

JavaFX
Mastering FXML

Release 2.2

E20478-09

January 2014

JavaFX/Mastering FXML, Release 2.2

E20478-09

Copyright © 2011, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Irina Fedortsova

Contributing Author:

Contributor: Greg Brown

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Why Use FXML

Introduction to FXML .. 1-1
Simple Example of FXML ... 1-2
Benefits of FXML.. 1-2
FXML and Scene Builder .. 1-3

2 FXML—What’s New in JavaFX 2.1

FXML Enhancements for JavaFX 2.1 ... 2-1
FXML Loader Incompatibilities with Previous JavaFX Releases ... 2-2

Some JavaFX 2.0 FXML Escape Sequences Are Deprecated in JavaFX 2.12-2
Backslash Is Now an Escape Character ...2-2

3 FXML—What’s New in JavaFX 2.2

4 Creating an Address Book with FXML

Set Up the Project ... 4-1
Create the Basic User Interface .. 4-2
Add Columns to the Table .. 4-4
Define the Data Model.. 4-4
Associate Data with the Table Columns .. 4-5
Set Sort Order on Startup ... 4-7
Define Column Widths ... 4-8
Set Alignment in Table Cells ... 4-9
Add Rows to the Table ... 4-11
Where to Go from Here .. 4-12

5 Creating a Custom Control with FXML

Set Up a Project ... 5-1
Create the Basic User Interface .. 5-2
Create a Controller ... 5-2
Load the FXML Source File and Define Stage and Scene .. 5-3

6 Deployment of FXML Applications

iv

Part I
Part I About This Tutorial

This document consists of the following pages:

■ Why Use FXML

A basic description of FXML and the benefits of using it to create user interfaces.

■ FXML—What’s New in JavaFX 2.1

A list of FXML enhancements in JavaFX 2.1 and incompatibilities with previous
releases.

■ FXML—What’s New in JavaFX 2.2

A list of FXML enhancements in JavaFX 2.2.

■ Creating an Address Book with FXML

A tutorial that shows how to populate a table with data, sort the data at
application startup, align the data in the table cells, and add rows to the table.

■ Creating a Custom Control with FXML

A tutorial that shows how to create a custom control using APIs introduced in
JavaFX 2.2.

■ Deployment of FXML Applications

A clarification about why some FXML applications need digital signatures. An
alternative to signing the application is also presented.

You can also get information on FXML from the following resources:

■ Creating a User Interface with FXML

A beginning tutorial that shows how to create a login application using FXML.

■ Introduction to FXML

A reference document that provides information on the elements that make up the
FXML language. The document is included in the javafx.fxml package in the API
documentation.

■ JavaFX 2 Forum

A place where you can post questions about FXML.

1

Why Use FXML 1-1

1Why Use FXML

This tutorial provides a basic description of FXML and the benefits of using it to create
user interfaces.

FXML is an XML-based language that provides the structure for building a user
interface separate from the application logic of your code. This separation of the
presentation and application logic is attractive to web developers because they can
assemble a user interface that leverages Java components without mastering the code
for fetching and filling in the data.

The following sections provide more information about FXML, and when you would
choose FXML over other methods of creating a user interface:

■ Introduction to FXML

■ Simple Example of FXML

■ Benefits of FXML

■ FXML and Scene Builder

Introduction to FXML
FXML does not have a schema, but it does have a basic predefined structure. What
you can express in FXML, and how it applies to constructing a scene graph, depends
on the API of the objects you are constructing. Because FXML maps directly to Java,
you can use the API documentation to understand what elements and attributes are
allowed. In general, most JavaFX classes can be used as elements, and most Bean
properties can be used as attributes.

From a Model View Controller (MVC) perspective, the FXML file that contains the
description of the user interface is the view. The controller is a Java class, optionally
implementing the Initializable class, which is declared as the controller for the
FXML file. The model consists of domain objects, defined on the Java side, that you
connect to the view through the controller. An example of this structure is in the
tutorial Creating an Address Book with FXML.

While you can use FXML to create any user interface, FXML is particularly useful for
user interfaces that have large, complex scene graphs, forms, data entry, or complex
animation. FXML is also well-suited for defining static layouts such as forms, controls,
and tables. In addition, you can use FXML to construct dynamic layouts by including
scripts.

Simple Example of FXML

1-2 Mastering FXML

Simple Example of FXML
The easiest way to show the advantages of FXML is with an example. Take a look at
Figure 1–1, which shows a user interface that includes a border pane layout that has a
top and center region, each of which contains a label.

Figure 1–1 Border Pane Simple Example

First, look at how the user interface is constructed and built directly in the source code,
as shown in Example 1–1.

Example 1–1 Java Code for a User Interface

BorderPane border = new BorderPane();
Label toppanetext = new Label("Page Title");
border.setTop(toppanetext);
Label centerpanetext = new Label ("Some data here");
border.setCenter(centerpanetext);

Next, look at Example 1–2, which shows the same user interface, but in FXML markup.
You can see the hierarchical structure of the user interface, which in turn makes it
easier to add components and build upon the user interface.

