

Oracle® Fusion Middleware
Developing Swing Applications for Oracle Application
Development Framework

12c (12.1.3)

E41267-01

May 2014

Describes how to create and deploy Swing desktop
applications using ADF Swing and Oracle Application
Development Framework (Oracle ADF).

Oracle Fusion Middleware Developing Swing Applications for Oracle Application Development Framework
12c (12.1.3)

E41267-01

Copyright © 2013, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Ralph Gordon

Contributing Author: David Mathews, Cindy Hall

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction to ADF Swing Applications

1.1 About ADF Swing .. 1-1
1.1.1 Advantages of Using ADF Swing .. 1-1
1.1.2 ADF Swing Architecture .. 1-2
1.1.2.1 Swing MVC ... 1-2
1.1.2.2 Oracle Application Development Framework ... 1-3
1.2 Creating a Desktop Application That Works with Oracle ADF .. 1-3
1.3 What Happens When You Create a Desktop Application with ADF Swing 1-4
1.4 Connecting to Business Components ... 1-5
1.4.1 How to Modify the Configuration Name ... 1-5
1.4.2 How to Modify the Configuration File .. 1-6
1.4.3 What You May Need to Know About the Client Application Libraries 1-6

2 Creating ADF Swing Forms and Panels

2.1 About Creating ADF Swing Forms and Panels .. 2-1
2.1.1 ADF Swing Design Time Wizards ... 2-2
2.1.2 A Typical ADF Swing Form ... 2-2
2.1.3 Navigation in an ADF Swing Form ... 2-3
2.2 Process for Creating ADF Swing Panels and Forms ... 2-4
2.3 What Happens When You Create an ADF Swing Form ... 2-5
2.4 What You May Need to Know About ADF Swing Code Generation 2-5
2.5 What You May Need to Know About Business Components Attribute Settings 2-6
2.6 How to Create a Client Data Model Definition .. 2-6
2.7 How to Create a Single Table ADF Swing Form .. 2-7
2.8 How to Create a Master-Detail ADF Swing Form .. 2-8
2.9 How to Create an Empty ADF Swing Form ... 2-9
2.10 How to Create an Empty ADF Swing Panel ... 2-10
2.11 How to Create ADF Swing Edit Forms from the Data Controls Panel 2-11
2.12 How to Create ADF Swing Forms from the Databases Window 2-12

iv

3 Modifying ADF Swing Forms and Panels

3.1 About Modifying ADF Swing Forms and Panels ... 3-1
3.1.1 Value Bindings for the Entire Collection or Data Object .. 3-1
3.1.2 Value Bindings for Individual Data Object Attribute Values 3-2
3.2 How to Assemble ADF Swing Forms Using the Java Visual Editor 3-3
3.3 How to Insert UI Components into ADF Swing Panels ... 3-4
3.4 How to Change Client Data Model References .. 3-5
3.5 How to Open an ADF Swing Form with an Action Handler ... 3-6
3.6 How to Drop Data Panels Onto an Empty ADF Swing Form .. 3-7
3.7 How to Lay Out Data Panels in an Empty Swing Form ... 3-7
3.8 Binding a Method with Parameters in an ADF Swing Form .. 3-7
3.8.1 How to Populate the Data Controls Panel with JavaBean Methods 3-8
3.8.2 How to Create an ADF Swing Form with Method Bindings 3-8
3.8.3 What You May Need to Know About Displaying a Method Result Using a JTable

Component .. 3-9

4 Working with Data Binding

4.1 About Working With Data Binding ... 4-1
4.1.1 ADF Swing Containers .. 4-2
4.1.2 Standard Java Containers .. 4-2
4.2 Navigating the UI Using ADF Swing Controls .. 4-2
4.2.1 How to Navigate Using the Navigation Bar .. 4-3
4.2.2 How to Navigate Using Tree Navigation .. 4-3
4.3 What You May Need to Know About the ADF Swing Data Context 4-4
4.4 What Happens at Runtime: How Panel Bindings Function ... 4-4
4.5 What You May Need to Know About the ADF Swing Bootstrap Code 4-5
4.6 How to Display Object Attributes in a Databound Text Field .. 4-6
4.7 How to Create a New Row in a Databound Table or Tree Control 4-6
4.8 How to Sort Columns in a Databound Table ... 4-7
4.9 What Happens At Runtime: How Control Bindings Function ... 4-8
4.9.1 Populating Controls with Data .. 4-8
4.9.2 Updating Data through Controls ... 4-8

5 Customizing ADF Bindings

5.1 About Customizing ADF Bindings .. 5-1
5.2 How to Customize ADF Bindings for ADF Swing Panels .. 5-2
5.3 How to Customize an ADF Action Binding ... 5-3
5.4 How to Customize an ADF Attribute Binding ... 5-5
5.5 How to Customize an ADF Array Combobox Binding .. 5-6
5.6 How to Customize an ADF Boolean Binding ... 5-7
5.7 How to Customize an ADF Bounded Range Binding .. 5-8
5.8 How to Customize an ADF Formatted Text Field Binding .. 5-10
5.9 How to Customize an ADF Iterator Binding .. 5-11
5.10 How to Customize an ADF List Binding .. 5-12
5.11 How to Customize an ADF List Binding in Enumeration Mode 5-13
5.12 How to Customize an ADF List Binding in LOV Mode ... 5-14

v

5.13 How to Customize an ADF LOV Button Binding ... 5-17
5.14 What You May Need to Know About the LOV Dialog .. 5-19
5.15 How to Customize an ADF Scroll Binding ... 5-20
5.16 How to Customize an ADF Table Binding ... 5-21
5.17 How to Customize an ADF Tree Binding ... 5-23

6 Displaying Graphs in ADF Swing Panels

6.1 About Graphs in ADF Swing Panels .. 6-1
6.2 How to Create a Graph for an ADF Swing Panel ... 6-3
6.3 What Happens When You Create a Graph Component ... 6-5
6.4 How to Customize the Graph Component ... 6-7
6.5 How to Change Graph Data ... 6-7

7 Working with ADF Swing Controls

7.1 About ADF Swing-Specific Controls .. 7-1
7.2 How to Use the JUArrayComboBox Control .. 7-2
7.3 How to Use the JUImage Control ... 7-3
7.4 What You May Need to Know About Multimedia in ADF Swing Applications 7-4
7.5 How to Use the JULabel Control .. 7-4
7.6 How to Use the Label For Control .. 7-5
7.7 How to Use the JULovEditButton Control ... 7-6
7.8 How to Use the JUNavigationBar Control ... 7-6
7.9 How to Use the JUNavigationBar Control with Find Mode ... 7-7
7.10 How to Disable Find Mode for ADF Swing Controls in a Panel 7-8
7.11 What You May Need to Know About Iterator Bindings in Find Mode 7-8
7.12 How to Use the JURadioButtonGroupPanel Control ... 7-10
7.13 How to Use the JUShuttlePanel Control ... 7-10
7.14 How to Use the JUStatusBar Control .. 7-11

8 Using Validation in the ADF Swing User Interface

8.1 About Validating Events .. 8-1
8.2 How to Use Validation With ADF Control Bindings .. 8-1
8.3 How to Use Validation With ADF Swing Panels .. 8-2

9 Working with an ADF Swing Login Dialog

9.1 About the ADF Swing Login Dialog .. 9-1
9.2 How to Create a Login Dialog .. 9-2
9.3 How to Run the Application Using the Login Dialog .. 9-2
9.4 How to Run the Application Without the Login Dialog ... 9-3
9.5 What You May Need to Know About Customizing the Login Dialog Code 9-3
9.6 How to Modify the Login Dialog to Work with a JDBC Connection 9-4

10 Optimizing ADF Swing Application Runtime Performance

10.1 About Optimizing ADF Swing Application Runtime Performance 10-1
10.2 How to Delay Updates to ADF Business Components from ADF Swing 10-1

vi

10.3 What You May Need to Know About the Sync Mode Property 10-3
10.4 How to Limit Fetching of ADF Business Components Attributes in ADF Swing 10-3

11 Using Java Web Start With ADF Swing Applications

11.1 About Working with Java Web Start .. 11-1
11.1.1 Java Web Start Technology .. 11-2
11.1.2 Java Web Start and Integrated WebLogic Server ... 11-2
11.1.3 Java Web Start and Oracle WebLogic Server ... 11-3
11.2 How to Define ADF Business Components Runtime Properties 11-3
11.3 How to Set Up Runtime Configuration Information .. 11-4
11.4 How to Create a Java Web Start JNLP Definition ... 11-5
11.5 What Happens When You Create a JNLP Definition ... 11-6
11.6 How to Run ADF Swing Applications with Java Web Start in JDeveloper 11-7

vii

Preface

Welcome to Developing Swing Applications with Oracle Application Development
Framework.

Audience
This document is intended for enterprise developers who need to create and deploy
database-centric desktop applications using the Oracle Application Development
Framework (Oracle ADF). This guide explains how to build ADF applications that
display databound Java forms using ADF Business Components and ADF Swing.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents:

Understanding the Oracle Application Development Framework

Developing Fusion Web Applications with Oracle Application Development Framework

Developing Applications with Oracle JDeveloper

Developing Applications with Oracle ADF Data Controls

Developing Applications with Oracle ADF Desktop Integration

Installing Oracle JDeveloper

Oracle JDeveloper Online Help

Oracle JDeveloper Release Notes, included with your JDeveloper installation, and on
Oracle Technology Network

viii

Java API Reference for Oracle ADF Model

Java API Reference for Oracle ADF Lifecycle

Java API Reference for Oracle ADF Share

Java API Reference for Oracle ADF Model Tester

Generic Domains Java API Reference for Oracle ADF Business Components

interMedia Domains Java API Reference for Oracle ADF Business Components

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to ADF Swing Applications 1-1

1Introduction to ADF Swing Applications

This chapter describes ADF Swing technology and ADF Swing architecture.

This chapter includes the following sections:

■ Section 1.1, "About ADF Swing"

■ Section 1.2, "Creating a Desktop Application That Works with Oracle ADF"

■ Section 1.3, "What Happens When You Create a Desktop Application with ADF
Swing"

■ Section 1.4, "Connecting to Business Components"

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 About ADF Swing
ADF Swing is a technology for developing databound Java clients that simplifies
coding the interaction between Swing components and business services. ADF Swing
consists of the following:

■ Java classes and an API for binding Swing components to business services

■ XML data definition and configuration files

■ Design-time tools, including wizards, for creating databound Java forms

■ Several user interface components which extend certain Swing components

In Oracle Application Development Framework (Oracle ADF), you can use ADF
Swing to work with a number of business services on the back end, including ADF
Business Components, Enterprise Java Beans, and web services.

JDeveloper provides tools and wizards to enable your development with ADF Swing,
a technology for developing databound Java clients. These databound Java clients
simplify coding the interaction between Swing components and business services in
an Oracle ADF application.

In addition, JDeveloper also provides several ADF Swing-specific editing tools,
including the ADF Swing wizards to create and edit Swing panels and forms.

1.1.1 Advantages of Using ADF Swing
The advantages of using ADF Swing to build Java Swing clients include the following:

■ Wizards create ADF Swing forms quickly

■ Binding to data sources is supported for any model-based controls, including:

About ADF Swing

1-2 Developing Swing Applications for Oracle Application Development Framework

– Standard Swing components

– JDeveloper-provided ADF Swing components

– Third party model-based add-in components

■ XML data definitions provide for easy reuse of ADF Swing frames and panel.

■ Remote methods from the model layer ADF Business Components are available to
the Java client through direct ADF bindings.

Desktop applications using ADF Swing and ADF Business Components do not need to
implement data access and update logic. ADF Swing and ADF Business Components
cleanly separate data access code from UI code resulting in thin clients without the
burden on the view layer. Additionally, data access is improved with ADF Swing
because its binding to ADF Business Components allows it to take advantage of the
numerous performance features implemented in ADF Business Components. And
because ADF Swing relies on the model-view-controller architecture, designing ADF
Swing forms is no different than working with Swing components.

Your Java client code is further simplified because you'll never need to change the way
you access ADF Business Components, regardless of how they are deployed. Instead,
features of ADF Business Components let desktop applications connect to application
modules through a simple configuration definition file. The Java client code remains
unchanged for any deployment scenario, whether:

■ ADF Business Components are deployed locally in the same VM as ADF Swing

■ ADF Business Components are deployed remotely using EJB

1.1.2 ADF Swing Architecture
ADF Swing is the technology in Oracle ADF that facilitates building databound Java
clients using Swing components. The ADF Swing API consists of a set of Java classes
that take advantage of features in Oracle ADF to build a Java UI that is bound to
back-end business services. Oracle ADF helper classes handle the communication
between the client and the business services.

1.1.2.1 Swing MVC
ADF Swing architecture is based on a Model-View-Controller (MVC) pattern. With
MVC there are three communication objects logically separated for each component:

■ The Model represents the data or state of the component and is its underlying
logical representation.

■ The View is the component's visual representation, which describes how it looks
(for example, whether it is a button or some other control, whether it uses text or
icons, or what border and color it uses).

■ The Controller specifies the interaction with the client (how to interpret user
input). The controller notifies registered listeners when the user types text, clicks a
button, tabs to the next field, and so forth.

For example, a JCheckBox is a Swing component which has a defined Model, View,
and Controller. When the user interacts with the controller by clicking the checkbox,
the controller notifies the model that it should change its state (from false to true or the
reverse). The view, which is listening for changes in the state of the model, can then
update itself (for example, by making the checkbox appear selected). An important
point about this architecture is that the model is not aware of the view or views
displaying it, nor of the controller(s) being used to update it.

Creating a Desktop Application That Works with Oracle ADF

Introduction to ADF Swing Applications 1-3

The Swing API lets you set the model for every component using the component's
model or, in some cases, document property. In Swing, the model for any subclass of
JTextComponent is named document which is accessed using the setDocument() and
getDocument() methods. The standard Swing JLabel component does not represent
data and therefore does not follow the MVC architecture. However, ADF Swing
provides a JULabel component to overcome this limitation when you want to assign
labels using business component data.

1.1.2.2 Oracle Application Development Framework
When you develop a desktop application using ADF Swing as the client technology,
you take advantage of the Java EE and Model-View-Controller architecture of Oracle
ADF.

For more information about Oracle ADF, see "Introduction to Building Fusion Web
Applications with Oracle ADF" in Developing Fusion Web Applications with Oracle
Application Development Framework.

1.2 Creating a Desktop Application That Works with Oracle ADF
You can create Java desktop applications that rely on standard Swing components and
obtain the advantages of Oracle ADF in your application. In this document, the ADF
Java desktop application is called the ADF Swing application. When you create ADF
Swing applications in JDeveloper:

■ You can work with the ADF Swing wizards in the JDeveloper New Gallery to
quickly generate databound forms and panels.

■ You can work with the Data Controls panel to quickly add databound Swing
components to your ADF Swing forms and panels.

After you generate ADF Swing forms and panels, you can proceed to customize the
appearance of your forms using the Java visual editor.

To create an ADF Swing application:
1. Choose File > New > From Gallery from the JDeveloper menu.

2. In the New Gallery, expand General category and double-click Java Desktop
Application from the Items list.

3. Use the Create Java Desktop Application wizard to name the application and the
project.

This creates an ADF Swing application that will include ADF Business
Components for the business services in the data model project. For more
information, see "Getting Started with ADF Business Components" in Developing
Fusion Web Applications with Oracle Application Development Framework, "Getting
Started with ADF Business Components".

4. In the Applications window, select the data model project and choose File > New
> From Gallery.

Note: To avoid application errors, it is necessary to develop the
business services and Java client application in separate project
folders. The JDeveloper application template will create separate
project folders in your workspace.

What Happens When You Create a Desktop Application with ADF Swing

1-4 Developing Swing Applications for Oracle Application Development Framework

5. In the New Gallery, expand Business Tier - ADF Business Components and
double-click Business Components from Tables from the Items list.

6. Use the Initialize Business Components Project dialog to create a connection to the
database that contains the tables that you want to base your business components
on.

For more information, see "How to Initialize the Data Model Project With a
Database Connection" in Developing Fusion Web Applications with Oracle Application
Development Framework.

7. Use the Create Business Components from Tables wizard to populate the business
components in your data model project.

For more information, see "How to Create Multiple Entity Objects and
Associations from Existing Tables" in Developing Fusion Web Applications with
Oracle Application Development Framework.

8. In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

9. In the New Gallery, expand Client Tier and expand ADF Swing and then
double-click Empty Form or Empty Panel.

10. Use the ADF Swing wizard or dialog to add the ADF Swing form or panel to your
user interface project.

The file opens in the Java visual editor. For more information, see Chapter 2,
"Creating ADF Swing Forms and Panels."

11. In the Applications window, expand the Data Controls panel and use it to insert
databound UI components into the open document.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

12. (Optionally) Use the Data Controls panel to insert business service actions into the
open document.

For more information, seeSection 3.8, "Binding a Method with Parameters in an
ADF Swing Form."

13. Define the ADF bindings in their corresponding binding editors to specify the
required properties of the binding.

For more information, see Chapter 5, "Customizing ADF Bindings."

1.3 What Happens When You Create a Desktop Application with ADF
Swing

In an ADF Swing application, data binding between the Swing controls and the
business services' data sources relies on the creation a set of ADF Swing objects that
closely resemble the UI containers used to assemble the ADF Swing forms. You can see
these containers and their ADF Swing-specific code when you use the ADF Swing
Form wizard to generate a complete application. For example, assuming a

Note: You must use the ADF Swing wizards to generate.java files
with the necessary bootstrap code. Do not use a generic Java panel or
class to design databound Java clients.

Connecting to Business Components

Introduction to ADF Swing Applications 1-5

master-detail type form, based on a Dept and Emp view object, the wizard generates the
following classes:

■ FrameDeptViewEmpView1 -- extends ADF SwingFrame (a dummy implementation of
the ADF SwingPanel interface)

■ MDPanelDeptViewEmpView1 -- extends JPanel and implements ADF SwingPanel

■ PanelDeptView -- extends JPanel and implements ADF SwingPanel

■ PanelEmpView1 -- extends JPanel and implements ADF SwingPanel

where JPanel is a Swing class, and ADF SwingFrame and ADF SwingPanel are part of
ADF Swing and constitute your application’s data browsing panels.

The resulting project files, together with the model reference in the ADF Swing panel
or form shown in Example 1–1, permit the databound UI components to access the
ADF model layer at runtime.

Example 1–1 Model Reference in an ADF Swing Form

(panel.setBindingContext(JUTestFrame.startTestFrame("DataBindings.cpx",
 "null", panel, panel.getPanelBinding(), new Dimension(400, 300)));)

For more information, see to Section 4.1, "About Working With Data Binding."

The DataBindings.cpx file maps individual pages to page definition files and declares
usages of the data control defined in the DataControls.dcx file. The.cpx file defines
the Oracle ADF binding context for the entire application and provides the metadata
from which the Oracle ADF binding objects are created at runtime.

1.4 Connecting to Business Components
ADF Swing applications use ADF Business Components to connect to deployed
business service. The ADF Swing application relies on a bc4j.xcfg configuration file
to define the server connection information. The file defines all of the deployment
configurations of a particular application module in the data model project and
permits ADF Swing forms to access a specific view object belonging to the application
module.

You can edit the configuration file to update the connection information that the ADF
Swing application uses to identify the ADF Business Components application
module's deployment scenario.

1.4.1 How to Modify the Configuration Name
In JDeveloper you can create and edit the configurations using the Configuration
Manager by right-clicking on the application module node in the Databases Window
and selecting Configurations. In JDeveloper, the Configurations page of the overview
editor for application module lets you create a new configuration and change the
default configuration.

Note: If you edit a configuration in the bc4j.xcfg file and change
the deployment platform (Middle Tier Server Type option), you will
need update your data model project to add the libraries for the new
platform. Choose Deploy to projectname.jar on the Common and
Middle Tier archives for the deployment archive your created in your
data model project.

Connecting to Business Components

1-6 Developing Swing Applications for Oracle Application Development Framework

1.4.2 How to Modify the Configuration File
JDeveloper places the bc4j.xcfg file in a common directory in the ADF Business
Components package it generates in /myclasses. For example, a bc4j.xcfg file that
you generate for an ADF Business Components package named OnlineOrders would
appear in:

<jdev_install>/myclasses/OnlineOrders/common/bc4j.xcfg

You do not deploy the configuration file when you deploy the ADF Swing application.
The person responsible for deploying the ADF Business Components application
module will automatically deploy the bc4j.xcfg file as a subdirectory of the
application module classes directory. You need only be sure that the deployed
bc4j.xcfg file contains a configuration that you specify for use with your ADF Swing
application and that the configuration information is correct.

1.4.3 What You May Need to Know About the Client Application Libraries
When you create or update a runtime configuration (for the bc4j.xcfg file),
JDeveloper updates several application libraries. One of the libraries contains class
files common to the ADF Swing user interface project and ADF Business Components
data model project (it will have a name like Workspace1_jws_Project1_jpr_
ClassesMypackage1ModuleLocal), which are required by JDeveloper to compile and
run your ADF Swing application. JDeveloper updates this library based on the most
recently saved configuration definition. Consequently, you may need to reedit a data
model definition to update the library with the desired classes. Also, when you move
the user interface project and the data model project to a new installation, you must
move all 'named user library' definitions. All the user libraries appear in the
libraries.xml file in the <jdev_install>/system folder, and it is necessary to copy
this file to the new JDeveloper installation.

Note: If you modify the configuration file that the application uses,
you must rebuild the data model project to make the configuration
available to the ADF Swing client.

2

Creating ADF Swing Forms and Panels 2-1

2Creating ADF Swing Forms and Panels

This chapter describes how to create ADF Swing forms and panels using design-time
wizards. The wizards help you to build UI clients in Java that display ADF Swing
forms using standard JFC/Swing components bound to business service data
collections.

This chapter includes the following sections:

■ Section 2.1, "About Creating ADF Swing Forms and Panels"

■ Section 2.2, "Process for Creating ADF Swing Panels and Forms"

■ Section 2.3, "What Happens When You Create an ADF Swing Form"

■ Section 2.4, "What You May Need to Know About ADF Swing Code Generation"

■ Section 2.5, "What You May Need to Know About Business Components Attribute
Settings"

■ Section 2.6, "How to Create a Client Data Model Definition"

■ Section 2.7, "How to Create a Single Table ADF Swing Form"

■ Section 2.8, "How to Create a Master-Detail ADF Swing Form"

■ Section 2.9, "How to Create an Empty ADF Swing Form"

■ Section 2.10, "How to Create an Empty ADF Swing Panel"

■ Section 2.11, "How to Create ADF Swing Edit Forms from the Data Controls Panel"

■ Section 2.12, "How to Create ADF Swing Forms from the Databases Window"

2.1 About Creating ADF Swing Forms and Panels
A data browsing panel displays controls through which the user can view and edit
data. Therefore, it has a set of controls declared and instantiated as fields. The data
browsing panel receives its panel binding from the parent frame or panel (through a
setBindingContext() call):

panel.setBindingContext(panelBinding.getBindingContext());

After the parent container creates the data browsing panel and its panel binding,
jbInit() is called. In the jbInit() method, the control is bound to attributes.

In Example 2–1, textFieldDeptName is a JTextField component that is bound to the
DepartmentName attribute of the underlying business service, where the identifier
DepartmentName is a reference to a definition in the PageDef.xml file (the file defines
the binding container). The binding container keeps a list of iterator bindings. Each
iterator binding specifies the view object instance and (optionally) the row set iterator.

About Creating ADF Swing Forms and Panels

2-2 Developing Swing Applications for Oracle Application Development Framework

Example 2–1 JTextField Component Bound to DepartmentName Attribute

textFieldDeptName.setDocument((Document)panelBinding.bindUIControl
 ("DepartmentName", textFieldDeptName));

At runtime, when setDocument() is called, ADF Swing looks for a control binding by
the specified name (DepartmentName). If one is found in the binding context for the
form, ADF Swing uses that control binding’s associated iterator binding to access the
value.

2.1.1 ADF Swing Design Time Wizards
Functionally, ADF Swing is divided into design time and runtime. Because the design
time is fully integrated with the JDeveloper IDE through a set of wizards and dialogs,
JDeveloper helps you to generate an ADF Swing application quickly. The ADF Swing
design time generates code with hooks into the ADF Swing runtime.

