform complete media recovery after a media
failure damages data files or the control file. You can perform complete recovery
on a database, tablespace, or data file.

■ Incomplete recovery

Incomplete recovery, also called database point-in-time recovery, results in a
noncurrent version of the database. In this case, you do not apply all of the redo
generated after the restored backup. Typically, you perform point-in-time database
recovery to undo a user error when Flashback Database is not possible.

To perform incomplete recovery, you must restore all data files from backups
created before the time to which you want to recover and then open the database
with the RESETLOGS option when recovery completes. Resetting the logs creates a
new stream of log sequence numbers starting with log sequence 1.

See Also:

■ Oracle Database 2 Day DBA and Oracle Database Backup and
Recovery User's Guide to learn more about flashback features

■ Oracle Database SQL Language Reference and Oracle Database
Backup and Recovery Reference to learn about the FLASHBACK
DATABASE statement

See Also: Oracle Database Backup and Recovery User's Guide to learn
how to perform block media recovery

Topics for Database Administrators

Concepts for Database Administrators 18-15

The tablespace point-in-time recovery (TSPITR) feature lets you recover one or
more tablespaces to a point in time older than the rest of the database.

Memory Management
Memory management involves maintaining optimal sizes for the Oracle instance
memory structures as demands on the database change. Initialization parameter
settings determine how SGA and instance PGA memory is managed.

Figure 18–4 shows a decision tree for memory management options. The following
sections explain the options in detail.

Figure 18–4 Memory Management Methods

Automatic Memory Management
In automatic memory management, Oracle Database manages the SGA and instance
PGA memory completely automatically. This method is the simplest and is strongly
recommended by Oracle.

Note: If current data files are available, then Flashback Database is
an alternative to DBPITR.

See Also:

■ "Overview of Instance Recovery" on page 13-12

■ Oracle Database 2 Day DBA and Oracle Database Backup and Recovery
User's Guide for media recovery concepts

See Also: Chapter 14, "Memory Architecture" to learn more about
the SGA and PGA

Automatic Memory Management (SGA and PGA)

Automatic Shared Memory
Management (SGA)

Manual Shared Memory
Management (SGA)

Automatic PGA Management

Automatic PGA Management

Manual PGA Management

Manual PGA Management

Topics for Database Administrators

18-16 Oracle Database Concepts

The only user-specified controls are the target memory size initialization parameter
(MEMORY_TARGET) and optional maximum memory size initialization parameter
(MEMORY_MAX_TARGET). Oracle Database tunes to the target memory size, redistributing
memory as needed between the SGA and the instance PGA.

Figure 18–5 shows a database that sometimes processes jobs submitted by online users
and sometimes batch jobs. Using automatic memory management, the database
automatically adjusts the size of the large pool and database buffer cache depending
on which type of jobs are running.

Figure 18–5 Automatic Memory Management

If you create your database with DBCA and choose the basic installation option, then
automatic memory management is enabled by default.

Shared Memory Management of the SGA
If automatic memory management is not enabled, then the system must use shared
memory management of the SGA. Shared memory management is possible in either
of the following forms:

■ Automatic shared memory management

This mode enables you to exercise more direct control over the size of the SGA and
is the default when automatic memory management is disabled. The database
tunes the total SGA to the target size and dynamically tunes the sizes of SGA
components. Oracle Database remembers the sizes of the automatically tuned
components across instance shutdowns if you are using a server parameter file.

■ Manual shared memory management

In this mode, you set the sizes of several individual SGA components and
manually tune individual SGA components on an ongoing basis. You have
complete control of individual SGA component sizes. The database defaults to this
mode when both automatic memory management and automatic shared memory
management are disabled.

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn about automatic memory management

Online Users Batch Jobs

Streams Pool

Java Pool

Shared Pool

Large Pool

Buffer Cache

Streams Pool

Java Pool

Shared Pool

Large Pool

Buffer Cache

Topics for Database Administrators

Concepts for Database Administrators 18-17

Memory Management of the Instance PGA
If automatic memory management is not enabled, then the following modes are
possible for management of PGA memory:

■ Automatic PGA memory management

When automatic memory management is disabled and PGA_AGGREGATE_TARGET is
set to a nonzero value, the database uses automatic PGA memory management.
In this mode, the PGA_AGGREGATE_TARGET specifies a target size for the instance
PGA. The database then tunes the size of the instance PGA to this target and
dynamically tunes the sizes of individual PGAs. If you do not explicitly set a
target size, then the database automatically configures a reasonable default.

■ Manual PGA memory management

When automatic memory management is disabled and PGA_AGGREGATE_TARGET is
set to 0, the database defaults to manual PGA management. Previous releases of
Oracle Database required the DBA to manually specify the maximum work area
size for each type of SQL operator (such as a sort or hash join). This technique
proved to be very difficult because the workload is always changing. Although
Oracle Database supports the manual PGA memory management method, Oracle
strongly recommends automatic memory management.

Summary of Memory Management Methods
Table 18–1 summarizes the various memory management methods. If you do not
enable automatic memory management, then you must separately configure one
memory management method for the SGA and one for the PGA.

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator's Guide to learn about shared memory management

See Also: Oracle Database Performance Tuning Guide to learn about
PGA memory management

Note: When automatic memory management is not enabled, the
default method for the instance PGA is automatic PGA memory
management.

Topics for Database Administrators

18-18 Oracle Database Concepts

Resource Management and Task Scheduling
In a database with many active users, resource management is an important part of
database administration. Sessions that consume excessive resources can prevent other
sessions from doing their work. A related problem is how to schedule tasks so that
they run at the best time. Oracle Database provides tools to help solve these problems.

Table 18–1 Memory Management Methods

Instance SGA PGA Description Initialization Parameters

Auto n/a n/a The database tunes the size of
the instance based on a single
instance target size.

You set:

■ Total memory target size for the database
instance (MEMORY_TARGET)

■ Optional maximum memory size for the
database instance (MEMORY_MAX_TARGET)

n/a Auto Auto The database automatically
tunes the SGA based on an
SGA target.

The database automatically
tunes the PGA based on a
PGA target.

You set:

■ SGA target size (SGA_TARGET)

■ Optional SGA maximum size
(SGA_MAX_SIZE)

■ Instance PGA target size
(PGA_AGGREGATE_TARGET)

n/a Auto Manual The database automatically
tunes the SGA based on an
SGA target.

You control the PGA
manually, setting the
maximum work area size for
each type of SQL operator.

You set:

■ SGA target size (SGA_TARGET)

■ Optional SGA maximum size
(SGA_MAX_SIZE)

■ PGA work area parameters such as
SORT_AREA_SIZE, HASH_AREA_SIZE, and
BITMAP_MERGE_AREA_SIZE

n/a Manual Auto You control the SGA
manually by setting
individual component sizes.

The database automatically
tunes the PGA based on a
PGA target.

You set:

■ Shared pool size (SHARED_POOL_SIZE)

■ Buffer cache size (DB_CACHE_SIZE)

■ Large pool size (LARGE_POOL_SIZE)

■ Java pool size (JAVA_POOL_SIZE)

■ Streams pool size (STREAMS_POOL_SIZE)

■ Instance PGA target size
(PGA_AGGREGATE_TARGET)

n/a Manual Manual You must manually configure
SGA component sizes.

You control the PGA
manually, setting the
maximum work area size for
each type of SQL operator.

You must manually configure SGA component
sizes. You set:

■ Shared pool size (SHARED_POOL_SIZE)

■ Buffer cache size (DB_CACHE_SIZE)

■ Large pool size (LARGE_POOL_SIZE)

■ Java pool size (JAVA_POOL_SIZE)

■ Streams pool size (STREAMS_POOL_SIZE)

■ PGA work area parameters such as
SORT_AREA_SIZE, HASH_AREA_SIZE, and
BITMAP_MERGE_AREA_SIZE

See Also: Oracle Database Administrator's Guide because automatic
memory management is not available on all platforms

Topics for Database Administrators

Concepts for Database Administrators 18-19

Database Resource Manager
Oracle Database Resource Manager (the Resource Manager) is an infrastructure that
provides granular control of database resources allocated to users, applications, and
services. The Resource Manager solves many resource allocation problems that an
operating system does not manage well, including:

■ Excessive overhead

■ Inefficient scheduling

■ Inappropriate allocation of resources

■ Inability to manage database-specific resources

The Resource Manager helps overcome these problems by giving the database more
control over allocation of hardware resources and enabling you to prioritize work
within the database. You can classify sessions into groups based on session attributes,
and then allocate resources to these groups to optimize hardware utilization.

Resources are allocated to users according to a resource plan specified by the database
administrator. The plan specifies how the resources are to be distributed among
resource consumer groups, which are user sessions grouped by resource
requirements. A resource plan directive associates a resource consumer group with a
plan and specifies how resources are to be allocated to the group.

Figure 18–6 shows a simple resource plan for an organization that runs OLTP
applications and reporting applications simultaneously during the daytime. The
currently active plan, DAYTIME, allocates CPU resources among three resource
consumer groups. Specifically, OLTP is allotted 75% of the CPU time, REPORTS is allotted
15%, and OTHER_GROUPS receives the remaining 10%.

Figure 18–6 Simple Resource Plan

Oracle Scheduler
Oracle Scheduler (the Scheduler) enables database administrators and application
developers to control when and where various tasks take place in the database
environment. The Scheduler provides complex enterprise scheduling functionality,
which you can use to:

■ Schedule job execution based on time or events

■ Schedule job processing in a way that models your business requirements

See Also: Oracle Database Administrator's Guide for information
about using the Resource Manager

Directive 2
15% of CPU

Directive 3
10% of CPU

Directive 1
75% of CPU

Consumer Group
"REPORTING"

Consumer Group
"OTHER_GROUPS"

Consumer Group
"OLTP"

Resource Plan
"DAYTIME"

Topics for Database Administrators

18-20 Oracle Database Concepts

■ Manage and monitor jobs

■ Execute and manage jobs in a clustered environment

Program objects (programs) contain metadata about the command that the Scheduler
will run, including default values for any arguments. Schedule objects (schedules)
contain information about run date and time and recurrence patterns. Job objects
(jobs) associate a program with a schedule. To define what is executed and when, you
assign relationships among programs, schedules, and jobs.

The Scheduler is implemented as a set of functions and procedures in the
DBMS_SCHEDULER PL/SQL package. You create and manipulate Scheduler objects with
this package or with Enterprise Manager. Because Scheduler objects are standard
database objects, you can control access to them with system and object privileges.

Figure 18–7 shows the basic architecture of the Scheduler. The job table is a container
for all the jobs, with one table per database. The job coordinator background process
is automatically started and stopped as needed. Job slaves are awakened by the
coordinator when a job must be run (see "Job Queue Processes (CJQ0 and Jnnn)" on
page 15-12). The slaves gather metadata from the job table and run the job.

Figure 18–7 Scheduler Components

Performance Diagnostics and Tuning
As a DBA, you are responsible for the performance of your Oracle database. Typically,
performance problems result from unacceptable response time, which is the time to
complete a specified workload, or throughput, which is the amount of work that can
be completed in a specified time. Common problems include:

■ CPU bottlenecks

■ Undersized memory structures

■ I/O capacity issues

■ Inefficient or high-load SQL statements

■ Unexpected performance regression after tuning SQL statements

■ Concurrency and contention issues

See Also: Oracle Database Administrator's Guide to learn about the
Scheduler

Client

Database

Job Table
Job1
Job2
Job3
Job4
Job5
Job6 JS JS JS

Job Slaves

Job Coordinator

Topics for Database Administrators

Concepts for Database Administrators 18-21

■ Database configuration issues

The general goal of tuning is usually to improve response time, increase throughput,
or both. A specific and measurable goal might be "Reduce the response time of the
specified SELECT statement to under 5 seconds." Whether this goal is achievable
depends on factors that may or may not be under the control of the DBA. In general,
tuning is the effort to achieve specific, measurable, and achievable tuning goals by
using database resources in the most efficient way possible.

The Oracle performance method is based on identifying and eliminating bottlenecks
in the database, and developing efficient SQL statements. Applying the Oracle
performance method involves the following tasks:

■ Performing pre-tuning preparations

■ Tuning the database proactively on a regular basis

■ Tuning the database reactively when users report performance problems

■ Identifying, tuning, and optimizing high-load SQL statements

This section describes essential aspects of Oracle Database performance tuning,
including the use of advisors. Oracle Database advisors provide specific advice on
how to address key database management challenges, covering a wide range of areas
including space, performance, and undo management.

Database Self-Monitoring
Self-monitoring take place as the database performs its regular operation, ensuring
that the database is aware of problems as they arise. Oracle Database can send a
server-generated alert to notify you of an impending problem.

Alerts are automatically generated when a problem occurs or when data does not
match expected values for metrics such as physical reads per second or SQL response
time. A metric is the rate of change in a cumulative statistic. Server-generated alerts
can be based on user-specified threshold levels or because an event has occurred.

Server-generated alerts not only identify the problem, but sometimes recommend how
the reported problem can be resolved. An example is an alert that the fast recovery
area is running out of space with the recommendation that obsolete backups should be
deleted or additional disk space added.

Automatic Workload Repository (AWR)
Automatic Workload Repository (AWR) is a repository of historical performance data
that includes cumulative statistics for the system, sessions, individual SQL statements,
segments, and services. These statistics are the foundation of performance tuning. By
automating the gathering of database statistics for problem detection and tuning, AWR
serves as the foundation for database self-management.

As shown in Figure 18–8, the database stores recent AWR statistics in the SGA. By
default, the MMON process gathers statistics every hour and creates an AWR
snapshot (see "Manageability Monitor Processes (MMON and MMNL)" on
page 15-11). A snapshot is a set of performance statistics captured at a specific time.
The database writes snapshots to the SYSAUX tablespace. AWR manages snapshot
space, purging older snapshots according to a configurable snapshot retention policy.

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide provide to learn how to
implement the Oracle performance method

See Also: Oracle Database Administrator's Guide

Topics for Database Administrators

18-22 Oracle Database Concepts

Figure 18–8 Automatic Workload Repository (AWR)

An AWR baseline is a collection of statistic rates usually taken over a period when the
system is performing well at peak load. You can specify a pair or range of AWR
snapshots as a baseline. By using an AWR report to compare statistics captured during
a period of bad performance to a baseline, you can diagnose problems.

An automated maintenance infrastructure known as AutoTask illustrates how Oracle
Database uses AWR for self-management. By analyzing AWR data, AutoTask can
determine the need for maintenance tasks and schedule them to run in Oracle
Scheduler maintenance windows. Examples of tasks include gathering statistics for
the optimizer and running the Automatic Segment Advisor.

Automatic Database Diagnostic Monitor (ADDM)
Automatic Database Diagnostic Monitor (ADDM) is a self-diagnostic advisor built
into Oracle Database. Using statistics captured in AWR, ADDM automatically and
proactively diagnoses database performance and determines how identified problems
can be resolved. You can also run ADDM manually.

ADDM takes a holistic approach to system performance, using time as a common
currency between components. ADDM identifies areas of Oracle Database consuming
the most time. For example, the database may be spending an excessive amount of
time waiting for free database buffers. ADDM drills down to identify the root cause of

See Also:

■ "The SYSAUX Tablespace" on page 12-32

■ Oracle Database Performance Tuning Guide to learn about AWR

■ Oracle Database Administrator's Guide and Oracle Database 2 Day
DBA to learn how to manage automatic maintenance tasks

Database Instance

System Global Area (SGA)

Statistics MMON

SYSAUX Tablespace

Automatic Workload
Repository

Snapshots

Memory

Disk

Topics for Database Administrators

Concepts for Database Administrators 18-23

problems, rather than just the symptoms, and reports the effect of the problem on
Oracle Database overall. Minimal overhead occurs during the diagnostic process.

In many cases, ADDM recommends solutions and quantifies expected performance
benefits. For example, ADDM may recommend changes to hardware, database
configuration, database schema, or applications. If a recommendation is made, then
ADDM reports the time benefit. The use of time as a measure enables comparisons of
problems or recommendations.

Besides reporting potential performance issues, ADDM documents areas of the
database that are not problems. Subcomponents such as I/O and memory that are not
significantly impacting database performance are pruned from the classification tree at
an early stage. ADDM lists these subcomponents so that you can quickly see that there
is little benefit to performing actions in those areas.