Example 1–2 FXML Markup for a User Interface

<BorderPane>
 <top>
 <Label text="Page Title"/>
 </top>
 <center>
 <Label text="Some data here"/>
 </center>
</BorderPane>

Benefits of FXML
In addition to providing web developers a familiar approach to designing user
interfaces, FXML offers these benefits:

■ Because the scene graph is more transparent in FXML, it is easy for a development
team to create and maintain a testable user interface.

■ FXML is not a compiled language; you do not need to recompile the code to see
the changes.

FXML and Scene Builder

Why Use FXML 1-3

■ The content of an FXML file can be localized as the file is read. For example, if an
FXML file is loaded using the en_US locale, then it produces the string "First
Name" for a label based on the following resource string:

<Label text="%firstName"/>

If the locale is changed to fr_FR and the FXML file is reloaded, then the label
shows "Prénom."

The same is not true for Java code, because you must manually update the content
of every element of your user interface by obtaining a reference to it and calling
the appropriate setter (such as setText()).

■ You can use FXML with any Java Virtual Machine (JVM) language, such as Java,
Scala, or Clojure.

■ FXML is not limited to the view portion of the MVC interface. You can construct
services or tasks or domain objects, and you can use JavaScript or other scripting
languages in FXML. For an example of using JavaScript, see Use a Scripting
Language to Handle Events in the FXML tutorial of the Getting Started guide.

FXML and Scene Builder
Just as some developers prefer to work directly in the XML code, other developers
prefer to use a tool to author their XML. The same is true with FXML.

If you prefer to use a tool, or if you want to create a quick prototype to get feedback,
then you might prefer to use JavaFX Scene Builder. Scene Builder is a design tool that
generates the FXML source code as you define the user interface for your application.
Scene Builder can help you to quickly create a prototype for an interactive application
that connects components to the application logic. For more information, see Getting
Started with JavaFX Scene Builder.

Because Scene Builder uses XML as a serialization format, the produced FXML code is
very clear and you can further edit FXML files, generated by Scene Builder, in any text
or XML editor.

NetBeans IDE 7.2 enables you to open FXML files in JavaFX Scene Builder, provided
that the latter is installed on your computer. This tighter integration of NetBeans and
Scene Builder gives an additional advantage when developing FXML applications.

FXML and Scene Builder

1-4 Mastering FXML

2

FXML—What’s New in JavaFX 2.1 2-1

2FXML—What’s New in JavaFX 2.1

This page contains the following sections that describe the FXML enhancements in
JavaFX 2.1 and incompatibilities with previous releases:

■ FXML Enhancements for JavaFX 2.1

■ FXML Loader Incompatibilities with Previous JavaFX Releases

FXML Enhancements for JavaFX 2.1
The following FXML enhancements have been added in JavaFX 2.1:

■ Support for using a leading backslash as an escape character (RT-18680)

JavaFX 2.0 used consecutive operator characters such as $$ as escape sequences.
JavaFX 2.1 adds support for escape sequences using the backslash character, such
as \$. These escape sequences are more similar to Unified Expression Language
(UEL), making them more familiar to developers. The JavaFX 2.0 escape sequences
are deprecated as of JavaFX 2.1. See Some JavaFX 2.0 FXML Escape Sequences Are
Deprecated in JavaFX 2.1 and Backslash Is Now an Escape Character.

■ An implicit variable for the controller to document the namespace

This new feature facilitates bidirectional binding between the controller and the
UI. Bidirectional binding was dropped from JavaFX 2.1, but this feature was
retained.

■ Convenience constructors to the FXMLLoader class (RT-16815)

Several new convenience constructors have been added to the FXMLLoader class.
These constructors mirror the static load() methods defined in JavaFX 2.0, but
make it easier to access the document's controller from the calling code.

■ Customizable controller instantiation (RT-16724, RT-17268)

In JavaFX 2.0, the calling code did not have any control over controller creation.
This prevented an application from using a dependency injection system such as
Google Guice or the Spring Framework to manage controller initialization. JavaFX
2.1 adds a Callback interface to facilitate delegation of controller construction:

public interface Callback {
 public Object getController(Class<?> type);
}

When a controller factory is provided to the FXMLLoader object, the loader will
delegate controller construction to the factory. An implementation might return a
null value to indicate that it does not or cannot create a controller of the given
type; in this case, the default controller construction mechanism will be employed

FXML Loader Incompatibilities with Previous JavaFX Releases

2-2 Mastering FXML

by the loader. Implementations might also "recycle" controllers such that
controller instances can be shared by multiple FXML documents. However,
developers must be aware of the implications of doing this: primarily, that
controller field injection should not be used in this case because it will result in the
controller fields containing values from only the most recently loaded document.

