
[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Applications with Oracle ADF Desktop Integration

12c (12.1.3)

E41269-01

May 2014

Documentation for Oracle ADF Desktop Integration developers that describes how to extend the functionality provided by a Fusion web application to desktop applications.

Oracle Fusion Middleware Developing Applications with Oracle ADF Desktop Integration 12c (12.1.3)

E41269-01

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Himanshu Marathe

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide

	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in this Document for 12c (12.1.3)

1 Introduction to ADF Desktop Integration

	1.1 About ADF Desktop Integration
	1.2 About ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 Advantages of Integrating Excel with a Fusion Web Application

2 Introduction to the ADF Desktop Integration Sample Application

	2.1 About the Summit Sample Application for ADF Desktop Integration
	2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration
	2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.2 Downloading Integrated Excel Workbooks

	2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration
	2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.4.2 Downloading Data Rows
	2.4.3 Modify Customers and Warehouses Information in the Workbooks
	2.4.4 Upload Modified Information to the Fusion Web Application

3 Setting Up Your Development Environment

	3.1 About Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Configuring Excel to work with ADF Desktop Integration
	3.4 Installing ADF Desktop Integration
	3.4.1 How to Set Up ADF Desktop Integration

	3.5 Removing ADF Desktop Integration
	3.6 Upgrading ADF Desktop Integration
	3.6.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop Integration

	3.7 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration
	3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

4 Preparing Your Integrated Excel Workbook

	4.1 About Preparing Your Integrated Excel Workbooks
	4.2 Adding an Integrated Excel Workbook to a Fusion Web Application
	4.2.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
	4.2.2 How to Configure a New Integrated Excel Workbook
	4.2.3 How to Add Additional Worksheets to an Integrated Excel Workbook
	4.2.4 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web Application from JDeveloper
	4.2.4.1 Fusion Web Application is Deployed on Oracle WebLogic Server

	4.3 Working with Page Definition Files for an Integrated Excel Workbook
	4.3.1 How to Create ADF Desktop Integration Page Definition File
	4.3.2 What Happens When You Create a Page Definition File
	4.3.3 How to Reload a Page Definition File in an Excel Workbook
	4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.4 Enabling ADF Desktop Integration Manually
	4.4.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
	4.4.2 How to Enable ADF Desktop Integration in an Existing Workbook
	4.4.3 How to Manually Configure a New Integrated Excel Workbook
	4.4.4 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project
	4.4.5 Adding ADF Library Web Application Support

5 Getting Started with the Development Tools

	5.1 About Development Tools
	5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
	5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

	5.2 Designer Ribbon Tab
	5.3 ADF Desktop Integration Designer Task Pane
	5.4 Using the Bindings Palette
	5.5 Using the Components Palette
	5.6 Using the Property Inspector
	5.7 Using the Binding ID Picker
	5.8 Using the Expression Builder
	5.9 Using the Web Page Picker
	5.10 Using the File System Folder Picker
	5.11 Using the Page Definition Picker
	5.12 Using the Collection Editors
	5.13 Using the Cell Context Menu
	5.14 Removing ADF Desktop Integration Components
	5.15 Exporting and Importing Excel Workbook Integration Metadata
	5.15.1 How to Export Workbook Integration Metadata
	5.15.2 How to Import Workbook Integration Metadata
	5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook Integration Metadata

6 Working with ADF Desktop Integration Form-Type Components

	6.1 About ADF Desktop Integration Form-Type Components
	6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
	6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

	6.2 Inserting an ADF Button Component
	6.3 Inserting an ADF Label Component
	6.4 Inserting an ADF Input Text Component
	6.5 Inserting an ADF Output Text Component
	6.6 Inserting an ADF List of Values Component
	6.7 Inserting an ADF Image Component
	6.8 Inserting Error Components
	6.8.1 What You May Need to Know About Error Components

	6.9 Displaying Tooltips in ADF Desktop Integration Form-Type Components
	6.9.1 What You May Need to Know About Tooltips

	6.10 Displaying Output from a Managed Bean in an ADF Component
	6.10.1 How to Display Output from a Managed Bean
	6.10.2 What Happens at Runtime: How an ADF Component Displays Output from a Managed Bean

	6.11 Displaying Concatenated or Calculated Data in Components
	6.11.1 How to Configure a Component to Display Calculated Data

	6.12 Using Navigation Buttons

7 Working with ADF Desktop Integration Table-Type Components

	7.1 About ADF Desktop Integration Table-Type Components
	7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
	7.1.2 Additional Functionality of Table-Type Components

	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting ADF Table Component into Excel Worksheet
	7.3.1 How to Insert ADF Table Component
	7.3.2 How to Add a Column in an ADF Table Component

	7.4 Configuring Oracle ADF Component to Download Data to an ADF Table Component
	7.4.1 How to Configure an ADF Component to Download Data to an ADF Table Component
	7.4.2 What Happens at Runtime: How the ADF Table Component Downloads Data

	7.5 Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component
	7.5.1 What Happens at Runtime: Download Action is Invoked
	7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
	7.5.3 What You May Need to Know About DownloadForInsert Action

	7.6 Configuring an ADF Table Component to Update Existing Data
	7.6.1 How to Configure an ADF Table Component to Update Data
	7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

	7.7 Configuring an ADF Table Component to Insert Data
	7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's Operations

	7.8 Configuring an ADF Component to Upload Changes from an ADF Table Component
	7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During Upload
	7.8.4 What Happens at Runtime: Upload Failure
	7.8.5 How to Create a Custom Upload Dialog
	7.8.6 What Happens at Runtime: Custom Upload Dialog

	7.9 Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action
	7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
	7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
	7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With UploadAllOrNothing Action

	7.10 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application

	7.11 Batch Processing in an ADF Table Component
	7.11.1 How to Configure Batch Options for an ADF Table Component
	7.11.2 Row Flagging in an ADF Table Component
	7.11.3 Troubleshooting Errors While Uploading Data

	7.12 Special Columns in the ADF Table Component
	7.13 Configuring ADF Table Component Key Column
	7.13.1 How to Configure the Key Column
	7.13.2 How to Manually Add the Key Column At Design Time

	7.14 Creating a List of Values in an ADF Table Component Column
	7.14.1 How to Create a List of Values in an ADF Table Component Column
	7.14.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

	7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.16 Adding a Dynamic Column to Your ADF Table Component
	7.16.1 How to Configure a Dynamic Column
	7.16.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic Column
	7.16.3 How to Specify Header Labels for Dynamic Columns
	7.16.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

	7.17 Configuring Column Widths in an ADF Table Component
	7.17.1 How to Configure an ADF Table Component to Resize Columns at Runtime
	7.17.2 How to Configure an Action Set to Resize Columns of an ADF Table Component at Runtime
	7.17.3 What Happens at Runtime: How the ADF Table Columns are Resized
	7.17.4 What You May Need to Know About Resizing Columns of an ADF Table Component at Runtime

	7.18 Displaying Tooltips in ADF Desktop Integration Table-Type Components
	7.18.1 What You May Need to Know About Tooltips for Table Columns

	7.19 Creating an ADF Read-Only Table Component
	7.19.1 How to Insert an ADF Read-only Table Component
	7.19.2 How to Manually Add a Column to the ADF Read-only Table Component

	7.20 Limiting the Number of Rows Your Table-Type Component Downloads
	7.20.1 How to Limit the Number of Rows a Component Downloads
	7.20.2 What Happens at Runtime: How the RowLimit Property Works

	7.21 Clearing the Values of Cached Attributes in an ADF Table Component
	7.21.1 How to Clear the Values of Cached Attributes in an ADF Table Component
	7.21.2 What Happens at Runtime: How the ADF Table Component Clears Cached Values

	7.22 Tracking Changes in an ADF Table Component
	7.23 Evaluating EL Expression for ReadOnly Properties
	7.23.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
	7.23.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or Tracking Changes
	7.23.3 What You May Need to Know About Evaluating EL Expression While Uploading Data or Tracking Changes

	7.24 Using Explicit Worksheet Setup Action
	7.24.1 How to Configure Explicit Worksheet Setup Action
	7.24.2 What You May Need to Know About Explicit Worksheet Setup Action

8 Adding Interactivity to Your Integrated Excel Workbook

	8.1 About Adding Interactivity to an Integrated Excel Workbook
	8.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
	8.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

	8.2 Using Action Sets
	8.2.1 How to Invoke a Method Action Binding in an Action Set
	8.2.2 How to Invoke Component Actions in an Action Set
	8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	8.2.3.1 Verifying an Action Set Invokes the Correct Component Action
	8.2.3.2 Invoking Action Sets in a Disconnected Workbook

	8.2.4 How to Invoke an Action Set from a Worksheet Event
	8.2.5 How to Display a Status Message While an Action Set Runs
	8.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
	8.2.7 What You May Need to Know About Progress Bars
	8.2.8 What You May Need to Know About Canceling an Action
	8.2.9 How to Provide an Alert After the Invocation of an Action Set
	8.2.10 What Happens at Runtime: How the Action Set Provides an Alert
	8.2.11 How to Configure Error Handling for an Action Set
	8.2.12 How to Invoke a Confirmation Action in an Action Set
	8.2.13 What Happens at Runtime: How the Action Set Provides a Confirmation

	8.3 Configuring the Runtime Ribbon Tab
	8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab
	8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab

	8.4 Displaying Web Pages from a Fusion Web Application
	8.4.1 How to Display a Web Page in a Popup Dialog
	8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
	8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web Application
	8.4.3.1 Keeping an Integrated Excel Workbook and a Fusion Web Application Synchronized
	8.4.3.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion Web Application Pages
	8.4.3.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame Sharing

	8.5 Adding a Custom Popup Picker Dialog to an ADF Table Column
	8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook
	8.6.1 How to Create a Search Form in an Integrated Excel Workbook
	8.6.2 How to Create a Search Form using a Web Page in an Integrated Excel Workbook

	8.7 Creating a Form in an Integrated Excel Workbook
	8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
	8.8.2 What Happens at Runtime: How the Excel Worksheet Renders a Dependent List of Values
	8.8.3 How to Create a Dependent List of Values in an ADF Table Component's Columns
	8.8.4 What Happens at Runtime: How the ADF Table Component Column Renders a Dependent List of Values
	8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column
	8.8.6 What Happens at Runtime: How the Excel Worksheet and the ADF Table Component Column Render a Dependent List of Values

	8.9 Using EL Expression to Generate an Excel Formula
	8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
	8.9.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression

	8.10 Using Calculated Cells in an Integrated Excel Workbook
	8.10.1 How to Calculate the Sum of a Table-Type Component Column
	8.10.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type Component Column

	8.11 Using Macros in an Integrated Excel Workbook

9 Configuring the Appearance of an Integrated Excel Workbook

	9.1 About Configuring the Appearance of an Integrated Excel Workbook
	9.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
	9.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook

	9.2 Working with Styles
	9.2.1 Predefined Styles in ADF Desktop Integration
	9.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
	9.2.3 How to Apply a Style to an Oracle ADF Component
	9.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

	9.3 Applying Styles Dynamically Using EL Expressions
	9.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
	9.3.2 How to Write an EL Expression That Applies a Style at Runtime
	9.3.3 What You May Need to Know About EL Expressions That Apply Styles

	9.4 Using Labels in an Integrated Excel Workbook
	9.4.1 Retrieving the Values of String Keys from a Resource Bundle
	9.4.2 Retrieving the Values of Attribute Control Hints
	9.4.3 How an Integrated Excel Workbook Evaluates a Label Property

	9.5 Using Styles to Improve the User Experience
	9.5.1 Using ADF Label Components to improve the User Experience
	9.5.2 What You May Need to Know About the Read-Only Property in an Integrated Excel Workbook

	9.6 Branding Your Integrated Excel Workbook
	9.6.1 How to Brand an Integrated Excel Workbook
	9.6.2 What Happens at Runtime: the BrandingItems Group of Properties

	9.7 Using Worksheet Protection
	9.7.1 How to Enable Worksheet Protection
	9.7.2 What Happens at Runtime: How the Locked Property Works
	9.7.3 What You May Need to Know About Worksheet Protection

10 Internationalizing Your Integrated Excel Workbook

	10.1 About Internationalizing Your Integrated Excel Workbook
	10.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
	10.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

	10.2 Using Resource Bundles in an Integrated Excel Workbook
	10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	10.2.2 How to Override Resources That Are Not Configurable
	10.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
	10.2.4 What You May Need to Know About Resource Bundles
	10.2.4.1 Resource Bundle Types
	10.2.4.2 Caching of Resource Bundles in an Integrated Excel Workbook
	10.2.4.3 EL Expression Syntax for Resource Bundles

	10.3 Localization in ADF Desktop Integration
	10.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
	10.3.1.1 How to Create a User Preference Handler
	10.3.1.2 How to Register the User Preference Handler

11 Securing Your Integrated Excel Workbook

	11.1 About Security In Your Integrated Excel Workbook
	11.1.1 Integrated Excel Workbook Security Use Cases and Examples
	11.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application

	11.2 Authenticating the Excel Workbook User
	11.2.1 What Happens at Runtime: How the Login Method Is Invoked
	11.2.2 What Happens at Runtime: How the Logout Method Is Invoked

	11.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
	11.3.1 How to Reset the Workbook ID
	11.3.2 What Happens When the Metadata Tamper-Check Is Performed

	11.4 What You May Need to Know About Securing an Integrated Excel Workbook
	11.5 Authorizing the Excel Workbook User
	11.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet

12 Adding Validation to an Integrated Excel Workbook

	12.1 About Adding Validation to an Integrated Excel Workbook
	12.1.1 Integrated Excel Workbook Validation Use Cases and Examples
	12.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

	12.2 Providing Server-Side Validation for an Integrated Excel Workbook
	12.3 Providing Client-Side Validation for an Integrated Excel Workbook
	12.4 Error Reporting in an Integrated Excel Workbook
	12.4.1 Error Reporting Using EL Expressions
	12.4.2 Error Reporting Using Component Actions

	12.5 Providing a Row-by-Row Status on an ADF Table Component
	12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	12.7 Handling Data Conflicts When Uploading Data from a Workbook
	12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	12.7.2 What Happens at Runtime: How Data Conflicts Are Handled

13 Testing Your Integrated Excel Workbook

	13.1 About Testing Your Integrated Excel Workbook
	13.1.1 Integrated Excel Workbook Testing Use Cases and Examples
	13.1.2 Additional Functionality of Testing an Integrated Excel Workbook

	13.2 Testing Your Fusion Web Application
	13.3 Validating the Integrated Excel Workbook Configuration
	13.3.1 How to Validate the Integrated Excel Workbook Configuration
	13.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
	13.3.3 How to Fix Validation Failures
	13.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at Runtime

	13.4 Testing Your Integrated Excel Workbook
	13.5 Running a Server Ping Test

14 Deploying Your Integrated Excel Workbook

	14.1 About Deploying Your Integrated Excel Workbook
	14.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
	14.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

	14.2 Making ADF Desktop Integration Available to End Users
	14.3 Publishing Your Integrated Excel Workbook
	14.3.1 How to Publish an Integrated Excel Workbook from Excel
	14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
	14.3.3 What Happens When You Publish an Integrated Excel Workbook

	14.4 Deploying a Published Workbook with Your Fusion Web Application
	14.4.1 What Happens at Runtime: Deploying a Published Workbook

	14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	14.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
	14.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook
	14.5.3 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	14.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web Application to the Integrated Excel Workbook

	14.6 Customizing Workbook Integration Metadata at Runtime
	14.6.1 How to Enable Workbook Customization at Runtime
	14.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized
	14.6.3 What You May Need to Know About Customizing Workbook Integration Metadata

15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode

	15.1 About Disconnected Workbooks
	15.1.1 Disconnected Workbooks Use Cases and Examples
	15.1.2 Additional Functionality for Disconnected Workbooks

	15.2 Restore Server Data Context Between Sessions
	15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	15.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data Context

	15.3 Caching of Static Information in an Integrated Excel Workbook
	15.4 Caching Lists of Values for Use in Disconnected Mode

A ADF Desktop Integration Component Properties and Actions

	A.1 Frequently Used Properties in the ADF Desktop Integration
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Output Text (Worksheet Errors)
	A.5 ADF Output Text (Table Errors)
	A.6 ADF Label Component Properties
	A.7 ADF List of Values Component Properties
	A.8 ADF Image Component Properties
	A.9 TreeNodeList Subcomponent Properties
	A.10 ModelDrivenColumnComponent Subcomponent Properties
	A.11 ADF Button Component Properties
	A.12 ADF Table Component Properties and Actions
	A.12.1 ADF Table Component Properties
	A.12.2 ADF Table Component Column Properties
	A.12.3 ADF Table Component Actions

	A.13 ADF Read-only Table Component Properties and Actions
	A.14 Action Set Properties
	A.14.1 Confirmation Action Properties
	A.14.2 Dialog Action Properties

	A.15 Workbook Actions and Properties
	A.16 Worksheet Actions and Properties

B ADF Desktop Integration EL Expressions

	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for ADF Desktop Integration Components
	B.3 Attribute Control Hints in ADF Desktop Integration

C Troubleshooting an Integrated Excel Workbook

	C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
	C.2 Verifying End-User Authentication for Integrated Excel Workbooks
	C.3 Generating Log Files for an Integrated Excel Workbook
	C.3.1 About Server-Side Logging
	C.3.2 About Client-Side Logging
	C.3.2.1 How to Configure ADF Desktop Integration to Save Logs
	C.3.2.2 About the ADF Desktop Integration Configuration File
	C.3.2.3 How to Configure Logging Using User Environment Variables
	C.3.2.4 What You May Need to Know About the adfdi-common Object

	C.4 Common ADF Desktop Integration Error Messages and Problems

D ADF Desktop Integration Settings in the Web Application Deployment Descriptor

	D.1 Configuring the ADF Desktop Integration Servlet
	D.2 Configuring the ADF Desktop Integration Excel Download Filter
	D.3 Examples in a Deployment Descriptor File

E String Keys in the Overridable Resources

F Java Data Types Supported By ADF Desktop Integration

G Using the ADF Desktop Integration Model API

	G.1 About the Temporary Row Object
	G.2 About ADF Desktop Integration Model API
	G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	G.3 ADF Desktop Integration Model API Classes and Methods
	G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	G.3.1.1 The getAdfdiTempChildRow Method
	G.3.1.2 The getAdfdiTempRowForView Method
	G.3.1.3 The getChildViewDef Method

H End User Actions

	H.1 Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration
	H.1.1 How to Install Runtime Edition of ADF Desktop Integration
	H.1.2 How to Remove the Runtime Edition of ADF Desktop Integration
	H.1.3 How to Upgrade the Runtime Edition of ADF Desktop Integration On a Local System

	H.2 Importing Data from a Non-Integrated Excel Worksheet
	H.3 Removing Personal Information
	H.4 Editing an Integrated Excel Workbook at Runtime
	H.5 Limitations of an Integrated Excel Workbook at Runtime
	H.6 Using An Integrated Excel Workbook
	H.6.1 How to Insert a Row in an ADF Table Component of an Integrated Excel Workbook
	H.6.2 How to Sort ADF Table Data in an Integrated Excel Workbook
	H.6.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

	H.7 Handling Time Zone Conversion

Preface

Welcome to the Developing Applications with Oracle ADF Desktop Integration.

Audience

This manual is intended for enterprise developers who configure desktop applications to integrate with the Oracle Application Development Framework (Oracle ADF).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following:

	
Developing Fusion Web Applications with Oracle Application Development Framework

	
Developing Web User Interfaces with Oracle ADF Faces

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements (for example, menus and menu items, buttons, tabs, dialog controls), including options that you select.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates language and syntax elements, directory and file names, URLs, text that appears on the screen, or text that you enter.

What's New in This Guide

The following topics introduce the new and changed features of ADF Desktop Integration and other significant changes that are described in this guide, and provides pointers to additional information.

For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html.

New and Changed Features for 12c (12.1.3)

Oracle ADF Desktop Integration 12c (12.1.3) includes the following new and changed development features for this document.

	
New property, AllowCancel, for Status message. For more information, see Section 8.2.5, "How to Display a Status Message While an Action Set Runs."

	
New component, ADF Image component, to add images to integrated Excel workbooks. For more information, see Section 6.7, "Inserting an ADF Image Component" and Section A.8, "ADF Image Component Properties."

	
New properties (ResizeMode and ResizeColumnsMode) and a new action (ResizeColumns) for ADF Table components. For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

	
New components, ADF Output Text (Worksheet Errors) and ADF Output Text (Table Errors), to display worksheet and table error messages. For more information, see Section 6.8, "Inserting Error Components."

	
New property, Tooltip, to display tooltips for Form-type and Table-type components. For more information, see Section 6.9, "Displaying Tooltips in ADF Desktop Integration Form-Type Components" and Section 7.18, "Displaying Tooltips in ADF Desktop Integration Table-Type Components."

	
Customize workbook integration metadata at runtime. For more information, see Section 14.6, "Customizing Workbook Integration Metadata at Runtime."

Other Significant Changes in this Document for 12c (12.1.3)

For 12c (12.1.3), this document has been updated in several ways, to include corrections and clarifications. In addition, the following significant changes or additions have occurred in these sections:

	
Updated Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata" to add a note that tamper-check is not performed for customization-enabled workbooks.

	
Updated Section 7.8.2, "What Happens at Runtime: How the ADF Table Component Uploads Data" and Section 7.10.2, "What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application" to add a note that when the DeleteFlaggedRows action is invoked on an ADF Table that has an Excel filter applied, the filter's criteria is cleared to show any hidden Excel worksheet rows.

	
Updated Section 14.3, "Publishing Your Integrated Excel Workbook" to add a note that customization-enabled workbooks can only be published to a target location that is under the public_html directory.

	
Updated Section 14.5.2, "How to Configure Parameters Properties in the Integrated Excel Workbook" to add information about Workbook Parameter dialog that prompts you to enter test parameter values while entering test mode.

1 Introduction to ADF Desktop Integration

This chapter introduces ADF Desktop Integration and provides an overview of the framework. The chapter also describes the advantages of integrating Microsoft Excel with a Fusion web application.

This chapter includes the following sections:

	
Section 1.1, "About ADF Desktop Integration"

	
Section 1.2, "About ADF Desktop Integration with Microsoft Excel"

1.1 About ADF Desktop Integration

Many end users of Fusion web applications use desktop applications, such as Microsoft Excel, to manage information also used by their web application. ADF Desktop Integration provides a framework for ­Oracle Application Development Framework (Oracle ADF) developers to extend the functionality provided by a Fusion web application to desktop applications. It allows end users to avail themselves of Oracle ADF functionality when they are disconnected from their company network. End users may also prefer ADF Desktop Integration because it provides Excel's familiar user interface to undertake information management tasks, such as performing complex calculations or uploading a large amount of data, easily and seamlessly.

ADF Desktop Integration is a part of the Oracle ADF architecture. More information about the Oracle ADF architecture can be found in the "Oracle ADF Architecture" section of Developing Fusion Web Applications with Oracle Application Development Framework.

Figure 1-1 illustrates the architecture of ADF Desktop Integration, which comprises of the following components:

	
ADF Desktop Integration

	
ADF Desktop Integration remote servlet

	
ADF Model layer

Figure 1-1 ADF Desktop Integration Architecture

[image: This image is described in the surrounding text]

For more information about ADF Desktop Integration, see the ADF Desktop Integration page on Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html

1.2 About ADF Desktop Integration with Microsoft Excel

Currently, ADF Desktop Integration supports integration with Microsoft Excel 2007, and other higher versions of Microsoft Excel.

	
Note:

This guide uses the term integrated Excel workbook to refer to Excel workbooks that you integrate with a Fusion web application and to distinguish these workbooks from workbooks that have not been integrated with a Fusion web application or configured with ­Oracle ADF functionality.

1.2.1 Overview of Creating an Integrated Excel Workbook

Creating an integrated Excel workbook involves the steps described in Table 1-1.

Table 1-1 Steps to Create an Integrated Excel Workbook

	Use	To
	
JDeveloper

	
	
Create a Fusion web application.

For information about creating a Fusion web application, see the Developing Fusion Web Applications with Oracle Application Development Framework.

	
Add data controls that expose the elements you require in Microsoft Excel.

	
Create page definition files that expose the Oracle ADF bindings to use in Excel.

For more information, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
Excel

	
	
Create the Excel workbooks that you intend to configure with Oracle ADF functionality.

For more information, see Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application."

	
Configure the Excel workbook using the Oracle ADF bindings that you exposed in the page definition files and the Oracle ADF components that ADF Desktop Integration provides.

For more information, see the following sections and chapters:

	
Chapter 5, "Getting Started with the Development Tools"

This chapter provides an overview of the tools that ADF Desktop Integration provides to configure an Excel workbook with Oracle ADF functionality.

	
Chapter 6, "Working with ADF Desktop Integration Form-Type Components"

This chapter describes how to insert ADF Desktop Integration form-type components into Excel worksheets and configure their properties to determine behavior at runtime.

	
Chapter 7, "Working with ADF Desktop Integration Table-Type Components"

This chapter describes how to use the ADF Table and Read-only Table components to provide end users with a means of displaying and editing data hosted by a Fusion web application.

	
Chapter 12, "Adding Validation to an Integrated Excel Workbook"

This chapter describes how to provide validation for your integrated Excel workbook.

	
Test your integrated Excel workbook.

For more information, see Chapter 13, "Testing Your Integrated Excel Workbook."

	
After completing the integration of the Excel workbook with the Fusion web application, you deploy it to make it available to the end users.

For information about this task, see Chapter 14, "Deploying Your Integrated Excel Workbook."

1.2.2 Advantages of Integrating Excel with a Fusion Web Application

Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion web application include:

	
Providing end users with access to data and functionality hosted by a Fusion web application through a desktop interface (Microsoft Excel) that may be more familiar to them.

	
End users can access data hosted by a Fusion web application while not connected to the application. They must log on to the Fusion web application to download data. Once data is downloaded to an Excel workbook, they can modify it while disconnected from the Fusion web application.

	
Bulk entry and update of data may be easier to accomplish through a spreadsheet-style interface.

	
End users can use native Excel features such as macros and calculation.

2 Introduction to the ADF Desktop Integration Sample Application

This chapter provides an overview of the Summit sample application for ADF Desktop Integration. The Summit sample application for ADF Desktop Integration contains several Microsoft Excel workbooks that are integrated with the sample's Fusion web application.

This chapter includes the following sections:

	
Section 2.1, "About the Summit Sample Application for ADF Desktop Integration"

	
Section 2.2, "Setting Up and Running the Summit Sample Application for ADF Desktop Integration"

	
Section 2.3, "Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration"

	
Section 2.4, "Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration"

2.1 About the Summit Sample Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration is a set of sample demonstrations that illustrate the main capabilities from ADF Desktop Integration. Each of the samples contain specific features that can also be identified on the developer's guide. All of the samples use the same underlying database schema which makes it very easy for accessing the source code, and also to experience the runtime behavior in a standalone way.

2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration

Set up the development environment as described in Chapter 3, "Setting Up Your Development Environment" before you download and run the Summit sample application for ADF Desktop Integration.

To download the Summit sample application for ADF Desktop Integration:

	
Download and install Oracle JDeveloper Release 12c. For more information, see Installing Oracle JDeveloper.

	
Download the Summit sample application for ADF Desktop Integration ZIP file (SummitADF_DI1213.zip) from Oracle Technology Network.

http://www.oracle.com/pls/topic/lookup?ctx=E26099_01&id=jdevcodesamples

	
Download the SummitADF_Schema1213.zip file and install the Summit ADF schema. For more information, see the "How to Install the Summit ADF Schema" section in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Install ADF Desktop Integration. For more information, see Section 3.4, "Installing ADF Desktop Integration."

	
Note:

If you have an old version of ADF Desktop Integration installed on your system, upgrade ADF Desktop Integration as described in Section 3.6, "Upgrading ADF Desktop Integration."

To run the Summit sample application for ADF Desktop Integration:

	
Extract the contents of SummitADF_DI1213.zip file to a local directory.

	
Open the SummitADFdi.jws file in JDeveloper.

This file is located in the Summit_ADFDI directory.

	
In the Applications window, click and expand the Model project.

	
Open Model > Application Sources > oracle.summitdi.model > Model.jpx file.

	
Expand the Connection group of the General tab, and click the Add icon to create a database connection.

	
In the Create Database Connection dialog, add the connection information shown in Table 2-1 for your environment.

Table 2-1 Database Connection Properties for the Summit Sample Application for ADF Desktop Integration

	Property	Description
	
Username

	
summit_adf

	
Password

	
summit_adf

	
Host Name

	
The host name for your database.

For example:

localhost

	
JDBC Port

	
The port for your database.

For example:

1521

	
SID

	
The SID of your database.

For example:

ORCL or XE

Click Test Connection to verify the connection, and then click OK to close the dialog.

	
Save the Model.jpx file.

	
Right-click Model project and choose Rebuild Model.jpr.

	
Expand the ViewController project and choose Web Content > MainPage.jsf.

	
Right-click MainPage.jsf and choose Run.

2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

The Fusion web application in the Summit sample application for ADF Desktop Integration enables end users to download the integrated Excel workbooks.

2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

When the end user runs the Summit sample application for ADF Desktop Integration in JDeveloper, the default browser opens the application home page. The end user can download various integrated Excel workbooks from the home page.

Figure 2-1 Home page of Summit Sample Application for ADF Desktop Integration

[image: This image is described in the surrounding text]

2.3.2 Downloading Integrated Excel Workbooks

The Summit sample application for ADF Desktop Integration provides various integrated Excel workbooks to meet different requirements. End users can navigate and download different workbooks using the slider control, or from the Available Demos dropdown list.

Table 2-2 lists the menu options and the downloaded integrated Excel workbooks.

Table 2-2 Integrated Excel Workbooks of Summit sample application for ADF Desktop Integration

	Menu Option	Description
	
Editable Table Sample

	
Downloads EditCusotmers.xlsx workbook.

	
Navigation Form Sample

	
Downloads EditWarehouses.xlsx workbook.

	
Editable Table with Web Picker

	
Downloads EditableCusotmerSearch.xlsx workbook.

	
Form and Table Quick Location Change

	
Downloads WarehouseLocations.xlsx workbook.

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration provides the EditCustomers.xlsx, EditWarehouses.xlsx, EditCustomerSearch.xlsx, and WarehouseLocations.xlsx integrated Excel workbooks.

The EditCustomers.xlsx workbook enable end users to:

	
Download and view customer data in a tabular format

	
Modify and upload the information in the workbook

	
Upload multiple rows of data

The EditWarehouses.xlsx workbook enable end users to:

	
Download and view warehouse data in a navigational format

	
Modify and upload warehouse information in the workbook

	
Upload the updated information immediately when user navigates to another record.

The EditCustomerSearch.xlsx workbook enable end users to:

	
Download and view customer data in a tabular format

	
Filter customers by Country

The WarehouseLocations.xlsx workbook enable end users to:

	
Download and view warehouse data and their locations in a tabular format

	
Modify and update the region of all warehouses

	
Upload the updated information

Subsequent sections in this chapter provide more information about the functionality in the workbooks along with cross-references to implementation details.

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook

At runtime, the integrated Excel workbooks in the Summit sample application for ADF Desktop Integration render an Excel ribbon tab that allows end users to log on to the Fusion web application. Figure 2-2 shows the runtime Warehouses tab in the Ribbon of the EditWarehouses.xlsx workbook.

Figure 2-2 Runtime Warehouses Tab

[image: This image is described in the surrounding text]

2.4.2 Downloading Data Rows

Some workbooks, such as EditCustomers.xlsx workbook, use an ADF Table component to host information downloaded from the Fusion web application. This component allows end users to edit rows and upload modified rows to the Fusion web application.

The following sections provide information about how to implement the download functionality:

	
Each worksheet that you integrate with a Fusion web application requires an associated page definition file.

For example, the Customers worksheet in the EditCustomers.xlsx workbook is associated with the ExcelCustomers.xml page definition file. In JDeveloper, expand the following nodes in the Applications window to view this file:

ViewController > Application Sources > oracle.summitdi.view > pageDefs

For information about how to configure a page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
The ADF Table component Download action downloads data from the Fusion web application to the worksheet. For information about how you invoke this action, see Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF Table Component."

	
In the EditCustomers.xlsx workbook, the worksheet Startup event invokes an action set that includes the ADF Table component Download action. For information about configuring worksheet events, see Section 8.2.4, "How to Invoke an Action Set from a Worksheet Event."

2.4.3 Modify Customers and Warehouses Information in the Workbooks

The EditCustomers.xlsx and EditWarehouses.xlsx workbooks enable end users to edit customers and warehouses information that the ADF Table component and form components downloads from the Fusion web application. Columns in the runtime ADF Table component that have an UpdateComponent property configured permit end users to modify values and upload the changes to the Fusion web application. For example, end users can modify the values that appear in the Name, Phone, and Address columns in EditCustomers.xlsx.

Other columns, such as Status and Changed, appear in the ADF Table component to provide status information about upload operations and changed columns.

The following sections provide information about how to implement this functionality:

	
For information about inserting an ADF Table component, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

	
For information about using Excel formulas, see Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook."

	
For information about special columns, such as Status and Changed, see Section 7.12, "Special Columns in the ADF Table Component."

2.4.4 Upload Modified Information to the Fusion Web Application

The integrated workbooks allow end users to upload modified data in the ADF Table component to the Fusion web application. An action set is configured for the runtime Upload button that invokes the ADF Table component's Upload action. For information about implementing this functionality, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

3 Setting Up Your Development Environment

This chapter describes how to set up the development environment to integrate an Excel workbook with a Fusion web application, how to upgrade and remove ADF Desktop Integration, and how to localize the Visual Studio tools for Microsoft Office.

This chapter includes the following sections:

	
Section 3.1, "About Setting Up Your Development Environment"

	
Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

	
Section 3.3, "Configuring Excel to work with ADF Desktop Integration"

	
Section 3.4, "Installing ADF Desktop Integration"

	
Section 3.5, "Removing ADF Desktop Integration"

	
Section 3.6, "Upgrading ADF Desktop Integration"

	
Section 3.7, "Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration"

	
Section 3.8, "Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper"

3.1 About Setting Up Your Development Environment

Setting up the development environment involves making sure that you have the correct versions of JDeveloper, Microsoft Office, and Microsoft Internet Explorer installed, as described in Section 3.2, "Required Oracle ADF Modules and Third-Party Software."

After verifying that you have the required software, complete the setup of your development environment by:

	
Allowing ADF Desktop Integration to access Microsoft Excel

	
Installing ADF Desktop Integration

	
Note:

The instructions in this guide assume that you are using Windows 7 operating system and Microsoft Excel 2007. Note that the steps might be different for different editions of Windows and Excel.

3.2 Required Oracle ADF Modules and Third-Party Software

Before you begin to integrate your Excel workbook with a Fusion web application, ensure that you have the required Oracle ADF modules and third-party software installed and configured:

	
Oracle JDeveloper

Install the current release of JDeveloper. ADF Desktop Integration is available as a JDeveloper feature.

	
Microsoft Windows

Microsoft Windows operating systems support the development and deployment of Excel workbooks that integrate with Fusion web applications. For more information about supported versions of Windows, see the "Oracle JDeveloper and Application Development Framework Certification Information" page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/121300-cert-2164864.html

	
Microsoft Excel

ADF Desktop Integration supports the integration of Fusion web applications with the following types of Excel workbook:

	
Excel Workbook

The default file format for Excel workbooks is the Excel XML-based file format (.xlsx).

	
Excel Macro-Enabled Workbook

Workbooks in this format (.xlsm) use the Excel XML-based file format and can store VBA macro code.

ADF Desktop Integration does not support the use of other Excel file formats. For more information about supported versions of Excel, see the "Oracle JDeveloper and Application Development Framework Certification Information" page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/121300-cert-2164864.html

	
Note:

Microsoft Excel 2003 or older versions of Microsoft Excel are not supported.

	
Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the Microsoft .NET Framework. This browser control relies on the local Internet Explorer installation to function properly.

ADF Desktop Integration uses Internet Explorer to render web pages inside Excel, regardless of other browsers installed on the system or any other browser set as the default browser.

	
Application server

For information about the application servers that you can use to deploy an application developed using ADF Desktop Integration, see the "Oracle JDeveloper and Application Development Framework Certification Information" page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/121300-cert-2164864.html

3.3 Configuring Excel to work with ADF Desktop Integration

You must configure Microsoft Excel settings to make it accessible from ADF Desktop Integration. You only need to perform this procedure once.

To allow Excel to run an integrated Excel workbook:

	
Open Excel.

	
Click the Microsoft Office button, and choose Excel Options.

	
In the Excel Options dialog, choose the Trust Center tab, and then click Trust Center Settings.

	
In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust access to the VBA project object model checkbox, as shown in Figure 3-1.

Figure 3-1 Excel Trust Center Dialog

[image: This image is described in the surrounding text]

	
Click OK.

For more information about securing an Excel workbook that is integrated with a Fusion web application, see Chapter 11, "Securing Your Integrated Excel Workbook."

3.4 Installing ADF Desktop Integration

When you run the ADF Desktop Integration setup tool, it verifies whether software in the following list is installed on the system where you want to install the framework. If one or more of these pieces of software is not installed, the setup tool automatically downloads and installs it in the order specified.

	
Windows Installer 3.1

	
Microsoft .NET Framework

The Microsoft .NET Framework 4 provides the runtime and associated files required to run applications developed to target the Microsoft .NET Framework. You can download the framework from http://www.microsoft.com/download/.

	
Notes:

	
Do not download the Client Profile edition of Microsoft .NET Framework as it is insufficient to run ADF Desktop Integration.

	
Installation of Microsoft .NET Framework may require you to restart the system where you install it. After the restart, the setup tool automatically recommences to finalize installation.

	
Microsoft Visual Studio 2010 Tools for Office Runtime

The Microsoft Visual Studio 2010 Tools for Office Runtime (version 4) is required to run VSTO solutions for the Microsoft Office system. You can download the Microsoft Visual Studio 2010 Tools for Office Runtime from http://www.microsoft.com/download/.

	
ADF Desktop Integration add-in

You can install the ADF Desktop Integration add-in from JDeveloper, or from the setup tool provided in MW_HOME\jdeveloper\adfdi. For more information about how to set up ADF Desktop Integration, see Section 3.4.1, "How to Set Up ADF Desktop Integration."

Note that the ADF Desktop Integration installation is specific to the current Windows user profile. If you have multiple Windows user profiles on your system, and you want to use ADF Desktop Integration integrated Excel workbooks from some specific user profiles, you must log in to each user profile and install the ADF Desktop Integration add-in. For more information, see Section 3.4.1, "How to Set Up ADF Desktop Integration."

3.4.1 How to Set Up ADF Desktop Integration

The ADF Desktop Integration add-in is available in two editions, the Designer edition and the Runtime edition. Use the Designer edition to create and test integrated Excel workbooks, and the Runtime edition to enable end users to use ADF Desktop Integration and integrated Excel workbooks.

	
Note:

Do not install both editions of ADF Desktop Integration on the same system.

Although you do not require administrator privileges to install the ADF Desktop Integration add-in, administrator privileges may be required to run the installers for additional software that the installer attempts to download and install. You should also ensure that the proxy settings for Internet Explorer are configured to allow access to *.microsoft.com because the installer attempts to automatically download missing prerequisite software from Microsoft's website.

By default, the installer runs in English. You can change the language that appears by following the instructions in the "Localizing the ADF Desktop Integration Installer" section of Administering Oracle ADF Applications.

Before you begin:

It may be helpful to have an understanding of ADF Desktop Integration requirements. For more information, see Section 3.4, "Installing ADF Desktop Integration."

To install the Designer edition of ADF Desktop Integration:

	
Open JDeveloper.

	
From the Tools menu, choose Install ADF Desktop Integration, as shown in Figure 3-2.

Figure 3-2 Tools Menu in JDeveloper

[image: This image is described in the surrounding text]

	
Note:

The Install ADF Desktop Integration menu option is available only on the Windows installation of JDeveloper.

	
Follow the instructions that appear in the dialog boxes to successfully install the required components.

If you encounter an error during the installation process, ensure that you have removed the previous version of ADF Desktop Integration. For more information, see Section 3.5, "Removing ADF Desktop Integration."

	
If prompted, click Yes to restart the system and complete the setup of ADF Desktop Integration.

	
Tip:

You can also install the Designer edition of ADF Desktop Integration by running setup.exe available in the MW_HOME\jdeveloper\adfdi\bin\excel\addin\designer directory.

If multiple instances of JDeveloper are installed, or if you have an existing instance of the ADF Desktop Integration add-in on the system, review the information in Section 3.8, "Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper" before you perform the installation procedure.

If you want to install the Runtime edition of ADF Desktop Integration, see Section H.1, "Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration."

3.5 Removing ADF Desktop Integration

Use the Microsoft Windows Control Panel to remove the ADF Desktop Integration add-in from the system where you set it up. After removing ADF Desktop Integration, you can no longer use integrated Excel workbooks on this system unless you reinstall ADF Desktop Integration.

To remove the ADF Desktop Integration add-in:

	
Click the Windows Start button, and then choose Control Panel.

	
In the Control Panel, select and open Programs and Features.

	
Select the Oracle ADF Desktop Integration Add-in for Excel entry in the Uninstall or change a program window and click Uninstall.

	
Note:

If you have installed ADF Desktop Integration on multiple user profiles, you must remove it from each user profile.

3.6 Upgrading ADF Desktop Integration

If you are using an old version of ADF Desktop Integration, you must upgrade to the current version.

To upgrade the ADF Desktop Integration add-in:

	
Uninstall the old version of ADF Desktop Integration.

For more information, see Section 3.5, "Removing ADF Desktop Integration."

	
Download and install the latest version of Oracle JDeveloper.

	
Install the new version of ADF Desktop Integration.

For more information, see Section 3.4, "Installing ADF Desktop Integration."

	
Note:

If you do not uninstall the old version of ADF Desktop Integration, an error occurs unless the new installer is in the exact same location as the old installer.

3.6.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop Integration

When you open the integrated Excel workbook after upgrading the ADF Desktop Integration add-in, the add-in detects and compares the ADF Desktop Integration version information of the workbook with the version installed on the client system. If required, you are asked to upgrade the configuration of the integrated workbook to the version installed on the client.

	
Note:

Integrated Excel workbooks created using an older ADF Desktop Integration client (version X) do not require migration on a system running a new version of ADF Desktop Integration client (version X+1), but integrated Excel workbooks used and saved with a newer client (version X+1) may no longer work with older clients (version X).

When the integrated Excel workbook is not compatible with the installed version of the ADF Desktop Integration client, a message is displayed when you open the workbook. In such a case, you should install the newer version of the ADF Desktop Integration client in order to interact with the newer workbook.

If you are migrating your integrated Excel workbooks created using the ADF Desktop Integration client of 11.1.1.3.0 version, or older, the Migrate Workbook dialog appears confirming your action.

Before you begin:

It may be helpful to have an understanding of ADF Desktop Integration upgrade. For more information, see Section 3.6, "Upgrading ADF Desktop Integration."

To migrate an integrated Excel workbook after upgrading:

	
Open the integrated Excel workbook.

The Migrate Workbook dialog prompts you to migrate the workbook to the current version of ADF Desktop Integration, as shown in Figure 3-3.

Figure 3-3 Migrate Workbook Dialog

[image: This image is described in the surrounding text]

If you get one or more Microsoft Office Customization Installer error messages when you open the integrated Excel workbook, ignore the messages and continue. The error messages appear because ADF Desktop Integration cannot remove the old version information from the workbook before Excel detects it and reports the error.

	
Click Yes to migrate the workbook. The ADF Desktop Integration migration process closes the workbook and then reopens it, ready to be used with the current version of ADF Desktop Integration.

3.7 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

When you open a workbook created, or last updated, by a newer version of ADF Desktop Integration on a system running an older version of ADF Desktop Integration, an error message is displayed if the workbook is incompatible with the installed client version. An integrated workbook and the installed ADF Desktop Integration client are incompatible if the first element of their Oracle Release number is different. For example, an integrated workbook created using version 12.1.3 of ADF Desktop Integration client is incompatible with the client from version 11.1.1.7.0.

	
Tip:

To see the release number of the installed client and integrated workbook, examine the values of ADF Desktop Integration and Workbook Edited by Version entries in Versions tab of the About ADF Desktop Integration dialog box.

At runtime, ADF Desktop Integration ignores an incompatible workbook. The data in the workbook is not removed, but ADF Desktop Integration treats the workbook as a non-integrated workbook and the following functionalities are affected:

	
ADF Desktop Integration does not respond to workbook events (for example, Activate and Startup)

	
ADF Button components do not respond to events

	
Worksheet command buttons do not appear in the Excel Ribbon

In design mode, or test mode, the workbook continues to function as expected, but you might notice some unknown exceptions and functionality issues.

3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

There can be only one active installation of ADF Desktop Integration on a given system. By default, when you install JDeveloper, ADF Desktop Integration is extracted to MW_HOME\jdeveloper\adfdi. If you move to another version of JDeveloper installed in a different directory, you should remove the old version of ADF Desktop Integration, as described in Section 3.5, "Removing ADF Desktop Integration." You should then set up ADF Desktop Integration from the new version of JDeveloper, as described in Section 3.4, "Installing ADF Desktop Integration," to keep ADF Desktop Integration consistent with JDeveloper.

Alternatively, you can set up ADF Desktop Integration in a directory that is independent of your JDeveloper installation. This approach means that you do not have to remove ADF Desktop Integration before moving to a newer version.

To set up ADF Desktop Integration in an independent directory:

	
Create a directory independent of the JDeveloper installation directory. For example, you may create the following directory:

D:\adfdi-excel-setup

	
When you move to a newer version of JDeveloper, copy the contents of the following directory:

MW_HOME\jdeveloper\adfdi\bin\excel\addin\designer

to:

D:\adfdi-excel-setup

where MW_HOME is the Middleware Home directory.

	
Run the setup.exe tool located in D:\adfdi-excel-setup.

	
Follow the instructions that appear in the dialog boxes launched by setup.exe to set up the new version of ADF Desktop Integration.

	
If prompted, click Yes to restart the system and complete the setup of ADF Desktop Integration.

	
WARNING:

After you install ADF Desktop Integration, do not delete the directory where you copied the setup files. You can delete the files after removing ADF Desktop Integration from the system.

4 Preparing Your Integrated Excel Workbook

This chapter describes how to prepare Excel workbooks and integrate them with Fusion web applications using ADF Desktop Integration, how to use the page definition files with an integrated Excel workbook, and how to enable ADF Desktop Integration manually to integrate an existing workbook with the Fusion web application.

This chapter includes the following sections:

	
Section 4.1, "About Preparing Your Integrated Excel Workbooks"

	
Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application"

	
Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook"

	
Section 4.4, "Enabling ADF Desktop Integration Manually"

4.1 About Preparing Your Integrated Excel Workbooks

This chapter (and the guide as a whole) assumes that you have developed a functioning Fusion web application, as described in the Developing Fusion Web Applications with Oracle Application Development Framework.

Having developed the Fusion web application, you perform the tasks described in this chapter to configure an integrated Excel workbook with the Fusion web application. The subsequent chapters of the guide enable you to configure the integrated workbook with advanced features, such as configuration with Oracle ADF functionality, and adding Oracle ADF components that provide the functionality you require at runtime.

	
Note:

Before you start, ensure that the Designer edition of ADF Desktop Integration is installed. For more information about the ADF Desktop Integration editions, see Section 3.4, "Installing ADF Desktop Integration."

4.2 Adding an Integrated Excel Workbook to a Fusion Web Application

The Fusion web application is automatically enabled with ADF Desktop Integration when you add an integrated Excel workbook to a project. An integrated Excel workbook enables you to add ADF components and ADF data bindings.

4.2.1 How to Add an Integrated Excel Workbook to a Fusion Web Application

To add an integrated Excel workbook, open the Fusion web application in JDeveloper and add an Excel workbook to the project from New Gallery.

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a Fusion web application. For more information, see Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application."

To add an integrated Excel workbook in JDeveloper:

	
Open the Fusion web application in JDeveloper.

	
In the Applications window, select the user interface project, such as ViewController, to which you want to add the new integrated Excel workbook.

	
From the File menu, choose New > From Gallery.

	
In the New Gallery, expand Client Tier, select ADF Desktop Integration, then Microsoft Excel Workbook, and then click OK.

Figure 4-1 shows the New Gallery with ADF Desktop Integration category and the Microsoft Excel Workbook option.

Figure 4-1 New Gallery - Microsoft Excel Workbook

[image: This image is described in the surrounding text]

Click OK.

	
In the Create ADF Desktop Integration-Enabled Excel Workbook dialog, if required, edit the file name of the workbook and its location.

By default, the integrated Excel workbook is saved as adfdi-workbook.xlsx in the <PROJECT_HOME>\src\excel directory of the selected project. Although you can save the workbook anywhere you choose, you should save the workbook with the other files of the Fusion web application.

	
Click OK.

JDeveloper adds the integrated Excel workbook into the Fusion web application, and automatically enables the project with ADF Desktop Integration. Figure 4-2 shows the ViewController project in the Applications window.

Figure 4-2 adfdi-workbook.xlsx in Applications Window

[image: This image is described in the surrounding text]

4.2.2 How to Configure a New Integrated Excel Workbook

After adding the integrated Excel workbook, you must configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to a Fusion web application. For more information, see Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application."

To configure a new integrated Excel workbook:

	
Open the integrated Excel workbook.

	
If you have saved the workbook with other files of the Fusion web application, the Page Definition dialog automatically appears, as illustrated in Figure 4-3.

Figure 4-3 Page Definition Dialog

[image: This image is described in the surrounding text]

Select the page definition file for the active worksheet from the Page Definition dialog, and click OK.

	
If you have saved the workbook elsewhere, configure the workbook as described in Section 4.4.3, "How to Manually Configure a New Integrated Excel Workbook."

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, set or verify the values for the following properties so that you can switch between design mode and test mode as you configure the workbook:

	
ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root directory of the JDeveloper application workspace (.jws). If the workbook is located within the JDeveloper application workspace, the value of the ApplicationHomeFolder workbook property is assigned automatically.

	
Note:

If you are opening the Excel file after moving the application directory, ensure that the ApplicationHomeFolder property's value reflects the correct path.