You can use ADF Swing wizards and dialogs without a full command of the ADF
Swing runtime APIs. The design time helps you to build desktop applications that
display ADF Swing forms using standard JFC/Swing components bound to business
service data collections. The control bindings you add to standard Swing controls,
using the ADF Swing design time, allow your ADF Swing forms to get and set values
on the business components.

The following list of ADF Swing wizards and dialogs together with the JDeveloper
IDE, help you to quickly build, run, and test an ADF Swing application or applet. You
can later modify ADF Swing forms by adding more sophisticated controls and Java
code to enhance your application.

■ Create ADF Swing Form

■ Create ADF Swing Panel

■ Create ADF Swing Empty Form

■ Create ADF Swing Empty Panel

■ Create Java Web Start File

2.1.2 A Typical ADF Swing Form
When an ADF Swing form has been deployed to a client machine, users can use it to
display and manipulate data in the form. Figure 2–1 shows an example of an ADF
Swing form displayed in a frame window.

About Creating ADF Swing Forms and Panels

Creating ADF Swing Forms and Panels 2-3

Figure 2–1 Typical ADF Swing Form

At the top of the form is a menu bar. Below the menu bar is a navigation bar that
controls the navigation of data in the master table. A navigation bar at the bottom of
the form allows users to navigate and interact with the detail table.

In this example, the master table is the Orders table. Several databound text field
controls represent columns in the Orders table and display ORDER_ID, ORDER_
DATE, ORDER_SHIPPED_DATE, and ORDER_TOTAL. The form uses a databound
grid control to display data from the detail OrderItems table.

When data is entered in the Order Id field, the ADF Swing form uses the master-detail
association between the Orders and OrderItems tables to locate data that is displayed
in the grid control. The columns from the detail table displayed in the grid control are
ORDER_ID, PRODUCT_ID, QUANTITY, and UNIT_PRICE. Finally, the form contains
a status bar that provides status about the data displayed on the form.

2.1.3 Navigation in an ADF Swing Form
Table 2–1 highlights the actions you can take using the navigation bar to interact with
an ADF Swing form.

Table 2–1 Navigation Actions

To perform this action: Click

Navigate through data in a form
(first, previous, next, last).

Insert data in a row below the
selected row

Delete a selected row.

Save changes to the database.

Undo changes made in a form.

Process for Creating ADF Swing Panels and Forms

2-4 Developing Swing Applications for Oracle Application Development Framework

2.2 Process for Creating ADF Swing Panels and Forms
The process you follow to create ADF Swing panels and forms for an ADF Swing
application is similar to the processes for creating user interfaces using other ADF
client technologies. The main differences are that you do not create a page flow based
on a controller, and there are several ADF Swing-specific editing tools, including the
ADF Swing wizards.

1. Create the application workspace and select the ADF Java Desktop Application
application template.

For more information, see Section 1.2, "Creating a Desktop Application That
Works with Oracle ADF."

2. Create the data model project for your business components.

3. Add an ADF Swing panel or form to the user interface project. There are several
ways to do this:

■ Add an empty ADF Swing form to the user interface project.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form.".

■ Create the ADF Business Components project.

■ If you are using ADF Business Components, you can add an ADF Swing form
that is already bound to view objects and attributes you choose.

For more information, see Section 2.1.1, "ADF Swing Design Time Wizards."

■ If you are using ADF Business Components, you can add to the user interface
project an ADF Swing panel that is already bound to view objects and
attributes.

4. Open the form or panel in the Java visual editor.

5. Use the Components window to insert Swing controls that will not be databound,
for example layout components such as JScrollPane.

6. Use the Data Controls panel to insert databound UI components into the ADF
Swing frame or panel.

7. Use the Structure window to browse the UI components and data bindings of the
page.

8. Use the Properties window to modify attributes of the page's UI components and
data bindings.

9. Use the ADF binding editors to modify the characteristics of bound controls.

10. When all edits are complete, build the user interface project.

Toggle the behavior of the panel to
support Find mode or not. In Find
mode, you use the panel to enter
parameters to modify the query.

Executes the query associated with
the panel. When the panel is set to
use Find mode, this executes a query
by example.

Table 2–1 (Cont.) Navigation Actions

To perform this action: Click

What You May Need to Know About ADF Swing Code Generation

Creating ADF Swing Forms and Panels 2-5

11. Run or debug the application using JDeveloper.

12. After you have debugged your user interface project, you can test deployment
using Integrated WebLogic Server in JDeveloper and Java Web Start
application-deployment technology. Java Web Start lets users download
applications and applets using a web browser but runs the application entirely on
the client without the need for a web browser.

For more information, see
http://www.oracle.com/technetwork/java/javase/overview-137531
.html.

13. Deploy the production ADF Swing application and business services to the
production web server using the generated Web Application Archive (WAR) files.

14. With Java Web Start installed on the client machines, users can easily download
and launch the application. Java Web Start handles updates that you make to the
application on the web server each time the user launches the application.

2.3 What Happens When You Create an ADF Swing Form
When you use the Create ADF Swing Form wizard to generate an ADF Swing
application with master and detail panels based on an ADF Business Components data
model, the wizard generates a container panel within an ADF Swing frame. This panel
is known as the layout panel because it groups several data panels together. In
addition to functioning as a UI container for one or more data browsing panels, the
layout panel is able to maintain the data context for the contained data panels through
its shared binding context.

The binding context from the application frame can be passed to its contained ADF
Swing panels by a call to the panel's setBindingContext() method, as shown in
Example 2–2:

Example 2–2 Passing Binding Context to ADF Swing Panel

// get the binding context from the frame
BindingContext _bctx = panelBinding.getBindingContext();
// pass the context to the first child panel
dataPanel.setBindingContext(_bctx);

//alternatively you can use
dataPanel.setBindingContext(panelBinding.getBindingContext());

2.4 What You May Need to Know About ADF Swing Code Generation
When you run an ADF Swing wizard in the ADF Swing section of the New Gallery,
the wizard helps you to generate:

■ A complete, databound Swing application, consisting of multiple ADF Swing
forms

Note: While the layout panel is generated by the Create ADF Swing
Form wizard, it is not an essential part of the ADF Swing application.
It is described here primarily to demonstrate how the ADF Swing
application maintains a data context between data browsing panels
through a shared binding context.

What You May Need to Know About Business Components Attribute Settings

2-6 Developing Swing Applications for Oracle Application Development Framework

■ Individual ADF Swing forms that you can use to assemble your own databound
Swing application

■ Empty ADF Swing forms that you can use to add databound Swing components

The wizards generate ADF Swing forms that contain standard Swing components to
display the data. Before you run one of the ADF Swing wizards, you can change
aspects of the way code-generation works for these components. Specifically, you can
select among code-generation options in the ADF Swing pages of the Preferences
dialog.

You can specify that:

■ The Java visual editor should be opened whenever you create a new form or data
panel.

■ The user interface project should be built with the specified additional import
statements.

■ The user interface project should be built with additional libraries, for example
when you want to use your own form components. In this case, you may have
added custom components and choose to assemble an ADF Swing form starting
with an empty ADF Swing form.

■ The Create ADF Swing Form wizard and the Create ADF Swing Panel wizard
should generate forms that use standard Swing components or your own custom
implementations. Currently, you can substitute components for the navigation bar,
status bar, text field, and text area that appear in ADF Swing forms.

■ The Create ADF Swing Form wizard should generate a single navigation bar in
forms that contain more than one data panel (for example, a master-detail form).
Normally, the wizard will create each data panel with its own navigation bar.
Creating a form with only one navigation bar looks visually cleaner, but requires
the user to change focus between the data panels to navigate the desired row set.

2.5 What You May Need to Know About Business Components Attribute
Settings

You can specify whether a form allows querying or editing of specific attributes by
setting these flags for individual view object attributes in the data model project:

■ Queryable

You can prevent the displayed attribute from participating in a query that the user
initiates on the form in Find mode. Open the view object overview editor and
deselect Queryable in the Attributes Details panel for the attribute.

■ Updatable

You can prevent the user from editing displayed attributes. Open the view object
overview editor and select Never Updatable in the Attributes Details panel for the
attribute.

2.6 How to Create a Client Data Model Definition
ADF Swing applications require a client data model definition to connect to ADF
Business Components view objects. You use the Create ADF Business Components
Client Data Model Definition wizard to add one or more client data model definitions
to the DataBindings.cpx user interface configuration file.

How to Create a Single Table ADF Swing Form

Creating ADF Swing Forms and Panels 2-7

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to define a client data model, you must first create a project with an ADF
Business Components application module.

2. Compile the data model project.

To create a client data model definition on a new user interface project:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

You must launch the ADF Business Components Client Data Model Definition
wizard within the ADF Swing form and panel wizards.

2. In the New Gallery, select Client Tier and ADF Swing and then double-click Form
or Panel.

3. In the new form or panel wizard, on the Data Model page, click New.

Alternatively, you can complete the ADF Swing wizard that you launched to
create the form or panel. And, then you can delete the generated form or panel if
you do not want to use it in your project. The new DataBindings.cpx
configuration file will remain.

4. In the ADF Business Components Client Data Model Definition wizard, select the
desired application module and runtime configuration.

5. Click Finish to save the changes to the new DataBindings.cpx configuration file.

To edit a client data model definition in an existing user interface project:
1. In the Applications window, expand the user interface project and select the

DataBindings.cpx configuration file.

2. From the main menu, choose Window > Structure.

3. In the Structure window, expand dataControlUsages and select the data control
definition that you want to modify.

4. Optionally, right-click the data control node and choose Delete.

5. In the Properties window, edit data control attributes.

2.7 How to Create a Single Table ADF Swing Form
Use the Create ADF Swing Form wizard to create a single table form derived from the
data model of an existing ADF Business Components project.

Note: JDeveloper updates several application libraries based on the
most recently saved data model definition. If you create or edit a data
model definition, but want to run your project with a different data
model definition, then you must open the desired data model
definition in the Create ADF Business Components Client Data Model
Definition wizard as described below and save it. This action
generates the appropriate classes.

How to Create a Master-Detail ADF Swing Form

2-8 Developing Swing Applications for Oracle Application Development Framework

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

To create a user interface project with single table ADF Swing forms:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Form.

3. In the Create ADF Swing Form wizard, on the Form Types page, the ADF Swing
form type Form appears preselected for use in an application.

If you want to create an applet, choose type Applet.

4. On the Form Types page, select Single Table and click Next.

5. Make selections to define the form appearance.

6. On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

7. Click Next.

8. On the remaining pages, make selections appropriate to specify the data your form
is to display.

9. Click Finish.

2.8 How to Create a Master-Detail ADF Swing Form
A master-detail relationship is an association between two or more view objects
defined in an ADF Business Components data model. You can generate ADF Swing
forms which rely on those master-detail relationships. The values in the master form
determine which detail records will be displayed.

Within an ADF Business Components data model you can define the following types
of master-detail relationships:

■ Master form to detail form

■ Master form to multiple detail forms

■ Cascading master-detail relationships (master-detail-detail forms)

The easiest way to generate this type of ADF Swing form is launch the ADF Swing
Form wizard and choose Master-Detail Tables in the wizard. When you are finish the
wizard, your project will contain:

■ A main frame that contains the ADF Swing bootstrap code

■ A master data panel that displays the master view object data

■ A detail data panel that displays the detail view object data

■ A master-detail data panel that is used to parent the individual master and detail
data panels

How to Create an Empty ADF Swing Form

Creating ADF Swing Forms and Panels 2-9

By default, both data panels will contain their own navigation bar. The navigation bar
displayed in the master data panel lets users navigate the rows of the master row set
while viewing the accompanying details in the detail panel. Whereas, users navigate
the detail data panel to see individual rows bound to the current master.

You can force the ADF Swing Forms wizard to generate a master-detail form with a
single navigation bar by setting an ADF Swing code generation preference in the
Preference dialog. Creating an ADF Swing form with only one navigation bar looks
visually cleaner, but requires the user to change focus between the data panels to
navigate the row set.

Use the Create ADF Swing Form wizard to create master-detail forms derived from the
data model of an existing ADF Business Components project.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

To create a user interface project with single table ADF Swing forms:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Form.

3. In the Create ADF Swing Form wizard, on the Form Type page, the ADF Swing
form type Form appears preselected for use in an application.

If you want to create an applet, choose type Applet.

4. Select Master-Detail Table and click Next.

5. Make selections to define the form appearance.

6. On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

7. Click Next.

8. On the remaining pages, make selections appropriate to specify the data your form
is to display.

9. Click Finish.

2.9 How to Create an Empty ADF Swing Form
Use the Create ADF Swing Empty Form dialog to create a frame that contains the ADF
Swing code to share a panel binding from the business components in an existing data
model project.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

How to Create an Empty ADF Swing Panel

2-10 Developing Swing Applications for Oracle Application Development Framework

In order to use business components with your ADF Swing forms, you must first
create a project with business services implementation, for example an ADF
Business Components application module.

2. Compile the data model project.

To create a user interface project with an empty form:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Empty Form.

3. In the Create ADF Swing Empty Form dialog, define the empty form and click
OK.

4. You can proceed to add data panels and databound controls to your new empty
form.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

2.10 How to Create an Empty ADF Swing Panel
You can use the Create ADF Swing Panel wizard or the Create ADF Swing Empty
Panel dialog to quickly create a data panel. While the Create ADF Swing Panel wizard
generates a complete data panel that you can add to a frame in your application, the
ADF Swing Empty Panel dialog contains no control bindings. Both wizards generate
the code needed to initialize an ADF Swing panel binding.

After you add the new panel class to your user interface project, you can add the panel
from an existing ADF Swing form or panel.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

To add single table data panel using the Create ADF Swing Panel wizard:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Panel.

3. In the Create ADF Swing Panel wizard, select a template to lay out the panel
components.

4. On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

5. On the remaining pages, make selections appropriate to specify the data your form
is to display.

6. Click Finish.

How to Create ADF Swing Edit Forms from the Data Controls Panel

Creating ADF Swing Forms and Panels 2-11

To add an ADF Swing data panel using the ADF Swing Empty Panel dialog:
1. In the Applications window, select the user interface project and from the main

menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Empty Panel.

3. In the Create ADF Swing Empty Panel dialog, enter a class name for the new
empty data panel and click OK.

4. You can open the new panel class in the Java visual editor and add controls.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

To link the completed ADF Swing data panel with your application:
After you have created a new ADF Swing data panel, you can reuse the data panel in
your application by:

■ Adding it to an existing layout panel (for instance, the one created by your main
ADF Swing frame).

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

■ Creating an ADF Swing frame using the ADF Swing Empty Form wizard and add
it there.

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

2.11 How to Create ADF Swing Edit Forms from the Data Controls Panel
You can use the Data Controls panel to create a databound form that permits editing of
the displayed values using controls that you select. The form will be created for the
objects of a data collection that you select.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the business service as an ADF data control for you.

To create the editable form in an existing panel in the Java visual editor:
1. Create an empty ADF Swing form or panel using the wizards.

For more information, see Section 2.2, "Process for Creating ADF Swing Panels and
Forms."

Note: The Data Controls panel may appear empty when you first
open it. Compile the data model project to populate the panel with
data objects.

How to Create ADF Swing Forms from the Databases Window

2-12 Developing Swing Applications for Oracle Application Development Framework

2. Open the form in the Java visual editor and click the Design tab.

3. In the Applications window, click the expand icon in the Data Controls header.

4. In the Data Controls panel, drag the desired data collection into the open form or
panel.

5. Select Add Edit Form from the popup list.

6. In the Create ADF Swing Edit Form dialog, select the attribute you don't want to
display and click the Delete button.

7. Optionally, select an attribute and click the up or down arrow to change the
attribute's display position in the form.

8. Optionally, select the Control dropdown and choose a control to display the
attribute value.

9. Optionally, deselect Create Label for an attribute if you do not want to display a
label.

By default, the attribute ID is used for the display label. Alternatively, if a control
hint label exists for the business object attribute, the label will use the control hint
instead of the attribute ID. Leave Create Label selected.

10. Click OK to save the settings.

JDeveloper creates the edit form as a new panel inside the open form or panel.

11. In the Java visual editor, resize the new edit form panel to view the controls.

The edit form uses the JGoodies FormLayout manager for flexible component
layout.

The source for the edit form panel appears in the file
Panel<collectionname>Helper.java and the panel's control binding definitions appear
in Panel<collectionname>HelperPageDef.java.

You can improve the performance of your ADF Swing application by defining the
fetchAttributeProperties() method in your form. This will ensure your form
performs in batch mode to fetch attribute values. For more information, see
Section 10.4, "How to Limit Fetching of ADF Business Components Attributes in ADF
Swing."

2.12 How to Create ADF Swing Forms from the Databases Window
Use the Databases Window to create a databound form that permits editing of the
displayed values using controls that you select. The form and the necessary data
bindings will be created for the database table that you select.

To create the form in an existing panel in the Java visual editor:
1. Create an empty ADF Swing form or panel using the wizards.

For more information, see Section 2.2, "Process for Creating ADF Swing Panels and
Forms."

2. Open the form in the Java visual editor and click the Design tab.

3. In the Properties window, select BorderLayout from the layout dropdown list.

For more information, see to Section 3.7, "How to Lay Out Data Panels in an
Empty Swing Form.".

How to Create ADF Swing Forms from the Databases Window

Creating ADF Swing Forms and Panels 2-13

4. In the Components window, open the Swing Containers page and select the
JScrollPane component.

5. Click inside the empty form in the Java visual editor to drop the scroll pane with
its default size.

6. Resize the scroll pane.

7. From the Window menu, choose Database > Databases.

8. In the Databases window, drag the desired database table onto the open form or
panel on top of the scroll pane.

9. When you want to create an editable form, select Add Edit Forms from the popup
list.

For more information, see Section 2.11, "How to Create ADF Swing Edit Forms
from the Data Controls Panel."

10. Alternatively, add a specific component to the empty form by choosing Add
Child.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

After you lay out the data panel or form, you can improve the performance of your
ADF Swing application by defining the fetchAttributeProperties() method in your
form. This will ensure your form performs in batch mode to fetch attribute values. For
more information, see Section 10.4, "How to Limit Fetching of ADF Business
Components Attributes in ADF Swing."

How to Create ADF Swing Forms from the Databases Window

2-14 Developing Swing Applications for Oracle Application Development Framework

3

Modifying ADF Swing Forms and Panels 3-1

3 Modifying ADF Swing Forms and Panels

This chapter describes how to customize an ADF Swing application using the Java
visual editor. You use the Data Controls panel to insert databound UI components into
an ADF Swing-prepared form or panel.

This chapter includes the following sections:

■ Section 3.1, "About Modifying ADF Swing Forms and Panels"

■ Section 3.2, "How to Assemble ADF Swing Forms Using the Java Visual Editor"

■ Section 3.3, "How to Insert UI Components into ADF Swing Panels"

■ Section 3.4, "How to Change Client Data Model References"

■ Section 3.5, "How to Open an ADF Swing Form with an Action Handler"

■ Section 3.6, "How to Drop Data Panels Onto an Empty ADF Swing Form"

■ Section 3.7, "How to Lay Out Data Panels in an Empty Swing Form"

■ Section 3.8, "Binding a Method with Parameters in an ADF Swing Form"

3.1 About Modifying ADF Swing Forms and Panels
After you generate ADF Swing forms and panels using the ADF Swing wizards, you
may want to customize the generated application files. JDeveloper helps you
customize the application using the visual tools. For example, you can use the Data
Controls panel to insert already databound UI components into an ADF
Swing-prepared form or panel.

3.1.1 Value Bindings for the Entire Collection or Data Object
The Data Controls panel provides UI components that you can use to bind an entire
data collection (which consists of data objects that comprise a row set), as shown in the
Table 3–1.

Table 3–1 UI Components That Can Be Bound to an Entire Data Collection

UI Component Drag and Drop As ADF Binding Type

Table Table binding

About Modifying ADF Swing Forms and Panels

3-2 Developing Swing Applications for Oracle Application Development Framework

3.1.2 Value Bindings for Individual Data Object Attribute Values
The Data Controls panel provides UI components that you can use to bind a single
data object attribute, as shown in Table 3–2.

Combo Box List binding in
Navigation mode

List (inside a ScrollPane) List binding in
Navigation mode

Spinner List binding in
Navigation mode

Radio Button Group List binding in
Navigation mode

NavigationBar Iterator binding

Tree Tree binding

Graph Graph binding

Slider Scroll binding

ScrollBar Scroll binding

Table 3–2 UI Components That Can Be Bound to a Single Data Object Attribute

UI Component Drag and Drop As ADF Binding Type

TextField Attribute binding

Edit Pane Attribute binding

JULabel Attribute binding

Table 3–1 (Cont.) UI Components That Can Be Bound to an Entire Data Collection

UI Component Drag and Drop As ADF Binding Type

How to Assemble ADF Swing Forms Using the Java Visual Editor

Modifying ADF Swing Forms and Panels 3-3

3.2 How to Assemble ADF Swing Forms Using the Java Visual Editor
The Create ADF Swing Empty Form dialog lets you create an empty form that you can
use to assemble an ADF Swing form without the need to write additional Java code.
The main() defined in the ADF Swing empty form contains ADF Swing code, known
as bootstrap code, that:

Label For (for ADF
Business Components to
display attribute's label
control hint)

Attribute binding

Password Field Attribute binding

Text Area Attribute binding

Text Pane Attribute binding

Button LOV LOV binding

Check Box Boolean binding

Formatted Edit Field Formatted Text binding

Combo Box List binding in
Enumeration mode

List List binding in
Enumeration mode

Spinner List binding in
Enumeration mode

Radio Button Group List binding in
Enumeration mode

Progress Bar Bounded Range binding

Scroll Bar Bounded Range binding

Slider Bounded Range binding

Table 3–2 (Cont.) UI Components That Can Be Bound to a Single Data Object Attribute

UI Component Drag and Drop As ADF Binding Type

How to Insert UI Components into ADF Swing Panels

3-4 Developing Swing Applications for Oracle Application Development Framework

■ Establishes a connection to a business service instance, such as an ADF Business
Components application module, that provides the data model for the form.

■ Creates an instance of a panel binding from the data model to provide data access
to the databound Swing components.

The bootstrap code generated by the wizard permits the ADF Swing empty form to
share its panel binding with ADF Swing data panels that you add. You can use the
Java visual editor to add the ADF Swing data panels to assemble the final databound
ADF Swing form.

To create a databound ADF Swing form entirely within the Java visual editor:
1. Create an empty form using the Create ADF Swing Empty Form dialog. This adds

an ADF Swing frame to your user interface project that can share a panel binding.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

2. Drop an ADF Swing data panel onto the ADF Swing empty form.

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

3.3 How to Insert UI Components into ADF Swing Panels
Use the Data Controls panel to insert databound controls into an ADF Swing panel.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the business service as an ADF data control for you.

To insert a databound UI component into the panel in the Java visual editor:
1. Create an empty ADF Swing form or panel using the wizards.

For more information, see Section 2.1.1, "ADF Swing Design Time Wizards."

2. Open the form in the Java visual editor and click the Design tab.

3. In the Applications window, click the expand icon in the Data Controls header.

Note: The Create ADF Swing Form wizard helps you generate
databound ADF Swing forms to browse and edit ADF Business
Components view objects that you select during the process of using
the wizard. If you need to create an ADF Swing form of your own
design, start with an empty form that is initially databound.

Note: The Data Controls panel may appear empty when you first
open it. Compile the data model project to populate the panel with
data objects.

How to Change Client Data Model References

Modifying ADF Swing Forms and Panels 3-5

4. In the Data Controls panel, drag the data collection, attribute, or action that you
want to bind to a UI component into the open document.

5. From the Add Child popup list, select the UI component that you want to add to
the open document.

The new UI component appears in the document you are editing.

After you lay out the data panel or form, you may improve the performance of your
ADF Swing application by defining the fetchAttributeProperties() method in your
form. This ensures your form performs in batch mode to fetch attribute values.

3.4 How to Change Client Data Model References
You do not need to edit your application code to change the data model definition it
will use to connect to your business services data source. The definition is contained
entirely in the metadata for the user interface project in two files: DataBindings.cpx
and PageDef.xml.