Active Session History (ASH)
Active Session History (ASH) samples active database sessions each second, writing
the data to memory and persistent storage. ASH is an integral part of the database
self-management framework and is useful for diagnosing performance problems.

Unlike instance-level statistics gathered by AWR, ASH statistics are gathered at the
session level. An active session is a session that is using CPU and is not waiting for an
event in the idle wait class.

You can use Enterprise Manager or SQL scripts to generate ASH reports that gather
session statistics gathered over a specified duration. You can use ASH reports for:

■ Analysis of short-lived performance problems not identified by ADDM

■ Scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL ID

For example, a user notifies you that the database was slow between 10:00 p.m. and
10:02 p.m. However, the 2-minute performance degradation represents a small portion
of the AWR snapshot interval from 10:00 p.m. and 11:00 p.m. and does not appear in
ADDM findings. ASH reports can help identify the source of the transient problem.

Application and SQL Tuning
Oracle Database completely automates the SQL tuning process. ADDM identifies SQL
statements consuming unusually high system resources and therefore causing
performance problems. In addition, AWR automatically captures the top SQL
statements in terms of CPU and shared memory consumption. The identification of
high-load SQL statements happens automatically and requires no intervention.

SQL Tuning Advisor Automatic SQL tuning is exposed through SQL Tuning Advisor.
SQL Tuning Advisor runs automatically during system maintenance windows as a
maintenance task. During each automatic run, the advisor selects high-load SQL
queries in the database and generates recommendations for tuning these queries.

SQL Tuning Advisor recommendations fall into the following categories:

■ Statistics analysis

■ SQL profiling

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide

Topics for Database Administrators

18-24 Oracle Database Concepts

■ Access path analysis

■ SQL structure analysis

A SQL profile contains additional statistics specific to a SQL statement and enables
the optimizer to generate a better execution plan. Essentially, a SQL profile is a
method for analyzing a query. Both access path and SQL structure analysis are useful
for tuning an application under development or a homegrown production application.

A principal benefit of SQL Tuning Advisor is that solutions come from the optimizer
rather than external tools (see "Overview of the Optimizer" on page 7-10). Thus, tuning
is performed by the database component that is responsible for the execution plans
and SQL performance. The tuning process can consider past execution statistics of a
SQL statement and customizes the optimizer settings for this statement.

SQL Access Advisor SQL Access Advisor offers advice on how to optimize data access
paths. Specifically, it recommends how database performance can be improved
through partitioning, materialized views, indexes, and materialized view logs.

Schema objects such as partitions and indexes are essential for optimizing complex,
data-intensive queries. However, creation and maintenance of these objects can be
time-consuming, and space requirements can be significant. SQL Access Advisor helps
meet performance goals by recommending data structures for a specified workload.

The SQL Access Advisor can be run from Enterprise Manager using the SQL Access
Advisor Wizard or by invoking the DBMS_ADVISOR package. The DBMS_ADVISOR package
consists of a collection of analysis and advisory functions and procedures callable from
any PL/SQL program.

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide

19

Concepts for Database Developers 19-1

19Concepts for Database Developers

The Oracle Database developer creates and maintains a database application. This
section presents a brief overview of what a database developer does and the
development tools available.

This section contains the following topics:

■ Duties of Database Developers

■ Tools for Database Developers

■ Topics for Database Developers

Duties of Database Developers
An Oracle developer is responsible for creating or maintaining the database
components of an application that uses the Oracle technology stack. Oracle developers
either develop new applications or convert existing applications to run in an Oracle
Database environment. For this reason, developers work closely with the database
administrators, sharing knowledge and information.

Oracle database developers can expect to be involved in the following tasks:

■ Implementing the data model required by the application

■ Creating schema objects and implementing rules for data integrity

■ Choosing a programming environment for a new development project

■ Writing server-side PL/SQL or Java subprograms and client-side procedural code
that use SQL statements

■ Creating the application interface with the chosen development tool

■ Establishing a Globalization Support environment for developing globalized
applications

■ Instantiating applications in different databases for development, testing,
education, and deployment in a production environment

The preceding tasks, and many others, are described in Oracle Database 2 Day
Developer's Guide and Oracle Database Advanced Application Developer's Guide.

Tools for Database Developers
Oracle provides several tools for use in developing database applications. This section
describes some commonly used development tools.

See Also: "Introduction to Server-Side Programming" on page 8-1

Tools for Database Developers

19-2 Oracle Database Concepts

SQL Developer
SQL Developer is a graphical version of SQL*Plus, written in Java, that supports
development in SQL and PL/SQL. You can connect to any Oracle database schema
using standard database authentication. SQL Developer enables you to:

■ Browse, create, edit, and delete schema objects

■ Execute SQL statements

■ Edit and debug PL/SQL program units

■ Manipulate and export data

■ Create and display reports

SQL Developer is available in the default Oracle Database installation and by free
download.

Oracle Application Express
Oracle Application Express (APEX) is a Web application development tool for Oracle
Database. The tool uses built-in features such as user interface themes, navigational
controls, form handlers, and flexible reports to accelerate application development.

Oracle Application Express installs with the database and consists of data in tables and
PL/SQL code. When you run an application, your browser sends a URL request that is
translated into an Oracle Application Express PL/SQL call. After the database
processes the PL/SQL, the results are relayed back to the browser as HTML. This cycle
happens each time you request or submit a page.

You can use Oracle Application Express with the embedded PL/SQL gateway. The
gateway runs in the XML DB HTTP server in the database and provides the necessary
infrastructure to create dynamic applications. As shown in Figure 19–1, the embedded
PL/SQL gateway simplifies the application architecture by eliminating the middle tier.

Figure 19–1 Application Express with Embedded PL/SQL Gateway

Oracle JDeveloper
Oracle JDeveloper is an integrated development environment (IDE) for building
service-oriented applications using the latest industry standards for Java, XML, Web
services, and SQL. Oracle JDeveloper supports the complete software development life
cycle, with integrated features for modeling, coding, debugging, testing, profiling,
tuning, and deploying applications.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
SQL Developer User's Guide to learn how to use SQL Developer

See Also: Oracle Database 2 Day + Application Express Developer's
Guide to learn how to use APEX

Application
Express
Engine

Oracle Database with
Embedded PL/SQL Gateway

Web
Browser

Topics for Database Developers

Concepts for Database Developers 19-3

JDeveloper uses windows for various application development tools. For example,
when creating a Java application, you can use tools such as the Java Visual Editor and
Component Palette. In addition to these tools, JDeveloper provides a range of
navigators to help you organize and view the contents of your projects.

Oracle JPublisher
Java Publisher (JPublisher) is a simple and convenient tool to create Java programs
that access database tables. Java code stubs generated by JDeveloper present
object-relational structures in the database as Java classes. These classes can represent
the following user-defined database entities in a Java program:

■ SQL object types

■ Object reference types

■ SQL collection types

■ PL/SQL packages

You can specify and customize the mapping of these entities to Java classes in a
strongly typed paradigm, so that a specific Java type is associated with a specific
user-defined SQL type. JPublisher can also generate classes for PL/SQL packages.
These classes have wrapper methods to call the stored procedure in the package.

Oracle Developer Tools for Visual Studio .NET
Oracle Developer Tools for Visual Studio .NET is a set of application tools integrated
with the Visual Studio .NET environment. These tools provide GUI access to Oracle
functionality, enable the user to perform a wide range of application development
tasks, and improve development productivity and ease of use.

Oracle Developer Tools support the programming and implementation of .NET stored
procedures using Visual Basic, C#, and other .NET languages. These procedures are
written in a .NET language and contain SQL or PL/SQL statements.

Topics for Database Developers
Chapter 17 describes topics important for both developers and administrators. This
section covers topics that are most essential to database developers and that have not
been discussed elsewhere in the manual.

This section contains the following topics:

■ Principles of Application Design and Tuning

■ Client-Side Database Programming

See Also:

■ Oracle Database 2 Day + Java Developer's Guide to learn how to use
JDeveloper

■ You can download JDeveloper from the following URL:
http://www.oracle.com/technetwork/developer-tools/jdev/do
wnloads/

See Also: Oracle Database JPublisher User's Guide

See Also: Oracle Database 2 Day + .NET Developer's Guide for Microsoft
Windows

Topics for Database Developers

19-4 Oracle Database Concepts

■ Globalization Support

■ Unstructured Data

Principles of Application Design and Tuning
Oracle developers must design, create, and tune database applications so that they
achieve security and performance goals. The following principles of application design
and tuning are useful guidelines:

■ Understand how Oracle Database works

As a developer, you want to develop applications in the least amount of time
against an Oracle database, which requires exploiting the database architecture
and features. For example, not understanding Oracle Database concurrency
controls and multiversioning read consistency may make an application corrupt
the integrity of the data, run slowly, and decrease scalability (see "Introduction to
Data Concurrency and Consistency" on page 9-1).

■ Use bind variables

When a query uses bind variables, the database can compile it once and store the
query plan in the shared pool. If the same statement is executed again, then the
database can perform a soft parse and reuse the plan. In contrast, a hard parse
takes longer and uses more resources (see "SQL Parsing" on page 7-16). Using bind
variables to allow soft parsing is very efficient and is the way the database intends
developers to work.

■ Implement integrity constraints in the server rather than in the client

Using primary and foreign keys enables data to be reused in multiple applications.
Coding the rules in a client means that other clients do not have access to these
rules when running against the databases (see "Advantages of Integrity
Constraints" on page 5-1).

■ Build a test environment with representative data and session activity

A test environment that simulates your live production environment provides
multiple benefits. For example, you can benchmark the application to ensure that
it scales and performs well. Also, you can use a test environment to measure the
performance impact of changes to the database, and ensure that upgrades and
patches work correctly.

■ Design the data model with the goal of good performance

Typically, attempts to use generic data models result in poor performance. A
well-designed data model answer the most common queries as efficiently as
possible. For example, the data model should use the type of indexes that provide
the best performance. Tuning after deployment is undesirable because changes to
logic and physical structures may be difficult or impossible.

■ Define clear performance goals and keep historical records of metrics

An important facet of development is determining exactly how the application is
expected to perform and scale. For example, you should use metrics that include
expected user load, transactions per second, acceptable response times, and so on.
Good practice dictates that you maintain historical records of performance metrics.
In this way, you can monitor performance proactively and reactively (see
"Performance Diagnostics and Tuning" on page 18-20).

■ Instrument the application code

Topics for Database Developers

Concepts for Database Developers 19-5

Good development practice involves adding debugging code to your application.
The ability to generate trace files is useful for debugging and diagnosing
performance problems.

Client-Side Database Programming
As explained in Chapter 8, "Server-Side Programming: PL/SQL and Java", two basic
techniques enable procedural database applications to use SQL: server-side
programming with PL/SQL and Java, and client-side programming with precompilers
and APIs. This section provides a brief overview of client-side database programming.

Embedded SQL
Historically, client/server programs have used embedded SQL to interact with the
database. This section explains options for using embedded SQL.

Oracle Precompilers Client/server programs are typically written using precompilers,
which are programming tools that enable you to embed SQL statements in high-level
programs. For example, the Oracle Pro*C/C++ precompiler enables you to embed SQL
statements in a C or C++ source file. Oracle precompilers are also available for COBOL
and FORTRAN.

A precompiler provides several benefits, including the following:

■ Increases productivity because you typically write less code than equivalent OCI
applications

■ Enables you to create highly customized applications

■ Allows close monitoring of resource use, SQL statement execution, and various
run-time indicators

■ Saves time because the precompiler, not you, translates each embedded SQL
statement into calls to the Oracle Database run-time library

■ Uses the Object Type Translator to map Oracle Database object types and
collections into C data types to be used in the Pro*C/C++ application

■ Provides compile time type checking of object types and collections and automatic
type conversion from database types to C data types

The client application containing the SQL statements is the host program. This
program is written in the host language. In the host program, you can mix complete
SQL statements with complete C statements and use C variables or structures in SQL
statements. When embedding SQL statements you must begin them with the
keywords EXEC SQL and end them with a semicolon. Pro*C/C++ translates EXEC SQL
statements into calls to the run-time library SQLLIB.

Many embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. The following
example compares interactive and embedded ROLLBACK statements:

ROLLBACK; -- interactive
EXEC SQL ROLLBACK; -- embedded

See Also: Oracle Database 2 Day Developer's Guide for considerations
when designing and deploying database applications

See Also: Oracle Database Advanced Application Developer's Guide to
learn how to choose a programming environment

Topics for Database Developers

19-6 Oracle Database Concepts

The statements have the same effect, but you would use the first in an interactive SQL
environment (such as SQL Developer), and the second in a Pro*C/C++ program.

A precompiler accepts the host program as input, translates the embedded SQL
statements into standard database run-time library calls, and generates a source
program that you can compile, link, and run in the usual way. Figure 19–2 illustrates
typical steps of developing programs that use precompilers.

Figure 19–2 Program Development with Precompilers

SQLJ SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java
source code. SQLJ provides a simpler alternative to the Java Database Connectivity
(JDBC) API for client-side SQL data access from Java.

The SQLJ interface is the Java equivalent of the Pro* interfaces. You insert SQL
statements in your Java source code. Afterward, you submit the Java source files to the
SQLJ translator, which translates the embedded SQL to pure JDBC-based Java code.

See Also:

■ Pro*C/C++ Programmer's Guide for a complete description of the
Pro*C/C++ precompiler

■ Pro*FORTRAN Supplement to the Oracle Precompilers Guide

See Also: "SQLJ" on page 8-16

Editor

Host
Program

Oracle
Precompiler

Compiler

Object
Program

Executable
Program

Linker

Source
Program

With embedded SQL
statements

With all SQL statements
replaced by library calls

Oracle
Runtime
Library

(SQLLIB)
To resolve calls

Topics for Database Developers

Concepts for Database Developers 19-7

Client-Side APIs
Most developers today use an API to embed SQL in their database applications. For
example, two popular APIs for enabling programs to communicate with Oracle
Database are Open Database Connectivity (ODBC) and JDBC. The Oracle Call
Interface (OCI) and Oracle C++ Call Interface (OCCI) are two other common APIs for
client-side programming.

OCI and OCCI As an alternative to precompilers, Oracle provides the OCI and OCCI
APIs. OCI lets you manipulate data and schemas in a database using a host
programming language such as C. OCCI is an object-oriented interface suitable for use
with C++. Both APIs enable developers to use native subprogram invocations to access
Oracle Database and control SQL execution.

In some cases, OCI provides better performance or more features than higher-level
interfaces. OCI and OCCI provide many features, including the following:

■ Support for all SQL DDL, DML, query, and transaction control facilities available
through Oracle Database

■ Instant client, a way to deploy applications when disk space is an issue

■ Thread management, connection pooling, globalization functions, and direct path
loading of data from a C application

OCI and OCCI provide a library of standard database access and retrieval functions in
the form of a dynamic run-time library (OCILIB). This library can be linked in an
application at run time. Thus, you can compile and link an OCI or OCCI program in
the same way as a nondatabase application, avoiding a separate preprocessing or
precompilation step. Figure 19–3 illustrates the development process.

Figure 19–3 Development Process Using OCI or OCCI

See Also:

■ Oracle Call Interface Programmer's Guide

■ Oracle C++ Call Interface Programmer's Guide

Host Language Compiler

Source Files

Host Linker

Application

Object Files OCI Library

Object
Server

101011010110101
1010110101

Topics for Database Developers

19-8 Oracle Database Concepts

ODBC and JDBC ODBC is a standard API that enables applications to connect to a
database and then prepare and run SQL statements. ODBC is independent of
programming language, database, and operating system. The goal of ODBC is to
enable any application to access data contained in any database.

A database driver is software that sits between an application and the database. The
driver translates the API calls made by the application into commands that the
database can process. By using an ODBC driver, an application can access any data
source, including data stored in spreadsheets. The ODBC driver performs all
mappings between the ODBC standard and the database.

The Oracle ODBC driver provided by Oracle enables ODBC-compliant applications to
access Oracle Database. For example, an application written in Visual Basic can use
ODBC to query and update tables in an Oracle database.