	
Project

The value for this property corresponds to the name of the JDeveloper project (.jpr) in the JDeveloper application workspace. To change the project, click the browse (...) icon and choose the project from the Project dialog, which lists the projects defined in the JDeveloper application workspace.

By default, Project is set to the name of the project that contains the Excel document. ADF Desktop Integration loads the names of the available projects from the application_name.jws specified as a value for ApplicationHomeFolder.

	
WebAppRoot

Set the value for this property to the fully qualified URL for the web context root that you want to integrate the Fusion web application with. The fully qualified URL has the following format:

http://<hostname>:<portnumber>/context-root

In JDeveloper, you specify the web context root (context-root) in the Java EE Application page of the Project Properties dialog. Figure 4-4 shows the web context root used for the Summit sample application for ADF Desktop Integration in JDeveloper and integrated Excel workbook.

Figure 4-4 Setting Web Context Root in JDeveloper and Integrated Excel Workbook

[image: This image is described in the surrounding text]

Note that the fully qualified URL is similar to the following if you set up a test environment on the system using the Summit sample application for ADF Desktop Integration, as shown in Figure 4-5.

http://localhost:7101/summit

Figure 4-5 Home Page of Summit Sample Application for ADF Desktop Integration in a Browser

[image: This image is described in the surrounding text]

For information about how to verify that the Fusion web application is online and that it supports ADF Desktop Integration, see Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop Integration."

If you are integrating an Excel file with a secure Fusion web application, you should use the https protocol while entering the value for WebAppRoot. For more information about securing the Fusion web application, see Developing Applications with the WebLogic Security Service.

	
WebPagesFolder

Set the value for this property to the directory that contains web pages for the Fusion web application. The directory path should be relative to the value of ApplicationHomeFolder. For example, in the EditCustomers-DT.xlsx workbook, WebPagesFolder is set to ViewController\public_html.

Figure 4-6 shows an example of workbook properties in the Edit Workbook Properties dialog of the Summit sample application for ADF Desktop Integration EditCustomers-DT.xlsx workbook.

Figure 4-6 Edit Workbook Properties Dialog

[image: This image is described in the surrounding text]

	
Click OK.

	
Note:

In Step 1, if the fully qualified path of the selected page definition file contains more than 259 characters, a warning message will appear when the Workbook Properties dialog is closed, and the page definition will not be loaded.

	
Save the Excel workbook.

4.2.3 How to Add Additional Worksheets to an Integrated Excel Workbook

To use Oracle ADF functionality, associate each worksheet with a page definition file. You associate a page definition file with a worksheet when you add a worksheet to the integrated Excel workbook. You can integrate multiple worksheets in an integrated Excel workbook with a Fusion web application. Use a different page definition file for each worksheet in the integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to a Fusion web application. For more information, see Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application."

To associate a page definition file with an Excel worksheet:

	
While the Excel workbook is in design mode, click the Home tab in the Excel ribbon, and then choose Insert > Insert Sheet in the Cells group.

	
In the Choose Page Definition dialog, select the page definition file.

This populates the bindings palette in the ADF Desktop Integration task pane with the bindings contained in the page definition file. You can now configure the worksheet with Oracle ADF functionality.

	
Note:

If you get an error message Programmatic access to Visual Basic Project is not trusted when you run an integrated Excel workbook after inserting a new worksheet, enable the Trust access to the VBA project object model checkbox in Excel Options. For more information, see Section 3.3, "Configuring Excel to work with ADF Desktop Integration."

4.2.4 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web Application from JDeveloper

When you deploy the ADF Desktop Integration-enabled Fusion web application from JDeveloper, references to the ADF Desktop Integration shared libraries are added to the appropriate descriptor files. For any Fusion web application that contains one or more projects referencing the ADF Desktop Integration Model API library or the ADF Desktop Integration Runtime library, a platform-dependent reference to the ADF Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF Desktop Integration Runtime library, a platform-dependent reference to the ADF Desktop Integration Runtime shared library is added during deployment.

4.2.4.1 Fusion Web Application is Deployed on Oracle WebLogic Server

When you deploy the Fusion web application on Oracle WebLogic Server, the following happens:

	
The META-INF/weblogic-application.xml file of the deployed application EAR file contains a library reference to oracle.adf.desktopintegration.model.

For example:

<library-ref>
 <library-name>oracle.adf.desktopintegration.model</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_common/modules/oracle.adf.desktopintegration.model_12.1.3, in the oracle.adf.desktopintegration.model.ear.

	
The WEB-INF/weblogic.xml file of the deployed web application WAR file contains a library reference to oracle.adf.desktopintegration.

For example:

<library-ref>
 <library-name>oracle.adf.desktopintegration</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_common/modules/oracle.adf.desktopintegration_12.1.3, in the oracle.adf.desktopintegration.war.

4.3 Working with Page Definition Files for an Integrated Excel Workbook

Page definition files define the bindings that populate the data in the Oracle ADF components at runtime. Page definition files also reference the action bindings and method action bindings that define the operations or actions to use on this data. You must define a separate page definition file for each Excel worksheet that you are going to integrate with a Fusion web application. The integrated Excel workbook can include worksheets that do not reference page definition files.

The ADF Desktop Integration task pane displays only those bindings that ADF Desktop Integration supports in the bindings palette. If a page definition file references a binding that ADF Desktop Integration does not support (for example, a graph binding), it is not displayed.

Table 4-1 lists and describes the binding types that the ADF Desktop Integration module supports.

Table 4-1 Binding Requirements for ADF Desktop Integration Components

	ADF Desktop Integration component	Supported Binding	Additional comments
	
ADF Input Text

	
Attribute binding

	

	
ADF Output Text

	
Attribute binding

	

	
ADF Label

	
Attribute and list bindings

	
This ADF Desktop Integration component uses the label property of a control binding.

	
ADF List of Values

	
List binding

	

	
Tree Node List

	
Tree binding attributes and list binding

	
Tree binding attributes must be associated with a model-driven list.

	
ADF Button

	
Various

	
The ADF Button component in ADF Desktop Integration can invoke action sets. Action sets can reference action bindings, method action bindings, or actions exposed by components in ADF Desktop Integration. For more information about action sets, see Section 8.2, "Using Action Sets."

	
ADF Read-only Table

	
Tree binding

	

	
ADF Table

	
Tree binding

	

For information about the bindings that components in ADF Desktop Integration use, see Appendix A, "ADF Desktop Integration Component Properties and Actions."

For information about the elements and attributes in page definition files, see the "pageNamePageDef.xml" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

For information about ADF data binding and page definition files in a Fusion web application, see the "Using ADF Model in a Fusion Web Application" chapter of the Developing Fusion Web Applications with Oracle Application Development Framework.

4.3.1 How to Create ADF Desktop Integration Page Definition File

You create and configure a page definition file that determines the Oracle ADF bindings to expose in the JDeveloper project.

Before you begin:

It may be helpful to have an understanding of page definition files. For more information, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

To create an ADF Desktop Integration page definition file:

	
Open the Fusion web application in JDeveloper.

	
In the Applications window, select the user interface project, such as ViewController, to which you want to add the page definition file.

	
From the File menu, choose New > From Gallery.

	
In the New Gallery, expand Client Tier, select ADF Desktop Integration, then ADF Desktop Integration Page Definition, and then click OK.

Figure 4-7 shows the New Gallery with ADF Desktop Integration category and the ADF Desktop Integration Page Definition option.

Figure 4-7 New Gallery - ADF Desktop Integration Page Definition

[image: This image is described in the surrounding text]

Click OK.

	
In the Create ADF Desktop Integration Page Definition dialog, if required, edit the page definition file name.

	
Click OK.

JDeveloper adds the page definition into the Fusion web application and opens the new page definition's editor. Figure 4-8 shows the ViewController project with the new page definition in the Applications window.

Figure 4-8 adfdiPageDefn.xml in Applications Window

[image: This image is described in the surrounding text]

For information about working with page definition files, see the "Working with Page Definition Files" section in the Developing Fusion Web Applications with Oracle Application Development Framework.

4.3.2 What Happens When You Create a Page Definition File

JDeveloper creates the DataBindings.cpx file the first time you add a page definition file in the JDeveloper project using the procedure described in Section 4.3.1, "How to Create ADF Desktop Integration Page Definition File."

The DataBindings.cpx file defines the binding context for the Fusion web application and provides the configuration from which the Oracle ADF bindings are created at runtime. Information about working with this file can be found in the "Working with the DataBindings.cpx File" section of the Developing Fusion Web Applications with Oracle Application Development Framework. Information about the elements and attributes in the file can be found in the "DataBindings.cpx" section of the same guide.

4.3.3 How to Reload a Page Definition File in an Excel Workbook

If you make changes in your JDeveloper desktop integration project to a page definition file that is associated with an Excel worksheet, rebuild the JDeveloper desktop integration project and reload the page definition file in the Excel worksheet to ensure that the changes appear in the ADF Desktop Integration task pane. You associate a page definition file with an Excel worksheet when you choose the page definition file, as described in Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

The Oracle ADF tab provides a button that reloads all page definition files in an Excel workbook.

Errors may occur when you switch an integrated Excel workbook from design mode to runtime if you do not rebuild the JDeveloper desktop integration project and restart the application after making changes to a page definition file. For example, if you:

	
Remove an element in a page definition file

	
Do not rebuild and restart the Fusion web application

	
Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

Before you begin:

It may be helpful to have an understanding of page definition files. For more information, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

To reload page definition files in an Excel workbook:

	
Ensure that you have saved the updated page definition file in JDeveloper.

	
In the Excel workbook, click the Refresh Bindings button in the Components group of the Oracle ADF tab.

For information about the Refresh Bindings button, see Section 5.1, "About Development Tools."

After reloading the page definition file, the ADF Desktop Integration task pane of the worksheet displays the same bindings that are available in its associated page of the Fusion web application. For example, Figure 4-9 shows the bindings in the ExcelCustomersPageDef.xml page definition file and the same bindings in the worksheet of the EditCustomers-DT.xlsx workbook.

Figure 4-9 Page Definition Bindings in JDeveloper and Integrated Excel Workbook

[image: This image is described in the surrounding text]

4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

Note the following points about page definition files in an ADF Desktop Integration project:

	
Integrating Multiple Excel Worksheets: You can integrate multiple worksheets in an Excel workbook with a Fusion web application. You associate a page definition file with each worksheet as described in Section 4.2.3, "How to Add Additional Worksheets to an Integrated Excel Workbook."

	
EL Expressions in a Page Definition File: Use the following syntax to write EL expressions in a page definition file:

Dynamic (${})

Do not use the syntax Deferred (#{}) to write EL expressions. EL expressions using this syntax generate errors because they attempt to access the ADF Faces context, which is not available.

	
Note:

EL expressions that you write for ADF Desktop Integration component in the integrated Excel workbook, such as the Input Text component, must use the Deferred (#{}) syntax.

4.4 Enabling ADF Desktop Integration Manually

To enable ADF Desktop Integration in the Fusion web application without adding the integrated Excel workbook, you must add the ADF Desktop Integration feature manually.

4.4.1 How to Manually Add ADF Desktop Integration In Fusion Web Application

Use the Project Properties dialog in JDeveloper to add ADF Desktop Integration to the feature list of your project.

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a Fusion web application. For more information, see Section 4.4, "Enabling ADF Desktop Integration Manually."

To manually add ADF Desktop Integration to your project:

	
Open the project in JDeveloper.

	
In the Applications window, right-click the project to which you want to add ADF Desktop Integration and choose Project Properties.

If the application uses the Fusion Web Application (ADF) application template, select the user interface project, such as ViewController. If the application uses another application template, select the project that corresponds to the web application.

	
In the Project Properties dialog, select Features to view the list of available features.

	
Click Add Features.

	
In the Add Features dialog, select the ADF Desktop Integration feature and add it to the Selected list, as shown in Figure 4-10.

Figure 4-10 Add Features Dialog

[image: This image is described in the surrounding text]

	
Click OK to close the Add Features dialog.

	
Click OK to close the Project Properties dialog.

For more information about what happens when you add ADF Desktop Integration, see Section 4.4.4, "What Happens When You Add ADF Desktop Integration to Your JDeveloper Project."

	
Note:

If you plan to distribute integrated Excel workbooks by adding them to ADF library files through EAR and JAR files, add ADF Library Web Application Support to your project. For more information, see Section 4.4.5, "Adding ADF Library Web Application Support."

4.4.2 How to Enable ADF Desktop Integration in an Existing Workbook

To integrate an existing workbook with the ADF Desktop Integration enabled Fusion web application, you must manually enable ADF Desktop Integration for the workbook. For information about the file formats of Excel workbooks that you can convert for integration with a Fusion web application, see Section 3.2, "Required Oracle ADF Modules and Third-Party Software."

Before you begin:

It may be helpful to have an understanding of adding integrated Excel workbook to a Fusion web application. For more information, see Section 4.4, "Enabling ADF Desktop Integration Manually."

To enable ADF Desktop Integration in an existing Excel workbook:

	
In Excel, open the workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Enable Workbook dialog, click Yes, as shown in Figure 4-11.

Figure 4-11 Enable Workbook Dialog

[image: This image is described in the surrounding text]

ADF Desktop Integration prepares your workbook, displays the ADF Desktop Integration Designer task pane, and opens the Browse For Folder dialog. For more information, see Section 4.4.3, "How to Manually Configure a New Integrated Excel Workbook."

	
Save the workbook.

Although you can store the Excel workbooks that you integrate with Fusion web applications anywhere you choose, there are several advantages to storing them with the other files of the Fusion web application. Some of these advantages are:

	
Source control of the workbooks

	
Facilitating the download of workbooks from web pages

	
The file system folder picker that appears the first time a workbook is opened defaults to the location where you store the workbook

For example, the Summit sample application for ADF Desktop Integration stores the Excel workbooks it integrates in the following subdirectory:

Summit_HOME\ViewController\src\oracle\summitdi\excel

where Summit_HOME is the root directory that stores the source files for the Summit sample application for ADF Desktop Integration.

4.4.3 How to Manually Configure a New Integrated Excel Workbook

After enabling ADF Desktop Integration manually in a workbook, you would need to configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to a Fusion web application. For more information, see Section 4.4, "Enabling ADF Desktop Integration Manually."

To manually configure a new integrated Excel workbook:

	
Open the integrated Excel workbook.

The Browse For Folder dialog automatically appears, as illustrated in Figure 4-12.

Figure 4-12 Browse For Folder Dialog

[image: This image is described in the surrounding text]

Use the Browse for Folder dialog to select the JDeveloper application home directory. In a typical JDeveloper project, the JDeveloper application home directory stores the application_name.jws file. The value you select is assigned to the ApplicationHomeFolder workbook property.

	
Note:

The Browse for Folder dialog does not appear if the workbook is located within the JDeveloper application workspace. In such a case, the value of the ApplicationHomeFolder workbook property is assigned automatically.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, configure the properties as described in Step 3 of Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

	
Click OK.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
In the Edit Worksheet Properties dialog, click the browse (...) icon beside the Page Definition input field and select a page definition file from the Page Definition dialog, as shown in Figure 4-13.

Figure 4-13 Page Definition Dialog

[image: This image is described in the surrounding text]

	
Click OK.

The Excel worksheet appears with ADF Desktop Integration in the task pane. The bindings of the page definition file that you selected in Step 6, appear in the Bindings tab.

	
Save the Excel workbook.

By default, when you prepare a new Excel workbook with ADF Desktop Integration, it is assumed that the workbook will be integrated with an non-secured Fusion web application. If you want to integrate a workbook with a secure Fusion web application, see Chapter 11, "Securing Your Integrated Excel Workbook."

4.4.4 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project

When you add the ADF Desktop Integration feature to a project, the following events occur:

	
The project adds the ADF Desktop Integration runtime library. This library references the following .jar files in its class path:

	
adf-desktop-integration.jar

	
adf-desktop-integration-model-api.jar

	
resourcebundle.jar

	
The project's deployment descriptor (web.xml) is modified to include the following entries:

	
An ADF bindings filter (adfBindings)

	
A servlet named adfdiRemote

	
Note:

The value for the url-pattern attribute of the servlet-mapping element for adfdiRemote must match the value of the RemoteServletPath workbook property described in Table A-21.

	
A filter named adfdiExcelDownload

	
A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding ADF Desktop Integration to a project makes other changes to web.xml. Note that some entries in web.xml are added only if they do not already appear in the file.

4.4.5 Adding ADF Library Web Application Support

If you want to distribute integrated workbooks by adding them to ADF library files, add ADF Library web application support to the Fusion web application. For more information, see the "Packaging a Reusable ADF Component into an ADF Library" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

When updating filter and filter mapping information in the web.xml file, ensure that the filter for ADF Library Web Application Support (<filter-name>ADFLibraryFilter</filter-name>) appears below the adfdiExcelDownload filter entries, so that integrated Excel workbooks can be downloaded from the Fusion web application.

Figure 4-14 shows the Filters tab of the overview editor of the web.xml in JDeveloper.

Figure 4-14 Filters Tab of web.xml

[image: This image is described in the surrounding text]

You should also update the include-extension-list initialization parameter to add the Excel file extensions (such as .xlsx and .xlsm), as shown in Figure 4-15.

Figure 4-15 ADFLibraryFilter Using include-extension-list Parameter

[image: This image is described in the surrounding text]

For more information about web.xml, see Appendix D, "ADF Desktop Integration Settings in the Web Application Deployment Descriptor."

5 Getting Started with the Development Tools

This chapter describes how to use the development tools (such as Bindings Palette, Components Palette, Property Inspector, and Expression Builder) provided by ADF Desktop Integration. It provides an overview of the development environment that ADF Desktop Integration exposes in the Excel Ribbon.

This chapter includes the following sections:

	
Section 5.1, "About Development Tools"

	
Section 5.2, "Designer Ribbon Tab"

	
Section 5.3, "ADF Desktop Integration Designer Task Pane"

	
Section 5.4, "Using the Bindings Palette"

	
Section 5.5, "Using the Components Palette"

	
Section 5.6, "Using the Property Inspector"

	
Section 5.7, "Using the Binding ID Picker"

	
Section 5.8, "Using the Expression Builder"

	
Section 5.9, "Using the Web Page Picker"

	
Section 5.10, "Using the File System Folder Picker"

	
Section 5.11, "Using the Page Definition Picker"

	
Section 5.12, "Using the Collection Editors"

	
Section 5.13, "Using the Cell Context Menu"

	
Section 5.14, "Removing ADF Desktop Integration Components"

	
Section 5.15, "Exporting and Importing Excel Workbook Integration Metadata"

5.1 About Development Tools

ADF Desktop Integration provides several tools to configure Excel workbooks so that they can access Oracle ADF functionality. Using these tools you configure the workbook and corresponding worksheets to display, and edit, data from the Fusion web application in the integrated Excel workbook. The tools are available in the Oracle ADF tab and in the ADF Desktop Integration Designer task pane.

ADF Desktop Integration development tools include the following tools, also shown in Figure 5-1:

	
Bindings Palette

	
Components Palette

	
Property Inspector

	
Binding ID Picker

	
Expression Builder

	
Web Page Picker

	
File System Folder Picker

	
Page Definition Picker

	
Collection Editors

Figure 5-1 ADF Desktop Integration Development Tools

[image: This image is described in the surrounding text]

ADF Desktop Integration provides two modes, design mode and the test mode, in which you can work while you configure the Excel workbook.

In design mode, you use the tools provided by Oracle ADF in Excel to design and configure the integrated Excel workbook. In test mode, you can view and test the changes you made in the design mode, in the same way that the end user views the published integrated Excel workbook.

5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples

You use the development tools to configure and design the integrated Excel workbook. For example, as shown in Figure 5-2, in EditCustomers-DT.xlsx a binded ADF Table component is inserted in the integrated Excel workbook using the Customers binding from the Bindings palette.

Figure 5-2 ADF Desktop Integration Components and Bindings

[image: This image is described in the surrounding text]

Other ADF Desktop Integration components, such as ADF Button and ADF Label, are inserted from the Components palette, and configured using the Property Inspector and Expression Builder.

5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

After adding the desired components and configuring your work, you may find that you need additional functionality such as changing the appearance of the workbook, and localizing it. Following are links to other functionality that you can use:

	
Localization: You can customize the integrated Excel workbook as part of the process to internationalize and localize with the Fusion web application. For more information, see Chapter 10, "Internationalizing Your Integrated Excel Workbook."

	
Styles: You can configure the display of your components using several predefined Excel styles. For more information, see Section 9.2, "Working with Styles."

	
EL Expressions: You can use EL expressions with the ADF Desktop Integration components. For more information, see Appendix B, "ADF Desktop Integration EL Expressions."

5.2 Designer Ribbon Tab

You use the Oracle ADF tab, also called as Designer Ribbon tab, for various tasks such as configuring the integrated workbook and worksheets properties, insert Oracle ADF components and edit their properties, run the workbook in test mode, and publish the workbook. The Oracle ADF tab, also shown in Figure 5-3, provides various buttons in design mode.

Figure 5-3 Oracle ADF Tab in Design Mode

[image: This image is described in the surrounding text]

	
Tip:

To access Oracle ADF tab from the keyboard, press Alt+C. Press the Alt key again to view the shortcut keys for Oracle ADF tab command buttons.

You can use Oracle ADF tab buttons to invoke the actions described in Table 5-1.

Table 5-1 Oracle ADF Tab Options

	In this group...	Click this button...	To...	Mode when the button is available...
	
Workbook

	[image: This image is described in the surrounding text]
	
Display the Edit Workbook Properties dialog to view and edit integrated Excel workbook properties.

The button is also used to enable ADF Desktop Integration in a non-integrated Excel workbook.

	
Design

	
Workbook

	[image: This image is described in the surrounding text]
	
Display the Edit Worksheet Properties dialog to view and edit the current worksheet properties.

	
Design

	
Workbook

	[image: This image is described in the surrounding text]
	
Open the About ADF Desktop Integration dialog that provides version and property information of integrated Excel workbook.

The button is also available in non-integrated Excel workbooks after ADF Desktop Integration is installed.

	
Design, Test

	
Workbook

	[image: This image is described in the surrounding text]
	
Open the Save Workbook Definition as dialog that exports the current workbook definition as .xml file.

	
Design

	
Workbook

	[image: This image is described in the surrounding text]
	
Open the Choose Workbook Definition File to Import dialog that imports the workbook integration metadata from the saved .xml file.

	
Design

	
ADF Components

	[image: This image is described in the surrounding text]
	
Display a dropdown list of Oracle ADF components that you can insert in the selected cell.

	
Design

	
ADF Components

	[image: This image is described in the surrounding text]
	
Display the property inspector window to view and edit component properties of the selected component.

	
Design

	
ADF Components

	[image: This image is described in the surrounding text]
	
Delete the selected component from the Excel worksheet.

	
Design

	
ADF Components

	[image: This image is described in the surrounding text]
	
	
Reload the application workspace file (.jws) and project file (.jpr) referenced by the workbook properties of the integrated Excel workbook.

	
Refresh all information from the page definition files used in the active integrated Excel workbook.

Any modifications that you made to the page definition files in the JDeveloper project now become available in the Excel workbook. For more information, see Section 4.3.3, "How to Reload a Page Definition File in an Excel Workbook."

	
Design

	
Test

	[image: This image is described in the surrounding text]
	
Validate the Excel workbook configuration against ADF Desktop Integration validation rules.

For more information about validating a workbook, see Section 13.3, "Validating the Integrated Excel Workbook Configuration."

	
Design

	
Test

	[image: This image is described in the surrounding text]
	
Switch the Excel workbook from design mode to test mode. This button is active only when you are in design mode.

	
Design

	
Test

	[image: This image is described in the surrounding text]
	
Switch the Excel workbook from test mode to design mode. This button is active only when you are in test mode.

For more information about switching between design mode and test mode, see Section 13.4, "Testing Your Integrated Excel Workbook."

	
Test

	
Logging

	[image: This image is described in the surrounding text]
	
Display a dialog to review the client-side log entries. For more information, see Section C.3.2, "About Client-Side Logging."

	
Design, Test

	
Logging

	[image: This image is described in the surrounding text]
	
Display the Set Output Level dialog to choose client-side log output level. For more information, see Section C.3.2, "About Client-Side Logging."

	
Design, Test

	
Logging

	[image: This image is described in the surrounding text]
	
Create a new temporary logging listener to act as a client-side log output file. For more information, see Section C.3.2, "About Client-Side Logging."

	
Design, Test

	
Logging

	[image: This image is described in the surrounding text]
	
Reload the ADF Desktop Integration configuration file. For more information, see Section C.3.2, "About Client-Side Logging."

	
Design, Test

	
Publish

	[image: This image is described in the surrounding text]
	
Publish the Excel workbook after you complete the integration between the Excel workbook and the Fusion web application.

For more information about publishing an integrated Excel workbook, see Chapter 14, "Deploying Your Integrated Excel Workbook."

	
Design

	
Tip:

For quick and easy access, you can add Oracle ADF tab buttons to the Excel Quick Access toolbar.

5.3 ADF Desktop Integration Designer Task Pane

The development tools in ADF Desktop Integration Designer Task Pane are organized in two palettes, the Bindings palette and the Component palette. You use the Bindings palette of ADF Desktop Integration Designer task pane to insert a predefined binding into the integrated Excel workbook. ADF Desktop Integration inserts an Oracle ADF component that references the binding you selected, and prepopulates the properties of the Oracle ADF component with appropriate values. Similarly, you use the Components palette to insert an Oracle ADF component in the integrated Excel workbook. Figure 5-4 displays the ADF Desktop Integration Designer task pane.

Figure 5-4 ADF Desktop Integration Designer Task Pane

[image: This image is described in the surrounding text]

You invoke the ADF Desktop Integration Designer task pane through launcher buttons (highlighted by the red boxes in Figure 5-5) available in the bottom-right corner of the Workbook and ADF Components group on the Oracle ADF tab.

Figure 5-5 ADF Desktop Integration Designer Task Pane Launcher Buttons

[image: This image is described in the surrounding text]

Table 5-2 lists the view tabs and links that appear in the task pane, provides a brief description of each item.

Table 5-2 Overview of ADF Desktop Integration Designer Task Pane

	Task Pane UI Element	Description
	
Workbook Properties

	
Click to display the Edit Workbook Properties dialog. This dialog enables you to view and edit properties that affect the whole workbook. Examples include properties that reference the directory paths to page definition files, the URL for your Fusion web application, and so on.

	
Worksheet Properties

	
Click to display the Edit Worksheet Properties dialog. This dialog enables you to view and edit properties specific to the active worksheet. An example is the file name of the page definition file that you associate with the worksheet.

	
About

	
Click to display the About dialog. This dialog provides the version and property information that can be useful when troubleshooting an integrated Excel workbook. For example, it provides information about the underlying Microsoft .NET and Oracle ADF frameworks that support an integrated Excel workbook.

5.4 Using the Bindings Palette

The bindings palette presents the available Oracle ADF bindings that you can insert into the Excel worksheet. The page definition file for the current Excel worksheet determines what Oracle ADF bindings appear in the bindings palette. Figure 5-6 shows a bindings palette populated with Oracle ADF bindings in the ADF Desktop Integration Designer task pane. Note that the bindings palette does not display bindings that an integrated Excel workbook cannot use, so the bindings that appear may differ from those that appear in the page definition file viewed in JDeveloper. Check the log for ignored bindings (see Section C.3, "Generating Log Files for an Integrated Excel Workbook").

Figure 5-6 Oracle ADF Bindings Palette in the ADF Desktop Integration Designer Task Pane

[image: This image is described in the surrounding text]

You use the bindings palette in design mode to insert a binding. When you attempt to insert a binding, ADF Desktop Integration inserts an Oracle ADF component that references the binding you selected. ADF Desktop Integration also prepopulates the properties of the Oracle ADF component with appropriate values. For example, if you insert a binding, such as the Commit (action) binding illustrated in Figure 5-6, the property inspector for an Oracle ADF Button component appears. This Oracle ADF Button component has values specified for its ClickActionSet that include invoking the Commit action binding.

To insert an Oracle ADF binding, select the cell to anchor the Oracle ADF component that is going to reference the binding in the Excel worksheet, and then insert the binding in one of the following ways:

	
Double-click the Oracle ADF control binding you want to insert.

	
Select the binding that you want to insert, and drag it to the desired cell.

	
Select the control binding and click Insert Binding in the ADF Desktop Integration Designer task pane.

A property inspector for the Oracle ADF component that is associated with the binding you attempt to insert appears. In some instances, you may be prompted to select one Oracle ADF component from a list of Oracle ADF components where multiple Oracle ADF components can be associated with the binding. After you select an Oracle ADF component from the list, a property inspector appears.

If you choose the Oracle ADF component as ADF Input Text, ADF Output Text, or ADF Label, the binding name is assigned to the Value property. If you choose the Oracle ADF component as ADF Button or ADF Ribbon Command, the binding name is assigned to the Label property. If you choose the Oracle ADF component as ADF Table or ADF Read-only Table, the binding name is assigned to the TreeID property.

5.5 Using the Components Palette

The components palette displays the available ADF Desktop Integration components that you can insert into an Excel worksheet. Figure 5-7 shows the components palette as it appears in the ADF Desktop Integration Designer task pane.

Figure 5-7 Oracle ADF Components Palette in the ADF Desktop Integration Designer Task Pane

[image: This image is described in the surrounding text]

You use the components palette in design mode to insert an Oracle ADF component. First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and then insert the Oracle ADF component in one of the following ways:

	
Double-click the Oracle ADF component you want to insert.

	
Select the component that you want to insert, and drag it to the desired cell.

	
Select the component and click Insert Component in the ADF Desktop Integration Designer task pane.

In all of the above cases, the Oracle ADF component's property inspector appears. Use the property inspector to specify values for the component before you complete its insertion into the Excel worksheet.

	
Note:

The ADF Desktop Integration components are also available in the Insert Component dropdown list of Oracle ADF tab.

5.6 Using the Property Inspector

The property inspector is a dialog that enables you to view and edit the properties of Oracle ADF bindings, Oracle ADF components, Excel worksheets, or the Excel workbook. You can open the property inspector in one of the following ways:

	
Select the component or binding, and click the Edit Properties icon in the Oracle ADF tab.

	
Select the component or binding, right-click and choose Edit ADF Component Properties.

	
Double-click the component or binding.

To open property inspector of ADF Table or ADF Read-only Table, double-click any cell that is part of the table.

	
Note:

ADF Button does not support the right-click or double-click action, click the button to open the property inspector dialog.

The property inspector also appears automatically after you insert an Oracle ADF binding or component into an Excel worksheet. Figure 5-8 shows a property inspector where you can view and edit the properties of an Oracle ADF Button component.

At design time, you can edit key properties of certain Oracle ADF components by editing the Excel cell where the component appears. For example, you can edit the Value property of ADF Label and ADF Input Text components by editing the value displayed in the cell.

	
Note:

The property inspector does not validate the values you enter for a property, or combinations of properties. Invalid values may cause runtime errors. To avoid runtime errors, make sure you specify valid values for properties in the property inspector.

You can display the properties in an alphabetical list or in a list where the properties are grouped by categories such as Behavior, Data, and so on. Table 5-3 describes the buttons that you can use to change how properties display in the property inspector.

Table 5-3 Buttons to Configure Properties Display in Property Inspector

	Button	Description
	[image: This image is described in the surrounding text]
	
Use this button to display the properties according to category.

	[image: This image is described in the surrounding text]
	
Use this button to display the properties in an alphabetical list.

In Figure 5-8, the property inspector displays the properties grouped by category.

Figure 5-8 Property Inspector Window for ADF Button Component

[image: This image is described in the surrounding text]

5.7 Using the Binding ID Picker

The binding ID picker is a dialog that enables you to select Oracle ADF bindings at design time to configure the behavior of Oracle ADF components at runtime. You invoke the binding ID picker from the property inspector. The binding ID picker filters the Oracle ADF bindings that appear, based on the type of binding that the Oracle ADF component property accepts. For example, the SuccessActionID property for an ADF Button component supports only action bindings. Therefore, the binding ID picker filters the bindings from the page definition file so that only action bindings appear, as illustrated in Figure 5-9.

Figure 5-9 Binding ID Picker

[image: This image is described in the surrounding text]

For more information about ADF Desktop Integration component properties and the bindings they support, see Appendix A, "ADF Desktop Integration Component Properties and Actions."

5.8 Using the Expression Builder

You use the expression builder to write Expression Language, or EL, expressions that configure the behavior of components at runtime in the Excel workbook. You invoke the expression builder from the property inspector of component properties that support EL expressions. For example, the Label property in Figure 5-10 supports EL expressions and, as a result, you can invoke the expression builder to set a value for this property.

You can reference bindings in the EL expressions that you write. Note that the expression builder does not filter bindings. It displays all bindings that the page definition file exposes. See Table 4-1 to identify the types of bindings that each ADF Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into Expression. You can also double-click the item to add it in the Expression box. Table 5-4 describes the folders available in the expression builder.

Figure 5-10 Expression Builder

[image: This image is described in the surrounding text]

Table 5-4 Expression Builder Folders

	Folder Name	Description
	
Bindings

	
Lists the bindings supported in ADF Desktop Integration from the current worksheet's page definition.

	
Components

	
Lists the ADF components available in the current worksheet.

	
Resources

	
Lists the resource bundles registered in Workbook.Resources along with the built-in resource bundle _ADFDIres.

	
Styles

	
Lists all Excel styles defined in the current workbook. For more information, see Section 9.2, "Working with Styles.".

	
Workbook

	
Lists parameters defined in Workbook.Parameters.

	
Worksheet

	
Lists the errors expression.

	
Excel Functions

	
Lists sample Excel functions that you can use with ADF Desktop Integration. For more information, see Excel's documentation.

For more information about using the expression builder, see Section 9.3, "Applying Styles Dynamically Using EL Expressions." For information about the syntax of EL expressions in ADF Desktop Integration, and guidelines on how you write these expressions, see Appendix B, "ADF Desktop Integration EL Expressions."

5.9 Using the Web Page Picker

Use the web page picker to select a web page from your Fusion web application. At runtime, an Oracle ADF component, for example an Oracle ADF Button component, can invoke the web page that you associate with the Oracle ADF component.

You can invoke the web page picker when you add a Dialog action to an action set in the Action Collector Editor. You use the web page picker to specify a web page for the Page property of the Dialog action, as illustrated in Figure 5-11.

Figure 5-11 Web Page Picker Dialog

[image: This image is described in the surrounding text]

For more information about displaying web pages in your integrated Excel workbook, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

5.10 Using the File System Folder Picker

Use the file system folder picker to navigate over the Windows file system and select folders. You use this picker to specify values for the following workbook properties:

	
ApplicationHomeFolder

	
WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set values for the previously listed properties. For more information about opening an Excel workbook for the first time and the properties you set, see Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

Figure 5-12 shows the file system folder picker selecting a value for the ApplicationHomeFolder workbook property.

Figure 5-12 File System Folder Picker

[image: This image is described in the surrounding text]

5.11 Using the Page Definition Picker

Use the page definition picker to select the page definition ID of a page definition file and associate the file with a worksheet. The picker appears the first time that you activate a worksheet in an integrated Excel workbook. It can also be invoked when you attempt to set a value for the worksheet property, PageDefinition, as illustrated in Figure 5-13.

Figure 5-13 Page Definition Picker

[image: This image is described in the surrounding text]

For more information about page definition files, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

5.12 Using the Collection Editors

ADF Desktop Integration uses collection editors to manage the properties of elements in a collection. The title that appears in a collection editor's title bar describes what the collection editor enables you to configure. Examples of titles for collection editors include Edit CachedAttributes, Edit Columns, and the Edit Actions. These collection editors allow you to configure collections of cached data, table columns in the ADF Table component, and actions in an action set. Figure 5-14 shows the collection editor.

Figure 5-14 Collection Editor

[image: This image is described in the surrounding text]

	
Tip:

Write a description in the Annotation field for each element that you add to the Edit Action dialog. The description you write appears in the Members list view and, depending on the description you write, may be more meaningful than the default entry that ADF Desktop Integration generates.

5.13 Using the Cell Context Menu

When working with ADF components at design time, right-click any cell of the component to get menu options to edit or delete the component. Some keyboards feature a key that invokes the context menu. Using this key, you will see the edit and delete menu options as well. Figure 5-15 shows the context menu options of an ADF Output Text component.

Figure 5-15 Context Menu Options of the ADF Output Text Component

[image: This image is described in the surrounding text]

You should use either the keyboard context menu key or the mouse's right-click button during any given session. If you use both the mouse right-click and the context menu key, the menu options may not always appear when expected. The context menu options do not appear if you select a range of cells and then invoke the context menu.

5.14 Removing ADF Desktop Integration Components

At design time, you can remove the inserted ADF Desktop Integration components (or bindings) from the integrated workbooks using the Delete ribbon command, or the Delete ADF Component context menu option (see Figure 5-15).

When you remove a component, ADF Desktop Integration prompts you to confirm your action, as shown in Figure 5-16.

Figure 5-16 Removing ADF Desktop Integration Component

[image: This image is described in the surrounding text]

You can also remove multiple components by selecting a range of cells anchoring the components (see Figure 5-17), or select individual component cells using the Ctrl key, and then click the Delete ribbon button.

Figure 5-17 Removing Multiple ADF Desktop Integration Components

[image: This image is described in the surrounding text]

While removing the components, make a note of the following:

	
You can also remove a single component using the Delete key of the keyboard when the component origin cell is selected.

You cannot remove a table component using the Delete key of the keyboard, use the Delete ribbon command instead.

	
To delete a component that occupies more than one cell (such as a table component, or a component in a merged cell), you need not select the entire component. If the selected range intersects any cell of the component, it will be removed.

	
Do not delete cells or clear cells of the workbook if your selection includes one or more ADF Desktop Integration components. Always use the Delete ribbon command to remove a ADF Desktop Integration component.

	
ADF Desktop Integration context menu options are not available if multiple cells are selected when the context menu is invoked.

5.15 Exporting and Importing Excel Workbook Integration Metadata

Workbook integration metadata, also known as the workbook definition, is a set of information that describes how a given workbook is integrated with a particular Fusion web application. It includes the placement and configuration of components as well as workbook- and worksheet-level properties. Workbook integration metadata is defined by Oracle ADF. It does not include settings of a workbook that are native to Excel.

You can export the integration metadata of your Excel workbook to an XML file with a name and location that you specify. The XML file contains child elements for each worksheet in the workbook, resources such as the relative path to the remote servlet, and so on. The exported XML file enables you to do the following actions:

	
Edit, or analyze the Excel workbook that is integrated with a Fusion web application.

	
Using an XML editor, copy or move components between worksheets and workbooks.

	
Copy action-set definitions between buttons or events.

	
Perform global search and replace operations.

	
Quickly rearrange, or copy, columns of table components.

5.15.1 How to Export Workbook Integration Metadata

The following procedure describes how you export XML configuration metadata from an integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For more information, see Section 5.15, "Exporting and Importing Excel Workbook Integration Metadata."

To export workbook integration metadata from an integrated Excel workbook:

	
Open the integrated Excel workbook.

	
Click Export in the Oracle ADF tab.

The Save Workbook Definition As dialog box appears.

	
Specify the file name and location of the XML file that stores the exported metadata, and click Save. ADF Desktop Integration writes the workbook definition to the specified file.

	
In Export Workbook Metadata dialog, click OK to complete the export process.

	
Note:

The exported XML file does not contain any native Excel settings such as named styles, named ranges, cell properties, content in unbound cells, and so on. The file name comprises the full name of the design-time workbook suffixed with -workbook-defintion.xml. For example, the exported XML file name of EditCustomers-DT.xlsx is EditCustomers-DT.xlsx-workbook-definition.xml.

Publishing a workbook also exports the workbook definition. For more information about publishing a workbook, see Section 14.3, "Publishing Your Integrated Excel Workbook."

After exporting the workbook definition, you can edit the XML file in any XML editor, such as JDeveloper. Figure 5-18 shows the workbook definition of EditCustomers-DT.xlsx in JDeveloper. While editing the workbook definition file in JDeveloper, JDeveloper automatically validates your changes against the workbook definition schema. It will display warnings that help you avoid problems later on.

Figure 5-18 Editing Workbook Definition in JDeveloper

[image: This image is described in the surrounding text]

5.15.2 How to Import Workbook Integration Metadata

After editing, you can import the integrated metadata into an empty integrated workbook to create a copy of the source integrated Excel workbook. Note that the empty workbook must be enabled with ADF Desktop Integration before you import the metadata.

The following procedure describes how to import XML configuration metadata to an integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For more information, see Section 5.15, "Exporting and Importing Excel Workbook Integration Metadata."

Before you import the integration metadata from an XML file, perform basic XML validations such as whether the XML code is well formed and the XML file contains the root element. You may import the workbook definition into the same workbook from which it was exported, or import it in a new workbook.

To import workbook integration metadata to an integrated Excel workbook:

	
Open the integrated Excel workbook.

	
Click Import in the Oracle ADF tab.

The Choose a Workbook Definition file to Import dialog box appears.

	
Select the XML file that stores the workbook integration metadata, and click Open.

	
In Import Workbook Metadata dialog, click OK to complete the import process.

The changes made in the workbook definition appear automatically in the integrated Excel workbook.

For example, Figure 5-19 shows the branding value of workbook changed to Edit Customers New Workbook in the workbook definition file.

Figure 5-19 Editing Branding Value in the Workbook Definition

[image: This image is described in the surrounding text]

Figure 5-20 shows the changed branding workbook value in the Edit Workbook Properties dialog after importing the workbook definition.

Figure 5-20 Updated Branding Value in Edit Workbook Properties Dialog

[image: This image is described in the surrounding text]

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook Integration Metadata

The workbook integration metadata XML file uses the adfdi-workbook-definition.xsd XML schema document, which defines the XML namespace as http://xmlns.oracle.com/adf/desktopintegration/workbook. The schema is integrated into JDeveloper through the ADF Desktop Integration add-in. You can find a copy of the schema at <MW_HOME>\jdeveloper\adfdi\etc\adfdi-workbook-definition.xsd, where MW_HOME is the Middleware Home directory.

While importing the workbook integration metadata, make a note of following points:

	
When the import process is initiated, the schema version number (schema-version attribute of <workbook>) of the XML file is compared against the schema version number of the installed ADF Desktop Integration client.

If both values match, the workbook integration metadata is imported to the workbook. If the schema version of the XML file is lower than the schema version of the installed client, the XML file is migrated to use the installed client's schema. No prompt appears when the file is migrated, but a log of the same is maintained. If the schema version of the XML file is greater than the schema version of the installed client, the import process fails and an error message appears.

	
After verifying the schema version, the imported XML file is validated against the schema of the installed client. If the validation fails, the validation failure details are logged, an error is reported to the user, and the import process aborts. If the schema validation succeeds, the import process continues.

	
If an element is missing in the imported XML file, the default value of the element is used in the integrated Excel workbook.

	
All pre-existing worksheet and component metadata is removed before the import.

	
If the imported worksheet's name matches an existing worksheet in the integrated workbook, that worksheet is used. Otherwise, a new worksheet is created.

	
All non-integrated worksheets of the integrated Excel workbook are not affected by the import.

	
If the imported component does not have valid origin information, the import process attempts to place that component on the first unused row in the target integrated worksheet.

	
After the XML file is imported, the integrated Excel workbook's Workbook ID is replaced with the Workbook ID of the XML file. If the workbook ID is missing in the XML file, a new ID is generated.

6 Working with ADF Desktop Integration Form-Type Components

This chapter describes how to insert and configure components (such as buttons, labels, input and output text, and list of values) that ADF Desktop Integration provides to allow end users to manage data retrieved from a Fusion web application, and how to display calculated data in these components using Excel formulae.

This chapter includes the following sections:

	
Section 6.1, "About ADF Desktop Integration Form-Type Components"

	
Section 6.2, "Inserting an ADF Button Component"

	
Section 6.3, "Inserting an ADF Label Component"

	
Section 6.4, "Inserting an ADF Input Text Component"

	
Section 6.5, "Inserting an ADF Output Text Component"

	
Section 6.6, "Inserting an ADF List of Values Component"

	
Section 6.7, "Inserting an ADF Image Component"

	
Section 6.8, "Inserting Error Components"

	
Section 6.9, "Displaying Tooltips in ADF Desktop Integration Form-Type Components"

	
Section 6.10, "Displaying Output from a Managed Bean in an ADF Component"

	
Section 6.11, "Displaying Concatenated or Calculated Data in Components"

	
Section 6.12, "Using Navigation Buttons"

6.1 About ADF Desktop Integration Form-Type Components

The ADF Desktop Integration Form-type components allow end users to manage data retrieved from the Fusion web application in the integrated Excel workbook. Rather than expose an ADF Form component in the components palette described in Section 5.5, "Using the Components Palette," ADF Desktop Integration uses the following components to create form-type functionality in an integrated Excel workbook:

	
ADF Input Text

	
ADF Output Text

	
ADF Label

	
ADF List of Values

	
ADF Button

Figure 6-1 shows these components.

Figure 6-1 ADF Desktop Integration Form-Type Components

[image: This image is described in the surrounding text]

You can insert a form component or a binding in a merged cell, or merge cells after inserting the form component or binding, but you cannot insert multiple form components in a merged cell or merge cells that are occupied by different form components.

Before you insert a component in a merged cell, make a note of the following:

	
Drag-and-drop functionality is not supported for inserting component in a merged cell.

	
Do not merge a component cell with non-empty cells that are above or left to it. When two or more cells are merged, Excel keeps the data and style of the most upper-left cell and discards the data of the remaining cells. So, merging a component cell with a non-empty cell above or left to itself results in the component data being overwritten.

	
Do not merge an empty component cell that has no value or binding with empty cells above or left to it. Merging an empty component cell with empty cells above or left to itself results in the style of that component cell being overwritten.

	
ADF Buttons do not expand to the whole merged area automatically. You can edit the Position and LowerRightCorner properties of the button to resize it as needed.

6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples

The ADF Desktop Integration Form-type components are used to build forms in the integrated Excel workbook for user input, and output from the Fusion web application. As shown in Figure 6-2, the form-type components used in navigation form of EditWarehouses-DT.xlsx enable end users to navigate and update data easily.

Figure 6-2 Navigation Form Using ADF Desktop Integration Form-Type Components

[image: This image is described in the surrounding text]

6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

After you have added a component to the worksheet, you may find that you need to add functionality such as responding to events or end user actions. Following are links to other functionality that form components can use:

	
Displaying output from a managed bean: You can use ADF Label or ADF Output Text components to display output from a managed bean. For more information, see Section 6.10, "Displaying Output from a Managed Bean in an ADF Component."

	
Styles: You can configure the display of your form-type components using several predefined Excel styles. For more information, see Section 9.2, "Working with Styles."

	
EL Expressions: You can use EL expressions with form-type components. For more information, see Appendix B, "ADF Desktop Integration EL Expressions."

6.2 Inserting an ADF Button Component

The ADF Button component renders a button in the Excel worksheet at runtime. End users click this button to invoke one or more actions specified by the ClickActionSet group of properties.

The LowerRightCorner and Position properties determine the area that the button occupies on the Excel worksheet at runtime.

Figure 6-3 shows an ADF Button component with its property inspector. When an end user clicks the button at runtime, it invokes the array of actions specified by ClickActionSet.

Figure 6-3 ADF Button Component in Design Mode

[image: This image is described in the surrounding text]

For more information about the properties of the ADF Button component, see Section A.11, "ADF Button Component Properties."

To insert an ADF Button component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Button and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Button from the Insert Component dropdown list.

	
Configure properties in the property inspector to determine the actions the component invokes at runtime in addition to the appearance, design, and layout of the component. Table 6-1 outlines some properties you must specify values for, and provides links to additional information.

Table 6-1 ADF Button component properties

	For this property...	Specify...
	
Label

	
A string or an EL expression that resolves to a label at runtime to indicate the purpose of the ADF Button component. The button label defaults to the action binding ID.

The EL expression, if used, references a string key in the res resource bundle. For more information about resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook." For more information about using labels in integrated Excel workbooks, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

To include the ampersand (&) character in the label, use &&. A single & character acts as a special character and is not displayed in the label.

	
ClickActionSet

	
Specify one or more actions in the Actions array of the ClickActionSet that the end user invokes when he or she clicks the ADF Button component. For more information about action sets, see Section 8.2, "Using Action Sets."

	
Click OK.

Figure 6-4 shows an example of the ADF Button component (in red box) at runtime.

Figure 6-4 ADF Button Component at Runtime

[image: This image is described in the surrounding text]

	
Notes:

	
If you change the view mode of the Excel worksheet to the Page Layout or Page Break mode, the ADF Button components may be rendered in an unexpected position. You must return back to Normal mode without saving the workbook, and then Run and stop the integrated Excel workbook to render the buttons to their original positions.

	
You can modify the properties of the component at a later time by selecting the cell in the worksheet. Click the ADF Button component to open its property inspector.

	
The ADF Button components are active at 100% zoom only, and are disabled when the end user zooms in or out on an integrated Excel worksheet.

	
To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

	
Tip:

In design mode, you can click the button, or press the spacebar when the button is in focus, to open the property inspector. The right-click context menu is disabled for a button.

If you want to add navigation buttons in your integrated Excel workbook to navigate to previous or next record, see Section 6.12, "Using Navigation Buttons."

6.3 Inserting an ADF Label Component

The ADF Label component is a component that you can insert into the active worksheet to display a static string value. You specify a value in the input field for Label in the property inspector or alternatively you invoke the expression builder to write an EL expression that resolves to a string at runtime. The retrieved string can be defined in a resource bundle or in an attribute control hint for an entity or view object. For example, the following EL expression resolves to the value of label of CountryId attribute binding at runtime:

#{bindings.CountryId.label}

The value that you specify for the Label property in an ADF Label component or other Oracle ADF components is evaluated after the worksheet that hosts the Oracle ADF component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and position, in the worksheet using the property inspector.

Figure 6-5 shows an ADF Label component with its property inspector in the foreground. The ADF Label component references an EL expression that resolves to the label of CountryId attribute binding at runtime.

Figure 6-5 ADF Label Component in Design Mode

[image: This image is described in the surrounding text]

To insert an ADF Label component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Label and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Label from the Insert Component dropdown list

	
Configure properties in the property inspector to determine the appearance, design, and layout of the component.

	
Click OK.

Figure 6-6 shows an example of the ADF Label component (in red box) at runtime.