■ Easier style sheets to work with (RT-18299, RT-15524)

In JavaFX 2.0, applying style sheets in FXML was not very convenient. In JavaFX
2.1, it is much simpler. Style sheets can be specified as an attribute of a root
<Scene> element as follows:

<Scene stylesheets="/com/foo/stylesheet1.css, /com/foo/stylesheet2.css">
</Scene>
Style classes on individual nodes can now be applied as follows:

<Label styleClass="heading, firstPage" text="First Page Heading"/>

■ Caller-specified no-arg controller method as an event handler (RT-18229)

In JavaFX 2.0, controller-based event handlers must adhere to the method
signature defined by an event handler. They must accept a single argument of a
type that extends the Event class and return void. In JavaFX 2.1, the argument
restriction has been lifted, and it is now possible to write a controller event
handler that takes no arguments.

FXML Loader Incompatibilities with Previous JavaFX Releases
The following sections contain compatibility issues that users might encounter if they
load a JavaFX 2.0 FXML file with a JavaFX 2.1 FXML loader:

■ Some JavaFX 2.0 FXML Escape Sequences Are Deprecated in JavaFX 2.1

■ Backslash Is Now an Escape Character

Some JavaFX 2.0 FXML Escape Sequences Are Deprecated in JavaFX 2.1
Table 2–1 shows the double-character escape sequences that were used in FXML in
JavaFX 2.0, but are deprecated in JavaFX 2.1. Instead, use a backslash as the escape
character.

If Scene Builder encounters any of these deprecated escape sequences, then the console
displays a warning, but loads the FXML anyway. The next time the file is saved, Scene
Builder automatically replaces the deprecated escape characters with the new syntax.

Backslash Is Now an Escape Character
In JavaFX 2.1, the backslash \ is an escape character in FXML. As a result, JavaFX 2.0
applications with FXML files that contain FXML string attributes starting with a
backslash might prevent the FXML from loading, or it might cause the FXML loader to
misinterpret the string.

Table 2–1 Deprecated and Current Escape Sequences

JavaFX 2.0 Escape Sequence JavaFX 2.1 Escape Sequence

$$ \$

%% \%

@@ \@

FXML Loader Incompatibilities with Previous JavaFX Releases

FXML—What’s New in JavaFX 2.1 2-3

Solution: For any FXML backslash text in a JavaFX 2.0 application, add an additional
backslash to escape the character.

Example:

Remove this line of code:

<Button text="\"/>

Replace it with this line of code:

<Button text="\\"/>

FXML Loader Incompatibilities with Previous JavaFX Releases

2-4 Mastering FXML

3

FXML—What’s New in JavaFX 2.2 3-1

3FXML—What’s New in JavaFX 2.2

This page contains a list of FXML enhancements added in JavaFX 2.2.

■ <fx:constant> tag

The <fx:constant> tag has been added to FXML to facilitate lookup of class
constants. For example, the NEGATIVE_INFINITY constant defined by the
java.lang.Double class can now be referenced as follows:

<Double fx:constant="NEGATIVE_INFINITY"/>

■ Improved access to sub-controllers in FXML

In JavaFX 2.1 and earlier, it was not easy to access subcontrollers from a root
controller class. This made it difficult to use a controller to open and populate a
dialog window whose contents were defined in an include statement, for example.

JavaFX 2.2 maps nested controller instances directly to member fields in the
including document's controller, making it much easier to interact with nested
controllers. Consider the following FXML document and controller:

<VBox fx:controller="com.foo.MainController">
...
 <fx:include fx:id="dialog" source="dialog.fxml"/>
...
</VBox>

public class MainController extends Controller {
 @FXML private Window dialog;
 @FXML private DialogController dialogController;

 ...
}

When the controller's initialize() method is called, the dialog field will contain
the root element loaded from the dialog.fxml file, and the dialogController
object will contain the include statement's controller. The main controller can then
invoke methods on the include statement’s controller, to populate and show the
dialog, for example.

■ Support for controller initialization via reflection

In JavaFX 2.1 and earlier, controller classes were required to implement the
Initializable interface to be notified when the contents of the associated FXML
document had been completely loaded. In JavaFX 2.2, this is no longer necessary.
An instance of the FXMLLoader class simply looks for the initialize() method on
the controller and calls it, if available. Note that, similar to other FXML callback

3-2 Mastering FXML

methods such as event handlers, this method must be annotated with the @FXML
annotation if it is not public.

It is recommended that developers use this approach for new development. The
Initializable interface has not been deprecated, but might be in a future release.

■ Simplified creation of FXML-based custom controls

In previous releases, it was fairly cumbersome to create custom controls whose
internal structure was defined in FXML. JavaFX 2.2 includes some subtle but
powerful enhancements that significantly simplify this process. The new
setRoot() and setController() methods enable the calling code to inject
document root and controller values, respectively, into the document namespace,
rather than delegate creation of these objects to FXMLLoader. This enables a
developer to create reusable controls that are internally implemented using
markup, but (from an API perspective) appear identical to controls implemented
programmatically.

For example, the following code markup defines the structure of a simple custom
control containing a TextField and a Button instance. The root container is
defined as an instance of the javafx.scene.layout.VBox class:

<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<fx:root type="javafx.scene.layout.VBox" xmlns:fx="http://javafx.com/fxml">
 <TextField fx:id="textField"/>
 <Button text="Click Me" onAction="#doSomething"/>
</fx:root>

The <fx:root> tag, which was added for JavaFX 2.2, specifies that the element's
value will be obtained by calling the getRoot() method of the FXMLLoader class.
Prior to calling the load()method, the calling code must specify this value by
calling the setRoot() method. The calling code can also provide a value for the
document's controller by calling the setController() method.