JDBC is a low-level Java interface that enables Java applications to interact with Oracle
database. Like ODBC, JDBC is a vendor-independent API. The JDBC standard is
defined by Sun Microsystems and implemented through the java.sql interfaces.

The JDBC standard enables individual providers to implement and extend the
standard with their own JDBC drivers. Oracle provides the following JDBC drivers for
client-side programming:

■ JDBC thin driver

This pure Java driver resides on the client side without an Oracle client
installation. It is platform-independent and usable with both applets and
applications.

■ JDBC OCI driver

This driver resides on the client-side with an Oracle client installation. It is usable
only with applications. The JDBC OCI driver, which is written in both C and Java,
converts JDBC calls to OCI calls.

The following snippets are from a Java program that uses the JDBC OCI driver to
create a Statement object and query the dual table:

// Create a statement
Statement stmt = conn.createStatement();

// Query dual table
ResultSet rset = stmt.executeQuery("SELECT 'Hello World' FROM DUAL");

Globalization Support
Oracle Database globalization support enables you to store, process, and retrieve data
in native languages. Thus, you can develop multilingual applications and software
that can be accessed and run from anywhere in the world simultaneously.

Developers who write globalized database application must do the following:

■ Understand the Oracle Database globalization support architecture, including the
properties of the different character sets, territories, languages, and linguistic sort
definitions

See Also:

■ Oracle Database Advanced Application Developer's Guide and
Oracle Database 2 Day + Java Developer's Guide to learn more
about JDBC

■ Oracle Database Gateway for ODBC User's Guide

Topics for Database Developers

Concepts for Database Developers 19-9

■ Understand the globalization functionality of their middle-tier programming
environment, including how it can interact and synchronize with the locale model
of the database

■ Design and write code capable of simultaneously supporting multiple clients
running on different operating systems, with different character sets and locale
requirements

For example, an application may be required to render content of the user interface
and process data in languages and locale preferences of native users. For example, the
application must process multibyte Kanji data, display messages and dates in the
proper regional format, and process 7-bit ASCII data without requiring users to
change settings.

Globalization Support Environment
The globalization support environment includes the client application and the
database. You can control language-dependent operations by setting parameters and
environment variables on the client and server, which may exist in separate locations.

Oracle Database provides globalization support for features such as:

■ Native languages and territories

■ Local formats for date, time, numbers, and currency

■ Calendar systems (Gregorian, Japanese, Imperial, Thai Buddha, and so on)

■ Multiple character sets, including Unicode

■ Character semantics

Character Sets A key component of globalization support is a character set, which is an
encoding scheme used to display characters on your computer screen. The following
distinction is important in application development:

■ A database character set determines which languages can be represented in a
database. The character set is specified at database creation.

■ A client character set is the character set for data entered or displayed by a client
application. The character set for the client and database can be different.

A group of characters (for example, alphabetic characters, ideographs, symbols,
punctuation marks, and control characters) can be encoded as a character set. An
encoded character set assigns a unique numeric code, called a code point or encoded

See Also: Oracle Database Globalization Support Guide for more
information about globalization

Note: In previous releases, Oracle referred to globalization support
capabilities as National Language Support (NLS) features. NLS is
actually a subset of globalization support and provides the ability to
choose a national language and store data in a specific character set.

Note: After a database is created, changing its character set is
usually very expensive in terms of time and resources. This operation
may require converting all character data by exporting the whole
database and importing it back.

Topics for Database Developers

19-10 Oracle Database Concepts

value, to each character in the set. Code points are important in a global environment
because of the potential need to convert data between different character sets.

The computer industry uses many encoded character sets. These sets differ in the
number of characters available, the characters available for use, code points assigned
to each character, and so on. Oracle Database supports most national, international,
and vendor-specific encoded character set standards.

Oracle Database supports the following classes of encoded character sets:

■ Single-Byte character sets

Each character occupies one byte. An example of a 7-bit character set is US7ASCII.
An example of an 8-bit character set is WE8DEC.

■ Multibyte character sets

Each character occupies multiple bytes. Multibyte sets are commonly used for
Asian languages.

■ Unicode

The universal encoded character set enables you to store information in any
language by using a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language.

Locale-Specific Settings A locale is a linguistic and cultural environment in which a
system or program is running. NLS parameters determine locale-specific behavior on
both the client and database. A database session uses NLS settings when executing
statements on behalf of a client. For example, the database makes the correct territory
usage of the thousands separator for a client.

Typically, the NLS_LANG environment variable on the client host specifies the locale for
both the server session and client application. The process is as follows:

1. When a client application starts, it initializes the client NLS environment from the
environment settings.

All NLS operations performed locally, such as displaying formatting in Oracle
Developer applications, use these settings.

2. The client communicates the information defined by NLS_LANG to the database
when it connects.

3. The database session initializes its NLS environment based on the settings
communicated by the client.

If the client did not specify settings, then the session uses the settings in the
initialization parameter file. The database uses the initialization parameter settings
only if the client did not specify any NLS settings. If the client specified some NLS
settings, then the remaining NLS settings default.

Each session started on behalf of a client application may run in the same or a different
locale as other sessions. For example, one session may use the German locale while
another uses the French locale. Also, each session may have the same or different
language requirements specified.

Table 19–1 shows two clients using different NLS_LANG settings. A user starts SQL*Plus
on each host, logs on to the same database as hr, and runs the same query

See Also: Oracle Database Globalization Support Guide to learn about
character set migration

Topics for Database Developers

Concepts for Database Developers 19-11

simultaneously. The result for each session differs because of the locale-specific NLS
setting for floating-point numbers.

Oracle Globalization Development Kit
The Oracle Globalization Development Kit (GDK) simplifies the development
process and reduces the cost of developing Internet applications used to support a
global environment. The GDK includes comprehensive programming APIs for both
Java and PL/SQL, code samples, and documentation that address many of the design,
development, and deployment issues encountered while creating global applications.

The GDK mainly consists of two parts: GDK for Java and GDK for PL/SQL. GDK for
Java provides globalization support to Java applications. GDK for PL/SQL provides
globalization support to the PL/SQL programming environment. The features offered
in the two parts are not identical.

Unstructured Data
The traditional relational model deals with simple structured data that fits into simple
tables. Oracle Database also provides support for unstructured data, which cannot be
decomposed into standard components. Unstructured data includes text, graphic
images, video clips, and sound waveforms.

Oracle Database includes data types to handle unstructured content. These data types
appear as native types in the database and can be queried using SQL.

Overview of XML in Oracle Database
Oracle XML DB is a set of Oracle Database technologies related to high-performance
XML storage and retrieval. XML DB provides native XML support by encompassing
both SQL and XML data models in an interoperable manner.

Oracle XML DB is suited for any Java or PL/SQL application where some or all of the
data processed by the application is represented using XML. For example, the
application may have large numbers of XML documents that must be ingested,
generated, validated, and searched.

Oracle XML DB provides many features, including the following:

■ The native XMLType data type, which can represent an XML document in the
database so that it is accessible by SQL

Table 19–1 Locale-Specific NLS Settings

t Client Host 1 Client Host 2

t0 $ export NLS_LANG=American_America.US7ASCII $ export NLS_LANG=German_Germany.US7ASCII

t1 $ sqlplus /nolog
SQL> CONNECT hr@proddb
Enter password: *******
SQL> SELECT 999/10 FROM DUAL;

999/10

99.9

$ sqlplus /nolog
SQL> CONNECT hr@proddb
Enter password: *******
SQL> SELECT 999/10 FROM DUAL;

999/10

99,9

See Also: Oracle Database 2 Day + Java Developer's Guide and Oracle
Database Globalization Support Guide to learn about NLS settings

See Also: Oracle Database Globalization Support Guide

Topics for Database Developers

19-12 Oracle Database Concepts

■ Support for XML standards such as XML Schema, XPath, XQuery, XSLT, and DOM

■ XMLIndex, which supports all forms of XML data, from highly structured to
completely unstructured

Example 19–1 creates a table orders of type XMLType. The example also creates a SQL
directory object, which is a logical name in the database for a physical directory on the
host computer. This directory contains XML files. The example inserts XML content
from the purchaseOrder.xml file into the orders table.

Example 19–1 XMLType

CREATE TABLE orders OF XMLType;
CREATE DIRECTORY xmldir AS path_to_folder_containing_XML_file;
INSERT INTO orders VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8')));

The Oracle XML developer's kits (XDK) contain the basic building blocks for reading,
manipulating, transforming, and viewing XML documents, whether on a file system
or in a database. APIs and tools are available for Java, C, and C++. The production
Oracle XDKs are fully supported and come with a commercial redistribution license.

Overview of LOBs
The large object (LOB) data types enable you to store and manipulate large blocks of
unstructured data in binary or character format. LOBs provide efficient, random,
piece-wise access to the data.

Internal LOBs An internal LOB stores data in the database itself rather than in external
files. Internal LOBS include the following:

■ CLOB (character LOB), which stores large amounts of text, such as text or XML files,
in the database character set

■ NCLOB (national character set LOB), which stores Unicode data

■ BLOB (binary LOB), which stores large amounts of binary information as a bit
stream and is not subject to character set translation

The database stores LOBs differently from other data types. Creating a LOB column
implicitly creates a LOB segment and a LOB index (see "User Segment Creation" on
page 12-21). The tablespace containing the LOB segment and LOB index, which are
always stored together, may be different from the tablespace containing the table.

The LOB segment stores data in pieces called chunks. A chunk is a logically
contiguous set of data blocks and is the smallest unit of allocation for a LOB. A row in
the table stores a pointer called a LOB locator, which points to the LOB index. When
the table is queried, the database uses the LOB index to quickly locate the LOB chunks.

See Also:

■ Oracle XML DB Developer's Guide

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Database XML Java API Reference

Note: Sometimes the database can store small amounts of LOB data
in the table itself rather than in a separate LOB segment.

Topics for Database Developers

Concepts for Database Developers 19-13

The database manages read consistency for LOB segments differently from other data
(see "Read Consistency and Undo Segments" on page 9-3). Instead of using undo data
to record changes, the database stores the before images in the segment itself. When a
transaction changes a LOB, the database allocates a new chunk and leaves the old data
in place. If the transaction rolls back, then the database rolls back the changes to the
index, which points to the old chunk.

External LOBs A BFILE (binary file LOB) is an external LOB because the database stores
a pointer to a file in the operating system. The external data is read-only.

A BFILE uses a directory object to locate data. The amount of space consumed depends
on the length of the directory object name and the length of the file name.

A BFILE does not use the same read consistency mechanism as internal LOBS because
the binary file is external to the database. If the data in the file changes, then repeated
reads from the same binary file may produce different results.

SecureFiles SecureFiles is a LOB data type specifically engineered to deliver high
performance for file data comparable to that of traditional file systems, while retaining
the advantages of Oracle Database. The SECUREFILE LOB parameter enables advanced
features typically found in high-end file systems, such as deduplication, compression,
encryption, and journaling.

Overview of Oracle Text
Oracle Text (Text) is a fast and accurate full-text retrieval technology integrated with
Oracle Database. Oracle Text indexes any document or textual content stored in file
systems, databases, or on the Web. These documents can be searched based on their
textual content, metadata, or attributes.

Oracle Text provides the following advantages:

■ Oracle Text allows text searches to be combined with regular database searches in
a single SQL statement. The Text index is in the database, and Text queries are run
in the Oracle Database process. The optimizer can choose the best execution plan
for any query, giving the best performance for ad hoc queries involving Text and
structured criteria.

■ You can use Oracle Text with XML data. In particular, you can combine XMLIndex
with Oracle Text indexing, taking advantage of both XML and a full-text index.

■ The Oracle Text SQL API makes it simple and intuitive to create and maintain
Oracle Text indexes and run searches.

For a use case, suppose you must create a catalog index for an auction site that sells
electronic equipment. New inventory is added every day. Item descriptions, bid dates,
and prices must be stored together. The application requires good response time for
mixed queries. First, you create and populate a catalog table. You then use Oracle Text
to create a CTXCAT index that you can query with the CATSEARCH operator in a SELECT
... WHERE CATSEARCH statement.

Figure 19–4 illustrates the relation of the catalog table, its CTXCAT index, and the
catalog application that uses the CATSEARCH operator to query the index.

See Also:

■ "Oracle Data Types" on page 2-9

■ Oracle Database SecureFiles and Large Objects Developer's Guide to
learn more about LOB data types

Topics for Database Developers

19-14 Oracle Database Concepts

Figure 19–4 Catalog Query Application

Overview of Oracle Multimedia
Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
medical images that follow the Digital Imaging and Communications in Medicine
(DICOM) standard, audio, and video data in an integrated fashion with other
enterprise information. Oracle Multimedia provides object types and methods for:

■ Extracting metadata and attributes from multimedia data

■ Embedding metadata created by applications into image and DICOM data

■ Obtaining and managing multimedia data from Oracle Database, Web servers, file
systems, and other servers

■ Performing operations such as thumbnail generation on image and DICOM data

■ Making DICOM data anonymous

■ Checking DICOM data for conformity to user-defined validation rules

Overview of Oracle Spatial
Oracle Spatial (Spatial) provides a SQL schema and functions that facilitate the
storage, retrieval, update, and query of collections of spatial features in an Oracle
database. Oracle Spatial makes spatial data management easier to users of
location-enabled applications and geographic information system (GIS) applications.

An example of spatial data is a road map. The spatial data indicates the Earth location
(such as longitude and latitude) of objects on the map. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional piece of
paper. A GIS is often used to store, retrieve, and render this Earth-relative spatial data.
When spatial data is stored in an Oracle database, the data can be easily manipulated,
retrieved, and related to other data.

See Also:

■ Oracle Text Application Developer's Guide and Oracle Text Reference

■ Oracle XML DB Developer's Guide to learn how to perform full-text
search over XML data

See Also:

■ Oracle Multimedia User's Guide and Oracle Multimedia Reference

■ Oracle Multimedia DICOM Developer's Guide and Oracle Multimedia
DICOM Java API Reference

■ Oracle Multimedia Java API Reference and Oracle Multimedia Servlets
and JSP Java API Reference

See Also: Oracle Spatial Developer's Guide

Ctxcat
Index

Database

SQL
CATSEARCH

Query

Catalog
Application

Catalog Table

Glossary-1

Glossary

access path

The means by which data is retrieved from a database. For example, a query using an
index and a query using a full table scan use different access paths.

active transaction

A transaction that has started but not yet committed or rolled back.

ADDM

Automatic Database Diagnostic Monitor. An Oracle Database infrastructure that
enables a database to diagnose its own performance and determine how identified
problems could be resolved.

ADR

Automatic Diagnostic Repository. A a file-based hierarchical data store for managing
diagnostic information, including network tracing and logging.

alert log

A file that provides a chronological log of database messages and errors. The alert log
is stored in the ADR.

archived redo log file

A member of the online redo log that has been archived by Oracle Database. The
archived redo log files can be applied to a database backup in media recovery.

ARCHIVELOG mode

A mode of the database that enables the archiving of the online redo log.

Automatic Database Diagnostic Monitor (ADDM)

See ADDM.

Automatic Diagnostic Repository (ADR)

See ADR.

automatic undo management mode

A mode of the database in which it automatically manages undo space in a dedicated
undo tablespace.

See also manual undo management mode.

Automatic Workload Repository (AWR)

Glossary-2

Automatic Workload Repository (AWR)

See AWR.

AWR

Automatic Workload Repository (AWR). A built-in repository in every Oracle
database. Oracle Database periodically makes a snapshot of its vital statistics and
workload information and stores them in AWR.

B-tree index

An index organized like an upside-down tree. A B-tree index has two types of blocks:
branch blocks for searching and leaf blocks that store values. The leaf blocks contain
every indexed data value and a corresponding rowid used to locate the actual row. The
"B" stands for "balanced" because all leaf blocks automatically stay at the same depth.

background process

A process that consolidates functions that would otherwise be handled by multiple
Oracle programs running for each client process. The background processes
asynchronously perform I/O and monitor other Oracle processes.