Figure 6-6 ADF Label Component at Runtime

[image: This image is described in the surrounding text]

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

For more information about using labels in an integrated Excel workbook, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

6.4 Inserting an ADF Input Text Component

The ADF Input Text component is a component that you can insert into the active worksheet using the components palette. The active cell in the worksheet when you insert the component displays the current value from the component's binding after the worksheet DownSync action is invoked. End users can edit this value at runtime. You configure the worksheet UpSync action to transfer changes end users make to the value back to the Fusion web application and a Commit action binding to commit the changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style and behavior when a user double-clicks the cell (DoubleClickActionSet properties), in the worksheet using the property inspector. For more information about DoubleClickActionSet, see Section 8.2, "Using Action Sets."

The ADF Table component can invoke this component as a subcomponent when you set values for the ADF Table component column's InsertComponent or UpdateComponent properties. In this context, the ADF Input Text component enables the end user to input data into the ADF Table component. For more information, see Section 7.7, "Configuring an ADF Table Component to Insert Data."

Figure 6-7 shows an ADF Input Text component with its property inspector in the foreground. The ADF Input Text component binds to the City attribute binding in the Summit sample application for ADF Desktop Integration. The end user enters a city name in this component.

Figure 6-7 ADF Input Text Component in Design Mode

[image: This image is described in the surrounding text]

To insert an ADF Input Text component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Input Text and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Input Text from the Insert Component dropdown list

	
Configure properties in the property inspector to determine the appearance, layout, and behavior of the component. Table 6-2 outlines some properties that you must specify values for. For information about the component's other properties, see Section A.2, "ADF Input Text Component Properties."

Table 6-2 ADF Input Text component properties

	For this property...	Specify...
	
InputText.Value

	
An EL expression for the Value property to determine what binding the component references.

	
InputText.ReadOnly

	
An EL expression that resolves to False so that changes the end user makes are uploaded. Write an EL expression that resolves to True if you want the component to ignore changes. False is the default value.

	
Click OK.

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

Figure 6-8 shows an example of the ADF Input Text component (in red box) at runtime.

Figure 6-8 ADF Input Text Component at Runtime

[image: This image is described in the surrounding text]

6.5 Inserting an ADF Output Text Component

The ADF Output Text component is a component that you can insert into the active worksheet using the components palette. The active cell in the worksheet when you insert the component displays the current value from the component's binding after you invoke the worksheet DownSync action. The value the component displays is read-only. Changes that the end user makes to the value in the cell that anchors the component are ignored when changes are sent to the Fusion web application.

This component can also serve as a subcomponent for the ADF Table and ADF Read-only Table components. Columns in the ADF Table and ADF Read-only Table components can be configured to use the ADF Output Text component.

You can configure a number of properties for the component such as style, behavior when a user double-clicks the cell (DoubleClickActionSet properties), and position, in the worksheet using the property inspector.

Figure 6-9 shows an ADF Output Text component with its property inspector in the foreground.

Figure 6-9 ADF Output Text Component in Design Mode

[image: This image is described in the surrounding text]

To insert an ADF Output Text component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Output Text, and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Output Text from the Insert Component dropdown list

	
Configure properties in the property inspector to determine the appearance, layout, and behavior of the component.

For example, you must write or specify an EL expression for the Value property to determine what binding the ADF Output Text component references. For more information about the values that you specify for the properties of the ADF Output Text component, see Section A.3, "ADF Output Text Component Properties."

	
Click OK.

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

Figure 6-10 shows an example of the ADF Output Text component (in red box) at runtime.

Figure 6-10 ADF Output Text Component at Runtime

[image: This image is described in the surrounding text]

6.6 Inserting an ADF List of Values Component

The ADF List of Values component is a component that displays a dropdown menu in the Excel worksheet cell at runtime. It displays a maximum of 250 values at runtime. You can insert the List of Values component into a cell in the Excel worksheet.

You must specify a value for the ListID property. The ListID property references the list binding which populates the dropdown menu with a list of values at runtime after you invoke the worksheet DownSync action.

Figure 6-11 shows an ADF List of Values component with its property inspector in the foreground. The ADF List of Values component references a list binding (RegionId) that populates a dropdown menu in the Excel worksheet at runtime.

	
Notes:

	
You can display a dropdown menu in an ADF Table component's column by selecting TreeNodeList or ModelDrivenColumnComponent as the subcomponent to create when you specify a value for the TableColumn array's InsertComponent property. For more information, see Section 7.14, "Creating a List of Values in an ADF Table Component Column."

	
ADF List of Values components using date values are not supported.

Figure 6-11 ADF List of Values Component

[image: This image is described in the surrounding text]

To insert an ADF List of Values component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF List of Values and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF List of Values from the Insert Component dropdown list

	
Invoke the binding ID picker by clicking the browse (...) icon beside the input field for the ListID property and select a list binding that the page definition file exposes.

	
Configure other properties in the property inspector to determine the appearance, design, and layout of the component. For information about ADF List of Values component properties, see Section A.7, "ADF List of Values Component Properties."

	
Click OK.

	
Notes:

	
You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

	
An Excel form cannot be configured to use ADF List of Values components that use model-driven list bindings if the form's bound iterator is expected to contain zero rows. As a workaround, you may configure the ADF List of Values component to use a dynamic list binding instead.

6.7 Inserting an ADF Image Component

Using the ADF Image component, you can insert an image (for example, a company logo) in the integrated Excel worksheet. At design time, specify the URL of the image file in Source, and the ADF Image component renders the image at runtime. The image is rendered at original size at runtime.

At runtime, when the image component is rendered, ADF Desktop Integration determines whether the Source property value is an absolute URL or a relative URL. The source URL is considered to be absolute if it starts with http and https, the only supported schemes. If the URL is absolute, it is used as is to fetch the image and insert that image into the worksheet. If the URL is not absolute, the partial URI is assumed to be relative to the workbook's WebAppRoot. In such a case, the WebAppRoot value and the Source value are concatenated to form the complete image URL. If the attempt to fetch and insert the image fails for any reason (such as, invalid URL), a log entry is created. The technical details regarding the failure are reported in the client logs. The worksheet initialization is not interrupted and there are no warnings or error messages presented to the end user. The end user sees the short description of the image in the cell location where the image would have been displayed.

Figure 6-12 shows an ADF Image component in EditCustomers-DT.xlsx at design time.

Figure 6-12 ADF Image Component in the Design mode

[image: This image is described in the surrounding text]

To insert an ADF Image component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Image and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Image from the Insert Component dropdown list

	
Configure properties in the property inspector to determine the appearance, layout, and behavior of the component. Table 6-3 outlines some properties that you must specify values for. For information about the component's other properties, see Section A.8, "ADF Image Component Properties."

Table 6-3 ADF Image component properties

	For this property...	Specify...
	
Source

	
The URL of the image file.

You can use absolute or relative URLs as the source of the image. If the URL is not absolute, the partial URI is assumed to be relative to the workbook's WebAppRoot.

Examples:

/images/myLogo.png

/resourceServlet?image=myLogo

http://www.oracle.com/ocom/groups/public/@otn/documents/digitalasset/110224.gif

Note that the Source property does not support EL expressions.

For the list of supported image formats, see Microsoft Excel documentation.

	
ShortDesc

	
The String message as the alternate text of the image, if the image is not found or cannot be rendered. You can also specify an EL expression that resolves to the alternate text of the image component.

Note that the ShortDesc property does not support binding expressions.

	
Click OK.

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

Figure 6-13 shows an example of the ADF Image component at runtime.

Figure 6-13 ADF Image Component at Runtime

[image: This image is described in the surrounding text]

	
Note:

If the worksheet is not protected, the end user may resize or move the image at runtime. Depending on the size of the image, it might appear over (and hide) other worksheet contents, including other ADF Desktop Integration components.

6.8 Inserting Error Components

ADF Desktop Integration provides two error components, ADF Output Text (Worksheet Errors) and ADF Output Text (Table Errors) that you can use to display error details generated by the integrated Excel worksheet and the ADF Table component respectively.

Both error components use the ADF Output Text component to display the error message. The ADF Output Text (Worksheet Errors) component is automatically configured to display the worksheet errors, and the ADF Output Text (Table Errors) is automatically configured to display the table errors.

To insert an Error component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

	
In the components palette, select ADF Output Text (Worksheet Errors) or ADF Output Text (Table Errors), as desired, and click Insert Component.

If the current worksheet contains one, and only one, table component, the ADF Output Text (Table Errors) automatically displays all error messages of the table.

If the current worksheet contains multiple table components, you are prompted to choose a table before proceeding with the add component operation. Select the ID of the table to associate with the ADF Output Text (Table Errors) component in the Select Table dialog, and click OK. To insert the ADF Output Text (Table Errors) component, the worksheet must contain at least one ADF Table component.

Alternatively, in the Oracle ADF tab, select ADF Output Text (Worksheet Errors) or ADF Output Text (Table Errors) from the Insert Component dropdown list.

	
If required, configure component properties in the property inspector.

	
Click OK.

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector. You can also right-click in the cell and choose Edit ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

6.8.1 What You May Need to Know About Error Components

ADF Output Text (Worksheet Errors) Component

To display a worksheet's error message summaries generated by action sets invoked on a worksheet, the ADF Output Text (Worksheet Errors) component uses #{worksheet.errors} as the EL expression set to the Value property of the ADF Output Text component. At runtime, the previous error message summary is cleared (if one existed) when the action set starts the invocation. If no errors occur during invocation, the error message remains blank. If an error occurs, the ADF Output Text component displays the error message summary.

The ADF Output Text (Worksheet Errors) component is pre-configured to use the DisplayWorksheetErrors action as a DoubleClickActionSet item.

Figure 6-14 shows the ADF Output Text (Worksheet Errors) component at design-time.

Figure 6-14 ADF Output Text (Worksheet Errors) Component in Design Mode

[image: This image is described in the surrounding text]

At runtime, double-clicking the ADF Output Text component invokes the DisplayWorksheetErrors action as shown in Figure 6-15.

Figure 6-15 Runtime View of ADF Output Text (Worksheet Errors) Component

[image: This image is described in the surrounding text]

For more information about the Worksheet's DisplayWorksheetErrors action, see Section A.16, "Worksheet Actions and Properties."

ADF Output Text (Table Errors) Component

To allow the user to view details of errors that occur during table upload batch commit operations, the ADF Output Text (Table Errors) component uses #{components.tableID.errors} as the EL expression set to the Value property of the ADF Output Text component. At runtime, the previous error message summary is cleared (if one existed) when the action set starts the invocation. If no errors occur during invocation, the error message remains blank. If an error occurs, the ADF Output Text component displays the error message summary.

The ADF Output Text (Table Errors) component is pre-configured to use the ADF Table component's DisplayTableErrors action as a DoubleClickActionSet item.

Figure 6-16 shows the ADF Output Text (Table Errors) component at design-time.

Figure 6-16 ADF Output Text (Table Errors) Component in Design Mode

[image: This image is described in the surrounding text]

At runtime, double-clicking the ADF Output Text component invokes the DisplayTableErrors action as shown in Figure 6-17.

Figure 6-17 Runtime View of DisplayTableErrors action

[image: This image is described in the surrounding text]

For more information about ADF Table component actions, see Section A.12, "ADF Table Component Properties and Actions."

6.9 Displaying Tooltips in ADF Desktop Integration Form-Type Components

Using tooltips, you can display a hint or an instruction text for the component. The tooltip is displayed in the Comment window of the cell that anchors the component.

If a component is created from a binding element, the tooltip is automatically set to the model-driven tooltip, else it is empty. Note that the tooltip is always initially empty for the ADF Label component, and is not applicable to the ADF Button component.

You can enter the hint or the instruction text in the Tooltip property of the component. You can also specify an EL expression (including a resource expression) that evaluates to the tooltip text.

	
Note:

ADF Desktop Integration also supports toolTip attribute control hint in EL expressions. The support is similar to the mandatory control hint described in Table B-3 of Appendix B, "ADF Desktop Integration EL Expressions."

To add a tooltip to an inserted form-type component:

	
Open the integrated Excel workbook.

	
If the Form-type component has already been inserted in the Excel worksheet, select the component, and click Edit Properties in the Oracle ADF tab.

To insert a component to the worksheet, select the cell where you want to anchor the component. In the components palette or the bindings palette, select the Form-type component or the binding, and click Insert Component or Insert Binding.

	
In the Property Inspector, click the browse (...) icon of the Tooltip property, and enter the tooltip message.

If a component is created from a binding element, the Tooltip property would be set to the model-driven tooltip. If required, you can configure and change the tooltip message or the EL expression. The property would be empty if the component is not created from a binding element.

Figure 6-18 shows the Tooltip property of an Input Text component.

Figure 6-18 Tooltip Property of Input Text Component

[image: This image is described in the surrounding text]

	
Click OK.

Figure 6-19 shows the tooltip message of the Phone field of EditWarehouses-DT.xlsx at the runtime. Notice the small red arrow at the top-right of the Input Text component. It indicates the component, or the cell, has a comment. Hover mouse pointer over the component to see the tooltip message.

Figure 6-19 Tooltip Message of Input Text Component at Runtime

[image: This image is described in the surrounding text]

6.9.1 What You May Need to Know About Tooltips

The tooltips are rendered once only, and are not updated after a call to Worksheet.DownSync.

At design-time, if you inserted a comment manually to a cell or a component, ADF Desktop Integration would override it at runtime. The old comment will be removed and replaced with the tooltip message of the component. When returning to design-time mode from test mode, all manually inserted Excel comments are removed as each component is rendered for its design-time appearance.

At runtime, if the Tooltip property is non-empty, the expression is evaluated and the resulting text is trimmed of whitespace. If the final value is non-empty, it is inserted into the target cell as an Excel comment.

When a component is positioned on a merged range of cells, the tooltip appears on the top-right corner of the merged range.

You can also add tooltips to table columns (see Section 7.18.1, "What You May Need to Know About Tooltips for Table Columns") and Worksheet Ribbon commands (see Section 8.3.2, "How to Configure a Worksheet Command for the Runtime Ribbon Tab").

	
Notes:

	
Tooltips are not editable in a protected worksheet.

	
Ribbon command tooltips have a maximum size of 1024 characters. If a tooltip value exceeds that limit, only the first 1024 characters are shown.

	
If Excel Comments are disabled, tooltips for form components and table headers are not rendered.

	
Extensive usage of tooltips may impact runtime performance.

6.10 Displaying Output from a Managed Bean in an ADF Component

You can configure an ADF component to display output from a managed bean in your Fusion web application. Information about how to use managed beans in a Fusion web application can be found in the "Using a Managed Bean in a Fusion Web Application" section of the Developing Fusion Web Applications with Oracle Application Development Framework. You reference a managed bean in an integrated Excel workbook through an EL expression. Add a method action binding to the page definition file you associate with the Excel worksheet to retrieve the value of the managed bean and assign it to an attribute binding. Use an EL expression to retrieve the value of the attribute binding at runtime.

6.10.1 How to Display Output from a Managed Bean

You write an EL expression for a property that supports EL expressions (for example, the Label property).

Before you begin:

It may be helpful to have an understanding of managed beans. For more information, see Section 6.10, "Displaying Output from a Managed Bean in an ADF Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 6.1.2, "Additional Functionality for ADF Desktop Integration Form-Type Components."

To display output from a managed bean:

	
Open the integrated Excel workbook.

	
Select the ADF component to display the output from the managed bean, and open its property inspector.

Figure 6-20 shows an example where an ADF Label component is configured to display the output from an attribute binding that has its value populated by an action binding.

Figure 6-20 ADF Label Component That Displays Output from a Managed Bean at Runtime

[image: This image is described in the surrounding text]

	
Write an EL expression that gets the output from a managed bean at runtime.

The example in Figure 6-20 shows an EL expression that retrieves the value of a string key (excel.connectionPrefix) from the res resource bundle and the value of the loggedInUser attribute binding. This attribute binding references the output from the managed bean.

	
Click OK.

6.10.2 What Happens at Runtime: How an ADF Component Displays Output from a Managed Bean

The method action binding retrieves values from the managed bean and populates the attribute binding. The EL expression that you write retrieves the value from the attribute binding and displays it to the end user through the ADF component that you configured to display output. For example, the ADF Label component shown in design mode in Figure 6-21 displays a string similar to the following at runtime:

Connected as sking

Figure 6-21 Output from a Managed Bean at Runtime

[image: This image is described in the surrounding text]

In Figure 6-21, sking is the user name of the user that is logged on to the Fusion web application through the integrated Excel workbook.

6.11 Displaying Concatenated or Calculated Data in Components

The ADF Desktop Integration module supports EL expressions within components that allow a single component to display data that is based on a calculation or concatenation of multiple binding expressions.

6.11.1 How to Configure a Component to Display Calculated Data

You write an EL expression for the Value property of an Input Text or Output Text component.

Figure 6-22 shows an EL expression example where an ADF Output Text component is configured to display the margin between two fields: List Price and Cost Price.

Figure 6-22 ADF Output Text Component Displaying Calculated Data

[image: This image is described in the surrounding text]

Before you begin:

It may be helpful to have an understanding of how to display concatenated or calculated data in ADF components. For more information, see Section 6.11, "Displaying Concatenated or Calculated Data in Components."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 6.1.2, "Additional Functionality for ADF Desktop Integration Form-Type Components."

To create an EL expression to display calculated data

	
Open the integrated Excel workbook.

	
Select the ADF Input Text or ADF Output Text component to display calculated data.

	
Open the property inspector and click the browse (...) icon of the Value property.

	
Write an EL expression that gets the output from two, or more, expressions.

Example 6-1 shows an EL expression that calculates the difference between the values of two fields, List Price and Cost Price, and then divides it with value of Cost Price column to generate a margin.

Example 6-1 An EL Expression for Calculated Data

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice.inputValue}")/"#{row.bindings.CostPrice.inputValue}")

	
Click OK.

For more information about EL expressions, see Appendix B, "ADF Desktop Integration EL Expressions."

	
Note:

If the Value property of an ADF Input Text component contains a formula, the ADF Input Text component becomes read-only at runtime regardless of the value of the ReadOnly property.

6.12 Using Navigation Buttons

You can create navigation buttons (Next, Previous, First, and Last) to navigate from one record to another as shown in Figure 6-23. If the end user changes a record's data before navigating to another record, you can choose to save those changes or ignore them.

Figure 6-23 Navigation Buttons in an Integrated Excel Workbook

[image: This image is described in the surrounding text]

To save changes before navigating to another record, define the action sets of the button in the following order:

	
Worksheet.UpSync

	
Commit

	
Navigation action (for example, Next)

	
Worksheet.DownSync

	
Note:

If you omit the Commit action from the action set, any pending changes to multiple records are lost when the end user's web application session ends.

To ignore changes before navigating to another record, define the action sets of the button in the following order:

	
Navigation action (for example, Next)

	
Worksheet.DownSync

	
Note:

If you define button actions to ignore changes, then it is the end user's responsibility to save changes before navigating to another record.

7 Working with ADF Desktop Integration Table-Type Components

This chapter describes the table-type components that ADF Desktop Integration provides, how to configure and use them, how to download data from Fusion web application, how to insert, update, and delete data rows from the table-type components in the integrated Excel workbook, how to track the changes, how to configure special columns in the table-type components, and other tasks that you can do with table-type components.

This chapter includes the following sections:

	
Section 7.1, "About ADF Desktop Integration Table-Type Components"

	
Section 7.2, "Page Definition Requirements for an ADF Table Component"

	
Section 7.3, "Inserting ADF Table Component into Excel Worksheet"

	
Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF Table Component"

	
Section 7.5, "Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component"

	
Section 7.6, "Configuring an ADF Table Component to Update Existing Data"

	
Section 7.7, "Configuring an ADF Table Component to Insert Data"

	
Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component"

	
Section 7.9, "Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action"

	
Section 7.10, "Configuring an ADF Table Component to Delete Rows in the Fusion Web Application"

	
Section 7.11, "Batch Processing in an ADF Table Component"

	
Section 7.12, "Special Columns in the ADF Table Component"

	
Section 7.13, "Configuring ADF Table Component Key Column"

	
Section 7.14, "Creating a List of Values in an ADF Table Component Column"

	
Section 7.15, "Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component"

	
Section 7.16, "Adding a Dynamic Column to Your ADF Table Component"

	
Section 7.17, "Configuring Column Widths in an ADF Table Component"

	
Section 7.18, "Displaying Tooltips in ADF Desktop Integration Table-Type Components"

	
Section 7.19, "Creating an ADF Read-Only Table Component"

	
Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads"

	
Section 7.21, "Clearing the Values of Cached Attributes in an ADF Table Component"

	
Section 7.22, "Tracking Changes in an ADF Table Component"

	
Section 7.23, "Evaluating EL Expression for ReadOnly Properties"

	
Section 7.24, "Using Explicit Worksheet Setup Action"

7.1 About ADF Desktop Integration Table-Type Components

ADF Desktop Integration provides the following table-type components to display structured data:

	
ADF Table component

	
ADF Read-only Table component

The ADF Table and ADF Read-only Table components provide end users with the functionality to download and upload rows of data. The ADF Table component also enables end users to edit or delete downloaded data, or to insert new rows of data. Figure 7-1 shows the ADF Table and the ADF Read-only Table components.

Figure 7-1 ADF Desktop Integration Table-Type Components

[image: This image is described in the surrounding text]

Each ADF Table component contains a Key column. Do not remove the Key column, as it contains important information that is used by ADF Desktop Integration for the proper functioning of the table. Removal of the Key column, or any modification in the Key column cell, results in errors and data corruption. For more information about the Key column, see Section 7.13, "Configuring ADF Table Component Key Column."

The other ADF Desktop Integration components that you can use with these table-type components are described in Chapter 6, "Working with ADF Desktop Integration Form-Type Components."

7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples

Tables are used to display the structured information. For example, Figure 7-2 shows an ADF Table component of Summit sample application for ADF Desktop Integration with data downloaded from the respective Fusion web application.

Figure 7-2 ADF Table Component with Downloaded Data

[image: This image is described in the surrounding text]

7.1.2 Additional Functionality of Table-Type Components

After you have added a table component to your integrated Excel workbook, you may find that you need to add additional functionality to configure your table. Following are links to other functionalities that table components can use.

	
Change Tracking: You can enable the table component for tracking changes. For more information, see Section 7.22, "Tracking Changes in an ADF Table Component."

	
Web Page Picker: You configure a Dialog action to display a web page from the Fusion web application. For more information, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
Dependent List of Values: You can add dependent list of values components in your table component. For more information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

	
Styles: You can configure the display of your form-type components using several predefined Excel styles. For more information, see Section 9.2, "Working with Styles."

	
EL Expressions: You can use EL expressions with table-type components. For more information, see Appendix B, "ADF Desktop Integration EL Expressions."

7.2 Page Definition Requirements for an ADF Table Component

The ADF Table component is one of the Oracle ADF components that ADF Desktop Integration exposes. It appears in the components palette of the ADF Desktop Integration Designer task pane and, after inserted into an Excel worksheet, allows the following operations:

	
Read-only

	
Insert-only

	
Update-only

	
Insert and update

Review the following sections for information about page definition file requirements specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality to your end users, you must configure the underlying page definition file for the Excel worksheet with ADF bindings. For general information about the page definition file requirements for an integrated Excel workbook, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

Expose the following control bindings when you create a page definition file for authoring an ADF Table component:

	
Tree binding that exposes the desired attribute bindings. Note that ADF Desktop Integration only supports Scrollable access mode for a ViewObject. The other access modes are not supported.

	
Method action bindings and action bindings if you intend to configure values for the ADF Table component's RowActions and BatchOptions groups of properties. Examples of procedures where you set values for these groups of properties include:

	
Section 7.3, "Inserting ADF Table Component into Excel Worksheet"

	
Section 7.7, "Configuring an ADF Table Component to Insert Data"

	
Section 7.5, "Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component"

	
Note:

The previous list is not exhaustive.

	
(Optional) Update record action binding.

	
Note:

As Excel displays a flat list of bindings and iterators are not displayed, use descriptive names for the attributes of different iterators.

Figure 7-3 shows the bindings that the ExcelCustomers.xml page definition file includes. This page definition file can support the use of an ADF Table component in the Excel worksheet that it is associated with.

Figure 7-3 ADF Bindings Supporting Use of an ADF Table Component

[image: This image is described in the surrounding text]

7.3 Inserting ADF Table Component into Excel Worksheet

After you have configured a page definition file correctly, you can insert the ADF Table component into the worksheet and configure its properties to achieve the functionality you want. The ADF Table component enables you to download, edit, and upload rows of data.

7.3.1 How to Insert ADF Table Component

You can insert the ADF Table component from the ADF Desktop Integration Designer task pane.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more information, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To insert ADF Table component into Excel worksheet:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet into which you want to insert the ADF Table component.

When inserting an ADF Table component, you must ensure that the data of two tables does not overlap at runtime, and the selected cell is not a merged cell.

	
In the bindings palette of the ADF Desktop Integration Designer task pane, select the tree binding to use and click Insert Binding.

Based on your selection, the Select Component dialog or the Insert Component dialog appears.

	
In the dialog that appears, select ADF Table and click OK.

	
Notes:

	
You can also insert an ADF Table component by using the components palette or the Oracle ADF tab. Select ADF Table and click Insert Component. Alternatively, in the Oracle ADF tab, select ADF Table from the Insert Component dropdown list. If you use either the components palette or the Oracle ADF tab to create the table component, you would have to add each column manually to appear in the component at runtime.

	
You cannot insert an ADF Table component in a merged cell.

	
When you insert an ADF Table component using Insert Binding, then by default, InputText is defined as the subcomponent type for all columns.

If you want a column to have a different subcomponent type, open the ADF Table property inspector (select any cell of the ADF Table component and click the Edit Properties button in the Oracle ADF tab), click the browse (...) icon of the Columns property. In the Edit Columns dialog, select the column, and click the browse (...) icon of the UpdateComponent property. In the Select Component dialog, select the desired subcomponent type, verify the binding and other properties, and click OK.

	
Configure properties for the ADF Table component using the property inspector shown in Figure 7-4.

Figure 7-4 ADF Table Property Inspector

[image: This image is described in the surrounding text]

	
Specify a binding expression for the attribute that uniquely identifies each row in the iterator associated with the tree binding. The UniqueAttribute property may be left blank if the binding's iterator supports row keys.

	
Configure the BatchOptions properties of the ADF Table component as described in Table 7-1.

Table 7-1 BatchOptions Properties of the ADF Table Component

	Set this property to...	This value...
	
CommitBatchActionID

	
The Commit action binding that the page definition file exposes.

	
Optionally, configure the RowLimit group of properties to determine what number of rows the ADF Table component can download.

For more information, see Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

	
Click OK.

Figure 7-5 shows the ADF Table component in EditCustomers-DT.xlsx in design mode.

Figure 7-5 ADF Table Component in Design Mode

[image: This image is described in the surrounding text]

Figure 7-6 shows the ADF Table component in EditCustomers-DT.xlsx at runtime.

Figure 7-6 ADF Table Component at Runtime

[image: This image is described in the surrounding text]

For more information about the properties that you can set for the ADF Table component, see Section A.12, "ADF Table Component Properties and Actions."

To remove the table component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

7.3.2 How to Add a Column in an ADF Table Component

After inserting an ADF Table component in the worksheet of your integrated Excel workbook, you may want to add a column that is not available in the tree binding. For example, you may want to add a column that displays values calculated by an Excel formula.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more information, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To add a column in an ADF Table component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, click the browse (...) icon of the Columns property.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table component.

	
Click Add to add a new column. The new column is inserted at the end of the Members list. To move the column to a specific position, select the column and use the Up and Down arrow keys.

	
Configure the new column's properties in the right pane of the dialog.

	
Click OK.

	
Note:

If you have not moved the new column as described in Step 4, it appears as the last column of the table.

ADF Desktop Integration does not limit the number of columns you can add in an ADF Table component you can add as many columns as your version of Excel supports. However, it has been observed that a very wide table gives slow performance and poor user experience. If you experience the same, you must try reducing the number of columns of the table before diagnosing other reasons for slow performance.

7.4 Configuring Oracle ADF Component to Download Data to an ADF Table Component

After you add an ADF Table component to a worksheet, you configure it and the worksheet that hosts it, so that the ADF Table component downloads data from the Fusion web application. To achieve this, you configure an Oracle ADF component, such as a worksheet ribbon command, to invoke an action set. The action set that is invoked must include the ADF Table component Download action among the actions that it invokes.

The number of rows that an ADF Table or an ADF Read-only Table component contains expands or contracts based on the number of rows to download from a Fusion web application. You should not place anything to the left or right of a table-type component unless you want to replicate it when Excel inserts rows to accommodate the data that one of the table-type components downloads. You can place other components above or below a table-type component as they maintain their position relative to the table-type component at runtime. End users who want to insert new rows of data into an ADF Table component at runtime must insert full rows into the Excel worksheet that hosts the ADF Table component.

7.4.1 How to Configure an ADF Component to Download Data to an ADF Table Component

Configure an Oracle ADF component, a worksheet ribbon button, or a worksheet event to invoke an action set that, in turn, invokes the ADF Table component Download action.

Before you begin:

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

It may be helpful to have an understanding of how to configure ADF component to download data to an ADF Table data component. For more information, see Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF Table Component."

To configure an ADF component to download data to an ADF Table component:

	
Open the integrated Excel workbook.

	
Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon command. For more information about adding a ribbon command in a worksheet, see Section 8.3.1, "How to Define a Workbook Command Button for the Runtime Ribbon Tab."

	
Note:

Instead of adding a ribbon command, you can configure a worksheet event or an Oracle ADF component (a button, for example) to invoke the action set at runtime.

	
Open the Edit Action dialog to configure an action set. For more information about invoking action sets, see Section 8.2, "Using Action Sets."

	
Add the ADF Table component Download action to the list of actions that the action set invokes at runtime. Note that Download is a component action.

The ADF Table component Download action downloads the current state of the binding referenced by the ADF Table component TreeID property. To ensure that the state of this binding is up to date before download, add a query action that refreshes the binding before the action set invokes the ADF Table component Download action.

Figure 7-7 shows the Edit Action dialog in the EditCustomers-DT.xlsx workbook where the action set invoked by the worksheet event Startup is configured.

Figure 7-7 Action Set Downloading Data to an ADF Table Component

[image: This image is described in the surrounding text]

	
Click OK.

7.4.2 What Happens at Runtime: How the ADF Table Component Downloads Data

The end user invokes the action set that you configured. The action set invokes the list of actions specified in order. These include an action that invokes the Download action of the ADF Table component. When invoked, the Download action downloads all rows from the tree binding referenced by the ADF Table component TreeID property.

Make a note of following key points when the Download action is invoked at runtime:

	
If there are any rows marked as changed when the Download action is invoked, the end user is prompted to confirm the action and to continue (see Figure 7-8). If the end user chooses No, the action and the action set are cancelled without error.

	
All existing Excel rows are removed from the table in Excel.

	
The status column is cleared of all messages.

Figure 7-8 Confirmation Prompt Before Downloading Data in ADF Table

[image: This image is described in the surrounding text]

The number of rows that the action downloads depends on the values set for the RowLimit group of properties in the ADF Table component. For more information, see Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

	
Note:

Any filter criteria that has been applied to the worksheet automatically gets cleared prior to the Download action.

7.5 Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component

A Pending Insert row is a worksheet table row with data that, on upload, is inserted as a new data row in the iterator. For example, if the end user creates a new row in the table by using the Insert option in the right click context menu, the new row is treated as a pending insert row and is inserted to the iterator when being uploaded.

A Pending Update row is a worksheet table row with data that, on upload, updates an existing data row in the iterator. For example, if the iterator of the tree binding contains some rows retrieved from the database and when these rows are downloaded to the ADF table, they are treated as pending update rows. If the end user makes changes to these rows and uploads them, the existing rows in the iterator are updated with new values from the ADF Table row.

In most cases, rows in the iterator of the tree binding are downloaded as pending update rows into the ADF Table. If you want some rows to be downloaded as pending inserts, you need to set the state of these rows to STATUS_INITIALIZED. For more information about how to set a row's state as STATUS_INITIALIZED, see the setNewRowState method in Oracle Fusion Middleware Java API Reference for Oracle ADF Model.

Note the following differences between pending insert rows and pending update rows:

	
Pending insert rows are populated with the value of the EL expression for the insert component that is associated with each column in the ADF Table component, while pending update rows are populated with the value of the EL expression for the update component that is associated with each column in the ADF Table component.

	
When evaluated for pending insert rows, the EL expression #{components.componentID.currentRowMode} returns Insert. In contrast, the same EL expression returns Update for pending update rows.

Note that the componentID part of the EL expression #{components.componentID.currentRowMode} references the ID of the ADF Table component.

7.5.1 What Happens at Runtime: Download Action is Invoked

When the Download action is invoked, it examines the states of all rows in the iterator. Rows of state STATUS_INITIALIZED are downloaded as pending insert rows in the table, while rows of other states are downloaded as pending update rows.

7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts

You can use the STATUS_INITIALIZED rows to pre-populate values for some, or all, attributes of the pending insert rows. As a STATUS_INITIALIZED row is not validated, you can configure an action to populate the STATUS_INITIALIZED row partially and insert it into the iterator before the Download action is invoked. The Download action then treats this row as a pending insert row so that a new row, based on the pre-populated row, can be inserted.

Note that after uploading the pending insert, a STATUS_NEW row is inserted into the iterator, but the original STATUS_INITIALIZED row is not removed. If you want, you can configure another action to remove STATUS_INITIALIZED rows. For example, you can configure an action set with the following actions:

1. Create STATUS_INITIALIZED rows

2. Run Download action

3. Clean up STATUS_INITIALIZED rows

	
Notes:

	
If InsertRowEnabled is set to False, any changes to the downloaded STATUS_INITIALIZED rows are ignored when upload is performed.

	
To avoid empty STATUS_INITIALIZED rows if you are using an UpdateOnly table, remove the custom method that inserts STATUS_INITILIAZED rows from the Download action.

7.5.3 What You May Need to Know About DownloadForInsert Action

ADF Desktop Integration also supports a table action called DownloadForInsert. DownloadForInsert is an obsolete action and can be replaced with the Download action. DownloadForInsert continues to work as it always has worked in previous releases.The key difference, with respect to Download, is that DownloadForInsert only considers rows in the iterator that are in the STATUS_INITIALIZED state.

7.6 Configuring an ADF Table Component to Update Existing Data

When you add the ADF Table component, by default, it allows end users to edit the existing data, but it does not allow them to add new data rows or to delete existing data rows.

7.6.1 How to Configure an ADF Table Component to Update Data

If you want the end user to be able to edit existing data, but would like to restrict the addition or deletion of data rows, no additional configuration is required. Ensure that the ADF Table component RowAction properties are set, as described in Table 7-2. and shown in Figure 7-9.

Table 7-2 RowAction Properties of ADF Table Component

	Property	Value
	
InsertRowEnabled

	
False

	
DeleteRowEnabled

	
False

	
UpdateRowEnabled

	
True

Figure 7-9 ADF Table RowActions Properties to Update Data

[image: This image is described in the surrounding text]

7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

When the end user changes data in a row, ADF Desktop Integration marks the row and an upward pointing triangle appears in a row of the _ADF_ChangedColumn column. After updating the existing data, the end user initiates the upload process to save the changes. For more information about the ADF Table component's upload process, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

Excel uploads modified rows from the integrated workbook in batches rather than row by row. You can configure the size of batches and the actions an ADF Table component invokes when it uploads a batch. For more information about batch processing, see Section 7.11, "Batch Processing in an ADF Table Component."

For more information about the properties that you can set for the ADF Table component, see Section A.12, "ADF Table Component Properties and Actions."

	
Note:

Any filter criteria that has been applied to the worksheet is automatically cleared prior to the upload action.

7.7 Configuring an ADF Table Component to Insert Data

The primary purpose of an ADF Table component is to provide end users with an interface where they can input or edit data which can then be uploaded to the database that serves your Fusion web application. For this to happen, you must expose methods on data controls, create action bindings in your page definition file, and set properties for the ADF Table component that an Excel worksheet hosts. Note that a full Excel row must be inserted for this functionality to work correctly.

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's Operations

If you want the changes that the end user makes in an ADF Table component to be committed invoking the ADF Table component's Upload action, you must configure some of the ADF Table component's properties.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table component to insert data. For more information, see Section 7.7, "Configuring an ADF Table Component to Insert Data."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure an ADF Table component to insert data using a view object's operations:

	
Open the project in JDeveloper.

	
If not present, add a CreateInsert and a Commit action binding to the page definition file that is associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an ADF Table Component."

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, configure the RowActions properties of the ADF Table component as described in the Table 7-3:

Table 7-3 RowActions properties of ADF Table component

	Set this property to...	This value...
	
InsertRowEnabled

	
True

	
InsertBeforeRowActionID

	
The CreateInsert action binding that the page definition file exposes.

	
InsertRowsAfterUploadEnabled

	
True, to upload the inserted rows again regardless of whether they have been previously uploaded. By default, this property is set to False.

The property is ignored if InsertRowEnabled is set to False.

	
Configure the BatchOptions properties of the ADF Table component as described in the Table 7-4.

Table 7-4 BatchOptions Properties of the ADF Table Component

	Set this property to...	This value...
	
CommitBatchActionID

	
The Commit action binding that the page definition file exposes.

	
Configure the Columns property of the ADF Table component as described in the Table 7-5.

Table 7-5 Columns property of ADF Table component

	Set this property to...	This value...
	
InsertUsesUpdate

	
True

	
UpdateComponent

	
	
Set the Value field of the UpdateComponent property to the update attribute from the page definition file. For example, #{row.bindings.ProductId.inputValue}.

	
Verify that ReadOnly property of UpdateComponent is set appropriately.

This property only appears if you selected InputText or TreeNodeList as the subcomponent to associate with the column. Set ReadOnly to False if you do want users to edit the values in the column, set to True otherwise.

For more information about the components that you can use as a subcomponent, see Chapter 6, "Working with ADF Desktop Integration Form-Type Components."

	
ID

	
Set a value in this field that uniquely identifies the column in the ADF Table component's list of columns. A value for this property is required. The ADF Table component generates an initial value that you need not modify.

	
CellStyleName

	
Set this property to a style defined in the workbook or to an EL expression that applies a style to the cells in the column at runtime. For more information about styles, see Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook."

	
HeaderLabel

	
Set this property to a label or to an EL expression that evaluates to a label which is rendered in the column header at runtime. For more information about labels, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

	
HeaderStyleName

	
Set this property to a style defined in the workbook or to an EL expression that applies a style to the column's header cell at runtime. For more information about styles, see Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook."

	
Repeat Step 7 for each column that contains data to commit during invocation of the Upload action.

For information about ADF Table component properties, see Section A.12, "ADF Table Component Properties and Actions."

	
Notes:

	
If you are using a polymorphic view object and want to insert a new row, the default CreateInsert action binding is not sufficient. You must create a custom method that also sets the discriminator value in the newly created row.

While creating the custom method, you must expose the custom method as an action binding in the page definition file. The action binding must be specified as the InsertBeforeActionId rather than CreateInsert.

	
If the InsertRowsAfterUploadEnabled property is set to False and the end user tries to upload the inserted rows again, an error message in the status column is displayed indicating that the row cannot be inserted more than once.

7.8 Configuring an ADF Component to Upload Changes from an ADF Table Component

You configure the ADF Table component and the worksheet that hosts it so that end user can upload changes they make to data in the ADF Table component to the Fusion web application. To configure this functionality, you decide what user gesture or worksheet event invokes the action set that invokes the ADF Table component's Upload action.

The Upload action commits all successful rows even when some rows have failures. Use the UploadAllOrNothing action instead if you want no row changes to get committed if one, or more, row failures occur (see Section 7.9, "Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action"). To provide upload options to end users in a web page from the Fusion web application that differ from the default upload dialog, you must specify a Dialog action in the action set before the action that invokes the ADF Table Component's Upload action. For more information, see Section 7.8.5, "How to Create a Custom Upload Dialog."

	
Note:

In a master-detail relationship, ADF Desktop Integration does not support editing of the ViewLink source attributes, as the selections in the child view object would change as a result. To prevent any accidental editing, define the ViewLink source attributes to be read-only, or use a model configuration that does not include a view link between master and detail.

7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table Component

Configure an ADF component, such as a worksheet ribbon command, to invoke an action set that, in turn, invokes the ADF Table component Upload action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to upload data from an ADF Table data component. For more information, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure an ADF component to upload changed data from an ADF Table component:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog to configure the action set that invokes the ADF Table component Upload action.

For more information about action sets, see Section 8.2, "Using Action Sets."

	
Add the ADF Table component Upload action to the list of actions that the action set invokes at runtime.

Figure 7-10 shows the Edit Actions dialog in the EditCustomers-DT.xlsx workbook, where the action set invoked by the ribbon command labeled Upload at runtime is configured.

Figure 7-10 Action Set Uploading Data from an ADF Table Component

[image: This image is described in the surrounding text]

	
Click OK.

	
Note:

The action set does not include a call to a commit-type action as the ADF Table component's batch options already include calls to Commit. For more information, see Section 7.11.1, "How to Configure Batch Options for an ADF Table Component."

7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data

At runtime, the end user invokes the action set through whatever mechanism you configured (ADF component, worksheet ribbon button, worksheet event). This triggers the following sequence of events:

	
If the ADF Table component contains dynamic columns, ADF Desktop Integration verifies whether the dynamic columns that were expanded the last time the ADF Table component's Download action was invoked are still present in the Fusion web application. If the columns are not present, ADF Desktop Integration prompts the end user to determine whether to continue upload process. If the end user decides not to continue, ADF Desktop Integration returns an abort code to the executing action set.

	
If the ADF Table component contains no pending changes to upload, the ADF Table component's Upload action returns a success code to the executing action set.

	
If you did not configure a custom upload dialog for the action set, as described in Section 7.8.5, "How to Create a Custom Upload Dialog," ADF Desktop Integration presents the default upload dialog shown in Figure 7-11.

Figure 7-11 Default Upload Dialog

[image: This image is described in the surrounding text]

If the end user clicks Cancel, ADF Desktop Integration returns an abort code to the executing action set. If the end user clicks OK, the action set continues executing with the options specified in the dialog for the upload operation.

	
The ADF Table component uploads modified rows in batches, rather than row by row. You can configure the batch options using the BatchOptions group of properties. For more information about batch options for the ADF Table component, see Section 7.11, "Batch Processing in an ADF Table Component."

Each row of a batch is processed in the following way, and the process continues until all changed rows of each batch are processed:

	
For inserted rows, invoke the InsertBeforeRowActionID action, if specified.

	
Set attributes from the worksheet into the model, including any cached row attribute values.

	
For edited rows, invoke the UpdateRowActionID action; and for inserted rows, invoke the InsertAfterRowActionID action, if specified.

	
For each uploaded row, displays a status message in the Status column. For more information, see Section 8.2.5, "How to Display a Status Message While an Action Set Runs."

	
For any row failure, it verifies the value of AbortOnFail. If AbortOnFail is set to False, it continues upload process, otherwise it stops uploading data and invokes the commit action.

	
While uploading data, the ADF Table component returns a success or failure code to the executing action set based on the following:

	
If the ADF Table component uploads all batches successfully, it returns the success status to the executing action set. If the end user has selected the Download all rows after successful upload option in Step 3, the ADF Table component then downloads all rows from the Fusion web application.

	
If the ADF Table component did not upload all batches successfully, the action set invokes the action specified by the RowActions.FailureActionID property, if an action is specified for this property. ADF Desktop Integration returns a failure code to the action set.

If you selected On failure, continue to upload subsequent rows in the Upload Options dialog of Step 3, the Upload action returns a success code to the action set even if some individual rows encountered validation failures.

	
Notes:

	
If an ADF Table component column's ReadOnly property evaluates to True, the ADF Table component's Upload action ignores changes in the column's cells.

For more information about an ADF Table component column's properties, see Table A-13.

	
When the Upload action is invoked on an ADF Table that has an Excel filter applied, Excel filter's criteria is cleared to show any hidden Excel worksheet rows, but the filter is not removed.

7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During Upload

At runtime, if an ADF Table component column's ReadOnly property evaluates to True, the ADF Table component's Upload action ignores all changes in the column's cells.

For more information about change tracking, see Section 7.23, "Evaluating EL Expression for ReadOnly Properties."

7.8.4 What Happens at Runtime: Upload Failure

When the ADF Table component starts uploading data, ADF Desktop Integration creates a DataControlFrame savepoint before initiating the upload process (once per batch of uploaded rows). In case of any failure, ADF Desktop Integration reverts back to the same savepoint, ensuring the integrity of the server-side state of the Fusion web application.

For each row in a batch of uploaded rows, ADF Desktop Integration does the following:

	
Invokes configured actions, applies row attribute value changes, and performs data validation.

	
In case of any error, reverts back to the savepoint state.

	
Note:

A second iteration is performed, if required, to re-upload any successfully uploaded rows whose changes were reverted due to a subsequent upload error.

For more information about savepoints, see the "Using Trees to Display Master-Detail Objects" section in the Developing Fusion Web Applications with Oracle Application Development Framework.

7.8.5 How to Create a Custom Upload Dialog

You display a page from Fusion web application that offers end users different options to those presented in the default upload dialog. You add a Dialog action before the action that invokes the ADF Table component's Upload action in the action set.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to upload data from an ADF Table data component. For more information, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To create a custom upload dialog:

	
Create a page in the JDeveloper project where you develop the Fusion web application. For information on how to create this page, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
In addition to the ADFdi_CloseWindow element (for example, a span element) described in Section 8.4, "Displaying Web Pages from a Fusion Web Application," the page that you create in Step 1 must include the elements described in Table 7-6.

Table 7-6 Span Elements Required for Custom Upload

	Name	Description
	
ADFdi_AbortUploadOnFailure

	
If you set this element to True, the action set stops uploading if it encounters a failure. If the element references False, the action set attempts to upload all rows and indicates if each row succeeded or failed to upload.

	
ADFdi_DownLoadAfterUpload

	
Set this element to True so the action set downloads data from the Fusion web application to the ADF Table component after the action set uploads modified data.

	
Note:

The page you create must include both elements to prevent ADF Desktop Integration presenting the default upload dialog to end users.

	
Add a Dialog action to invoke the page you created in Step 1 before the action in the action set that invokes the ADF Table component's Upload action.

For more information about displaying pages from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

7.8.6 What Happens at Runtime: Custom Upload Dialog

When a custom dialog appears, the page from the Fusion web application that you configure the Dialog action in the action set to display appears instead of the default upload dialog.

	
Note:

If there is no server connectivity when the end user tries to upload data, the end user gets an error when the Dialog action fails to find the custom upload page. ADF Desktop Integration does not revert to the standard dialog when server connectivity is not available.

For more information about displaying a page from the Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion Web Application." Otherwise, the runtime behavior of the action set that you configure to upload data is as described in Section 7.8.2, "What Happens at Runtime: How the ADF Table Component Uploads Data."

7.9 Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action

ADF Desktop Integration commits all row changes that are successfully uploaded during a Table.Upload operation, even when one or more rows has failures. For example, if 100 rows are uploaded and only three rows contain failures, 97 rows are still committed to the database. For more information, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

Using the UploadAllOrNothing action, you can configure the upload process to commit all changed rows only if all rows are successfully uploaded. For example, if 100 rows are uploaded, and if any row fails, no rows are committed to the database.

7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action

Configure an ADF component, such as a worksheet ribbon command, to invoke an action set that, in turn, invokes the ADF Table component UploadAllOrNothing action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to upload data from an ADF Table data component. For more information, see Section 7.9, "Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure an ADF component to use UploadAllOrNothing action:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog to configure the action set that invokes the ADF Table component actions.

For more information about action sets, see Section 8.2, "Using Action Sets."

	
Add the ADF Table component UploadAllOrNothing action to the list of actions that the action set invokes at runtime.

	
Click OK.

7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked

If you have chosen the UploadAllOrNothing action, ADF Desktop Integration commits row changes only when all rows are uploaded successfully.

	
Note:

The UploadAllOrNothing action uploads data in the same way as the Upload action. For more information about how data gets uploaded during Upload as well as UploadAllOrNothing, see Section 7.8.2, "What Happens at Runtime: How the ADF Table Component Uploads Data."

During the UploadAllOrNothing action, ADF Desktop Integration uploads all changed worksheet rows prior to invoking specified by CommitBatchActionID. If one, or more, row-level failures occur, the action specified by FailureActionID is invoked and the action specified by CommitBatchActionID is not invoked.

In the event of a failure, all changed column values remain unchanged. The status column indicates failure for all row-level failures, but remains empty for all rows without errors. When all rows succeed and are successfully committed, the changed column values are cleared and the status column for the uploaded rows reports success.

	
Notes:

	
The UploadAllOrNothing action is only supported for DataControls that support database transactions.

	
If CommitBatchActionID is not configured and an action set contains the UploadAllOrNothing action, a validation error is reported.

7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With UploadAllOrNothing Action

Uploading a very large number of changed worksheet rows with the UploadAllOrNothing action could result in significant memory consumption on the application server. To prevent end users from uploading too much data during the UploadAllOrNothing action, set the UploadAllOrNothing.ChangedDataLimit servlet parameter (specified in Kb) to limit the total amount of changed data that can get uploaded. If no parameter value is specified, a default limit of 10,240 Kb is used.

If the total amount of changed data uploaded exceeds the UploadAllOrNothing.ChangedDataLimit value, an error message is reported to the end user, and the UploadAllOrNothing action is aborted. Note that the action specified by Table.RowActions.FailureActionID is invoked when the changed data limit is exceeded.

7.10 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

The ADF Table component exposes an action (DeleteFlaggedRows) that, when invoked, deletes the rows in the Fusion web application that correspond to the flagged rows in the ADF Table component. A flagged row in an ADF Table component is a row where the end user has double-clicked or typed a character in the cell of the _ADF_FlagColumn column as described in Section 7.11, "Batch Processing in an ADF Table Component." The _ADF_FlagColumn column must be present in the ADF Table component to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts the ADF Table component must expose a Delete action binding.

7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application

To delete rows from an ADF Table component, you must add the Delete action binding to the page definition file, configure RowActions group of properties of the ADF Table component, and configure an action set to invoke the DeleteFlaggedRows action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table component to delete data rows in Fusion web application. For more information, see Section 7.10, "Configuring an ADF Table Component to Delete Rows in the Fusion Web Application."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure an ADF Table component to delete rows in a Fusion web application:

	
Open your Fusion web application in JDeveloper.