You might want to do this because you had been using a local configuration to test
your application in JDeveloper and you now want to change to a data model
definition that uses a remote deployment configuration. You could also decide to use
an entirely different data model defined in a different business service project. Again,
no code changes are required to accomplish this task.

To reference the new client data model definition in the ADF Swing metadata:
1. Add a new client data model definition to the DataBindings.cpx file in your user

interface project and remember the name you chose (for example,
remotedatamodel).

For more information, see Section 2.6, "How to Create a Client Data Model
Definition."

2. Optionally, you can open the DataBindings.cpx file in the XML editor and edit the
attributes of the BC4JDataControl definition:

■ Choose Window > Structure to display the Structure window for the file.

■ In the Structure window, select the data control node you want to modify.

■ Choose Window > Properties to display the data control definition and edit
its attributes.

3. Open the PageDef.xml file in the XML editor, click the Overview tab and select
any binding that references the old data control.

4. In the Properties window, expand the Common section and select the Data Source
for the desired collection from the dropdown list. You can then select the desired
Attribute for the selected data source from the dropdown list.

Repeat for each binding in the binding definition.

Note: If you change your data model to use an ADF Business
Components application module from a package in a different project
and the new application module is defined as Session Bean (BMT),
then you must modify the <ejb-ref> entry in the web.xml file, as well
as update the.cpx file.

How to Open an ADF Swing Form with an Action Handler

3-6 Developing Swing Applications for Oracle Application Development Framework

3.5 How to Open an ADF Swing Form with an Action Handler
You can use the ADF Swing wizards to create ADF Swing forms with various
databound controls. Later, when you want your ADF Swing forms to run from a single
main window, you can create an ADF Swing frame that contains:

■ The bootstrap code to create the business service client data model connection

■ An action event handler to open the ADF Swing form and pass it a panel binding

When the user performs an action in the UI, such as clicking a button, an event is
issued. Events are objects that describe what happened and are only reported to
registered listeners. JDeveloper generates all of this code for you. The following
procedure describes the code you must supply to open an ADF Swing form when the
button is clicked.

To define an action to open an ADF Swing form:
1. Create a empty ADF Swing frame that creates a connection to the business service

for the form.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

2. Open the empty ADF Swing frame in the Java visual editor and delete the
Navigation Bar and Status Bar generated by the Create ADF Swing Empty Form
dialog.

3. Add a JButton control from the Components window to the data panel of the
empty form.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Select the button in the Java visual editor.

5. In the Properties window, expand the Events section and in the actionPerformed
field enter the name of the function you want executed whenever the button is
clicked and press the Enter key.

JDeveloper takes you to a stub of your function in the source editor.

6. Add code to the event stub to create the ADF Swing form you want to display and
set its visible property to true:

FrameMyNewView frame = new
FrameMyNewView(getPanelBinding());frame.setVisible(true);

The getPanelBinding() method allows you to share the panel binding from main
ADF Swing frame. This results in the iterator bindings to be shared between ADF
Swing forms. The new frame will automatically be synchronized with the
navigation bar and status bar in the first detail of the master-detail frames.

Or

Add code to create the ADF Swing form and set a new panel binding when you
don't want the form to be synchronized with the frame that opened it:

FrameMyNewView(new
JUPanelBinding(getPanelBinding().getApplicationName(),null));frame.setV
isible(true);

Binding a Method with Parameters in an ADF Swing Form

Modifying ADF Swing Forms and Panels 3-7

3.6 How to Drop Data Panels Onto an Empty ADF Swing Form
You can assemble an ADF Swing form using existing data panels from your current
project or you can insert a new empty data panel which you can lay out with specific
controls.

To add a data panel to an ADF Swing Empty Form:
1. Open the empty form in Java visual editor and click the Design tab.

2. Choose Window > Components to display the list of Swing controls.

3. In the Components window, select ADF Swing Regions to view the existing data
panels in your project.

4. Drag the ADF Swing panel you want to reuse onto the empty panel.

5. In the Select Controls dialog, select how you want the form to handle data panel.

6. Add controls to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

The ADF Swing panel that you add to an ADF Swing form receives its databinding
from the ADF binding container. When setBindingContext() is called on the form,
the binding container for the form is created together with the panel's binding
container.

3.7 How to Lay Out Data Panels in an Empty Swing Form
You can lay out any Swing panel using the FormLayout layout manager provided with
the JGoodies Form framework. The FormLayout gives you excellent grid-based control
over the placement and alignment of controls. Unlike other layouts, you can fill
components across grid cells.

To set FormLayout on an ADF data panel:
1. Open the form in the Java visual editor and click the Design tab.

2. Choose Window > Properties.

3. In the Property window, expand the Visual section and select FormLayout from
the layout dropdown list.

For more information, see "Adding Components" in Developing Applications with
Oracle JDeveloper.

4. Customize the panel layout.

For more information, see "Working with Layout Managers" in Developing
Applications with Oracle JDeveloper.

3.8 Binding a Method with Parameters in an ADF Swing Form
You can use the Data Controls panel to insert a button that will allow the user to
initiate an action defined by a method of your business service. If your business
service is ADF Business Components, many standard actions are predefined (such as
Create, Delete, Next, Previous, Commit, and Rollback).

Binding a Method with Parameters in an ADF Swing Form

3-8 Developing Swing Applications for Oracle Application Development Framework

3.8.1 How to Populate the Data Controls Panel with JavaBean Methods
When your business service is a JavaBean class, you must define a public method and
register the bean as an ADF data control. The method that you create may define
arguments whose values can be supplied by the ADF Swing form user.

Alternatively, you can supply the parameter values of the method in the Properties
window.

To populate the Data Controls panel with your JavaBean methods:
1. Define the JavaBean that you want your Oracle ADF application to access.

The business services appear in your data model project

2. Register the business services in your data model project with the ADF data
controls.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the data control for you.

3.8.2 How to Create an ADF Swing Form with Method Bindings
When you can create an ADF Swing form, you have the option of displaying a method
binding as a Button or Method panel. The Method panel displays a component for
each parameter and a component that display each method result.

To create an ADF Swing Form with method bindings:
1. Open the data panel in the Java visual editor.

2. In the Data Controls panel, expand the Operations folder for the data collection or
data control that displays the desired custom method.

The Data Controls panel hierarchy represents operations (such as Create and
Delete) that apply to a specific data collection in the Operations folder below the
data collection. When supported by the ADF data control for your business
service, you can also select operations (such as Commit and Rollback) that apply
to all data collections in the current document's binding context in the Operations
folder at the top branch of the hierarchy.

3. Drag the desired operation into the open document.

A method with no parameters or result is automatically added as a JButton
component to initiate the action. If the method has parameters or a return value,
JDeveloper displays a popup that lets you select how you want to add the method.
Select one of these options depending on how you want the form to display the
method binding in your application.

■ Select Button when you want to add a button that will initiate the action. You
are responsible for passing parameters to the method.

■ Select Method when you want to add a method panel that will display a
component for each parameter and a component to display a method result, as
needed. In the Select Controls for Parameters and Results dialog that displays,
select the components the panel will display.

JDeveloper adds code to the class file to bind the JButton or JPanel to the
operation.

4. If you drop the method as a Button, and you want to supply parameter values
yourself, you can add a text field to the form and add a focusListener to the text
field and modify its focusLost() method in the data panel's.java file, using the

Binding a Method with Parameters in an ADF Swing Form

Modifying ADF Swing Forms and Panels 3-9

code in Example 3–1 to pass the parameter to the method:

Example 3–1 Code for Passing a Parameter to Method

private void jTextField1_focusLost(FocusEvent e) {
 JUCtrlActionBinding action =
 (JUCtrlActionBinding)panelBinding.getCtrlBinding(jButton1);
 ArrayList arg1 = new ArrayList();
 arg1.add(jTextField1.getText());
 action.setParams(arg1);
}

Repeat this step to create an event handler for each text field that supplies a
method parameter.

3.8.3 What You May Need to Know About Displaying a Method Result Using a JTable
Component

When you drop a custom method with a return value from the Data Controls panel,
JDeveloper prompts you for the component to bind to the method result. Note that if
you choose to display a result that is a collection in a JTable, your application may fail
at runtime with a NullPointerException when the Swing JTable component attempts
to prepare the renderer. This exception is due to a Swing JTable limitation that
prevents it from setting up renderers for the Integer type (Swing supports Numbers,
Doubles, Floats, Dates, and Booleans). You will need to subclass the JTable and set a
default renderer for types that Swing does not natively support.

For example, to install a custom renderer for Integer, you can use the code shown in
Example 3–2.

Example 3–2 Installing a Custom Renderer for Integer

private JTable jTable1 = new JTable() {
 protected void createDefaultRenderers() {
 super.createDefaultRenderers();
 setDefaultRenderer(Integer.TYPE,
 super.getDefaultRenderer(java.lang.Number.class));
 }
}

Binding a Method with Parameters in an ADF Swing Form

3-10 Developing Swing Applications for Oracle Application Development Framework

4

Working with Data Binding 4-1

4Working with Data Binding

This chapter describes how to create Swing containers and components that are bound
to data objects from ADF Business Components. It describes the easiest way to create
databound containers using the ADF Swing wizards.

This chapter contains the following sections:

■ Section 4.1, "About Working With Data Binding"

■ Section 4.2, "Navigating the UI Using ADF Swing Controls"

■ Section 4.3, "What You May Need to Know About the ADF Swing Data Context"

■ Section 4.4, "What Happens at Runtime: How Panel Bindings Function"

■ Section 4.5, "What You May Need to Know About the ADF Swing Bootstrap Code"

■ Section 4.6, "How to Display Object Attributes in a Databound Text Field"

■ Section 4.7, "How to Create a New Row in a Databound Table or Tree Control"

■ Section 4.8, "How to Sort Columns in a Databound Table"

■ Section 4.9, "What Happens At Runtime: How Control Bindings Function"

4.1 About Working With Data Binding
Data binding in ADF Swing is the ability to create Swing containers and components
that are bound to data in back-end business services. To enable data binding, ADF
Swing provides a small API that works with the Oracle ADF model layer. The API is
exposed in the application source code through a combination of ADF Swing
bootstrap code:

■ Call loadCpx() -- load the application metadata (specified in the
DataBindings.cpx file), which specifies a connection to the business service
implementation instance (for example, an ADF Business Components application
module instance) using the ADF data control for the instance, as well as the ADF
binding context.

■ Call setBindingContext() -- make the ADF binding context available to the frame
or panel.

■ Call createPanelBinding() -- to create an object that will access the business
service's contained data collections through Swing component models.

■ Call bindUIControl() on the panel binding to set the ADF model for the
individual components of the ADF Swing form or panel.

To work with a data binding in your Swing application, each container (a frame or
panel) must either create a panel binding object or get one from the source from which

Navigating the UI Using ADF Swing Controls

4-2 Developing Swing Applications for Oracle Application Development Framework

it originated. The frame that creates the first panel binding also contains the ADF
Swing bootstrap code, where the connection to the business services is created.
Subsequent containers that your application creates either chain from the original
panel binding or they create their panel binding in order to display unrelated data.
How you want to partition the data views of your application determines whether a
container sets a new panel binding or whether it gets an existing one:

■ If you want to create independent branches of the business services views, then
your application should open a frame that sets a new panel binding.

■ If you want to maintain the same view along a continuous branch of your
application (say a master and detail branch for example), then secondary
containers all share the panel binding object created by the initial frame.

4.1.1 ADF Swing Containers
The easiest way to create databound containers is to use the ADF Swing wizards (see
the ADF Swing folder in the New Gallery). Specifically, if you use these two ADF
Swing wizards, then the source code will contain the bootstrap code and constructors
needed to create the panel binding:

■ Use the Create ADF Swing Empty Form dialog to generate an empty frame that
creates an ADF Swing panel binding with a connection to the business service
used by your application, for example ADF Business Components.

■ Use the Create ADF Swing Empty Panel dialog to generate an empty panel with
constructors to create a new panel binding or to share one from its parent frame.

An additional benefit to using these two wizards is their support for easy
drag-and-drop UI design within JDeveloper. Because they are generated with the
bootstrap code for a specific data control object (which contains the business service's
collections, structured objects, attributes, and methods), all of the Swing components
that you insert from the Data Controls panel in JDeveloper will have access to any
business service that the data control object contains.

4.1.2 Standard Java Containers
If you start with a standard frame or panel (one generated without using the ADF
Swing wizards) that you want to enable an ADF Swing data binding for, you can add
the appropriate ADF Swing bootstrap code to the main frame and then handle the
panel binding in your secondary windows this way:

■ If you want to share the panel binding with the parent frame:

BusinessCompViewName(getPanelBinding()); frame.setVisible(true);

■ If you want the new frame to define its own panel binding:

BusinessCompViewName(new
JUPanelBinding(getPanelBinding().getApplicationName(),null));frame.setV
isible(true);

The first creates the frame object and set the panel binding. The second call makes the
frame visible.

4.2 Navigating the UI Using ADF Swing Controls
When you create a default master-detail form using ADF Swing, it will create and
place a navigation bar on both the master and the detail panel, which permits users to

Navigating the UI Using ADF Swing Controls

Working with Data Binding 4-3

scroll through the data in each panel independently. Or, you can create a single
navigation bar which responds to the panel which has current focus.

4.2.1 How to Navigate Using the Navigation Bar
In the ADF Swing form, you need to move the code for the navigation bar from the
individual panels to the layout panel where the navigation event will affect all the
child panels. For example, you can move the code from the department and employees
data panel to the layout panel.

The code that needs to be moved will be similar to Example 4–1.

Example 4–1 Navigation Bar Code

// The declaration of the navigation bar
private JUNavigationBar navBar = new JUNavigationBar();

// The code that binds the navigation bar to the individual panel.
navBar.setModel(JUNavigationBar.getModelInstance(getPanelBinding(),
"DepartmentsView", null, "DepartmentsViewIter"));

//Add the navigation bar to the panel
add(navBar, BorderLayout.NORTH);

Once you have moved the navigation bar code you need to add the control binding to
the layout panel which contains both the master and the detail panels. Example 4–2
shows the code that you will add to the layout panel to bind the model for the
navigation bar.

Example 4–2 Binding Model for Navigation Bar to Panel

//The declaration of the navigation bar
private JUNavigationBar navBar = new JUNavigationBar();

//Bind the model for the navigation bar to the panel
navBar.setModel(JUNavigationBar.getModelInstance(getPanelBinding(),navBar));

//Add the navigation bar to the panel
add(navBar, BorderLayout.SOUTH);
add(masterScroller, BorderLayout.NORTH);
add(detailViewPanel, BorderLayout.CENTER);

4.2.2 How to Navigate Using Tree Navigation
When you add a tree control to your panel you create node-populating rules using the
property editor for the ADF Swing node model. The property editor does not allow
you to handle node selection. If you want to handle the node-selection event in order
to populate controls in a panel, you can use JUTreeDefaultMouseListener to
synchronize master and detail panels on the selected node. Example 4–3 shows how to
add the listener to the tree control.

Example 4–3 Adding Listener to Tree Control

myTreeControl.addMouseListener(new JUTreeDefaultMouseListener
(panelBindingVar, new String [][] {
{ "NodeType1" , "DepartmentViewIter" }, "NodeType2" , "EmployeeViewIter" } }

)
);

What You May Need to Know About the ADF Swing Data Context

4-4 Developing Swing Applications for Oracle Application Development Framework

4.3 What You May Need to Know About the ADF Swing Data Context
The ADF SwingPanel interface implemented by ADF SwingFrame or JPanel permits
your ADF Swing application to:

■ Maintain a consistent data context between the databound panels (also known as
chaining between data panels)

■ Access data through databound Swing controls

During design time, each data browsing panel that you add to the ADF Swing
application gets its context for marshaling interactions between the UI controls and the
business service’s row set iterator from the panel binding object created in the frame or
containing panel (such as the master-detail layout panel). The capability in ADF Swing
to chain data browsing panels is provided without the need to write additional code.
For example, the data browsing panels generated by the wizard, PanelDeptView and
PanelEmpView1, share the same data context through an instance of a panel binding
(JUPanelBinding) when each JPanel implements the setPanelBinding() and
getPanelBinding() methods of the ADF SwingPanel interface.

Once you have a frame or panel that creates this panel binding, ADF Swing permits
you to assemble the application by adding new data browsing panels that either share
the existing panel binding object or create a new one.

Then you can use the Data Controls panel in JDeveloper to add databound controls
one by one to the data panel. At the level of the Swing component, this sets the data
binding by specifying an ADF Swing control model on the control's document or model
property. At runtime, each control in the data panel becomes databound through the
panel binding object as an argument to the control's setModel() or setDocument()
method.

4.4 What Happens at Runtime: How Panel Bindings Function
To understand how the panel binding is created and used by the databound panels,
consider what happens when you run the application, starting with the ADF Swing
frame, and the following ADF Swing code is executed:

1. The main() method bootstraps the application. It starts a binding context and
loads the ADF data control, based on entries in the DataBindings.cpx file. Then it
passes the binding context with initialized ADF model objects to the panel binding
to create the ADF data bindings.

For more information, see Section 4.5, "What You May Need to Know About the
ADF Swing Bootstrap Code."

2. The frame is initialized (FrameDeptViewEmpView1, in the example above) through a
constructor that takes an application object. Initialization of the frame results in a
panel binding object (JUPanelBinding), based on an ADF model definition that
may have components that are bound to data from more than one data control.
The creation of the panel binding is an important part of the ADF Swing
functionality, which enables data binding for Swing components and chaining of
data panels.

3. The frame or applet class initializes a layout panel(MDPanelDeptViewEmpView1, in
the example above) and sets the panel binding on the new layout panel, using the
setBindingContext() method.

For more information, see Section 2.3, "What Happens When You Create an ADF
Swing Form."

What You May Need to Know About the ADF Swing Bootstrap Code

Working with Data Binding 4-5

4. In the layout panel's jbInit() method, the data browsing (children) panels are
created. For this, ADF Swing uses the shared binding context for binding the child
data panels (PanelDeptView and PanelEmpView1, in the example above).

5. A control-to-attribute data binding occurs using the control's specified ADF Swing
model. (This binding information is stored in the binding container XML
metadata.)

6. The control binding handles events to populate and update data for the UI control

For more information, see Section 4.9, "What Happens At Runtime: How Control
Bindings Function."

4.5 What You May Need to Know About the ADF Swing Bootstrap Code
When you select the frame class in the navigator and choose Run, the main() method
“bootstraps” the application. It starts a binding context and loads data controls, based
on entries in the DataBindings.cpx file. Then it passes the binding context with
initialized data controls to the panel binding to create the ADF data bindings.

Example 4–4 shows the bootstrap code created by the Create ADF Swing Form wizard,
using selected columns from the Employees and Departments tables from the HR
schema.

Example 4–4 Bootstrap Code Created by Create Form Wizard

// bootstrap application
JUMetaObjectManager.setBaseErrorHandler(new JUErrorHandlerDlg());

// Lookup the *.cpx file and create all data controls listed in this file.
JUMetaObjectManager mgr = JUMetaObjectManager.getJUMom();

// Use the definition classes provided by ADF Swing. Change only if you do not
want to use custom DefClasses.
mgr.setJClientDefFactory(null);

// Create a new binding context that extends java.util.Hashtable.
BindingContext ctx = new BindingContext();

// Get user connection information if available. If not, display logon dialog.
ctx.put(DataControlFactory.APP_PARAM_ENV_INFO, new JUEnvInfoProvider());

// Set locale to the default locale of the JVM.
ctx.setLocaleContext(new DefLocaleContext(null));

// Load data binding container data binding file.
HashMap map = new HashMap(4); map.put(DataControlFactory.APP_PARAMS_BINDING_
CONTEXT, ctx);
mgr.loadCpx("mypackage.DataBindings.cpx", map);

// Get handle to the ADF Business Components application module. The code lines
// below are added only when using the ADF Swing Form wizard. Declaratively
creating
// the frame, starting with an empty form wizard does not add the following lines.
DCDataControl app = (DCDataControl)ctx.get("model_AppModuleDataControl");
app.setClientApp(DCDataControl.JCLIENT);

// Despite the following line of code, attribute sets and fetches are normally
// performed in one batch operation. This requires only one network round
// trip. Attributes that aren't needed are not loaded to the client. The code

How to Display Object Attributes in a Databound Text Field

4-6 Developing Swing Applications for Oracle Application Development Framework

// line below is added only when using the ADF Swing Form wizard. Declaratively
creating
// the frame, starting with an empty form wizard does not add the following lines.
app.getApplicationModule().fetchAttributeProperties(new String[]
{"DepartmentsView1", "EmployeesView3"}, new String[][] {{"DepartmentId",
"DepartmentName" }, {"EmployeeId", "FirstName", "LastName" "DepartmentId" }},
null);

// Initialize application root class.
FormDepartmentsView1EmployeesView3 frame = new
FormDepartmentsView1EmployeesView3();

// Set binding context to the frame.
frame.setBindingContext(ctx);
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();

The frame is initialized by its constructor, which does not expect any arguments by
default. The binding context of the application is passed to the setBindingContext()
method of the frame.

Initialization of the frame results in a panel binding object (JUPanelBinding) based on
an Oracle ADF model definition that may have components that are bound to data
from more than one data control. The creation of the panel binding is an important
part of the ADF Swing functionality, which enables data binding for Swing
components and chaining of data panels.

After you lay out the data panel or form, you can improve the performance of your
ADF Swing application by defining the fetchAttributeProperties() method in your
form. This will ensure that your form performs in batch mode to fetch attribute values.
For more information, see Section 10.4, "How to Limit Fetching of ADF Business
Components Attributes in ADF Swing."

4.6 How to Display Object Attributes in a Databound Text Field
When using databound text fields to display the attribute values of an object, such as
those defined by an Address object, the fields will not display the attribute values
(they will display instead some static text).

If you bind a text field to an object attribute, you can ensure the value is correctly
displayed in the ADF Swing panel by forcing the query to reexecute on the iterator
binding of the bound object.

To force executeQuery() on the object's iterator binding, add this method call after
jbInit() is done in the panel, where Street is replaced by the name of your object
attribute binding:

panelBinding.findControlBinding("Street").getIteratorBinding().
executeQuery();

It is only necessary to call executeQuery() on one of the object domain attributes (like
Street) to force the iterator binding to refetch all attribute values of the same object.

4.7 How to Create a New Row in a Databound Table or Tree Control
If your business services supports create operation on the data collection, you can use
the operation in an ADF Swing panel to display a new row in your databound table or

How to Sort Columns in a Databound Table

Working with Data Binding 4-7

tree control. The new row will appear when the user clicks a Create button that has
been bound to a create-and-insert action binding. Because the operation creates and
inserts the row in a single step, this operation is ideal for in-place editing of the
component by the user.

To create an ADF Swing bound control that uses a create operation to insert a
row:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, select the collection node that contains the attributes
you want your UI component to display. This is the collection to which the control
will add the row. In the dropdown list, select the desired UI component to display
the new row.

3. Drag the collection into the open ADF Swing panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. To insert the operation to create the row, select Create in the operations folder for
the previously selected collection and select Button from the dropdown list.

5. Insert the button into the open ADF Swing panel.

4.8 How to Sort Columns in a Databound Table
When you use the ADF iterator binding to create a databound Swing table, you can
specify the sort criteria (ascending or descending) in which the data of the table
columns display. You can use one or more columns as the sort criteria, and specify the
sort priority of each of those columns. For example, to sort an employee table you
could choose last name as the first sort criteria and first name as the second sort
criteria. In this example, the second sort criteria becomes useful when two or more

Note: Although the Data Controls panel displays this operation as
Create, the action binding editor will be set to CreateInsert. This
behavior differs in the case of web applications.

Note: The data collection you select must not be a detail collection,
represented in the data control hierarchy as a child of another
collection node. This will ensure that the iterator binding does not
perform navigation.

Tip: Optionally, your panel can display navigation buttons to the
allow the user to browse the collection. For more information, see
Section 7.8, "How to Use the JUNavigationBar Control."

Note: When you drag Create from the Data Controls panel, the
button's action binding is set to CreateInsert. This behavior differs in
the case of web applications.