See also instance; Oracle process.

bind variable

A placeholder in a SQL statement that must be replaced with a valid value or value
address for the statement to execute successfully. By using bind variables, you can
write a SQL statement that accepts inputs or parameters at run time. The following
example shows a query that uses v_empid as a bind variable:

SELECT * FROM employees WHERE employee_id = :v_empid;

bitmap index

A database index in which the database stores a bitmap for each index key instead of a
list of rowids.

bitmap merge

An operation that merges bitmaps retrieved from bitmap index scans. For example, if
the gender and DOB columns have bitmap indexes, then the database may use a bitmap
merge if the query predicate is WHERE gender='F' AND DOB > 1966.

block header

A part of a data block that includes information about the type of block, the address of
the block, and sometimes transaction information.

block overhead

Space in a data block that stores metadata required for managing the block. The
overhead includes the block header, table directory, and row directory.

buffer

A main memory address in the database buffer cache. A buffer caches currently and
recently used data blocks read from disk. When a new block is needed, the database
can replace an old data block with a new one.

cache recovery

The phase of instance recovery where Oracle Database applies all committed and
uncommitted changes in the online redo log files to the affected data blocks.

connection

Glossary-3

cardinality

The ratio of distinct values to the number of table rows. A column with only two
distinct values in a million-row table would have low cardinality.

checkpoint

1. A data structure that marks the checkpoint position, which is the SCN in the redo
thread where instance recovery must begin. Checkpoints are recorded in the control
file and each data file header, and are a crucial element of recovery.

2. The writing of dirty data blocks in the database buffer cache to disk. The database
writer (DBWn) process writes blocks to disk to synchronize the buffer cache with the
data files.

client

In client/server architecture, the front-end database application that interacts with a
user. The client portion has no data access responsibilities.

client process

A process that executes the application or Oracle tool code. When users run client
applications such as SQL*Plus, the operating system creates client processes to run the
applications.

See also Oracle process.

client/server architecture

Software architecture based on a separation of processing between two CPUs, one
acting as the client in the transaction, requesting and receiving services, and the other
as the server that provides services in a transaction.

column

Vertical space in a table that represents a domain of data. A table definition includes a
table name and set of columns. Each column has a name and data type.

commit

Action that ends a database transaction and makes permanent all changes performed
in the transaction.

concurrency

Simultaneous access of the same data by many users. A multiuser database
management system must provide adequate concurrency controls so that data cannot
be updated or changed improperly, compromising data integrity.

See also data consistency.

condition

The combination of one or more expressions and logical operators in a SQL statement
that returns a value of TRUE, FALSE, or UNKNOWN. For example, the condition 1=1 always
evaluates to TRUE.

connection

Communication pathway between a client process and an Oracle database instance.

See also session.

connection pooling

Glossary-4

connection pooling

A resource utilization and user scalability feature that maximizes the number of
sessions over a limited number of protocol connections to a shared server.

consistent backup

A whole database backup that you can open with the RESETLOGS option without
performing media recovery. In other words, the backup does not require the
application of redo to be made consistent.

See also inconsistent backup.

context

A set of application-defined attributes that validates and secures an application. The
SQL statement CREATE CONTEXT creates namespaces for contexts.

control file

A binary file that records the physical structure of a database and contains the names
and locations of redo log files, the time stamp of the database creation, the current log
sequence number, checkpoint information, and so on.

cube

An organization of measures with identical dimensions and other shared
characteristics. The edges of the cube contain the dimension members, whereas the
body of the cube contains the data values.

cursor

A handle or name for a private SQL area in the PGA. Because cursors are closely
associated with private SQL areas, the terms are sometimes used interchangeably.

database

Organized collection of data treated as a unit. The purpose of a database is to store and
retrieve related information. Every Oracle database instance accesses only one
database in its lifetime.

database buffer cache

The portion of the system global area (SGA) that holds copies of data blocks. All
client processes concurrently connected to the instance share access to the buffer
cache.

database link

In a schema object, a schema object in one database that enables users to access
objects on a different database.

database user

An account through which you can log in to an Oracle database.

database writer (DBWn)

A background process that writes buffers in the database buffer cache to data files.

data block

Smallest logical unit of data storage in Oracle Database. Other names for data blocks
include Oracle blocks or pages. One data block corresponds to a specific number of
bytes of physical space on disk.

DDL

Glossary-5

See also extent; segment.

data consistency

A consistent view of the data by each user in a multiuser database.

See also concurrency.

data dictionary

A read-only collection of database tables and views containing reference information
about the database, its structures, and its users.

data dictionary cache

A memory area in the shared pool that holds data dictionary information. The data
dictionary cache is also known as the row cache because it holds data as rows instead
of buffers, which hold entire data blocks.

data dictionary view

A predefined view of tables or other views in the data dictionary. Data dictionary
views begin with the prefix DBA_, ALL_, or USER_.

data file

A physical file on disk that was created by Oracle Database and contains the data for a
database. The data files can be located either in an operating system file system or
Oracle ASM disk group.

data integrity

Business rules that dictate the standards for acceptable data. These rules are applied to
a database by using integrity constraints and triggers to prevent invalid data entry.

data mining

The automated search of large stores of data for patterns and trends that transcend
simple analysis.

Data Recovery Advisor

An Oracle Database infrastructure that automatically diagnoses persistent data
failures, presents repair options to the user, and executes repairs at the user's request.

data segment

The segment containing the data for a nonclustered table, table partition, or table
cluster.

See also extent.

data type

In SQL, a fixed set of properties associated with a column value or constant. Examples
include VARCHAR2 and NUMBER. Oracle Database treats values of different data types
differently.

data warehouse

A relational database designed for query and analysis rather than for OLTP.

DDL

Data definition language. Includes statements such as CREATE TABLE or ALTER INDEX
that define or change a data structure.

deadlock

Glossary-6

deadlock

A situation in which two or more users are waiting for data locked by each other. Such
deadlocks are rare in Oracle Database.

dedicated server

A database configuration in which a server process handles requests for a single client
process.

See also shared server.

deferrable constraint

A constraint that permits a SET CONSTRAINT statement to defer constraint checking
until after the transaction is committed. A deferrable constraint enables you to disable
the constraint temporarily while making changes that might violate the constraint.

dimension

A structure that categorizes data to enable users to answer business questions.
Commonly used dimensions are customers, products, and time.

dimension table

A relational table that stores all or part of the values for a dimension in a star or
snowflake schema. Dimension tables typically contain columns for the dimension
keys, levels, and attributes.

directory object

A database object that specifies an alias for a directory on the server file system where
external binary file LOBs (BFILEs) and external table data are located. All directory
objects are created in a single namespace and are not owned by an individual schema.

dispatcher process (Dnnn)

Optional background process present only when a shared server configuration is used.
Each dispatcher process is responsible for routing requests from connected client
processes to available shared server processes and returning the responses.

distributed database

A set of databases in a distributed system that can appear to applications as a single
data source.

distributed processing

The operations that occurs when an application distributes its tasks among different
computers in a network.

distributed transaction

A transaction that includes statements that, individually or as a group, update data on
nodes of a distributed database. Oracle Database ensures the integrity of data in
distributed transactions using the two-phase commit mechanism.

DML

Data manipulation language. Includes statements such as SELECT, INSERT, UPDATE, and
DELETE.

foreign key

Glossary-7

edition

A private environment in which you can redefine database objects. Edition-based
redefinition enables you to upgrade an application's database objects while the
application is in use, thus minimizing or eliminating down time.

ETL

Extraction, transformation, and loading (ETL). The process of extracting data from
source systems and bringing it into a data warehouse.

execution plan

The combination of steps used by the database to execute a SQL statement. Each step
either retrieves rows of data physically from the database or prepares them for the
user issuing the statement. You can override execution plans by using hints.

expression

A combination of one or more values, operators, and SQL functions that evaluates to a
value. For example, the expression 2*2 evaluates to 4. In general, expressions assume
the data type of their components.

extent

Multiple contiguous data blocks allocated for storing a specific type of information. A
segment is made up of one or more extents.

See also data block.

external table

A read-only table whose metadata is stored in the database but whose data in stored in
files outside the database. The database uses the metadata describing external tables to
expose their data as if they were relational tables.

extraction, transformation, and loading (ETL)

See ETL.

fact

Data that represents a business measure, such as sales or cost data.

fact table

A table in a star schema of a data warehouse that contains factual data. A fact table
typically has two types of columns: those that contain facts and those that are foreign
keys to dimension tables.

fast full index scan

A full index scan in which the database reads the index blocks in no particular order.
The database accesses the data in the index itself, without accessing the table.

fast recovery area

An optional disk location that stores recovery-related files such as control file and
online redo log copies, archived redo log files, flashback logs, and RMAN backups.

foreign key

An integrity constraint that requires each value in a column or set of columns to
match a value in the unique or primary key for a related table. Integrity constraints for
foreign keys define actions dictating database behavior if referenced data is altered.

full index scan

Glossary-8

full index scan

A scan of an index in which the database reads the entire index in order.

full table scan

A scan of table data in which the database sequentially reads all rows from a table and
filters out those that do not meet the selection criteria. All data blocks under the high
water mark are scanned.

function

A schema object, similar to a procedure, that always returns a single value.

grid computing

A computing architecture that coordinates large numbers of servers and storage to act
as a single large computer.

grid infrastructure

The software that provides the infrastructure for an enterprise grid architecture. In a
cluster, this software includes Oracle Clusterware and Oracle ASM. For a standalone
server, this software includes Oracle Restart and Oracle ASM. Oracle Database 11g
Release 2 (11.2) combines these infrastructure products into one software installation
called the grid infrastructure home.

hard parse

The steps performed by the database to build a new executable version of application
code. The database must perform a hard parse instead of a soft parse if the parsed
representation of a submitted statement does not exist in the shared pool.

hash function

A function that operates on an arbitrary-length input value and returns a fixed-length
hash value.

hashing

A mathematical technique in which an infinite set of input values is mapped to a finite
set of output values, called hash values. Hashing is useful for rapid lookups of data in
a hash table.

hash join

A join in which the database uses the smaller of two tables or data sources to build a
hash table in memory. The database scans the larger table, probing the hash table for
the addresses of the matching rows in the smaller table.

hash table

An in-memory data structure that associates join keys with rows in a hash join. For
example, in a join of the employees and departments tables, the join key might be the
department ID. A hash function uses the join key to generate a hash value. This hash
value is an index in an array, which is the hash table.

heap-organized table

A table in which the data rows are stored in no particular order on disk. By default,
CREATE TABLE creates a heap-organized table.

high water mark

The boundary between used and unused space in a segment.

integrity

Glossary-9

hint

An instruction passed to the optimizer through comments in a SQL statement. The
optimizer uses hints to choose an execution plan for the statement.

implicit query

A component of a DML statement that retrieves data without a subquery. An UPDATE,
DELETE, or MERGE statement that does not explicitly include a SELECT statement uses an
implicit query to retrieve the rows to be modified.

inconsistent backup

A backup in which some files in the backup contain changes made after the
checkpoint. Unlike a consistent backup, an inconsistent backup requires media
recovery to be made consistent.

index

Optional schema object associated with a nonclustered table, table partition, or table
cluster. In some cases indexes speed data access.

index clustering factor

A measure of the row order in relation to an indexed value such as last name. The
more order that exists in row storage for this value, the lower the clustering factor.

index-organized table

A table whose storage organization is a variant of a primary B-tree index. Unlike a
heap-organized table, data is stored in primary key order.

index segment

A segment that stores data for a nonpartitioned index or index partition.

initialization parameter

A configuration parameter such as DB_NAME or SGA_TARGET that affects the operation of
a database instance. Settings for initialization parameters are stored in a text-based
initialization parameter file or binary server parameter file.

initialization parameter file

A text file that contains initialization parameter settings for a database instance.

instance

The combination of the system global area (SGA) and background processes. An
instance is associated with one and only one database. In an Oracle Real Application
Clusters configuration, multiple instances access a single database simultaneously.

instance failure

The termination of a database instance because of a hardware failure, Oracle internal
error, or SHUTDOWN ABORT statement.

instance recovery

The automatic application of redo log records to uncommitted data blocks when an
instance is restarted after a failure.

integrity

See data integrity.

integrity constraint

Glossary-10

integrity constraint

Declarative method of defining a rule for a column. The integrity constraints enforce
business rules and prevent the entry of invalid information into tables.

join

A statement that retrieves data from multiple tables specified in the FROM clause. Join
types include inner joins, outer joins, and Cartesian joins.

join condition

A condition that compares two columns, each from a different table, in a join. The
database combines pairs of rows, each containing one row from each table, for which
the join condition evaluates to TRUE.

key

Column or set of columns included in the definition of certain types of integrity
constraints.

key compression

The elimination of repeated occurrence of primary key column values in an
index-organized table.

large object (LOB)

See LOB.

large pool

Optional area in the SGA that provides large memory allocations for backup and
restore operations, I/O server processes, and session memory for the shared server
and Oracle XA.

latch

A low-level serialization control mechanism used to protect shared data structures in
the SGA from simultaneous access.

library cache

An area of memory in the shared pool. This cache includes the shared SQL areas,
private SQL areas (in a shared server configuration), PL/SQL procedures and
packages, and control structures such as locks and library cache handles.

listener

A process that listens for incoming client connection requests and manages network
traffic to the database.

LOB

Large object. An Oracle data type designed to hold large amounts of data.

locally managed tablespace

A tablespace that uses a bitmap stored in each data file to manage the extents. In
contrast, a dictionary-managed tablespace uses the data dictionary to manage space.

lock

A database mechanism that prevents destructive interaction between transactions
accessing a shared resource such as a table, row, or system object not visible to users.
The main categories of locks are DML locks, DDL locks, and latches and internal locks.

media recovery

Glossary-11

log sequence number

A number that uniquely identifies a set of redo records in a redo log file. When the
database fills one online redo log file and switches to a different one, the database
automatically assigns the new file a log sequence number.

log switch

The point at which the log writer (LGWR) stops writing to the active redo log file and
switches to the next available redo log file. LGWR switches when either the active redo
log file is filled with redo records or a switch is manually initiated.

log writer (LGWR)

The background process responsible for redo log buffer management—writing the
redo log buffer to the online redo log. LGWR writes all redo entries that have been
copied into the buffer since the last time it wrote.

lookup table

A table containing a code column and an associated value column. For example, a job
code corresponds to a job name. In contrast to a master table in a pair of master-detail
tables, a lookup table is not the means to obtain a detailed result set, such as a list of
employees. Rather, a user queries a table such as employees for an employee list and
then joins the result set to the lookup table.

lost update

A data integrity problem in which one writer of data overwrites the changes of a
different writer modifying the same data.

manual undo management mode

A mode of the database in which undo blocks are stored in user-managed undo
segments. In automatic undo management mode, undo blocks are stored in a
system-managed, dedicated undo tablespaces.

master-detail tables

A detail table has a foreign key relationship with a master table. For example, the
employees detail table has a foreign key to the departments master table. Unlike a
lookup table, a master table is typically queried and then joined to the detail table. For
example, a user may query a department in the departments table and then use this
result to find the employees in this department.

master site

In a replication environment, a different database with which a materialized view
shares data.

master table

The table associated with a materialized view at a master site.

materialized view

A schema object that stores the result of a query. Oracle materialized views can be
read-only or updatable.

See also view.

media recovery

The application of redo or incremental backups to a data block or backup data file.

mounted database

Glossary-12

mounted database

An instance that is started and has the database control file open.

null

Absence of a value in a column of a row. Nulls indicate missing, unknown, or
inapplicable data.

object type

A schema object that abstracts a real-world entity such as a purchase order. Attributes
model the structure of the entity, whereas methods implement operations an
application can perform on the entity.

OLAP

Online Analytical Processing. OLAP is characterized by dynamic, dimensional
analysis of historical data.

OLTP

Online Transaction Processing. OLTP systems are optimized for fast and reliable
transaction handling. Compared to data warehouse systems, most OLTP interactions
involve a relatively small number of rows, but a larger group of tables.

online redo log

The set of two or more online redo log files that record all changes made to Oracle
Database data files and control file. When a change is made to the database, Oracle
Database generates a redo record in the redo buffer. log writer (LGWR) writes the
contents of the redo buffer to the online redo log.

operator

1. In memory management, operators control the flow of data. Examples include sort,
hash join, and bitmap merge operators.