	
If not present, add a Delete action binding to the page definition file that is associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
Open the property inspector for the ADF Table component and set values for the RowActions group of properties as described in Table 7-7.

Table 7-7 RowActions Properties of ADF Table component

	Set this property...	To...
	
DeleteRowActionID

	
The Delete action binding that the page definition file exposes.

	
DeleteRowEnabled

	
True to enable the ADF Table component to delete rows in the Fusion web application.

False is the default value.

For more information about ADF Table component properties, see Section A.12, "ADF Table Component Properties and Actions."

	
Click OK.

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog to configure an action set for the Oracle ADF component, ribbon control, or worksheet event that the end user uses to invoke the action set at runtime.

	
Add the ADF Table component's DeleteFlaggedRows action to the list of actions that the action set invokes at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action Sets."

	
Click OK.

	
Note:

Add the DeleteFlaggedRows action in a separate action set and do not include it with other table actions like Download or Upload.

7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application

The end user flags rows to delete, as described in Section 7.11.2, "Row Flagging in an ADF Table Component." The end user then invokes the action set. The following sequence of events occurs:

	
If specified, the action binding referenced by the BatchOptions.StartBatchActionID property is invoked.

Failures from this step are treated as errors. An error stops the action set invoking. It also returns the error condition to the action set. If an action binding is specified for the ActionSet.FailureActionID property, the action set invokes the specified action binding.

For more information about configuring batch options, see Section 7.11, "Batch Processing in an ADF Table Component."

	
The action set invokes the Delete action binding specified by RowActions.DeleteRowActionID.

	
Note:

Rows inserted since the last invocation of the ADF Table component's Download action but not uploaded to the Fusion web application are ignored even if flagged for deletion.

	
If no errors occur during the invocation of the Delete action binding, a success message entry appears in the _ADF_StatusColumn column. If a failure occurs, the ADF Table component stops invocation of the Delete action binding and continues to Step 4.

	
If an action binding is specified for the BatchOptions.CommitBatchActionID property, the action set invokes it. If this step fails, the action set stops processing batches. If no failures occur, the action set processes the next batch by invoking the action binding specified by the BatchOptions.StartBatchActionID property, and so on until the action set processes all batches.

	
If the action set processes all batches successfully, it invokes the action binding specified by its ActionOptions.SuccessActionID property if an action binding is specified for this property. It then removes the rows deleted in the Fusion web application by invocation of the Delete action binding specified by RowActions.DeleteRowActionID from the worksheet and returns a success code to the action set.

If failures occur while the action set processes the batches, the action set invokes the action binding specified by its ActionOptions.FailureActionID property if an action binding is specified for this property. This action binding returns a failure code to the action set.

	
If an unexpected exception occurs while the action set invokes its actions, an error code is returned to the action set. All row-level errors are displayed in the Status column, and all batch-level errors can be tracked through Table.errors. For more information about error handling, see Section 12.4, "Error Reporting in an Integrated Excel Workbook."

	
Note:

When the DeleteFlaggedRows action is invoked on an ADF Table that has an Excel filter applied, Excel filter's criteria is cleared to show any hidden Excel worksheet rows, but the filter is not removed.

7.11 Batch Processing in an ADF Table Component

The ADF Table component uploads modified rows from the Excel workbook in batches rather than row-by-row. You can configure batch option properties that determine the size of batches and what actions the ADF Table component invokes when it uploads a batch.

7.11.1 How to Configure Batch Options for an ADF Table Component

The ADF Table component has a group of properties (BatchOptions) that allow you to configure how the ADF Table component manages batches of rows. Information about these properties can be found in Section A.12, "ADF Table Component Properties and Actions."

Before you begin:

It may be helpful to have an understanding of batch processing in the ADF Table component. For more information, see Section 7.11, "Batch Processing in an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure batch options for an ADF Table component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component, and then click the Edit Properties button in the Oracle ADF tab.

	
Set values for the BatchOptions group of properties in the property inspector that appears.

Table 7-8 RowData.BatchOptions Properties

	Set this property...	To...
	
BatchSize

	
Specify how many rows to process before an ADF Table component action (Upload or DeleteFlaggedRows) invokes the action binding specified by CommitBatchActionID. Any value other than a positive integer results in all rows being processed in a single batch. The default value is 100 rows.

	
CommitBatchActionID

	
The action binding to invoke after the ADF Table component processes each batch. Typically, this is the Commit action binding.

	
LimitBatchSize

	
True

When True, the ADF Table component processes rows in batches determined by the value of BatchSize. When False, the ADF Table component uploads all modified rows in a single batch.

True is the default value.

	
StartBatchActionID

	
Specify the action binding to invoke at the beginning of each batch.

	
Click OK.

Note that a failure at the entity-level is not considered a batch failure. A failure at the commit level (for example, a wrong value for a foreign key attribute) is considered a batch failure.

7.11.2 Row Flagging in an ADF Table Component

By default, the ADF Table component includes a column, _ADF_FlagColumn, that facilitates the selection of rows for flagged-row processing. Double-clicking a cell of the _ADF_FlagColumn column flags the corresponding row for processing by actions invoked by a component action.

When the end user double clicks a cell of the _ADF_FlagColumn column, a solid circle appears, or disappears, in the cell to indicate that the row is flagged, or not. Figure 7-12 shows an example of a flagged column.

Figure 7-12 Flagged Column in ADF Table Component

[image: This image is described in the surrounding text]

	
Note:

By default, the solid circle character indicates a row flagged for flagged-row processing. However, any non-empty cell in a _ADF_FlagColumn column flags the corresponding row for flagged-row processing.

The following component actions can be invoked on flagged rows:

	
DeleteFlaggedRows

	
DownloadFlaggedRows

You can use the FlagAllRows component action to flag all rows, and the UnflagAllRows component action to unflag all rows of the ADF Table component.

	
Notes:

	
The ADF Table component's DownloadFlaggedRows action does not support changes in table column structure after the last invocation of the Download or DownloadForInsert action. The table column structure usually changes if you are using dynamic columns, or if the table contains columns with complex expressions in the Visible property.

	
The DownloadFlaggedRows action is not applicable to inserted rows.

Use of these component actions is dependent on the appearance of the _ADF_FlagColumn column in the ADF Table component. If you remove the _ADF_FlagColumn column from the ADF Table component, you cannot invoke any of these component actions. For more information about these component actions, see Section A.12.3, "ADF Table Component Actions."

At runtime, the end user can invoke any of the previously listed component actions from an action set. The invoked component action processes all flagged rows. For example, it downloads or deletes all flagged rows. For more information about configuring an action set to invoke a component action, see Section 8.2.2, "How to Invoke Component Actions in an Action Set."

7.11.3 Troubleshooting Errors While Uploading Data

End users might encounter unexpected reports of errors under certain circumstances while uploading data from ADF Table components. After posting changes from a batch, ADF Desktop Integration runs the action specified by the CommitBatchActionID. Errors that occur during the commit action might continue to be reported on subsequent batch commit actions, even though those batches of records do not contain the error. This can happen when any pending model updates are not automatically reverted when the CommitBatchActionID action fails.

To avoid any such error, you must explicitly revert pending model updates that exist after a commit failure. For example, you could create a custom action for the CommitBatchActionID that first attempts to commit the pending model changes. However, if an exception occurs during commit, the custom method should first roll back the pending model changes, so that any subsequent batch commit attempts can succeed.

	
Note:

It is important that the commit exception gets thrown again after rollback so that the commit errors are reported as expected on the client.

7.12 Special Columns in the ADF Table Component

By default, the ADF Table component includes some columns when you insert an ADF Table component in a worksheet. You can retain or remove these columns, if required. The following list describes the columns and the purpose they serve:

	
_ADF_ChangedColumn

The cells in this column track changes to the rows in the ADF Table component. If a change has been made to data in a row of the ADF Table component since download or the last successful upload, a character that resembles an upward pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn column. This character toggles (appears or disappears) when a user double-clicks a cell in this column. Figure 7-13 shows an example.

Figure 7-13 Changed Column in an ADF Table Component

[image: This image is described in the surrounding text]

	
Note:

If the end user does not want the ADF Table component's Upload action to upload changes in the rows flagged by this column, the user must clear the entry that appears in the corresponding cell.

A confirmation dialog appears to end users when the ADF Table component's Download action is invoked, and one or more rows in this column are flagged as changed. The end user clicks OK to allow the Download action to run, or Cancel to stop the execution of the Download action.

	
_ADF_FlagColumn

When the end user double-clicks a cell in this column, the corresponding row is flagged for flagged-row processing. A solid circle character appears to indicate that the row is flagged for flagged-row processing. For more information about the use of this column, see Section 7.11.2, "Row Flagging in an ADF Table Component."

A confirmation dialog appears to end users when the ADF Table component's DownloadFlaggedRows action is invoked, and one or more rows in _ADFChangedColumn and _ADF_FlagColumn are flagged. The end user clicks OK to allow the action to run or Cancel to stop the execution of the action.

	
Note:

By default, the solid circle character indicates a row flagged for flagged-row processing. However, any non-empty cell in a _ADF_FlagColumn flags the corresponding row for flagged-row processing.

	
_ADF_StatusColumn

This column reports the results of invocation of the following ADF Table component actions:

	
DeleteFlaggedRows

	
Upload

A message appears in the cell of the _ADF_StatusColumn to indicate the result of the invocation for the corresponding row. If the end user invokes a DoubleClickActionSet defined in an ADF Table column and an error occurs, the errors are also reported in the status column of the corresponding row. Figure 7-14 shows an example of Status column message.

Figure 7-14 Status Column in an ADF Table Component

[image: This image is described in the surrounding text]

	
_ADF_RowKeyColumn

This column, also referred to as the Key column, contains important information about the ADF Table component used by ADF Desktop Integration at runtime. The column appears both at runtime and design time. You can remove the column from the table at design time, but note that it automatically appears at runtime as the last column of the table.

For more information about the _ADF_RowKeyColumn, see Section 7.13, "Configuring ADF Table Component Key Column."

The ADF Table component treats the properties of the _ADF_ChangedColumn, _ADF_FlagColumn, _ADF_RowKeyColumn, and _ADF_StatusColumn columns differently from the properties of other columns that it references. It ignores the values set for properties such as InsertComponent, InsertUsesUpdate, and UpdateComponent unless it invokes the DisplayRowErrors action described in Table A-14. It reads the values for properties related to style and appearance, for example CellStyleName and HeaderStyleName.

7.13 Configuring ADF Table Component Key Column

When you add ADF Table to your integrated Excel workbook, the Key column (column ID: _ADF_RowKeyColumn) appears automatically at design time. The Key column contains important information that is used by ADF Desktop Integration for proper functioning of the table. Note that you must not remove the Key column at runtime.

7.13.1 How to Configure the Key Column

You can configure the Key column's position, style properties, and header label. By default, the _ADFDI_TableKeyCellStyle style is applied to it.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table component. For more information, see Section 7.13, "Configuring ADF Table Component Key Column."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure the Key column:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, click the browse (...) icon beside the input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table component.

	
Select the column with ID as _ADF_RowKeyColumn.

	
Change the column properties as desired, but do not change the following properties:

	
DynamicColumn

	
InsertComponent

	
InsertUsesUpdate

	
UpdateComponent

	
ID

	
Visible

	
If desired, change the position of the column using the Up and Down arrow keys.

	
Click OK to close Edit Columns dialog.

	
Click OK to close the Edit Component: ADF Table dialog.

7.13.2 How to Manually Add the Key Column At Design Time

If you are using the integrated Excel workbook prepared and configured using an earlier version of ADF Desktop Integration, the Key column will not be available at design time. It will appear only at runtime. To configure the Key column properties, you can add it in the workbook at design time.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table component. For more information, see Section 7.13, "Configuring ADF Table Component Key Column."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To manually add the Key column at design time:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component, and then click the Edit Properties button in the Oracle ADF tab.

	
Add a new column in the ADF Table, and specify the properties as described in Table 7-9. For more information about adding a column, see Section 7.3.2, "How to Add a Column in an ADF Table Component."

Table 7-9 Key Column Properties

	Set this property...	To ...
	
CellStyleName

	
_ADFDI_TableKeyCellStyle

	
HeaderStyleName

	
_ADFDI_HeaderStyle

	
DynamicColumn

	
False

	
HeaderLabel

	
#{_ADFDIres[COMPONENTS_TABLE_ROWKEY_COL_LABEL]}

	
ID

	
_ADF_RowKeyColumn

	
InsertUsesUpdate

	
True

	
UpdateComponent

	
OutputText

The Value property must be empty.

	
Visible

	
True

If desired, you may change the position of the Key column using the Up and Down arrow keys.

	
Click OK.

	
Note:

You must specify the ID property of the new column as _ADF_RowKeyColumn; otherwise, the column will not be considered to be a Key column, and another Key column will automatically appear at runtime.

7.14 Creating a List of Values in an ADF Table Component Column

Use the TreeNodeList subcomponent when you want to render a dropdown list of values in an ADF Table component column. The list of values can display a maximum of two hundred and fifty values at runtime. Unlike other ADF Desktop Integration components, the TreeNodeList subcomponent does not appear in the components palette described in Section 5.5, "Using the Components Palette." Instead, you invoke it as a subcomponent when you specify values for the InsertComponent or UpdateComponent properties of an ADF Table component column. For information about the properties of an ADF Table component column, see Section A.12.2, "ADF Table Component Column Properties."

After you invoke the TreeNodeList subcomponent, you must specify a tree binding attribute associated with a model-driven list as a value for the TreeNodeList subcomponent's List property. The tree binding attribute associated with a model-driven list populates the dropdown menu in the Table component's column with a list of values after invocation of the Table component's Download action.

	
Note:

You can create a model-driven list of values in your ADF Table component by choosing ModelDrivenColumnComponent as the subcomponent type. For more information about creating a model-driven list, see Section 7.15, "Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component."

For information about the properties of a TreeNodeList subcomponent, see Section A.9, "TreeNodeList Subcomponent Properties."

7.14.1 How to Create a List of Values in an ADF Table Component Column

You add a column to the ADF Table component column and select TreeNodeList as the subcomponent. You then specify a tree binding attribute as the value for the TreeNodeList subcomponent's List property. A model-driven list must be associated with the tree binding attribute that you specify.

	
Notes:

	
The TreeNodeList subcomponent does not support a model-driven list whose control type is input_text_lov or combo_lov.

	
ADF List of Values components using date values are not supported.

	
The TreeNodeList subcomponent may not support model-driven lists for EJB-based data controls in all cases.

Before you begin:

It may be helpful to have an understanding of how to create a list of values in ADF Table component. For more information, see Section 7.14, "Creating a List of Values in an ADF Table Component Column."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To create a list of values in an ADF Table component column:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the ADF Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, click the browse (...) icon beside the input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table component.

	
Click Add to add a new column.

	
Choose the appropriate option for the newly created column:

	
Click the browse (...) icon beside the input field for InsertComponent to configure the runtime list of values for insert operations.

	
Click the browse (...) icon beside the input field for UpdateComponent to configure the runtime list of values for update and download operations.

In both options, the Select subcomponent to create dialog appears.

	
Select TreeNodeList and click OK.

	
Expand the property that you selected in Step 5 and configure values as follows:

	
Select a tree binding attribute associated with a model-driven list for the List property.

	
Select a value for DependsOnList only if you intend to create a dependent list of values as described in Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook." The tree binding attribute or list binding you select for DependsOnList serves as the parent list of values in a dependent list of values.

	
Configure the ReadOnly property as desired.

For information about these properties, see Section A.9, "TreeNodeList Subcomponent Properties."

Figure 7-15 shows the property inspector for an ADF Table component column in EditCustomers-DT.xlsx after TreeNodeList is selected as the subcomponent for the column's UpdateComponent property.

Figure 7-15 ADF Table Component Column Configured to Display a List of Values

[image: This image is described in the surrounding text]

	
Click OK.

7.14.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

At runtime, the ADF Table component invokes the Download action and populates each column. This action also populates the list of values in the column that you configure to render a list of values. Figure 7-16 shows an example from EditCustomers-DT.xlsx of the Summit sample application for ADF Desktop Integration, where Country is the column configured to display a list of values.

Figure 7-16 Runtime View of an ADF Table Component Column Displaying a List of Values

[image: This image is described in the surrounding text]

7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

You can add a ModelDrivenColumnComponent subcomponent to an ADF Table component. The value of ModelDrivenColumnComponent is determined by the Control Type hint specified for each attribute on the server.

At design time, for a column, specify the subcomponent type as ModelDrivenColumnComponent for the UpdateComponent or InsertComponent properties. At runtime, if there is a model-driven list associated with the attribute, then the column uses a dropdown list using the TreeNodeList subcomponent.

	
Note:

If there is no model-driven list associated with the attribute, or if any non-list-based control type is specified, then the column uses an Input Text subcomponent. If there is a model-driven list whose control type is input_text_lov or combo_lov, then the column uses an Input Text subcomponent.

For more information about creating a model-driven list, see the "How to Create a Model-Driven List" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

Support for Dependent List of Values

When multiple ModelDrivenColumnComponent list subcomponents are exposed in an ADF Table component, then for each list ADF Desktop Integration determines whether it depends on another model-driven list. It verifies that the bind variable specified for a list references an attribute bound to another list.

If the list depends on another model-driven list, the subcomponent's DependsOnList value is set automatically at runtime.

As server-side list binding dependencies are determined only for lists in the same tree node, the following tree node list bindings are not supported:

	
A binding that depends on a list binding in a different tree or tree node

	
A binding that depends on a list binding in the page definition file

7.16 Adding a Dynamic Column to Your ADF Table Component

You can add dynamic columns to an ADF Table component so that the ADF Table component expands or contracts at runtime depending on the available attributes returned by the view object. The DynamicColumn property of the Columns group in the TableColumn array controls this behavior. To make a column dynamic, set the DynamicColumn property to True. A dynamic column in the TableColumn array is a column that is bound to a tree binding or a tree node binding whose attribute names are not known at design time. A dynamic column can expand to more than a single worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent types:

	
Input Text

	
Output Text

	
ModelDrivenColumnComponent

	
Note:

ADF Desktop Integration does not support the subcomponent type TreeNodeList in a dynamic column.

Support for Model-Driven List of Values

You can also configure a dynamic column to support the List of Values subcomponent where the subcomponent type is determined from model configuration at runtime. At design time, specify the subcomponent type as ModelDrivenColumnComponent for the UpdateComponent or InsertComponent properties. At runtime, during dynamic column expansion, the model-driven runtime component is determined before caching the list of values. The remote servlet allows the client to retrieve Model configuration, allowing the client to choose the desired column subcomponent type. For more information about ModelDrivenColumnComponent, see Section 7.15, "Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component."

7.16.1 How to Configure a Dynamic Column

You configure a dynamic column by specifying an EL expression with the following format for the Value property of the component specified by the ADF Table component column's InsertComponent property as a subcomponent:

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}

or:

#{bindings.TreeID.AttributeNamePrefix*.inputValue}

where:

	
TreeID is the ID of the tree binding used by the ADF Table component

	
TreeNodeID is an optional value that specifies the tree node binding ID. If you omit this value, all matching attributes from the tree binding display regardless of which tree node binding the attribute belongs to.

	
AttributeNamePrefix identifies a subset of attributes that exist within the tree binding's underlying iterator. If you do not specify a value for AttributeNamePrefix, all attributes for the tree binding or tree binding node are returned. Always use the * character.

	
Note:

While adding a dynamic column, ensure that tree node attribute names are not specified in the page definition file. At runtime, the tree node object returns all attribute names from the underlying iterator. If there are attribute names specified in the page definition file, the tree node object limits the list of available attribute names based on that list.

The following example returns all attributes that begin with the name "period" in the model.EmpView node of the EmpTree binding:

#{bindings.EmpTree.[model.EmpView].period*.inputValue}

7.16.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic Column

When the ADF Table component's Download or DownloadForInsert action is invoked, the ADF Table component automatically updates the dynamic columns so that they contain an up-to-date set of matching attributes. For each invocation of Download, ADF Desktop Integration requires that all rows must have the same set of attributes for the dynamic column. It may generate errors if the set of attributes changes from row to row during Download.

If a dynamic column supports both Insert and Update operations, you should specify the same EL expression for the Value properties of the dynamic column's InsertComponent and UpdateComponent subcomponents. At runtime, the ADF Table component expands to include a dynamic column that displays the value of the attribute binding returned by the EL expression.

When the ADF Table component's Upload action is invoked, the workbook prompts the end user to determine if the end user wants to continue to upload data when the previously downloaded attributes no longer exist in the tree binding.

	
Note:

If an Excel AutoFilter is applied on a table with dynamic columns, the AutoFilter is automatically removed every time the dynamic columns are expanded, collapsed, or adjusted.

Support for View Objects with Declarative SQL Mode

To support view objects that are configured with declarative SQL mode and customized at runtime, expose a tree binding in the page definition file that has no attributes defined. For example:

<tree IterBinding="DeclSQLModeIterator" id="DeclSQLModeTree">
 <nodeDefinition Name="DeclSQLModeTreeNode"/>
</tree>

At runtime, the tree binding will return the selected attributes from the underlying declarative SQL mode view object to the integrated Excel worksheet.

7.16.3 How to Specify Header Labels for Dynamic Columns

Use the following syntax to write EL expressions for the HeaderLabel property of a dynamic column:

#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

or:

#{bindings.TreeID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix values in the HeaderLabel property of the dynamic column as the values you specify for the Value properties of the dynamic column's InsertComponent and UpdateComponent if the dynamic column supports Insert and Update operations.

	
Note:

The ADF Table component ignores the value of a column's Visible property when you configure a column to be dynamic. For more information about ADF Table component column properties, see Table A-13.

If you want the mandatory columns, where the end user must enter a value, to be marked with a character or a string, you must configure the HeaderLabel property. Use the following syntax to write EL expression to add a character or string to all mandatory columns:

=IF(#{bindings.TreeID.[TreeNodeID].hints.*.mandatory}, "<prefix_for_mandatory_cols>", "") & "#{bindings.TreeID.[TreeNodeID].hints.*.label}"

For example, the following EL expression adds an asterisk (*) character to the mandatory columns label:

=IF(#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.mandatory}, "* ", "") & "#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.label}"

7.16.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

You can specify different styles for each data type according to the data type of the column. Use the following syntax to write EL expressions for the CellStyleName property of a dynamic column:

=IF("#{bindings.TreeID.[TreeNodeID].hints.*.dataType}"="<data_type>", <custom_style_expression1>, <custom_style_expression2>)

In the following example, the MyDateStyle style is applied to all date columns, and MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataType}"="date", "MyDateStyle", "MyDefaultStyle")

The following example shows another scenario where the MyDateStyle style is applied to all date data type columns, MyNumberStyle is applied to all number data type columns, and MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataType}"="date", "MyDateStyle", IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataType}"="number", "MyNumberStyle", "MyDefaultStyle"))

For more information about EL expressions, see Appendix B, "ADF Desktop Integration EL Expressions."

7.17 Configuring Column Widths in an ADF Table Component

You can configure column widths of an ADF Table component so that they are automatically resized at runtime. The columns can be resized using Excel's AutoFit column width feature, which determines the width based on the data values in the column. ADF Desktop Integration can also resize the columns using explicit width values derived from EL expressions.

The resizing behavior of ADF Table columns is configured at the table level. You can then override them at the column level.

7.17.1 How to Configure an ADF Table Component to Resize Columns at Runtime

You can use the design-time ResizeColumnsMode property to specify the common resizing behavior for all columns of the ADF Table component. Use the ResizeColumns table component method to control when the resizing occurs. To override resizing behavior of a particular column, use the column's ResizeMode property.

Resizing a column's width at runtime is a two-step process. First, you need to configure the table column with the desired width-related property values. Then, add ResizeColumns to the desired action sets.

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF Table columns. For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure resizing behavior of ADF Table columns:

	
Open the integrated Excel workbook.

	
Select any cell in the ADF Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, configure and set the ResizeColumnsMode property as described in the Table 7-10:

Table 7-10 ResizeColumnsMode Values of the ADF Table Component

	Value	Description
	
UseColumnValue

	
Default. The table is not automatically resized at runtime, unless individual columns have Column.ResizeMode properties set to a value other than InheritFromTable.

	
AutoFitAllWithHeader

	
All columns within the table boundaries are resized to best fit using Excel's AutoFit support. Data values in the columns' cells, including the header cells, are used to determine the best fit.

Individual columns that have Column.ResizeMode properties set to a value other than InheritFromTable are resized accordingly.

Note that values in the column's cells above or below the table are not considered when finding the best fit.

	
AutoFitAllWithoutHeader

	
All columns within the table boundaries are resized to best fit using Excel's AutoFit support. Data values in the columns' cells, excluding the header cells, are used to determine the best fit.

Individual columns that have Column.ResizeMode properties set to a value other than InheritFromTable are resized accordingly.

Note that values in the column's cells above or below the table are not considered when finding the best fit.

Figure 7-17 shows the ResizeColumnsMode property at design-time.

Figure 7-17 ResizeColumnsMode Property in design-time

[image: This image is described in the surrounding text]

	
To configure the resizing behavior of a column and override the table-level resizing behavior, set the ResizeMode property.

In the Edit Component: ADF Table dialog, expand the Columns property and set the ResizeMode property as described in the Table 7-11:

Table 7-11 ResizeMode Values of the ADF Table Column Property

	Value	Description
	
Manual

	
The column is not resized; column width is left at the current setting.

	
InheritFromTable

	
Default. The column is resized based on the table's ResizeColumnsMode setting.

If ResizeColumnsMode is set to UseColumnValue, then no resizing occurs.

	
AutoFitWithHeader

	
Including the header cell, the column is resized to best fit using the Excel's AutoFit support.

	
AutoFitWithoutHeader

	
Excluding the header cell, the column is resized to best fit using the Excel's AutoFit support.

	
SpecifiedWidth

	
ADF Desktop Integration uses the Width property to determine the desired width of the column. You can specify a numerical value, or an EL expression.

Figure 7-18 shows the ResizeMode property of four different columns of the ADF Table component of EditCustomers-DT.xlsx at design-time.

Figure 7-18 ResizeMode Property in design-time

[image: This image is described in the surrounding text]

	
If ResizeColumnsMode is set to UseColumnValue, and ResizeMode is set to SpecifiedWidth, set Column.Width to the number of characters you want to display in the column.

A given column's Width property may be set to a literal numerical value or an EL expression that evaluates to a number between 1 and 255, inclusive. If the expression cannot be evaluated, or if the expression evaluates to less than 1 or greater than 255, the ResizeMode is considered to be Manual and the column is not resized. An example EL expression for Width that makes use of the UI Hint displayWidth for an attribute is:

#{bindings.Customers.hints.Name.displayWidth}

	
Click OK.

7.17.2 How to Configure an Action Set to Resize Columns of an ADF Table Component at Runtime

You can configure the action set in a worksheet ribbon command, ADF Button component, or a worksheet event to invoke the ADF Table component ResizeColumns action.

Note that resizing a table with many columns and many rows might take a noticeable amount of time.

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF Table columns. For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component" and Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To configure an action set to resize Columns of an ADF Table component:

	
Open the integrated Excel workbook.

	
Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon command. For more information about adding a ribbon command in a worksheet, see Section 8.3.1, "How to Define a Workbook Command Button for the Runtime Ribbon Tab."

	
Note:

Instead of adding a ribbon command, you can configure a worksheet event or an Oracle ADF component (a button, for example) to invoke the action set at runtime.

	
Open the Edit Action dialog to configure an action set. For more information about invoking action sets, see Section 8.2, "Using Action Sets."

	
Add the ADF Table component ResizeColumns action to the list of actions that the action set invokes at runtime. Note that ResizeColumns is a component action.

	
Click OK.

Figure 7-19 shows the ResizeColumns action in EditCustomers-DT.xlsx at design-time.

Figure 7-19 ResizeColumns Action

[image: This image is described in the surrounding text]

7.17.3 What Happens at Runtime: How the ADF Table Columns are Resized

The ADF Table columns are resized as the result of running of Table.ResizeColumns component action in an action set (see Section 7.17.2, "How to Configure an Action Set to Resize Columns of an ADF Table Component at Runtime").

7.17.4 What You May Need to Know About Resizing Columns of an ADF Table Component at Runtime

The entire worksheet columns containing the ADF Table component columns are resized depending on the values in the Table.ResizeColumnsMode and Column.ResizeMode properties. Resizing the table columns affects the contents of the cells or any other components (such as form components) located in the same Excel worksheet column outside of the table's boundaries.

If a worksheet contains two or more ADF Table components configured with action sets to be resized at runtime, each table attempts to resize the Excel worksheet columns independently, but the table's ResizeColumns action that runs last sets the column width.

	
Tip:

For worksheets that contain more than one ADF Table component, call the ResizeColumns action only on the primary table

	
Notes:

	
The Column.Width property does not support row-specific bindings.

	
A common strategy is to call ResizeColumns after one of the Download actions. See Figure 7-19 for an example.

	
Excel internally rounds the specified Width values to the nearest whole pixel value. For example, a value of 8.5 characters rounds to 8.43, which equates to 64 pixels.

	
Using one of the AutoFit resizing modes on cells that have Wrap Text selected in their style definition may not resize as expected. Using SpecifiedWidth mode, or removing the Wrap Text setting from the style, may produce better results.

7.18 Displaying Tooltips in ADF Desktop Integration Table-Type Components

You can add tooltips to table column headers of ADF Table and ADF Read-only Table components. Note that the tooltip is always initially empty for headers of special columns of the ADF Table component.

To add a tooltip to an table column header:

	
Open the integrated Excel workbook.

	
If the Table-type component has already been inserted in the Excel worksheet, click any cell of the table, and click Edit Properties in the Oracle ADF tab.

To insert a Table-type to the worksheet, select the cell where you want to anchor the component. In the components palette or the bindings palette, select the Table-type component or the binding, and click Insert Component or Insert Binding.

	
In the Edit Component: ADF Table dialog, expand the Columns property. Click the browse (...) icon of the Tooltip property of the desired column, and enter the tooltip message.

Figure 7-20 shows the tooltip EL expression for an ADF Table column header in EditCustomers-DT.xlsx.

Figure 7-20 Tooltip for ADF Table Column Header at Design-time

[image: This image is described in the surrounding text]

	
Click OK.

Figure 7-21 shows the tooltip message at runtime. Notice the small red arrow at the top-right of the header cell. It indicates the header cell has a comment. Hover mouse pointer over the cell to see the tooltip message.

Figure 7-21 Tooltip for ADF Table Column Header at Runtime

[image: This image is described in the surrounding text]

7.18.1 What You May Need to Know About Tooltips for Table Columns

The tooltips for column headers are evaluated and rendered when the table column headers are rendered including first time table initialization, Table.Initialize, and Table.Download actions.

By default, the tooltips for special columns are empty. If the Tooltip property of a special column is set to a non-empty expression, it is trimmed of whitespace, and inserted into the target cell as an Excel comment.

To get a unique tooltip for each expanded dynamic column at runtime, enter the expression in the following syntax in the ToolTip property:

#{bindings.<TreeID>.hints.*.tooltip}

At runtime, the dynamic column expands to the available set of attributes in the specified tree or the node. ADF Desktop Integration also retrieves the corresponding tooltip values and applies each one to the appropriate column using the rules described above.

For more information about tooltips, see Section 6.9.1, "What You May Need to Know About Tooltips." You can also add tooltips to the headers of special columns of the table components (see Section 7.12, "Special Columns in the ADF Table Component") and the dynamic columns (see Section 7.16, "Adding a Dynamic Column to Your ADF Table Component")

7.19 Creating an ADF Read-Only Table Component

At runtime, the ADF Read-only Table component renders a table across a continuous range of cells that displays data from the tree binding that the ADF Read-only Table component references. Use this component to display data that you do not want the end user to edit.

This component supports several properties, such as RowLimit, that determine how many rows the component downloads when it invokes its Download action. It also includes a group of properties (Columns) that determine what columns from the tree binding appear at runtime in the Excel worksheet. The TreeID property specifies the tree binding that the component references. More information about these properties and others that the ADF Read-only Table component supports can be found in Section A.13, "ADF Read-only Table Component Properties and Actions."

ADF Desktop Integration uses the first column of a worksheet (column A) to store some special information needed for the proper operation of Read-only Table components. Therefore, at runtime, column A is hidden for any worksheet that contains at least one instance of ADF Read-only Table component. The content of the worksheet are shifted by one column in the right direction to compensate for the hiding of column A, and maintain the visual layout from design time. Upon returning to design time, column A is unhidden and the worksheet contents are shifted back one column in the left direction.

Figure 7-22 shows the ADF Read-only Table component at design time with the property inspector in the foreground.

Figure 7-22 ADF Read-only Table Component at Design Time

[image: This image is described in the surrounding text]

Figure 7-23 shows the columns that an ADF Read-only Table component which references the Customers tree binding at runtime.

Figure 7-23 Columns in an ADF Read-only Table Component at Runtime

[image: This image is described in the surrounding text]

	
Notes:

	
At runtime, inserting a row into the ADF Read-only Table component results in a new Excel row that behaves as if it is part of the downloaded data set, but the new row exists only in Excel. The data from the new row is not uploaded to the server, and does not affect the Fusion web application data.

	
Read-only columns include double-click action sets. However, these actions cannot reliably position on the current row. So, the results of using row-level action sets with the ADF Read-only Table component is not consistent.

If you need to use row-level action sets with reliable row positioning, use the ADF Table component instead of the ADF Read-only Table component.

7.19.1 How to Insert an ADF Read-only Table Component

You use the ADF Desktop Integration Designer task pane to insert an ADF Read-only Table component into a worksheet.

Before you begin:

It may be helpful to have an understanding of ADF Read-only Table component. For more information, see Section 7.19, "Creating an ADF Read-Only Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To insert an ADF Read-only Table component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet where you want to anchor the component.

When inserting a table component, you must ensure that the data of two tables does not overlap at runtime, and the selected cell is not a merged cell

	
In the bindings palette, select the binding to create the ADF Read-only Table component, and then click Insert Binding.

	
In the dialog that appears, select ADF Read-only Table.

	
Note:

You can also insert an ADF Read-only Table component by using the components palette or Oracle ADF tab. Select ADF Read-only Table and click Insert Component. If you use the components palette to create the component, you would have to add each column to appear in the component at runtime.

	
Configure properties in the property inspector that appears to determine the columns to appear and the actions the component invokes at runtime.

	
Click OK.

	
Note:

You can modify the properties of the component at a later time by selecting the cell in the worksheet that anchors the component and then displaying the property inspector.

To remove the table component, use the Delete ribbon command. For more information, see Section 5.14, "Removing ADF Desktop Integration Components."

7.19.2 How to Manually Add a Column to the ADF Read-only Table Component

You can manually add additional columns to an ADF Read-only Table component or re-add columns that you previously removed.

Before you begin:

It may be helpful to have an understanding of ADF Read-only Table component. For more information, see Section 7.19, "Creating an ADF Read-Only Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To manually add a column to the ADF Read-only Table component:

	
Open the integrated Excel workbook.

	
Select the cell in the worksheet that hosts the ADF Read-only Table component and click the Edit Properties button in the Oracle ADF tab.

	
In the Edit Component: ADF Table dialog, click the browse (...) icon beside the input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table component

	
Click Add to add a new column to the ADF Read-only Table component.

	
Set values for the properties of the new column.

For information about the properties of an ADF Read-only Table component column, see Table A-16.

	
Click OK.

7.20 Limiting the Number of Rows Your Table-Type Component Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table component downloads by setting values for the component's RowLimit group of properties. You can also display a warning message, if desired, that alerts the end user when the number of rows available to download exceeds the number of rows specified for download.

7.20.1 How to Limit the Number of Rows a Component Downloads

Specify the number of rows that the component downloads when it invokes its Download action as a value for the RowLimit.MaxRows property. Optionally, write an EL expression for the RowLimit.WarningMessage property so that the end user receives a message if the number of rows available to download exceeds the number specified by RowLimit.MaxRows.

Before you begin:

It may be helpful to have an understanding of how to limit the number of rows while downloading data in your ADF Table component. For more information, see Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To limit the number of rows a table-type component downloads:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that references the table-type component and click the Edit Properties button in the Oracle ADF tab.

For more information, see Section 8.2, "Using Action Sets."

	
Configure properties for the RowLimit group of properties, as described inTable 7-12. For more information about these properties, see Section A.1, "Frequently Used Properties in the ADF Desktop Integration."

Table 7-12 RowLimit Group of Properties

	Set this property to...	This value...
	
RowLimit.Enabled

	
Set to True to limit the number of rows downloaded to the value specified by RowLimit.MaxRows.

	
RowLimit.MaxRows

	
Specify an EL expression that evaluates to the maximum number of rows to download.

	
RowLimit.WarningMessage

	
Write an EL expression for this property to generate a message for the end user if the number of rows available to download exceeds the number specified by RowLimit.MaxRows.

If the value for this property is null, the Download action downloads the number of rows specified by RowLimit.MaxRows displaying the default warning message to the end user.

	
Click OK.

Figure 7-24 shows the Edit Component dialog in the EditCustomers-DT.xlsx workbook where the row limit of an ADF Table component is configured.

Figure 7-24 Limiting Number of Rows of an ADF Table Component

[image: This image is described in the surrounding text]

7.20.2 What Happens at Runtime: How the RowLimit Property Works

When invoked, the Table-type component's Download action downloads the number of rows that you specified as the value for RowLimit.MaxRows from the Fusion web application. A message dialog similar to the one in Figure 7-25 appears if you specify an EL expression for RowLimit.MaxRows or do not modify its default value.

Figure 7-25 Row Limit Exceeded Warning Message

[image: This image is described in the surrounding text]

7.21 Clearing the Values of Cached Attributes in an ADF Table Component

The RowData group of properties described in Table A-12 allow you to specify data to cache in the ADF Table component. For more information about this functionality, see the following:

	
Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

	
Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode"

The ADF Table component exposes an action (ClearCachedRowAttributes) that, when invoked, clears the values of cached attributes for the current row of the ADF Table component.

Do not configure a component (for example, an ADF Table component's column or an ADF Input Text component) so that an end user can view or edit an attribute binding that you have also specified for an element in the RowData.CachedAttributes array. The RowData.CachedAttributes array caches the values retrieved by the worksheet DownSync action. The worksheet UpSync action sends the values of the RowData.CachedAttributes array to the Fusion web application. This may override edits an end user makes to an attribute binding exposed through a component in the worksheet.

7.21.1 How to Clear the Values of Cached Attributes in an ADF Table Component

Configure a DoubleClickActionSet that includes an action to invoke the ADF Table component's ClearCachedRowAttributes action.

Before you begin:

It may be helpful to have an understanding of how to clear cached attributes in an ADF Table component. For more information, see Section 7.21, "Clearing the Values of Cached Attributes in an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To clear the values of cached attributes in an ADF Table component:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog for the Oracle ADF component that is going to invoke the DoubleClickActionSet at runtime.

For more information about invoking action sets, see Chapter 8, "Using Action Sets."

	
Add an action to the DoubleClickActionSet that invokes the ADF Table component's ClearCachedRowAttributes action.

	
Click OK.

7.21.2 What Happens at Runtime: How the ADF Table Component Clears Cached Values

The action set invokes the ADF Table component's ClearCachedRowAttributes action. This action clears the cached values specified by the RowData.CachedAttributes property for the current row of the ADF Table component.

7.22 Tracking Changes in an ADF Table Component

End users can create or modify data in the cells of an integrated Excel workbook that hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can make the following changes to activate change tracking:

	
Edit cell values

	
Insert or delete cell values

	
Paste values to cells in the ADF Table component column that they copied elsewhere

A character that resembles an upward pointing arrow appears in a row of the _ADF_ChangedColumn column if the end user makes a change to data in a corresponding row. Figure 7-26 shows an example.

Figure 7-26 Changed Column in an ADF Table Component

[image: This image is described in the surrounding text]

This character appears if the end user makes a change to data hosted by a component where the component's ReadOnly property value is False. The ADF Input Text and TreeNodeList subcomponents both have a ReadOnly property. You can write an EL expression or a static string for this ReadOnly property that evaluates to True or False. If you write a static string or an EL expression that evaluates to True, no character appears in the _ADF_ChangedColumn column. For more information about ReadOnly EL expressions and change tracking, see Section 7.23, "Evaluating EL Expression for ReadOnly Properties."

7.23 Evaluating EL Expression for ReadOnly Properties

If a table column's ReadOnly EL expression contains a binding expression (for example, #{row.bindings.color.inputValue}), the runtime evaluation of that expression will be different depending on when the evaluation occurs. The evaluation happens during the following:

	
downloading data (Download, DownloadFlaggedRows, DownloadForInsert)

	
uploading data (Upload), and change tracking

7.23.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data

During Download, the EL expression is evaluated with the current binding value as expected.

7.23.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or Tracking Changes

During Upload, or when the end user changes values in the editable table, the EL expression is evaluated differently than Download. Specifically, an empty string is substituted for the binding expression prior to evaluation of the EL expression.

For example, if you have the following EL expression in an editable cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Upload, or when the end user changes values in the editable table, the EL expression evaluates to =IF(""="RED", True, False), and always returns False.

7.23.3 What You May Need to Know About Evaluating EL Expression While Uploading Data or Tracking Changes

During Upload and change tracking, an extra round trip to the server would be required to retrieve the binding values, in order to evaluate the EL expression properly. The extra round trip to the server would impact performance negatively, and could even require a new login if the end user did not have a currently valid session.

	
Note:

The same EL expression evaluation behavior also applies to the CellStyleName EL expression property when inserting new worksheet rows during table change tracking.

Due to the difference in behavior, if possible, you should avoid ReadOnly EL Expressions that contain binding expressions. However, if it is important for a given use case to use an attribute value in the ReadOnly expression, you should consider setting the worksheet protection to Automatic. For more information about worksheet protection, see Section 9.7, "Using Worksheet Protection."

For example, if you have the following EL expression in a cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Download, the RED cells in this column will be set to Locked and the end user will not be able to edit those cells.

7.24 Using Explicit Worksheet Setup Action

ADF Desktop Integration provides several features for configuring or customizing a worksheet after the binding container's metadata has been obtained from the server at runtime. However, at times, you might want to customize the data or the binding container before the client retrieves the binding container metadata. For example, at design time, you might want to add a table to the worksheet, but without specifying the View Object that will drive that table, until runtime. This would be desirable if the View Object to be used depends on some parameter values or settings that are not known until runtime. In addition, you might want to customize the View Object based on runtime parameter values (such as add attributes, or indicate which attributes to display). Similarly, you may also want to configure the binding container based on runtime parameter values. Such use cases require performing setup tasks before the binding container metadata is sent from the sever to the worksheet.

Using the Explicit Worksheet Setup Action feature of ADF Desktop Integration, you can specify a setup action that is invoked before the client retrieves the binding container metadata.

7.24.1 How to Configure Explicit Worksheet Setup Action

Using the SetupActionID property of the worksheet, you can specify a method that is invoked before the binding container metadata is sent to the worksheet. In the method, you can implement the logic necessary for any customization on the data and binding container.

Before you begin:

It may be helpful to have an understanding of the Explicit Worksheet Setup Action feature. For more information, see Section 7.24, "Using Explicit Worksheet Setup Action."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional Functionality of Table-Type Components."

To use SetupActionID property of the worksheet:

	
Open the worksheet in the integrated Excel workbook.

	
From the Excel Ribbon, click Workbook Properties.

	
In the Edit Worksheet Properties dialog, expand Data and click the browse icon (...) beside the input field for the SetupActionID property, as shown in Figure 7-27.

Figure 7-27 SetupActionID Property in Edit Worksheet Properties Dialog

[image: This image is described in the surrounding text]

	
In the Select Binding dialog, select the action that you want to invoke before the binding container metadata is sent to the worksheet, and click OK.

	
Note:

The SetupActionID property accepts ADFm actions only. Validation error is reported if an invalid method is set for the property.

	
Click OK to close the Edit Worksheet Properties dialog.

7.24.2 What You May Need to Know About Explicit Worksheet Setup Action

After the action specified in the SetupActionID property runs, the binding container metadata that is sent to worksheet reflects the customization configured in the method. ADF Desktop Integration ensures that the setup action runs only once for any binding container instance. If, for any reason, a new binding container instance becomes associated with the worksheet, the setup action will be invoked again, to ensure it is configured.

If any kind of failure occurs during the invoking of the setup action, ADF Desktop Integration is automatically disabled in the worksheet. Logging out, and then logging in, will not enable ADF Desktop Integration in the worksheet. Running Clear All Data command from the Excel Ribbon re-enables ADF Desktop Integration in the worksheet, the setup action runs again on subsequent requests.

8 Adding Interactivity to Your Integrated Excel Workbook

This chapter describes how to add interactivity options to your integrated Excel workbook, how to configure the ribbon tab, creating databound search forms and dependent list of values, and how to use EL expressions in Excel formula.

This chapter includes the following sections:

	
Section 8.1, "About Adding Interactivity to an Integrated Excel Workbook"

	
Section 8.2, "Using Action Sets"

	
Section 8.3, "Configuring the Runtime Ribbon Tab"

	
Section 8.4, "Displaying Web Pages from a Fusion Web Application"

	
Section 8.5, "Adding a Custom Popup Picker Dialog to an ADF Table Column"

	
Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel Workbook"

	
Section 8.7, "Creating a Form in an Integrated Excel Workbook"

	
Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

	
Section 8.9, "Using EL Expression to Generate an Excel Formula"

	
Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook"

	
Section 8.11, "Using Macros in an Integrated Excel Workbook"

8.1 About Adding Interactivity to an Integrated Excel Workbook

You can make your integrated workbook interactive to the end user by using features such as action sets, configuring the runtime ribbon tab, creating dependent list of values, and so on. Figure 8-1 shows some of the interactive features.

Figure 8-1 Interactivity Features in an Integrated Excel Workbook

[image: This image is described in the surrounding text]

Adding interactivity to an integrated Excel workbook permits end users to run action sets that invoke Oracle ADF functionality in the workbook. It also provides status messages, alert messages, and error handling in the integrated Excel workbook while these action sets run. In addition to end-user gestures (double-click, click, select) on the ADF Desktop Integration components that invoke action sets, you can configure workbook and worksheet ribbon buttons that end users use at runtime to invoke action sets.

8.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples

To make your integrated Excel workbook interactive, you can use action sets that are invoked by the end user's gestures. For example, as shown in Figure 8-2, the Filter Customers ribbon command in EditableCustomerSearch-DT.xlsx uses multiple actions sets to filter data matching the search criteria.

Figure 8-2 Action Sets of Filter Customers Ribbon Command

[image: This image is described in the surrounding text]

Figure 8-3 shows an example of custom runtime ribbon tab implemented in EditCustomerSearch.xlsx.

Figure 8-3 Runtime Ribbon Tab of EditCustomerSearch.xlsx

[image: This image is described in the surrounding text]

8.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

In addition to action sets and runtime ribbon tab, you can add additional functionality to configure your workbook. Following are links to other functionalities that you can use:

	
Display Web Pages: You can display pages from the Fusion web application with which you integrate your Excel workbook. For more information, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
Dependent List of Values: You can configure an ADF List of Values component as a dependent list of values component whose values are determined by another list of values component. For more information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

	
Styles: You can configure the display of your form-type components using several predefined Excel styles. For more information, see Section 9.2, "Working with Styles."

	
Macros: Use macros and Excel formulas to manage the data that you want to download from or upload to your Fusion web application. For more information, see Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook," and Section 8.11, "Using Macros in an Integrated Excel Workbook."

8.2 Using Action Sets

An action set is an ordered list of one or more actions that run in a specified order. The types of actions are as follows:

	
ADFmAction

	
ComponentAction

	
WorksheetMethod

	
Confirmation

	
Dialog

An action set can be invoked by an end-user's gesture (for example, clicking an ADF Button) or an Excel worksheet event. Where an end-user gesture invokes an action set, the name of the action set property in the ADF component's property inspector is prefaced by the name of the gesture required. The following list describes the property names that ADF Desktop Integration displays in property inspectors, and what user gesture can invoke an action set:

	
ClickActionSet for an ADF Button component, as the end user clicks the button to invoke the associated action set

	
DoubleClickActionSet for an ADF Input Text or ADF Output Text component, as the end user double-clicks these components to invoke the associated action set

	
SelectActionSet for a worksheet ribbon button, as the end user selects a button to invoke the associated action set

	
ActionSet for a worksheet event, as no explicit end-user gesture is required to invoke the action set

You invoke the Edit Action dialog from an ADF component, worksheet ribbon button, or worksheet event to define or configure an action set. In addition to defining the actions that an action set invokes, you can configure the action set's Alert properties to provide feedback on the result of invocation of an action set. You configure the Status properties for an action set to display a status message to end users while an action set runs the actions you define. For information about opening the Edit Action dialog, see Section 5.12, "Using the Collection Editors."

The Summit sample application for ADF Desktop Integration provides many examples of action sets in use. One example is the ribbon command labeled Upload at runtime in the EditCustomers-DT.xlsx workbook. An action set has been configured for this ribbon command that invokes the ADF Table component's Upload action illustrated by Figure 8-4 which shows the Edit Action dialog in design mode.

Figure 8-4 Action Set for Upload Data Button in the EditCustomers-DT.xlsx Workbook

[image: This image is described in the surrounding text]

	
Tip:

Write a description in the Annotation field for each action that you add to the Edit Action dialog. The description you write appears in the Members list view and, depending on how you write it, may be more meaningful than the default entry that ADF Desktop Integration generates.

	
Note:

ADF Desktop Integration invokes the actions in an action set in the order that you specify in the Members list view.

8.2.1 How to Invoke a Method Action Binding in an Action Set

You can invoke multiple method action bindings in an action set. Page definition files define what action bindings are available to invoke in a worksheet that you integrate with your Fusion web application. For more information about page definition files and action bindings in an integrated Excel workbook, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

You use the Edit Action dialog to specify a method action binding to invoke.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a method action binding in an action set:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog and invoke the dropdown list from the Add button illustrated here.

[image: This image is described in the surrounding text]

	
Select ADFmAction and configure its properties as described in the following list:

	
ActionID

Click the browse (...) icon beside the input field for ActionID to invoke the Binding ID picker and select the method action binding that the action set invokes.

	
Annotation

Optionally, enter a comment about the purpose of the action that you are configuring. The value you set for this property has no functional impact.