For more information, see Creating a Custom Control with FXML.

4

Creating an Address Book with FXML 4-1

4Creating an Address Book with FXML

In this tutorial, you create an Address Book application that includes a table of names
and email addresses, as shown in Figure 4–1. The tutorial shows how to populate a
table with data, sort the data at application startup, align the data in the table cells,
and add rows to the table.

Some amount of knowledge of FXML and application development is assumed for this
tutorial. Before you start, you should have completed the FXML tutorial in the Getting
Started series, because it teaches the basics of FXML development. Specifically, for the
Address Book tutorial, you should know:

■ The basic structure of an FXML project (.java, .fxml, and controller files)

■ How to create and run a JavaFX FXML project in NetBeans IDE

■ The basics of layout and user interface components

Before you begin this tutorial, ensure that the version of NetBeans IDE that you are
using supports your version of JavaFX 2. See the System Requirements for details.

Figure 4–1 Address Book Application

Set Up the Project
Your first task is to set up a JavaFX FXML project in NetBeans IDE.

1. From the File menu, choose New Project.

Create the Basic User Interface

4-2 Mastering FXML

2. In the JavaFX category, choose JavaFX FXML Application. Click Next.

3. Name the project FXMLTableView and click Finish.

NetBeans IDE opens an FXML project that includes the code for a basic Hello
World application. The application includes three files: FXMLTableView.java,
Sample.fxml, and SampleController.java.

4. Rename SampleController.java to FXMLTableViewController.java so that the name
is more meaningful for this application.

a. In the Projects window, right-click SampleController.java and choose
Refactor then Rename.

b. Enter FXMLTableViewController, and then click Refactor.

5. Rename Sample.fxml to fxml_tableview.fxml.

a. Right-click Sample.fxml and choose Rename.

b. Enter fxml_tableview and click OK.

6. Open FXMLTableView.java and edit the FXMLTableView class to look like
Example 4–1.

Example 4–1 FXMLTableView.java

public class FXMLTableView extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 primaryStage.setTitle("FXML TableView Example");
 Pane myPane = (Pane)FXMLLoader.load(getClass().getResource
 ("fxml_tableview.fxml"));
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Note that the Java file does not contain the code for the scene. In the next section of
the tutorial, Create the Basic User Interface, you will add the code for the scene in
the FXML file.

7. Press Ctrl (or Cmd) + Shift + I to correct the import statements.

Create the Basic User Interface
Define the user interface by creating a GridPane layout container as the root node of
the scene. Then, add a Label and a TableView component as child nodes of the
GridPane layout container.

1. Open the fxml_tableview.fxml file.

2. Delete the <AnchorPane> markup that NetBeans IDE automatically generated.

3. Add a GridPane layout container as the root node of the scene as shown in
Example 4–2.

Create the Basic User Interface

Creating an Address Book with FXML 4-3

Example 4–2 GridPane

<GridPane alignment="CENTER" hgap="10.0" vgap="10.0"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="fxmltableview.FXMLTableViewController">
 <padding>
 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />
 </padding>
</GridPane>

You can ignore the error "File not found in the specified address:
http://javafx.com/fxml" that might appear in the output window.

4. Add a Label and a TableView component to the GridPane layout container. The
code is in Example 4–3.

Example 4–3 Label and TableView

<GridPane alignment="CENTER" hgap="10.0" vgap="10.0"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="fxmltableview.FXMLTableViewController">
 <padding>
 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0"/>
 </padding>
 <Label style="-fx-font: NORMAL 20 Tahoma;" text="Address Book"
 GridPane.columnIndex="0" GridPane.rowIndex="0">
 </Label>
 <TableView fx:id="tableView" GridPane.columnIndex="0"
 GridPane.rowIndex="1">
 </TableView>
</GridPane>

5. Add the import statement for the Insets class.

<?import javafx.geometry.Insets?>

6. Run the program. You will see the label Address Book and a table with the text
"No columns in table," which is the default caption defined by the TableView
implementation, as shown in Figure 4–2.

Figure 4–2 Table with No Columns

Add Columns to the Table

4-4 Mastering FXML

Add Columns to the Table
Use the TableColumn class to add three columns for displaying the data: First Name,
Last Name, and Email Address. The code is in Example 4–4.

Example 4–4 Table Columns

<TableView fx:id="tableView" GridPane.columnIndex="0" GridPane.rowIndex="1">
 <columns>
 <TableColumn text="First Name">
 </TableColumn>
 <TableColumn text="Last Name">
 </TableColumn>
 <TableColumn text="Email Address">
 </TableColumn>
 </columns>
</TableView>

Tip: For more information on the TableColumn class or any other JavaFX class
discussed in this tutorial, see the API documentation.