2. In SQL, an operator manipulates data items called operands or arguments and
returns a result. The SQL operators are represented by special characters or by
keywords. For example, the multiplication operator is represented by an asterisk (*).

optimizer

Built-in database software that determines the most efficient way to execute a SQL
statement by considering factors related to the objects referenced and the conditions
specified in the statement.

Oracle architecture

Memory and process structures used by Oracle Database to manage a database.

Oracle Automatic Storage Management (Oracle ASM)

See Oracle ASM.

Oracle ASM

Oracle Automatic Storage Management (Oracle ASM). A volume manager and a file
system for database files. Oracle ASM is Oracle's recommended storage management
solution, providing an alternative to conventional volume managers, file systems, and
raw devices.

predicate

Glossary-13

Oracle ASM disk group

One or more Oracle ASM disks managed as a logical unit. I/O to a disk group is
automatically spread across all the disks in the group.

Oracle Clusterware

A set of components that enables servers to operate together as if they were one server.
Oracle Clusterware is a requirement for using Oracle RAC and it is the only
clusterware that you need for platforms on which Oracle RAC operates.

Oracle Enterprise Manager

A system management tool that provides centralized management of an Oracle
database environment.

Oracle home

The operating system location of an Oracle Database installation.

Oracle process

A process that runs Oracle Database code. Oracle processes include server processes
and background processes.

Oracle RAC

Oracle Real Application Clusters. Option that allows multiple concurrent database
instances to share a single physical database.

Oracle Real Application Clusters

See Oracle RAC.

Oracle XA

An external interface that allows global transactions to be coordinated by a transaction
manager other than Oracle Database.

partition

A piece of a table or index that shares the same logical attributes as the other
partitions. For example, all partitions in a table share the same column and constraint
definitions.

PGA

Program global area. A memory buffer that contains data and control information for a
server process.

See also SGA.

PL/SQL

Procedural Language/SQL. The Oracle Database procedural language extension to
SQL. PL/SQL enables you to mix SQL statements with programmatic constructs such
as procedures, functions, and packages.

precompiler

A programming tool that enables you to embed SQL statements in a high-level source
program written in a language such as C, C++, or COBOL.

predicate

The WHERE condition in a SQL statement.

primary key

Glossary-14

primary key

The column or set of columns that uniquely identifies a row in a table. Only one
primary key can be defined for each table.

primary key constraint

An integrity constraint that disallows duplicate values and nulls in a column or set of
columns.

private SQL area

An area in memory that holds a parsed statement and other information for
processing. The private SQL area contains data such as bind variable values, query
execution state information, and query execution work areas.

privilege

The right to run a particular type of SQL statement, or the right to access an object that
belongs to another user, run a PL/SQL package, and so on. The types of privileges are
defined by Oracle Database.

procedure

A schema object that consists of a set of SQL statements and other PL/SQL constructs,
grouped together, stored in the database, and run as a unit to solve a specific problem
or perform a set of related tasks.

process

A mechanism in an operating system that can run a series of steps. By dividing the
work of Oracle Database and database applications into several processes, multiple
users and applications can connect to a single database instance simultaneously.

See also background process; Oracle process; client process.

program global area (PGA)

See PGA.

pseudocolumn

A column that is not stored in a table, yet behaves like a table column.

query

An operation that retrieves data from tables or views. For example, SELECT * FROM
employees is a query.

See also implicit query; subquery.

query plan

The execution plan used to execute a query.

read consistency

A consistent view of data seen by a user. For example, in statement-level read
consistency the set of data seen by a SQL statement remains constant throughout
statement execution.

See also concurrency; data consistency.

read-only database

A database that is available for queries only and cannot be modified.

schema

Glossary-15

Recovery Manager (RMAN)

See RMAN.

redo log

A set of files that protect altered database data in memory that has not been written to
the data files. The redo log can consist of two parts: the online redo log and the
archived redo log.

redo log buffer

Memory structure in the SGA that stores redo entries—a log of changes made to the
database. The database writes the redo entries stored in the redo log buffers to an
online redo log file, which is used if instance recovery is necessary.

redo thread

The redo generated by a database instance.

referential integrity

A rule defined on a key in one table that guarantees that the values in that key match
the values in a key in a related table (the referenced value).

replication

The process of sharing database objects and data at multiple databases.

RMAN

Recovery Manager. An Oracle Database utility that backs up, restores, and recovers
Oracle databases.

role

A set of privileges that can be granted to database users or to other roles.

row

A set of column information corresponding to a single record in a table. The database
stores rows in data blocks.

row chaining

A situation in which Oracle Database must store a row in a series or chain of blocks
because it is too large to fit into a single block.

rowid

A globally unique address for a row in a database.

row migration

A situation in which Oracle Database moves a row from one data block to another
data block because the row grows too large to fit in the original block.

savepoint

A named SCN in a transaction to which the transaction can be rolled back.

schema

A named collection of database objects, including logical structures such as tables and
indexes. A schema has the name of the database user who owns it.

schema object

Glossary-16

schema object

A logical structure of data stored in a schema. Examples of schema objects are tables,
indexes, sequences, and database links.

SCN

System Change Number. A database ordering primitive. The value of an SCN is the
logical point in time at which changes are made to a database.

segment

A set of extents allocated for a specific database object such as a table, index, or table
cluster. User segments, undo segments, and temporary segments are all types of
segments.

selectivity

In a query, the measure of how many rows from a row set pass a predicate test, for
example, WHERE last_name = 'Smith'. A selectivity of 0.0 means no rows, whereas a
value of 1.0 means all rows. A predicate becomes more selective as the value
approaches 0.0 and less selective (or more unselective) as the value approaches 1.0.

sequence

A schema object that generates a serial list of unique numbers for table columns.

server

In a client/server architecture, the computer that runs Oracle software and handles the
functions required for concurrent, shared data access. The server receives and
processes the SQL and PL/SQL statements that originate from client applications.

server parameter file

A server-side binary file containing initialization parameter settings that is read and
written to by the database.

server process

An Oracle process that communicates with a client process and Oracle Database to
fulfill user requests. The server processes are associated with a database instance, but
are not part of the instance.

session

A logical entity in the database instance memory that represents the state of a current
user login to a database. A single connection can have 0, 1, or more sessions
established on it.

SGA

System global area. A group of shared memory structures that contain data and
control information for one Oracle database instance.

shared pool

Portion of the SGA that contains shared memory constructs such as shared SQL areas.

shared server

A database configuration that enables multiple client processes to share a small
number of server processes.

See also dedicated server.

table

Glossary-17

shared SQL area

An area in the shared pool that contains the parse tree and execution plan for a SQL
statement. Only one shared SQL area exists for a unique statement.

soft parse

The reuse of existing code when the parsed representation of a submitted SQL
statement exists in the shared pool and can be shared.

See also hard parse.

SQL

Structured Query Language. A nonprocedural language to access a relational
database. Users describe in SQL what they want done, and the SQL language compiler
automatically generates a procedure to navigate the database and perform the task.
Oracle SQL includes many extensions to the ANSI/ISO standard SQL language.

See also SQL*Plus; PL/SQL.

SQL*Plus

Oracle tool used to run SQL statements against Oracle Database.

standby database

An independent copy of a production database that you can use for disaster protection
in a high availability environment.

statement-level rollback

A database operation in which the effects of an unsuccessful SQL statement are rolled
back because the statement caused an error during execution.

stored procedure

A named PL/SQL block or Java program that Oracle Database stores in the database.
Applications can call stored procedures by name.

Structured Query Language (SQL)

See SQL.

subquery

A query nested within another SQL statement. Unlike implicit queries, subqueries use
a SELECT statement to retrieve data.

synonym

An alias for a schema object. You can use synonyms to provide data independence
and location transparency.

system change number (SCN)

See SCN.

system global area (SGA)

See SGA.

table

Basic unit of data storage in Oracle Database. Data in tables is stored in rows and
columns.

table cluster

Glossary-18

table cluster

A schema object that contains data from one or more tables, all of which have one or
more columns in common. In table clusters, the database stores together all the rows
from all tables that share the same cluster key.

table compression

The compression of data segments to reduce disk space in a heap-organized table or
table partition.

tablespace

A database storage unit that groups related logical structures together. The database
data files are stored in tablespaces.

temp file

A file that belongs to a temporary tablespace. The temp files in temporary tablespaces
cannot contain permanent database objects.

temporary segment

A segment created by Oracle Database when a SQL statement needs a temporary
database area to complete execution.

temporary table

A table that holds an intermediate result set for the duration of a transaction or a
session. Only the current session can see the data in temporary tables.

transaction

Logical unit of work that contains one or more SQL statements. All statements in a
transaction commit or roll back together. The use of transactions is one of the most
important ways that a database management system differs from a file system.

transaction ID

An identifier is unique to a transaction and represents the undo segment number, slot,
and sequence number.

transaction recovery

A phase of instance recovery in which uncommitted transactions are rolled back.

transaction table

The data structure within an undo segment that holds the transaction identifiers of the
transactions using the undo segment.

transportable tablespace

A tablespace that you can copy or move between databases. Oracle Data Pump
provides the infrastructure for transportable tablespaces.

trigger

A PL/SQL or Java procedure that fires when a table or view is modified or when
specific user or database actions occur. Procedures are explicitly run, whereas triggers
are implicitly run.

UGA

User global area. Session memory that stores session variables, such as logon
information, and can also contain the OLAP pool.

whole database backup

Glossary-19

undo data

Records of the actions of transactions, primarily before they are committed. The
database can use undo data to logically reverse the effect of SQL statements. Undo
data is stored in undo segments.

undo tablespace

A tablespace containing undo segments when automatic undo management mode is
enabled.

user global area (UGA)

See UGA.

user name

The name by which a user is known to Oracle Database and to other users. Every user
name is associated with a password, and both must be entered to connect to Oracle
Database.

user process

See client process.

view

A custom-tailored presentation of the data in one or more tables. The views do not
actually contain or store data, but derive it from the tables on which they are based.

virtual column

A column that is not stored on disk. The database derives the values in virtual
columns on demand by computing a set of expressions or functions.

whole database backup

A backup of the control file and all data files that belong to a database.

whole database backup

Glossary-20

Index-1

Index

A
access drivers, external table, 2-17
access paths, data, 3-2, 3-19, 7-10, 7-12, 7-21
accounts, user, 6-1
ACID properties, 10-1
active transactions, 10-7
ADDM (Automatic Database Diagnostic

Monitor), 18-22, 18-23
administrative accounts, 2-5, 6-2
administrator privileges, 2-5, 13-6, 16-14
Advanced Queuing, Oracle Streams, 15-11, 17-23
alert logs, 13-21, 15-10
ALL_ data dictionary views, 6-3
ALTER SESSION statement, 7-9
anonymous PL/SQL blocks, 8-2
ANSI/ISO standard, 7-2
APIs (application program interfaces), 16-15

embedded SQL statements, 7-9
external tables, 2-17
Java, 8-13, 17-20, 19-6, 19-8
JDBC, 7-9, 8-15
network services, 16-6
OCI/OCCI, 19-7
ODBC, 7-9, 19-8
Oracle Data Pump, 18-7
Oracle Streams Advanced Queuing, 17-24
SQLJ, 8-15

application architecture, 1-10
application developers

duties of, 19-1
tools for, 19-1
topics for, 19-3

application domain indexes, 3-19
application processes, 15-3
application program interface. See API
application servers, 1-11, 8-14
archived redo log files, 11-11, 11-15, 18-14
ARCHIVELOG mode, 15-12
archiver process (ARCn), 15-12
ascending indexes, 3-11
ASM (Automatic Storage Management), 11-3, 11-4,

17-14
atomicity, statement-level, 10-4
AUDIT statement, 7-3
auditing, 6-1, 6-5, 7-3, 8-17, 11-6, 13-8, 16-4, 17-5

Oracle Audit Vault, 17-5
authentication, database, 7-9, 15-4, 17-3
Automatic Database Diagnostic Monitor. See ADDM
automatic maintenance tasks, 18-22
automatic memory management, 18-15, 18-16
Automatic Storage Management. See ASM
automatic undo management, 12-24
AutoTask, 18-22

B
background processes, 15-7
backups, database, 18-11
bitmap indexes, 3-13, 4-9

bitmap joins, 3-15
locks, 3-14
mapping table, 3-25
single-table, 3-14
storage, 3-17

bitmap tablespace management, 12-3
blocking transactions, 9-7
blocks, data. See data blocks
BOOLEAN data type, 2-9, 3-7, 7-5, 8-19
branch blocks, index, 3-5
B-tree indexes, 2-19, 2-23, 3-5

branch level, 3-6
height, 3-6
key compression, 3-12
reverse key, 3-11

buffer cache, database. See database buffer cache
buffers. See database buffers
business rules, enforcing, 5-1

C
cache fusion, 9-3
cardinality, column, 3-13, 7-12
Cartesian joins, 7-7
cartridges, 3-19
cascading deletions, 5-8
catalog.sql script, 6-6
chaining, rows. See row chaining
character data types, 2-10

byte semantics, 2-10
CHAR, 2-10
character semantics, 2-10

Index-2

VARCHAR2, 2-10
character sets, 2-10

ASCII, 2-10
EBCDIC, 2-10
Unicode, 2-10

check constraints, 5-3, 5-9
checkpoint process (CKPT), 15-10
checkpoints

control files, 11-10
database shutdowns, 13-9
definition, 13-11
inconsistent backups, 18-11
incremental, 13-11
position, 13-14
thread, 13-11

client processes, 15-3
connections and, 15-4
sessions and, 15-4
shared server processes and, 16-14

client result cache, 14-20
client/server architecture, 16-1
client-side programming, 8-1
cluster indexes, 2-23
clusters, table

cluster keys, 2-22
Codd, E. F., 1-2
code points, 2-10
collections, PL/SQL, 8-10
columns

cardinality, 3-13, 7-12
definition, 2-7
order of, 2-18
prohibiting nulls in, 5-3
virtual, 2-7, 2-18, 3-19

COMMENT statement, 7-3
committing transactions

COMMIT statement, 7-8
defined, 10-1
ending transactions, 10-3
fast commit, 15-9
group commits, 15-10
implementation, 15-9
implicit commits, 7-4
two-phase commit, 10-13

compiled PL/SQL
pseudocode, 8-21
shared pool, 8-11
triggers, 8-21

complete recovery, 18-14
composite indexes, 3-3
composite partitioning, 4-2
compound triggers, 8-18
compression

basic table, 2-19
data block, 12-11
Hybrid Columnar Compression, 2-20
index key, 3-12
OLTP table, 2-20
online archival, 2-21
table, 2-19, 4-7

warehouse, 2-21
concatenated indexes, 3-3
concurrency

definition, 9-1
dirty reads, 9-5
fuzzy reads, 9-5
phantom reads, 9-5
row locks, 9-19
transaction isolation, 9-5, 9-8, 9-11

conditions, SQL, 7-2, 7-5
conflicting writes, 9-7
connections, client/server

administrator privileges, 13-6
defined, 15-4
embedded SQL, 7-9
listener process, 16-6
sessions contrasted with, 15-4

consistency
conflicting writes, 9-7
definition, 9-1
multiversioning, 9-1, 9-2

consistent read clones, 9-4
constraints, integrity

check, 5-3, 5-9
default values, 5-12
deferrable, 5-5, 5-11, 7-8
enabling and disabling, 5-10
enforced with indexes, 5-5
foreign key, 5-3, 5-6
mechanisms of enforcement, 5-12
NOT NULL, 2-9, 5-2, 5-3
primary key, 2-9, 5-2, 5-5
REF, 5-3
referential, 5-8
self-referential, 5-7
state of, 5-10
unique key, 5-2, 5-3, 5-4
validating, 5-10

contention
for data

deadlocks, 9-16
lock escalation, 9-15

contexts, 2-2
control files, 11-10

changes recorded, 11-10
checkpoints and, 11-10
contents, 11-10
multiplexed, 11-11
overview, 11-10
used in mounting database, 13-7