What Happens At Runtime: How Control Bindings Function

4-8 Developing Swing Applications for Oracle Application Development Framework

employees have the same last name thus requiring sorting, in the specified order, by
first names.

When sorting the columns in a databound table, you use the iterator binding for the
table.

To sort the columns in a table bound to an ADF iterator binding:
1. In the Java visual editor, right-click the form or panel that contains the table you

want to sort and choose Go to Page Definition.

2. In the overview for the page definition editor, double-click the iterator binding in
the Executables list.

3. In the Edit Iterator Binding dialog, click the Sort Criteria tab.

4. Select an attribute and choose whether the sort should be performed in ascending
or descending order.

If the attribute is not a sort criteria for the table, leave the No Sort selection
assigned.

5. Use the up and down arrow buttons to change the sort priority of an attribute.

Moving the sort criteria attribute higher in the list, yields a higher sort priority,
which means the attribute will be sorted before the sort criteria attributes that
appear lower in the list.

4.9 What Happens At Runtime: How Control Bindings Function
After data browsing panels are initialized, the layout panel calls executeIfNeeded()
on the panel binding to execute the query on the ADF Business Components data
source.

4.9.1 Populating Controls with Data
The executeIfNeeded() method determines whether the query has executed on the
view object. If not, the method calls executeQuery() on it. This executed query brings
data from the database into the cache and causes the ADF Business Components row
set listener events to fire. The first among these is the
RowSetListener.rangeRefreshed event. This event is captured by the iterator binding
(because it implements RowSetListener and has registered itself as a listener). It
retrieves the rows of the range and calls updateValuesFromRows() on the control
binding. The control binding takes the data out from the rows and assigns them to the
controls using the Swing API. As a result, the Swing API updates the panel UI with the
data.

4.9.2 Updating Data through Controls
The user’s interaction with an ADF Swing-bound control may cause ADF Business
Components to update the data. For example, in the case of the text field
(textFieldDname), if the user edits the text field’s content and leaves the control
(generating focusLost event), ADF Swing is notified of the event. As a result, ADF
Swing will retrieve the updated data from the control and call setAttribute() on the
row.

5

Customizing ADF Bindings 5-1

5Customizing ADF Bindings

This chapter describes how to use ADF Model binding editors to customize control
bindings in ADF Swing applications. The control is bound to the data model using
ADF bindings. JDeveloper creates ADF bindings when you insert a control from the
Data Controls panel.

This chapter includes the following sections:

■ Section 5.1, "About Customizing ADF Bindings"

■ Section 5.2, "How to Customize ADF Bindings for ADF Swing Panels"

■ Section 5.3, "How to Customize an ADF Action Binding"

■ Section 5.4, "How to Customize an ADF Attribute Binding"

■ Section 5.5, "How to Customize an ADF Array Combobox Binding"

■ Section 5.6, "How to Customize an ADF Boolean Binding"

■ Section 5.7, "How to Customize an ADF Bounded Range Binding"

■ Section 5.8, "How to Customize an ADF Formatted Text Field Binding"

■ Section 5.9, "How to Customize an ADF Iterator Binding"

■ Section 5.10, "How to Customize an ADF List Binding"

■ Section 5.11, "How to Customize an ADF List Binding in Enumeration Mode"

■ Section 5.12, "How to Customize an ADF List Binding in LOV Mode"

■ Section 5.13, "How to Customize an ADF LOV Button Binding"

■ Section 5.14, "What You May Need to Know About the LOV Dialog"

■ Section 5.15, "How to Customize an ADF Scroll Binding"

■ Section 5.16, "How to Customize an ADF Table Binding"

■ Section 5.17, "How to Customize an ADF Tree Binding"

5.1 About Customizing ADF Bindings
When you insert a control from the Data Controls panel, the control is bound to the
data model using ADF bindings. You can then edit the bindings using the binding
editors.

ADF Swing provides model objects for Swing controls that are responsible for
marshaling interaction between the Swing controls and the ADF Business Components
view object's row set iterator. The ADF Swing implementation of Swing models are
called control bindings.

How to Customize ADF Bindings for ADF Swing Panels

5-2 Developing Swing Applications for Oracle Application Development Framework

The UI components in an ADF Swing application bind to ADF Business Components
view objects. For example, an ADF Swing databound panel might have a text field
(JTextField) for the First name and Last name that allows the user to view and
modify business component attribute values.

The type of control binding used for a given Swing control depends on the actions
performed by the control. In some case, controls work with multiple control bindings
that define different interactions. Table 5–1 shows the bindings that ADF Swing
defines for the various Swing controls.

5.2 How to Customize ADF Bindings for ADF Swing Panels
You can use the control binding editors in JDeveloper to customize the characteristics
of any databound UI component that you create using the Data Controls panel.

Table 5–1 Control Bindings for Controls in ADF Swing

ADF Control Binding Swing Control

Action binding Button

Attribute binding Label For

Password

TextArea

TextField

TextPane

EditPane

Array Combobox binding JUArrayComboBox

Boolean binding Checkbox

Bounded Range binding ProgressBar

ScrollBar

Slider

Formatted Text Field binding Formatted Text Field

Iterator binding Navigation Bar

List binding ComboBox

List

Radio Button Group

Spinner

List binding in LOV Mode Spinner

Button LOV binding Button LOV

Scroll binding ScrollBar

Slider

Table binding Table

Tree Node binding Tree

Graph binding JUSingleTableGraphBinding

JUMasterDetailTableGraphBinding

How to Customize an ADF Action Binding

Customizing ADF Bindings 5-3

To customize a UI component's binding from the Java visual editor:
1. Use the Data Controls panel to insert the UI component into your Java panel.

For more information, see Section 2.11, "How to Create ADF Swing Edit Forms
from the Data Controls Panel."

2. With the UI component displayed in the Java visual editor, right-click the
component and choose Edit Bindings to view the binding editor.

You can also click the Bindings tab in the Java visual editor and double-click the
binding in the Bindings list.

5.3 How to Customize an ADF Action Binding
You can customize an ADF action binding on the Button UI control that you insert
from the Data Controls panel.

An action binding lets users initiate actions on the attributes and collections of the
specific business service. Actions are defined by the business service's class methods
and will appear in the Operations folders displayed in the Data Controls panel.

When you use the Data Controls panel to insert the action as a button, the action
binding editor displays the corresponding selections. You can use the action binding
editor to change the data collection and action. Or, when you want the action to apply
to all data collections in the current document's binding context, you can select a data
control and a corresponding action.

For certain business services, the ADF data control for that business service may
support standard actions. For example, in the case of ADF Business Components,
these standard actions are available:

■ Commit or rollback the changes to all bound data collections in the binding
context of the data control.

■ Move to the first, next, previous, or last row in the data collection's range.

■ Create a row or delete the current row.

■ Reset data from the data collection cache on all rows.

■ Execute the data collection query to get the latest data from the database.

■ Initiate a query on the data collection.

■ Obtain the current row from the data collection.

Note: Modifications to a data binding may create discrepancies
between the data binding and the UI component used to display the
data. For example, if you edit the data binding of a table to display
one less column of attribute values, you must use the Java visual
editor to remove the column from the source.

Note: If the custom method accepts parameters, the actual value for
parameters may be specified through the Properties window. The
action binding editor does not support entering value for the method
arguments.

How to Customize an ADF Action Binding

5-4 Developing Swing Applications for Oracle Application Development Framework

When users initiate the action, the bound data collection is immediately updated. The
UI reflects the change through any control bindings that use the same data collection
as the action binding.

To set an action binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

2. In the Data Controls panel, expand the Operations folder for the data collection or
data control.

3. Drag the desired operation into the open document.

JDeveloper adds code to the class file to bind the component to the operation.

4. Display the action binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the Data Collection list, select the collection or data control on which you want
to perform the action.

Expand the Operations folder under the root data control node when you want to
select operations (such as Commit and Rollback) that apply to all data collections
in the current document's binding context.

6. Select the Operation for the action to perform on the selected data collection.

7. You should leave Iterator empty if you have selected a custom method, such as
Commit or Rollback, which are actions on the ADF data control and do not
require an iterator.

If the Iterator list already displays a named iterator to access the selected data
collection, you may leave the selection unchanged, or if you have selected one of
the predefined actions provided by the business service data collection (for
example, Next, Next Set, Previous, and Previous Set), click New and create the
iterator so it appears in the dropdown list.

8. Click OK to save the binding settings.

9. Open the Properties window to define any method parameter values.

Note: The Data Controls panel hierarchy represents operations (such
as Create and Delete) that apply to a specific data collection in the
Operations folder below the data collection. When supported by the
ADF data control for your business service, you can also select
operations (such as Commit and Rollback) that apply to all data
collections in the current document's binding context in the
Operations folder at the top branch of the hierarchy.

Note: Add other UI controls to your data panel to display the results
of the action on the data collection. Those controls need only set a
control binding on the same data collection as the action binding to
reflect the action in the UI.

How to Customize an ADF Attribute Binding

Customizing ADF Bindings 5-5

You can also create an ADF Swing form that allows the user to supply the
parameters of the method. For more information, see Section 3.8, "Binding a
Method with Parameters in an ADF Swing Form."

JDeveloper adds the setModel() method in the jbInit() method to create the action
binding. Example 5–1 shows the method which references DataControlId to specify
the metadata after inserting a button from the Data Controls panel.

Example 5–1 Method Referencing DataControlId After Inserting Button

myButton.setModel((ButtonModel)panelBinding.bindUIControl("DataControlId",
myButton));

Metadata for the new binding appears in the page definition file (PageDef.xml).

5.4 How to Customize an ADF Attribute Binding
You can set an ADF attribute binding on these basic UI components that you insert
from the Data Controls panel:

■ Password Field - mask the attribute value entered by the user

■ TextArea - display plain text with multiple lines

■ TextField - display plain text in a single line

■ JUImage - display an attribute of type BLOB or OrdMedia

■ JULabel - display the attribute value as a label

■ Label For - display the control hint label defined for ADF Business Components
attributes

You can set an ADF attribute binding on these UI components to display various kinds
of content (besides text):

■ Edit Pane - display various kinds of components that can be edited

■ TextPane - display various kinds of components, that should not be editable

The behavior of the attribute binding depends on the type of control used. Users may
view and, in some cases, edit the value of a single attribute defined by a data
collection. You use the attribute binding editor to select the data collection and
attribute.

Notes: The custom method argument definitions, if any, appear
undefined until you use the Properties window to specify the values.

By default when you create an action binding for the same method
more than once, the return location of the method is the same. This
means if you want to create unique action bindings for the same
method, you must edit the ReturnName attribute to supply a unique
name for each binding. Normally, you will leave the location the same
for duplicate usages of the same action binding (where each usage
specifies different parameter values). This permits all bound controls
in the binding context to find the result under the same return name.

How to Customize an ADF Array Combobox Binding

5-6 Developing Swing Applications for Oracle Application Development Framework

To set an attribute binding:
1. Open the data panel in the Java visual editor.

For more information, see to Generating an Empty ADF Swing Panel.

2. In the Data Controls panel, drag the desired attribute to display into the open form
or panel.

Be sure to select an attribute and not a data collection.

3. From the Add Child popup list, select the UI component that you want to add to
the open document.

The new UI component appears in the document you are editing.

4. Display the attribute binding editor for the component.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the attribute binding editor, select the Data Source that contains the attribute
you want to display.

6. In the Attribute list, select a single attribute to display as the value of the control.

7. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

8. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–2 shows the
method created after inserting a text field from the Data Controls panel.

Example 5–2 Set Model Method for Attribute Binding

myTextField.setDocument((Document)panelBinding.bindUIControl("DataControlId",
myTextField));

Metadata for the new binding appears in the binding definition (PageDef.xml).

5.5 How to Customize an ADF Array Combobox Binding
You can set an ADF array combobox binding on the JUArrayComboBox UI control that
you insert from the Data Controls panel.

Note: In an ADF Business Components project, you can make
attribute values updatable by setting a control hint on the attribute. In
that case, users will be able to edit the updatable attribute's values
directly.

Note: Changing the iterator selection in the dropdown list will
remove the previously made attribute selection. Before you change the
iterator selection, take note of the original attribute selection. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selection.

How to Customize an ADF Boolean Binding

Customizing ADF Bindings 5-7

The array combobox binding lets the user view and, in some cases, edit the values
displayed from a list defined by an attribute that specifies an array. You use the array
binding editor to select the data collection and attribute.

To set an array combobox binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the attribute to display into the open form or
panel.

The attribute must be an attribute of a business service data collection that has
been mapped as type oracle.jbo.domain.array in the data model project.

3. From the Add Child popup list, select JUArrayComboBox.

The new UI component appears in the document you are editing.

4. Display the array combobox binding editor for the component.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the array combobox binding editor, select the Base Data Source that contains
the attribute you want to display.

6. In the Display Attribute list, select a single attribute of type array to display the
values in the combobox control.

7. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–3 shows the
method created after inserting the JUArrayComboBox from the Data Controls panel.

Example 5–3 Set Model Method for Array Binding

jUArrayComboBox.setArrayBinding((JUDefaultControlBinding)panelBinding.
bindUIControl("DataControlId", jUArrayComboBox));

Metadata for the new binding appears in the binding definition (PageDef.xml).

5.6 How to Customize an ADF Boolean Binding
You can set an ADF boolean binding on the checkbox UI component that you insert
from the Data Controls panel.

The boolean binding lets users select the component and update an attribute in a data
collection based on the component’s selection state. You use the boolean binding editor
to select the data collection and attribute on which you want the component to
operate, then specify values corresponding to the component’s selection state (for
example, "true" for selected and "false" for unselected). You must know what values
the bound attribute takes in order to supply meaningful values.

Note: In an ADF Business Components project, you can make
attribute values updatable by setting a control hint on the attribute. In
that case, users will be able to edit the updatable attribute's values
directly.

How to Customize an ADF Bounded Range Binding

5-8 Developing Swing Applications for Oracle Application Development Framework

To set a boolean binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the attribute to display into the open form or
panel.

Be sure to select an attribute and not a data collection.

3. From the Add Child popup list, select Check Box.

The new UI component appears in the document you are editing.

4. Display the boolean binding editor for the component.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the Base Data Source list, select the data collection which contains the attribute
you want to update.

6. In the Attribute list, select the attribute to display with the values list.

7. When you want to supply the values from a list binding, select the Server List
Binding Name from the dropdown list.

8. In the Selected State Value field, enter the value the model will use to update the
attribute when the user makes the control appear selected.

9. In the Unselected State Value field, enter the value the model will use to update
the attribute when the user makes the control appear unselected.

10. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–4 shows the
method created after inserting a checkbox from the Data Controls panel.

Example 5–4 Set Model Method for Boolean Binding

myCheckbox.setModel((ButtonModel)panelBinding.bindUIControl("DataControlId",
myCheckbox));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

5.7 How to Customize an ADF Bounded Range Binding
You can set an ADF bounded range binding on these UI controls that you insert from
the Data Controls panel:

■ ProgressBar

■ ScrollBar

■ Slider

The behavior of the bounded range control binding depends on the type of control
used. Users may view and, in some cases, edit the value of a single attribute defined
by a data collection. You use the bounded range binding editor to select the data
collection and attribute, then define the range of permissible values. You must know
what values the bound attribute takes in order to supply a meaningful range.

How to Customize an ADF Bounded Range Binding

Customizing ADF Bindings 5-9

To set a range binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In Data Controls panel, drag the desired attribute to display into the open form or
panel.

Be sure to select an attribute and not a data collection.

3. Add the control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the bounded range binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the bounded range binding editor, select the Base Data Source that contains the
attributes you want to display in the table.

6. In the Attributes list, select a single attribute to display as the value of the control.

7. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

8. In the case of a ProgressBar, Slide, and ScrollBar control, you can specify a
Minimum Display Value and a Maximum Display Value. These correspond to
the start and end values supported by the control.

9. In the case of the Slider and ScrollBar control, you can specify the Extent Value or
interval between tick marks. Each tick mark corresponds to a possible value that
the user could apply to the bound attribute.

Note: In an ADF Business Components project, you can make
attribute values updatable by setting a control hint on the attribute. In
that case, users will be able to edit the updatable attribute's values
directly.

Note: Changing the iterator selection in the dropdown list will
remove the previously made attribute selection. Before you change the
iterator selection, take note of the original attribute selection. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selection.

Note: In the case of the slider and scrollbar, attribute values are
calculated by adding the control's minimum value to the product of
the increment value and index of the selected tick mark. For example,
if the minimum value is 20, the increment value is 10, and the user has
selected the 3rd tick mark in the control, then the attribute value
would be 20 + (10 x 3) = 50.

How to Customize an ADF Formatted Text Field Binding

5-10 Developing Swing Applications for Oracle Application Development Framework

10. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–5 shows the
method created after inserting a slider from the Data Controls panel.

Example 5–5 Set Model Method for Bounded Range Binding

mySlider.setModel((BoundedRangeModel)panelBinding.bindUIControl("DataControlId",
mySlider));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

5.8 How to Customize an ADF Formatted Text Field Binding
You can set an ADF formatted text field binding on the Formatted Edit Field UI
component that you insert from the Data Controls panel.

The formatted text field binding lets the user view and edit the value of a single
attribute defined by a data collection. You use the formatted text field binding editor to
select the data collection and attribute. The editor also lets you select a formatter to
display the bound attribute's value with a specific format mask applied.

To set a formatted text field binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the attribute to display into the open form or
panel.

Be sure to select an attribute and not a data collection.

3. Add the control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the formatted text field binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the formatted text field binding editor, select Attribute in the topmost
dropdown list, and select the Data Source that contains the attribute you want to
display.

6. In the Attribute list, select a single attribute to display as the value of the control.

7. In the topmost dropdown list, select Format and then select the Formatter to use.

8. Click OK to save the binding settings.

Note: In an ADF Business Components project, you can make
attribute values updatable by setting a control hint on the attribute. In
that case, users will be able to edit the updatable attribute's values
directly.

How to Customize an ADF Iterator Binding

Customizing ADF Bindings 5-11

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–6 shows the
method created after inserting a formatted edit field from the Data Controls panel.

Example 5–6 Set Model Method for Formatted Text Field Binding

jFormattedTextField.setDocument((Document)panelBinding.bindUIControl("DataControlI
d", jFormattedTextField));

Metadata for the new binding appears in the binding definition (PageDef.xml).

5.9 How to Customize an ADF Iterator Binding
You can set an ADF iterator binding on the NavigationBar UI control that you insert
from the Data Controls panel.

You use an iterator binding on a NavigationBar control to manage the position of the
current data object on the data collection. When the user clicks on the navigation bar
buttons, the data object position changes and any other indicator control bound to the
same data collection gets updated.

To set an iterator binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the data collection to navigate into the open form
or panel.

3. Add the NavigationBar control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–7 shows the
method created after inserting a navigation bar from the Data Controls panel.

Example 5–7 Set Model Method for Iterator Binding

jUNavigationBar.setModel(JUNavigationBar.createViewBinding(panelBinding,
jUNavigationBar, "SelectedDataCollection", null, "IteratorId"));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

To modify the number of rows the iterator can display:
1. In the Applications window, right-click the data panel that contains the

component for which you want to limit the range size and select Open.

2. In the Java visual editor, click the Bindings tab and then from the Executables list
select iterator corresponding to the navigation bar and click Edit.

In most cases, you can select the control binding in the Bindings list to identify the
corresponding iterator in the Executables list. Navigation bars are an exception
since they do not require a control binding.

3. In the Properties window, expand the Common section and edit the RangeSize
value and press Enter.

You can increase the value from the default value of 10 rows.

How to Customize an ADF List Binding

5-12 Developing Swing Applications for Oracle Application Development Framework

To sort the columns in a table bound to an ADF iterator binding:
1. In the Applications window, right-click the data panel that contains the table you

want to sort and select Open.

2. In the Java visual editor, click the Bindings tab and then from the Executables list
select the iterator for the data collection to which the table is bound and click Edit.

In most cases, you can select the control binding in the Bindings list to identify the
corresponding iterator in the Executables list. Navigation bars are an exception
since they do not require a control binding.

3. In the Edit Iterator Binding dialog, click the Sort Criteria tab and use the arrow
buttons to change the sort order for the columns in the table.

5.10 How to Customize an ADF List Binding
You can set an ADF list binding on the list UI control that you insert from the Data
Controls panel.

A list binding lets users view a list consisting of attribute values from a data collection.
You use the list binding editor to select the data collection and attributes to display.

To set a list binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the data collection to display into the open form
or panel.

3. Add the list control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the list binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In list binding editor, select the Base Data Collection that contains the attributes
you want to display in the list.

6. In the Display Attributes list, select the attributes to display.

You can add as many attributes as you like to the Display Attributes list.

Note: The value -1 and 0 have specific meaning: the value -1 returns
all available objects from the collection, while the value 0 will return
the same number of objects as the collection uses to retrieve from its
data source.

Note: When you use the Data Controls panel to drop a JList control
into an ADF Swing panel or form, the list will initially display all
attributes of the selected collection. To modify the list of display
attributes, you can use the List Binding Editor.

How to Customize an ADF List Binding in Enumeration Mode

Customizing ADF Bindings 5-13

7. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

8. To rearrange the attributes of the list, select an attribute in the Display Attributes
list and click a Move Selection arrow button to reposition the attribute in the list.

The position of the attribute from top to bottom in the list determines the position
of the attributes in the list from top to bottom.

9. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–8 shows the
method created after inserting a list from the Data Control panel.

Example 5–8 Set Model Method for List Binding

myList.setModel((ListModel)panelBinding.bindUIControl("DataControlId", myList));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

5.11 How to Customize an ADF List Binding in Enumeration Mode
You can set an ADF list binding in enumeration mode on these UI controls that you
insert from the Data Controls panel:

■ ComboBox

■ List

■ Radio Button Group

■ Spinner

An enumeration mode binding lets users select a value from a display list to update an
attribute in a data collection. You use the model list binding editor in enumeration
mode to select the data collection and attribute on which you want the control to
operate, then specify a set of values from which the user may select. You must know
what values the bound attribute takes in order to supply meaningful choices.

To set a list binding in enumeration mode:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the desired attribute to display into the open form
or panel.

Be sure to select an attribute and not a data collection.

3. Add the control to the data panel.

Note: Changing the iterator selection in the dropdown list will
remove previously made attribute selections. Before you change the
iterator selection, take note of the original attribute selections. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selections.

How to Customize an ADF List Binding in LOV Mode

5-14 Developing Swing Applications for Oracle Application Development Framework

For more information, see to Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the list binding editor for the control.

For more information, see to Section 5.2, "How to Customize ADF Bindings for
ADF Swing Panels."

5. In the Data Collection list, select the data collection that contains the attribute you
want to update.

6. In the Attribute list, select the attribute to display with the values list.

7. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

8. If the control is a combobox, list, or radio button group, enter the values in Set of
Values in the order you want the control to display them. Press Enter to set the
value and begin typing a new value. Values you supply must be valid for the
attribute.

9. If the control is a spinner, select Range of Values when you want the user to be
able to choose from a range that you define. If you prefer to define a specific list,
select Static Values and enter the values as described for list and combobox above.

10. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–9 shows the
method created after inserting a spinner from the Data Controls panel.

Example 5–9 Set Model Method for Spinner Binding

mySpinner.setModel((SpinnerModel)panelBinding.bindUIControl("DataControlId",
mySpinner));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

5.12 How to Customize an ADF List Binding in LOV Mode
You can set an ADF list binding in LOV (list of value) mode on the Button LOV UI
control that you insert from the Data Controls panel.

The Button LOV provides both the UI to display the selection and the UI (in the form
of a separate window) to make the selection. All other controls require that your add a
separate control to display the target of the user's selection.

A LOV mode binding lets users choose a value from a list that displays the data
collection rows of one or more attributes. When the user makes the selection, the LOV
updates one or more attributes of another data collection based on their selection. You
use the list binding editor in LOV mode to define the source and target data

Note: Changing the iterator selection in the dropdown list will
remove the previously made attribute selection. Before you change the
iterator selection, take note of the original attribute selection. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selection.

How to Customize an ADF List Binding in LOV Mode

Customizing ADF Bindings 5-15

collections, the binding between their attributes, and the attributes to display in the
LOV.

To set a list binding in LOV mode:
1. Open the data panel in the Java visual editor.