Figure 4–3 shows the table with the columns for First Name, Last Name, and Email
Address.

Figure 4–3 Address Book with Three Columns

Define the Data Model
When you create a table in a JavaFX application, it is a best practice to implement a
class that defines the data model and provides methods and fields to further work
with the table. Create a Person class to define the data for the address book.

1. In NetBeans IDE, right-click the fxmltableview folder under Source Packages, and
choose New then Java Class.

2. Name the class Person and then click Finish.

3. Implement a Person class to define the data, as shown in Example 4–5.

Associate Data with the Table Columns

Creating an Address Book with FXML 4-5

Example 4–5 Person Class

package fxmltableview;

import javafx.beans.property.SimpleStringProperty;

public class Person {
 private final SimpleStringProperty firstName = new SimpleStringProperty("");
 private final SimpleStringProperty lastName = new SimpleStringProperty("");
 private final SimpleStringProperty email = new SimpleStringProperty("");

public Person() {
 this("", "", "");
 }

 public Person(String firstName, String lastName, String email) {
 setFirstName(firstName);
 setLastName(lastName);
 setEmail(email);
 }

 public String getFirstName() {
 return firstName.get();
 }

 public void setFirstName(String fName) {
 firstName.set(fName);
 }

 public String getLastName() {
 return lastName.get();
 }

 public void setLastName(String fName) {
 lastName.set(fName);
 }

 public String getEmail() {
 return email.get();
 }

 public void setEmail(String fName) {
 email.set(fName);
 }
}

Associate Data with the Table Columns
The next tasks are to define rows for the data and associate the data with the table
columns. You add this code to the FXML file.

1. In the fxml_tableview.fxml file, create an ObservableList array and define as
many data rows as you would like to show in your table. Sample code is in
Example 4–6. Add the code between the </columns> and </TableView> markup.

Example 4–6 ObservableList Array

</columns>
<items>

Associate Data with the Table Columns

4-6 Mastering FXML

 <FXCollections fx:factory="observableArrayList">
 <Person firstName="Jacob" lastName="Smith"
 email="jacob.smith@example.com"/>
 <Person firstName="Isabella" lastName="Johnson"
 email="isabella.johnson@example.com"/>
 <Person firstName="Ethan" lastName="Williams"
 email="ethan.williams@example.com"/>
 <Person firstName="Emma" lastName="Jones"
 email="emma.jones@example.com"/>
 <Person firstName="Michael" lastName="Brown"
 email="michael.brown@example.com"/>
 </FXCollections>
</items>
</TableView>

2. Specify a cell factory for each column to associate the data with the column, as
shown in Example 4–7.

Example 4–7 Cell Factories

<columns>
 <TableColumn text="First Name">
 <cellValueFactory><PropertyValueFactory property="firstName" />
 </cellValueFactory>
 </TableColumn>
 <TableColumn text="Last Name">
 <cellValueFactory><PropertyValueFactory property="lastName" />
 </cellValueFactory>
 </TableColumn>
 <TableColumn text="Email Address">
 <cellValueFactory><PropertyValueFactory property="email" />
 </cellValueFactory>
 </TableColumn>
</columns>

Cell factories are implemented by using the PropertyValueFactory class, which
uses the firstName, lastName, and email properties of the table columns as
references to the corresponding methods of the Person class.

3. Import the required packages, as shown in Example 4–8:

Example 4–8 Import Statements

<?import javafx.scene.control.cell.*?>
<?import javafx.collections.*?>
<?import fxmltableview.*?>

Running the application at this point shows the table populated with data, as shown in
Figure 4–4.

Set Sort Order on Startup

Creating an Address Book with FXML 4-7

Figure 4–4 Table with Data

Here are some built-in features of the TableView class for you to try:

■ Resize a column width by dragging the column divider in the table header to the
left or right.

■ Move a column by dragging the column header.

■ Alter the sort order of data by clicking a column header. The first click enables an
ascending sort order, the second click enables a descending sort order, and the
third click disables sorting. By default, no sorting is applied.

Set Sort Order on Startup
In this task, you set the sort order so that the entries in the First Name column appear
in ascending alphabetical order on application startup. You do this by creating an ID
for the table column and then setting up a reference to it.

1. Add an ID to the First Name column:

<TableColumn fx:id="firstNameColumn" text="First Name">

2. Specify the sort order by adding the code in Example 4–9 between the </items>
and </TableView> markup.

Example 4–9 Sort Order

 </items>
 <sortOrder>
 <fx:reference source="firstNameColumn"/>
 </sortOrder>
</TableView>

You can see the results in Figure 4–5.

Define Column Widths

4-8 Mastering FXML

Figure 4–5 Table with First Column Data Sorted at Startup

Define Column Widths
Add the prefWidth property to increase the column widths, as shown in
Example 4–10.