	
Click OK.

8.2.2 How to Invoke Component Actions in an Action Set

The ADF Table and the ADF Read-only Table components in ADF Desktop Integration expose actions that can be used to manage the transfer of data between Excel worksheets that you integrate with a Fusion web application. The ADF Read-only Table component exposes one component action, Download, while the ADF Table component exposes many other actions. More information about the actions for both components can be found in Appendix A, "ADF Desktop Integration Component Properties and Actions."

You configure action sets to invoke one or more component actions by referencing the component action in the array of actions. For example, Figure 8-5 shows the Choose Component Action dialog where the actions exposed by the ADF Table and ADF Read-only Table components present in a worksheet can be invoked by a SelectActionSet action set.

Figure 8-5 Choose Component Method Dialog

[image: This image is described in the surrounding text]

	
Note:

An Excel worksheet must include an ADF Table or ADF Read-only Table component before one or more of these components' actions can be invoked by an action set.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a component action from an action set:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog and invoke the dropdown list from the Add button illustrated here.

[image: This image is described in the surrounding text]

	
Select ComponentAction and configure its properties as described in the following list:

	
ComponentID

Click the browse (...) icon beside the input field for ComponentID to invoke the Choose Component Method dialog and select the component action that the action set invokes at runtime. This populates the ComponentID and Method input fields.

	
Action

The component's action that the action set invokes at runtime.

	
Annotation

Optionally, enter a comment about the purpose of the action that you are configuring. The value you set for this property has no functional impact.

	
DetailStatusMessage

Specify an optional literal value or EL expression that appears in the Status Message window (see Section 8.2.5, "How to Display a Status Message While an Action Set Runs").

	
Click OK.

8.2.3 What You May Need to Know About an Action Set Invoking a Component Action

Note the following pieces of information about the behavior of action sets in integrated Excel workbooks.

8.2.3.1 Verifying an Action Set Invokes the Correct Component Action

When creating an action set, ensure that you invoke the component action from the correct instance of a component when a worksheet includes multiple instances of an ADF Read-only Table or ADF Table component. Figure 8-6 shows the Choose Component Action dialog displaying two instances of the ADF Read-only Table component. Use the value of the ComponentID property described in Table A-1 to correctly identify the instance of a component on which you want to invoke a component action.

Figure 8-6 Choose Component Action Dialog

[image: This image is described in the surrounding text]

8.2.3.2 Invoking Action Sets in a Disconnected Workbook

End users can use integrated Excel workbooks while disconnected from a Fusion web application, as described in Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode." Some component actions, such as the Download action of the ADF Table component, require a connection to the Fusion web application to complete successfully. If the end user invokes an action set that includes such a component action, the integrated Excel workbook attempts to connect to the Fusion web application and, if necessary, invokes the authentication process described in Section 11.2, "Authenticating the Excel Workbook User."

8.2.4 How to Invoke an Action Set from a Worksheet Event

ADF Desktop Integration provides several worksheet events that, when triggered, can invoke an action set. The following worksheet events can invoke an action set:

	
Startup

	
Shutdown

Do not invoke a Dialog action from this event if the Dialog action's Target property is set to TaskPane.

	
Activate

	
Deactivate

You add an element to the array of events (WorksheetEvent list) referenced by the Events worksheet property. You specify an event and the action set that it invokes in the element that you add. For more information about the Events worksheet property and the worksheet events that can invoke an action set, see Table A-22. See Table A-17 for more information about action sets.

Use the Edit Events dialog to specify an action set to be invoked by a worksheet event.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke an action set from a worksheet event:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input field for the Events property.

	
In the Edit Events dialog, click Add to add a new element that specifies an event and a corresponding action set that the event invokes.

Figure 8-7 shows an example from the EditCustomers-DT.xlsx file where the worksheet event, Startup, invokes an action set that invokes the ADF Table component's Download action.

Figure 8-7 Worksheet Startup Event Invokes an Action Set

[image: This image is described in the surrounding text]

	
Click OK.

8.2.5 How to Display a Status Message While an Action Set Runs

You can display a status message and visual progress bars to end users while an action set runs by specifying values for the Status properties in an action set.

While using the Status properties in an action set, you can provide visual indication of the progress through progress bars. The Mode attribute of the Status properties enables you to choose the visual appearance of the progress bars at runtime. There are two types of progress bars available: main progress bar and detail progress bar. The main progress bar indicates the progress through the actions in an action set, and the detail progress bar indicates the progress of the current action.

You use the Edit Action dialog to configure values for the ActionSet.Status properties.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To display a status message:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog of the component.

	
Set values for the properties in the Status group of properties as described in the Table 8-1.

Table 8-1 Status Group of Properties

	For this property...	Enter or select this value...
	
AllowCancel

	
True to display the Cancel button in the status dialog box.

It indicates whether the action set execution can be canceled by the end user.

For more information about the Cancel button, see Section 8.2.8, "What You May Need to Know About Canceling an Action."

	
Enabled

	
True to display a status message. True is the default value.

	
Message

	
An optional EL expression or literal value that resolves to the status message to display at runtime.

For example, the Upload button in the EditCustomers-DT.xlsx file has the following EL expression configured for the Message property:

#{res['excel.customers.ribbon.upload.message']}

	
Title

	
An optional EL expression or literal value that resolves to the title of the status message to display at runtime.

For example, the Upload button in the EditCustomers-DT.xlsx file has the following EL expression configured for the Title property:

#{res['excel.customers.ribbon.upload.title']}

	
Mode

	
Choose the visual appearance of progress bars.

	
Automatic: ADF Desktop Integration analyzes the action set to determine which progress bars to display.

	
BothBarsAlways: Shows both main and detail progress bars.

	
MainBarOnly: Shows one progress bar only. The bar displays progress through the list of actions.

	
DetailBarOnly: Shows one progress bar only. The bar displays progress of the current action.

	
MainMessageOnly: None of the progress bars are shown.

Figure 8-8 shows the property values, along with their corresponding visual elements, configured for the Status group of properties of the Upload ribbon command in the EditCustomers-DT.xlsx workbook.

Figure 8-8 Status Message Properties in an Action Set

[image: This image is described in the surrounding text]

For more information about the Status group of properties, see the entry for Status in Table A-17.

You can also use the optional DetailStatusMessage property to provide additional information to the user. For more information about the DetailStatusMessage property, see Section 8.2.2, "How to Invoke Component Actions in an Action Set."

	
Click OK.

8.2.6 What Happens at Runtime: How the Action Set Displays a Status Message

When an action set is invoked, a status message appears if the Status properties are configured to display a status message. Figure 8-9 shows the status message that appears at runtime when the action set configured for the Upload ribbon command in the EditCustomers-DT.xlsx workbook runs.

Figure 8-9 Runtime View of Status Message

[image: This image is described in the surrounding text]

At runtime, if the value of the Message property is empty, ADF Desktop Integration provides a default, localized value. If the Title property is empty, the label from the action set container (such as button or ribbon command) is used. If the label of the container is also empty, then the default value provided by ADF Desktop Integration is used.

If AllowCancel property is set to True, the Cancel button appears allowing the end user to cancel the action set. If the end user cancels the action set, the Cancel button gets disabled, a warning message appears informing the user that the operation has been canceled, and the action set is aborted.

	
Tip:

To cancel the operation of an action set, the end user can press the Space Bar key on the keyboard.

8.2.7 What You May Need to Know About Progress Bars

Note the following pieces of information about the progress bars:

	
The progress bar window hides automatically when an action (such as alert, confirm, dialog, or upload options) prompts for user input.

	
Some action types, such as ADFmAction, do not support the display of incremental progress in the detail bar. For example, Figure 8-10 shows the progress bar of the Commit action with Mode set to BothBarsAlways. Notice that the detail bar appears, but does not show any progress.

Figure 8-10 Progress Bar for ADFmAction Type

[image: This image is described in the surrounding text]

	
In the Automatic mode, if the action set has less than three actions, the status message dialog shows the detail progress bar only. If the action set has three or more actions, the dialog always shows the main bar, but the detail progress bar is shown only if any of the actions in the action set is capable of incremental progress. If none of the actions is capable of incremental progress, the detail bar is suppressed.

	
If required, you can display the detail progress bar without the displaying the main progress bar. Such a configuration may be useful for an action set with a few quick actions and one long action, for example, run a query and then download data.

	
For very quick action sets (for example, DisplayWorksheetErrors), the best practice is to disable the status message.

8.2.8 What You May Need to Know About Canceling an Action

Each action in an action set can be categorized as non-interruptible, interruptible, or dialog.

The non-interruptible actions are atomic and cannot be canceled, or interrupted, during their operation. The following actions are non-interruptible:

	
Worksheet actions: UpSync, DownSync

	
ADFm action

	
Table actions: RowUpSync, RowDownSync, ClearCachedRowAttributes, FlagAllRows, UnflagAllRows, MarkAllRowsChanged, MarkAllRowsUnchanged, Initialize

If the Cancel button is clicked while a non-interruptible action is running, the following happens:

	
The current action completes.

	
The action set is then aborted, and is not treated as a failure.

	
ActionSet.Alert is skipped.

	
The success, or failure, actions configured for the action set do not run.

	
The value in Worksheet.Errors is not changed.

The interruptible actions can be canceled during their operation. The following Table actions are interruptible:

	
Upload, UploadAllOrNothing

	
Download, DownloadFlaggedRows, DownloadForInsert

	
DeleteFlaggedRows

If the Cancel button is clicked while an interruptible action is running, the following happens:

	
The current operation halts without completing.

	
The table is cleaned up:

	
Upload action: For rows that were successfully uploaded before the Cancel button was clicked, the Changed column cell flags are cleared or are left as is, and CommitBatchActionID action runs. If a row failed during upload, the Changed column cell is not affected and error status is displayed. The rows that did not get uploaded continue to display the changed status in the Changed column and the Status column remains untouched.

	
UploadAllOrNothing action: The CommitBatchActionID action does not run. The Changed column flags for all rows remain set. Failed rows display error message. Successfully uploaded rows have Status cells and error rows unpopulated.

	
Download, DownloadForInsert action: Rows that were downloaded before the Cancel button was clicked are left as is and are not removed. The table is then sized accordingly.

	
DownloadFlaggedRows action: Flagged rows that were downloaded before the Cancel button was clicked have their flag cells cleared. The remaining flagged rows continue to display the flag status.

	
DeleteFlaggedRows action: The rows that were deleted on server before the Cancel button was clicked are removed from the worksheet. The remaining flagged rows continue to display the flag status.

	
Table.FailureActionID does not run.

	
Remaining actions in the action set are skipped.

	
Table.Errors and Worksheet.Errors are left as they were.

The dialog actions show modal dialogs which can be canceled or closed. The Action Set Status Message dialog is not displayed during the execution of one of these actions. The following actions are dialog type:

	
Confirmation

	
Dialog

	
DisplayWorksheetErrors, DisplayRowErrors, DisplayTableErrors

8.2.9 How to Provide an Alert After the Invocation of an Action Set

You can display an alert message to end users that notifies them when an action set operation completes successfully or fails. For example, you can display a message when all actions in an action set succeed or when there was at least one failure. The ActionSet.Alert group of properties configures this behavior.

	
Note:

An alert message does not appear if the end user cancels the execution of an action set. For example, you configure an alert message to appear after an action set that invokes a web page in a popup dialog completes execution. At runtime, the end user cancels execution of the action set by closing the popup dialog using the close button of the Excel web browser control that hosts the popup dialog. In this scenario, no alert message appears. For more information about displaying web pages, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

You use the Edit Action dialog to configure values for the ActionSet.Alert group of properties.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To add an alert to an action set:

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog.

	
Set values for the properties in the ActionSet.Alert group of properties as described in Table 8-2.

Table 8-2 ActionSet.Alert Group of Properties

	For this property...	Enter or select this value...
	
Enabled

	
Select True from the dropdown list to display an alert message once the action set completes. The default value is False.

	
FailureMessage

	
Specify an optional EL expression or literal value that evaluates to a message to appear in the dialog if errors occur during execution of the action set. For example, the Download button in the EditCustomers-DT.xlsx workbook has the following value configured for the FailureMessage property:

#{res['excel.customers.ribbon.download.alert.failure']}

The Download button invokes an action set that, in turn, invokes the ADF Table component's Download action. The EL expression specified for FailureMessage retrieves error messages if the Download action encounters errors. For more information about error handling, see Section 12.4, "Error Reporting in an Integrated Excel Workbook."

	
OKButtonLabel

	
Specify an optional EL expression or literal value that evaluates to a message to appear in the OK button of the dialog.

	
SuccessMessage

	
Specify an optional EL expression or literal value that evaluates to a message to appear in the dialog if no errors occur during the execution of the action set.

For example, the Download button in the EditCustomers-DT.xlsx workbook has the following value configured for the SuccessMessage property:

#{res['excel.customers.ribbon.download.alert.success']}

Figure 8-11 shows the values configured for a ribbon command's Alert group of properties in the EditCustomers-DT.xlsx workbook. This ribbon command is labeled Download at runtime.

Figure 8-11 Alert Message Properties in an Action Set

[image: This image is described in the surrounding text]

	
Click OK.

8.2.10 What Happens at Runtime: How the Action Set Provides an Alert

Figure 8-12 shows the alert message that appears at runtime when the action set invoked by the ADF Button component labeled Download successfully completes execution.

Figure 8-12 Runtime View of an Alert Message

[image: This image is described in the surrounding text]

At runtime, if the value of the FailureMessage, OKButtonLabel, or SuccessMessage property is empty, ADF Desktop Integration provides a default, localized value.

8.2.11 How to Configure Error Handling for an Action Set

You specify values for an action set's ActionOptions properties to determine what an action set does if one of the following events occurs:

	
An action in the action set fails

	
All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component's property inspector, see Chapter 5, "Getting Started with the Development Tools." More information about action set properties can be found in Table A-16.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To configure error handling for an action set:

	
Open the integrated Excel workbook.

	
Open the appropriate editor or property inspector and configure values for the action set's ActionOptions properties as described in the Table 8-3.

Table 8-3 ActionOptions Properties

	Set this property...	To...
	
AbortOnFailure

	
True (default value) so that the action set does not run any further actions if the current action fails. When set to False, the action set runs all actions regardless of the success or failure of previous actions.

	
FailureActionID

	
Specify an ADF Model action to invoke if an action set does not complete successfully.

For example, you can specify an ADF Model action that rolls back changes made during the unsuccessful invocation of the action set.

Note that calling an action set that changes a record set's currency during the execution of FailureActionID methods is not supported. The Rollback method also should not be specified as the FailureActionID in an action set.

	
SuccessActionID

	
Specify an ADF Model action to invoke if an action set completes successfully.

For example, you can specify an action binding that runs a commit action. A value for this property is optional and you can specify a final action, such as an action binding that runs a commit action, in the action set itself.

Note that calling an action set that changes a record set's currency during the execution of SuccessActionID methods is not supported.

	
Click OK.

8.2.12 How to Invoke a Confirmation Action in an Action Set

The Confirmation action presents the end user with a simple message dialog that displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons provided. If the user clicks OK, the action sets proceed with the remaining actions in the Action Set. If the user clicks Cancel, the action set is aborted at that point and the remaining actions are not invoked. As there is no error or success, the FailureActionID or SuccessActionID action is not invoked.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a Confirmation action from a component

	
Open the integrated Excel workbook.

	
Open the Edit Action dialog and click the down arrow in the Add button to open a dropdown list, as illustrated here.

[image: This image is described in the surrounding text]

	
Select Confirmation and configure its Data properties as described in the following list:

	
CancelButtonLabel

Specify an optional EL expression or literal value that evaluates to a message to appear in the Cancel button of the dialog.

	
OKButtonLabel

Specify an optional EL expression or literal value that evaluates to a message to appear in the OK button of the dialog.

	
Prompt

Specify an optional EL expression or literal value that evaluates to a message to appear as the prompt of the dialog.

	
Title

Specify an optional EL expression or literal value that evaluates to a title of the confirmation dialog to display at runtime.

	
Optionally, enter a comment in the Annotation property about the purpose of the action that you are configuring. The value you set for this property has no functional impact.

	
Click OK.

Figure 8-13 shows the Edit Action dialog with default attribute values for the Download ribbon command.

Figure 8-13 Confirmation Action Attributes

[image: This image is described in the surrounding text]

8.2.13 What Happens at Runtime: How the Action Set Provides a Confirmation

Once the action set is invoked, the user is prompted with a confirmation dialog. If the user clicks OK, the next action operation is performed; and if the user clicks Cancel, the Action Set execution terminates without an error.

	
Note:

If the user cancels a Confirmation action, the FailureActionID binding does not run.

Figure 8-14 shows a default Confirmation dialog with Yes and No buttons.

Figure 8-14 Confirmation Dialog

[image: This image is described in the surrounding text]

At runtime, if the value of the CancelButtonLabel, OKButtonLabel, or Prompt property is empty, ADF Desktop Integration provides a default, localized value. If the Title property is empty, the label from the action set container (such as button or ribbon command) is used. If the label of the container is also empty, then the default value provided by ADF Desktop Integration is used.

8.3 Configuring the Runtime Ribbon Tab

You can configure the runtime ribbon tab in the Excel Ribbon with items that invoke Oracle ADF functionality in your integrated Excel workbook. In the Runtime Ribbon Tab group, setting the Visible workbook property to True makes this tab appear at runtime. The Title property determines the title of the tab that the end user sees at runtime, as illustrated in Figure 8-15.

Figure 8-15 Workbook Properties for Runtime Ribbon Tab

[image: This image is described in the surrounding text]

At runtime, the tab appears as the last tab in the Ribbon and all your configured commands appear in various groups of the tab, as illustrated by Figure 8-16.

Figure 8-16 Runtime View of the Ribbon Tab

[image: This image is described in the surrounding text]

Figure 8-17 illustrates the runtime ribbon tab in EditCustomers.xlsx with two commands configured for worksheet. At runtime, the commands are divided into four groups: items that invoke commands on the workbook, items that invoke commands on the current worksheet, a command group to clear all data, and a command workgroup to display ADF Desktop Integration version information.

Figure 8-17 Runtime View of Ribbon Tab in EditCustomers.xlsx

[image: This image is described in the surrounding text]

You configure the Workbook Commands property in the properties of the workbook so that the runtime ribbon tab contains commands that allow the end user to invoke workbook actions. You configure the Ribbon Commands property in the properties of the worksheet so that the ADF Desktop Integration tab contains items allowing a user to invoke an action set. Worksheet command items appear when the worksheet is active. If you remove a workbook command, it does not appear in the runtime tab for that workbook. If you remove all the commands for a given group, the group does not appear when that workbook is active.

Figure 8-18 shows the Worksheet group at runtime where the worksheet actions, that invoke SelectActionSet action sets, appear.

Figure 8-18 Runtime Worksheet Group

[image: This image is described in the surrounding text]

8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab

To define a workbook command button for the runtime ribbon tab, you configure some workbook properties. The following procedure shows how to create or remove an item in the Workbook group by using the workbook action, Login, as an example.

Before you begin:

It may be helpful to have an understanding of the runtime ribbon tab in Excel. For more information, see Section 8.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To define a workbook command button:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, expand Runtime Ribbon Tab, and select Workbook Commands. Click the browse (...) icon beside the Workbook Commands to display the dialog as illustrated in Figure 8-19.

Figure 8-19 Edit Workbook Commands Dialog

[image: This image is described in the surrounding text]

	
Click Add and specify values for the properties of the workbook command buttons as follows:

	
Method

Specify the workbook action that you want the workbook command button to invoke.

	
Label

Enter a value in the input field that appears as the label at runtime. Alternatively, invoke the expression builder by clicking the browse (...) icon and write an EL expression that resolves to a string value in a resource bundle.

Note that the runtime value that appears in the label cannot exceed 1024 characters. A runtime value that exceeds 1024 characters is truncated so that only 1024 characters appear.

For more information about using resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

For more information about labels, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

	
Click OK.

	
Note:

The order of workbook commands in the Edit Workbook Commands dialog is ignored at runtime. The order and grouping of the workbook-level commands is always the same.

8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab

To define a worksheet command, you configure properties for the worksheet using the property inspector. By default, no command buttons are defined for the Worksheet group in the worksheet properties. You add members to the list that is referenced by the Ribbon Commands property in the properties of the worksheet.

	
CAUTION:

Set the Runtime Ribbon Tab.Visible workbook property to TRUE to display command buttons. If the Runtime Ribbon Tab.Visible is set to FALSE, no command buttons appear. For more information about workbook properties, see Table A-21.

Before you begin:

It may be helpful to have an understanding of the runtime ribbon tab in Excel. For more information, see Section 8.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To define a worksheet command button:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input field for the Ribbon Commands property to invoke the editor, as illustrated in Figure 8-20.

Figure 8-20 Edit Ribbon Commands Dialog

[image: This image is described in the surrounding text]

	
Click Add to add a new ribbon button in the Members list of the collection editor.

	
Configure the properties of SelectActionSet to specify the type of action(s) that the ribbon button invokes.

	
To add a tooltip, enter the EL expression in the Tooltip property.

Note that Ribbon command tooltips have a maximum size of 1024 characters. If a tooltip value exceeds that limit, only the first 1024 characters are shown.

	
Click OK.

Figure 8-18 displays how the commands appear at runtime.

	
Notes:

	
At runtime, the worksheet commands appear in the same order as they are defined in the Edit Ribbon Commands dialog.

	
The ribbon controls of the toolbar are shared among all open integrated workbooks. If you open two, or more, workbooks using different ribbon buttons occupying the same location in the toolbar, Excel always shows the key tip of the first opened workbook in all open workbooks. This is an Excel limitation.

	
When the user hovers the mouse over the ribbon command with the tooltip, a multi-part tooltip appears. The command label appears first in bold followed by the text from the Tooltip property. Below this text, the add-in name appears.

8.4 Displaying Web Pages from a Fusion Web Application

You configure a Dialog action in an action set to display pages from the Fusion web application with which you integrate your Excel workbook. These pages provide additional functionality for your integrated Excel workbook. Examples of additional functionality that you can provide include search dialogs and display pick dialogs that interact with your Fusion web application. You can also configure upload options.

The Dialog action in an action set can be configured to display in one of the following two types of dialog:

	
Popup dialog

	
Runtime task pane

The value for the Dialog.Target property (Popup or TaskPane) of the component's action set determines where a web page is rendered.

The value for the Dialog.Page property specifies the web page to display when the action is invoked. Valid values include a URL relative to the value of the WebAppRoot property or an absolute URL.

For example, the EditableCustomerSearch-DT.xlsx workbook specifies the following relative URL as a value for the page to invoke when a user clicks the Filter Customers ribbon command at runtime:

/faces/external/searchForm.jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html

	
Note:

The Dialog action does not support ADF task flows.

8.4.1 How to Display a Web Page in a Popup Dialog

You can configure a Dialog action in an action set to invoke a web page from your Fusion web application in a modal popup dialog hosted by Excel's web browser control. This feature provides end users with functionality that allows them to, for example, input values displayed by a page from the Fusion web application into the integrated Excel workbook.

The web page that the action set invokes must contain a reserved HTML element that has a case-sensitive ID attribute set to ADFdi_CloseWindow.

Example 8-1 shows how you can automatically set the value of the span element using the rendered property of the f:verbatim tag.

Example 8-1 Use of Reserved HTML Element

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">
 Continue
 </f:verbatim>
<f:verbatim rendered="#{requestScope.searchAction eq 'cancel'}">
 Abort
 </f:verbatim>

Figure 8-21 shows the searchForm.jspx page hosted by the EditableCustomerSearch-DT.xlsx workbook's browser control.

Figure 8-21 Search Popup Dialog

[image: This image is described in the surrounding text]

In scenarios where you cannot use the rendered property of the f:verbatim tag as outlined in Example 8-1, you may need to:

	
Create a backing bean that exposes the Dialog action's result value as a property

	
Use an action listener to invoke the backing bean, and an EL expression in the element to set the value ADFdi_CloseWindow to the bean property value.

Whichever approach you take, ADF Desktop Integration monitors the value of ADFdi_CloseWindow to determine when to close the popup dialog. If the content of the ADFdi_CloseWindow element is:

	
An empty string or is not present, the popup dialog remains open.

	
Continue, the popup dialog closes and the action set invokes its next action.

The following example shows ADFdi_CloseWindow assigned a value of "Continue":

var closeWindowSpan = document.getElementById("ADFdi_CloseWindow");

closeWindowSpan.innerHTML = "Continue";

	
Abort, the popup dialog closes and the action set stops running. No additional actions are invoked.

	
Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a web page from the Fusion web application in a modal popup dialog hosted by Excel's web browser control. Displaying a web page in a modal popup dialog differs from displaying a web page in Excel's task pane, because the Dialog action that the action set invokes cannot continue execution until it receives user input. While the popup dialog is open, the end user cannot interact with any other part of the integrated Excel workbook, as the popup dialog retains focus.

End users can navigate between multiple web pages from the Fusion web application within the browser control until they close the browser control, or ADF Desktop Integration closes it.

To immediately synchronize the changes that the end user makes to a data control through a popup dialog, specify the next action in the action set after the Dialog action to download all modified bindings to the worksheet (use the DownSync worksheet action) or ADF Table component (use the RowDownSync action). This scenario assumes that you specify Continue as the value for ADFdi_CloseWindow.

	
Notes:

	
If you configure the web page that appears in the popup dialog so that the end user can download an integrated Excel workbook, the Oracle ADF functionality in the integrated Excel workbook is disabled when the end user opens the workbook after download.

	
If you are using the HTML <select> components, such as list box or dropdown list, note that <select> components do not follow z-order configuration when the page is displayed through Dialog actions. In the .NET Web Browser control, on a web page with layered and overlapping components, the <select> components might appear on top of other components.

	
If the Title property is left blank, the web page's title will be used as the dialog's window title.

	
The value of the ADFdi_CloseWindow is monitored on every page transition in the browser control. When the value is Continue, the popup dialog closes and the action set continues to run. When the value is Abort, the popup dialog closes and no further actions in the action set run. If the element is not present, or the value is other than Continue or Abort, the popup dialog will remain open.

On each page transition, if the reserved element is present, client side Javascript can run and change the value of the element. If the value changes to Continue or Abort, the popup dialog also closes and has the same effect on the action set.

8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane

You can set the Dialog.Target property for an action to TaskPane to display a web page specified by the Dialog.Page property in the ADF Desktop Integration task pane. In contrast to displaying a web page in a popup dialog, displaying a web page in the task pane allows an action set to continue executing actions while the web page displays. End users can access and interact with other parts of the integrated Excel workbook while the web page displays.

	
Notes:

	
If the Title property is left blank, the task pane's title will also remain blank.

	
If the Target property of a Dialog action is set to TaskPane, ADF Desktop Integration ignores the value of ADFdi_CloseWindow (and other elements).

8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web Application

You can keep the data an integrated Excel workbook contains synchronized with a Fusion web application by specifying additional actions in the action set that invokes the Dialog action. You can ensure that the Fusion web application page and the integrated Excel worksheet both use the same data control frame by setting the ShareFrame property of the Dialog action.

	
Notes:

	
If your custom web page is based on ADF Faces and opens a popup window, the web page must be configured in a certain way to work properly. On the command component, set the windowEmbedStyle to inlineDocument. For more information, see Developing Web User Interfaces with Oracle ADF Faces.

	
The Dialog.Page property does not accept EL expressions.

8.4.3.1 Keeping an Integrated Excel Workbook and a Fusion Web Application Synchronized

To ensure that data in the integrated Excel workbook and the Fusion web application remains synchronized while end users use pages from the Fusion web application, configure the action set that invokes the Dialog action to:

	
Send changes from the integrated Excel workbook to the Fusion web application before invoking the Dialog action.

Invoke the RowUpSync worksheet action to synchronize changes from the current row in the ADF Table component. You may also invoke UpSync to synchronize changes in form components.

	
Send changes from the Fusion web application to the integrated Excel workbook after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web application to the current row in the ADF Table component. You may also invoke DownSync to synchronize changes in form components.

For DoubleClickActionSet, you must ensure that the server-side model is in the same state after executing the action set as it was before executing the action set. In most cases, it is sufficient to roll back any and all uncommitted changes at the end of each DoubleClickActionSet, as there are no pending uncommitted changes when the action set execution begins.

For more information about synchronizing data between an integrated Excel workbook and a Fusion web application, see Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode." For information about worksheet actions and ADF Table component actions, see Chapter A, "ADF Desktop Integration Component Properties and Actions."

8.4.3.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion Web Application Pages

Fusion web applications and integrated Excel workbooks both use data control frames to manage the transactions and state of view objects and, by extension, the bindings exposed in a page definition file. When you invoke a Fusion web application's page from an integrated Excel worksheet, you can ensure that the page and the integrated Excel worksheet both use the same data control frame by setting the ShareFrame property of the Dialog action that invokes the page to True.

The Page property in the Dialog action specifies the page that the Dialog action invokes. If the Dialog action invokes an absolute URL or a page that is not part of your Fusion web application, ADF Desktop Integration ignores the value of ShareFrame if ShareFrame is set to True.

Set ShareFrame to False in the following scenarios:

	
The Dialog.Page property in the action set references an absolute URL or a page that is not part of your Fusion web application.

	
The Dialog.Page property in the action set references a page that is part of your Fusion web application, but that does not need to share information with the integrated Excel worksheet. For example, a page that displays online help information.

For more information about data control frames in a Fusion web application, see the "Sharing Data Controls Between Task Flows" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

8.4.3.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame Sharing

When you add the ADF Desktop Integration feature to your Fusion web application, the application is automatically configured to support ADF Desktop Integration frame sharing. Frame sharing allows each worksheet of an integrated Excel workbook to use a dedicated DataControl frame. Web pages displayed in dialogs invoked from each worksheet can then share the same DataControl frame as the integrated Excel worksheet.

To verify that your Fusion web application is configured to support frame sharing:

	
Open your Fusion web application project in JDeveloper.

	
In the Applications window, expand the Application Resources panel.

	
Open the adf-config.xml file available in Descriptors > ADF META-INF node.

	
Click the Source tab to open the source editor.

	
Confirm that the following adf-desktopintegration-servlet-config element is present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config xmlns="http://xmlns.oracle.com/adf/desktopintegration/servlet/config">
 <controller-state-manager-class>
 oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager
 </controller-state-manager-class>
</adf-desktopintegration-servlet-config>

	
Save the adf-config.xml file and close JDeveloper.

8.5 Adding a Custom Popup Picker Dialog to an ADF Table Column

You can configure the DoubleClickActionSet of an ADF Table component's column subcomponent (UpdateComponent or InsertComponent) to invoke a Fusion web application page that renders a pick dialog where the end user selects a value to insert in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can enter in an ADF Table component. For example, you may want a runtime ADF Table component column to be read-only in the Excel worksheet so that end users cannot manually modify values to prevent them from introducing errors. Invoking a pick dialog rendered by a Fusion web application page allows the end user to change values in the ADF Table component without entering incorrect data.

In addition to configuring the DoubleClickActionSet, you may configure the ADF Table component's RowData.CachedAttributes property to reference attribute binding values if you want:

	
End users to modify values in the Fusion web application's page that you do not want to appear in the ADF Table component of the integrated Excel workbook

	
An ADF Table component's column to be read-only in the integrated Excel workbook

	
Cache data in an ADF Table component over one or more user sessions that is not visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end users. A pick dialog is invoked that refreshes the list of product names in the ADF Table component and, as part of the process, sets the value of product IDs. In this scenario, you specify the attribute binding value for the product ID in the ADF Table component's RowData.CachedAttributes property. After the action set runs, the ADF Table component displays the refreshed list of product names in the rows of the Excel worksheet and references the associated product IDs in its RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating Databound Selection Lists and Shuttles" chapter in the Developing Fusion Web Applications with Oracle Application Development Framework.

To invoke a custom pick dialog from an ADF Table component:

	
Open the integrated Excel workbook.

	
Select the cell in the Excel worksheet that anchors the ADF Table component and click the Edit Properties button in the Oracle ADF tab to display the property inspector.

	
Configure the ADF Table component's RowData.CachedAttributes property to reference attribute binding values.

	
Click the browse (...) icon beside the input field for Columns to display the Edit Columns dialog.

	
In the Members list, select the column from which the end user invokes the pick dialog at runtime.

	
Configure the Actions attribute of DoubleClickActionSet of the column subcomponent (UpdateComponent or InsertComponent), as described in Table 8-4.

Table 8-4 DoubleClickActionSet Properties

	Add this action...	To...
	
ADFmAction

	
(InsertComponent only) Invoke the CreateInsert action binding if the end user invokes the DoubleClickActionSet from a newly created row in the Excel worksheet's ADF Table component. In this scenario, the ADF Table component's RowUpSync action (invoked in the next action) fails if the Fusion web application does not contain a placeholder row.

	
ComponentAction

	
Invoke the ADF Table component's Table.RowUpSync action to synchronize any pending changes in the current row of the ADF Table component to the Fusion web application.

	
Dialog

	
Configure the Dialog action to invoke the pick dialog page from the Fusion web application. Set the Dialog action's ShareFrame property to True. For more information, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
ComponentAction

	
Invoke the ADF Table component's Table.RowDownSync action to synchronize data from the row in the ADF Table component's iterator in the Fusion web application that corresponds to the current ADF Table component row in the worksheet.

	
ADFmAction

	
(InsertComponent only) If you added a CreateInsert action binding, you should also invoke the Delete action binding to remove the placeholder row.

Figure 8-22 shows the Edit Action dialog of DoubleClickActionSet properties.

Figure 8-22 DoubleClickActionSet Properties

[image: This image is described in the surrounding text]

	
Click OK.

8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook

You can create forms in your integrated Excel workbooks using ADF Input Text and ADF Button components. End users can use the forms you create to insert data or query for information. This section uses the latter example to demonstrate how you create forms.

End users can enter a search term in the ADF Input Text component and retrieve matching results by clicking an ADF Button component. To present a more sophisticated user interface to end users for a search operation, you can invoke search forms from your Fusion web application. Results from these search operations can be downloaded to the ADF Table or ADF Read-only Table components in your integrated Excel workbook.

Figure 8-23 shows an example of design time view of the Oracle ADF components used to configure search options where:

	
ADF Label component is used in a simple search form

	
ADF Input Text component is used in a simple search form

	
ADF Button component is used in a simple search form

	
ADF Button component is used to invoke an advanced search form

Figure 8-23 Oracle ADF Components Used for Search

[image: This image is described in the surrounding text]

	
Note:

ADF Desktop Integration does not support usage of the FindMode attribute in page definition files. For more information about the FindMode attribute, see the "pageNamePageDef.xml" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

8.6.1 How to Create a Search Form in an Integrated Excel Workbook

You insert an ADF Input Text component and configure it so that the end user can enter a search term. Insert an ADF Button component and configure its action set to:

	
Take the value the end user enters in the ADF Input Text component.

	
Query for the value.

	
Download the results to an ADF Table or ADF Read-only Table component in the integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of ADF databound search forms. For more information, see Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a simple search form in an integrated Excel workbook:

	
Open the integrated Excel workbook.

	
Insert an ADF Input Text component in the Excel worksheet cell where you want the end user to enter the search criteria.

	
Configure the ADF Input Text component so that it assigns the search term, that a user enters, to an attribute binding.

Figure 8-24 shows an example where an ADF Input Text component assigns the user-entered value to the searchTerm attribute binding. The searchTerm, which is a part of variable iterator, is then passed as a NamedData argument to the executeSimpleProductQuery method.

Figure 8-24 ADF Input Text Component for a Simple Search Form

[image: This image is described in the surrounding text]

	
Optionally, apply a style to the ADF Input Text component to indicate to end users that they can enter a search term in the cell.

	
Optionally, create an ADF Label component in an adjoining cell to indicate to end users that they can enter a search term in the ADF Input Text component you created in Step 2.

	
Create an ADF Button component in the Excel worksheet.

	
Set the Label property of the ADF Button component so that it displays a string at runtime to indicate to end users that they can start a search operation by clicking the button.

	
Optionally, add a tooltip.

For more information about adding tooltips, see Section 6.9, "Displaying Tooltips in ADF Desktop Integration Form-Type Components."

	
Open the Edit Action dialog to configure the array of actions (Actions list) in the ClickActionSet properties of the ADF Button component. Table 8-5 describes the actions to invoke in sequence.

Table 8-5 ClickActionSet Properties of the ADF Button Component

	Add this action...	To...
	
Worksheet

	
Invoke the UpSync worksheet action to copy the value entered in the cell that hosts an ADF Input Text or ADF List of Values component to the Fusion web application. For more information about worksheet actions, see Section A.16, "Worksheet Actions and Properties."

	
ADFmAction

	
Invoke an ADF Model action that is bound to the attribute binding you specified in Step 3. The ADF Model action queries for the end user's search term value referenced by the attribute binding.

	
Worksheet

	
Invoke the DownSync worksheet action to synchronize any pending changes from the ­Fusion web application to the ADF Input Text, ADF Output Text, and ADF List of Values components in the worksheet. For more information about worksheet actions, see Section A.16, "Worksheet Actions and Properties."

	
Component

	
Invoke a Download action from the ADF Table or ADF Read-only Table components to download the results that match the search criteria specified.

	
Click OK.

Figure 8-25 shows an example where an ADF Button component invokes the executeSimpleProductQuery action binding using the search term the end user entered in the ADF Input Text component.

Figure 8-25 ADF Button Component for Simple Search Form

[image: This image is described in the surrounding text]

8.6.2 How to Create a Search Form using a Web Page in an Integrated Excel Workbook

You can use the ADF Button component, or the ribbon command, to invoke a page from the Fusion web application that displays a search form to the end user. Configure the action set for the ADF Button component to invoke the Download action for the ADF Table or ADF Read-only Table component so that the search results from the search operation are downloaded to the integrated Excel workbook.

For information about creating a search form in a Fusion web application, see the "Creating ADF Databound Search Forms" chapter in the Developing Fusion Web Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of ADF databound search forms. For more information, see Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a web page from an integrated Excel workbook:

	
Open the integrated Excel workbook.

	
Create an ADF Button component, or a ribbon command, in the Excel worksheet.

	
Set the Label property of the component so that it displays a string at runtime to indicate to end users that they can start a search operation by clicking the button.

	
Use the Edit Action dialog to configure the array of actions (Action list) in the ClickActionSet properties (SelectActionSet properties if you are configuring a ribbon command) of the component. Table 8-6 describes the actions to invoke in sequence.

Table 8-6 Actions to Invoke an Advanced Search Form

	Add this action...	To...
	
Dialog

	
Display the page from your Fusion web application that contains the search form. For more information about displaying pages from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
ComponentAction

	
Invoke a Download action from the ADF Table or ADF Read-only Table components to download the results that match the search criteria specified.

	
Click OK.

Figure 8-26 shows an example from the EditableCustomerSearch-DT.xlsx workbook where the ribbon command's SelectActionSet contains a Dialog action followed by the ADF Table component's Download action. When the end user invokes the ribbon command, the Dialog action will show the search page (searchForm.jspx) in a browser window. After the end user specifies search criteria in the search page and selects the Search button there, the ADF Table component's Download action runs. This will retrieve the rows matching the specified search criteria into the integrated worksheet.

Figure 8-26 Ribbon Command Configured to open a Web Page

[image: This image is described in the surrounding text]

Figure 8-27 shows the web page search form at runtime.

Figure 8-27 Web Page Search Form

[image: This image is described in the surrounding text]

8.7 Creating a Form in an Integrated Excel Workbook

You can use the ADF Desktop Integration components described in Chapter 6, "Working with ADF Desktop Integration Form-Type Components," to create forms in your integrated Excel workbook. These components can be useful when you want to provide end users with functionality that allows them to view and edit individual fields rather than use the functionality provided by the table-type components to download rows of data from the Fusion web application. Use one or more of the following components to create a form:

	
ADF Button

Use this component to provide end users with a button that can invoke a ClickActionSet. Figure 8-28 shows an ADF Button labeled Search that invokes a search operation using the search term entered by the end user in the ADF Input Text component.

	
ADF Input Text

Use this component to provide end users with a read/write field where the current value of a binding appears. This component can also be used to input a value, as in the example illustrated in Figure 8-28, where users enter a search term in the ADF Input Text component.

	
ADF Output Text

Use this component to provide end users with a read-only field where the current value of a binding appears.

	
ADF List of Values

Use this component to provide end users with a dropdown menu from which a user can select a value from a list binding.

	
ADF Label

Use this component to provide end users with instructions or other information on how to use the form you create. For example, the EditWarehouses-DT.xlsx workbook uses ADF Label components to display the title of the form. Figure 8-28 shows the label with the title text Edit Summit Warehouses.

Figure 8-28 Runtime View of a Form in an Integrated Excel Workbook

[image: This image is described in the surrounding text]

You use the ADF Desktop Integration task pane to insert the components you require into a worksheet.

To create a form in an integrated Excel workbook:

	
Decide which ADF form components you require for the finalized form and insert them in the Excel worksheet.

For more information about these components, see Chapter 6, "Working with ADF Desktop Integration Form-Type Components."

	
Configure the layout and appearance of the components you insert.

For more information about configuring the appearance of components, see Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook."

	
Test your form.

For more information about testing an integrated Excel workbook, see Chapter 13, "Testing Your Integrated Excel Workbook."

8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook

ADF Desktop Integration provides the following components that you use to create lists of values in an integrated Excel workbook:

	
ADF List of Values

You configure properties for this component when you want to create a list of values in the Excel worksheet.

	
TreeNodeList subcomponent

You configure properties for this component when you want to create a list of values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your integrated Excel workbook. A dependent list of values is a list of values component (referred to as a child list of values) whose values are determined by another list of values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the parent list of values is changed, the available child list of values items are updated properly. Figure 8-29 shows an example with two illustrations from the EditWarehouses-DT.xlsx workbook, where the Country field (child list of values) changes when the value in the Region field (parent list of values) changes.

Figure 8-29 List of Values and Dependent List of Values

[image: This image is described in the surrounding text]

Table 8-7 describes the dependent list of values implementations you can create using the previously listed components and the requirements to achieve each implementation.

Some of the implementations described in Table 8-7 require model-driven lists. For information about creating a model-driven list, see the "How to Create a Model-Driven List" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

Table 8-7 Dependent List of Values Configuration Options

	Configuration	Requirements
	
Render both the parent and child list of values in the Excel worksheet using ADF List of Values components.

	
Both instances of the ADF List of Values component must reference a list binding. One or both of the list bindings that you reference can be model-driven lists.

Both list bindings can reference model-driven lists only if the underlying iterator has at least one row of data. At runtime, if the underlying iterator has zero rows of data and the end user selects a value from the parent list of values (list binding referenced by the ADF List of Values component's DependsOnListID property), the child list of values (list binding referenced by the ADF List of Values component's ListID property) does not get filtered based on the value the end user selects.

To work around this scenario, choose one of the following options:

	
Ensure that the underlying iterator has at least one row of data

	
Use an alternative list binding configuration where you expose multiple iterators and all necessary iterators get refreshed

For more information, see Section 8.8.1, "How to Create a Dependent List of Values in an Excel Worksheet."

	
Render both the parent and child list of values in ADF Table component columns using TreeNodeList subcomponents.

	
Both the parent and child list of values (TreeNodeList subcomponents) must reference tree binding attributes associated with model-driven lists.

For more information, see Section 8.8.3, "How to Create a Dependent List of Values in an ADF Table Component's Columns."

	
Render the parent list of values in an ADF List of Values component and the child list of values in an ADF Table component column using the TreeNodeList subcomponent.

	
The child list of values (TreeNodeList subcomponent) must reference a tree binding attribute associated with a model-driven list. The parent list of values (ADF List of Values component) must reference a list binding.

For more information, see Section 8.8.5, "Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column."

Note the following points if you plan to create a dependent list of values:

	
When the cell value referenced by DependsOnList or DependsOnListID is changed, ADF Desktop Integration overrides any previous changes to the child component list of values without warning the end user.

	
The dependent list of values does not work unless the list specified in the DependsOnList (or DependsOnListID) property is referenced by a component in the Excel worksheet.

	
If a circular dependency is defined (List A depends on List B, and List B depends on List A), the first dependency (List A depends on List B) triggers the expected behavior. ADF Desktop Integration considers other dependencies to be misconfigurations.

	
You can create a chain of dependencies as follows:

	
List A depends on List B

	
List B depends on List C

In this scenario, a change in List C (grandparent list of values) updates both Lists A (grandchild list of values) and B (child list of values). If you create a similar scenario, you must ensure that both the grandchild list of values and the child list of values, get refreshed whenever the parent list of values selection is changed. You can do this by specifying the two bind variables on the grandchild list of values to set up an implicit dependency between the view attributes. Another way is to declare explicit attribute dependencies between each of the view attributes that have model-driven lists configured. For example, specify that attribute A depends on attribute B and attribute C, and attribute B depends on attribute C.

	
Caching in a dependent list of values is discussed in Section 15.4, "Caching Lists of Values for Use in Disconnected Mode."

	
ADF Desktop Integration caches the values that appear in a dependent list of values. Hence, the dependent list item values for a given parent list selection must remain constant across all rows of an ADF Table component.

	
ADF List of Values components using date values are not supported.

8.8.1 How to Create a Dependent List of Values in an Excel Worksheet

Use two instances of the ADF List of Values component to create a dependent list of values in an Excel worksheet.

Specify the list binding referenced by the parent ADF List of Values component as a value for the child ADF List of Values component's ListOfValues.DependsOnListID property.

For more information about ADF List of Values, see Section A.7, "ADF List of Values Component Properties."

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an Excel worksheet:

	
If not present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
Open the integrated Excel workbook.

	
Insert two ADF List of Values components into your integrated Excel workbook, as described in Section 6.6, "Inserting an ADF List of Values Component."

	
In the property inspector for the ADF List of Values component that is to serve as the parent in the dependent list of values, set the value of the ListOfValues.ListID property to the list binding that is the parent.

	
In the property inspector for the ADF List of Values component that is to serve as the child in the dependent list of values, set the following properties:

	
ListOfValues.ListID

Specify the list binding that is the child in the dependent list of values.

	
ListOfValues.DependsOnListID

Select the list binding that you specified for the ADF List of Values component that serves as a parent in Step 4.

Figure 8-30 shows the property inspector for the child ADF List of Values where the RegionId list binding is specified as the parent list of values and CountryId list is the dependent list of values.

Figure 8-30 Design Time Dependent List of Values in an Excel Worksheet

[image: This image is described in the surrounding text]

	
Click OK.

8.8.2 What Happens at Runtime: How the Excel Worksheet Renders a Dependent List of Values

At runtime, ADF Desktop Integration renders both instances of the ADF List of Values component. When the end user selects a value from the parent list of values, the selected value determines the list of values in the child list.

Figure 8-31 shows an example where Country, a dependent list value, displays only the states from the selected Region list value.

Figure 8-31 Runtime Dependent List of Values in an Excel Worksheet

[image: This image is described in the surrounding text]

8.8.3 How to Create a Dependent List of Values in an ADF Table Component's Columns

Use instances of the TreeNodeList subcomponent to render both lists of values in a dependent list of values in ADF Table component columns at runtime.

Specify a tree binding attribute as a value for the parent TreeNodeList subcomponent's List property. You also specify a tree binding attribute as a value for the child TreeNodeList subcomponent's List property and the same tree binding attribute referenced by the parent TreeNodeList subcomponent as a value for its DependsOnList property.

Ensure that both tree binding attributes are associated with model-driven lists before you add the tree binding to your page definition file. For information about creating a model-driven list, see the "How to Create a Model-Driven List" section of the Developing Fusion Web Applications with Oracle Application Development Framework. For information about adding a tree binding to your page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

For information about the TreeNodeList subcomponent, see Section A.9, "TreeNodeList Subcomponent Properties."

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an ADF Table component:

	
Open the integrated Excel workbook.

	
If not present, insert an ADF Table component.

For more information, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

	
In the property inspector for the ADF Table component, invoke the Edit Columns dialog by clicking the browse (...) icon beside the input field for Columns.

	
Add a new column (or modify an existing column) to serve as the parent list of values. Specify TreeNodeList as the column's subcomponent type. For more information about creating a list of values, see Section 7.14, "Creating a List of Values in an ADF Table Component Column."

	
Add a new column (or modify an existing column) to serve as the child list of values. Specify TreeNodeList as the column's subcomponent type. For more information about creating a list of values, see Section 7.14, "Creating a List of Values in an ADF Table Component Column."

	
Specify the tree binding attribute of the parent list of values as a value for the DependsOnList property in the child list of values column.

Figure 8-32 shows the property inspector for a dependent TreeNodeList subcomponent, where the RegionId tree binding attribute is specified for the parent list of values and the CountryId tree binding attribute is specified for the child list of values.

Figure 8-32 Design Time Dependent List of Values in an ADF Table Component's Column

[image: This image is described in the surrounding text]

	
Click OK.

8.8.4 What Happens at Runtime: How the ADF Table Component Column Renders a Dependent List of Values

At runtime, the ADF Table component renders both instances of the TreeNodeList subcomponent in the columns that you configured to display these instances. When the end user selects a value from the parent list of values, the selected value determines the list of values in the child list.

Figure 8-33 shows an example where the value that the end user selects in the Region column list of values results in the corresponding values for sub-category appearing in the Country column list of values.

Figure 8-33 Runtime Dependent List of Values in an ADF Table Component's Columns

[image: This image is described in the surrounding text]

	
Note:

If the child list and the parent list are bound to columns in the same ADF Table component, the child list items are changed for the current row only, when the end user changes the parent list selection.

8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column

Use an instance of the ADF List of Values component and an instance of the TreeNodeList subcomponent to create a dependent list of values where you render the parent and the child list of values.

	
Parent list of values in the Excel worksheet

An instance of the ADF List of Values component renders the parent list of values in the Excel worksheet.

	
Child list of values in an ADF Table component column

An instance of the TreeNodeList subcomponent renders the child list of values in the ADF Table component column.

Specify a list binding as a value for the parent ADF List of Values component's ListID property. You specify a tree binding attribute as a value for the child TreeNodeList subcomponent's List property, and the same list binding referenced by the parent ADF List of Values component as a value for its DependsOnList property.