For more information, see to Generating an Empty ADF Swing Panel.

2. In the Data Controls panel, drag the attribute to display into the open form or
panel.

Be sure to select an attribute and not a data collection.

3. Add the control to the data panel.

For more information see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the list binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

To define the LOV to display:
1. In the list binding editor, select the Binding Definition tab and select the data

collections you want your LOV to use:

■ Base Data Source defines the collection that you want to use to display your
list of values for selection. This should be a collection that is not constrained
by a master data collection in the data model project.

■ List Data Collection is the collection that contains the attribute you want to
receive the selected value in the ADF Swing panel. This should be the same
data collection that your panel displays.

2. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

3. Click Add to bind at least one attribute between the two data collections.

The bottom area of the list binding editor displays a table with a list of possible
LOV binding attributes between the collection used to display the list of values
and the collection used to receive the attribute selection.

4. Choose the attribute from the LOV Attributes dropdown that you want to use to
supply the value to the field displayed in the ADF Swing form.

Note: Move the Button LOV on the panel in a position near the form
field that you want to receive the LOV selection.

Note: Changing the iterator selection in the dropdown list will
remove previously made attribute selections. Before you change the
iterator selection, take note of the original attribute selections. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selections.

How to Customize an ADF List Binding in LOV Mode

5-16 Developing Swing Applications for Oracle Application Development Framework

5. Choose the attribute from the Target Attributes dropdown that you want to
receive the value from the LOV.

6. Click Add again to bind multiple attributes through the same LOV.

7. Select the LOV Display Attributes tab and select the attributes that you want the
LOV window to display.

You can add as many attributes as you like to the Selected Attributes list,
although you are not required to include the LOV binding attribute (the attribute
that you want to display the selected value).

8. Optionally, select the NULL Value Selection tab and supply a NULL value when
the attribute supports it.

This is the item the user may select when no other value applies

9. Optionally, select the Runtime LOV Dialog Details tab and customize the display
location and size of the LOV dialog.

10. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–10 shows
the method created after inserting a list from the Data Controls panel.

Example 5–10 Set Model Method for List Binding

myList.setModel((ListModel)panelBinding.bindUIControl("DataControlId", myList));

Metadata for the new binding is added to the binding definition file (PageDef.xml).

To insert a control to display the updated LOV target attribute value:
1. In the Data Controls panel, drag the attribute which you previously selected as the

LOV binding's target attribute into the open panel.

2. From the Add Child popup list, select the UI component that you want to insert to
display the updated attribute value.

To modify the number of rows to display in the LOV:
1. In the Applications window, right-click the data panel that contains the LOV

component for which you want to limit the range size and select Open.

2. In the Java visual editor, click the Bindings tab and then from the Executables list
select iterator corresponding to the LOV component binding and click Edit.

In most cases, you can select the control binding in the Bindings list to identify the
corresponding iterator in the Executables list.

3. In the Properties window, expand the Common section and edit the RangeSize
value and press Enter.

You can increase the value from the default value of 10 rows.

Note: The value -1 and 0 have specific meaning: the value -1 returns
all available objects from the collection, while the value 0 will return
the same number of objects as the collection uses to retrieve from its
data source.

How to Customize an ADF LOV Button Binding

Customizing ADF Bindings 5-17

For additional information about working with range size, see Section 10.4, "How to
Limit Fetching of ADF Business Components Attributes in ADF Swing."

5.13 How to Customize an ADF LOV Button Binding
You can set an ADF list binding in LOV (list of value) mode on the Button LOV UI
control that you insert from the Data Controls panel.

The Button LOV provides both the UI to display the selection and the UI (in the form
of a separate window) to make the selection. All other controls require that your add a
separate control to display the target of the user's selection.

A LOV mode binding lets users choose a value from a list that displays the data
collection rows of one or more attributes. When the user makes the selection, the LOV
updates one or more attributes of another data collection based on their selection. You
use the list binding editor in LOV mode to define the source and target data
collections, the binding between their attributes, and the attributes to display in the
LOV.

To set a list binding in LOV mode:
1. Open the data panel in the Java visual editor.

For more information, see to Generating an Empty ADF Swing Panel.

2. In the Data Controls panel, drag the attribute to display into the open form or
panel.

Be sure to select an attribute and not a data collection.

3. Add the control to the data panel.

For more information see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the list binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

To define the LOV to display:
1. In the list binding editor, select the Binding Definition tab and select the data

collections you want your LOV to use:

■ Base Data Source defines the collection that you want to use to display your
list of values for selection. This should be a collection that is not constrained
by a master data collection in the data model project.

■ List Data Collection is the collection that contains the attribute you want to
receive the selected value in the ADF Swing panel. This should be the same
data collection that your panel displays.

2. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

Note: Move the Button LOV on the panel in a position near the form
field that you want to receive the LOV selection.

How to Customize an ADF LOV Button Binding

5-18 Developing Swing Applications for Oracle Application Development Framework

3. Click Add to bind at least one attribute between the two data collections.

The bottom area of the list binding editor displays a table with a list of possible
LOV binding attributes between the collection used to display the list of values
and the collection used to receive the attribute selection.

4. Choose the attribute from the LOV Attributes dropdown that you want to use to
supply the value to the field displayed in the ADF Swing form.

5. Choose the attribute from the Target Attributes dropdown that you want to
receive the value from the LOV.

6. Click Add again to bind multiple attributes through the same LOV.

7. Select the LOV Display Attributes tab and select the attributes that you want the
LOV window to display.

You can add as many attributes as you like to the Selected Attributes list,
although you are not required to include the LOV binding attribute (the attribute
that you want to display the selected value).

8. Optionally, select the NULL Value Selection tab and supply a NULL value when
the attribute supports it.

This is the item the user may select when no other value applies

9. Optionally, select the Runtime LOV Dialog Details tab and customize the display
location and size of the LOV dialog.

10. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–11 shows
the method created after inserting a button LOV from the Data Controls panel.

Example 5–11 Set Model Method for LOV Button Binding

myList.setModel((ButtonModel)panelBinding.bindUIControl("DataControlId",
jButton1));

Metadata for the new binding is added to the binding definition file (PageDef.xml).

To insert a control to display the updated LOV target attribute value:
1. In the Data Controls panel, drag the attribute which you previously selected as the

LOV binding's target attribute into the open panel.

2. From the Add Child popup list, select the UI component that you want to insert to
display the updated attribute value.

To modify the number of rows to display in the LOV:
1. In the Applications window, right-click the data panel that contains the LOV

component for which you want to limit the range size and select Open.

Note: Changing the iterator selection in the dropdown list will
remove previously made attribute selections. Before you change the
iterator selection, take note of the original attribute selections. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selections.

What You May Need to Know About the LOV Dialog

Customizing ADF Bindings 5-19

2. In the Java visual editor, click the Bindings tab and then from the Executables list
select iterator corresponding to the LOV component and click Edit.

In most cases, you can select the control binding in the Bindings list to identify the
corresponding iterator in the Executables list.

3. In the Properties window, expand the Common section and edit the RangeSize
value and press Enter.

You can increase the value from the default value of 10 rows.

For additional information about working with range size, see Section 10.4, "How to
Limit Fetching of ADF Business Components Attributes in ADF Swing."

5.14 What You May Need to Know About the LOV Dialog
The JButton control is unique when you specify an ADF Swing LOV (list of values)
control binding because unlike other Swing controls that support the LOV control
binding, a JButton control will display an LOV dialog. The dialog the user sees
displays the attributes you specified for display in the LOV binding.

The LOV dialog supports several custom features:

■ Find-mode operations that may be initiated by the user when this feature is
enabled.

■ Custom title and display location for dialog.

■ Ability to subclass JULovPanelInterface to display your own LOV dialog when
the user clicks the JButton control with the LOV binding.

When Find-mode operation is enabled for the LOV binding on the JButton control, the
user can set the LOV dialog into Find mode by clicking the Find button in the LOV
dialog navigation bar. The LOV dialog in Find mode lets the user enter view criteria to
execute a query on the bound view object rows. The LOV binding executes the query
and displays only the rows that match the specified view criteria.

The user executes a Find-mode query through a LOV dialog by:

1. Clicking Set to Find mode in the LOV dialog. navigation bar to display a single
view criteria field for each bound attribute.

2. Entering values in the view criteria field for the attributes they want to match.

The entered value must include the appropriate comparison symbol (>, <, =). All
values in the same view criteria are AND'ed together.

3. Clicking Execute Query Button in the LOV dialog navigation bar to return the
results to the LOV dialog.

For details about the usage of view criteria in ADF Business Components, see the
JavaDoc for the oracle.jbo.ViewCriteria class.

Note: The value -1 and 0 have specific meaning: the value -1 returns
all available objects from the collection, while the value 0 will return
the same number of objects as the collection uses to retrieve from its
data source.

How to Customize an ADF Scroll Binding

5-20 Developing Swing Applications for Oracle Application Development Framework

5.15 How to Customize an ADF Scroll Binding
You can set an ADF scroll binding on these UI controls that you insert from the Data
Controls panel:

■ ScrollBar

■ Slider

The scroll binding lets users view the relative position of the current data object in the
bound data collection. The control thumb or indicator will be proportional to the
number of data objects displayed out of the full range of the data collection. You use
the scroll binding editor to select the data collection on which you want the control to
operate.

To set a scroll binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the data collection to scroll into the open form or
panel.

3. Add the control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the scroll binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the scroll binding editor, select the Base Data Source that contains the data
object to scroll.

6. If the iterator dropdown list already displays a named iterator to access the
selected data collection, leave the selection unchanged. If the dropdown appears
empty, click New and create the iterator so it appears in the dropdown list.

7. You can determine the data collection object (row) count to use. Normally, leave
Estimate Scrolling Range selected. You can select it if you want to count any rows
from the database which have not yet been cached by the data collection.

Note: Changing the iterator selection in the dropdown list will
remove the previously made attribute selection. Before you change the
iterator selection, take note of the original attribute selection. If you
need to, you can press Cancel to exit the binding editor without
updating the original attribute selection.

Note: This option is visible only when the data model project
contains ADF business components; when other business services are
created in the data model project, this option is not supported. In the
case of an ADF Business Components data model project, this option
appears selected by default because, when unselected (thereby forcing
the actual row count), it may trigger an additional query.

How to Customize an ADF Table Binding

Customizing ADF Bindings 5-21

8. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–12 shows
the method created after inserting a slider from the Data Controls panel.

Example 5–12 Set Model Method for Scroll Binding

mySlider.setModel((BoundedRangeModel)panelBinding.bindUIControl("DataControlId",
mySlider));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

5.16 How to Customize an ADF Table Binding
You can set an ADF table binding on the Table UI control that you insert from the Data
Controls panel.

A table binding lets users view a table consisting of attribute names (column headers)
and values from a data collection. You use the table binding editor to select the data
collection and attributes to display. You can also specify display properties for column
attributes, including column width and a table cell editor to display.

To set a table binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

2. In the Data Controls panel, drag the desired data collection to display into the
open form or panel.

3. Add the table control to the data panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the table binding editor for the control.

Note: In an ADF Business Components data model project, you can
make attribute values updatable by setting a control hint on the
attribute. In that case, users will be able to edit the updatable
attribute's values directly in the table. Another control hint lets you
change the label displayed by the column header for each attribute.

Note: When you use the Data Controls panel to drop a JTable control
into an ADF Swing panel or form, the table will initially display all
attributes (columns) of the selected collection. To modify the table's
list of display attributes, you can use the Table Binding Editor,
however, the changes will not be reflected immediately in the Java
visual editor. In order to synchronize the visual editor with the table's
binding information (saved in the form or panel's PageDef.xml file),
you can either recompile the class file, or you can merely resize the
table in the visual editor.

How to Customize an ADF Table Binding

5-22 Developing Swing Applications for Oracle Application Development Framework

For more information, seeSection 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In table binding editor, display the Attribute Binding page and select the Base
Data Source that contains the attributes you want to display in the table.

Tables that you create must be based on scalar attributes of a collection or
structured object. For example, if you attempt to drop the return() method of a
complex collection (contains arrays) as a table, the collection's attributes will not
be displayed because they are defined by accessors. You can drop individual
accessors of the collection as a table because they define attributes.

6. In the Available Attributes list, select the attribute to display and add it to the
Selected Attributes list. You may add as many attributes as you like to the Display
Attributes list.

7. To rearrange the columns of the table, select an attribute in the Selected Attributes
list and click a Move Selection arrow button to reposition the attribute in the list.

The position of the attribute from top to bottom in the list determines the position
of the columns in the table from left to right.

8. Select Attribute Properties and optionally change the column width and cell
editor to use.

9. Click OK to save the binding settings.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–13 shows
the method created after inserting a table from the Data Controls panel.

Example 5–13 Set Model Method for Table Binding

myTable.setModel((TableModel)panelBinding.bindUIControl("DataControlId",
myTable));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

To customize table columns:
1. In table binding editor, display the Attribute Properties page and view the list of

attribute name (columns) that your table will display.

2. Optionally, double-click in the Width field corresponding to the attribute whose
column width you want to modify. The default width is determined by the size of
the table displayed in the Java visual editor.

You can also specify column widths by setting control hints at the level of the
business component attribute. When the control hint width is specified, that value
will appear in the Attribute Properties page of the table binding editor.

3. Press Return to set the new width on the field.

4. Optionally, click in the Editor field corresponding to the attribute whose editor
you want to set. The default editor is a simple text field.

Note: You can additionally specify format masks by setting the
formatter and format control hints at the level of the business
component attribute.

How to Customize an ADF Tree Binding

Customizing ADF Bindings 5-23

5. Select an editor from the list and press the ellipses button to open the binding
editor.

In the case of the ComboBox and Spinner editors, you can select an existing
binding from the page definition. The binding you select must be bound to the
same attribute displayed in the table binding editor.

6. Click OK to save the binding settings.

5.17 How to Customize an ADF Tree Binding
You can set an ADF hiearchical tree binding on the tree UI control that you insert from
the Data Controls panel.

A tree binding lets users view a hierarchical list of attributes derived from
master-detail relationships as specified by the business services in your data model
project. You use the tree binding editor to define a set of rules that determine how the
tree binding should traverse the relationships of the business service data collections
you select.

In order for the tree binding to construct a tree with multiple branches, the business
services should meet these requirements:

■ A starting or root data collection (for example, an ADF Business Components view
object) that you will use as the control binding target.

■ One or more accessors (for example, an ADF Business Components viewlink) from
that root collection and other data collections. The tree binding editor will display
an allowable set of accessors for that node to drill down in to the next level.

Once you create the ADF binding for the tree control, you can use the tree control to let
users navigate through the rows of the bound data collection. Currently, there is no
navigation binding for the tree control, so you will need to add a
JUTreeDefaultMouseListener on the control.

To set a tree binding:
1. Open the data panel in the Java visual editor and add a JScrollPane container to

the panel.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, drag the data collection to display into the open form
or panel.

3. Add a Tree control to the scrollable panel.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

4. Display the tree binding editor for the JTree control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

To define the root node of the tree:
1. In the tree binding editor, click the Edit Rule tab to define the parent node rule to

display from the master data collection.

For example, a master collection of "customers" has a detail collection of "orders".

How to Customize an ADF Tree Binding

5-24 Developing Swing Applications for Oracle Application Development Framework

2. In the Root Data Source list, select the data collection that you want to use to
populate the tree root node.

This is the master collection that defines the root node. For example, a customer's
master collection that has an orders detail collection.

3. Click the Add Rule icon button to complete the rule definition for the root node.

4. In the Attributes list, select a single attribute to display as the parent nodes for the
tree.

For example, the last name of each customer. Currently, the JTree control is
limited to displaying a single attribute for each branch.

5. In the Accessor list, select the accessor that specifies the link between the master
collection and the first branch in the tree.

For example, an ADF Business Components accessor for the customers and orders
collections, might appear as OrdersView in the list.

To define the branches of the tree:
1. Select the parent tree-level rule and click the Add Rule icon button and select the

child-branch collection to display from the master collection.

This is the detail collection that defines the nodes for the tree. For example, an
orders detail collection from which you will display order id information in the
tree.

2. In the Attributes list, select a single attribute to display as the branch nodes in the
tree, for example, the last name of each customer.

3. In the Accessor list, select the accessor that specifies the link between the first
branch data collection and the next branch in the tree.

For example, an ADF Business Components accessor for the orders and orderitems
collections might appear as OrderItemsView in the list.

4. You may repeat these steps to define new branches in the tree as long as your
business services support accessors to traverse the branches.

5. Click OK to save the binding settings.

The binding editor performs error checking for the rules you defined. It displays
the following error messages:

■ "Invalid definition, either no root or no rules defined." Either you
did not define a rule or you did not define a rule for the root node.

Note: If your data model does not contain master-detail accessors for
the data collections you select, the Accessor list will appear empty.
You must define an accessor for your business service in your data
model project for all branches of the tree except the leaf (terminal)
nodes.

Note: If the branch data collection you select has no further accessor
defined for it in the data model project, the word <none> will appear
in the list. This means no accessor is required because the selected
collection's attribute will appear as leaf nodes in the tree.

How to Customize an ADF Tree Binding

Customizing ADF Bindings 5-25

■ "Defined root not found in this Application Module." The view object
usage name defining the root node cannot be found in the application module
defined in the form binding.

■ "No rule found for accessor... ." There is no rule definition for every
accessor in the rules table. Error checking does not verify that the number of
polymorphic rules for a particular accessor; only that each accessor in the rules
table has a rule definition.

Developer adds the setModel() method in the jbInit() method to create the control
binding and reference DataControlId to specify the metadata. Example 5–14 shows
the method created after inserting a tree from the Data Controls panel, the method
which references DataControlId to specify the metadata.

Example 5–14 Set Model Method for Tree Binding

myTree.setModel((TreeModel)panelBinding.bindUIControl("DataControlId", myTree));

Metadata for the new binding appears in the binding definition file (PageDef.xml).

To add images to display in the tree binding editor:
The tree binding editor lets you choose icons to display for each node in a branch and
the open and close icon for each branch. To view the icon choices in the tree binding
editor, you must copy your icon image files to the src folder of your user interface
project. Use the icon dropdown menus in the tree binding editor to make your choice;
each menu displays all the image files in the current project/src folder.

How to Customize an ADF Tree Binding

5-26 Developing Swing Applications for Oracle Application Development Framework

6

Displaying Graphs in ADF Swing Panels 6-1

6Displaying Graphs in ADF Swing Panels

This chapter describes how to create databound graphs in ADF Swing panels. The
graph component allows you to display data through a wide variety of graphs.

This chapter contains the following sections:

■ Section 6.1, "About Graphs in ADF Swing Panels"

■ Section 6.2, "How to Create a Graph for an ADF Swing Panel"

■ Section 6.3, "What Happens When You Create a Graph Component"

■ Section 6.4, "How to Customize the Graph Component"

■ Section 6.5, "How to Change Graph Data"

6.1 About Graphs in ADF Swing Panels
JDeveloper lets you create a graph component that binds with data sources from any
of the business services supported in Oracle ADF. Supported business services include
ADF Business Components, Enterprise JavaBeans (EJB), Toplink, Web Services, and
custom JavaBeans.

You can use the JDeveloper Data Controls panel to drag data model components such
as ADF Business Components view objects onto panels. At any time after creating an
ADF databound graph component, you can change the graph properties using the
design-time facilities of JDeveloper.

JDeveloper also provides support for building databound graphs through its seamless
integration of Oracle Business Intelligence Beans (BI Beans) technology. Although you
do not need to install the BI BeansJDeveloper addin component to use the graph
technology, you may want to install the addin to view the available documentation.

The graph component capabilities and features include:

■ Easy to integrate with custom applications

Since a graph component is reusable, you can add it to custom applications,
including ADF web applications (currently JSP pages only) and ADF Swing
applications.

■ Easy to build and maintain

Note: In order to work with graphs, your business service must be
able to provide data in the format expected by the graph component,
as described in Section 6.2, "How to Create a Graph for an ADF Swing
Panel."

About Graphs in ADF Swing Panels

6-2 Developing Swing Applications for Oracle Application Development Framework

You can use the Data Controls panel to drag data model components such as ADF
Business Components view objects onto the form. The graph properties and
databinding are exposed in the Properties window to enable the developer to
quickly change these settings.

■ Programmatic access through Java

You can modify graph components by calling the BI Beans Graph component's
public methods.

■ Support for different data sources

ADF Business Components, Enterprise JavaBeans, Toplink, Web Services, custom
Java Beans

■ Generate simple and master-detail graphs

■ Small downloads

■ Excellent performance when deployed

The ADF Swing oracle.jbo.uicli.jui package includes the following classes which
are related to the databound graph component:

■ JUGraphBinding

■ JUSingleTableGraphBinding

■ JUMasterDetailGraphBinding

Table 6–1 suggests graph types for different aspects of data that you want to
emphasize in a graph.

Table 6–1 Graph Types

Data Aspect Example Graph Type

The difference between
items over time or at the
same point in time

Which products are selling best in
which stores?

Clustered bar or 3-D bar

Trends over time Is our market share increasing or
decreasing?

Absolute line or Stacked
area

Cyclical trends over time Have the sales of this product
peaked in March consistently over
the past three years?

Radar graph

Rate of data change How fast is our market share
increasing?

Absolute line or Stacked
area

Percentage or changes in
percentage

How much of our revenue comes
from each product line? Is our big
seller bringing in the same
percentage of revenue as it did last
year at this time?

Pie or Percentage bar, line,
or are

Relationship of parts to the
whole

Which products' sales are most
closely related to our total sales?
Which products' sales follow the
trend of the total sales? Which ones
do not?

Pie, Percentage bar or line,
or Stacked bar, line, or area
graph.

Relationship of parts to the
whole, with more detail for
one of the parts

Which product line accounts for the
highest percentage of sales? Within
that product line, which districts
make up the most sales?

Pie-bar

How to Create a Graph for an ADF Swing Panel

Displaying Graphs in ADF Swing Panels 6-3

6.2 How to Create a Graph for an ADF Swing Panel
You can set an ADF graph binding for a graph component that you insert from the
Data Controls panel into an ADF Swing panel.

To understand the selections you make when building the graph component, you
must understand how the graph component obtains sufficient data from your ADF
Business Components data sources to:

■ Plot each graph marker (as determined by up to three data points)

■ Label each graph group, for example, the months of the year

■ Draw either a single series or a multi-series type graph

■ Label each graph

The data binding is determined in the Graph Editor by the data model components
that you select (for example, the attributes of an ADF Business Components view
object). The Graph Editor helps you choose objects and attributes for a particular
graph type, but you must be familiar with the data model in order to make the specific
choices. In general, when you make a graph type selection, the Graph Editor displays
one attribute for each data point value needed to draw the markers for your graph
type. If you select a group type graph, the Graph Editor also prompts you to choose an
accessor that links the master data collection with the correct detail data collection.

For instance, if you want to plot a Hi-Lo-Close (HLC) Stock graph type for multiple
stocks in the Graph Editor, you must choose:

■ The master data collection that contains one row for stock type

■ The detail data collection that contains the rows corresponding to the data of each
stock

■ The attribute from the master data collection that specifies the label for each stock
graph

■ One attribute from the detail data collection for each marker data value (in this
case, Hi, Low, and Close)

Whereas, if you decide to plot a single stock as a simple bar graph that shows monthly
high values in the Graph Editor, you must choose:

■ An unconstrained data collection (one that does not belong to a master-detail
relationship)

■ One attribute that provides the label for each month

Changes in all parts of a
whole

Do the products that bring the most
revenue to the entire company bring
in the most revenue for each
district?

Multiple pie or Stacked
bar, line, or area

Relationships between two
variables

Do sales increase when we spend
more on marketing?

Scatter or Polar

Relationships between three
variables

Do sales and profits increase
proportionally when we spend
more on marketing?

Bubble

Location of defects in a
system

Where are the highest percentage of
defects occurring?

Pareto

Table 6–1 (Cont.) Graph Types

Data Aspect Example Graph Type

How to Create a Graph for an ADF Swing Panel

6-4 Developing Swing Applications for Oracle Application Development Framework

■ One attribute for the marker data value (in this case, Hi value only)

It is helpful to understand how the graph component interprets the data from the
business services data model. In general, the requirements of the data model for your
data model project depend on:

■ Whether the graph type you select requires one, two, or three data point values to
determine each graph marker

■ Whether you want to plot a series (single table) or a group type (master-detail)
graph

For example, assume you want a simple graph, such as a bar graph with the data
shown in Example 6–1.