Example 4–10 Column Widths

 <TableColumn fx:id="firstnameColumn" text="First Name" prefWidth="100">
 <cellValueFactory><PropertyValueFactory property="firstName" />
 </cellValueFactory>
 </TableColumn>
 <TableColumn text="Last Name" prefWidth="100">
 <cellValueFactory><PropertyValueFactory property="lastName" />
 </cellValueFactory>
 </TableColumn>
 <TableColumn text="Email Address" prefWidth="200">
 <cellValueFactory><PropertyValueFactory property="email" />
 </cellValueFactory>
 </TableColumn>

The result is in Figure 4–6. The column widths have been increased so that all data is
visible in each table row.

Set Alignment in Table Cells

Creating an Address Book with FXML 4-9

Figure 4–6 Table with Column Widths Set

Set Alignment in Table Cells
Another customization is to set the alignment of the data in the table cells. You
implement the logic in a new class named FormattedTableCellFactory and then set
the alignment in the <TableColumn> markup in the FXML code.

1. In NetBeans IDE, right-click the fxmltableview folder under Source Packages, and
choose New then Java Class.

2. Name the class FormattedTableCellFactory and then click Finish.

3. Modify the FormattedTableCellFactory class by implementing the Callback class
and creating instances of the TextAlignment and Format classes, as shown in
Example 4–11. The S parameter is the type of the TableView generic type and the T
parameter is the type of the content of all cells in this table column.

Example 4–11 Callback Class

public class FormattedTableCellFactory<S, T>
 implements Callback<TableColumn<S, T>, TableCell<S, T>> {
 private TextAlignment alignment;
 private Format format;

 public TextAlignment getAlignment() {
 return alignment;
 }

 public void setAlignment(TextAlignment alignment) {
 this.alignment = alignment;
 }

 public Format getFormat() {
 return format;
 }

 public void setFormat(Format format) {
 this.format = format;
 }

Set Alignment in Table Cells

4-10 Mastering FXML

4. Implement the TableCell and TableColumn classes by appending the code in
Example 4–12. This code overrides the updateItem method of the TableCell class
and calls the setTextAlignment method on the table cell.

Example 4–12 TableCell and TableColumn Classes

@Override
 @SuppressWarnings("unchecked")
 public TableCell<S, T> call(TableColumn<S, T> p) {
 TableCell<S, T> cell = new TableCell<S, T>() {
 @Override
 public void updateItem(Object item, boolean empty) {
 if (item == getItem()) {
 return;
 }
 super.updateItem((T) item, empty);
 if (item == null) {
 super.setText(null);
 super.setGraphic(null);
 } else if (format != null) {
 super.setText(format.format(item));
 } else if (item instanceof Node) {
 super.setText(null);
 super.setGraphic((Node) item);
 } else {
 super.setText(item.toString());
 super.setGraphic(null);
 }
 }
 };
 cell.setTextAlignment(alignment);
 switch (alignment) {
 case CENTER:
 cell.setAlignment(Pos.CENTER);
 break;
 case RIGHT:
 cell.setAlignment(Pos.CENTER_RIGHT);
 break;
 default:
 cell.setAlignment(Pos.CENTER_LEFT);
 break;
 }
 return cell;
 }
}

5. Correct the import statements.

6. In the fxml_tableview.fxml file, add the following code under the
<cellValueFactory> markup to provide a center alignment for the First Name
column, as shown in Example 4–13.

Example 4–13 Alignment in Data Cell

<TableColumn fx:id="firstNameColumn" text="First Name" prefWidth="100">
 <cellValueFactory><PropertyValueFactory property="firstName" />
 </cellValueFactory>
 <cellFactory>
 <FormattedTableCellFactory alignment="center">
 </FormattedTableCellFactory>

Add Rows to the Table

Creating an Address Book with FXML 4-11

 </cellFactory>
</TableColumn>

You can create an alignment for the remaining columns using left, right, or center
values.

Running the application now results in data that is aligned in the center of the First
Name column, as shown in Figure 4–7.

Figure 4–7 Data Center-Aligned in First Name Column

Add Rows to the Table
You can add the ability for users to add a row of data to the table. Add the application
logic in the FXMLTableViewController class. Then, modify the user interface to include
three text fields and a button for entering the data.

1. Open the FXMLTableViewController.java file.

2. Edit the FXMLTableViewController class so it looks like the code in Example 4–14.

Example 4–14 FXMLTableViewController.java

public class FXMLTableViewController {
 @FXML private TableView<Person> tableView;
 @FXML private TextField firstNameField;
 @FXML private TextField lastNameField;
 @FXML private TextField emailField;

 @FXML
 protected void addPerson(ActionEvent event) {
 ObservableList<Person> data = tableView.getItems();
 data.add(new Person(firstNameField.getText(),
 lastNameField.getText(),
 emailField.getText()
));

 firstNameField.setText("");
 lastNameField.setText("");
 emailField.setText("");
 }

Where to Go from Here

4-12 Mastering FXML

}

3. Correct the import statements, as shown in Example 4–15.

Example 4–15 Import Statements in FXMLTableViewController

import javafx.collections.ObservableList;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.TableView;
import javafx.scene.control.TextField;

4. In the fxml_tableview.fxml file, add the following code before the </GridPane>
markup, as shown in Example 4–16.

Example 4–16 Text Fields and Button for Adding a Row

 </TableView>
 <HBox spacing="10" alignment="bottom_right" GridPane.columnIndex="0"
 GridPane.rowIndex="2">
 <TextField fx:id="firstNameField" promptText="First Name"
 prefWidth="90"/>
 <TextField fx:id="lastNameField" promptText="Last Name"
 prefWidth="90"/>
 <TextField fx:id="emailField" promptText="email"
 prefWidth="150"/>
 <Button text="Add" onAction="#addPerson"/>
 </HBox>
</GridPane>

Run the application and you will see that the text fields and button appear below the
table, as shown in Figure 4–8. Enter data in the text fields and click Add to see the
application in action.