CREATE CLUSTER statement, 2-23
CREATE DIMENSION statement, 4-21, 4-22
CREATE GLOBAL TEMPORARY TABLE

statement, 2-16
CREATE INDEX statement, 2-16, 3-3, 3-11, 3-12,

3-18, 3-20, 4-11
storage parameters, 12-22

CREATE MATERIALIZED VIEW statement, 4-17
CREATE SEQUENCE statement, 4-20
CREATE SYNONYM statement, 4-23

Index-3

CREATE TABLE command, 2-7
CREATE TABLE statement, 2-6
CREATE TRIGGER statement

compiled and stored, 8-21
CREATE UNIQUE INDEX statement, 5-5
CREATE USER statement

temporary segments, 12-23
cursors

embedded SQL, 7-9
explicit, 8-10
fetching rows, 7-9

D
data

consistency of
locks, 9-5
manual locking, 9-26

data blocks, 7-22, 12-1
cached in memory, 14-13
clustered rows, 2-22
coalescing free space in blocks, 12-13
compression, 12-11
format, 12-7, 12-8
locks stored in, 9-20
overview, 12-2
shown in rowids, 12-10
stored in the buffer cache, 14-9
writing to disk, 14-13

data conversion
program interface, 16-16

data dictionary, 2-5, 2-15
ALL_ prefixed views, 6-3
cache, 14-15
comments in, 7-3
content, 6-2, 14-19
DBA_ prefixed views, 6-3
dictionary managed tablespaces, 12-6
DUAL table, 6-4
dynamic performance views, 6-5
locks, 9-24
overview, 6-1
owner, 6-4
public synonyms, 6-5
row cache and, 14-19
stored subprograms, 8-4
USER_ prefixed views, 6-4
uses, 6-5

data dictionary cache, 6-5, 7-17, 14-15, 14-19
data failures, protecting against human errors, 17-9
data files

contents of, 11-9
data file 1, 12-32
named in control files, 11-10
shown in rowids, 12-10
SYSTEM tablespace, 12-32
temporary, 11-8

data integrity, 5-1
enforcing, 5-1, 6-4
SQL and, 7-1

data manipulation language. See DML
data object number

extended rowid, 12-10
Data Pump Export

dump file set, 18-7
Data Recovery Advisor, 18-13
data segments, 12-21
data types

BOOLEAN, 2-9, 3-7, 7-5, 8-19
built-in, 2-9
CHAR, 2-10
character, 2-10
composite types, 2-9
conversions of

by program interface, 16-16
DATE, 2-12
datetime, 2-12
definition, 2-9
format models, 2-12
how they relate to tables, 2-7
in PL/SQL, 2-9
LONG

storage of, 2-18
NCHAR, 2-11
NUMBER, 2-11
numeric, 2-11
NVARCHAR2, 2-11
object, 2-15
reference types, 2-9
ROWID, 2-13
TIMESTAMP, 2-12
UROWID, 2-13
user-defined, 2-9, 4-16

data warehouses
architecture, 17-16
bitmap indexes in, 3-13
dimensions, 4-21
materialized views, 4-16
partitioning in, 4-2
summaries, 4-16

database applications
definition, 1-1

database authentication, 7-9, 15-4
database backups, 18-11
database buffer cache, 2-19, 14-9, 15-8

cache hits and misses, 14-11
caching of comments, 6-5
flash cache, 14-9

database buffers
after committing transactions, 10-11
buffer bodies in flash cache, 14-11
buffer cache, 14-9
checkpoint position, 15-9
committing transactions, 15-9
defined, 14-9
writing, 15-8

Database Configuration Assistant, 6-6
database resident connection pooling, 16-14
Database Server Grid, 17-11

description, 17-12

Index-4

Database Smart Flash Cache. See flash cache
Database Storage Grid, 17-11

description, 17-14
database structures

control files, 11-10
data blocks, 12-1, 12-6
data files, 11-1
extents, 12-1
processes, 15-1
segments, 12-1, 12-21
tablespaces, 11-1, 12-30

database writer process (DBWn), 15-8
checkpoints, 15-9
defined, 15-8
least recently used algorithm (LRU), 14-13
multiple DBWn processes, 15-8
write-ahead, 15-9

databases
administrative accounts, 2-5
character sets, 2-10
closing, 13-10

terminating the instance, 13-10
definition, 1-1
distributed

changing global database name, 14-19
hierarchical, 1-2
history, 1-3
incarnations, 18-14
introduction, 1-1
mounting, 13-7
name stored in control files, 11-10
network, 1-2
object-relational, 1-3
opening, 13-7
relational, 1-2, 7-1
shutting down, 13-8
starting up, 2-5, 13-1

forced, 13-10
structures

control files, 11-10
data blocks, 12-1, 12-6
data files, 11-1
extents, 12-1, 12-18
logical, 12-1
processes, 15-1
segments, 12-1, 12-21
tablespaces, 11-1, 12-30

DATE data type, 2-12
datetime data types, 2-12
DBA_ views, 6-3
DBMS (database management system), 1-1
DBMS_METADATA package, 6-6
DBMS_STATS package, 7-14
DBWn background process, 15-8
DDL (data definition language), 6-1

described, 7-3
locks, 9-24
processing of, 7-23

deadlocks, 7-17
defined, 9-16

decision support systems (DSS)
materialized views, 4-16

dedicated server, 7-18
default values

constraints effect on, 5-12
definer’s rights, 8-4
degree of parallelism

parallel SQL, 15-15
DELETE statement, 7-4

freeing space in data blocks, 12-13
deletions, cascading, 5-8
denormalized tables, 4-22
dependencies, schema object, 2-4
descending indexes, 3-11
detail tables, 4-16
dictionary cache locks, 9-26
dictionary managed tablespaces, 12-6
dimensions, 4-21

attributes, 4-22
hierarchies, 4-22

join key, 4-22
normalized or denormalized tables, 4-22
tables, 4-21

directory objects, 2-2
dirty reads, 9-2, 9-5
disk space

data files used to allocate, 11-9
dispatcher processes

described, 16-13
dispatcher processes (Dnnn)

client processes connect through Oracle Net
Services, 16-11, 16-13

network protocols and, 16-13
prevent startup and shutdown, 16-14
response queue and, 16-12

distributed databases
client/server architectures and, 16-2
job queue processes, 15-12
recoverer process (RECO) and, 15-11
server can also be client in, 16-2
transactions, 10-12

distributed transactions, 10-7, 10-12
in-doubt, 10-13
naming, 10-7
two-phase commit and, 10-13

DML (data manipulation language)
indexed columns, 3-14
invisible indexes, 3-2
locks, 9-18
overview, 7-4
referential actions, 5-9
triggers, 8-17

downtime
avoiding during planned maintenance, 17-9
avoiding during unplanned maintenance, 17-7

drivers, 16-16
DUAL table, 6-4
dynamic partitioning, 15-15
dynamic performance views (V$ tables), 6-5
dynamic SQL

Index-5

DBMS_SQL package, 8-10
embedded, 8-10

E
embedded SQL, 7-1, 7-9, 8-16
enqueued transactions, 10-9
Enterprise Grids

with Oracle Real Application Clusters, 17-11
Enterprise Manager

alert log, 13-21
dynamic performance views usage, 6-5
executing a package, 8-8
lock and latch monitors, 9-25
shutdown, 13-9, 13-10
SQL statements, 7-2

equijoins, 3-17
exceptions, PL/SQL, 8-10
exclusive locks, 9-15

row locks (TX), 9-18
table locks (TM), 9-20

EXECUTE statement, 8-6
execution plans, 4-19, 7-10, 7-12

EXPLAIN PLAN, 7-5
EXPLAIN PLAN statement, 7-5, 7-12
explicit locking, 9-26
expressions, SQL, 3-3, 7-5
extents

as collections of data blocks, 12-18
defined, 12-2
dictionary managed, 12-6
incremental, 12-19
locally managed, 12-3
overview of, 12-18

external procedures, 8-11
external tables, 2-7
extraction, transformation, and loading (ETL)

overview, 17-18

F
fact tables, 4-21
failures

database buffers and, 13-12
statement and process, 15-8

fast commit, 15-9
fast full index scans, 3-7
fast refresh, 4-18
fast-start

rollback on demand, 13-14
fields, 2-9
file management locks, 9-26
files

alert log, 15-10
initialization parameter, 13-6, 13-15
password

administrator privileges, 13-6
server parameter, 13-6, 13-15
trace files, 15-10

fixed views, 6-6

flash cache
buffer reads, 14-11
definition, 14-9
optimized physical reads, 14-11

floating-point numbers, 2-12
foreign key constraints, 5-3
foreign keys, 2-9, 5-6

changes in parent key values, 5-8
composite, 5-6
indexing, 3-3
updating parent key tables, 5-8
updating tables, 9-21

format models, data type, 2-12, 2-14
free space

automatic segment space management, 12-11
managing, 12-11

full index scans, 3-6
full table scans, 3-1, 3-7, 5-9, 7-12

LRU algorithm and, 14-13
parallel exe, 15-15

function-based indexes, 3-17
functions, 7-5

function-based indexes, 3-17
hash, 4-5
PL/SQL, 8-3
SQL, 2-13

fuzzy reads, 9-5

G
global database names

shared pool and, 14-19
global indexes, 4-7, 4-10
GRANT statement, 4-23, 7-3
grid computing

Database Server Grid, 17-11
Database Storage Grid, 17-11

group commits, 15-10
GV$ views, 6-6

H
handles for SQL statements, 14-5
hard parsing, 7-17
hash functions, 4-5
hash partitions, 4-5
headers, data block, 9-20
headers, data blocks, 12-8
Health Monitor, 18-13
heap-organized tables, 2-3, 3-20
height, index, 3-6
hierarchies

join key, 4-22
levels, 4-22

hints, optimizer, 7-10, 7-14
Hybrid Columnar Compression, 2-20

I
implicit queries, 7-7
incarnations, database, 18-14

Index-6

incremental refresh, 4-18
index unique scans, 3-8
indexes

application domain, 3-19
ascending, 3-11
bitmap, 3-13, 4-9
bitmap join, 3-15
branch blocks, 3-5
B-tree, 2-19, 3-5
cardinality, 3-13
composite, 3-3
compressed, 3-13
concatenated, 3-3
descending, 3-11
domain, 3-19
enforcing integrity constraints, 5-5
extensible, 3-19
function-based, 3-17
global, 4-7, 4-10
invisible, 3-2
keys, 3-3, 3-12, 5-5
leaf blocks, 3-5
nonprefixed, local, 4-9
nonunique, 3-4
overview, 3-1
partitions, 4-7
prefixed, local, 4-9
reverse key, 3-11
scans, 3-6, 3-7, 3-8, 7-13
secondary, 3-23
segments, 3-17
selectivity, 3-7
storage, 3-20
types, 3-4
unique, 3-4

indexes, local, 4-7
index-organized tables, 3-20, 3-24

benefits, 3-20
partitioned, 4-12
row overflow, 3-23
secondary indexes, 3-23

information systems, 1-1
initialization parameter file, 13-6, 13-15

startup, 13-6
initialization parameters

basic, 13-15
OPEN_CURSORS, 14-6
SERVICE_NAMES, 16-9

INIT.ORA. See initialization parameter file.
inner joins, 7-7
INSERT statement, 7-4
instance PGA

definition, 14-2
instance recovery

SMON process, 15-8
instances, 7-9

associating with databases, 13-7
described, 13-1
failures, 9-18
memory structures of, 14-1

multiple-process, 15-1
process structure, 15-1
recovery of

SMON process, 15-8
service names, 16-6
shutting down, 13-8, 13-10
terminating, 13-10

INSTEAD OF triggers, 8-18
integrity constraints, 5-1

advantages, 5-1
check, 5-9
definition, 2-14
inline, 5-2
out-of-line, 5-2
views, 4-14

interested transaction lists (ITLs), 9-5
internal locks, 9-26
invisible indexes, 3-2
invoker’s rights, 8-4
isolation levels

read-only, 9-11
serialization, 9-8
setting, 9-26

isolation levels, transaction, 9-5
read committed, 9-6

J
Java

call specifications, 8-15
overview, 8-12
SQLJ translator, 8-16
stored procedures, 1-5, 8-15
virtual machine, 8-13

JDBC
accessing SQL, 8-15
driver types, 8-15
drivers, 8-15
embedded SQL, 7-9

job queue processes, 15-12
jobs, 15-1
join views, 4-15
joins, 6-2

nested loop, 7-21
views, 4-15

joins, table, 3-15, 7-6
Cartesian, 7-7
clustered tables, 2-23
conditions, 3-17
inner joins, 7-7
join conditions, 7-6
outer joins, 7-7
views, 4-12

K
key-preserved tables, 4-15
keys

compression, 3-12
concatenation of index, 3-12

Index-7

foreign, 5-6
indexes, 3-3, 3-12, 5-5
natural, 5-5
parent, 5-6
partition, 4-2
prefixed index, 3-6, 3-12
referenced, 5-6
reverse, 3-11
surrogate, 5-5
unique, 5-3
values, 5-2

L
large pool, 14-21
latches

definition, 9-25
enqueue, 9-25
parsing and, 7-17
sleeping, 9-25
spinning, 9-25

leaf blocks, index, 3-5
least recently used (LRU) algorithm

database buffers and, 14-9
full table scans and, 14-13
latches, 14-13
shared SQL pool, 14-19

LGWR background process, 15-9
library cache, 7-17, 14-15, 14-16
list partitions, 4-4
listener process, 16-6

service names, 16-6
listeners, 16-6

service names, 16-6
local indexes, 4-7
locally managed tablespaces, 12-3
LOCK TABLE statement, 7-5
locks, 9-5

after committing transactions, 10-10
automatic, 9-13, 9-17
bitmap indexes, 3-14
conversion, 9-15
deadlocks, 7-17, 9-16
dictionary, 9-24
dictionary cache, 9-26
DML, 9-18
duration, 9-13, 9-16
escalation, 9-15
exclusive, 9-15
exclusive DDL, 9-24
exclusive table, 9-21
file management locks, 9-26
latches, 9-25
log management locks, 9-26
manual, 9-26
overview of, 9-5
parse, 9-24
restrictiveness, 9-15
rollback segments, 9-26
row (TX), 9-18

row exclusive table, 9-21
row share, 9-21
share DDL, 9-24
share locks, 9-15
share row exclusive, 9-21
share table, 9-21
system, 9-25
table, 3-1, 7-5
table (TM), 9-20
tablespace, 9-26
types of, 9-17
unindexed foreign keys and, 9-21
user-defined, 9-27

log management locks, 9-26
log switch

archiver process, 15-12
log switches

log sequence numbers, 11-13
log writer process (LGWR), 15-9

group commits, 15-10
online redo logs available for use, 11-13
redo log buffers and, 14-14
write-ahead, 15-9
writing to online redo log files, 11-13

logical database structures
definition, 1-9
tablespaces, 12-30

logical rowids, 3-24
LONG data type

storage of, 2-18
lost updates, 9-7
LRU, 14-9, 14-13

shared SQL pool, 14-19

M
maintenance tasks, automatic, 18-22
maintenance window, 18-22
manual locking, 9-26
mapping tables, 3-25
master tables, 4-16, 4-17
materialized views, 4-16

log, 4-18
partitioned, 4-18
refresh

job queue processes, 15-12
refreshing, 4-18

media recovery
complete, 18-14
overview, 18-14

memory
allocation for SQL statements, 14-17
content of, 14-1
processes use of, 15-1
software code areas, 14-23
stored procedures, 8-3

memory management
about, 18-15
automatic, 18-15
automatic shared, 18-16

Index-8

MERGE statement, 7-4
metrics, 6-5, 18-21
monitoring user actions, 17-5
multiblock writes, 15-9
multiple-process systems (multiuser systems), 15-1
multiplexing

control files, 11-11
redo log file groups, 11-14
redo log files, 11-14

multiuser environments, 15-1
multiversion read consistency, 6-6, 7-22, 9-1, 9-2, 9-5

consistent read clones, 9-4
dirty reads, 9-2
read committed isolation level, 9-7
statement-level, 1-7, 9-2
transaction-level, 9-2
undo segments, 9-3

mutexes, 9-25

N
natural keys, 5-5
NCHAR data type, 2-11
network listener process

connection requests, 16-13
networks

client/server architecture use of, 16-1
communication protocols, 16-16
dispatcher processes and, 16-13
drivers, 16-16
listener processes of, 16-6
Oracle Net Services, 16-5