Example 6–1 Bar Graph Data

ENAME SAL Comm
KING 1000 200
CLARK 2000 100
MILLER 1500 50

Each row in the table corresponds to a series in the graph and each column
corresponds to a group.

Some types of graphs, like the bar graph, require one value per marker. This is in
contrast to other graph types, like the stock HLC graph, which require three values per
marker (high, low and close). When your graph requires multiple data values, it is
convenient to store them in separate rows in your database table, as shown in
Example 6–2.

Example 6–2 Storing Multiple Data Values

Date High Low Close
10 Jun 03 11 10 11
11 Jun 03 11 7 9
12 Jun 03 10 9 9.5

The graph component supports the type of graph whose data is stored in a single
table. When your graph requires multiple values, then the data for the chart should be
modeled as a master/detail relationship. Each detail provides one series of data,
corresponding to the master value. In the stock graph example above, the data model
could look like Example 6–3.

Example 6–3 Data Model

Master table stock_ticker_table

ticker symbol
Oracle Corporation ORCL
XYZ Corporation XYZ

Detail table stock_price_table

ticker Date High Low Close
ORCL 10 Jun 03 23 22 23
ORCL 11 Jun 03 24 23 23
ORCL 12 Jun 03 25 24 24
XYZ? 10 Jun 03 10 9 9
XYZ 11 Jun 03 10 9 9
XYZ 12 Jun 03 10 8 9

What Happens When You Create a Graph Component

Displaying Graphs in ADF Swing Panels 6-5

In a single-table graph, the data model is simple and need only contain:

■ A standalone data collection, where each row plots one graph marker

■ One attribute that supplies the label for the groups that the graph displays

■ One attribute per graph data point, with as many attributes as required to plot
each graph marker

In a more complex group type graph, the data model is based on a master-detail
relationship and must contain:

■ A master data collection, where each row specifies one series but contains no data

■ One master data collection attribute that supplies the label for each series

■ One detail data collection for each series, where each row plots one graph marker
for that particular series

■ One detail data collection attribute that supplies the label for the groups displayed
by the graph

■ One detail data collection attribute per graph data point, with as many attributes
as required to draw each graph marker

To build a databound graph:
1. In the user interface project, open the Java visual editor on the data panel or form.

For more information, see Section 3.3, "How to Insert UI Components into ADF
Swing Panels."

2. In the Data Controls panel, drag the collection you want to bind to the graph
component into the open form or panel.

3. From the Add Child popup list, select Graph.

4. In the Java visual editor, click the Bindings tab, select the graph component
binding from the list and click Edit.

5. In the Graph Editor, choose what specific data will appear in the graph such as the
view selection, series attributes, and data attributes.

6.3 What Happens When You Create a Graph Component
When you create a graph component, JDeveloper generates files which describe the
graph properties and associated data binding information. JDeveloper generates and
updates the files shown in Table 6–2.

The files are added to the project and are accessible from the Applications window.
They reside in /src/client directory relative to the application.

Table 6–2 Files Generated for Databound Graph Components

File Description

<object>.java The Java implementation of the graph component which
lets you programmatically set and get graph properties.

BIGraphDef.xml The graph properties definition file.

<webpageName>PageDef.xml The ADF bindings definition file containing the ADF data
binding information for the graph.

What Happens When You Create a Graph Component

6-6 Developing Swing Applications for Oracle Application Development Framework

Example 6–4 shows a sample PageDef.xml file for a graph component in an
application consisting of an ADF Swing panel and ADF Business Components for the
business service.

Example 6–4 Sample PageDef.xml File for a Graph Component

<?xml version='1.0' encoding='ISO-8859-1' ?>
<DCContainer
id="untitled1PageDef"
xmlns="http://xmlns.oracle.com/adfm"
Package="view" >
<Contents >
<DCIterator
id="model_AppModuleDataControl_EmployeesView1Iter"
Binds="model_AppModuleDataControl.EmployeesView1" >

</DCIterator>
<DCControl
id="EmployeesView1"
DefClass="oracle.jbo.uicli.graph.JUSingleTableGraphDef"
SubType="DCGraph"
ControlClass="oracle.dss.graph.Graph"
IterBinding="model_AppModuleDataControl_EmployeesView1Iter"
SeriesType="SINGLE_SERIES"
SeriesLabel="EmployeeId"
GraphPropertiesFileName="view.BIGraphDef1" >
<Contents >
<AttrNames>
<Item Value="EmployeeId" />
<Item Value="Salary" />
<Item Value="CommissionPct" />
<Item Value="ManagerId" />
<Item Value="DepartmentId" />

</AttrNames>
<ColumnLabels>
<Item Value="EmployeeId" />
<Item Value="Salary" />
<Item Value="CommissionPct" />
<Item Value="ManagerId" />
<Item Value="DepartmentId" />

</ColumnLabels>
</Contents>

</DCControl>
</Contents>

</DCContainer>

Example 6–5 shows a sample DataBindings.xml file for a graph component in an
application consisting of an ADF Swing panel and ADF Business Components for the
business service.

Example 6–5 Sample DataBindings.xml file for a Graph Component

<?xml version='1.0' encoding='ISO-8859-1' ?>
<JboProject
id="DataBindings"
xmlns="http://xmlns.oracle.com/adfm"
SeparateXMLFiles="false"
Package=""
ClientType="Generic" >
<Contents >
<DataControl

How to Change Graph Data

Displaying Graphs in ADF Swing Panels 6-7

id="model_AppModuleDataControl"
SupportsFindMode="true"
SupportsTransactions="true"
Package="model"
Configuration="AppModuleLocal"
FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl" >

</DataControl>
<Containee
id="untitled1PageDef"
ObjectType="BindingContainerReference"
FullName="view.untitled1PageDef" >

</Containee>
</Contents>

</JboProject>

6.4 How to Customize the Graph Component
At any time after creating a databound graph component, you can change graph
properties using the design-time facilities of the Graph Editor. The Graph Editor
displays a visual representation of the databound graph using psuedo-data not actual
data. For example, you may want the graph to display using a different graph type or
graph style.

To edit an existing graph component:
1. In the Applications window, expand the user interface project and right-click

BIGraphDefx.xml in the view package and choose Open.

2. In the Graph Editor, from the editor’s toolbar, select either Graph Type or Format
Graph.

3. When you select Graph Type, you can select another graph type to display the
data or change the graph's appearance or style.

4. Click the appropriate tab to display its related settings.

5. When you select Format Graph, you can change the graph's titles, legend, plot
area, and X- and Y-Axis settings.

6. Click the appropriate tab to display its related settings.

7. You can also edit the graph's properties by selecting an element in the Structure
window and double-clicking to display its property settings in the Properties
window.

6.5 How to Change Graph Data
At any time after creating a graph for ADF Swing panels, you may decide to display
other data in the graph. The Customize Graph Binding editor lets you select another
data source for the graph. However, if the data source belongs in another data model
you will need to create a new databound graph, as described in Section 6.2, "How to
Create a Graph for an ADF Swing Panel."

Note: If an error message displays about insufficient data, select
another graph type as the data model you specified does not contain
enough data columns to render the graph. For example, line graphs
require more than one data column. For a description of the available
graph types, see Section 6–1, " Graph Types."

How to Change Graph Data

6-8 Developing Swing Applications for Oracle Application Development Framework

To change the graph data:
1. In the Applications window, with the form containing the graph component open

in the Java visual editor, select the Bindings tab.

2. In the Bindings and Executables page, select the graph binding and click Edit.

3. In Graph Editor, select another iterator from the dropdown list.

7

Working with ADF Swing Controls 7-1

7Working with ADF Swing Controls

This chapter describes how to use ADF Swing controls on ADF Swing forms and
panels. In addition to the standard Swing controls that you can use to design ADF
Swing applications, ADF Swing provides its own set of controls, called ADF Swing
controls.

This chapter contains the following sections:

■ Section 7.1, "About ADF Swing-Specific Controls"

■ Section 7.2, "How to Use the JUArrayComboBox Control"

■ Section 7.3, "How to Use the JUImage Control"

■ Section 7.4, "What You May Need to Know About Multimedia in ADF Swing
Applications"

■ Section 7.5, "How to Use the JULabel Control"

■ Section 7.6, "How to Use the Label For Control"

■ Section 7.7, "How to Use the JULovEditButton Control"

■ Section 7.8, "How to Use the JUNavigationBar Control"

■ Section 7.9, "How to Use the JUNavigationBar Control with Find Mode"

■ Section 7.10, "How to Disable Find Mode for ADF Swing Controls in a Panel"

■ Section 7.11, "What You May Need to Know About Iterator Bindings in Find
Mode"

■ Section 7.12, "How to Use the JURadioButtonGroupPanel Control"

■ Section 7.13, "How to Use the JUShuttlePanel Control"

■ Section 7.14, "How to Use the JUStatusBar Control"

7.1 About ADF Swing-Specific Controls
In addition to the standard Swing controls that you can use to design ADF Swing
applications, ADF Swing provides its own set of controls. These additional controls are
available on the Data Controls panel:

■ JUArrayComboBox

■ JUImageControl

■ JULabel

■ JULabel - Label For

How to Use the JUArrayComboBox Control

7-2 Developing Swing Applications for Oracle Application Development Framework

■ JULovEditButton

■ JUNavigationBar

■ JURadioButtonGroupPanel

■ JUShuttlePanel

■ JUStatusBar

The type of control binding used for a given ADF Swing control depends on the
actions performed by the control. Table 7–1 identifies the bindings and the various
ADF Swing controls that they support.

Like the standard Swing controls that they supplement, these controls also rely on the
MVC or Model-View-Controller architecture. The ADF Swing controls are unique
because the controllers they rely on to manage end user interactions do not exist
among the Swing controls. Together with the ADF model bindings, the ADF Swing
controls allow you to design Java desktop applications with more diverse databound
functionality.

7.2 How to Use the JUArrayComboBox Control
The array combobox is an ADF Swing JUArrayComboBox control that can be bound to
an attribute of a business service data collection that has been mapped as type
oracle.jbo.domain.array. Because the array combobox displays its list of values
from a single attribute, it works with the ADF attribute binding, which accesses the
data stored in the database through an attribute of a data collection. Currently, without
design-time support in JDeveloper for editing Object arrays, the elements of the array
attribute are limited to Scalar values, such as numbers, strings, or date.

Users can use the array combobox to view the existing attribute values. They can also
add, update, and delete displayed values.

To bind to an array attribute of type scalar:
1. In the user interface project, open the Java visual editor on the data panel or form.

Table 7–1 Control Bindings and ADF Swing Controls

Binding ADF Swing Control

Attribute binding Label For

JULovEditButton (button for LOV dialog)

JUImageControl

JULabel

Array Combobox binding JUArrayComboBox

Iterator binding JUNavigationBar

JUStatusBar

List Binding in Enumeration Mode JUShuttlePanel

List Binding in List of Values (LOV) Mode JURadioButtonGroupPanel

Note: Although the JUArrayComboBox does not provide design-time
support for using object arrays, you can create an extension
inJDeveloper that implements the ADF Swing interface.

How to Use the JUImage Control

Working with ADF Swing Controls 7-3

2. In the Data Controls panel, drag the attribute you want to bind to the image
control into the open form or panel.

3. From the Add Child popup list, select JUArrayComboBox.

JDeveloper adds code to the class file to bind the array combobox to the attribute:

myJUArrayComboBox1.setDocument((Document)panelBinding.
bindUIControl("MyAttribute", myJuArrayComboBox1"));

To insert a value to the array attribute:
1. In the Java visual editor, select the dropdown list and press Ctrl + Click to create a

new empty list item.

2. In the empty list item, type the value and press Enter.

To update an existing value of the array attribute:
■ Select the item, type the new value and press Enter.

To remove an existing value from the array attribute:
■ Select the item and press Delete.

7.3 How to Use the JUImage Control
The image control is an ADF Swing JUImage control that can be bound to an attribute
of a business service collection through the ADF Swing attribute binding. The attribute
binding accesses images stored in the database through a particular data collection.
Datatypes that the JUImage control supports includes images stored as:

■ ADF Business Components domain BLOB datatype

■ ADF Business Components domain Raw datatype

■ Oracle interMedia domain IMAGE type

To insert a databound image control into a form or panel:
1. In the user interface project, open the Java visual editor on the desired data panel

or form.

2. In the Data Controls panel, drag the attribute you want to bind to the image
control into the open form or panel.

3. From the Add Child popup list, select JUImageControl.

JDeveloper adds code to the class file to reference the MyImageAttribute binding
definition in the page definition file associated with the form:

myJUImageControl1.setModel((JUDefaultControlBinding)
panelBinding.bindUIControl("MyImageAttribute", myJUImageControl1));

To add a scrolling region to your image:
1. In the Properties window, set the autoscrolls field to True.

Within an ADF Swing form, users can delete and update the image file stored in the
database, but they cannot edit the image itself.

To use the JUImage control:
The Image control consists of a panel with a display area and two buttons:

What You May Need to Know About Multimedia in ADF Swing Applications

7-4 Developing Swing Applications for Oracle Application Development Framework

■ Change button to invoke an Open dialog box in which users can select the image
file to load.

■ Clear button to delete the image.

To change the data binding of an image control in a form or panel:
1. Open the form or panel containing the JUImage control in the Java visual editor.

2. Right-click the JUImage control you want to change and select Edit Bindings from
the menu.

The JUImage Control Binding dialog displays.

7.4 What You May Need to Know About Multimedia in ADF Swing
Applications

The JUImage ADF Swing control is available to access multimedia in the database. The
JUImage control islimited to images only.

The JUImage control is an earlier implementation of a control in ADF Swing used to
display images from the database. Your application's performance is always improved
when you can stream the image from the database's supported interMedia object types.
In the case of the JUImage control, the image file must be entirely downloaded before
the application can display it. Additionally, JUImage is limited to RAW, LONG RAW,
BLOB, and interMedia IMAGE types.

7.5 How to Use the JULabel Control
The JULabel is an ADF Swing control that can be bound to an attribute of a business
service collection through the ADF Swing attribute binding. The attribute binding
accesses the data stored in the database through a particular data collection. The
JULabel control renders the attribute value as a label.

Or, you can display the label from a control hint that has been defined for ADF
Business Components attributes. For more information, see Section 7.6, "How to Use
the Label For Control."

To insert a databound label into a form or panel:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. From the Window menu, choose Applications.

3. In the Applications window, expand the Data Controls panel.

Note: JDeveloper currently does not support audio and video usages
of the OrdMediaControl component. This means that developers are
not be able to create new applications using ADF Swing interMedia
controls. However, the required interMedia libraries are still shipped
withJDeveloper for backward compatibility. ADF Swing applications
of previous JDeveloper releases that use interMedia will continue
working when upgraded to ADF Swing.

How to Use the Label For Control

Working with ADF Swing Controls 7-5

4. In the Data Controls panel, drag the attribute you want to bind to the label into the
open form or panel.

5. From the Add Child popup list, select JULabel.

JDeveloper adds code to the class file to bind the JULabel to the attribute:

myJuLabel.setModel((JULabelBinding)panelBinding.bindUIControl("MyAttrib
ute", myJuLabel));

To change the data binding of a label in a form or panel:
1. Open the form or panel containing the JULabel control in the Java visual editor.

2. Right-click the JULabel control you want to change and select Edit Bindings from
the menu.

The Edit Attribute Binding dialog displays.

7.6 How to Use the Label For Control
The Label For control is an ADF Swing JULabel control that can be bound to an
attribute of a business service collection through the ADF Swing attribute binding. The
binding accesses the previously defined control hint defined for an attribute of an ADF
Business Components view object. The JULabel control renders the label from the
defined hint.

Or, you can display the label from the attribute value. For more information, see to
Section 7.5, "How to Use the JULabel Control."

To insert a databound label into a form or panel:
1. In the user interface project, open the Java visual editor on the data panel or form.

2. In the Data Controls panel, drag the attribute you want to bind to the Label For
control into the open form or panel.

3. From the Add Child popup list, select Label For.

JDeveloper adds code to the class file to bind the JULabel to the attribute:

myjULabel1.setText(panelBinding.findCtrlValueBinding
("MyAttribute").getLabel());

To change the data binding of a label in a form or panel:
1. Open the form or panel containing the label control in the Java visual editor.

2. Right-click the JULabel control you want to change and select Edit Bindings from
the menu.

The Edit Attribute Binding dialog displays.

Note: The text property will be overwritten when you run the ADF
Swing form.

Note: The text property will be overwritten when you run the ADF
Swing form.

How to Use the JULovEditButton Control

7-6 Developing Swing Applications for Oracle Application Development Framework

7.7 How to Use the JULovEditButton Control
The LOV edit button control is an ADF Swing JULovEditButton control that can be
bound to an attribute of a business service collection through the ADF Swing attribute
binding. The JULovEditButton control allows the user to make multiple selections for
the displayed shuttle list.

To insert a databound LOV edit button into a form or panel:
1. In the user interface project, open the form or data panel in the Java visual editor.

2. In the Data Controls panel, drag the collection you want to bind to the
JULovEditButton control into the open form or panel.

3. From the Add Child popup list, select Button LOV.

JDeveloper adds code to the class file to reference the DCShuttle binding
definition in the page definition file associated with the form:

myjButton.setModel((ButtonModel)panelBinding.bindUIControl
("Address1",myjButton));

To change the data binding of an LOV edit button in a form or panel:
1. Open the form or panel containing the JULovEditButton control in the Java visual

editor.

2. Right-click the JULovEditButton control you want to change and select Edit
Bindings from the menu.

The Create Button LOV Binding dialog displays.

7.8 How to Use the JUNavigationBar Control
The navigation bar is an ADF Swing JUNavigationBar control that can be bound to:

■ A business service data collection through the model object

■ A JUPanel that has a panel binding passed to it through its constructor

The effect of these bindings determines the scope of the navigation bar actions. If you
bind to a data collection, the JUNavigationBar lets you navigate on those controls that
share the same panel and that are bound to the same data collection through its
attributes. Whereas, you can control the navigation of controls in child panels, by
adding the JUNavigationBar control to the containing panel and setting the panel
binding.

To bind to a data collection:
1. In the user interface project, open the Java visual editor on the data panel or form.

2. In the Data Controls panel, drag the data collection you want to bind to the
navigation bar control into the open form or panel.

3. From the Add Child popup list, select JUNavigationBar.

JDeveloper adds code to the class file to bind the JUNavigationBar to the
collection:

jUNavigationBar1.setModel(JUNavigationBar.createViewBinding
(panelBinding, jUNavigationBar1, "MyDataCollection", null,
"MyCollectionIterator"));

How to Use the JUNavigationBar Control with Find Mode

Working with ADF Swing Controls 7-7

To bind to a JUPanel:
1. In the user interface project, open the Java visual editor on the layout panel that

contains the panels you want to navigate on.

2. In the ADF Swing Controls page of the Components window, drag the
JUNavigationBar control into the open form.

3. In the Properties window for the JUNavigationBar control, select the model field
and select ADF Swing panel binding.

JDeveloper adds code to the class file to bind the JUNavigationBar to the panel
binding passed into the current panel:

myNavBar.setModel(JUNavigationBar.createPanelBinding (panelBinding,
myNavBar));

7.9 How to Use the JUNavigationBar Control with Find Mode
In ADF Swing, you can support parameterized queries by using the JUNavigationBar
control in an ADF Swing data panel with the Find mode enabled. Find mode lets users
use the data panel to enter search criteria through supported ADF Swing control
bindings.

When you run the panel, in Find mode, the navigation-mode component no longer
forces the search criteria components to update. They will remain empty in order to
permit the user to entry search criteria.

A typical usage for a data panel with Find mode is:

1. The user places the panel in Find mode.

For instance, a user may click the Find button, which is provided by default with a
JUNavigationBar (that is bound to an ADF Business Components view object).

2. The user enters find criteria to restrict the results of the data already returned to
the form.

3. The Find mode performs an anchored, wild card search.

It uses the first character of the search column as an anchor, where all the strings
that begin with the entered string are matched.

4. Another control that you bind to the same view object in ADF Swing, such as the
JTable control, displays the results of the parameterized query.

A parameterized query is a query that contains a placeholder that must be supplied at
runtime. For example, in the following PL/SQL statement, min_salary is a
placeholder for a parameter value that will be supplied at runtime.

SELECT ename, job, mgr FROM emp WHERE sal < :min_salary

The data panel in Find mode uses the ADF Swing control bindings to display fields for
each attribute in the bound ADF Business Components view object whose queriable
property is set to true. The view object defines the initial query executed by the
business components.

The easiest way to create the data panel for Find mode operations is to bind a
JUNavigationBar to the ADF Business Components view object that you want the data
panel to search on. The navigation bar provides a Find button that the user selects to
toggle the behavior of the ADF Swing control bindings for the ADF Swing form:

How to Disable Find Mode for ADF Swing Controls in a Panel

7-8 Developing Swing Applications for Oracle Application Development Framework

■ When Find mode is enabled on the data panel, the controls provide search criteria
for a parameterized query on the queryable attributes of the ADF Business
Components view object.

■ When Find mode is disabled, the controls provide data access to display and edit
attributes of the view object.

The state of the Find-mode button is controlled by the hasFindButton property on the
JUNavigationBar (true by default).

7.10 How to Disable Find Mode for ADF Swing Controls in a Panel
Note that all of the ADF Swing control bindings support the Find mode. If you want to
create a data panel specifically for searches, limit your form to use these controls
bound to ADF Business Components view object attributes to provide search criteria:

■ JTextField -- the user must enter a value

■ JCheckBox -- the user selects one of the predefined values

■ JSlider -- the user selects one of the predefined values

It is recommended that your data panel disable controls not in the above list when the
user selects the Find mode. Disabling controls that do not support Find mode prevents
the user from attempting to submit invalid search criteria.

Additionally, UI components that utilize an ADF list binding in navigation mode do
not participate in the Find mode. However, if you drop a navigation-mode component,
such as the databound ComboBox or JList, into a panel and activate Find mode, the
component will not be disabled and will still permit the user to unintentionally
display data in components that should appear empty in Find mode. To disable the
interaction of the navigation component and the other components in Find mode, you
can create a secondary iterator and edit the navigation-mode component's data
binding to use that iterator.

To disable the interaction of the navigation component and the other
components in Find mode:
1. In the user interface project, open the Java visual editor on the layout panel that

contains the panels you want to navigate on.

2. In Java visual editor, click the Bindings tab and in the Executables list, click
Create executable binding.

3. In the Insert Item dialog, select Iterator and click OK.

4. In the Create Iterator Binding dialog, select the data collection that your other
components are bound to and enter a new name for the Iterator Id and click OK.

5. In the Bindings list, double-click the binding for the component that operates in
navigation mode and select the new iterator in the control binding editor.

7.11 What You May Need to Know About Iterator Bindings in Find Mode
In addition to its basic data iteration functionality, the iterator binding also cooperates
with the bound data collection to simplify implementing query-by-example capability
for your application data by providing:

■ A collection of query-by-example criteria rows, and

■ An easy-to-use Find mode to work with these query criteria

What You May Need to Know About Iterator Bindings in Find Mode

Working with ADF Swing Controls 7-9

In Oracle ADF, each data collection has an associated view criteria (ViewCriteria)
collection of zero or more view criteria rows. Each view criteria row
(ViewCriteriaRow) has the same attribute structure as a row in its related data
collection, except that the attribute values are all treated as a String data type. This
data type allows the user to enter query criteria containing comparison operators and
wildcard characters.

For example, to indicate you want to find all departments whose department number
is greater than 5 and whose department name matches the string 'ACC%', you would
fill in the attributes of a view criteria row related to a DeptView collection (based on a
query over the familiar DEPT table in the SCOTT schema) like this:

■ Deptno > 5

■ Dname ACC%

The iterator binding's Find mode makes it easy to create search pages that populate the
attributes of the view criteria collection for query-by-example functionality. When an
iterator binding is set to work in Find mode, it switches to use a different row set
iterator over the related view criteria collection instead. This means that when Find
mode is enabled, control bindings that reference the iterator binding will display and
update attributes in the current view criteria row. Likewise, a range binding that
references an iterator binding in Find mode allows you to render a table of current
query-by-example view criteria rows.