Ensure that the tree binding attribute is associated with a model-driven list before you add the tree binding to your page definition file. For information about creating a model-driven list, see the "How to Create a Model-Driven List" section of the Developing Fusion Web Applications with Oracle Application Development Framework. For information about adding a list and tree binding to your page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

For more information about the ADF List of Values component, see Section A.7, "ADF List of Values Component Properties." For information about the TreeNodeList subcomponent, see Section A.9, "TreeNodeList Subcomponent Properties."

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an Excel worksheet and an ADF Table component column:

	
Open the integrated Excel workbook.

	
Insert an ADF List of Values component into your integrated Excel workbook, as described in Section 6.6, "Inserting an ADF List of Values Component."

	
In the property inspector for the ADF List of Values component, set the value of the ListID property to the list binding that is to serve as the parent list of values in the dependent list of values.

	
Click OK.

	
Open the property inspector for the ADF Table component and invoke the Edit Columns dialog by clicking the browse (...) icon beside the input field for Columns.

	
Click Add to add a new column to the ADF Table component to serve as the child list of values in the runtime-dependent list of values.

	
Choose the appropriate option for the newly created column:

	
Click the browse (...) icon beside the input field for InsertComponent to configure the runtime list of values for insert operations.

	
Click the browse (...) icon beside the input field for UpdateComponent to configure the runtime list of values for update and download operations.

In both options, the Select subcomponent to create dialog appears.

	
Select TreeNodeList and click OK.

	
Expand the property that you selected in Step 7 and configure values as follows:

	
Select the same list binding that you specified as a value for the ADF List of Values component's ListID property in Step 3 as a value for the DependsOnList property.

	
Select a tree binding attribute associated with a model-driven list for the List property.

	
Configure the ReadOnly property as desired.

	
Click OK.

Figure 8-34 shows the ADF Table property inspector for a child ADF Desktop Integration Tree Node component of WarehouseLocations-DT.xlsx where the RegionList list binding is specified as the parent list of values.

Figure 8-34 Design Time Dependent List of Values in an Excel Worksheet and an ADF Table Component's Column

[image: This image is described in the surrounding text]

8.8.6 What Happens at Runtime: How the Excel Worksheet and the ADF Table Component Column Render a Dependent List of Values

At runtime, the ADF List of Values component renders the parent list of values and the ADF Table component renders the child list of values in the column that you configured to display the TreeNodeList subcomponent. When the end user selects a value from the parent list of values, the selected value determines the list of values in the child list.

Figure 8-35 shows an example from WarehouseLocations-DT.xlsx where the value that the end user selects in the Region list of values determines the list of values that appears in the Country column of the ADF Table component.

Figure 8-35 Runtime-Dependent List of Values in an Excel Worksheet and an ADF Table Component's Column

[image: This image is described in the surrounding text]

	
Note:

When the parent list is bound to a cell in the worksheet and the child list is bound to an ADF Table Component column, the child list items are updated for all rows in the table when the end user changes the parent list selection.

8.9 Using EL Expression to Generate an Excel Formula

You can use an EL expression to generate an Excel formula as the value of an ADF component. For example, you can use an Excel HYPERLINK function in an EL expression. If you use the Excel HYPERLINK function in an EL expression, you must enclose the HYPERLINK function within an Excel T function if you want an Oracle ADF component, such as an ADF Output Text component, to display a hyperlink at runtime.

You enclose the HYPERLINK function because ADF Desktop Integration interprets the Excel formula. To work around this, you wrap the T function around the HYERLINK function so that the value of the HYPERLINK function is evaluated by the T function. The resulting value is inserted into the Excel cell that the ADF component references. Use the following syntax when writing an EL expression that invokes the HYPERLINK Excel function:

=T("=HYPERLINK(""link_location"",""friendly_name"")")

The EL expression in Example 8-2 uses HYPERLINK function to navigate to http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html when end user clicks the component.

Example 8-2 HYPERLINK Function

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

If you write an EL expression using the HYPERLINK function, you should select the Locked checkbox in the Protection tab of the Format Cells dialog for the custom style that you apply to prevent error messages appearing.

	
Note:

When using EL expressions in formulas, ensure that after the EL expression is evaluated, the resulting Excel formula has no more than 255 characters. This applies to formulas used to set conditional values to component properties in the editor.

8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression

You write an EL expression that uses the Excel T function to evaluate the output of the Excel HYERLINK function. The following task illustrates how you configure an ADF Output Text component to display a hyperlink that opens the Oracle ADF Desktop Integration home page.

Before you begin:

It may be helpful to have an understanding of dynamic hyperlink. For more information, see Section 8.9, "Using EL Expression to Generate an Excel Formula."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To configure a cell to display a hyperlink using EL expression:

	
Open the integrated Excel workbook.

	
Insert an ADF Output Text component into the Excel worksheet.

	
Write an EL expression for the Value property of the ADF Output Text component.

The EL expression that you write invokes the Excel HYPERLINK function and uses the Excel T function to evaluate the output. In Example 8-2, you entered the following EL expression for the Value property:

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

	
Note:

Excel requires that you write double double quotes (for example, ""#{res['excel.workbook.powerby']}"") in the EL expression so that it can evaluate the expression correctly.

	
Click OK.

8.9.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression

ADF Desktop Integration evaluates the EL expression that you write at runtime. In the following example, ADF Desktop Integration:

	
Retrieves the value of the excel.workbook.powerby from the resource file

	
Inserts the result into a hyerlinked cell that a user can click

Figure 8-36 shows the runtime view of the example configured in Section 8.9.1, "How to Configure a Cell to Display a Hyperlink Using EL Expression." When the end user clicks the cell that hosts the ADF Output Text component, the Oracle ADF Desktop Integration home page opens in the web browser.

Figure 8-36 ADF Output Text Component Configured to Display a Hyperlink

[image: This image is described in the surrounding text]

8.10 Using Calculated Cells in an Integrated Excel Workbook

You can write Excel formulas that perform calculations on values in an integrated Excel workbook. Before you write an Excel formula that calculates values in an integrated Excel workbook, note the following points:

	
Formulas can be entered in cells that reference Oracle ADF bindings and cells that do not reference Oracle ADF bindings

	
End users of an integrated Excel workbook can enter formulas at runtime

	
You (developer of the integrated Excel workbook) can enter formulas at design time

	
During invocation, the ADF Table component actions Upload and RowUpSync send the results of a formula calculation to the Fusion web application and not the formula itself

	
Excel recalculates formulas in cells that reference Oracle ADF bindings when these cells are modified by:

	
Invocation of the ADF Table component RowDownSync and Download actions

	
Rendering of Oracle ADF components

	
The ADF Table and ADF Read-only Table components insert or remove rows as they expand or contract to accommodate data downloaded from the Fusion web application. Formulas are replicated according to Excel's own rules.

	
You can enter formulas above or below a cell that references an ADF Table or ADF Read-only Table component. A formula that you enter below one of these components maintains its position relative to the component as the component expands or contracts to accommodate the number of rows displayed.

For more information about Excel functions, see the Function reference section in Excel's online help documentation.

8.10.1 How to Calculate the Sum of a Table-Type Component Column

The following task illustrates how you use the Excel functions SUM and OFFSET to calculate the total of the column labeled Difference at runtime. You use the OFFSET function in an Excel formula that you write where you want to reference a range of cells that expands or contracts based on the number of rows that an ADF Table or ADF Read-only Table component downloads. The SUM function calculates the total in a range of Excel cells.

Before you begin:

It may be helpful to have an understanding of how to use calculated cells in an integrated Excel workbook. For more information, see Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To calculate the sum of a column in an ADF Table component:

	
In design mode, select the cell in which you want to write the Excel formula. For example, H16.

	
Write the Excel formula that performs a calculation on a range of cells at runtime. For example:

=SUM(OFFSET(G14,1,0):OFFSET(G15,-1,0))

where SUM calculates the total of values in the range of cells currently referenced by G14 and G15.

Figure 8-37 shows the design time view of the Excel formula in the integrated Excel workbook.

Figure 8-37 Design Time View of Excel Formula in an Integrated Excel Workbook

[image: This image is described in the surrounding text]

	
Save your changes and switch to runtime mode to test that the Excel formula you entered evaluates correctly.

8.10.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type Component Column

Figure 8-38 shows the runtime view in the integrated Excel workbook when the Excel formula shown in Figure 8-37 is evaluated. The Excel formula calculates the total of the values in the range of cells that you specified in design mode.

Figure 8-38 Runtime View of Excel Formula in an Integrated Excel Workbook

[image: This image is described in the surrounding text]

8.11 Using Macros in an Integrated Excel Workbook

You can define and run macros based on Excel events in an integrated Excel workbook.

Note the following points:

	
Macros triggered by an Excel event do not get triggered if the Excel event is invoked by ADF Desktop Integration.

	
ADF Desktop Integration code invoked by running of an Excel event when the Excel event is triggered by a macro.

9 Configuring the Appearance of an Integrated Excel Workbook

This chapter describes how to configure the appearance of an integrated Excel workbook using predefined and custom styles in Excel, how to use EL expressions to dynamically apply styles to Oracle ADF components in a workbook at runtime, how to use labels and brand the Excel workbook, and how to use Worksheet Protection feature.

This chapter includes the following sections:

	
Section 9.1, "About Configuring the Appearance of an Integrated Excel Workbook"

	
Section 9.2, "Working with Styles"

	
Section 9.3, "Applying Styles Dynamically Using EL Expressions"

	
Section 9.4, "Using Labels in an Integrated Excel Workbook"

	
Section 9.5, "Using Styles to Improve the User Experience"

	
Section 9.6, "Branding Your Integrated Excel Workbook"

	
Section 9.7, "Using Worksheet Protection"

9.1 About Configuring the Appearance of an Integrated Excel Workbook

You can configure the appearance of an integrated Excel workbook using both Excel functionality and Oracle ADF functionality. Configuring the appearance of a workbook may make the workbook more usable for end users. For example, applying a particular style to cells that render ADF Output Text components at runtime may indicate to end users that the cell is read-only. You may also want to configure the appearance of an integrated Excel workbook so that it aligns with your company's style sheet or the color scheme of the Fusion web application that the Excel workbook integrates with.

Using styles to configure your data in your integrated Excel workbook gives you many benefits. For example, you can use a particular style for ADF Output Text components, and a different style for ADF Input Text components.

ADF Desktop Integration provides several predefined Excel styles to apply to the ADF Desktop Integration components you configure in a workbook. You may want to define additional styles to meet the needs of your desktop integration project. If you do, familiarize yourself with the formats in an Excel workbook that render differently depending on the locale, region, and language.

9.1.1 Integrated Excel Workbook Configuration Use Cases and Examples

You can customize the appearance of ADF Desktop Integration components using styles. For example,Figure 9-1 shows various styles applied to the columns of ADF Table in EditCustomers-DT.xlsx. Note that some styles shown in Figure 9-1 are predefined styles (for example, _ADFDI_TableCellStyle) and others are created by Excel (for example, Explanatory Text).

Figure 9-1 Styles Applied to Columns of ADF Table in EditCustomers-DT.xlsx

[image: This image is described in the surrounding text]

9.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook

After you have applied styles to configure the appearance of your integrated Excel workbook, you may find that you need to add additional functionality to configure your workbook. Following are links to other functionalities that you can use:

	
Branding: In addition to styles, ADF Desktop Integration provides a collection of properties (BrandingItems) that enable you to brand your integrated Excel workbook with application name, application version details, and copyright information. For more information, see Section 9.6, "Branding Your Integrated Excel Workbook."

	
Localization: You can customize the integrated Excel workbook as part of the process to internationalize and localize with the Fusion web application. For more information, see Chapter 10, "Internationalizing Your Integrated Excel Workbook."

9.2 Working with Styles

ADF Desktop Integration provides a mechanism to apply Excel-defined styles to some Oracle ADF components at runtime. The Oracle ADF components that support the application of styles have properties with StyleName in their name. For example, the column properties of the ADF Table and ADF Read-only Table components both support the properties HeaderStyleName and CellStyleName that determine styles to apply at runtime.

9.2.1 Predefined Styles in ADF Desktop Integration

Many properties have default values that are drawn from a predefined list of ADF Desktop Integration module styles. For example, the HeaderStyleName property's default value is _ADFDI_HeaderStyle, one of the predefined styles in ADF Desktop Integration. ADF Desktop Integration automatically adds these predefined styles to the Excel workbook once when it is enabled for use with ADF Desktop Integration.

The following is the list of predefined styles:

	
_ADFDI_FormBottomStyle

	
_ADFDI_FormDoubleClickCellStyle

	
_ADFDI_FormTopStyle

	
_ADFDI_HeaderStyle

	
_ADFDI_InputTextStyle

	
_ADFDI_LabelStyle

	
_ADFDI_OutputTextStyle

	
_ADFDI_ReadOnlyTableStyle

	
_ADFDI_TableCellROStyle

	
_ADFDI_TableCellStyle

	
_ADFDI_TableChangedColumnStyle

	
_ADFDI_TableDoubleClickCellStyle

	
_ADFDI_TableFlagColumnStyle

	
_ADFDI_TableKeyCellStyle

	
_ADFDI_TriangleHeaderStyle

You can merge these styles and other styles that you define yourself from an integrated Excel workbook into another Excel workbook that you intend to integrate with a Fusion web application. You may create additional styles for use in your Excel workbook. For example, to add a date-specific formatting, you can duplicate _ADFDI_TableCellStyle, call it MyTableCellDateStyle, and add your date-specific formatting.

Once you have decided what styles to apply to the ADF Desktop Integration components at runtime, you can write EL expressions to associate a style with a component. The ADF Desktop Integration component properties that include StyleName in their name take an EL expression as a value. The ADF Label component and the Label property of other ADF components also support EL expressions. These EL expressions can retrieve the values of string keys defined in resource bundles or the values of attribute control hints defined in your Fusion web application.

For more information about creating new styles and merging styles into a workbook, see Excel's documentation.

9.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options

Some formats in the Date category of the Number styles that Excel can apply to cells change if a user changes the locale of the local system using the Regional and Language Options dialog that is accessible from the Microsoft Windows Control Panel. The * character precedes these formats in the Type list. Figure 9-2 shows an example of a Date type that formats dates in a cell using French (France) conventions.

Figure 9-2 French Date Formats in Excel

[image: This image is described in the surrounding text]

If the end user changes the regional options of a system to use English (United States), as illustrated in Figure 9-3, the cells that are formatted with the style in Figure 9-2 use the English (United States) conventions.

Figure 9-3 US English Date Formats in Excel

[image: This image is described in the surrounding text]

	
Note:

In order for Excel to properly format and manipulate date values with no time component, the form or table attributes must use the java.sql.Date data type in the application's model definition.

9.2.3 How to Apply a Style to an Oracle ADF Component

To apply a style to an Oracle ADF component, use the property inspector to set values for properties with StyleName in their name.

Before you begin:

It may be helpful to have an understanding of styles. For more information, see Section 9.2, "Working with Styles."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To apply a style:

	
In the integrated Excel workbook, select the cell that references the Oracle ADF component you want to modify and then click the Edit Properties button in the Oracle ADF tab.

	
Select the StyleName property and click the browse (...) icon to display the Edit Expression dialog.

	
Expand the Styles node and select the style to apply to cell at runtime.

For example, apply a heading style (Heading 4 style) to the Binding Warehouse ID output text field. Applying the Heading 4 style rather than a general style to the field results in data appearing as bold and in blue color.

	
Click Insert Into Expression to insert the selected style into the Expression field.

Figure 9-4 shows the Edit Expression dialog.

Figure 9-4 Edit Expression Dialog Applying a Style

[image: This image is described in the surrounding text]

	
Click OK.

9.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

The EL expression that you entered as a value for the property with StyleName in its name is evaluated at runtime. If it corresponds to one of the predefined styles or one that you defined, the style is applied to the ADF component that you set the property for.

If a cell that references an ADF component has a style applied to it that differs from the style defined in the properties of the ADF component, the ADF component overwrites the existing style at runtime and applies the style defined by its properties.

For example, Figure 9-5 shows the runtime values of Binding Warehouse ID after the Heading 4 style is applied, overriding the default _ADFDI_OutputTextStyle style.

Figure 9-5 Runtime Values After Applying Another Style

[image: This image is described in the surrounding text]

9.3 Applying Styles Dynamically Using EL Expressions

Oracle ADF component properties that include StyleName in their name can take an EL expression as a value. The EL expressions that you write can resolve to a named Excel style at runtime that is applied to the ADF component. The EL expressions that you write are Excel formulas that may include ADF data binding expressions. ADF Desktop Integration does not evaluate or apply results when a user navigates between cells or during upload.

The following examples show different contexts where you can use EL expressions to determine the behavior and appearance of ADF components at runtime. Example 9-1 applies a style dynamically during download. If the status value for binding is Closed, apply a read-only style (MyReadOnlyStyle). Otherwise apply another style (MyReadWriteStyle).

Example 9-1 Applying a Style Dynamically During Download

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 9-2 uses a mixture of Excel formulas and ADF binding expressions to handle errors and type conversion.

Example 9-2 EL Expressions to Handle Errors and Type Conversion

=IF(ISERROR(VALUE("#{bindings.DealSize}")), "BlackStyle", IF(VALUE("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

9.3.1 What Happens at Runtime: How an EL Expression Is Evaluated

When evaluating EL expressions at runtime, ADF Desktop Integration determines the value that the EL expression references. It then replaces the EL expression in the Excel formula with the value. In Example 9-1, ADF Desktop Integration first determines that value of the EL expression, #{bindings.Status}, in the following Excel formula:

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

It then replaces the EL expression with the runtime value, as in the following example, where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Excel evaluates the formula and, in this example, applies the MyReadOnlyStyle style.

9.3.2 How to Write an EL Expression That Applies a Style at Runtime

You write EL expressions for the Oracle ADF component properties that support EL expressions in the Edit Expression dialog that is accessible from the Oracle ADF component's property inspector. Figure 9-6 displays an Edit Expression dialog launched from the property inspector window of an ADF Button component.

Figure 9-6 Edit Expression Dialog

[image: This image is described in the surrounding text]

Before you begin:

It may be helpful to have an understanding of how to apply styles dynamically. For more information, see Section 9.3, "Applying Styles Dynamically Using EL Expressions."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To write an EL expression that applies a style at runtime:

	
Open the integrated Excel workbook.

	
Select a cell in the Excel worksheet that references the Oracle ADF component for which you want to write an EL expression.

	
Click the Edit Properties button in the Oracle ADF tab to display the property inspector.

	
Select the property in the property inspector with which you want to associate an EL expression and click the browse (...) icon to display the Edit Expression dialog.

	
Note:

The Edit Expression dialog appears only if the Oracle ADF component that you selected in Step 2 supports EL expressions. Depending on the context, the browse (...) icon can launch other editors such as the Edit Action dialog.

The Edit Expression dialog, as illustrated in Figure 9-6, displays a hierarchical list of the Oracle ADF components, bindings, styles, resources, and Excel functions that you can reference in EL expressions. For more information about the syntax of EL expressions that you enter in this dialog, see Appendix B, "ADF Desktop Integration EL Expressions."

9.3.3 What You May Need to Know About EL Expressions That Apply Styles

Note the following points about EL expressions that apply styles:

	
EL expressions that evaluate to styles are applied when:

	
An ADF Table component invokes its Download or DownloadForInsert actions

	
Rows are inserted into an ADF Table component

	
A worksheet invokes its DownSync action

	
EL expressions that evaluate to styles are not applied when:

	
An ADF Table component invokes its RowDownSync action

	
The end user edits the format properties of a cell

Note also that an EL expression that evaluates to a style is not reevaluated when the end user edits a cell's value.

	
The runtime value of an EL expression does not match a style defined in the end user's integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead, they retain their existing style formats. If you configured client-side logging, ADF Desktop Integration generates an entry in the log file when an EL expression evaluates to a style that is not defined in the end user's integrated Excel workbook. For more information about client-side logging, see Section C.3, "Generating Log Files for an Integrated Excel Workbook."

	
In Excel, given a workbook with various custom named styles, if you save a copy of that workbook from Excel, Excel automatically (and silently) deletes any custom named style that is not applied to any cell.

If you have styles that are only used in EL expressions and not applied to any cell, Excel may delete them.

	
The ADF Desktop Integration Publish feature creates a copy of the workbook. Hence, unused styles can disappear. The workaround is to apply each style once to an unused cell on an used worksheet.

9.4 Using Labels in an Integrated Excel Workbook

Use labels to provide end users with information about how they use the functionality in an integrated Excel workbook. You can write EL expressions that retrieve the value of string keys defined in a resource bundle or that retrieve the values of attribute control hints. An integrated Excel workbook evaluates the value of a Label property only when the workbook is initialized.

9.4.1 Retrieving the Values of String Keys from a Resource Bundle

Figure 9-7 shows a portion of the design time view of the EditWarehouses-DT.xlsx workbook in the Summit sample application for ADF Desktop Integration. It shows examples of ADF Label components and ADF Input Text components that have EL expressions specified for their Label properties.

Figure 9-7 Design Time View of an ADF Label Component and an ADF Input Text Component with Label Property

[image: This image is described in the surrounding text]

At runtime, these EL expressions resolve to string keys defined in the res resource bundle that is registered with the Summit sample application for ADF Desktop Integration. You define resource bundles in the workbook properties dialog. For information about referencing string keys from a resource bundle, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

Figure 9-8 shows the corresponding runtime view of the ADF Label component and ADF Input Text component illustrated in design mode in Figure 9-7.

Figure 9-8 Runtime View of an ADF Label Component and an ADF Button Component with Label Property

[image: This image is described in the surrounding text]

9.4.2 Retrieving the Values of Attribute Control Hints

In addition to string keys from resource bundles, the ADF Label component and the Label property of other ADF components can reference attribute control hints that you define for entity objects and view objects in your JDeveloper project. Figure 9-9 shows the expression builder for the Phone column in the EditCustomers-DT.xlsx workbook's ADF Table component. The expression builder contains an EL expression for the HeaderLabel property of the Phone column that retrieves the value (Phone) defined for an attribute control hint at runtime.

Figure 9-9 EL Expression That Retrieves the Value of an Attribute Control Hint for a Label Property

[image: This image is described in the surrounding text]

Attribute control hints can be configured for both view objects and entity objects. Information about how to add an attribute control hint to an entity object can be found in the "Defining Attribute Control Hints for Entity Objects" section of the Developing Fusion Web Applications with Oracle Application Development Framework. Information about how to define a UI hint for a view object can be found in the "Defining UI Hints for View Objects" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

9.4.3 How an Integrated Excel Workbook Evaluates a Label Property

An integrated Excel workbook evaluates the Label properties of ADF components when the workbook is initialized after you or the end user opens the workbook for the first time. The integrated Excel workbook saves the retrieved values for the Label properties when the workbook itself is saved to a directory on the system.

The retrieved values for the Label properties do not get refreshed during invocation of actions such as the worksheet's DownSync action or the ADF Table component's Download action. You indirectly refresh the retrieved values of the Label properties if you invoke the workbook actions ClearAllData or EditOptions described in Table A-20.

9.5 Using Styles to Improve the User Experience

It is good practice to provide end users of integrated Excel workbooks with information that helps them understand how to use the ADF components that you provide to integrate with a Fusion web application. You can do this by:

	
Providing end users with instructions on how to use Oracle ADF components such as ADF Button and ADF Input Text components.

The ADF Label component and the Label property of other ADF components is useful for this task, as you can write labels that instruct the end user on how to use the component.

	
Apply styles that indicate if an ADF component is read-only or read-write.

9.5.1 Using ADF Label Components to improve the User Experience

You can use ADF Label components to provide end users of an integrated Excel workbook information about how to use other ADF components in the workbook. For example, many forms, by convention, use an * to indicate to end users that they must enter a value in an input field. Figure 9-10 shows two ADF Input Text components with ADF Label components in adjoining cells. Each ADF Label component references an EL expression that retrieves the value of a string key from a resource bundle at runtime. Each string key includes the * character to indicate to end users that they must supply a value.

Figure 9-10 ADF Label Components Providing End-User Instruction

[image: This image is described in the surrounding text]

For information about using resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

9.5.2 What You May Need to Know About the Read-Only Property in an Integrated Excel Workbook

Note the following points about the read-only property in an integrated Excel workbook:

	
ADF Output Text, ADF Label, and ADF Table header row do not have read-only properties. However, these components have implied read-only behavior. In addition, end users can enter values in the cells that host these components and temporarily change the values that appear in these cells. ADF Desktop Integration ignores these changes when uploading from the worksheet and overwrites them when it downloads data from the Fusion web application.

	
The ADF Input Text component, ADF List of Values component, and TreeNodeList subcomponent each have a read-only property (ReadOnly).

	
Note:

If you specify an Excel formula in the Value property of an ADF Input Text component, the component behaves as if its ReadOnly property were True. The component ignores the actual value of the ReadOnly property.

	
To protect the values of read-only cells at runtime, set the worksheet protection to automatic. When an attempt is made to edit a read-only cell after enabling worksheet protection, Excel displays a warning message and the edit is blocked. For more information about worksheet protection, see Section 9.7, "Using Worksheet Protection."

	
Do not use the Excel's Protect Sheet or Protect Workbook features directly in an integrated Excel workbook. Also, ensure that end users do not use these features.

To prevent end-user confusion, apply styles to components, such as the ADF Output Text component, that indicate to end users whether a component is read-only or can be edited. By default, the ADF Output Text component uses the predefined style, _ADFDI_OutputTextStyle. You can define your own styles and apply them to components as described in this chapter.

For more information about the properties that ADF Desktop Integration components support, see Appendix A, "ADF Desktop Integration Component Properties and Actions."

9.6 Branding Your Integrated Excel Workbook

ADF Desktop Integration provides several features that you can configure to brand your integrated Excel workbook with information such as application name, version information, and copyright information. You can use the workbook BrandingItems group of properties to associate this information with an integrated Excel workbook. You must configure a Ribbon tab as described in Section 8.3, "Configuring the Runtime Ribbon Tab" so that the end user can view this branding information by clicking a ribbon button that invokes the ViewAboutDialog workbook action at runtime. For more information about workbook actions, see Table A-20.

You can also define string keys in a resource bundle to define information, such as titles, in one location that can then be used in multiple locations in an integrated Excel workbook at runtime when EL expressions retrieve the values of these string keys. For information about defining string keys, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

9.6.1 How to Brand an Integrated Excel Workbook

You define values for the workbook BrandingItems group of properties.

Before you begin:

It may be helpful to have an understanding of how to customize brand of your integrated Excel workbook. For more information, see Section 9.6, "Branding Your Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To brand an integrated Excel workbook:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, click the browse (...) icon beside the input field for BrandingItems.

	
In the Edit BrandingItems dialog, click Add and specify values for the new element as follows:

	
Name

Specify the name, or the EL expression, of the branding item to define.

	
Value

Specify a literal string or click the browse (...) icon to invoke the expression builder and write an EL expression that retrieves a value at runtime. BrandingItems must use literal strings or resource expressions, and must not contain any binding expression.

Figure 9-11 shows the design time view of branding items in the Summit sample application for ADF Desktop Integration.

Figure 9-11 Design Time View of Branding Items in the Summit Sample Application for ADF Desktop Integration

[image: This image is described in the surrounding text]

	
Click OK.

9.6.2 What Happens at Runtime: the BrandingItems Group of Properties

At runtime, the name-value pairs that you define for the BrandingItems group of properties appear in a dialog that the end user invokes from the About button of the Oracle ADF tab, which you configured to appear, as described in Section 8.3, "Configuring the Runtime Ribbon Tab." Figure 9-12 shows the runtime view of branding items in the EditCustomers.xlsx workbook.

Figure 9-12 Runtime View of Branding Items in the Summit Sample Application for ADF Desktop Integration

[image: This image is described in the surrounding text]

9.7 Using Worksheet Protection

By default, the end user can edit the values of locked cells and ADF Desktop Integration read-only components, such as ADF Label and ADF Output Text, at runtime. While uploading data, ADF Desktop Integration ignores these changes and overwrites them when it downloads data from the Fusion web application.

To prevent editing of locked cells at runtime, you must enable worksheet protection. Optionally, you can also provide a password to prevent the end user from turning off worksheet protection.

9.7.1 How to Enable Worksheet Protection

Worksheet protection enables true read-only mode for locked and read-only cells, and prevents any editing at runtime.

Before you begin:

It may be helpful to have an understanding worksheet protection. For more information, see Section 9.7, "Using Worksheet Protection."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To enable Worksheet Protection:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Worksheet Properties dialog, expand the Protection property and configure values as follows:

	
To enable worksheet protection at runtime, set the Mode to Automatic.

	
If desired, provide a value in the Password field. The end user cannot turn off sheet protection at runtime without knowing this value.

Note that the password is not encrypted and that the maximum password length allowed by Excel is 255 characters. If you specify a longer password, it will be truncated silently at runtime when sheet protection is toggled.

Figure 9-13 shows the design time view of worksheet protection in the Summit sample application for ADF Desktop Integration.

Figure 9-13 Design Time View of Worksheet Protection in the Summit Sample Application for ADF Desktop Integration

[image: This image is described in the surrounding text]

	
Click OK.

9.7.2 What Happens at Runtime: How the Locked Property Works

At runtime, if the end user tries to edit a read-only cell or a ADF Desktop Integration read-only component, Excel displays the warning message, as shown in Figure 9-14.

Figure 9-14 Worksheet Protection Warning at Runtime

[image: This image is described in the surrounding text]

When worksheet protection is enabled, ADF Desktop Integration controls the Locked property for cells that are within the bounds of ADF Desktop Integration components. The Locked property of cells outside the bounds of ADF Desktop Integration components is not affected.

At runtime, ADF Desktop Integration evaluates the read-only behavior of its components. Some components such as ADF Label and ADF Output Text, are always read-only, and other components, such as ADF Input Text, have a read-only property. At runtime, the Locked property is set to true when read-only for the component evaluates to true. The header labels of ADF Table components are always read-only, but column subcomponents might be ADF Output Text or ADF Input Text. At runtime, each components read-only behavior is evaluated and the corresponding cell's Locked property is set to the appropriate value.

9.7.3 What You May Need to Know About Worksheet Protection

Worksheet protection is not enabled by default, you need to enable it at design time if you want to use it for a particular worksheet. Also, after worksheet protection is enabled, the Locked property for cells is set at runtime, not at design time.

It is important to note that the password used for worksheet protection is itself not encrypted or stored in a safe location. Worksheet protection is used to improve worksheet usability, not to protect sensitive data.

After worksheet protection is enabled, Excel behaves differently. Here are some differences that you can expect:

	
The ADF Table components cannot be sorted, as they include read-only cells in the Key column.

	
The end user can insert a full row or column. However, once inserted, they cannot be deleted.

	
The end user cannot insert partial rows or columns.

10 Internationalizing Your Integrated Excel Workbook

This chapter describes internationalization issues to consider when developing an integrated Excel workbook, how to use resource bundles, and how to localize the integrated Excel workbook.

This chapter includes the following sections:

	
Section 10.1, "About Internationalizing Your Integrated Excel Workbook"

	
Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook"

	
Section 10.3, "Localization in ADF Desktop Integration"

10.1 About Internationalizing Your Integrated Excel Workbook

ADF Desktop Integration provides several features that allow you to deliver integrated Excel workbooks as part of an internationalized Fusion web application. One of the principal features is the use of resource bundles to manage the localization of user-visible strings that appear in Oracle ADF components at design time. It also uses resource bundles to manage the user-visible strings that appear in these components at runtime. This chapter also describes the use of resource bundles.

Note the following points about internationalization and localization in an integrated Excel workbook:

	
Internationalized Data

ADF Desktop Integration supports both single- and double-byte character sets. It marshals data transmitted between an Excel worksheet and a Fusion web application into XML payloads. These XML payloads use UTF-8 encoding with dates, times, and numbers in canonical formats.

	
Locale

The locale of the system where the Excel workbook is used determines the format for dates, times, and numbers. These settings (formats and the locale of the system) may differ from the settings used by the Fusion web application. ADF Desktop Integration does not attempt to synchronize these settings, but it ensures that the data retains its integrity. ADF Desktop Integration does not provide a mechanism for end users to change the language or display settings of the Oracle ADF components in an integrated Excel workbook at runtime.

When configuring or applying styles to ADF components in an integrated Excel workbook, configure or choose styles that are locale-sensitive. For more information, see Section 9.2, "Working with Styles."

For more information about internationalizing Fusion web applications, see the "Internationalizing and Localizing Pages" chapter in the Developing Web User Interfaces with Oracle ADF Faces.

10.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples

You can create integrated Excel workbooks for your internationalized Fusion web application. Designing your integrated Excel workbook as part of the internationalized Fusion web application helps in its easy adaptation to specific local languages and cultures. Using resource bundles and other components, you can configure your integrated Excel workbook for a specific local language or culture by translating text and adding locale-specific components at design time, and also at runtime. For more information, see Section 10.3, "Localization in ADF Desktop Integration."

Figure 10-1 shows an example of an integrated Excel workbook configured for the Japanese language.

Figure 10-1 Integrated Excel Workbook in Japanese

[image: This image is described in the surrounding text]

10.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

After you have internationalized your integrated Excel workbook, you may find that you need to add additional functionality to configure your workbook. Following are links to other functionalities that you can use:

	
Security: Whether you are using a secure Fusion web application or not, you must be aware of security implementations in your integrated Excel workbook. For more information, see Chapter 11, "Securing Your Integrated Excel Workbook."

	
Validating integrated Excel workbook: You can configure server-side and client-side validation for the Fusion web application and the integrated Excel workbook. For more information, see Chapter 12, "Adding Validation to an Integrated Excel Workbook."

	
Publishing and deploying integrated Excel workbook: The final step after you design and validate your integrated Excel workbook is to publish and deploy it. For more information, see Chapter 14, "Deploying Your Integrated Excel Workbook."

10.2 Using Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration uses resource bundles to manage user-visible strings that appear in the ADF components of an integrated Excel workbook at design time and runtime. JDeveloper stores resource bundles in the ADF Desktop Integration project.

You can register up to twenty resource bundles containing string values you define with an integrated Excel workbook. A resource bundle must not exceed 1 megabyte. If you attempt to register more than twenty resource bundles or a resource bundle that exceeds 1 megabyte, ADF Desktop Integration writes a warning to the client-side log file and stops registration of additional resource bundles or resource bundle data after the 1 megabyte limit is reached.

For example, if resource bundle A measures 2 megabyte and resource bundle B measures 1 megabyte, ADF Desktop Integration registers the first megabyte of data in resource bundle A and all of the data in resource bundle B. For information about client-side logging, see Section C.3.2, "About Client-Side Logging."

The Resources workbook property specifies what resource bundles an integrated Excel workbook can use. This property specifies an array of resource bundles (Resources list) in the integrated Excel workbook. Each element in the array has a property that uniquely identifies a resource bundle (Alias) and a property that identifies the path to the resource bundle in the JDeveloper desktop integration project (Class). For example, EditCustomers-DT.xlsx in the Summit sample application for ADF Desktop Integration references the res resource bundle that has the following value for the Class property:

oracle.summitdi.resources.UIResources

More information about the Resources workbook property can be found in Section A.15, "Workbook Actions and Properties."

By default, ADF Desktop Integration provides a reserved resource bundle that supplies string key values used by many component properties at runtime. When you enable an Excel workbook to integrate it with a Fusion web application, the reserved resource bundle is registered by default with the workbook. ADF Desktop Integration uses the value _ADFDIres to uniquely identify this resource bundle. Many EL expressions reference string values in this resource bundle.

If you register another resource bundle, you can replace default string key values assigned from the _ADFDIres resource bundle to many of the ADF component properties.

10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook

You register a resource bundle by adding an element to the Resources list using the Edit Resources dialog.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more information, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 10.1.2, "Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a resource bundle:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, click the browse (...) icon beside the input field for Resources to display the Edit Resources dialog shown in Figure 10-2.

Figure 10-2 Edit Resources Dialog

[image: This image is described in the surrounding text]

	
Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for Resources in Table A-21.

	
Tip:

While registering a resource bundle class, do not include the file extension.

10.2.2 How to Override Resources That Are Not Configurable

The overridable resources contains several user-visible runtime strings that you cannot replace by configuring the properties of the ADF Desktop Integration components. Examples include the strings that appear in the default upload dialog illustrated in Figure 7-11.

To replace these user-visible runtime strings, you create a resource bundle in your Fusion web application that contains the string keys from the overridable resource that ADF Desktop Integration supports. Appendix E, "String Keys in the Overridable Resources" lists these string keys. You define values for the string keys listed in Appendix E to override in the resource bundle you create.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more information, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 10.1.2, "Additional Functionality for Internationalizing Integrated Excel Workbook."

To override resources that are not configurable:

	
Create a resource bundle in your Fusion web application.

For information about creating a resource bundle, see the "Manually Defining Resource Bundles and Locales" section in the Developing Web User Interfaces with Oracle ADF Faces.

	
Define the string key values you want to appear at runtime in the resource bundle for the string keys listed in Appendix E, "String Keys in the Overridable Resources."

	
Set _ADFDIres as the value of the Alias property when you register the resource bundle you created in Step 1.

For information about how to register a resource bundle, see Section 10.2.1, "How to Register a Resource Bundle in an Integrated Excel Workbook."

Table E-1 describes the string keys in the overridable resources that ­ADF Desktop Integration supports. Supply an alternative value to the value listed in the English value column for each string key in the overridable resource. Note that override resources should not be used in component properties, they are only intended for the original usages.

10.2.3 What Happens at Runtime: Override Resources That Are Not Configurable

ADF Desktop Integration retrieves the values of string keys listed in Table E-1 that you defined in the resource bundle you created. It retrieves the values of other string keys that you did not define in the resource bundle you created from the reserved resource bundle.

10.2.4 What You May Need to Know About Resource Bundles

See the following sections for additional information about resource bundles in an integrated Excel workbook.

10.2.4.1 Resource Bundle Types

ADF Desktop Integration supports use of the following types of resource bundle:

	
Properties bundle (.properties)

	
List resource bundle (.rts)

	
Xliff resource bundle (.xlf)

For more information about resource bundles, see the "Manually Defining Resource Bundles and Locales" section in the Developing Web User Interfaces with Oracle ADF Faces.

10.2.4.2 Caching of Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration caches the values of string keys from the resource bundles that an integrated Excel workbook retrieves when it first connects to the Fusion web application. If you change a string key value in a resource bundle after an integrated Excel workbook has cached the previous value, the modified value does not appear in the workbook unless the ClearAllData workbook action is invoked and the end user closes and reopens the workbook so that it retrieves the modified value from the Fusion web application. For more information about the ClearAllData workbook action, see Table A-20.

10.2.4.3 EL Expression Syntax for Resource Bundles

ADF Desktop Integration requires that you enclose the string key name in EL expressions using the [] characters, as in the following example:

#{res['StringKey']}

Note that ADF Desktop Integration does not support the following syntax:

#{res.StringKey}

10.3 Localization in ADF Desktop Integration

ADF Desktop Integration integrates several diverse sets of technologies. Each of these technologies provides various options for controlling the choice of natural human language when you localize your Fusion web application.

When the end user interacts with an integrated Excel workbook, various elements are involved. Each of these elements has its own set of supported languages and resource translations. In such a scenario, the translation of language is the responsibility of the respective publisher.

Table 10-1 presents a summary of elements involved and their role in translation:

Table 10-1 Summary of Localization

	Area subject to localization	Determination of language to use
	
Microsoft operating system

	
Operating system language settings. You can choose the language through Regional Settings on Control Panel.

	
Microsoft Office

	
Microsoft Office language settings

	
Web pages displayed in ADF Desktop Integration Dialog actions

	
Usually controlled by Microsoft Internet Explorer's Language Preferences.

	
ADF Desktop Integration client resources

	
Microsoft Office language settings

	
ADF Desktop Integration server resources

	
Microsoft Internet Explorer language preferences

	
ADF Desktop Integration custom resource bundles

	
Microsoft Internet Explorer language preferences

Figure 10-3 illustrates how various elements involved in a Fusion web application play their role in translation.

Figure 10-3 Localization in ADF Desktop Integration

[image: This image is described in the surrounding text]

For more information about localization in ADF Desktop Integration, see the "Oracle ADF Desktop Integration Localization whitepaper" on OTN at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html

10.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings

The server-side localization comprises of ADF Desktop Integration server resources and Application Custom Resources. By default, ADF Desktop Integration uses the client-side Internet Explorer's language preference to determine server-side localization, but you can configure the Fusion web application to determine the server-side locale. To do that, you would need to create a user preference handler and register it by adding a UserPreferences.Handler initialization parameter for ADF Desktop Integration servlet.

10.3.1.1 How to Create a User Preference Handler

To create a user preference handler, create a public java class with a public method of java.util.Locale getLocale() signature that determines the ADF Desktop Integration server-side resources locale and returns the locale as a java.util.Locale object.

Example 10-1 shows a sample implementation of a user preference handler.

Example 10-1 Implementation of a User Preference Handler

public class CustomUserPrefsHandler
{
 public Locale getLocale ()
 {
 UserPref info = (UserPref)
 ADFContext.getCurrent().getSessionScope().map.get("User_Pref_Info");
 return info.getLocale();
 }
}

	
Note:

The handler class must have a constructor with no arguments, or uses the default Java constructor.

10.3.1.2 How to Register the User Preference Handler

To register a user preference handler, add the UserPreferences.Handler initialization parameter for ADF Desktop Integration in web.xml.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more information, see Section 10.3, "Localization in ADF Desktop Integration."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 10.1.2, "Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a User Preference Handler:

	
Open the web.xml file of your Fusion web application.

	
Add an initialization parameter to configure the user preference handler, as described in Table 10-2.

Table 10-2 Configuring Locale User Preference

	Property	Value
	
Name

	
Enter the name of the initialization parameter as follows

UserPreferences.Handler

	
Value

	
Complete path of the handler class.

	
Save the web.xml file.

	
Rebuild and restart your Fusion web application.

Example 10-2 shows the web.xml file with UserPreferences.Handler.

Example 10-2 web.xml File With UserPreferences.Handler

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 <init-param>
 <param-name>UserPreferences.Handler</param-name>
 <param-value>myCompany.XYZ.CustomUserPrefsHandler</param-value>
 </init-param>
</servlet>

In Example 10-2, myCompany.XYZ.CustomUserPrefsHandler is the complete path of the handler class.

11 Securing Your Integrated Excel Workbook

This chapter describes security related features in ADF Desktop Integration.

This chapter includes the following sections:

	
Section 11.1, "About Security In Your Integrated Excel Workbook"

	
Section 11.2, "Authenticating the Excel Workbook User"

	
Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata"

	
Section 11.4, "What You May Need to Know About Securing an Integrated Excel Workbook"

	
Section 11.5, "Authorizing the Excel Workbook User"

11.1 About Security In Your Integrated Excel Workbook

If you are using a Fusion web application that does not enforce authentication, the integrated Excel workbook verifies and creates a valid user session when it connects to the Fusion web application before downloading any data. The session that is established is used for each and every data transfer between the integrated Excel workbook and Fusion web application. The session is also used for web pages displayed from the integrated Excel workbook.

In a Fusion web application that is enforcing authentication, the integrated Excel workbook ensures that a valid, authenticated user session is established before transferring data to or from the web application.

For both authenticated and non-authenticated Fusion web applications, ADF Desktop Integration relies on the establishment of cookie-based sessions. With no authentication mechanism in place, your Fusion web application is not completely safe. Hence, you should enable ADF Security in your Fusion web application before you deploy your web application with integrated Excel workbooks. For information about ADF Security, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Developing Fusion Web Applications with Oracle Application Development Framework.

When you open the integrated Excel workbook, ADF Desktop Integration detects if the Fusion web application that the workbook runs against is a secure application and enforces authentication automatically. For authenticated web applications, the end user will always be prompted for credentials, even though the workbooks are downloaded from an authenticated web browser. Since the web browser and Excel are different operating system processes, they cannot share credentials (unless Windows native authentication is used).

11.1.1 Integrated Excel Workbook Security Use Cases and Examples

When you open the integrated Excel workbook of a secure Fusion web application opens, a Login dialog appears and prompts you to connect to the Fusion web application, as shown in Figure 11-1. Note that the Login dialog also appears when the Fusion web application is not secure.

Figure 11-1 Dialog to verify Connection

[image: This image is described in the surrounding text]

If you click Yes to connect, another dialog prompts you to enter the credentials, as shown by the example in Figure 11-2.

Figure 11-2 Dialog to verify End User's Credentials

[image: This image is described in the surrounding text]

The dialog that is shown in Figure 11-2 might be different as it depends on how the Fusion web application is configured to enforce authentication. For example, if Form-based authentication is being used by the web application, then the end-user will see a browser dialog with a web page with fields for user name and password.

11.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application

After you have secured your integrated Excel workbook, you may find that you need to add additional functionality for your workbook. Following are links to other functionalities that you can use:

	
Validating integrated Excel workbook: You can configure server-side and client-side validation for the Fusion web application and the integrated Excel workbook. For more information, see Chapter 12, "Adding Validation to an Integrated Excel Workbook."

	
Testing integrated Excel workbook: Before publishing and deploying your integrated Excel workbook, you must test it. For more information, see Chapter 13, "Testing Your Integrated Excel Workbook."

	
Publishing and deploying integrated Excel workbook: The final step after you design and validate your integrated Excel workbook is to publish and deploy it. For more information, see Chapter 14, "Deploying Your Integrated Excel Workbook."

11.2 Authenticating the Excel Workbook User

The integration of an Excel workbook with a secure Fusion web application requires an authenticated web session established between the integrated Excel workbook and the server that hosts the Fusion web application. ADF Security determines the mechanism used to authenticate the user.

If the end user opens an Excel workbook without a valid authenticated session, a login mechanism is invoked to authenticate the end user.

11.2.1 What Happens at Runtime: How the Login Method Is Invoked

After the login method is invoked, a new session between the integrated Excel workbook and the Fusion web application is created, and a modal dialog appears that contains a web browser control. This web browser control displays whatever login mechanism the Fusion web application uses. For example, if the Fusion web application uses HTTP Basic Authentication, the web browser control displays the simple dialog shown in Figure 11-3.

Figure 11-3 Dialog That Appears When a Fusion Web Application Uses Basic Authentication

[image: This image is described in the surrounding text]

The end user enters user credentials and, assuming these are valid, an authenticated session is created and assigned to the client (the web browser control hosted by the Excel workbook).

	
Note:

If the Login method is invoked when a session has already been established, it first invokes the Logout action internally to free that session.

11.2.2 What Happens at Runtime: How the Logout Method Is Invoked

After the logout method is invoked, a dialog appears informing users that they have logged out of the current session. The user is automatically logged out when the workbook is closed, or when the Clear All Data option is selected from the runtime custom tab in Excel ribbon.

Figure 11-4 Dialog That Appears When a User Logs Out

[image: This image is described in the surrounding text]

After logging out, the user must log in again to upload or download data.

If two or more workbooks are open (in test or runtime mode) and running against the same Fusion web application, closing one workbook does not initiate the logout mechanism. The user continues to stay logged in and may continue to work on remaining open workbooks, and can open the closed workbook without being asked for credentials again. The user is logged out when all workbooks running against the same Fusion web application are closed.

11.3 Checking the Integrity of an Integrated Excel Workbook's Metadata

ADF Desktop Integration provides a mechanism to verify that the metadata it uses to integrate an Excel workbook with a Fusion web application is not tampered with after you publish the Excel workbook for end users. It generates a hash code value and inserts the value into the ADF Desktop Integration client registry file (adfdi-client-registry.xml) that it also creates when you publish the integrated Excel workbook as described in Section 14.3, "Publishing Your Integrated Excel Workbook." ADF Desktop Integration stores the adfdi-client-registry.xml file in the WEB-INF directory of the Fusion web application.

If you republish the integrated Excel workbook, ADF Desktop Integration generates a new hash code value and replaces the value in the adfdi-client-registry.xml file. ADF Desktop Integration creates the adfdi-client-registry.xml file if it does not exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow the integrated Excel workbook to identify the location of the Fusion web application's WEB-INF directory. You must set valid values for these properties before you can publish the integrated Excel workbook and ADF Desktop Integration can generate a hash code value.

ADF Desktop Integration generates the hash code value using most of the elements in the metadata for the workbook and the value of the WorkbookID workbook property. The WorkbookID workbook property is read-only and uniquely identifies the integrated Excel workbook. You must reset the WorkbookID workbook property if you create a new integrated Excel workbook by copying an existing integrated Excel workbook. ADF Desktop Integration excludes the WebAppRoot property from the hash code calculation since its value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A-21.

	
Note:

Tamper-check is not performed for customization-enabled workbooks.

11.3.1 How to Reset the Workbook ID

The value of the WorkbookID workbook property is unique to each workbook and cannot be modified by you. You can, however, reset the WorkbookID workbook property. You must do this when you create a new integrated Excel workbook by copying an existing integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of how to verify the integrity of integrated Excel workbook's metadata. For more information, see Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 11.1.2, "Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application."

To reset a workbook ID:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
In the Edit Workbook Properties dialog, click the Reset WorkbookID link.

	
Click Yes to confirm and reset the WorkbookID workbook property in the dialog that appears., as shown in Figure 11-5.

Figure 11-5 Reset Workbook ID Dialog

[image: This image is described in the surrounding text]

	
Click OK.

11.3.2 What Happens When the Metadata Tamper-Check Is Performed

At runtime, the integrated Excel workbook regenerates the metadata hash code and provides it to the Fusion web application with the first server request. If the Fusion web application cannot get a match on this hash code, it returns an error to the integrated Excel workbook. On receiving an error from the tamper check process, the integrated Excel workbook reports this failure to the end user and closes the integration framework.

11.4 What You May Need to Know About Securing an Integrated Excel Workbook

Note the following points about securing an integrated Excel workbook with a Fusion web application:

	
Data security

If you save an Excel workbook containing data downloaded from a Fusion web application to a location, such as a network directory, where other users can access the Excel workbook, the data stored in the Excel workbook is accessible to other users.

	
Security in Microsoft Excel

You can enhance the security of an integrated Excel workbook using Excel's functionality to set a password on a workbook. It prevents unauthorized users from opening or modifying the workbook. For more information about Excel security features, see Excel's documentation.

	
Integrated Excel workbooks can be configured to cache data, as described in Section 15.2, "Restore Server Data Context Between Sessions." Make sure that you do not cache sensitive data in the integrated Excel workbook.

	
If the Fusion web application is running on the https protocol, you may receive a certificate error while connecting from an integrated Excel workbook. You can either install the required certificate using Microsoft Internet Explorer, or choose to continue to log in and connect to the web application.