NLS_DATE_FORMAT parameter, 2-12
NOAUDIT statement, 7-3
nonunique indexes, 3-4
normalized tables, 4-22
NOT NULL constraints, 5-2, 5-3
nulls, 2-9

foreign keys, 5-8
how stored, 2-9, 2-19
indexed, 3-4
prohibiting, 5-3

NUMBER data type, 2-11
numeric data types, 2-11

floating-point numbers, 2-12
NVARCHAR2 data type, 2-11

O
object tables, 2-15
object types, 2-15, 4-16
object views, 4-16
OLAP

index-organized tables, 3-20
introduction, 17-19

OLTP
table compression, 2-20

online analytical processing
See OLAP

online redo logs

checkpoints, 11-10
OPEN_CURSORS parameter

managing private SQL areas, 14-6
operating systems

communications software, 16-16
privileges for administrator, 13-6

operators, SQL, 7-5
optimization, SQL, 7-19
optimized physical reads, 14-11
optimizer, 7-2, 7-10

components, 7-11
estimator, 7-12
execution, 7-20
execution plans, 4-19, 7-10, 7-19
function-based indexes, 3-19
hints, 7-10, 7-14
invisible indexes, 3-2
partitions in query plans, 4-1
plan generator, 7-12
query plans, 7-19
query rewrite, 4-19
query transformer, 4-19, 7-11
row sources, 7-19
statistics, 2-18, 7-13
statistics gathering, 18-22

Oracle
configurations of

multiple-process Oracle, 15-1
instances, 13-1
processes of, 15-6

Oracle Audit Vault, 17-5
Oracle blocks, 12-2
Oracle Call Interface See OCI
Oracle code, 16-15
Oracle Enterprise Manager. See Enterprise Manager
Oracle Flashback Technology, 18-13
Oracle interMedia

See Oracle Multimedia
Oracle Internet Directory, 16-9
Oracle JVM

main components, 8-14
overview, 8-13

Oracle Multimedia, 19-14
Oracle Net Services, 16-5

client/server systems use of, 16-5
overview, 16-5
shared server requirement, 16-13

Oracle Net Services Connection Manager, 8-12
Oracle program interface (OPI), 16-16
Oracle RAC. See Oracle Real Application Clusters
Oracle Real Application Clusters, 6-6

Enterprise Grids, 17-11
reverse key indexes, 3-11

Oracle Streams, 17-21
Oracle Text, 19-13
Oracle XA

session memory in the large pool, 14-21
ORDBMS (object-relational database management

system), 1-3
outer joins, 7-7

Index-9

P
packages, 8-6

advantages of, 8-6
executing, 8-11
for locking, 9-27
private, 8-7
public, 8-7
shared SQL areas and, 14-18

pages, 12-2
parallel execution, 15-14

coordinator, 15-15
server, 15-15
servers, 15-15
tuning, 15-14

parallel execution processing, 14
parallel SQL, 15-14

coordinator process, 15-15
server processes, 15-15

parameter
server, 13-15

parameters
initialization, 13-15

locking behavior, 9-17
storage, 12-20

parse locks, 9-24
parsing

embedded SQL, 7-9
storage of information, 6-5

parsing, SQL, 7-16
hard parse, 7-17, 9-25
soft parse, 7-17

partitions, 4-1
composite, 4-2
dynamic partitioning, 15-15
elimination from queries, 4-10
hash, 4-5
index, 4-7
index-organized tables, 4-12
keys, 4-2
materialized views, 4-18
range, 4-2
recovery of, 4-8
segments, 12-21
single-level, 4-2
strategies, 4-2
table, 4-7
tables, 4-12

passwords
administrator privileges, 13-6
connecting with, 15-4

PCTFREE storage parameter
how it works, 12-12

performance
dynamic performance views (V$), 6-5
group commits, 15-10
packages, 8-7

PGA, instance
definition, 14-2

phantom reads, 9-5
physical database structures

control files, 11-10
physical guesses, 3-24
plan

SQL execution, 7-5
planned downtime

avoiding downtime during, 17-9
PL/SQL

anonymous blocks, 8-2, 8-9
collections, 8-10
data types, 2-9
dynamic SQL, 8-10
exceptions, 8-10
execution, 8-11
language constructs, 8-9
overview, 8-2
packages, 6-6, 8-6
PL/SQL engine, 8-11
program units, 8-2, 14-18

compiled, 8-11
shared SQL areas and, 14-18

records, 8-10
stored procedures, 1-5, 6-3, 8-2, 8-3

PMON background process, 15-8
pragmas, PL/SQL, 10-12
precompilers, 8-1

embedded SQL, 7-9
predicates, SQL, 3-6

SQL
predicates, 7-2

primary key constraints, 5-2
primary keys, 2-9, 3-2

constraints, 5-5
index-organized tables, 2-6

private SQL areas, 14-16
described, 14-16
how managed, 14-6
parsing and, 7-16

private synonyms, 4-23
privileges, 6-1, 7-9

administrator, 13-6
granting, 7-3
PL/SQL procedures and, 8-4
revoking, 7-3

procedures
advantages, 8-3
execution, 8-5, 8-11
external, 8-11
memory allocation, 8-3
security, 8-4
shared SQL areas and, 14-18
stored procedures, 1-5, 6-3, 8-2, 8-11

process monitor process (PMON)
described, 15-8

processes, 15-1
archiver (ARCn), 15-12
background, 15-7
checkpoints and, 15-9
client, 15-3
dedicated server, 7-18, 16-14
distributed transaction resolution, 15-11

Index-10

job queue, 15-12
listener, 16-6

shared servers and, 16-13
log writer (LGWR), 15-9
multiple-process Oracle, 15-1
Oracle, 15-6
parallel execution coordinator, 15-15
parallel execution servers, 15-15
process monitor (PMON), 15-8
recoverer (RECO), 15-11
server, 15-6

shared, 16-13, 16-14
shared server, 16-11

client requests and, 16-12
structure, 15-1
system monitor (SMON), 15-8
user

recovery from failure of, 15-8
sharing server processes, 16-13

processing
parallel SQL, 15-14

program global area (PGA), 14-2
shared server, 16-14
shared servers, 16-14

program interface, 16-15
Oracle side (OPI), 16-16
structure of, 16-16
user side (UPI), 16-16

program units, 8-2
shared pool and, 14-18

programming, server-side, 8-2
pseudocode

triggers, 8-21
pseudocolumns, 2-13, 3-21
public synonyms, 4-23

Q
queries

blocks, 7-7
definition, 7-5
implicit, 7-7, 9-7
in DML, 7-4
parallel processing, 15-14
query blocks, 7-12
query transformer, 7-11
SQL language and, 7-1
stored, 4-12
subqueries, 4-13, 7-4, 7-7

query blocks, 7-12
query plans, 7-19

partitioning and, 4-1
query rewrite, 4-19, 4-21
query transformer, 4-19

R
range partitions, 4-2
RDBMS (relational database management

system), 1-2

read committed isolation, 9-6
read consistency. See multiversion read consistency
read uncommitted, 9-6
read-only isolation level, 9-11
Real Application Clusters

cache fusion, 9-3
system monitor process and, 15-8
threads of online redo log, 11-12

records, PL/SQL, 8-10
recoverer process (RECO), 15-11

in-doubt transactions, 10-13
recovery

complete, 18-14
database buffers and, 13-12
distributed processing in, 15-11
instance recovery

SMON process, 15-8
media, 18-14
media recovery

dispatcher processes, 16-14
process recovery, 15-8
required after terminating instance, 13-10
rolling back transactions, 13-14
tablespace

point-in-time, 18-15
Recovery Manager (RMAN), 6-5
recursive SQL, 7-23
redo log files

See also online redo logs
available for use, 11-13
circular use of, 11-13
contents of, 11-15
distributed transaction information in, 11-12
group members, 11-14
groups, defined, 11-14
instance recovery use of, 11-12
LGWR and the, 11-13
members, 11-14
multiplexed, 11-14
online, defined, 11-12
redo entries, 11-15
threads, 11-12

redo logs
archiver process (ARCn), 15-12
buffer management, 15-9
committed data, 13-12
committing a transaction, 15-9
log switch

archiver process, 15-12
log writer process, 14-14, 15-9
rolling forward, 13-12
writing buffers, 15-9

redo logs buffer, 14-14
redo records, 11-15
REF constraints, 5-3
referential integrity

examples of, 5-12
self-referential constraints, 5-12

refresh
incremental, 4-18

Index-11

job queue processes, 15-12
materialized views, 4-18

relational database management system. See RDBMS
replication, Oracle Streams, 4-17, 17-22

bi-directional, 17-23
hub-and-spoke, 17-23
master database, 4-17
n-way, 17-23
one-way, 17-23

reserved words, 7-3
response queues, 16-12
result cache, 14-20
result sets, SQL, 2-7, 2-13, 2-15, 4-15, 7-19, 7-22
RESULT_CACHE clause, 14-20
results sets, SQL, 7-5
reverse key indexes, 3-11
REVOKE statement, 7-3
rights, definer’s and invoker’s, 8-4
roles, 2-2, 6-3, 7-9
rollback, 10-8, 10-10

described, 10-8, 10-10
ending a transaction, 10-8, 10-10
implicit in DDL, 7-4
statement-level, 10-4
to a savepoint, 10-8

rollback segments
locks on, 9-26
parallel recovery, 13-14
use of in recovery, 13-14

ROLLBACK statement, 10-6
rollback, statement-level, 9-16
rollback, transaction, 7-8
rolling back, 10-1, 10-8, 10-10
row cache, 14-19
row chaining, 12-16
row data (section of data block), 12-8
row directories, 12-8
row locks, 9-18

concurrency, 9-19
storage, 9-20

row pieces, 2-19
row source generation, 7-19
ROWID data type, 2-13
rowids, 2-19

foreign, 2-13
index, 3-4
logical, 2-13, 3-24
physical, 2-13
row migration, 12-16
scans, 7-13
universal, 2-13

rows
addresses, 2-19
chaining across blocks, 2-19, 12-16
clustered, 2-19
definition, 2-7
format of in data blocks, 12-8
locking, 9-18
locks on, 9-18
migrating to new block, 12-16

row set, 7-19
row source, 7-19
shown in rowids, 12-10
storage, 2-19
triggers, 8-17

S
sample schemas, 2-6
SAVEPOINT statement, 7-8
savepoints, 7-8, 10-8

definition, 10-8
implicit, 10-5
rolling back to, 10-8
SAVEPOINT statement, 10-6

scans
cluster, 7-13
fast full index, 3-7
full index, 3-6
full table, 3-1, 5-9, 7-12, 14-13
index, 3-6, 7-13
index skip, 3-8
rowid, 7-13
unique index, 3-8

schema objects
definitions, 6-1, 7-3
dependencies, 2-4, 4-13
dimensions, 4-21
indexes, 3-2
introduction, 2-1
materialized views, 4-16
relationship to data files, 11-7
sequences, 4-20
storage, 2-3

schemas, 2-1
schemas, sample, 2-6
SCN

See system change numbers
secondary indexes, 3-23

benefits, 3-24
physical guesses, 3-24

SecureFiles, 19-13
security

administrator privileges, 13-6
auditing, 17-5
definer’s rights, 8-4
program interface enforcement of, 16-15
views, 4-12

segment advisor, 18-22
segments, 12-21

data, 12-21
defined, 12-2
index, 3-17, 3-20
overview of, 12-21
table storage, 2-18
temporary, 2-16, 12-23

allocating, 12-23
select lists, SQL, 7-5
SELECT statement, 7-4
selectivity, 3-7, 3-19

Index-12

self-referential integrity constraints, 5-7
sequences

concurrent access, 4-20
definition, 4-20
surrogate keys, 5-5

serializability, transactional, 9-1
serialization isolation level, 9-8
server parameter file

startup, 13-6
server processes, 15-6

listener process, 16-6
servers

client/server architecture, 16-1
shared

architecture, 15-2, 16-11
processes of, 16-11, 16-14

server-side programming, 8-2
overview, 8-1

service names, 16-6
service oriented architecture, 1-11, 16-5
SERVICE_NAMES parameter, 16-9
session control statements, 7-8
sessions, 7-8

connections contrasted with, 15-4
defined, 15-4
memory allocation in the large pool, 14-21
sequence generation in, 4-20

SET CONSTRAINT statement, 7-8
SET TRANSACTION statement, 7-8, 10-3
SGA (system global area)

allocating, 13-6
contents of, 14-8
data dictionary cache, 6-5, 14-19
database buffer cache, 14-9
large pool, 14-21
redo log buffer, 10-8, 14-14
rollback segments and, 10-8
shared and writable, 14-8
shared pool, 8-3, 14-15
variable parameters, 13-15

share DDL locks, 9-24
share locks, 9-15
shared pool, 8-11, 14-15, 14-19

allocation of, 14-19
check, 7-17
dependency management and, 14-19
described, 14-15
flushing, 14-19
latches, 9-25
parse locks, 9-24
row cache and, 14-19

shared server
described, 15-2
dispatcher processes, 16-13
Oracle Net Services or SQL*Net V2

requirement, 16-13
processes, 16-14
processes needed for, 16-11
restricted operations in, 16-14
session memory in the large pool, 14-21

shared server processes (Snnn), 16-14
described, 16-14

shared SQL areas, 4-14, 7-17, 14-15, 14-16, 14-19
dependency management and, 14-19
described, 14-16
parse locks, 9-24
procedures, packages, triggers and, 14-18

shutdown, 13-8, 13-10
abnormal, 13-10
prohibited by dispatcher processes, 16-14
steps, 13-8

SHUTDOWN ABORT statement, 13-10
Simple Object Access Protocol (SOAP). See SOAP
simple triggers, 8-18
single-level partitioning, 4-2
SMON background process, 15-8
SOA, 1-11, 16-5
SOAP (Simple Object Access Protocol), 1-11
soft parsing, 7-17
software code areas, 14-23
space management

extents, 12-18
PCTFREE, 12-12
row chaining, 12-16
segments, 12-21

SQL, 7-1, 7-3
conditions, 7-2, 7-5
data definition language (DDL), 7-3
data manipulation language (DML), 7-4
dictionary cache locks, 9-26
dynamic SQL, 8-10
embedded, 7-1, 7-9
executable, 10-3
execution, 7-20, 10-4
expressions, 3-3, 7-5
functions, 2-13, 7-2
IDs, 7-17
implicit queries, 7-7
interactive, 7-1
memory allocation for, 14-17
operators, 7-2, 7-5
optimization, 7-19
Oracle, 7-2
overview, 7-1
parallel execution, 15-14
parsing, 7-16
PL/SQL and, 8-2
predicates, 3-6
recursive, 7-23
reserved words, 7-3
result sets, 2-7, 2-13, 2-15, 4-15, 7-5, 7-19, 7-22
select lists, 7-5
session control statements, 7-8
stages of processing, 7-15
standards, 7-2
statements, 7-3
subqueries, 4-13, 7-7
system control statements, 7-9
transaction control statements, 7-8
transactions, 10-1

Index-13

transactions and, 10-10
types of statements, 7-3

SQL areas
private, 14-16
shared, 14-16

SQL Plan Management (SPM), 7-12
SQL tuning advisor, 18-22
SQL*Plus

alert log, 13-21
executing a package, 8-8
lock and latch monitors, 9-25
SQL statements, 7-2

SQLJ standard, 8-16
standards

ANSI/ISO, 7-2
isolation levels, 9-5

startup, 13-1
prohibited by dispatcher processes, 16-14

statement-level atomicity, 10-4
statement-level read consistency, 9-2
statement-level rollback, 9-16, 10-4
statements, SQL, 7-3
statistics, 2-18, 6-5, 7-10, 7-19, 14-19