When Find mode is disabled, the iterator binding switches back to work with its row
set iterator over the data collection. This can be done explicitly by calling the iterator
binding's setFindMode() method, or implicitly by calling its executeQuery() method.

Although the ADF iterator binding provides its Find mode functionality independent
of the kind of backend data control you choose, currently only the ADF Business
Components data control makes automatic use of the view criteria collection of view
criteria rows at runtime. It delegates the iterator binding's view criteria functionality to
the underlying ADF view object, which implements the query-by-example criteria by
automatically building appropriate SQL WHERE clause predicates based on the view
criteria rows.

Other data control types would currently require a subclassed data control
implementation containing some custom coding to read the query-by-example criteria
from the view criteria collection and translate them into an appropriate runtime search
implementation.

Note: By calling the createRow() method on the iterator binding's
row set iterator while in Find mode, it is possible to create additional
view criteria rows and then proceed to populate their attributes with
additional criteria. The default semantics are that query-by-example
criteria in the same view criteria rows are logically AND-ed together,
while criteria resulting from separate view criteria rows are logically
OR-ed together.

In actual practice, using multiple view criteria rows is not a common
use case, but knowing it is possible helps to explain functionality.
However, after the user enters Find mode, it is no longer possible to
create the row on the original collection. Only when the user exits
Find mode will it be possible to create a row that does not participate
in the view criteria.

How to Use the JURadioButtonGroupPanel Control

7-10 Developing Swing Applications for Oracle Application Development Framework

For details about the usage of view criteria in ADF Business Components, see the
JavaDoc for the oracle.jbo.ViewCriteria class.

7.12 How to Use the JURadioButtonGroupPanel Control
The radio button group is an ADF Swing JURadioButtonGroupPanel control that can
be bound to an attribute group of a business service data collection through the ADF
navigate binding. When the user changes the radio button selection, any controls in
the containing panel that are also bound to the same data collection through its
attributes will display from the selected data object.

To bind a radio button group to navigate data collections:
1. In the user interface project, open the Java visual editor on the desired data panel

or form.

2. In the Data Controls panel, drag the data collection you want to bind to the radio
button group control into the open form or panel.

3. From the Add Child popup list, select Radio Button Group.

JDeveloper adds code to the class file to bind the JURadioButtonGroupPanel to the
collection:

jURadioButtonGroupPanel1.setModel((JUButtonGroupBinding)
panelBinding.bindUIControl("MyDataCollection",
jURadioButtonGroupPanel1));

4. In the List binding editor, choose the display attributes you want to use with the
radio button panel.

To change the data binding of an radio button group:
1. Open the form or panel containing the JURadioButtonGroupPanel control in the

Java visual editor.

2. Right-click the JURadioButtonGroupPanel control you want to change and select
Edit Bindings from the menu.

The Edit List Binding dialog displays.

To customize the layout of the radio button panel:
The default layout for the radio buttons is by row, but you can change the layout
through the rowCount and columnCount properties of the panel.

For example, to display the radio button selections in columns:

■ Set rowCount to 0, and columnCount to the desired number of columns.

7.13 How to Use the JUShuttlePanel Control
The Shuttle control is an ADF Swing JUShuttlePanel control that can be bound to an
attribute of a business service collection through the ADF Swing list binding. The
JUShuttlePanel control allows the user to make multiple selections for the displayed
shuttle list.

To insert a databound shuttle panel into a form or panel:
1. In the user interface project, open the form or data panel in the Java visual editor.

How to Use the JUStatusBar Control

Working with ADF Swing Controls 7-11

2. In the Data Controls panel, drag the collection you want to bind to the
JUShuttlePanel control into the open form or panel.

3. From the Add Child popup list, select Shuttle.

JDeveloper adds code to the class file to reference the DCShuttle binding
definition in the page definition file associated with the form:

myjUShuttlePanel1.setModel((JUShuttleModel)
(panelBinding.findNestedPanelBinding("DCShuttle")));

To change the data binding of a shuttle panel in a form or panel:
1. Open the form or panel containing the JUShuttlePanel control in the Java visual

editor.

2. Right-click the JUShuttlePanel control you want to change and select Edit
Bindings from the menu.

The Edit Shuttle Binding dialog displays.

7.14 How to Use the JUStatusBar Control
The status bar is an ADF Swing JUStatusBar control that relies on a panel binding to
display status information for the UI control that shares its panel binding and has the
current focus in the displayed form or panel.

To insert a status bar into a form or panel:
1. In the user interface project, open the form or data panel in the Java visual editor.

2. In the Data Controls panel, drag the collection you want to bind to the
JUStatusBar control into the open form or panel.

3. From the Add Child popup list, select Status Bar.

JDeveloper adds code to the class file to define a panel binding for the status bar:

myjUStatusBar1.setModel(JUStatusBar.createPanelBinding(panelBinding,
jUStatusBar1));

How to Use the JUStatusBar Control

7-12 Developing Swing Applications for Oracle Application Development Framework

8

Using Validation in the ADF Swing User Interface 8-1

8Using Validation in the ADF Swing User
Interface

This chapter describes how to use client-side validation in the ADF Swing application.

This chapter contains the following sections:

■ Section 8.1, "About Validating Events"

■ Section 8.2, "How to Use Validation With ADF Control Bindings"

■ Section 8.3, "How to Use Validation With ADF Swing Panels"

8.1 About Validating Events
JDeveloper performs validation using:

■ Rules defined in the ADF Business Components data model project

■ Upon activity in the user interface

Through the ADF Swing application you perform validation on the ADF Swing form
to prevent users from entering erroneous data. For example, you may want to prevent
alpha characters from being input to a field which requires a telephone number.
Similarly you may want to validate the data entered and inform the user.

8.2 How to Use Validation With ADF Control Bindings
Validation in the user interface is handled through source code at the level of the
control binding. To do this, you define your validation code as a PlainDocument event
and then use the setDocument() method to register the code with the specific control.
Then the call to setDocument() on the control you bound to the ADF Business
Components attribute item will work with the document which contains the
validation code. Example 8–1 illustrate validation that occurs at each key press.

Example 8–1 Validation at Every KeyStroke Example

//Add this code to create a document with the validation code and set it for the
control

mDeptno.setDocument(new javax.swing.text.PlainDocument()
{
public void insertString(int offs, String str, javax.swing.text.AttributeSet a)
throws javax.swing.text.BadLocationException
 {
 StringBuffer buf = new StringBuffer(str);
 int size = buf.length();

How to Use Validation With ADF Swing Panels

8-2 Developing Swing Applications for Oracle Application Development Framework

 char c;
 for (int i = 0; i < size; i++)

 {
 c = buf.charAt(i);
 if (!Character.isDigit(c))
 {

 Toolkit.getDefaultToolkit().beep();
 buf.deleteCharAt(i);

}
}

super.insertString(offs, buf.toString(), a);
}

});

/*Here is the code that is generated for you which will set the control binding
for the document. This will work with the document you defined above. */

mDepartmentId.setDocument((Document)panelBinding.bindUIControl("DepartmentId",
mDepartmentId));

8.3 How to Use Validation With ADF Swing Panels
The panelBinding object, which is responsible for managing the link between the UI
and the ADF Business Components data model layer, can trigger an event on an
action. This type of validation allows you to perform validation when the user inputs
data into a field and then navigates to a different field. You may want to perform this
type of validation at the panel which should notify the user, without breaking a
business rule as defined in the business components.

For example, consider a salary which has a range of 100 up to 1000 defined in the
business components. If the salary field is set to anything less that 500, you want to
alert the user and highlight the field. In this case, you want to validate when the value
is being set. The panelBinding object will trigger an event when
beforeSetAttribute() is called.

To set validation on the ADF Swing panel:
1. Open the panel in the Java visual editor.

2. In the Structure window, expand Other and then select panelBinding.

3. In the Properties window, expand the Events section and enter an event name in
the beforeSetAttribute field.

4. In the Java source editor, add the validation code to the generated event handler,
similar to the sample shown in Example 8–2.

Example 8–2 Code Added to Generated Event Handler

if (e.getAttributeName().equals("Salary"))
 {
 Object val = e.getNewValue();
 if (val != null)

 {
 Integer n = new Integer(val.toString());
 if (n.intValue() < 500)

 {
 mSalary.setBackground(Color.red);
 throw new oracle.jbo.JboException("That's a bit low!");

How to Use Validation With ADF Swing Panels

Using Validation in the ADF Swing User Interface 8-3

 }
 }

 }

How to Use Validation With ADF Swing Panels

8-4 Developing Swing Applications for Oracle Application Development Framework

9

Working with an ADF Swing Login Dialog 9-1

9Working with an ADF Swing Login Dialog

This chapter describes how to create a login dialog and run the ADF Swing application
using the login dialog. The ADF Swing login dialog is optimized to work with the
ADF Business Components project.

This chapter includes the following sections:

■ Section 9.1, "About the ADF Swing Login Dialog"

■ Section 9.2, "How to Create a Login Dialog"

■ Section 9.3, "How to Run the Application Using the Login Dialog"

■ Section 9.4, "How to Run the Application Without the Login Dialog"

■ Section 9.5, "What You May Need to Know About Customizing the Login Dialog
Code"

■ Section 9.6, "How to Modify the Login Dialog to Work with a JDBC Connection"

9.1 About the ADF Swing Login Dialog
You can add a customizable login dialog to your user interface project that will require
a user name and password to run your ADF Swing application that you have created
for an ADF Business Components data model. Currently, the login dialog is not
supported for other business services.

By default the generated login dialog works with Oracle WebLogic Server
container-enforced authentication and uses SECURITY_PRINCIPAL and SECURITY_
CREDENTIALS properties. However, you can customize the generated file when you
prefer to bypass these security provider properties and work instead with a JDBC
connection that requires DB_USERNAME_PROPERTY and DB_PASSWORD_PROPERTY
properties.

You add the login dialog class to your user interface project when you generate a
frame to run your ADF Swing application. You can use two wizards in ADF Swing to
generate a JFrame with the appropriate ADF Swing bootstrap code:

■ Create ADF Swing Form wizard - click Generate a Login Dialog in the File Names
page

■ Create ADF Swing Empty Form dialog - click Generate a Login Dialog

When you run either of these with the generate login dialog option selected,
JDeveloper:

■ Modifies the application object constructor in the application bootstrap code to
create an instance of JCLoginDialog:

How to Create a Login Dialog

9-2 Developing Swing Applications for Oracle Application Development Framework

BindingContext ctx = new BindingContext();
ctx.put(DataControlFactory.APP_PARAM_ENV_INFO, new JCLoginDialog());

■ Adds the JCLoginDialog.java file to your user interface project, which
implements the EnvInfoProvider interface to provide the runtime login dialog.
The wizard will not overwrite an existing JCLoginDialog.java file of the same
name.

Because the generated login dialog (JCLoginDialog.java) implements the methods of
the interface, it gives you the starting code that you can modify. Using the
JCLoginDialog.java file, you can customize any aspect of the login dialog:

■ Its visual appearance by adding images and changing the layout

■ Configuration parameters to connect to the ADF Business Components
application module

■ Connection parameters to connect to the database

■ Specification of the number of times to retry connecting after failing to connect

9.2 How to Create a Login Dialog
You can use the Create ADF Swing Form wizard or the Create ADF Swing Empty
Form dialog to add a generated login dialog to your ADF Swing application. The
generated login dialog relies on the Oracle ADF security framework to authenticate
principal and credentials and therefore does not work with a JDBC connection.

To add the ADF Swing login dialog to your project:
1. In the Applications window, select the user interface project and launch the Create

ADF Swing Form wizard or the Create ADF Swing Empty Form dialog.

2. On the last page of the form wizard, select Generate a Login Dialog.

3. Click Finish to complete the wizard.

9.3 How to Run the Application Using the Login Dialog
To use the login dialog with Oracle WebLogic Server and ADF Security authentication,
you must run the Configure ADF Security wizard to configure the ADF Swing
application to use ADF security.

To configure the ADF Swing client to use ADF authentication:
1. In the Applications window, select the user interface project for which ADF

authentication is needed and choose Application > Secure > Configure ADF
Security.

2. In the ADF Security wizard, select ADF Authentication and Authorization.

3. Click Finish.

To enable the login provider for ADF Swing forms:
1. In the Applications window, right-click the user interface project and choose

Project Properties.

2. In the Project Properties dialog, click Libraries and Classpath to display the
current list of libraries associated with your user interface project.

3. Click Add Library.

What You May Need to Know About Customizing the Login Dialog Code

Working with an ADF Swing Login Dialog 9-3

4. In the list of libraries, locate BC4J Security and add it to the list.

Otherwise an error message will display when using the logon dialog. The BC4J
Security library contains the JAR files required to use ADF authentication within
the project.

5. Click OK to save the project settings.

6. If your user interface project requires access to ADF Business Components
deployed as an EJB session bean, you must grant read/write access to the users in
your group.

User accounts are stored in the jazn-data.xml file located in ./src/META-INF
directory relative to the ADF Swing application. One of the default names is
admin/welcome. To test your logon dialog, use one of the default names. Alternatively,
you can add your own user to jazn-data.xml.

The jazn-data.xml file encrypts the password the first time the server instance gets
started after an account is added. To make sure a password is encrypted, add an '!' in
front of the password. For example, to encrypt the password WELCOME, define it
as!WELCOME.

To work with the username/credential pair for your users, use the code in
Example 9–1 in your application.

Example 9–1 Code for Username/Credential Pairs

Hashtable h = panelBinding.getBindingContext().getDefaultDataControl().
getApplicationModule().getSession().getEnvironment();

String username = h.get(JboContext.SECURITY_PRINCIPAL);
String credential = h.get(JboContext.SECURITY_CREDENTIALS);
…

9.4 How to Run the Application Without the Login Dialog
When you run one of the ADF Swing wizards to generate an ADF Swing frame, but do
not generate a login dialog in your ADF Swing user interface project (by leaving
Generate a Login Dialog in the wizard unselected), you can still run the application
by selecting Save Password in the Edit Database Connection dialog. In this case, when
you run the application, JDeveloper displays the frame without prompting you for
login.

9.5 What You May Need to Know About Customizing the Login Dialog
Code

You generate the JCLoginDialog.java file in your user interface project when you
want to modify the starter code that implements the required methods of the
EnvInfoProvider interface. The interface is used in the ADF Business Components
connection strategy to provide the hooks to change login parameters at runtime.

The EnvInfoProvider interface expects the following methods to be implemented:

public void getInfo(String info, Object connEnvironment)

This method is called before connecting to the database. It allows you to update (and
return) the hashtable with all the connection parameters.

Public int getNumOfRetries()

How to Modify the Login Dialog to Work with a JDBC Connection

9-4 Developing Swing Applications for Oracle Application Development Framework

This method determines how many times the business components will attempt to
connect after failing. Each time it will obtain connection information from the
EnvInfoProvider.

9.6 How to Modify the Login Dialog to Work with a JDBC Connection
You can modify the generated ADF Swing login dialog to work with a JDBC
connection instead of Oracle ADF authentication.

To modify the generated ADF Swing login dialog for JDBC connections:
1. Add the login dialog to your user interface project using the Create ADF Swing

Form wizard or the Create ADF Swing Empty Form dialog.

For more information, see Section 9.2, "How to Create a Login Dialog.".

2. In the user interface project, double-click the JCLoginDialog.java file.

3. In the Java source editor, comment out the code as shown in Example 9–2.

Example 9–2 Commented Code in JCLoginDialog.java

/*
String securityEnforceStr =

((String)((Hashtable)connEnvironment).get(PropertyMetadata.ENV_SECURITY_
ENFORCE .pName));

if (securityEnforceStr == null
(securityEnforceStr != null && PropertyConstants.SECURITY_ENFORCE_

NONE.equals(securityEnforceStr)))
{
return null;

}
*/

4. Press Ctrl+F to display the Find dialog in the source editor.

5. Perform this search and replace operation:

Change JboContext.SECURITY_PRINCIPAL to Configuration.DB_USERNAME_
PROPERTY

6. Display the Find dialog again and perform another search and replace operation:

Change JboContext.SECURITY_CREDENTIALS to Configuration.DB_PASSWORD_
PROPERTY

7. Save the changes to JCLoginDialog.java.

8. If you saved the password when you created your data model project (the default),
you need to change these settings. In the Databases window, right-click the
connection and choose Properties.

Note: The method public void modifyInitialContext(Object
initialContext) has been used in previous releases, but is now
deprecated. You may implement it as an empty method.

Note: These changes appear twice within the file: once when reading
from the hash table and once when setting user name and password
from the fields in the login dialog.

How to Modify the Login Dialog to Work with a JDBC Connection

Working with an ADF Swing Login Dialog 9-5

9. In the Edit Database Connection dialog, delete the password and deselect Save
Password.

You are now ready to run your ADF Swing application. If you have a JDBC connection
that the bc4j.xcfg file names, the application will invoke the dialog automatically.

How to Modify the Login Dialog to Work with a JDBC Connection

9-6 Developing Swing Applications for Oracle Application Development Framework

10

Optimizing ADF Swing Application Runtime Performance 10-1

10Optimizing ADF Swing Application Runtime
Performance

This chapter describes how to improve ADF Swing application runtime performance.
It describes data synchronization techniques for optimum performance as well as a
technique to limit fetching of ADF Business Components attributes in ADF Swing
applications.

This chapter contains the following sections:

■ Section 10.1, "About Optimizing ADF Swing Application Runtime Performance"

■ Section 10.2, "How to Delay Updates to ADF Business Components from ADF
Swing"

■ Section 10.3, "What You May Need to Know About the Sync Mode Property"

■ Section 10.4, "How to Limit Fetching of ADF Business Components Attributes in
ADF Swing"

10.1 About Optimizing ADF Swing Application Runtime Performance
You can make method calls in your ADF Swing code to optimize the network traffic
between the client and the ADF Business Components business services in remote
deployment mode.

10.2 How to Delay Updates to ADF Business Components from ADF
Swing

Users who work with the design time tools in JDeveloper will by default obtain the
optimization described in this section.

However, you may need to perform these optimizations if you develop applications
outside of JDeveloper using the provided APIs for ADF Business Components and do
not use the JDeveloper design time to create the ADF Swing client.

You can improve network traffic at the expense of less frequent validation submitted
by an ADF Business Components client application to the remotely deployed business
components by setting the data synchronization mode of the ADF Business
Components application module to batch. Batch mode means attribute value changes
made by the user will be held on the client tier until the user performs an action that
forces the changes to be submitted. Also known as lazy sync mode, batch mode will
reduce the number of trips over the network, consequently validation of the attributes
by ADF Business Components will be delayed.

How to Delay Updates to ADF Business Components from ADF Swing

10-2 Developing Swing Applications for Oracle Application Development Framework

The data synchronization is "immediate" mode by default which applies changes as
soon as they are made and results in immediate validation of attribute values.

To change a client's synchronization setting within JDeveloper:
1. In the Applications window, change the display mode to Directory View, then

expand the user interface project and select the DataBindings.cpx file.

The DataBindings.cpx file is added to the adfmsrc folder of your user interface
project.

2. In the Structure window, expand dataControlUsages and select the desired data
control.

3. In the Properties window, expand the Other section and select the desired setting
from the syncMode field dropdown list.

To set the sync mode of an application module (outside of the JDeveloper
design time):
■ Call setSyncMode() on the ApplicationModuleImpl class:

yourAm.setSyncMode(ApplicationModule.SYNC_IMMEDIATE);

You can set it to SYNC_IMMEDIATE when you want to maximize control of attribute
validation by ADF Business Components at the expense of network optimization.
For example, in this mode, if the client sets ten attributes of an employee, your
code would call ten setAttribute() methods in order to provide validation for
each new value.

Or

yourAm.setSyncMode(ApplicationModule.SYNC_LAZY);

You can set it to SYNC_LAZY to optimize your application by reducing the number
of trips over the network. In this mode, the client-side attribute set requests are
buffered until the next time the client sends an event to ADF Business
Components, instead of when the data is changed. No further changes to your
application code are required. For example, if the client sets ten attributes of an
employee, your code would call the setAttribute() methods only after the
client:

– Changes the current row

– Calls the postChanges() or commit() methods

– Calls the sync method explicitly

– Calls the validate() method on the row

If you are inside a class that extends ApplicationModuleImpl, because it implements
the ApplicationModule interface, you can just add the code shown in Example 10–1.

Example 10–1 Code When Class Extends ApplicationModuleImpl

ApplicationModule yourAm = panelBinding.getApplication().getApplicationModule();
yourAm.setSyncMode(SYNC_LAZY);

Note: In local mode deployment (the client and ADF Business
Components reside in the same VM), sync mode is always
"immediate".

How to Limit Fetching of ADF Business Components Attributes in ADF Swing

Optimizing ADF Swing Application Runtime Performance 10-3

However, if you are in another class (for example, in the client code), then you need to
qualify the constant with the interface on which it appears, as shown in Example 10–2.

Example 10–2 Code When In Another Class

ApplicationModule yourAm = panelBinding.getApplication().getApplicationModule();
yourAm.setSyncMode(ApplicationModule.SYNC_LAZY);

You should call setSyncMode() in the ADF Swing bootstrap code, immediately after
the data control object is created. Or, you can call getApplication() and set the sync
mode in the constructor for your ADF Swing panel. The location you choose depends
upon whether you want the sync mode to persist for the entire application or to be
modified at the level of the panel.

10.3 What You May Need to Know About the Sync Mode Property
If you decide to set data synchronization programmatically on the ApplicationModule,
you should be aware of an interaction that will occur with the syncMode property
setting on the ADF Business Components data control. Only the following three valid
combinations exist.

■ am.setSyncMode(SYNC_IMMEDIATE) + syncMode property "Batch" -- yields Batch
mode. All updates will be delayed until next am.sync(), which needs to be called
by the application at an appropriate time by calling bindingContainer.refresh().
Alternatively, updates will occur automatically when Rollback and Commit
actions are initiated.

The SYNC_IMMEDIATE +"Batch" combination is the default in JDeveloper 10.1.2 and
later when you create an ADF BC project. This is the combination to use for 3-tier
ADF Swing applications in JDeveloper 10.1.2 and later.

■ am.setSyncMode(SYNC_LAZY) + syncMode property "Immediate" -- yields
Immediate mode and set attribute method calls will be delayed until the next row
navigation.

The SYNC_LAZY +"Immediate" combination is the setting for ADF Swing 9.0.5 and
earlier applications that are deployed in 3-tier mode and that you upgrade to
10.1.2 and later.

■ am.setSyncMode(SYNC_IMMEDIATE) + syncMode property "Immediate" -- yields
Immediate mode.

The SYNC_IMMEDIATE +"Immediate" combination is appropriate for applications
that have a very high level of interactivity with the database and/or where
immediate validation is required. In this case the application should be run in
immediate mode so that data is synchronized immediately. It is not recommended
for ADF Swing applications.

10.4 How to Limit Fetching of ADF Business Components Attributes in
ADF Swing

Users who work with the design time tools in JDeveloper will by default obtain the
optimization described in this section.

However, you may need to perform these optimizations if you develop applications
outside of JDeveloper using the provided APIs for ADF Business Components and do
not create view object metadata (XML files).

How to Limit Fetching of ADF Business Components Attributes in ADF Swing

10-4 Developing Swing Applications for Oracle Application Development Framework

You can optimize startup time for an ADF Business Components client application and
the remotely deployed business components by specifying the list of view object
attributes that your client uses. If you create a project without the metadata, by coding
to the API, you will want to add fetchAttributeProperties() to the bootstrap code
of the client forms with a list of only the attributes used by the form. Without this
method call, your client form would fetch all control hint properties (including the
attributes format and label for example) for all the attributes of the named view objects
in the application module, in a single network roundtrip.

For example, when you do not intend to use all the attributes of the ADF Swing form's
bound view object, with the fetchAttributeProperties() method, your ADF Swing
form fetches only the information required to layout your forms, while ignoring the
attributes you do not require.