	
End users that download integrated Excel workbooks using Microsoft Internet Explorer may be prompted unexpectedly for credentials before the Excel application is visible, and then prompted again once the workbook opens. This may occur when the web application is configured to use certain authentication methods like Basic or Digest. The extra prompt is due to Excel making an OPTIONS request on the web directory containing the workbook.

To avoid the extra login prompt, end users can choose to save the workbook locally instead of opening it directly from the browser.

	
For a non-authenticated Fusion web application, end-users will not be prompted to log in. However if the application uses the https protocol, then end users may briefly see a login dialog appear when the first connection is established to the web application. Workbook developers can control the size of the dialog with the Workbook.Login.WindowSize property.

If you are an administrator, you should also see the "What You May Need to Know About Configuring Security in a Fusion Web Application" section in Administering Oracle ADF Applications.

11.5 Authorizing the Excel Workbook User

ADF Desktop Integration enforces view permission for integrated Excel worksheets through page definition authorization. At runtime, end users without proper permissions for a page definition (binding container) are prevented from interacting with the associated integrated Excel worksheet. Any attempt to interact with an unauthorized binding container (for example, download or submit data) is aborted, the end user is informed of the authorization failure, and all ADF Desktop Integration activity on the worksheet is disabled. No further interaction with the ADF Desktop Integration-disabled worksheet is possible until a new user session is established. To allow end users to interact with the integrated Excel worksheet, assign them the roles that have been granted access to the page definition.

If you have upgraded ADF Desktop Integration from an old version, you may need to review the resource grants for all of the page definitions that are used with integrated Excel worksheets. For example, if your Fusion web application supports authorization, and you have a page definition myWorksheetPageDef.xml that has no resource grants and is used by one (or more) integrated Excel worksheets, then you need to assign end users the roles that have been granted access to the page definition. When transitioning to the new version of ADF Desktop Integration, you may find it helpful to temporarily create resource grants for the worksheet page definitions that are granted to authenticated-role, or some other generic role, allowing you to run those worksheets as before while you fine tune your roles and resource associations.

For more information about authorization, roles, and resource grants, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Developing Fusion Web Applications with Oracle Application Development Framework.

	
Note:

ADF Desktop Integration does not enforce authorization of other resource types, such as entity object-level, entity attribute-level, ADF Method, Insert while New, Panel Tab, and Task Flow authorization.

You can configure resources and grants from the Resource Grants page of the overview editor for the jazn-data.xml file. For more information, see the "Defining ADF Security Policies" section in the Developing Fusion Web Applications with Oracle Application Development Framework.

On an authorization failure, the end user receives an error message, such as the following, and ADF Desktop Integration in the worksheet is disabled:

ADFDI-05589 You are not authorized to use this worksheet for interacting with the Fusion web application.

11.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet

The following limitations apply to an ADF Desktop Integration-disabled worksheet:

	
All ADF buttons, worksheet-level ribbon commands, and worksheet-level events are disabled.

	
If the authorization failure occurs during worksheet initialization, no form labels, table column headers, or buttons are drawn on the worksheet.

	
If the authorization failure occurs for an initialized worksheet, all ADF buttons are disabled, but other worksheet components (such as ADF Input Text and ADF Table) are not affected and are left visually unchanged.

	
End user can perform standard Excel interactions on the disabled worksheet. The user may alter the data in an ADF Table component in the worksheet, but the Changed column will not be updated.

	
There is no impact on workbook-level commands. End users can continue to use the following commands: Login, Logout, About, Edit Options, and Clear All Data.

An ADF Desktop Integration-disabled worksheet is automatically enabled when the end user reopens the integrated Excel workbook and establishes a new session, provided the new session is authorized. Logging out, and then logging in again, also re-enables ADF Desktop Integration in a disabled integrated Excel worksheet.

12 Adding Validation to an Integrated Excel Workbook

This chapter describes how to provide server-side and client-side validation for your integrated Excel workbook, how to report errors such as validation failures and data conflict, and how to configure error reports using custom error handler.

This chapter includes the following sections:

	
Section 12.1, "About Adding Validation to an Integrated Excel Workbook"

	
Section 12.2, "Providing Server-Side Validation for an Integrated Excel Workbook"

	
Section 12.3, "Providing Client-Side Validation for an Integrated Excel Workbook"

	
Section 12.4, "Error Reporting in an Integrated Excel Workbook"

	
Section 12.5, "Providing a Row-by-Row Status on an ADF Table Component"

	
Section 12.6, "Adding Detail to Error Messages in an Integrated Excel Workbook"

	
Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

12.1 About Adding Validation to an Integrated Excel Workbook

You configure server-side and client-side validation for the Fusion web application and the integrated Excel workbook to make use of the validation options offered by the ADF Model layer and Microsoft Excel. In addition to these validation options, you can make use of components in ADF Desktop Integration to return error messages from the Fusion web application, to provide status on the results of component actions, and to manage errors that may occur when data is changed in an integrated Excel workbook conflict with data hosted by the Fusion web application.

Adding validation to your integrated Excel workbook gives you several benefits. You can create validation rules in your Fusion web application and in your integrated Excel workbook to validate data entry by the end user.

12.1.1 Integrated Excel Workbook Validation Use Cases and Examples

Validation rules protects the server by stopping invalid data to get uploaded. For example, using worksheet and table validation rules, you can capture invalid data when you upload it to the server, as shown in Figure 12-1.

Figure 12-1 Workbook and Table Validation Errors at Runtime

[image: This image is described in the surrounding text]

12.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

After you have applied validation rules in your integrated Excel workbook, you may find that you need to add additional functionality to configure your workbook. Following are links to other functionalities that you can use:

	
Testing integrated Excel workbook: Before publishing and deploying your integrated Excel workbook, you must test it. For more information, see Chapter 13, "Testing Your Integrated Excel Workbook."

	
Publishing and deploying integrated Excel workbook: The final step after you design and validate your integrated Excel workbook is to publish and deploy it. For more information, see Chapter 14, "Deploying Your Integrated Excel Workbook."

12.2 Providing Server-Side Validation for an Integrated Excel Workbook

ADF Desktop Integration uses the validation rules that the ADF Model layer sets for a binding's attributes. Data that the end user enters or edits in one of the ADF Desktop Integration components, such as the ADF Table component, can be validated against set rules and conditions in the Fusion web application. For general information about defining validation rules in Oracle ADF, see the "Defining Validation and Business Rules Declaratively" chapter in the Developing Fusion Web Applications with Oracle Application Development Framework.

For information about adding ADF Model layer validation, see the "Defining Validation Rules in the ADF Model Layer" section in the Developing Fusion Web Applications with Oracle Application Development Framework.

12.3 Providing Client-Side Validation for an Integrated Excel Workbook

ADF Desktop Integration does not provide client-side validation. However, you can use Excel's data validation features to control the type of data or the values that end users enter into a cell. These features allow you to restrict data entry to a certain range of dates, limit choices by using a list, or ensure that only positive whole numbers are entered in a cell. For example, you could configure the ZipCode field in the EditWarehouses-DT.xlsx workbook so that users can enter only whole numbers in the cells of this field.

If you apply custom validation to columns within an ADF Table component, the validation is propagated when the ADF Table component's columns are populated at runtime. Note, however, that ADF Desktop Integration overwrites at runtime any custom validation applied to columns that reference the TreeNodeList subcomponent at design time. This is because ADF Desktop Integration applies its own list-constraint validation, which is invoked at runtime.

	
Note:

	
Excel displays error messages when a validation fails; these error messages cannot be localized.

	
ADF Desktop Integration does not support server-side validation warnings. Validation warnings, set for rules defined in the Fusion web application, are not displayed by the integrated Excel workbook.

For more information about data validation in Excel, see Excel's documentation.

12.4 Error Reporting in an Integrated Excel Workbook

The server that hosts the Fusion web application you integrate your Excel workbook with can return error messages to end users that provide feedback on the results of operations. The error messages returned can be one many types: validation failures, conflict errors, deleted records, and so on.

To add automatically configured error components to the integrated Excel worksheet, see Section 6.8, "Inserting Error Components." To create error components manually, follow the steps described in subsequent sections.

12.4.1 Error Reporting Using EL Expressions

To return error message summaries to end users, you must set an EL expression for the Value property of an ADF Output Text component. At runtime, the ADF Output Text component displays the error message summary to the end user if an error occurs.

The type of EL expression that you set for the Value property of the ADF Output Text component depends on whether you want to return error message summaries generated by action sets invoked on a worksheet, or by actions invoked by other components such as the ADF Table and ADF Read-only Table components. The following EL expression displays error message summaries which are returned during the invocation of an action set on a worksheet:

#{worksheet.errors}

At runtime, the previous error message summary is cleared (if one existed) when the action set starts the invocation. If no errors occur during invocation, error message remains blank. If an error occurs, the ADF Output Text component displays the error message summary.

An alternative approach to returning error message summaries generated by action sets invoked on a worksheet is to set #{worksheet.errors} as the value for an action set's Alert.FailureMessage property. This approach displays the generated error message summary in a dialog.

Components such as the ADF Table and ADF Read-only Table components that have actions which interact with the Fusion web application can also return error message summaries. Set the following EL expression for the Value property of the ADF Output Text component or for an action set's Alert.FailureMessage property:

#{components.componentID.errors}

where componentID refers to the ID of the component (ADF Table or ADF Read-only Table component) that invokes the action.

The EditCustomers-DT.xlsx file in the Summit sample application for ADF Desktop Integration demonstrates how to return error message summaries generated by action sets invoked on a worksheet and by the actions of an ADF Table component. Figure 12-2 shows these EL expressions in design mode.

Figure 12-2 EL Expressions to Return Error Messages in an ADF Output Text Component

[image: This image is described in the surrounding text]

12.4.2 Error Reporting Using Component Actions

ADF Desktop Integration provides actions that display error details generated by an ADF Table component or an integrated Excel worksheet.

The action set in which you invoke one of these actions must include only one action. In general, action sets clear error labels and message lists when invoked. An action set that invokes one of the following actions returns error labels and message lists to the end user:

	
Worksheet's DisplayWorksheetErrors action

To display a worksheet's error messages, configure the action set of a component on the worksheet or the worksheet ribbon button to invoke this action. For example, Figure 12-3 shows the Edit Component: ADF Output Text dialog configuring the DisplayWorksheetErrors action as a DoubleClickActionSet item for an ADF Output Text component on the worksheet.

Figure 12-3 DisplayWorksheetErrors Action

[image: This image is described in the surrounding text]

At runtime, double-clicking the ADF Output Text component invokes the DisplayWorksheetErrors action as shown in Figure 12-4.

Figure 12-4 Runtime View of DisplayWorksheetErrors action

[image: This image is described in the surrounding text]

For more information about the Worksheet's DisplayWorksheetErrors action, see Section A.16, "Worksheet Actions and Properties."

	
ADF Table component's DisplayRowErrors action

To display row-level failures that occur in an ADF Table component, invoke this action. Row-level failures occur when end user invokes the following actions:

	
Upload

	
UploadAllOrNothing

	
DeleteFlaggedRows

	
DoubleClickActionSet invoked from an ADF Table component column

For more information about using this action, see Section 12.5, "Providing a Row-by-Row Status on an ADF Table Component."

	
ADF Table component's DisplayTableErrors action

To display table-level failures that occur in an ADF Table component, invoke this action. It is not intended that an ADF Table component column's DoubleClickActionSet invoke this action. Instead add this action to an action set that returns error messages to end users when failures occur during invocation of the action binding specified by an ADF Table component's BatchOptions.CommitBatchActionID property.

At runtime, double-clicking the ADF Output Text component invokes the DisplayTableErrors action as shown in Figure 12-5.

Figure 12-5 Runtime View of DisplayTableErrors action

[image: This image is described in the surrounding text]

For more information about ADF Table component actions, see Section A.12, "ADF Table Component Properties and Actions."

12.5 Providing a Row-by-Row Status on an ADF Table Component

The ADF Table component provides a mechanism to indicate to end users whether rows from the ADF Table component have been processed successfully or not after invocation of following ADF Table component actions:

	
DeleteFlaggedRows

	
Upload

	
UploadAllOrNothing

	
DoubleClickActionSet invoked from an ADF Table component's column

The ADF Table component populates the _ADF_StatusColumn column with the status for each row following the invocation of the ADF Table component action. For example, it populates the _ADF_StatusColumn column with the upload status for each row following the invocation of the ADF Table component's Upload action.

Figure 12-6 shows rows in an ADF Table component where the values in those rows have been changed, as indicated by the upward pointing arrows in the Changed column. In the ZipCode column, a text value has been entered where a number value is expected.

Figure 12-6 ADF Table Component with Changed Rows Before Upload

[image: This image is described in the surrounding text]

Figure 12-7 shows the same rows in the ADF Table component after invocation of the ADF Table component's Upload action. The ADF Table component populates the _ADF_StatusColumn column (labeled Status in this example at runtime) with a message indicating whether the row updated successfully or not.

Figure 12-7 ADF Table Component with Changed Rows After Upload

[image: This image is described in the surrounding text]

By default, the _ADF_StatusColumn column's DoubleClickActionSet is configured to invoke the ADF Table component's DisplayRowErrors action. When end users double-click a row in this column at runtime, the ADF Table component invokes the DisplayRowErrors action. This action displays a dialog with a list of errors for that row if errors exist. If no errors exist, the dialog displays a message to indicate that no errors occurred. Figure 12-8 shows the dialog that appears if the end user double-clicks the cell in Figure 12-7 that displays Update failed in the Status column.

Figure 12-8 Dialog Displaying Row Error Message

[image: This image is described in the surrounding text]

For more information about the _ADF_StatusColumn column, see Section 7.12, "Special Columns in the ADF Table Component."

12.6 Adding Detail to Error Messages in an Integrated Excel Workbook

You can configure your Fusion web application to report errors using a custom error handler to provide more detail to the error messages displayed to end users in an integrated Excel workbook.

To implement this functionality, the custom error handler must override the getDetailedDisplayMessage method to return a DCErrorMessage object. At runtime, ADF Desktop Integration detects the custom error handler and invokes the getHtmlText method on the DCErrorMessage object. ADF Desktop Integration includes the HTML returned by the getHtmlText method in the error message list as detail.

For more information about creating a custom error handler, see the "Customizing Error Handling" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

12.7 Handling Data Conflicts When Uploading Data from a Workbook

If one of your end users (User X) makes changes to a row of data downloaded from a Fusion web application to an Excel workbook, and another end user (User Y) in a different session modifies the same row in the Fusion web application after User X downloads the row, User X may encounter an error while uploading the modified row, as the changes conflict with those that User Y made. Depending on the configuration of your Fusion web application, User X may receive RowInconsistentException type error messages. For information about how to configure your Fusion web application to protect your data, see the "How to Protect Against Losing Simultaneously Updated Data" section in the Developing Fusion Web Applications with Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, User X needs to download the most recent version of data from the Fusion web application. However, invoking the ADF Table component's Download action causes the component to refresh all data that the component hosts in the Excel workbook. This may overwrite other changes that User X made that do not generate conflict error messages. To resolve this scenario, you can expose the ADF Table component's DownloadFlaggedRows action. When invoked, this action downloads data only for the rows that the end user flags for download. Using this action, User X can resolve the conflict issues and upload his modified data.

Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode" provides information about using an integrated Excel workbook across multiple sessions. For information about flagging rows, see Section 7.11.2, "Row Flagging in an ADF Table Component." For information about invoking component actions, see Section 8.2.2, "How to Invoke Component Actions in an Action Set." For more information about the components that the ADF Table component supports, see Section A.12, "ADF Table Component Properties and Actions."

12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data

You specify a row-specific attribute of the tree binding for the RowData.ChangeIndicatorAttribute property to determine whether a row has been modified by another user since the row was last downloaded by the ADF Table component.

To configure a workbook to handle data conflicts:

	
Open the integrated Excel workbook.

	
Select any cell of the ADF Table component and click Edit Properties in the Oracle ADF tab.

	
In Edit Component: ADF Table dialog, for the RowData.ChangeIndicatorAttribute property, specify the row-specific attribute of the tree binding that you use to determine whether a row has been modified by another user since the row was last downloaded by the ADF Table component in your integrated Excel workbook.

	
Click OK.

12.7.2 What Happens at Runtime: How Data Conflicts Are Handled

The ADF Table component caches the original value of the row-specific attribute of the tree binding that you specified as a value for RowData.ChangeIndicatorAttribute when it invokes the RowDownSync action. When the ADF Table component invokes the RowUpSync action, it checks if the value of the binding hosted by the Fusion web application and the original value cached by the ADF Table component differ. If they differ, it indicates data conflict, as changes have been made to the value of the binding hosted by the Fusion web application since the ADF Table component downloaded the value of the binding.

13 Testing Your Integrated Excel Workbook

This chapter describes how to test and validate the integrated Excel workbooks as you configure it, and how to run a server ping test.

This chapter includes the following sections:

	
Section 13.1, "About Testing Your Integrated Excel Workbook"

	
Section 13.2, "Testing Your Fusion Web Application"

	
Section 13.3, "Validating the Integrated Excel Workbook Configuration"

	
Section 13.4, "Testing Your Integrated Excel Workbook"

	
Section 13.5, "Running a Server Ping Test"

13.1 About Testing Your Integrated Excel Workbook

Testing an integrated Excel workbook before you publish and deploy it to your end users enables you to verify that the functionality you configure behaves as you intend. Before you test your integrated Excel workbook, test the Fusion web application with which you integrate the Excel workbook.

Before you deploy the integrated Excel workbook, you should validate it and test its integration with your Fusion web application. Testing an integrated Excel workbook includes the following processes:

	
Validating the integrated Excel workbook

	
Running the integrated Excel workbook in test mode

13.1.1 Integrated Excel Workbook Testing Use Cases and Examples

To test your integrated Excel Workbook, click the Run button on the Oracle ADF tab, and click the Stop button to return to the design mode. Figure 13-1 shows the buttons of the Oracle ADF tab in design mode and in test mode.

Figure 13-1 Run and Stop buttons in Oracle ADF tab

[image: This image is described in the surrounding text]

13.1.2 Additional Functionality of Testing an Integrated Excel Workbook

After you have validated and tested your integrated Excel workbook, you may find that you need to add additional functionality for your workbook. Following are links to other functionalities that you can use:

	
Publishing your integrated Excel workbook: After you test and validate your workbook, you must publish it. For more information see, Section 14.3, "Publishing Your Integrated Excel Workbook."

	
Deploying your integrated Excel workbook: After you publish your workbook, you may wish to deploy it with your Fusion web application. For more information, see Section 14.4, "Deploying a Published Workbook with Your Fusion Web Application."

	
Working in disconnected mode: After downloading data to the integrated Excel workbook, sometimes end users may need to use the workbook when a server connection may not be available, or after the server session has expired. For more information, see Section 15.1, "About Disconnected Workbooks."

13.2 Testing Your Fusion Web Application

Test the Fusion web application that you integrate your Excel workbook with before you start testing the integrated Excel workbook. For information about testing a Fusion web application, see the Developing Fusion Web Applications with Oracle Application Development Framework. Verify that the Fusion web application you want to integrate an Excel workbook with, supports ADF Desktop Integration by carrying out the procedure described in Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop Integration." You may also want to test the view instances of the ADF application module before you test the Fusion web application. For more information about testing ADF application module, see the "Using the Oracle ADF Model Tester for Testing and Debugging" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

If the integrated Excel workbooks are not saved in Application Sources directory of the Fusion web application, then before you run the Fusion web application in JDeveloper, ensure that all integrated Excel workbooks and the Excel application are closed. The application deployment may fail if it encounters locked files as Excel locks the files that it opens.

	
Tip:

If you plan to test integrated Excel workbooks that you downloaded from web pages of the Fusion web application, you should republish them before redeploying the application. Republishing the workbooks ensures that you have their latest versions.

If you make changes to the Fusion web application to resolve problems identified by testing the application, you need to:

	
Close Excel and all integrated Excel workbooks. The application deployment may fail if it encounters locked files, as Excel locks the files that it opens.

	
Rebuild the JDeveloper project where you develop the Fusion web application.

	
Run the Fusion web application.

	
Reload the page definition files that are associated with the integrated Excel workbook. Click the Refresh Bindings button in Oracle ADF tab of the integrated Excel workbook to reload the page definition files.

These steps make sure that the changes in the Fusion web application are available to the integrated Excel workbook. For information about how to reload a page definition file, see Section 4.3.3, "How to Reload a Page Definition File in an Excel Workbook."

13.3 Validating the Integrated Excel Workbook Configuration

ADF Desktop Integration provides a set of validation rules for the integrated Excel workbook configuration. After creating your integrated Excel workbook, you may validate the workbook before you proceed for testing or deployment.

13.3.1 How to Validate the Integrated Excel Workbook Configuration

You should validate the integrated Excel workbook configuration before testing or deploying the workbook.

To validate the integrated Excel workbook configuration:

	
Open the integrated Excel workbook.

	
In your integrated Excel workbook, click the Oracle ADF tab.

	
In the Test group, click Validate.

The Configuration Validation dialog appears listing all your warnings and errors.

	
If any warning or error is displayed, click to select it. A description of the warning or error message is displayed in the dialog.

For example, Figure 13-2 illustrates a validation failure message of an invalid EL expression.

Figure 13-2 Invalid EL Expression Resulting in a Validation Failure

[image: This image is described in the surrounding text]

If no warning or error appears, click Close to close the dialog.

	
Note:

You may continue to keep the Configuration Validation dialog open while you resolve the validation failures. To verify whether you have resolved an error or a warning, click Revalidate to run the validation rules again.

13.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration

When you validate the workbook at design time, ADF Desktop Integration validates all workbook configuration properties, including worksheet and worksheet component properties, against defined validation rules. Any and all validation failures (errors and warnings) are listed in the Configuration Validation dialog. Each validation failure, when selected, provides contextual information about the failure, and provides enough detail to locate and fix each validation failure.

The Configuration Validation dialog provides the following information for each validation failure:

	
Severity type (error or warning)

	
Name of the worksheet. The word Workbook is displayed if the validation failure does not correspond to a particular worksheet.

	
Worksheet component ID ("Workbook" or "Worksheet" if the validation failure does not correspond to a particular worksheet component)

	
Property containing the validation failure

	
Description of the validation failure (error or warning)

When you select a specific failure entry in the dialog, the dialog displays additional details about the failure including:

	
Full property context path

	
Property value

Certain validation rules may result in multiple distinct failures. For example, when an expression is being validated, different validation failures occur based on expression type, expression syntax, or the location in which the property is exposed in the workbook configuration.

For example, consider the following expression value:

#{bindings.EmpView1.hints.Empno.label}

The expression value is legal when used within a column header label inside of a table component, but the same expression value is illegal when specified as part of the Worksheet.Title expression.

	
Note:

If Enabled is set to False for a group of workbook configuration properties, validation of other property values within the same group is skipped.

13.3.3 How to Fix Validation Failures

When you validate your workbook, you might get validation failures or warning messages, which you can fix easily by following these steps:

	
Identify the component that gave the error or warning message.

In Figure 13-2, note that the ADF Output Text component generated the error. In the worksheet, search for Output Text component that uses #{worksheet.error s} expression.

	
Open the property editor of the component.

	
Navigate to the invalid property value identified by the full property context path.

	
Edit the property value to resolve the validation failure.

Figure 13-3 illustrates the ADF Output Text component property editor and its invalid EL expression.

Figure 13-3 Resolving Validation Failure

[image: This image is described in the surrounding text]

	
Revalidate the workbook to verify whether the validation failure has been resolved. Click Revalidate to run the validation rules again.

	
After fixing all validation failures, click Close to close the Configuration Validation dialog.

Figure 13-4 illustrates the Configuration Validation dialog with no warnings or error messages.

Figure 13-4 Configuration Validation Dialog with No Validation Failure Messages

[image: This image is described in the surrounding text]

13.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at Runtime

By default, there is no runtime validation of integrated Excel workbook configuration. However, you may log validation failures at runtime by setting the client log level to Error or Warning. For more information about enabling client-side logging, see Section C.3.2, "About Client-Side Logging."

13.4 Testing Your Integrated Excel Workbook

As you configure your Excel workbook to integrate with a Fusion web application, you can switch to test mode from design mode to test the functionality that you add to the workbook. You use the Oracle ADF tab to switch to test mode from design mode and from design mode to test mode.

Test mode enables you to test the functionality of your integrated Excel workbook as you configure it incrementally. It also enables you to view the integrated Excel workbook from the end user's perspective, as test mode corresponds to what end users see when they view and run the published integrated Excel workbook. The difference between an integrated Excel workbook in test mode and a published integrated Excel workbook is that the ADF Desktop Integration task pane is not available to users of the published integrated Excel workbook.

For more information about test mode and design mode, see Section 5.1, "About Development Tools."

There are some differences between the test mode and the runtime mode when you run the integrated Excel workbook. Table 13-1 lists these differences.

Table 13-1 Differences between Test mode and Runtime mode

	Test mode	Runtime mode
	
Does not perform tamper check

	
Performs tamper check

	
Does not display the connection confirmation dialog

	
Displays the connection confirmation dialog

	
Displays the Oracle ADF ribbon tab

	
Does not display Oracle ADF tab

	
Allows you to switch back to design mode

	
Does not allow you to switch back to design mode

ADF Desktop Integration can generate log files that capture information based on events triggered by an integrated Excel workbook. For more information about these log files, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

	
Note:

Before you start testing the integrated Excel workbook, ensure that:

	
The Fusion web application is running.

	
The ping to server is successful, and the server is configured for ADF Desktop Integration.

	
The ADF Desktop Integration version of the server and the client are same, or compatible. Note that an older client (version X) works fine with the newer server (version X+1) during the transition period, but an older server (version X) may not work with a newer client (version X+1).

To run an integrated Excel workbook in test mode:

	
To test and run an integrated Excel workbook, click the Run button on the Oracle ADF tab.

The integrated Excel workbook switches to test mode from design mode. Before starting the test mode, ADF Desktop Integration clears all design time component placeholders.

To stop test mode and return the integrated Excel workbook to design mode:

	
In the integrated Excel workbook that you are testing, click the Stop button on the Oracle ADF tab.

The integrated Excel workbook switches to design mode from test mode. Before switching back to design mode, ADF Desktop Integration removes all visible and cached data from all parts of the workbook, and then redraws the design time component placeholders.

	
Note:

When the end user tries to close the integrated Excel workbook, Microsoft Excel prompts a dialog to save the workbook even if the end user has not modified it after opening it. This behavior is expected because ADF Desktop Integration modifies an integrated Excel workbook each time the end user opens it.

13.5 Running a Server Ping Test

The server ping test enables you to check the version of ADF Desktop Integration Remote Servlet in a running system. It also helps to confirm that the remote servlet is loaded and responding. For Fusion web applications that enforce authentication, you can use the ping test to confirm that the proper authentication configuration is in place for the ADF Desktop Integration servlet URL.

After running the Fusion web application and logging in as a valid user, open a URL in the following format to verify whether the remote servlet is running:

http://<hostname>:<portnumber>/<context-root>/adfdiRemoteServlet

For example, if you run the Summit sample application for ADF Desktop Integration, open the following URL:

http://127.0.0.1:7101/summit/adfdiRemoteServlet

Figure 13-5 shows the remote servlet response page.

Figure 13-5 Remote Servlet Response

[image: This image is described in the surrounding text]

	
Note:

A valid user session is required to run the server ping test. If authentication is enabled for the web application, you will be prompted for valid credentials to log in.

14 Deploying Your Integrated Excel Workbook

This chapter describes how to publish and deploy a workbook integrated with a Fusion web application to end users, and how to pass parameters from the Fusion web application to the integrated Excel workbook.

This chapter includes the following sections:

	
Section 14.1, "About Deploying Your Integrated Excel Workbook"

	
Section 14.2, "Making ADF Desktop Integration Available to End Users"

	
Section 14.3, "Publishing Your Integrated Excel Workbook"

	
Section 14.4, "Deploying a Published Workbook with Your Fusion Web Application"

	
Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook"

	
Section 14.6, "Customizing Workbook Integration Metadata at Runtime"

14.1 About Deploying Your Integrated Excel Workbook

After you finish development of your integrated Excel workbook, you make the final integrated Excel workbook available to end users by deploying the resulting Fusion web application to an application server. Before you deploy a finalized Excel workbook that integrates with the Fusion web application, you must publish it as described in Section 14.3, "Publishing Your Integrated Excel Workbook." After you have published the Excel workbook, you can deploy it using one of the methods outlined in the "Deploying Fusion Web Applications" chapter of the Developing Fusion Web Applications with Oracle Application Development Framework.

The end users that you deploy an integrated Excel workbook to must do the following:

	
Set up ADF Desktop Integration on their systems.

Make the ADF Desktop Integration setup.exe tool available to end users from, for example, a directory on your network. For more information, see Section 14.2, "Making ADF Desktop Integration Available to End Users."

	
If required, configure the security settings for their Excel application.

When you deploy your integrated Excel workbook with your Fusion web application, you are not required to provide the download URL of workbooks explicitly. The end users can download the integrated Excel workbooks from the Fusion web application's user interface. For more information, see Section 14.4, "Deploying a Published Workbook with Your Fusion Web Application."

14.1.1 Integrated Excel Workbook Deployment Use Cases and Examples

You use the Publish button of the Oracle ADF tab to save a copy of the workbook, which is ready for publishing. Figure 14-1 shows the Publish button and the Publish Workbook dialog that opens when you click the Publish button to save a copy of the integrated Excel workbook ready to be published and deployed with the Fusion web application.

Figure 14-1 Publish Workbook Dialog

[image: This image is described in the surrounding text]

14.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

After you have published and deployed your integrated Excel workbook, you may find that you need to add additional functionality for your workbook. Following are links to other functionalities that you can use:

	
Passing Parameters: You can configure a page in your Fusion web application to pass parameter values to an integrated Excel workbook when the end user downloads the workbook from the page. For more information, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

	
Disconnected Workbooks: End users can use your integrated Excel workbooks when there is no connectivity with the Fusion web application. For more information, see Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode."

14.2 Making ADF Desktop Integration Available to End Users

End users who want to use the functionality that you configure in an integrated Excel workbook must install the Runtime edition of ADF Desktop Integration. The installation program (setup.exe) is located in the adfdi-excel-runtime-client-installer.zip file available in MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_12.1.3 directory, where MW_HOME is the Middleware Home directory.

For information about using the installation program, see the "Making the Runtime Edition of ADF Desktop Integration Available to Multiple End Users" section in Administering Oracle ADF Applications.

14.3 Publishing Your Integrated Excel Workbook

After you finish configuring the Excel workbook with Oracle ADF functionality, you must publish it. Publishing a workbook makes it available to the end users for whom you configured the integrated Excel workbook.

ADF Desktop Integration also provides you with two methods to publish your workbook. You can publish your integrated Excel workbook directly from Excel, or you can use the publish tool available in JDeveloper to publish the workbook from the command line. The command-line publish tool enables you to use ANT build scripts to publish an integrated Excel workbook from your Fusion web application.

	
Notes:

	
After publishing one or more workbooks, you should restart the Fusion web application in order for those workbooks to be downloaded and opened successfully in Microsoft Excel. If the web application is not restarted, you might get errors, such as the following:

TampercheckErrorException: ADFDI-05537: The integrity of the workbook integration could not be determined.

	
Customization-enabled workbooks can only be published to a target location that is under the public_html directory (or its sub-directories) of the associated project.

14.3.1 How to Publish an Integrated Excel Workbook from Excel

You publish a workbook by clicking a button on the Oracle ADF tab and specifying values in the dialogs that appear, or by using the command-line publish tool. You can use the command line publish tool to publish a workbook from your Fusion web application.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated Excel workbook. For more information, see Section 14.3, "Publishing Your Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 14.1.2, "Additional Functionality for Deploying Your Integrated Excel Workbook."

To publish a workbook from Excel:

	
Open the integrated Excel workbook.

	
Ensure that the ApplicationHomeFolder and WebPagesFolder properties in the Edit Workbook Properties dialog are correct. If these properties are not set, ADF Desktop Integration prompts to set them when you publish the integrated Excel workbook.

For more information, see Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

	
In the Oracle ADF tab, click the Publish button.

	
Specify the directory and file name for the published workbook in the Publish Workbook dialog that appears, as shown in Figure 14-1. The directory and file name that you specify for the published workbook must be different from the directory and file name for the design time workbook.

	
Click Save to save changes.

14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool

The publish tool is run from the command line, and is available in the MW_HOME\jdeveloper\adfdi\bin\excel\tools\publish directory as publish-workbook.exe. Before you run the publish tool, open the source integrated Excel workbook and ensure that the ApplicationHomeFolder and WebPagesFolder properties in the Edit Workbook Properties dialog are correct.

	
Note:

You cannot publish a workbook that is already published, or is in runtime mode.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated Excel workbook. For more information, see Section 14.3, "Publishing Your Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 14.1.2, "Additional Functionality for Deploying Your Integrated Excel Workbook."

Now, navigate to MW_HOME\jdeveloper\adfdi\bin\excel\tools\publish directory and run the publish tool using the following syntax:

publish-workbook -workbook (-w) <source-workbook-path> -out (-o) <destination-workbook-path>

where source-workbook-path is the full path of the source workbook, and destination-workbook-path is the full path where the published workbook is saved.

For example:

publish-workbook -workbook D:\Application1\Project1\ViewController\src\oracle\sampledemo\excel\workbook-src.xlsx -out D:\Application1\Project1\ViewController\public_html\excel\published\workbook.xlsx

	
Tip:

For more information about the arguments required by the publish tool, run the following command:

publish-workbook -help (-h)

	
Notes:

	
Always specify the absolute paths of the source and destination workbooks. The publish tool does not support relative paths of the workbooks.

	
The destination workbook cannot have the same name as the source, even if the workbook paths are different.

After publishing the integrated Excel workbook successfully, the publish tool displays a success message. If there is any error while publishing the workbook, the publish tool aborts the process and the error messages are displayed on the command line console.

If you are using the command line publish tool, note that by default the publish tool logs messages to the command line console at information level.

Using the Publish Tool with ANT

You can create ANT scripts to run the publish tool from JDeveloper when you build your Fusion web application. You can use either of the following methods to run the utility using ANT:

	
Generate an ANT build script for the project and add a target to run the workbook command line publish tool

	
Generate or create a separate ANT build script for running the workbook command line publish tool

A sample ANT build script (publish-workbook.xml) to run the publish tool is available in the MW_HOME\jdeveloper\adfdi\bin\excel\samples directory. The sample ANT script demonstrates the invocation of the command-line workbook publishing tool.

14.3.3 What Happens When You Publish an Integrated Excel Workbook

When you click the Publish button in design mode, ADF Desktop Integration performs the following actions:

	
Validates the mandatory workbook settings.

	
Updates the client registry. For more information, see Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata."

	
Creates the published workbook with the specified file name in the specified directory.

Publish also exports the workbook definition. The published workbook definition XML file is saved at the same location as the design-time copy of the workbook. For more information about workbook definition, see Section 5.15, "Exporting and Importing Excel Workbook Integration Metadata."

	
Clears the ApplicationHomeFolder, WebAppRoot, and WebPagesFolder properties from the workbook settings of the published workbook.

	
Removes binding expressions that are visible in the worksheet while the workbook is in design mode.

	
Changes the mode of the workbook to runtime mode.

	
Inserts a Publishing Timestamp property into the workbook. This property is visible in the Properties tab of About dialog.

14.4 Deploying a Published Workbook with Your Fusion Web Application

Add the integrated Excel workbook to the JDeveloper project for your Fusion web application if it is not packaged with the other files that constitute your JDeveloper project. This makes sure that the Excel workbooks you integrate with your Fusion web application get deployed when you deploy your finalized Fusion web application. For example, the Summit sample application for ADF Desktop Integration stores the deployed Excel workbooks that it integrates at the following location:

<Summit_HOME>\ViewController\public_html\excel

where Summit_HOME is the installation directory for the Summit sample application for ADF Desktop Integration.

After you decide on a location to store your integrated Excel workbooks, you can configure web pages in your Fusion web application allowing end users to access the integrated Excel workbooks. For example, Figure 14-2 shows Internet Explorer's File Download dialog, which was invoked by clicking the Available Demos > Editable Table Sample menu option on the index.jspx page of the Summit sample application for ADF Desktop Integration.

Figure 14-2 Invoking an Integrated Excel Workbook from a Fusion Web Application

[image: This image is described in the surrounding text]

To enable the functionality illustrated in Figure 14-2, the HTTP filter parameters for your Fusion web application must be configured to recognize Excel workbooks. JDeveloper automatically configures these parameters for you when ADF Desktop Integration is enabled in the Fusion web application. If you want to manually configure the HTTP filter parameters, see Appendix D, "ADF Desktop Integration Settings in the Web Application Deployment Descriptor."

After you have configured the HTTP filter for your Fusion web application, you configure the web pages that the Fusion web application displays to end users to allow them to invoke Excel workbooks. A basic method of invoking an Excel workbook that you have integrated with a Fusion web application is to provide a hyperlink that invokes the workbook. For example, you could write the following ADF code in a web page:

<af:link text="Editable Table Sample" destination="/excel/EditCustomers.xlsx"/>

where excel is a subdirectory of the directory specified by the WebPagesFolder workbook property and EditCustomers.xlsx is the Excel workbook that the end user invokes.

You can provide functionality that allows end users to invoke Excel workbooks from buttons, lists, and ribbon commands. The following list provides some examples:

	
Button

Display a button on the web page that, when clicked, invokes the integrated Excel workbook.

	
Selection list

Use the ADF Faces selectOneChoice component with a button to invoke an integrated Excel workbook.

	
Menu

Use the ADF Faces goMenuItem component.

The Available Demos menu, as illustrated in Figure 14-2, uses the goMenuItem component. The following entry appears in the index.jspx page of the Summit sample application for ADF Desktop Integration and demonstrates the goMenuItem component:

<af:goMenuItem text="Editable Table Sample" id="gmi1"
 destination="/excel/EditCustomers.xlsx"/>

For more information about creating web pages for a Fusion web application, see the Developing Web User Interfaces with Oracle ADF Faces.

14.4.1 What Happens at Runtime: Deploying a Published Workbook

When web.xml is configured for a Fusion web application that uses ADF Desktop Integration, the following happens:

	
The DIExcelDownloadFilter filter is defined.

	
Filter mappings are defined for *.xlsx and *.xlsm files.

When the end user makes an http request for a workbook (for example, user clicks a link in a web page from the application), the DIExcelDownloadFilter filter embeds the WebAppRoot property into the workbook as it gets streamed back as the http response. The WebAppRoot property is later used by the ADF Desktop Integration client to connect to the Fusion web application, establish a user session, and send data back and forth.

The DIExcelDownloadFilter filter constructs the WebAppRoot value from the current HttpServletRequest object that is passed in to the doFilter() entry point. The filter code calls HttpServletRequest.getRequestURL()and gets the "root" portion of the full URL by removing everything after the context path portion (uses HttpServletRequest.getContextPath()).

14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook

A Fusion web application page can be configured to pass parameter values to an integrated Excel workbook when the end user downloads the workbook from the page. The workbook parameter values can be used as arguments to ADFm methods (among other uses). For example, consider a page that displays a table of customers, but filtered for a particular city specified by the end user. The City ID provided by the end user is used as an argument to a custom method that alters the View Object's query to return customers with a matching City ID. Such a page could also allow the end user to download an integrated workbook that will display the same customer table with data automatically filtered for the city currently selected on the page. As the integrated workbook is downloaded, the City ID is embedded in it as a workbook parameter value.

To pass parameters from the Fusion web application page to the integrated Excel workbook, follow these steps:

	
Verify that the HTTP filter is configured to allow end users to download integrated Excel workbooks from the Fusion web application. By default, JDeveloper configures the HTTP filter with appropriate values when you enable ADF Desktop Integration in a project. To verify the parameter values of the HTTP filter, see Section D.2, "Configuring the ADF Desktop Integration Excel Download Filter."

	
Use Name/Value pairs as URL arguments in the web page of Fusion web application that allows end user to download the workbook. For more information, see Section 14.5.1, "How to Configure the Fusion Web Application's Page to Pass Parameters."

	
Define the parameter name in the Edit Workbook Properties dialog and in the Edit Worksheet Properties dialog. For more information, see Section 14.5.2, "How to Configure Parameters Properties in the Integrated Excel Workbook."

	
Configure the page definition file associated with the worksheet in the integrated Excel workbook by adding <parameter> elements. For more information, see Section 14.5.3, "How to Configure the Page Definition File for the Worksheet to Receive Parameters."

Figure 14-3 illustrates the steps to pass parameter from the Fusion web application to the integrated Excel workbook.

Figure 14-3 Configuring Workbook and Fusion Web Application to Pass Parameters

[image: This image is described in the surrounding text]

14.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters

A component, such as <af:link>, can be used to allow end users to download a published copy of an integrated workbook. The component's destination URL would reference the integrated workbook, and in its query portion, the URL parameter names and values correspond to the workbook's parameter names and values. You also specify the commands on the page that, when invoked, require the Fusion web application to refresh the values referenced by the component and its property values.

For more information about downloading files using action components, see the "How to Use an Action Component to Download Files" section in Developing Web User Interfaces with Oracle ADF Faces.

Before you begin:

It may be helpful to have an understanding of how to pass parameter values from the Fusion web application to the integrated Excel workbook. For more information, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 14.1.2, "Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the page in the Fusion web application:

	
In JDeveloper, insert the component or tag (such as af:link) into the page from which the end user downloads the integrated Excel workbook.

	
In the Structure window, right-click the component and choose Go to Properties.

	
Expand the Common section and set values for the properties.

Table 14-1 describes the properties of af:link component.

Table 14-1 Properties for af:link Tag

	Property	Value
	
Text

	
Write the text that appears to end users at runtime.

For example, write text such as the following to appear at runtime:

Download to Excel

	
Destination

	
Invoke the expression builder to write an EL expression that specifies the integrated Excel workbook and the values to download as a URL argument:

For example, write an EL expression such as the following:

"/excel/EditableCustomerSearchParam.xlsx?CityID=#{bindings.CityID.attributeValue}"

Note that the runtime URL-encoded value of the entire query string to the right of ? must be less than 2048 bytes. If the runtime value exceeds 2048 bytes, the integrated Excel workbook will contain only the URL arguments that fit in 2048 bytes. Subsequent URL arguments do not get included with the integrated Excel workbook. Instead, the Fusion web application writes log entries for these URL arguments identifying them as having not been included.

For example, the total size of the result when the following EL expression is evaluated and then URL-encoded must be less than 2048 bytes.

CityID=#{bindings.CityID.attributeValue}&CityCtgType=#{bindings.CityCtgType.attributeValue}.

Also note that if the URL contains more than 256 characters, an exception is raised when the end user downloads and opens the integrated Excel workbook without saving it. To resolve this problem, you must limit your URL length to 256 characters, or instruct the end user to save the workbook before opening it.

	
Optionally, expand the Behavior section and specify component IDs for the partialTriggers property that, when invoked, update the values of the af:link tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton, PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton

	
Save the page.

The following example shows the entries that JDeveloper generates in a JSF page using the examples in this procedure:

<af:link text="Download to Excel"
destination="/excel/EditableCustomerSearchParam.xlsx?CityID=#{bindings.CityID.attributeValue}"
partialTriggers=":NextButton :PreviousButton :FirstButton :LastButton"/>

14.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook

You configure the workbook Parameters property and the worksheet Parameters property so that the integrated Excel workbook that the end user downloads from the Fusion web application receives parameter values included in the query string of the workbook download URL.

Before you begin:

It may be helpful to have an understanding of how to pass parameter values from the Fusion web application to the integrated Excel workbook. For more information, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 14.1.2, "Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the workbook Parameters property:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
Click the browse (...) icon beside the input field for Parameters to invoke the Edit Parameters dialog.

	
Click Add to add a new workbook initialization parameter and configure its properties as follows:

	
(Optional) In the Annotation field, enter a description of the workbook initialization parameter.

	
In the Parameter field, specify the name of the URL argument that you configured for the af:link tag's Destination property as described in Section 14.5.1, "How to Configure the Fusion Web Application's Page to Pass Parameters."

For example, if you added the af:link URL argument as described in Table 14-1, the Parameter property value would be CityID, as illustrated in Figure 14-4.

Figure 14-4 Workbook Parameters

[image: This image is described in the surrounding text]

	
Repeat Step 4 as necessary to add other workbook initialization parameters.

	
Click OK.

For more information about the workbook Parameters property, see Table A-21.

To configure the worksheet Parameters property:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
Click the browse (...) icon beside the input field for Parameters to invoke the Edit Parameters dialog.

	
Click Add to add a new worksheet parameter and configure it as in Figure 14-5:

	
(Optional) In the Annotation field, enter a description of the worksheet parameter.

	
In the Parameter field, specify a parameter element that you added to the page definition file associated with the worksheet, as described in Section 14.5.3, "How to Configure the Page Definition File for the Worksheet to Receive Parameters."

	
In the Value field, write an EL expression that references the value of the Parameter property you specified for the workbook initialization parameter (workbook Parameters array). Use the following syntax when writing the EL expression:

#{workbook.params.parameter}

where parameter references the value of the Parameter property you specified for the workbook initialization parameter.

Figure 14-5 Worksheet Parameters

[image: This image is described in the surrounding text]

	
Repeat Step 4 as necessary to add other workbook initialization parameters.

	
Click OK.

For more information about the worksheet Parameters property, see Table A-22.

By default, the workbook parameters are not sent every time the workbook connects to the server to request metadata, the end user logs out, or the session expires. If required, you can configure the workbook to send the initialization parameters by configuring the SendParameters property.

To configure the worksheet SendParameters property:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
In the Edit Worksheet Properties dialog, set the value of SendParameters as shown in the Table 14-2 and Figure 14-6:

Table 14-2 SendParameters Property

	Set this property to...	This value...
	
SendParameters

	
True to send workbook parameters when the workbook connects to the server to request metadata or data. When set to True, parameters are sent every time when the metadata is requested and the first time when data is requested, during each user session. False is the default value.

For more information, see Section 15.2, "Restore Server Data Context Between Sessions."

Figure 14-6 SendParameters Property

[image: This image is described in the surrounding text]

	
Click OK.

When entering the Test mode, the Workbook Parameter dialog prompts you to enter test parameter values. Figure 14-7 shows the Workbook Parameters dialog that accepts test values for the workbook.

Figure 14-7 Workbook Parameters dialog

[image: This image is described in the surrounding text]

You are not required to enter values for any, or all, parameters. If you enter test parameter values, they are not cleared when you exit the test mode and return to design mode. When you run the integrated Excel workbook again, the workbook parameter values are displayed in the Workbook Parameters dialog from the cache.

The provided test values are stored in the workbook in the same way as the ADF Desktop Integration Excel download filter stores the parameter values. When you publish the workbook, the test parameter values are cleared before the workbook is published.

	
Note:

In the above example, the filterByCitytId method can be used as the worksheet's setup action (SetupActionID). This will cause the method to be called automatically when the worksheet is initialized at runtime (or whenever a new instance of the worksheet's binding container is created). For more information about SetupActionID, see Section 7.24, "Using Explicit Worksheet Setup Action."

The filterByCityId method could also be configured as a part of the action set, such as one for a ribbon command or Startup event, depending on the use case. In the case of a ribbon command, its execution will be triggered by the end user. For more information about ribbon commands and Startup event, see Section 8.3.2, "How to Configure a Worksheet Command for the Runtime Ribbon Tab" and Section 8.2.4, "How to Invoke an Action Set from a Worksheet Event."

Workbook parameter values can be used as arguments for any method exposed by the page definition.

14.5.3 How to Configure the Page Definition File for the Worksheet to Receive Parameters

The page definition file associated with the worksheet in the integrated Excel workbook can be configured as follows:

	
Add one or more parameter elements that initialize the worksheet's binding container. The values for these parameters will be supplied from URL arguments, as specified in Section 14.5.1, "How to Configure the Fusion Web Application's Page to Pass Parameters."

The following example shows a parameter element in a page definition file that is associated with a worksheet in an integrated Excel workbook:

<parameters>
 <parameter id="CityIDParam" />
</parameters>

	
Add a method action binding that invokes an application module method (filterByCityId). The application module method takes a single Long argument (CityIdArg) that references the value of CityIdParam. This method is responsible for modifying and executing the view object's query to filter by City ID.

<bindings>
<methodAction id="filterByCityId" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="filterByCityId"
 IsViewObjectMethod="false" DataControl="AppModuleDataControl"
 InstanceName="AppModuleDataControl.dataProvider">
 <NamedData NDName="CityIdArg" NDValue="${bindings.CityIdParam}"
 NDType="java.lang.Long"/></methodAction>
. . .
</bindings>

For more information about configuring a page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

14.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web Application to the Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web application, the component tag that triggered the download (such as af:link tag) is evaluated, the current CityID is captured and included on the URL. The adfdiExcelDownload filter embeds the names and values of all the parameters from the URL into the downloaded integrated Excel workbook.

The parameters are set into BindingContainer DCParameters before the binding container is refreshed. For more information about how worksheet parameters are mapped to binding containers, see Section 14.5.3, "How to Configure the Page Definition File for the Worksheet to Receive Parameters."

The action set in the worksheet Startup event is also executed during initialization. After initialization, the initialization status for each worksheet is recorded when the integrated Excel workbook is saved to disk.

After the integrated Excel workbook has been saved, closed, and reopened, the first-time initialization is skipped for any worksheets that were previously initialized. If workbook parameters were captured when the integrated Excel workbook was first downloaded, and those parameters are required to set up server context, then the Worksheet.ServerContext.SendParameters property should be set to True. When the SendParameters property is True, workbook parameters are sent on every request for metadata, and also on the first request for data in each user session.

To reset the initialization state for all worksheets in the workbook, invoke the ClearAllData action. For more information about the ClearAllData action, see Table A-20.

14.6 Customizing Workbook Integration Metadata at Runtime

ADF Desktop Integration also supports Oracle Metadata Services (MDS) based runtime customization. For more information about MDS, see the "Customizing Applications with MDS" chapter in Developing Fusion Web Applications with Oracle Application Development Framework.

Workbook integration metadata defines how ADF Desktop Integration components appear and behave in the workbook, and how the workbook is integrated with its Fusion web application. When the workbook is published, its workbook integration metadata XML file is saved at the same location as the design-time copy of the workbook. For more information about publishing a customization-enabled workbook, see Section 14.3, "Publishing Your Integrated Excel Workbook."