ASH, 18-23
AWR, 18-21
definition, 7-13
gathering for optimizer, 18-22
Java-related, 14-22
join order, 7-7
undo retention, 12-33

storage
logical structures, 12-30
nulls, 2-9
triggers, 8-21, 8-22

STORAGE clause
using, 12-20

storage parameters
setting, 12-20

stored procedures. See procedures
Structured Query Language (SQL), 7-1
structures

locking, 9-24
logical, 12-1

data blocks, 12-1, 12-6
extents, 12-1, 12-18
segments, 12-1, 12-21
tablespaces, 11-1, 12-30

physical
control files, 11-10
data files, 11-1

processes, 15-1
subprograms, PL/SQL. See procedures
subqueries, 4-13, 7-4, 7-7
summaries, 4-16
surrogate keys, 5-5
synonyms

constraints indirectly affect, 5-13
data dictionary views, 6-5
definition, 4-22
private, 4-23

public, 4-23, 6-4
securability, 4-23

SYS user name, 2-5
data dictionary tables, 6-4
V$ views, 6-6

SYSDBA privilege, 13-6
SYSOPER privilege, 13-6
system change numbers

definition, 9-4
when assigned, 11-15

system change numbers (SCN), 10-5
committed transactions, 10-10
defined, 10-10

system control statements, 7-9
system global area. See SGA
system locks, 9-25

internal, 9-26
latches, 9-25
mutexes, 9-25

system monitor process (SMON), 15-8
defined, 15-8
Real Application Clusters and, 15-8
rolling back transactions, 13-14

SYSTEM tablespace, 6-4
data dictionary stored in, 12-32
online requirement of, 12-35

SYSTEM user name, 2-5

T
table clusters

cluster keys, 2-22
definition, 2-22
indexed, 2-23
scans, 7-13

tables
base, 4-13, 6-4
characteristics, 2-8
clustered, 2-22
compression, 2-19, 4-7
definition, 2-2
detail, 4-16
dimension, 4-21
directories, 12-8
DUAL, 6-4
dynamic partitioning, 15-15
external, 2-16
fact, 4-21
full table scans, 3-1
heap-organized, 2-3, 3-20
index-organized, 3-20, 3-24, 4-12
integrity constraints, 5-1
joins, 3-15
key-preserved, 4-15
master, 4-16, 4-17
normalized or denormalized, 4-22
object, 2-15
overview, 2-1
partitions, 4-7
permanent, 2-7

Index-14

storage, 2-18
temporary, 2-15, 12-23
transaction, 10-3
truncating, 7-3
views of, 4-12
virtual, 6-6

tables, base, 4-12
tables, external, 2-7
tables, temporary, 2-7
tablespace point-in-time recovery, 18-15
tablespaces, 12-30

described, 12-30
dictionary managed, 12-6
locally managed, 12-3
locks on, 9-26
offline, 12-35
online, 12-35
overview of, 12-30
recovery, 18-15
schema objects, 2-3
space allocation, 12-2
SYSTEM, 6-4
used for temporary segments, 12-23

tasks, 15-1
temp files, 11-8
temporary segments, 2-16, 12-23

allocating, 12-23
allocation for queries, 12-23

temporary tables, 2-7, 2-15
threads

online redo log, 11-12
time zones, 2-13

in date/time columns, 2-12
TIMESTAMP data type, 2-12
TO_CHAR function, 2-14
TO_DATE function, 2-12, 2-14
trace files

LGWR trace file, 15-10
transaction control statements, 7-8
transaction tables, 9-5, 10-3

reset at recovery, 15-8
transaction-level read consistency, 9-2
transactions, 10-1

ACID properties, 10-1
active, 10-7
assigning system change numbers, 10-10
autonomous, 10-11

within a PL/SQL block, 10-12
beginning, 10-3
blocking, 9-7
committing, 10-10, 15-9

group commits, 15-10
conflicting writes, 9-7
deadlocks, 9-16
deadlocks and, 10-5
definition, 10-1
distributed, 10-7, 10-12

resolving automatically, 15-11
DML statements, 7-5
ending, 10-3

enqueued, 10-9
in-doubt

resolving automatically, 10-13
interested transaction lists (ITLs), 9-5
isolation levels, 9-5, 9-8, 9-11
isolation of, 9-5
naming, 10-7
read consistency, 9-2
rolling back, 10-8, 10-10

partially, 10-8
savepoints in, 10-8
serializability, 9-1
setting properties, 7-8
terminating the application and, 10-4
transaction control statements, 7-8
transaction history, 9-5
transaction ID, 10-1, 10-3
transaction tables, 9-5

triggers, 8-2
cascading, 8-17
components of, 8-18
compound, 8-18
effect of rollbacks, 10-5
firing (executing), 8-21

privileges required, 8-21
INSTEAD OF, 8-18
overview, 8-16
restrictions, 8-19
row, 8-17
shared SQL areas and, 14-18
simple, 8-18
statement, 8-17
storage of, 8-21
timing, 8-18
UNKNOWN does not fire, 8-19
uses of, 8-17

TRUNCATE statement, 7-3
two-phase commit

transaction management, 10-13

U
undo management, automatic, 12-24
undo segments, 10-3

read consistency, 9-3
undo tablespaces, 12-33

undo retention period, 9-11
Unicode, 2-10
unique indexes, 3-4
unique key constraints, 5-2, 5-3

composite keys, 5-4
NOT NULL constraints and, 5-4

unplanned downtime
avoiding downtime during, 17-7

update no action constraint, 5-8
UPDATE statement, 7-4
updates

lost, 9-7
updatability of views, 4-15, 8-18
updatable join views, 4-15

Index-15

updating tables
with parent keys, 9-21

UROWID data type, 2-13
user program interface (UPI), 16-16
USER_ views, 6-4
users, database, 2-2

authentication, 17-3
names, 6-1

sessions and connections, 15-4
privileges, 2-1
temporary tablespaces, 12-23

UTL_HTTP package, 8-6

V
V$ views, 6-6
VARCHAR2 data type, 2-10
variables

embedded SQL, 7-9
views, 4-12

base tables, 4-12
constraints indirectly affect, 5-13
data access, 4-14
data dictionary

updatable columns, 4-15
fixed views, 6-6
indexes, 4-14
INSTEAD OF triggers, 8-18
integrity constraints, 4-14
materialized, 4-16
object, 4-16
schema object dependencies, 4-13
storage, 4-13
updatability, 4-15
uses, 4-12
V$, 6-5

virtual columns, 2-7, 2-18, 3-19

W
warehouse

materialized views, 4-16
Web services, 1-11, 16-5
write-ahead, 15-9

X
XA

session memory in the large pool, 14-21
XMLType data type, 19-11

Index-16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Introduction to Oracle Database
	About Relational Databases
	Database Management System (DBMS)
	Relational Model
	Relational Database Management System (RDBMS)
	Brief History of Oracle Database

	Schema Objects
	Tables
	Indexes

	Data Access
	Structured Query Language (SQL)
	PL/SQL and Java

	Transaction Management
	Transactions
	Data Concurrency
	Data Consistency

	Oracle Database Architecture
	Database and Instance
	Database Storage Structures
	Database Instance Structures
	Application and Networking Architecture

	Oracle Database Documentation Roadmap
	Basic Group
	Intermediate Group
	Advanced Group

	Part I Oracle Relational Data Structures
	2 Tables and Table Clusters
	Introduction to Schema Objects
	Schema Object Types
	Schema Object Storage
	Schema Object Dependencies
	SYS and SYSTEM Schemas
	Sample Schemas

	Overview of Tables
	Columns and Rows
	Example: CREATE TABLE and ALTER TABLE Statements
	Oracle Data Types
	Integrity Constraints
	Object Tables
	Temporary Tables
	External Tables
	Table Storage
	Table Compression

	Overview of Table Clusters
	Overview of Indexed Clusters

	3 Indexes and Index-Organized Tables
	Overview of Indexes
	Index Characteristics
	B-Tree Indexes
	Bitmap Indexes
	Function-Based Indexes
	Application Domain Indexes
	Index Storage

	Overview of Index-Organized Tables
	Index-Organized Table Characteristics
	Index-Organized Tables with Row Overflow Area
	Secondary Indexes on Index-Organized Tables

	4 Partitions, Views, and Other Schema Objects
	Overview of Partitions
	Partition Characteristics
	Partitioned Tables
	Partitioned Indexes
	Partitioned Index-Organized Tables

	Overview of Views
	Characteristics of Views
	Updatable Join Views
	Object Views

	Overview of Materialized Views
	Characteristics of Materialized Views
	Refresh Methods for Materialized Views
	Query Rewrite

	Overview of Sequences
	Sequence Characteristics
	Concurrent Access to Sequences

	Overview of Dimensions
	Hierarchical Structure of a Dimension
	Creation of Dimensions

	Overview of Synonyms

	5 Data Integrity
	Introduction to Data Integrity
	Techniques for Guaranteeing Data Integrity
	Advantages of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Check Constraints

	States of Integrity Constraints
	Checks for Modified and Existing Data
	Deferrable Constraints
	Examples of Constraint Checking

	6 Data Dictionary and Dynamic Performance Views
	Overview of the Data Dictionary
	Contents of the Data Dictionary
	Storage of the Data Dictionary
	How Oracle Database Uses the Data Dictionary

	Overview of the Dynamic Performance Views
	Contents of the Dynamic Performance Views
	Storage of the Dynamic Performance Views

	Database Object Metadata

	Part II Oracle Data Access
	7 SQL
	Introduction to SQL
	SQL Data Access
	SQL Standards

	Overview of SQL Statements
	Data Definition Language (DDL) Statements
	Data Manipulation Language (DML) Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statement
	Embedded SQL Statements

	Overview of the Optimizer
	Use of the Optimizer
	Optimizer Components
	Access Paths
	Optimizer Statistics
	Optimizer Hints

	Overview of SQL Processing
	Stages of SQL Processing
	How Oracle Database Processes DML
	How Oracle Database Processes DDL

	8 Server-Side Programming: PL/SQL and Java
	Introduction to Server-Side Programming
	Overview of PL/SQL
	PL/SQL Subprograms
	PL/SQL Packages
	PL/SQL Anonymous Blocks
	PL/SQL Language Constructs
	PL/SQL Collections and Records
	How PL/SQL Runs

	Overview of Java in Oracle Database
	Overview of the Java Virtual Machine (JVM)
	Java Programming Environment

	Overview of Triggers
	Advantages of Triggers
	Types of Triggers
	Timing for Triggers
	Creation of Triggers
	Execution of Triggers
	Storage of Triggers

	Part III Oracle Transaction Management
	9 Data Concurrency and Consistency
	Introduction to Data Concurrency and Consistency
	Multiversion Read Consistency
	Locking Mechanisms
	ANSI/ISO Transaction Isolation Levels

	Overview of Oracle Database Transaction Isolation Levels
	Read Committed Isolation Level
	Serializable Isolation Level
	Read-Only Isolation Level

	Overview of the Oracle Database Locking Mechanism
	Summary of Locking Behavior
	Use of Locks
	Lock Modes
	Lock Conversion and Escalation
	Lock Duration
	Locks and Deadlocks

	Overview of Automatic Locks
	DML Locks
	DDL Locks
	System Locks

	Overview of Manual Data Locks
	Overview of User-Defined Locks

	10 Transactions
	Introduction to Transactions
	Sample Transaction: Account Debit and Credit
	Structure of a Transaction
	Statement-Level Atomicity
	System Change Numbers (SCNs)

	Overview of Transaction Control
	Transaction Names
	Active Transactions
	Savepoints
	Rollback of Transactions
	Committing Transactions

	Overview of Autonomous Transactions
	Overview of Distributed Transactions
	Two-Phase Commit
	In-Doubt Transactions

	Part IV Oracle Database Storage Structures
	11 Physical Storage Structures
	Introduction to Physical Storage Structures
	Mechanisms for Storing Database Files
	Oracle Automatic Storage Management (Oracle ASM)
	Oracle Managed Files and User-Managed Files

	Overview of Data Files
	Use of Data Files
	Permanent and Temporary Data Files
	Online and Offline Data Files
	Data File Structure

	Overview of Control Files
	Use of Control Files
	Multiple Control Files
	Control File Structure

	Overview of the Online Redo Log
	Use of the Online Redo Log
	How Oracle Database Writes to the Online Redo Log
	Structure of the Online Redo Log

	12 Logical Storage Structures
	Introduction to Logical Storage Structures
	Logical Storage Hierarchy
	Logical Space Management

	Overview of Data Blocks
	Data Blocks and Operating System Blocks
	Data Block Format
	Data Block Compression
	Space Management in Data Blocks

	Overview of Extents
	Allocation of Extents
	Deallocation of Extents
	Storage Parameters for Extents

	Overview of Segments
	User Segments
	Temporary Segments
	Undo Segments
	Segment Space and the High Water Mark

	Overview of Tablespaces
	Permanent Tablespaces
	Temporary Tablespaces
	Tablespace Modes
	Tablespace File Size

	Part V Oracle Instance Architecture
	13 Oracle Database Instance
	Introduction to the Oracle Database Instance
	Database Instance Structure
	Database Instance Configurations

	Overview of Instance Startup and Shutdown
	Overview of Instance and Database Startup
	Overview of Database and Instance Shutdown

	Overview of Checkpoints
	Purpose of Checkpoints
	When Oracle Database Initiates Checkpoints

	Overview of Instance Recovery
	Purpose of Instance Recovery
	When Oracle Database Performs Instance Recovery
	Importance of Checkpoints for Instance Recovery
	Instance Recovery Phases

	Overview of Parameter Files
	Initialization Parameters
	Server Parameter Files
	Text Initialization Parameter Files
	Modification of Initialization Parameter Values

	Overview of Diagnostic Files
	Automatic Diagnostic Repository
	Alert Log
	Trace Files

	14 Memory Architecture
	Introduction to Oracle Database Memory Structures
	Basic Memory Structures
	Oracle Database Memory Management

	Overview of the User Global Area
	Overview of the Program Global Area
	Contents of the PGA
	PGA Usage in Dedicated and Shared Server Modes

	Overview of the System Global Area
	Database Buffer Cache
	Redo Log Buffer
	Shared Pool
	Large Pool
	Java Pool
	Streams Pool
	Fixed SGA

	Overview of Software Code Areas

	15 Process Architecture
	Introduction to Processes
	Multiple-Process Oracle Database Systems
	Types of Processes

	Overview of Client Processes
	Client and Server Processes
	Connections and Sessions

	Overview of Server Processes
	Dedicated Server Processes
	Shared Server Processes

	Overview of Background Processes
	Mandatory Background Processes
	Optional Background Processes
	Slave Processes

	16 Application and Networking Architecture
	Overview of Oracle Application Architecture
	Overview of Client/Server Architecture
	Overview of Multitier Architecture
	Overview of Grid Architecture

	Overview of Oracle Networking Architecture
	How Oracle Net Services Works
	The Oracle Net Listener
	Dedicated Server Architecture
	Shared Server Architecture
	Database Resident Connection Pooling

	Overview of the Program Interface
	Program Interface Structure
	Program Interface Drivers
	Communications Software for the Operating System

	Part VI Oracle Database Administration and Development
	17 Topics for Database Administrators and Developers
	Overview of Database Security
	User Accounts
	Authentication
	Encryption
	Access Control
	Monitoring

	Overview of High Availability
	High Availability and Unplanned Downtime
	High Availability and Planned Downtime

	Overview of Grid Computing
	Database Server Grid
	Database Storage Grid

	Overview of Data Warehousing and Business Intelligence
	Data Warehousing and OLTP
	Data Warehouse Architecture
	Overview of Extraction, Transformation, and Loading (ETL)
	Business Intelligence

	Overview of Oracle Information Integration
	Federated Access
	Information Sharing

	18 Concepts for Database Administrators
	Duties of Database Administrators
	Tools for Database Administrators
	Oracle Enterprise Manager
	SQL*Plus
	Tools for Database Installation and Configuration
	Tools for Oracle Net Configuration and Administration
	Tools for Data Movement and Analysis

	Topics for Database Administrators
	Backup and Recovery
	Memory Management
	Resource Management and Task Scheduling
	Performance Diagnostics and Tuning

	19 Concepts for Database Developers
	Duties of Database Developers
	Tools for Database Developers
	SQL Developer
	Oracle Application Express
	Oracle JDeveloper
	Oracle JPublisher
	Oracle Developer Tools for Visual Studio .NET

	Topics for Database Developers
	Principles of Application Design and Tuning
	Client-Side Database Programming
	Globalization Support
	Unstructured Data

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