Figure 4–8 Table with Text Fields and Button for Adding Data

Where to Go from Here
This concludes the Address Book tutorial, but here are some things for you to try next:

Where to Go from Here

Creating an Address Book with FXML 4-13

■ Provide a filter to verify that data was entered in the correct format.

■ Customize the table by applying a cascading style sheet to distinguish between
empty and non-empty rows. See "Styling UI Controls with CSS" in JavaFX UI
Controls for more information.

■ Enable editing of data in the table. See Editing Data in the Table in Using JavaFX
UI Controls for pointers.

■ See Deployment of FXML Applications for additional deployment options.

■ Look at Introduction to FXML, which provides more information on the elements
that make up the FXML language. The document is included in the javafx.fxml
package in the API documentation at
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_
to_fxml.html

■ For an example of an FXML application that uses data from a database, take a look
at the Henley Sales Application sample by downloading the JavaFX Samples zip
file at
http://www.oracle.com/technetwork/java/javafx/downloads/

The NetBeans projects and source code for this sample (called DataApp) are
included in the samples zip file. See the readme for instructions on how to set up
and run the application.

This DataApp sample provides several examples of how to populate a table from a
database. In particular, look at the following files:

– DataAppClient\src\com\javafx\experiments\dataapp\client\historytab\histor
y-tab.fxml

– DataAppClient\src\com\javafx\experiments\dataapp\client\livetab\live-tab.f
xml

– DataAppClient\src\com\javafx\experiments\dataapp\client\productstab\pro
ducts-tab.fxml

Where to Go from Here

4-14 Mastering FXML

5

Creating a Custom Control with FXML 5-1

5Creating a Custom Control with FXML

In this tutorial, you create an application with a custom control that consists of a text
field and a button, as shown in Figure 5–1.

Before you start, ensure that the version of NetBeans IDE that you are using supports
JavaFX 2.2. It is assumed that you are familiar with the basic structure of an FXML
project (.java, .fxml, and controller files). If you are not familiar with it, then first
complete the FXML tutorial in the Getting Started series and then continue with this
tutorial.

Figure 5–1 Custom Control Application

Set Up a Project
Open your NetBeans IDE and perform the following steps to set up a JavaFX FXML
project:

1. From the File menu, choose New Project.

2. In the JavaFX category, choose JavaFX FXML Application. Click Next.

3. Name the project CustomControlExample and click Finish.

4. Rename SampleController.java to CustomControl.java so that the name is more
meaningful for this application.

a. In the Projects window, right-click SampleController.java and choose Refactor
then Rename.

b. Enter CustomControl, and then click Refactor.

5. Rename Sample.fxml to custom_control.fxml

Create the Basic User Interface

5-2 Mastering FXML

a. Right-click Sample.fxml and choose Rename.

b. Enter custom_control and click OK.

Create the Basic User Interface
Define the structure of a simple custom control containing a TextField and a Button
instance. The root container is defined as an instance of the
javafx.scene.layout.VBox class.

1. Open the custom_control.fxml file.

2. Delete the <AnchorPane> markup that NetBeans IDE automatically generated.

3. Add code for the root container as shown in Example 5–1.

Example 5–1 Defining the Root Container

<fx:root type="javafx.scene.layout.VBox" xmlns:fx="http://javafx.com/fxml">
 <TextField fx:id="textField"/>
 <Button text="Click Me" onAction="#doSomething"/>
</fx:root>

4. Remove unused import statements, as shown in Example 5–2.

Example 5–2 Unused Import Statements

<?import java.lang.*?>
<?import java.util.*?>

Create a Controller
In this example, the CustomControl class extends the VBox class (the type declared by
the <fx:root> element), and sets itself as both the root and controller of the FXML
document in its constructor. When the document is loaded, the contents of the
CustomControl instance will be populated with the contents of the document.