To minimize retrieving of attribute properties (outside of the JDeveloper design
time):
■ Call fetchAttributeProperties() on the ApplicationModule:

The method takes as arguments a list of view object names and a list of attribute
names for each view object. The lists may include all or some of the attributes. If
your forms require all the attributes of a view object, you may specify null as the
attribute argument. In this case, the startup time improvement may not be
significant since your form uses all the attributes of the view object anyway.

You should call fetchAttributeProperties() in the ADF Swing bootstrap code,
as shown in Example 10–3, immediately after the data control object is created. In
the following example, the custom properties for three attributes of the first view
object and five attributes of the second view object are downloaded.

Example 10–3 Calling fetchAttributeProperties in ADF Swing Bootstrap Code

// bootstrap application
JUMetaObjectManager.setBaseErrorHandler(new JUErrorHandlerDlg());
JUMetaObjectManager mgr = JUMetaObjectManager.getJUMom();
mgr.setADF SwingDefFactory(null);
BindingContext ctx = new BindingContext();
ctx.put(DataControlFactory.APP_PARAM_ENV_INFO, new JUEnvInfoProvider());
ctx.setLocaleContext(new DefLocaleContext(null));
HashMap map = new HashMap(4);
map.put(DataControlFactory.APP_PARAMS_BINDING_CONTEXT, ctx);
mgr.loadCpx("DataBindings.cpx", map);
DCDataControl app = (DCDataControl)ctx.get("model_AppModuleDataControl");
app.setClientApp(DCDataControl.JCLIENT);
app.getApplicationModule().fetchAttributeProperties(new String[]
{"VO1", "VO2"}, new String[][]
{
{"VO1Attr1", "VO1Attr2", "VO1Attr3"},

Note: In local mode deployment (the client and ADF Business
Components reside in the same VM), the fetching of attribute
properties is not supported.

Note: When you use the ADF Swing Form or Panel wizards to
generate complete forms, the fetchAttributeProperties() method is
added for you.

How to Limit Fetching of ADF Business Components Attributes in ADF Swing

Optimizing ADF Swing Application Runtime Performance 10-5

{"VO2Attr1", "VO2Attr2", "VO2Attr3", "VO2Attr4", "VO2Attr5"}
}, null);

...

Calling fetchAttributeProperties() prevents property methods such as
getFormat() or getLabel() from being called on the ADF Business Components
attribute definition whenever the form is created.

How to Limit Fetching of ADF Business Components Attributes in ADF Swing

10-6 Developing Swing Applications for Oracle Application Development Framework

11

Using Java Web Start With ADF Swing Applications 11-1

11Using Java Web Start With ADF Swing
Applications

This chapter describes how to run ADF Swing applications with Java Web Start in
JDeveloper. Java Web Start is a tool for deploying the ADF Swing application to a web
server from which users can download and run the application on their client
machines.

This chapter contains the following sections:

■ Section 11.1, "About Working with Java Web Start"

■ Section 11.2, "How to Define ADF Business Components Runtime Properties"

■ Section 11.3, "How to Set Up Runtime Configuration Information"

■ Section 11.4, "How to Create a Java Web Start JNLP Definition"

■ Section 11.5, "What Happens When You Create a JNLP Definition"

■ Section 11.6, "How to Run ADF Swing Applications with Java Web Start in
JDeveloper"

11.1 About Working with Java Web Start
Java Web Start is an application deployment software that lets you maintain ADF
Swing applications on the web server. Once deployed, users can use Java Web Start to
download the application to run on their client machines. Before you deploy your
ADF Swing application or applet to the web server, you can simulate the user's
experience of running the application with Java Web Start within JDeveloper and
Integrated WebLogic Server. Then you can use JDeveloper's Java EE web deployment
process to move the entire production application to the web server.

Java Web Start is an application deployment technology. JDeveloper supports the
creation of the XML-based JNLP (Java Network Launching Protocol) definition upon
which the Java Web Start technology is based. With Java Web Start and the Create Java
Web Start File dialog in JDeveloper, you can set up ADF Swing applications and
applets to be maintained on the web server, but to be downloaded and run on client
machines.

To launch ADF Swing applications with Java Web Start in JDeveloper, you must
download and install the Java Web Start software at this web site
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
112.html. Users of your ADF Swing application will also be required to install the
software on their machines.

About Working with Java Web Start

11-2 Developing Swing Applications for Oracle Application Development Framework

11.1.1 Java Web Start Technology
Unlike the applet approach to deploying web-centric Java applications, Java Web Start
does not rely on the web browser to perform the downloading of the application JAR
files. Instead, Java Web Start downloads the application resources after the Java Web
Start JNLP descriptor is downloaded through the web browser. The JNLP descriptor
causes Java Web Start to launch and perform the actual downloading.

The technologies involved are:

■ Web server -- stores the JNLP-enabled JSP files, JAR files for client, middle tier, and
runtime libraries.

■ Application server (optional) -- needed only if the middle tier runs remotely with
respect to client. For example, in the case of EJB session beans.

■ Web browser (optional) -- downloads JSP page, which launches Java Web Start.
Java Web Start then downloads the dependent resources and launches the
application or applet. Java Web Start can also run independently without the
browser, using a command like:

javaws http://localhost/myapp/test.jnlp

■ Web browser --- optional, but convenient to launch Java Web Start and initiate the
download. Used when an HTML file contains a link to the JNLP-enabled JSP page.
The user follows the link, which behind the scenes causes Java Web Start to run.

With the Java Web Start software installed once on the user's machine, individual users
can run ADF Swing applications and applets simply by clicking on a web page link
(the appropriate files are generated by the ADF Swing dialog). Once the application is
running, the web browser can be closed, and the application continues to function.

If the application is not present on their computer, Java Web Start automatically
downloads all necessary files from the web server where the application libraries
reside. It then caches the files on the client computer so the application is always ready
to be relaunched anytime either from an icon on your desktop or from the browser
link. The most current version of the application is always presented to the user since
Java Web Start performs updates as needed.

11.1.2 Java Web Start and Integrated WebLogic Server
JDeveloper provides Integrated WebLogic Server. You can use it to simulate the
process of deploying the Web Application Archive and downloading for use with Java
Web Start. JDeveloper follows the Java EE deployment profile conventions for
archiving components that run on the client machine (simple archive) and components
that are deployed to the web server (Web Application Archive).

After you complete the Create Java Web Start File dialog, you need to run the Ant
build file ctbuild.xml to complete the JDeveloper setup and sign the JAR files.

Once you have signed your JAR files, you can launch the Java Web Start software in
JDeveloper using the generated.jsp file. Java Web Start downloads the components
identified by the .jnlp file. Another definition in the .jnlp file determines whether
the ADF Swing is to run as an application or a secure applet. Once you have launched

Note: You will not be required to deploy the generated client_
war.deploy profile to use Integrated WebLogic Server. JDeveloper
provides a default web.xml definition to locate the contents of the
public_html directory in your JDeveloper mywork folder.

How to Define ADF Business Components Runtime Properties

Using Java Web Start With ADF Swing Applications 11-3

Java Web Start and the downloading is complete, you can close your web browser and
continue to run the application or applet.

11.1.3 Java Web Start and Oracle WebLogic Server
When you are ready to deploy to the Oracle WebLogic Server, you must set up the
context roots for the various runtime libraries required by the ADF Swing application
using the previously generated ctbuild.xml archive file. These libraries are required
to run the application and they have to be accessible through HTTP. (One context root,
for example, is bc4j and this enables the bc4jmt.jar file to be downloaded as
http://mymachine:8888/bc4j/lib/bc4jmt.jar).

To deploy an ADF Swing application to the Oracle WebLogic Server you use the
generated client_war.deploy file to set up classes.

11.2 How to Define ADF Business Components Runtime Properties
When you run ADF Swing forms to access the model layer, your data model project
for ADF Business Components must contain a runtime configuration (bc4j.xcfg) file
that specifies the application module connection for your deployment scenario.

When you want to run your ADF Swing application within JDeveloper, the application
will use the default local configuration.

Later, you can edit the runtime configuration to update the connection information
when you change or create a new ADF Business Components deployment scenario.

To create a configuration:
1. In the Applications window, expand the model package in the Application

Sources folder for the data model project and double-click the application module
node.

2. In the overview editor, click the Configurations navigation tab and click Create
new configuration object.

3. In the Edit Configuration dialog, click the Application Module tab and choose the
middle-tier server type and a previously defined connection.

Click Help for further details.

To edit a configuration:
1. In the Applications window, expand the model package in the Application

Sources folder for the data model project and double-click the application module
node.

2. In the overview editor, click the Configurations navigation tab and then select the
configuration to edit from the list and click Edit.

3. In the Edit Configuration dialog, click the Application Module tab and choose the
middle-tier server type and a previously defined connection.

Note: If you do not create an application module runtime
configuration, the bc4j.xcfg file in your data model project defines a
default configuration that lets you run ADF Swing forms within
JDeveloper. The default configuration local is also called local mode
deployment because it assumes the business components and the ADF
Swing application run in the same VM.

How to Set Up Runtime Configuration Information

11-4 Developing Swing Applications for Oracle Application Development Framework

Click Help for further details.

4. If you changed the deployment platform specified by the configuration file by
choosing a different Middle Tier Server Type option in the Edit Configuration
dialog, then you must update the data model project to add the libraries for the
new platform:

■ Create a deployment archive for your data model project.

■ In the Applications window, expand the deployment archive folder.

■ To update the libraries, choose Deploy to projectname.jar on the Common
and Middle Tier archives.

When you want to refer to the new configuration in your user interface project, you
must edit the DataBindings.cpx file.

To reference a data model configuration in the ADF Swing client:
1. Locate the DataBindings.cpx node in the user interface project folder.

2. Select the DataBindings.cpx node and display the Structure window.

3. In the Structure window, expand the dataControlUsages node and select the
AppModuleDataControl node.

4. In the Properties window, expand the Other section and select the desired
configuration from Configuration field dropdown list.

11.3 How to Set Up Runtime Configuration Information
Before you use can run an ADF Swing application, you must set up runtime
configuration information for your application. Your application needs these files to
determine a runtime configuration:

■ An ADF Business Components configuration file (bc4j.xcfg) in your data model
project that specifies the application module connection and deployment scenario
for the business components.

■ A client data model definition file (DataBindings.cpx) in your user interface
project that specifies the application module and ADF Business Components
runtime configuration your ADF Swing forms will use.

There are two ways to use the runtime information:

■ When you want to test your ADF Swing application in JDeveloper

■ When you want to deploy your ADF Swing application for production

You will want to create a separate ADF Business Components configuration and client
data model definition for each case.

Note: Configurations are accessed through the ADF data control for
the application module, but the configuration information is recorded
in the bc4j.xcfg file. This file is hidden in the Applications window
and visible by right-clicking the application module and choosing
Configurations.

How to Create a Java Web Start JNLP Definition

Using Java Web Start With ADF Swing Applications 11-5

To set up runtime configuration information for ADF Swing applications:
1. Create the ADF Business Components runtime configuration (in the bc4j.xcfg

file) that specifies the application module connection and deployment scenario for
the business components.

For more information, see Section 11.2, "How to Define ADF Business Components
Runtime Properties."

2. Create an ADF Swing data model definition that specifies the application module
and business component runtime configuration your ADF Swing forms will use.

For more information, see Section 2.6, "How to Create a Client Data Model
Definition."

3. Run a ADF Swing wizard to generate ADF Swing forms or data panels.

4. In the Data Model page of the wizard, select the previously created client data
model definition.

For more information, see Section 2.1.1, "ADF Swing Design Time Wizards."

11.4 How to Create a Java Web Start JNLP Definition
You use the Create Java Web Start File dialog to create a JSP page that the user
conveniently runs from their web browser to dynamically generate the JNLP
definition. Users launch the JNLP file to initiate downloading of the application to
their client machine.

To create the JNLP definition for your application or applet:
1. In the Applications window, right-click the ADF Swing user interface project for

which you want to generate a JNLP definition and choose New > From Gallery.

2. In the New Gallery, expand Client Tier, select ADF Swing, and then Java Web
Start (JNLP) Files for ADF Swing, and click OK.

3. In the Create Java Web Start File dialog, specify the properties of the JNLP file and
click OK.

Note: You can also click New to create a data model definition based
on another application module and runtime configuration that you
select.

Note: Before you can use the Create Java Web Start File dialog, you
must set up runtime configuration information for your application.
During development, use the default local mode deployment
configuration to avoid potential security conflicts that occur in the
remote deployment scenario.

For more information, see Section 11.3, "How to Set Up Runtime
Configuration Information."

What Happens When You Create a JNLP Definition

11-6 Developing Swing Applications for Oracle Application Development Framework

Your ADF Swing user interface project contains:

■ webstart.jsp -- dynamically generate the JNLP file that describes the client and
ADF Business Components archive files and whether the ADF Swing is an applet
or an application.

■ webstartmt.jsp -- an extension to the first .jsp file. Dynamically generates the
JNLP file that describes the ADF Business Components runtime libraries required
for a specific deployment scenario.

■ ctbuild.xml file -- an Ant-based makefile that helps you to create signed archive
files for the client side and the ADF Business Components middle-tier classes.

■ client_war.deploy file -- use to generate the WAR file deployment profile.

■ web.xml file -- defines the deployment descriptors for the project files.

■ webstart.html file -- use to launch your application using Java Web Start.

If you want to require authentication of JAR files for added security when deploying
your application to Oracle WebLogic Server, open a command prompt window and
create the certificate:

keytool -export -alias yourkeyname -file mykey.cert

where yourkeyname is the name of the key that you will use to sign the JAR.

For more information about the Key and Certificate Management Tool, see
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/key
tool.html.

You are now ready to create the Web Archive before running the ADF Swing
application. For more information, see "How to Create an ADF Swing Web Archive for
Java Web Start" in Developing Applications with Oracle JDeveloper.

11.5 What Happens When You Create a JNLP Definition
To support downloading of files from the web server through Java Web Start, the
Create Java Web Start File dialog generates:

■ ctbuild.xml Ant build file -- use the build file to generate these application
resources:

– client.jar -- contains the ADF Swing application source files

– mymt.jar -- contains the ADF Business Components source files

■ client_war.deploy profile -- use to deploy the contents of the public_html
directory in your JDeveloper mywork folder. It therefore contains the client.jar,
mymt.jar, and either a static JNLP file or JSP files.

Additionally, the JNLP definition is generated dynamically through a .jsp file:

Note: If you are planning to run the ADF Swing application using
EJB as the business service, then you must replace the weblogic.jar
reference in the JNLP definition with wlclient.jar instead. Edit the
JNLP definition in the files described below to make this substitution.
If you attempt to run the ADF Swing application with the
downloaded weblogic.jar file, you may see the
oracle.jbo.JboException: JBO-29000: STRINGMANAGER: Message
file: 'oracle.jbo.CSMessageBundle' not found. exception.

How to Run ADF Swing Applications with Java Web Start in JDeveloper

Using Java Web Start With ADF Swing Applications 11-7

■ webstart.jsp -- lets you dynamically generate the JNLP file that describes the
client and ADF Business Components archive files and whether the ADF Swing is
an applet or an application.

■ webstartmt.jsp -- an extension to the first .jsp file. Dynamically generates the
JNLP file that describes the ADF Business Components runtime libraries required
for a specific deployment scenario.

11.6 How to Run ADF Swing Applications with Java Web Start in
JDeveloper

Before you deploy your ADF Swing application or applet to a production web server,
you can use Integrated WebLogic Server in JDeveloper to simulate the user's
experience of running the application with the Java Web Start software.

You must create a deployment profile to set up Integrated WebLogic Server with your
application libraries and JAR files. Java Web Start relies on the JNLP file that you
generate to identify which files to download and how to launch the application. For
more information, see Section 11.4, "How to Create a Java Web Start JNLP Definition."

Before you begin:
1. Set up runtime configuration information for the business components

deployment scenario you choose.

For more information, see Section 11.3, "How to Set Up Runtime Configuration
Information."

2. Archive the application components using the ctbuild.xml Ant makefile
generated by the ADF Swing Java Web Start wizard.

For more information, see "How to Create an ADF Swing Web Archive for Java
Web Start" in Developing Applications with Oracle JDeveloper.

To run the ADF Swing application using Java Web Start:
1. Install the Java Web Start software on your machine.

2. In your user interface project, right-click the local.html file and choose Run
local.html to launch your web browser with this page.

3. Click the Launch ADF Swing Project link to run your application using the Java
Web Start software.

Note: You cannot debug a ADF Swing application in JDeveloper
while running with Java Web Start.

Note: Choose the default local runtime configuration when you just
want to test the business components using local-mode deployment.
This option uses the same VM to run the ADF Business Components
and ADF Swing libraries.

Note: The build file generates two signed archive files in your
project's public_html directory: client.jar and mymt.jar.

How to Run ADF Swing Applications with Java Web Start in JDeveloper

11-8 Developing Swing Applications for Oracle Application Development Framework

4. You can close your browser once Java Web Start completes the download and
launches the application. Java Web Start lets you run both applications and secure
applets.

The next time you run the application, Java Web Start will download only those
source files or libraries that have changed from the previous download.

Note: If you attempt to run the ADF Swing application and have
created a JNLP definition for Oracle WebLogic Server deployment,
using weblogic.jar, you may see the oracle.jbo.JboException:
JBO-29000: STRINGMANAGER: Message file:
'oracle.jbo.CSMessageBundle' not found. exception. This
exception occurs when running Java Web Start on Oracle WebLogic
Server with EJB as the business service. You must replace the
weblogic.jar reference in the JNLP definition with wlclient.jar
instead. You can edit the JNLP definition to make this substitution.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to ADF Swing Applications
	1.1 About ADF Swing
	1.1.1 Advantages of Using ADF Swing
	1.1.2 ADF Swing Architecture
	1.1.2.1 Swing MVC
	1.1.2.2 Oracle Application Development Framework

	1.2 Creating a Desktop Application That Works with Oracle ADF
	1.3 What Happens When You Create a Desktop Application with ADF Swing
	1.4 Connecting to Business Components
	1.4.1 How to Modify the Configuration Name
	1.4.2 How to Modify the Configuration File
	1.4.3 What You May Need to Know About the Client Application Libraries

	2 Creating ADF Swing Forms and Panels
	2.1 About Creating ADF Swing Forms and Panels
	2.1.1 ADF Swing Design Time Wizards
	2.1.2 A Typical ADF Swing Form
	2.1.3 Navigation in an ADF Swing Form

	2.2 Process for Creating ADF Swing Panels and Forms
	2.3 What Happens When You Create an ADF Swing Form
	2.4 What You May Need to Know About ADF Swing Code Generation
	2.5 What You May Need to Know About Business Components Attribute Settings
	2.6 How to Create a Client Data Model Definition
	2.7 How to Create a Single Table ADF Swing Form
	2.8 How to Create a Master-Detail ADF Swing Form
	2.9 How to Create an Empty ADF Swing Form
	2.10 How to Create an Empty ADF Swing Panel
	2.11 How to Create ADF Swing Edit Forms from the Data Controls Panel
	2.12 How to Create ADF Swing Forms from the Databases Window

	3 Modifying ADF Swing Forms and Panels
	3.1 About Modifying ADF Swing Forms and Panels
	3.1.1 Value Bindings for the Entire Collection or Data Object
	3.1.2 Value Bindings for Individual Data Object Attribute Values

	3.2 How to Assemble ADF Swing Forms Using the Java Visual Editor
	3.3 How to Insert UI Components into ADF Swing Panels
	3.4 How to Change Client Data Model References
	3.5 How to Open an ADF Swing Form with an Action Handler
	3.6 How to Drop Data Panels Onto an Empty ADF Swing Form
	3.7 How to Lay Out Data Panels in an Empty Swing Form
	3.8 Binding a Method with Parameters in an ADF Swing Form
	3.8.1 How to Populate the Data Controls Panel with JavaBean Methods
	3.8.2 How to Create an ADF Swing Form with Method Bindings
	3.8.3 What You May Need to Know About Displaying a Method Result Using a JTable Component

	4 Working with Data Binding
	4.1 About Working With Data Binding
	4.1.1 ADF Swing Containers
	4.1.2 Standard Java Containers

	4.2 Navigating the UI Using ADF Swing Controls
	4.2.1 How to Navigate Using the Navigation Bar
	4.2.2 How to Navigate Using Tree Navigation

	4.3 What You May Need to Know About the ADF Swing Data Context
	4.4 What Happens at Runtime: How Panel Bindings Function
	4.5 What You May Need to Know About the ADF Swing Bootstrap Code
	4.6 How to Display Object Attributes in a Databound Text Field
	4.7 How to Create a New Row in a Databound Table or Tree Control
	4.8 How to Sort Columns in a Databound Table
	4.9 What Happens At Runtime: How Control Bindings Function
	4.9.1 Populating Controls with Data
	4.9.2 Updating Data through Controls

	5 Customizing ADF Bindings
	5.1 About Customizing ADF Bindings
	5.2 How to Customize ADF Bindings for ADF Swing Panels
	5.3 How to Customize an ADF Action Binding
	5.4 How to Customize an ADF Attribute Binding
	5.5 How to Customize an ADF Array Combobox Binding
	5.6 How to Customize an ADF Boolean Binding
	5.7 How to Customize an ADF Bounded Range Binding
	5.8 How to Customize an ADF Formatted Text Field Binding
	5.9 How to Customize an ADF Iterator Binding
	5.10 How to Customize an ADF List Binding
	5.11 How to Customize an ADF List Binding in Enumeration Mode
	5.12 How to Customize an ADF List Binding in LOV Mode
	5.13 How to Customize an ADF LOV Button Binding
	5.14 What You May Need to Know About the LOV Dialog
	5.15 How to Customize an ADF Scroll Binding
	5.16 How to Customize an ADF Table Binding
	5.17 How to Customize an ADF Tree Binding

	6 Displaying Graphs in ADF Swing Panels
	6.1 About Graphs in ADF Swing Panels
	6.2 How to Create a Graph for an ADF Swing Panel
	6.3 What Happens When You Create a Graph Component
	6.4 How to Customize the Graph Component
	6.5 How to Change Graph Data

	7 Working with ADF Swing Controls
	7.1 About ADF Swing-Specific Controls
	7.2 How to Use the JUArrayComboBox Control
	7.3 How to Use the JUImage Control
	7.4 What You May Need to Know About Multimedia in ADF Swing Applications
	7.5 How to Use the JULabel Control
	7.6 How to Use the Label For Control
	7.7 How to Use the JULovEditButton Control
	7.8 How to Use the JUNavigationBar Control
	7.9 How to Use the JUNavigationBar Control with Find Mode
	7.10 How to Disable Find Mode for ADF Swing Controls in a Panel
	7.11 What You May Need to Know About Iterator Bindings in Find Mode
	7.12 How to Use the JURadioButtonGroupPanel Control
	7.13 How to Use the JUShuttlePanel Control
	7.14 How to Use the JUStatusBar Control

	8 Using Validation in the ADF Swing User Interface
	8.1 About Validating Events
	8.2 How to Use Validation With ADF Control Bindings
	8.3 How to Use Validation With ADF Swing Panels

	9 Working with an ADF Swing Login Dialog
	9.1 About the ADF Swing Login Dialog
	9.2 How to Create a Login Dialog
	9.3 How to Run the Application Using the Login Dialog
	9.4 How to Run the Application Without the Login Dialog
	9.5 What You May Need to Know About Customizing the Login Dialog Code
	9.6 How to Modify the Login Dialog to Work with a JDBC Connection

	10 Optimizing ADF Swing Application Runtime Performance
	10.1 About Optimizing ADF Swing Application Runtime Performance
	10.2 How to Delay Updates to ADF Business Components from ADF Swing
	10.3 What You May Need to Know About the Sync Mode Property
	10.4 How to Limit Fetching of ADF Business Components Attributes in ADF Swing

	11 Using Java Web Start With ADF Swing Applications
	11.1 About Working with Java Web Start
	11.1.1 Java Web Start Technology
	11.1.2 Java Web Start and Integrated WebLogic Server
	11.1.3 Java Web Start and Oracle WebLogic Server

	11.2 How to Define ADF Business Components Runtime Properties
	11.3 How to Set Up Runtime Configuration Information
	11.4 How to Create a Java Web Start JNLP Definition
	11.5 What Happens When You Create a JNLP Definition
	11.6 How to Run ADF Swing Applications with Java Web Start in JDeveloper