1. Open the CustomControl.java file and remove the code that NetBeans IDE
automatically generated.

2. Add code as shown in Example 5–3.

Example 5–3 The CustomControl Class as Both the Root and Controller of the FXML
Document

package customcontrolexample;

import java.io.IOException;

import javafx.beans.property.StringProperty;
import javafx.fxml.FXML;
import javafx.fxml.FXMLLoader;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;

public class CustomControl extends VBox {
 @FXML private TextField textField;

 public CustomControl() {
 FXMLLoader fxmlLoader = new FXMLLoader(getClass().getResource(

Load the FXML Source File and Define Stage and Scene

Creating a Custom Control with FXML 5-3

"custom_control.fxml"));
 fxmlLoader.setRoot(this);
 fxmlLoader.setController(this);

 try {
 fxmlLoader.load();
 } catch (IOException exception) {
 throw new RuntimeException(exception);
 }
 }

 public String getText() {
 return textProperty().get();
 }

 public void setText(String value) {
 textProperty().set(value);
 }

 public StringProperty textProperty() {
 return textField.textProperty();
 }

 @FXML
 protected void doSomething() {
 System.out.println("The button was clicked!");
 }
}

Load the FXML Source File and Define Stage and Scene
The CustomControlExample.java file contains code for setting up the main application
class. It defines the stage and scene, and loads the FXML source file. More specific to
FXML, this class loads the FXML source file using the CustomControl class.

1. Open the CustomControlExample.java file.

2. Remove the line of code that contains a call to the FXMLLoader class as shown in
Example 5–4.

Example 5–4 Removing the Call to the FXMLLoader Class

Parent root = FXMLLoader.load(getClass().getResource("Sample.fxml"));

3. Create an instance of the CustomControl class and specify the text for the custom
control as shown in Example 5–5.

Example 5–5 Instantiating the CustomControl Class

CustomControl customControl = new CustomControl();
customControl.setText("Hello!");

4. Remove the lines of code that set the stage and scene, and define the stage and
scene as shown in Example 5–6.

Example 5–6 Defining the Stage and Scene

stage.setScene(new Scene(customControl));
stage.setTitle("Custom Control");

Load the FXML Source File and Define Stage and Scene

5-4 Mastering FXML

stage.setWidth(300);
stage.setHeight(200);
stage.show();

5. Press Ctrl (or Cmd) + Shift + I to correct the import statements.

After you create a custom control, you can use instances of this control in code or in
markup, just like any other control as shown in Example 5–7 and Example 5–8.

Example 5–7 Using an Instance of the CustomControl Class in Code

HBox hbox = new HBox();
CustomControl customControl = new CustomControl();
customControl.setText("Hello World!");
hbox.getChildren().add(customControl);

Example 5–8 Using an Instance of the CustomControl Class in Markup

<HBox>
 <CustomControl text="Hello World!"/>
</HBox>

To download the source code of the Custom Control application, click the
CustomControlExample.zip link.

6

Deployment of FXML Applications 6-1

6Deployment of FXML Applications

This page describes why some FXML applications need digital signatures and presents
an alternative to signing the application.

For information about how to begin deploying simple applications, see "Basic
Deployment" in the JavaFX Getting Started tutorials at
http://docs.oracle.com/javafx/2/get_started/basic_deployment.htm

For detailed information about application packaging and deployment, see Deploying
JavaFX Applications at
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

For web deployment, applications must be signed when there are @FXML annotations in
the controller class. The FXMLLoader class uses reflection to set annotated fields. It calls
the setAccessible() method on controller fields that are protected or private so it can
inject the value from the FXML markup. The setAccessible() method is a privileged
operation, and that privilege is not enabled by default for web applications.

If you use NetBeans IDE, your application is packaged automatically as a JavaFX
application, and by default the JAR file is signed to ensure that it will run on the web.
If you plan to run your application only on the desktop, then you can change the
project properties so the application is not signed, by clearing the Request Unrestricted
Access checkbox in the Deployment screen.

If you deploy using the JavaFX Packager tool or an Ant task, then include the FXML
file in the JAR file as an uncompiled file, and sign the application if it contains @FXML
annotations and you plan to deploy to the web.

The alternative to signing the application is to make your controller fields and handler
methods public. While this is usually not considered a good practice, in the case of
FXML applications, the controller instance is generally visible only to the FXML
Loader that created it, which in effect is similar to creating a private inner class with
public members.

The signing requirement for applications that contain @FXML annotations is being
tracked as an Atlassian Jira issue:
http://javafx-jira.kenai.com/browse/RT-14883

6-2 Mastering FXML

	Contents
	Part I About This Tutorial
	1 Why Use FXML
	Introduction to FXML
	Simple Example of FXML
	Benefits of FXML
	FXML and Scene Builder

	2 FXML—What’s New in JavaFX 2.1
	FXML Enhancements for JavaFX 2.1
	FXML Loader Incompatibilities with Previous JavaFX Releases
	Some JavaFX 2.0 FXML Escape Sequences Are Deprecated in JavaFX 2.1
	Backslash Is Now an Escape Character

	3 FXML—What’s New in JavaFX 2.2
	4 Creating an Address Book with FXML
	Set Up the Project
	Create the Basic User Interface
	Add Columns to the Table
	Define the Data Model
	Associate Data with the Table Columns
	Set Sort Order on Startup
	Define Column Widths
	Set Alignment in Table Cells
	Add Rows to the Table
	Where to Go from Here

	5 Creating a Custom Control with FXML
	Set Up a Project
	Create the Basic User Interface
	Create a Controller
	Load the FXML Source File and Define Stage and Scene

	6 Deployment of FXML Applications