The workbook integration metadata files for customization-enabled workbooks need to be deployed to MDS metadata repositories so that they can be managed by MDS. For more information about Metadata Repository, see the "Managing the Metadata Repository" chapter in Administering Oracle Fusion Middleware.

14.6.1 How to Enable Workbook Customization at Runtime

To enable customization of workbook integration metadata, open the Workbook Properties dialog, and set CustomizationEnabled to True.

Before you begin:

It may be helpful to have an understanding of customizing workbook integration metadata. For more information, see Section 14.6, "Customizing Workbook Integration Metadata at Runtime."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 14.1.2, "Additional Functionality for Deploying Your Integrated Excel Workbook."

To enable runtime customization for a workbook:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Workbook Properties.

	
Set CustomizationEnabled to True.

	
Click OK.

	
Publish the customization-enabled workbook.

14.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized

A customization-enabled workbook obtains its metadata from the server when the workbook is initialized. The integration metadata is managed by MDS on the server end and can be accessed by the application through MDS APIs.

At runtime, the application can provide means for users to customize the workbook integration metadata. When a customization-enabled workbooks is being initialized, it requests the server for workbook integration metadata. MDS applies all the customizations based on current customization context and returns the customized metadata to the workbook for its initialization.

For example, an application can provide a web page where users can customize the columns of a table in a customization-enabled workbook. The user can remove certain columns from the table on the web page and then download the customization-enabled workbook and see the change takes effect in the workbook.

14.6.3 What You May Need to Know About Customizing Workbook Integration Metadata

Customization-enabled workbooks can only be published to a directory under the public_html directory of the associated project. When you deploy your application, make sure that the corresponding workbook integration metadata file can be found by MDS using the metadata path generated when the workbook is published.

Each customization-enabled workbook has its own workbook integration metadata file. When the workbook is published, its workbook integration metadata XML file is saved at the same location as the design-time copy of the workbook. This workbook integration metadata file should be deployed to MDS metadata repositories so that it can be managed by MDS at runtime. In MDS terms, a workbook integration metadata file is a base document and is referenced by MDS using a metadata path. The metadata path is determined when the customization-enabled workbook is published.

For example, if a design-time customization-enabled workbook is published to <PROJECT_HOME>/public_html/myCompany/myPackage/myWorkbook.xlsx and its workbook integration metadata file name is myWorkbook-DT.xlsx-workbook-definition.xml, then the metadata path for this workbook is /myCompany/myPackage/myWorkbook-RT.xlsx-workbook-defintion.xml. At runtime, MDS looks for the workbook integration metadata using this metadata path in the repositories configured with the application. The metadata path must be unique across the application.

By default, if no MDS repository is configured for the workbook integration metadata files, MDS will look up the metadata files on the classpath using the metadata path mentioned. To avoid configuring MDS, you may host the workbook integration metadata files on the classpath of the Fusion web application. The customizations created at runtime can be stored in MDS default-cust-store.

15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode

This chapter describes how to configure the integrated Excel workbook so that your use cases work properly across multiple web application sessions.

This chapter includes the following sections:

	
Section 15.1, "About Disconnected Workbooks"

	
Section 15.2, "Restore Server Data Context Between Sessions"

	
Section 15.3, "Caching of Static Information in an Integrated Excel Workbook"

	
Section 15.4, "Caching Lists of Values for Use in Disconnected Mode"

15.1 About Disconnected Workbooks

End users can open an integrated Excel workbook and log on to a Fusion web application from the workbook ribbon command that you configure. The Fusion web application assigns a session to the user. After a connection to the Fusion web application is established and a valid session assigned, end users can download data from the Fusion web application to the workbook. They can then log off from the Fusion web application using the workbook ribbon command or otherwise disconnect from the Fusion web application by, for example, disconnecting from the network that hosts the Fusion web application.

How the Fusion web application terminates the session assigned to the user depends on how the user disconnects from the Fusion web application. If the user logs off from the Fusion web application using a workbook command, the Fusion web application terminates the session immediately. If the user disconnects from the Fusion web application by some other means (for example, closing the workbook), the Fusion web application terminates the session assigned to the user after session timeout expires.

Using integrated Excel workbooks disconnected from the Fusion web application, end users can perform the following actions:

	
Modify data downloaded from the Fusion web application

	
Insert new data into the appropriate ADF Table component contained in the workbook

	
Save changes to data and close and reopen the workbook without having to upload data to the Fusion web application

	
Track and update changes in the ADF Table component

15.1.1 Disconnected Workbooks Use Cases and Examples

When end users open a published integrated Excel workbook, the workbook downloads required data. Then, if they disconnect from the server, they can continue to edit and update the data in the integrated Excel workbook, and save and close it.

The integrated Excel workbook, when opened after saving, detects the updates and prompts the end user to discard the changes, as shown in Figure 15-1. If the end user clicks No, the changes would appear in the workbook. If the end user clicks Yes, the integrated Excel workbook prompts to connect to the server to download data.

Figure 15-1 Discard Pending Changes Dialog of a Disconnected Workbook

[image: This image is described in the surrounding text]

15.1.2 Additional Functionality for Disconnected Workbooks

After you have validated and tested your integrated Excel workbook in disconnected mode, you may find that you need to add additional functionality for your workbook. Following are links to other functionalities that you can use:

	
Troubleshooting integrated Excel workbook: You might encounter some problems while developing or deploying an integrated Excel workbook. For more information, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

	
Installing runtime edition of ADF Desktop Integration: You must install the runtime edition of ADF Desktop Integration to enable end users to use ADF Desktop Integration and integrated Excel workbooks. For more information, see Appendix H, "End User Actions."

15.2 Restore Server Data Context Between Sessions

You must configure the page definition file so that the correct view object state is restored if the Fusion web application assigns the end user a new session after one of the following events occurs:

	
The end user makes changes to data in a workbook, saves and closes the workbook, reopens the workbook at a later time, and attempts to upload the changes he or she made before saving and closing the workbook.

	
The time between invocation of an ADF Table component's Download and Upload actions (or some other ADF Table component action that contacts the Fusion web application) exceeds the session timeout value specified for a Fusion web application session.

Both the scenarios described in the previous list involve two sessions. The first session is assigned when the end user opens an integrated Excel workbook and logs on to the Fusion web application. The Fusion web application terminates this session when the end user logs off from the Fusion web application or when the session expires. The Fusion web application assigns a second session when the end user reopens the integrated Excel workbook or invokes an action that interacts with the Fusion web application.

In addition to configuring the page definition file, configure the functionality in an integrated Excel workbook so that pending changes are not lost if the end user logs off from the Fusion web application or a session expires before changes are committed to the Fusion web application. For example, you configure the worksheet Startup event to invoke a CreateInsert action binding and a worksheet DownSync action. You also configure an ADF Button component labeled Save to invoke the worksheet UpSync action and the Commit action binding. If the end user's session ends, no record is saved even if the end user clicks the Save button after the Fusion web application assigns a new session. To prevent this scenario occurring, it is better to invoke the CreateInsert action binding from the ADF Button component labeled Save.

Another example is the behavior of the ADF Table component's DownloadForInsert action. If you create a custom method in the Fusion web application that creates temporary records to support the invocation by the ADF Table component of the DownloadForInsert action, make sure to remove these temporary records after successful invocation of the DownloadForInsert action. For more information about the use of the DownloadForInsert action, see Section 7.5, "Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component."

15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context

You specify the attribute bindings that you want to cache in an integrated Excel workbook between sessions as values for the worksheet's ServerContext group of properties. This group of properties also enables you to specify the action binding that uses the cached attribute binding data to restore server-side context when a Fusion web application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page definition file that is associated with the worksheet must expose the attribute bindings and action bindings for which you want to restore server context. For information about adding attribute bindings and action bindings to a page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook." For information about the ServerContext group of properties, see the entry for ServerContext in Table A-22.

Before you begin:

It may be helpful to have an understanding of how to restore server data context. For more information, see Section 15.2, "Restore Server Data Context Between Sessions."

You may also find it helpful to understand functionality that can be added using other ADF Desktop Integration features. For more information, see Section 15.1.2, "Additional Functionality for Disconnected Workbooks."

To configure an integrated Excel workbook to restore server data context:

	
Open the integrated Excel workbook.

	
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

	
In the Edit Worksheet Properties dialog, configure values for the ServerContext group of properties as described by Table 15-1.

Table 15-1 ServerContext Properties to Restore Server Data Context

	For this property...	Enter or select this value...
	
CacheDataContexts

	
Add an element to the collection of CacheDataContexts. Configure the element you add as follows:

	
RestoreDataContextActionID

Specify the action binding (for example, the Execute action binding) that connects to the Fusion web application to restore the data specified by CachedServerContexts.

	
CachedServerContexts

An array that identifies the attribute binding values to cache and set before the action binding specified by RestoreDataContextActionID is invoked. Each element in the array (CachedServerContext) supports the CachedAttributeID and RestoredAttributeID properties.

For more information about the CacheDataContexts property and its subproperties, see Section A.16, "Worksheet Properties."

	
IDAttributeID

	
Specify the attribute binding that uniquely identifies the row displayed in the current worksheet. At runtime, the value that this property references is used to determine if the server data context has been correctly restored.

For more information about this property and its subproperties, see Section A.16, "Worksheet Properties."

If your integrated Excel workbook uses parameters and you have deployed it by downloading it from your Fusion web application, see Section 14.5.2, "How to Configure Parameters Properties in the Integrated Excel Workbook."

	
Click OK.

	
Note:

For integrated Excel workbooks that use Parameters and <invokeAction> executable, you may not need to configure RestoreDataContextActionID and CachedServerContexts, if Parameters and <invokeAction> can restore server data context when a new session is created.

15.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data Context

During the session that is assigned the initial session (for example, session ID 1), the worksheet caches data using the ServerContext group of properties. In a later session with a different session ID (for example, session ID 2), where the ADF Table component's Upload action is invoked, the data cached in the ServerContext group of properties is sent to the Fusion web application.

15.3 Caching of Static Information in an Integrated Excel Workbook

Certain types of relatively static data are cached in the integrated Excel workbook to allow end users to use the workbook while disconnected from the ­Fusion web application. Table 15-2 describes the types of data that an integrated Excel workbook caches. It also describes when the integrated Excel workbook refreshes the data.

Table 15-2 Types of Data an Integrated Excel Workbook Caches

	This type of data...	Is cached when...	And refreshed when...
	
Page definition configuration that is not runtime specific such as control binding types, IDs, and labels.

	
An integrated Excel worksheet bound to a page definition file is activated and no cache of the page definition file's configuration exists.

	
The page definition configuration is not refreshed unless you download a new copy of the integrated Excel workbook or invoke the workbook actions ClearAllData and EditOptions described in Table A-20.

	
ADF List of Values component list items

	
The ADF List of Values component first downloads the list items from the Fusion web application.

	
The values of the list items hosted by the Fusion web application differ from those cached by the integrated Excel workbook. The cached list items are refreshed only once per workbook session and only if a workbook session exists.

Invoking the workbook actions ClearAllData and EditOptions described in Table A-20 also clears cached list items.

	
Resource bundle strings

	
The integrated Excel workbook is first initialized. A workbook is initialized when it is opened for the first time after conversion, or after ClearAllData is invoked.

	
The cache of resource bundle strings is not refreshed unless you download a new copy of the integrated Excel workbook or invoke the workbook actions ClearAllData and EditOptions described in Table A-20.

15.4 Caching Lists of Values for Use in Disconnected Mode

ADF Desktop Integration caches the values referenced by the ADF List of Values and the TreeNodeList subcomponents that you use to create lists of values and dependent lists of values so that these components do not send a request to the Fusion web application when the end user selects a value at runtime. For more information about using these components to create lists of values, see the following sections:

	
Section 6.6, "Inserting an ADF List of Values Component"

	
Section 7.14, "Creating a List of Values in an ADF Table Component Column"

	
Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

ADF Desktop Integration caches up to two hundred and fifty values for each component. If a component references a list of values with more than two hundred and fifty values, ADF Desktop Integration caches the first two hundred and fifty values and writes a warning message to the client-side log file for subsequent values. Consider configuring your integrated Excel workbook to invoke a pick dialog from a page in your Fusion web application where a list of values references more than two hundred and fifty values. For more information about client-side log files, see Section C.3, "Generating Log Files for an Integrated Excel Workbook." For more information about invoking a pick dialog from a Fusion web application page, see Section 8.4, "Displaying Web Pages from a Fusion Web Application" and Section 8.5, "Adding a Custom Popup Picker Dialog to an ADF Table Column."

Cached list of values in an integrated Excel workbook get refreshed once per workbook session. This refresh occurs after the user reestablishes a web session with the Fusion web application and if the values referenced by the Fusion web application have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the selected value no longer exists in the Fusion web application. This may occur if, for example, one end user deletes the value in the Fusion web application while another end user modifies the selected value in the cached list of values of an integrated Excel workbook and attempts to upload the modified value to the Fusion web application. For more information about handling data conflict, see Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook."

Note that if you change the Fusion web application configuration after you have deployed the Fusion web application and the end users have started using the published integrated Excel workbooks, you must inform the end users to download a fresh copy of the integrated Excel workbook, or run the ClearAllData command. For more information about the ClearAllData action, see Table A-20

The changes in your Fusion web application might include changing the definitions of the list bindings associated with the ADF List of Values and TreeNodeList subcomponents exposed in the worksheet. Changing list binding configuration can cause unexpected exceptions in workbooks that have been downloaded and run prior to the change.

A ADF Desktop Integration Component Properties and Actions

This appendix lists and describes the properties of ADF Desktop Integration components. It also describes the actions that certain components (such as ADF Input Text, ADF Output Text, ADF List of Values, ADF Button, ADF Table, Workbook, and Worksheet) expose.

This appendix includes the following sections:

	
Section A.1, "Frequently Used Properties in the ADF Desktop Integration"

	
Section A.2, "ADF Input Text Component Properties"

	
Section A.3, "ADF Output Text Component Properties"

	
Section A.4, "ADF Output Text (Worksheet Errors)"

	
Section A.5, "ADF Output Text (Table Errors)"

	
Section A.6, "ADF Label Component Properties"

	
Section A.7, "ADF List of Values Component Properties"

	
Section A.8, "ADF Image Component Properties"

	
Section A.9, "TreeNodeList Subcomponent Properties"

	
Section A.10, "ModelDrivenColumnComponent Subcomponent Properties"

	
Section A.11, "ADF Button Component Properties"

	
Section A.12, "ADF Table Component Properties and Actions"

	
Section A.13, "ADF Read-only Table Component Properties and Actions"

	
Section A.14, "Action Set Properties"

	
Section A.15, "Workbook Actions and Properties"

	
Section A.16, "Worksheet Actions and Properties"

A.1 Frequently Used Properties in the ADF Desktop Integration

Table A-1 lists alphabetically properties in ­ADF Desktop Integration that many components reference.

Table A-1 Frequently Used Properties in ADF Desktop Integration

	Name	Type	EL	Description
	
ActionSet

	
	
N

	
For information about action sets, see Section A.14, "Action Set Properties."

	
Annotation

	
String

	
N

	
Use this field to enter a comment about the component's use in the worksheet. Comments you enter have no effect on the behavior of the workbook. They are the equivalent of code comments.

	
ComponentID

	
String

	
N

	
ADF Desktop Integration generates this string to uniquely identify each instance of an ADF component in an integrated Excel workbook.

	
Label

	
String

	
Y

	
Specify an EL expression that is evaluated at runtime. For information about EL expressions in ADF Desktop Integration, see Appendix B, "ADF Desktop Integration EL Expressions." For information about using labels, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

	
Position

	
	
N

	
This property defines the upper-left corner of the Oracle ADF component in the integrated Excel workbook.

	
ReadOnly

	
Boolean

	
Y

	
Set this property to TRUE so that ADF Desktop Integration ignores changes a user makes to a cell that references a component which uses this property. This property is independent of Excel's workbook and worksheet protection functionality. Setting ReadOnly to TRUE does not prevent a user from modifying a cell. When TRUE, the behavior for cells that reference Oracle ADF components is as follows:

	
ADF Desktop Integration overwrites changes without warning when a worksheet is refreshed.

	
No changes are sent to the Fusion web application when the integrated Excel workbook is synchronized with the Fusion web application.

To avoid end user confusion, apply styles to the cells where you set ReadOnly to TRUE that provide a visual clue to users that they cannot modify the cell's contents. For information about applying styles, see Section 9.2, "Working with Styles."

You can also use the Worksheet Protection feature of ADF Desktop Integration to prevent editing of locked cells at runtime. For more information, see Section 9.7, "Using Worksheet Protection."

Setting the ReadOnly property to True for an ADF List of Values component, a TreeNodeList subcomponent, or a ModelDrivenColumn component which renders a list binding may confuse end users. To avoid any confusion, consider using an ADF Output Text component or subcomponent.

	
StyleName

	
String

	
Y

	
Specifies the style in the current Excel workbook to apply when the Oracle ADF component is rendered. For more information, see Section 9.2, "Working with Styles."

	
Tooltip

	
String

	
Y

	
Specify the hint message about the content or function of the ADF form component, or table column, to appear when the mouse hovers the component, or the column.

For more information, see Section 6.9, "Displaying Tooltips in ADF Desktop Integration Form-Type Components" and Section 7.18, "Displaying Tooltips in ADF Desktop Integration Table-Type Components."

	
Value

	
Varies

	
Y

	
This property references an EL expression that is evaluated after the invocation of the ADF Table component's RowDownSync action or a worksheet's DownSync action. The resulting value is typically the primary value seen in the selected component.

Many label-type properties are optional and default to empty. At runtime, if the value of the property is empty, ADF Desktop Integration provides a default, localized value. If you want the value of the property to appear as empty, set its value to a single space character, or provide an EL expression that evaluates to an empty string.

A.2 ADF Input Text Component Properties

Table A-2 lists alphabetically the properties of the ADF Input Text component.

Table A-2 ADF Input Text Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
InputText.DoubleClickActionSet

	
Specifies the action set invoked when a user double-clicks the cell. For information about action sets, see Section A.14, "Action Set Properties."

	
InputText.ReadOnly

	
For information about this property, see Table A-1.

	
InputText.Value

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

	
StyleName

	
For information about this property, see Table A-1.

	
Tooltip

	
For information about this property, see Table A-1.

A.3 ADF Output Text Component Properties

Table A-3 lists alphabetically the properties of the ADF Output Text component.

Table A-3 ADF Output Text Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
OutputText.DoubleClickActionSet

	
Specifies the action set invoked when a user double-clicks the cell. For information about action sets, see Section A.14, "Action Set Properties."

	
OutputText.Value

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

	
StyleName

	
For information about this property, see Table A-1.

	
Tooltip

	
For information about this property, see Table A-1.

A.4 ADF Output Text (Worksheet Errors)

Table A-4 lists alphabetically the properties of the ADF Output Text (Worksheet Errors) component.

Table A-4 ADF Output Text (Worksheet Errors) Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
OutputText.DoubleClickActionSet

	
Specifies the action set invoked when a user double-clicks the cell. For information about action sets, see Section A.14, "Action Set Properties."

	
OutputText.Value

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

	
StyleName

	
For information about this property, see Table A-1.

	
Tooltip

	
For information about this property, see Table A-1.

A.5 ADF Output Text (Table Errors)

Table A-5 lists alphabetically the properties of the ADF Output Text (Table Errors) component.

Table A-5 ADF Output Text (Table Errors) Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
OutputText.DoubleClickActionSet

	
Specifies the action set invoked when a user double-clicks the cell. For information about action sets, see Section A.14, "Action Set Properties."

	
OutputText.Value

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

	
StyleName

	
For information about this property, see Table A-1.

	
Tooltip

	
For information about this property, see Table A-1.

A.6 ADF Label Component Properties

The ADF Label component displays a static string value at runtime. ADF Desktop Integration generates the value when the EL expression that the Label property references is evaluated. For information about using labels, see Section 9.4, "Using Labels in an Integrated Excel Workbook."

Table A-6 lists alphabetically the properties that the ADF Label component references.

Table A-6 ADF Label Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
Label

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

	
StyleName

	
For information about this property, see Table A-1.

	
Tooltip

	
For information about this property, see Table A-1.

A.7 ADF List of Values Component Properties

Table A-7 lists the properties of the ADF List of Values component. For information about creating an ADF List of Values component, see Section 6.6, "Inserting an ADF List of Values Component."

Table A-7 ADF List of Values Component Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about this property, see Table A-1.

	
ComponentID

	
	
	
For information about this property, see Table A-1.

	
ListOfValues.DependsOnListID

	
List binding

	
N

	
Select the list binding whose value at runtime determines the choices available in the dependent list of values at runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

	
ListOfValues.ListID

	
List binding

	
N

	
Select the list binding that defines the values available in the list of values. The list binding that you select can be a model-driven list.

	
ListOfValues.ReadOnly

	
Boolean

	
N

	
For information about this property, see Table A-1.

	
Position

	
	
	
For information about this property, see Table A-1.

	
StyleName

	
	
	
For information about this property, see Table A-1.

	
Tooltip

	
String

	
Y

	
For information about this property, see Table A-1.

A.8 ADF Image Component Properties

The ADF Image component displays an image at runtime. For more information about adding an ADF Image component, see Section 6.7, "Inserting an ADF Image Component."

Table A-8 ADF Label Component Properties

	Name	Description
	
Source

	
The absolute, or relative, URL of the image file.

	
ShortDesc

	
Enter the EL expression that resolves to the alternate text of the image component.

	
Annotation

	
For information about this property, see Table A-1.

	
ComponentID

	
For information about this property, see Table A-1.

	
Position

	
For information about this property, see Table A-1.

A.9 TreeNodeList Subcomponent Properties

The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in columns of the ADF Table component at runtime. It provides the same functionality to end users as the ADF List of Values component.

The TreeNodeList subcomponent does not appear in the components palette of the ADF Desktop Integration task pane. Instead, you configure properties for this subcomponent when you specify TreeNodeList as the subcomponent to invoke for the ADF Table component's UpdateComponent or InsertComponent table column properties described in Section A.12.2, "ADF Table Component Column Properties."

Table A-9 describes the properties that you configure for the TreeNodeList subcomponent.

Table A-9 TreeNodeList Subcomponent Properties

	Name	Type	EL	Description
	
DependsOnList

	
Tree binding attribute or List binding

	
Y

	
Specify the tree binding attribute or list binding that serves as the parent list of values in a dependent list of values.

Note that the tree binding attribute you specify must be associated with a model-driven list.

For more information about dependent list of values, see Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook."

	
List

	
Tree binding attribute

	
Y

	
Specify the tree binding attribute associated with a model-driven list that defines the values available in the runtime dropdown menu to appear in the ADF Table component's column.

	
ReadOnly

	
Boolean

	
Y

	
For information about this property, see Table A-1.

A.10 ModelDrivenColumnComponent Subcomponent Properties

The ModelDrivenColumnComponent subcomponent, like the TreeNodeList subcomponent, does not appear in the components palette of the ADF Desktop Integration task pane. Instead, you configure properties for this subcomponent when you specify ModelDrivenColumnComponent as the subcomponent to invoke for the ADF Table component's UpdateComponent or InsertComponent table column properties described in Section A.12.2, "ADF Table Component Column Properties."

Table A-10 describes the properties that you configure for the ModelDrivenColumnComponent subcomponent.

Table A-10 ModelDrivenColumnComponent Subcomponent Properties

	Name	Type	EL	Description
	
DoubleClickActionSet

	
	
	
Specifies the action set invoked when a user double-clicks the cell. For information about action sets, see Section A.14, "Action Set Properties."

	
ReadOnly

	
Boolean

	
Y

	
For information about this property, see Table A-1.

	
Value

	
Varies

	
Y

	
For information about this property, see Table A-1.

A.11 ADF Button Component Properties

Table A-11 lists alphabetically the properties of the ADF Button component.

Table A-11 ADF Button Component Properties

	Name	Description
	
Annotation

	
For information about this property, see Table A-1.

	
ClickActionSet

	
Specify the action set to invoke when a user clicks the button. For information about action sets, see Section A.14, "Action Set Properties."

	
ComponentID

	
For information about this property, see Table A-1.

	
Label

	
For information about this property, see Table A-1.

	
LowerRightCorner

	
This property is an Excel cell reference. Used with Position, it specifies the area that the button occupies on the Excel worksheet.

	
Position

	
For information about this property, see Table A-1.

A.12 ADF Table Component Properties and Actions

The ADF Table component uses the properties and component actions listed here.

A.12.1 ADF Table Component Properties

Table A-12 lists alphabetically the properties the ADF Table component uses.

Table A-12 ADF Table Component Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about this property, see Table A-1.

	
BatchOptions

	
	
	
This group of properties enables you to configure batch options for the ADF Table component. For more information about how you use these properties, see Section 7.11, "Batch Processing in an ADF Table Component."

	
BatchOptions.BatchSize

	
Integer

	
N

	
Specifies how many rows to process before an ADF Table component action (Upload or DeleteFlaggedRows) invokes CommitBatchActionID. Any value other than a positive integer results in all rows being processed in a single batch. The default value is 100 rows.

A value for this property is required.

	
BatchOptions.CommitBatchActionID

	
Action binding

	
N

	
Specify an action binding to invoke when the number of rows specified by BatchSize have been processed. The action binding is expected to be a commit-type action.

	
BatchOptions.LimitBatchSize

	
Boolean

	
N

	
Set this property to TRUE to process rows in batches where each batch contains the number of rows specified by BatchSize. If set to FALSE, all rows are processed in a single batch.

	
BatchOptions.StartBatchActionID

	
Action binding

	
N

	
Specify an action binding to invoke at the beginning of each batch. For example, this property might be used for an operation like "start transaction", if required by a particular database.

A value for this property is optional.

	
Columns

	
	
	
An array of columns. For information about the properties that each column in the array supports, see Section A.12.2, "ADF Table Component Column Properties."

	
ComponentID

	
	
	
For information about this property, see Table A-1.

	
Position

	
	
	
For information about this property, see Table A-1.

	
ResizeColumnsMode

	
	
	
Controls whether and how the columns in the entire table are resized.

For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

	
RowActions

	
	
	
This group of properties allows you specify which actions are enabled and can be invoked.

	
RowActions.DeleteRowActionID

	
Action binding

	
N

	
Specify an action binding to invoke for each row flagged for deletion.

A value for this property is optional.

	
RowActions.DeleteRowEnabled

	
Boolean

	
N

	
Set to TRUE to allow a user to delete existing rows. FALSE is the default value.

A value for this property is required.

	
RowActions.FailureActionID

	
Action binding

	
N

	
Specify an action binding to invoke if failures occur during the processing of rows.

A value for this property is optional.

	
RowActions.InsertAfterRowActionID

	
Action binding

	
N

	
Specify an action binding to invoke for each row inserted using the ADF Table component Upload action. The action binding is invoked after the attributes are set. Use of this property is suitable with a custom action where a variable iterator is employed along with the main iterator.

A value for this property is optional.

	
RowActions.InsertBeforeRowActionID

	
Action binding

	
N

	
Specify an action binding to invoke for each row inserted using the Upload component action. The action binding specified is invoked before the attributes are set.

A value for this property is optional.

	
RowActions.InsertRowEnabled

	
Boolean

	
N

	
Set to TRUE to allow the end user insert new rows in the ADF Table component. FALSE is the default value.

If you set this property to TRUE, you must specify values for one or both of the following properties:

	
RowActions.InsertAfterRowActionID

	
RowActions.InsertBeforeRowActionID

Which property (InsertAfterRowActionID or InsertBeforeRowActionID) you specify a value for depends on how your Fusion web application creates new rows. Typically, a Fusion web application uses the CreateInsert action binding to create and insert a new row. In this scenario, you specify the CreateInsert action binding as the value for InsertBeforeRowActionID.

For more information about inserting rows in an ADF Table component, see Section 7.7, "Configuring an ADF Table Component to Insert Data."

	
RowActions.InsertRowsAfterUploadEnabled

	
Boolean

	
N

	
Set to TRUE to allow the end user to reinsert changed rows regardless of whether they have been previously uploaded. FALSE is the default value.

The property is ignored if InsertRowEnabled is set to FALSE.

	
RowActions.UpdateRowActionID

	
Action binding

	
N

	
Specify an action binding to invoke for each row updated.

A value for this property is optional.

	
RowActions.UpdateRowEnabled

	
Boolean

	
N

	
Set to TRUE to allow a user update an existing row. TRUE is the default value.

A value for this property is required.

	
RowData

	
	
	
Set values for the CachedAttributes property when you want to cache data in an integrated Excel workbook across multiple sessions with the Fusion web application.

Set a value for the ChangeIndicatorAttributeID property to determine whether a row has been modified by another user since you downloaded it from the Fusion web application.

	
RowData.CachedAttributes

	
Array

	
N

	
Specify values for the properties in this array to determine the attributes for which data is cached. Each CachedTreeAttribute element in this array supports the following properties:

	
Value

Select the tree binding attribute for which data is to be cached.

	
Annotation

For more information about this property, see Table A-1.

Do not configure a component (for example, an ADF Table component's column or an ADF Input Text component) so the end user can view or edit an attribute binding that you have also specified for an element in the RowData.CachedAttributes array. The RowData.CachedAttributes array caches the values retrieved by the worksheet DownSync action. The worksheet UpSync action sends the values cached by the RowData.CachedAttributes array to the Fusion web application. This may override edits the end user makes to an attribute binding exposed through a component in the worksheet.

For information about using the RowData.CachedAttributes array to cache data in an ADF Table component, see Section 8.5, "Adding a Custom Popup Picker Dialog to an ADF Table Column."

	
RowData.ChangeIndicatorAttributeID

	
Attribute Binding

	
Y

	
Specify an EL expression that evaluates to a row-specific tree attribute binding value. The attribute value is used to determine if a row has been modified by another user since the row was last downloaded to your integrated Excel workbook.

For more information, see Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook."

	
RowLimit

	
	
	
This group of properties allows you configure the number of rows that the ADF Table component or ADF Read-only Table component download and display.

For more information, see Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

	
RowLimit.Enabled

	
Boolean

	
N

	
Set to TRUE to limit the number of rows downloaded to the value specified by RowLimit.MaxRows. TRUE is the default value.

A value for this property is required.

	
RowLimit.MaxRows

	
Integer

	
Y

	
Specify an EL expression that evaluates to the maximum number of rows to download. The component evaluates the EL expression when it invokes its Download action. The default value is 500. If MaxRows is not a positive integer, the component attempts to download as many rows as possible. An invalid expression such as "ABC" is interpreted as -1 (negative integer). As a result, the component attempts to download as many rows as possible.

Note that setting the value of MaxRows to 0 results in a message where the user is asked if they want to download the first 0 rows. To avoid this, set MaxRows to a positive integer other than 0.

	
RowLimit.WarningMessage

	
String

	
Y

	
(Optional) Write an EL expression to generate a message to display to the end user if the number of rows available to download exceeds the number specified by RowLimit.MaxRows. This expression is evaluated each time the Table's Download action is invoked. The maximum number of rows that a Excel 2007, or a higher version, worksheet can contain is approximately 1 million. If this property is left blank, ADF Desktop Integration displays a message similar to "Too many rows available. Do you want to download the first {0} rows?" that is translated for the current culture settings.

You can specify a string key from a custom resource bundle to use, instead of the default value. If desired, you may supply a custom message to replace the default one. Any custom message must contain {0}. {0} will be replaced by the MaxRows value.

For more information about resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

	
TreeID

	
Binding

	
N

	
Specify a tree binding from the current worksheet's page definition file. You must specify a value for this property so that row downloads and uploads function properly. For more information about the page definition requirements for an integrated Excel workbook, see Table 4-1.

	
UniqueAttribute

	
Attribute binding

	
Y

	
Specify an EL expression that evaluates to a unique row-specific tree attribute binding value. The value of this attribute is cached in the integrated Excel workbook during the ADF Table component's Download action. ADF Desktop Integration uses this value to ensure that the tree binding's iterator is positioned correctly before setting or getting data for a given ADF Table component row.

Note that this value is required only when the underlying tree binding iterator does not expose a rowKey.

This value is optional when:

	
The tree binding iterator exposes a rowKey, in which case the rowKey value is used for positioning

OR

	
The ADF Table component is configured to be insert-only (RowActions.InsertRowEnabled is set to True and RowActions.UpdateRowEnabled is set False)

A.12.2 ADF Table Component Column Properties

Table A-13 describes the properties that a column in the TableColumn array can use.

Table A-13 ADF Table Component Column Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about this property, see Table A-1.

	
CellStyleName

	
String

	
Y

	
Write an EL expression that resolves to an Excel style name that is applied to each cell in the column.

	
Tooltip

	
String

	
Y

	
For information about this property, see Table A-1.

	
DynamicColumn

	
Boolean

	
N

	
Set to True to make a column dynamic. False is the default value. For more information about dynamic columns, see Section 7.16, "Adding a Dynamic Column to Your ADF Table Component."

	
HeaderLabel

	
String

	
Y

	
Write an EL expression that, when evaluated at runtime, displays a label in the column header.

	
HeaderStyleName

	
String

	
Y

	
Write an EL expression that resolves to an Excel style name that is applied to each cell in the column header.

	
ID

	
String

	
N

	
Assign a name to the column to identify it and its purpose. The value that you assign for this property has no functional impact. However, you must specify a value and the value that you specify must be unique within the list of columns. It serves to help you keep track of columns in the ADF Table component. The following IDs are reserved to the three default columns in the ADF Table component:

	
_ADF_ChangedColumn

	
_ADF_FlagColumn

	
_ADF_StatusColumn

For more information about these columns, see Section 7.12, "Special Columns in the ADF Table Component."

	
InsertComponent

	
ADF component

	
N

	
Specifies the properties of the component that represents the binding for insert operations. This component can be one of the following:

	
Input Text component

For information about the properties that this component supports, see Section A.2, "ADF Input Text Component Properties."

	
Output Text component

For information about the properties that this component supports, see Section A.3, "ADF Output Text Component Properties."

	
TreeNodeList component

For information about the properties that this component supports, see Section A.9, "TreeNodeList Subcomponent Properties."

	
ModelDrivenColumnComponent

For information about the properties that this component supports, see Section A.10, "ModelDrivenColumnComponent Subcomponent Properties."

When InsertUsesUpdate is set to True, the ADF Table component ignores the value of the InsertComponent property.

	
InsertUsesUpdate

	
Boolean

	
N

	
Set to True if insert and update operations use the same component type. When True, the ADF Table component ignores the values of the InsertComponent property and reads the value of the UpdateComponent property.

The default value is True.

	
ResizeMode

	
	
	
Specifies how ADF Desktop Integration changes the column width at runtime.

For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

	
UpdateComponent

	
ADF component

	
N

	
Specifies the properties of the component that represents the binding for update and download operations. This component can be one of the following:

	
Input Text component

For information about the properties that this component supports, see Section A.2, "ADF Input Text Component Properties."

	
Output Text component

For information about the properties that this component supports, see Section A.3, "ADF Output Text Component Properties."

	
TreeNodeList component

For information about the properties that this component supports, see Section A.9, "TreeNodeList Subcomponent Properties."

	
ModelDrivenColumnComponent

For information about the properties that this component supports, see Section A.10, "ModelDrivenColumnComponent Subcomponent Properties."

	
Visible

	
Boolean

	
Y

	
Write an EL expression that resolves to True or False. If True, the column appears in the ADF Table component. If False, the column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component ignores the value of the Visible property. For more information about dynamic columns, see Section 7.16, "Adding a Dynamic Column to Your ADF Table Component."

	
Width

	
	
	
Specify the width of the column in number of characters. The value is used when ResizeMode is SpecifiedWidth.

For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

A.12.3 ADF Table Component Actions

Table A-14 describes the component actions available for use with the ADF Table component.

Table A-14 ADF Table Component Actions

	Component Action	Description
	
ClearCachedRowAttributes

	
Clears the values of cached attributes for the current row of the ADF Table component. Only a DoubleClickActionSet in an ADF Table component's column should invoke this action.

	
DeleteFlaggedRows

	
Invokes a specified action on each of a set of flagged rows in the ADF Table component and then removes these rows from the ADF Table component.

For more information, see Section 7.10, "Configuring an ADF Table Component to Delete Rows in the Fusion Web Application."

	
DisplayRowErrors

	
Displays error details for the current row in the ADF Table component if error details are available. This action should only be invoked from a column's action set in an ADF Table component. By default, the _ADF_StatusColumn described in Table 7-8 is configured with an action set that invokes this action.

	
DisplayTableErrors

	
Displays a detailed list of errors in a message dialog for the ADF Table component if any errors are available. Do not invoke this action from a column's action set in an ADF Table component. Instead configure an action set for an ADF Button, ADF Output Text component, or worksheet ribbon button to invoke this action.

	
Download

	
Download the rows corresponding to the current state of TreeID. For information about TreeID, see Section A.12.1, "ADF Table Component Properties."

	
DownloadFlaggedRows

	
Downloads the flagged rows from the tree binding specified by TreeID. For information about TreeID, see Table A-12.

This action applies to the downloaded rows only, and inserted rows are ignored.

	
DownloadForInsert

	
This action is obsolete. For more information, see Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF Table Component."

	
FlagAllRows

	
Sets the flag for all rows.

Invoke this action to set a flag character in all rows of the _ADF_FlagColumn column. The flag character has the following properties:

Character Code 25CF, Unicode(hex)

It appears as a solid circle.

For more information about the _ADF_FlagColumn column, see Section 7.11.2, "Row Flagging in an ADF Table Component" and Section 7.12, "Special Columns in the ADF Table Component."

	
Initialize

	
This action performs the following actions:

	
Removes all rows of data from the ADF Table component

	
Clears the values of cached attributes from rows in the ADF Table component

	
Creates the placeholder row

	
Recalculates how many dynamic columns to render in the ADF Table component

	
Redraws column headers

If the ADF Table component contains pending changes that have not been saved in the integrated Excel workbook, a dialog appears to the end user that allows cancellation of invocation of this action.

	
MarkAllRowsChanged

	
Specify this component action to mark all rows in the table as changed in _ADF_ChangeColumn.

	
MarkAllRowsUnchanged

	
Specify this component action to clear all flags from the _ADF_ChangedColumn column.

	
ResizeColumns

	
Resizes the table columns depending on the values of the Table.ResizeColumnsMode and Column.ResizeMode properties.

For more information, see Section 7.17, "Configuring Column Widths in an ADF Table Component."

	
RowDownSync

	
Synchronizes data from the row in the ADF Table component's iterator in the Fusion web application that corresponds to the current worksheet row to the worksheet. As this action acts upon the current worksheet row, only a DoubleClickActionSet associated with a column in the ADF Table component should invoke this action.

The ADF Table component does not evaluate or apply the value of a column's Visible property when invoking RowDownSync. The ADF Table component evaluates and applies the value of a column's CellStyleName property when invoking RowDownSync. For more information about column properties, see Section A.12.2, "ADF Table Component Column Properties."

	
RowUpSync

	
Synchronizes any pending changes in the current worksheet row that the ADF Table component references to the Fusion web application. RowUpSync acts upon the current worksheet row so only a DoubleClickActionSet associated with a column in the ADF Table component should invoke this action. The DoubleClickActionSet that invokes RowUpSync also changes the position of the ADF Table component's iterator on the Fusion web application to the current worksheet row (assuming it exists in the Fusion web application).

	
UnflagAllRows

	
Removes flags from cells in the _ADF_FlagColumn column.

For more information about the _ADF_FlagColumn, see Section 7.11.2, "Row Flagging in an ADF Table Component" and Section 7.12, "Special Columns in the ADF Table Component."

	
Upload

	
Uploads pending changes to the Fusion web application. Commits successful rows even if row failures occur.

For more information, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

For more information about resolving data conflict between the Excel workbook and the Fusion web application, see Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook".

	
UploadAllOrNothing

	
Uploads pending changes to the Fusion web application. Commits successful rows only if none of the rows fail.

For more information about Upload action, see Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component." For more information about UploadAllOrNothing action, see Section 7.9, "Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action."

A.13 ADF Read-only Table Component Properties and Actions

The ADF Read-only Table component exposes one action, Download. This action downloads the current rows in the table identified by the ADF Read-only Table property, TreeID. Table A-15 describes TreeID and the other properties that the ADF Read-only Table component supports.

Table A-15 ADF Read-only Table Component Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about this property, see Table A-1.

	
Columns

	
Array

	
N

	
References an array of read-only columns. For information about the properties that a column in this array can support, see Table A-16.

	
ComponentID

	
	
	
For information about this property, see Table A-1.

	
Position

	
	
	
For information about this property, see Table A-1.

	
RowLimit

	
	
	
For information about this group of properties, see Table A-12.

	
TreeID

	
Tree binding

	
N

	
References a tree binding ID from the page definition file associated with the current worksheet if the ADF Read-only Table component was created by inserting a tree binding into the worksheet.

Table A-16 lists alphabetically the properties that a column in the ReadOnlyColumn array can use.

Table A-16 ADF Read-only Table Component Column Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about this property, see Table A-1.

	
CellStyleName

	
String

	
Y

	
Write an EL expression that resolves to an Excel style name that is applied to each cell in the column.

	
HeaderLabel

	
String

	
Y

	
Write an EL expression that resolves to a label for the column header.

	
HeaderStyleName

	
String

	
Y

	
Write an EL expression that resolves to an Excel style name that is applied to each cell in the column header.

	
ID

	
String

	
N

	
Assign a name to the column to identify it and its purpose. The value that you assign for this property has no functional impact. However, you must specify a value and the value that you specify must be unique within the list of columns. It serves to help you keep track of columns in the ADF Read-only Table component.

	
OutputText

	
ADF Component

	
	
For information about the properties that this component supports, see Section A.3, "ADF Output Text Component Properties."

A.14 Action Set Properties

Table A-17 lists alphabetically the properties that you can configure for an action set.

Table A-17 Action Set Properties

	Name	Type	EL	Description
	
ActionOptions

	
	
	
This group of properties specifies options for invoking local and remote actions.

	
ActionOptions.AbortOnFailure

	
Boolean

	
N

	
When set to TRUE, the remaining actions in the array are not invoked if an action fails. If FALSE, all actions are invoked regardless of the success or failure of previous actions. The default value is TRUE.

	
ActionOptions.FailureActionID

	
Action binding

	
N

	
Specify the action binding to invoke if an action set does not complete successfully. For example, you could specify an action binding that rolls back changes made during the unsuccessful invocation of the action set.

	
ActionOptions.SuccessActionID

	
Action binding

	
N

	
Specify an action binding to invoke if an action set completes successfully. For example, you could specify an action binding that runs a commit action.

A value for this property is optional.

	
Actions

	
Array

	
N

	
Specifies an ordered array of actions. An action can be one of the following:

	
ADFmAction

Invokes an action binding or method action binding in the underlying page definition file. The ADFmAction.ActionID property identifies the action binding or method action binding to invoke. For information about page definition files, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
ComponentAction

Invokes an action that a component on the worksheet exposes. ComponentAction.ComponentID identifies the component that exposes the action while ComponentAction.Method identifies the action to invoke.

The ADF Table and ADF Read-only Table components are the only components in ADF Desktop Integration that expose actions. For information about these actions, see Section A.12, "ADF Table Component Properties and Actions" and Section A.13, "ADF Read-only Table Component Properties and Actions." For information about invoking component actions, see Section 8.2.2, "How to Invoke Component Actions in an Action Set."

	
WorksheetMethod

Invokes a worksheet action. For information about worksheet actions, see Section A.16, "Worksheet Actions and Properties."

	
Confirmation

Invokes a confirmation dialog. For more information about the properties that this action uses, see Section A.14.1, "Confirmation Action Properties."

	
Dialog

Invokes a web page in a popup dialog or Excel's task pane. For more information, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

	
Alert

	
	
	
This group of properties determines if and how an alert-style dialog appears to the user to indicate that the requested action is complete. The dialog that appears contains one button that allows the user to acknowledge the message and dismiss the dialog. For information about how to display an alert message, see Section 8.2.9, "How to Provide an Alert After the Invocation of an Action Set."

Many properties in this group make use of EL expressions to retrieve string values from resource bundles. For more information about using EL expressions, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

	
Alert.Enabled

	
Boolean

	
N

	
Set to TRUE to display an alert message to end users that notifies them when an action set operation completes successfully or includes one or more failures.

For more information, see Section 8.2.9, "How to Provide an Alert After the Invocation of an Action Set."

	
Alert.FailureMessage

	
String

	
Y

	
Specify an EL expression that evaluates to a message to appear in the dialog if errors occur during execution of the action set.

	
Alert.OKButtonLabel

	
String

	
Y

	
Specify an EL expression that evaluates to a message to appear in the OK button of the dialog.

	
Alert.SuccessMessage

	
String

	
Y

	
Specify an EL expression that evaluates to a message to appear in the dialog if no errors occur during the execution of the action set.

	
Alert.Title

	
String

	
Y

	
Specify an EL expression that evaluates to a message to appear in the title area of the dialog.

	
Annotation

	
	
	
For information about Annotation, see Table A-1.

	
Status

	
	
	
This group of properties determines if and how a status message appears during the execution of an action set. For information about how to display a status message, see Section 8.2.5, "How to Display a Status Message While an Action Set Runs."

Many properties in this group make use of EL expressions that reference string keys defined in resource bundles. For more information, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

	
Status.AllowCancel

	
Boolean

	
N

	
If TRUE, a Cancel button is displayed in the status dialog box.

For more information, see Section 8.2.5, "How to Display a Status Message While an Action Set Runs."

	
Status.Enabled

	
Boolean

	
N

	
If TRUE (default), a status window appears during the execution of the action set. If FALSE, no status window appears.

	
Status.Message

	
String

	
Y

	
Specify an EL expression to evaluate and display in the status window while the action set runs.

	
Status.Title

	
String

	
Y

	
Specify an EL expression to evaluate and display in the title area of the status window while the action set runs.

	
Status.Mode

	
String

	
N

	
Choose the visual appearance of progress bars. The valid values are Automatic, BothBarsAlways, MainBarOnly, DetailBarOnly, and MainMessageOnly.

	
Status.DetailStatusMessage

	
String

	
Y

	
Specify an optional EL expression or literal value that evaluates to a status message to appear as the associated action progresses.

A.14.1 Confirmation Action Properties

Table A-18 lists alphabetically the properties that the Confirmation action in the array of Actions of an action set supports. For information about the other properties the array of Actions and action sets use, see Table A-17.

Table A-18 Confirmation Action Properties

	Name	Type	EL	Description
	
Annotation

	
	
	
For information about Annotation, see Table A-1.

	
CancelButtonLabel

	
String

	
Y

	
An EL expression that is evaluated and displayed in the Cancel button at runtime.

	
OKButtonLabel

	
String

	
Y

	
An EL expression that is evaluated and displayed in the OK button at runtime.

	
Prompt

	
String

	
Y

	
An EL expression that is evaluated and displayed in the main area of the confirmation dialog at runtime.

	
Title

	
String

	
Y

	
An EL expression that is evaluated and displayed in the title area of the confirmation dialog at runtime.

A.14.2 Dialog Action Properties

Table A-19 describes the properties that the Dialog action in the array of Actions of an action set supports. For information about the other properties the array of Actions and action sets use, see Table A-17.

For information about how to use the properties in Table A-19 to invoke a web page from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

Table A-19 Dialog Action Properties

	Name	Type	EL	Description
	
Annotation

	
String

	
N

	
For information about this property, see Table A-1.

	
Page

	
String

	
N

	
Specify the web page that the action invokes. Relative and absolute URLs are valid values.

	
ShareFrame

	
Boolean

	
N

	
Set to TRUE (default) to run the web page specified by the Dialog.Page property in the same data control frame as the Excel worksheet. If you specify an absolute URL, ADF Desktop Integration ignores the value of the Dialog.ShareFrame property.

	
Target

	
List

	
N

	
Specifies how the web page the action invokes is rendered. Select:

	
Popup to render the web page in a modal dialog within an embedded web browser.

	
TaskPane to render the web page in runtime task pane.

	
Title

	
String

	
Y

	
Write an EL expression that resolves to the title of the Dialog at runtime or write a literal string.

	
WindowSize

	
Integer

	
N

	
Specify the initial size in pixels of the dialog that appears to the user. Valid values range from 0 to 2147483647. Values will be revised upwards or downwards as appropriate at runtime if the specified values are too large or too small. The default value for Height is 625 and 600 for Width.

A.15 Workbook Actions and Properties

Table A-20 describes the actions that a workbook can invoke. For information about configuring ribbon buttons to invoke these actions, see Section 8.3.1, "How to Define a Workbook Command Button for the Runtime Ribbon Tab."

Table A-20 Workbook Actions

	Action	Description
	
Login

	
When invoked, this action creates a new session between the integrated Excel workbook and the Fusion web application.

If invoked when a session has already been established, it first invokes the Logout action internally to free that session. For a workbook running against a web application that is enforcing authentication, the Login action prompts the end user to provide valid user credentials.

	
Logout

	
When invoked, ADF Desktop Integration sends a request to the Fusion web application to invalidate the session between the integrated Excel workbook and the Fusion web application. After invoking this action, the end user must be authenticated the next time the Excel workbook accesses the Fusion web application.

	
ClearAllData

	
When invoked, this action clears all data entered by the user from cells that reference Oracle ADF bindings. Tables, such as those created by the ADF Table and ADF Read-only Table components, will be truncated so that they only display header rows with labels cleared. Values in cells that reference the Input Text or Output Text components are cleared. Column headers and labels are cleared as well. References to all resource bundles that the integrated Excel workbook uses are cleared. Worksheets that do not contain bindings or reference a page definition file remain unchanged. A dialog prompts the end user to confirm invocation of this action. Once the end user confirms invocation, ADF Desktop Integration runs the following events after invocation of the action:

	
Invokes the integrated Excel workbook's Logout action

	
Terminates the runtime session and clears all data from the integrated Excel workbook and all caches

	
Reinitializes the integrated Excel workbook and invokes the workbook's Login action

Invocation of the ClearAllData action does not change data hosted by the Fusion web application. One or more of the following actions must be invoked to change data hosted by the Fusion web application:

	
A worksheet's UpSync action

This action synchronizes all data referenced by non-table type components. For more information, see Section A.16, "Worksheet Actions and Properties."

	
An ADF Table component's RowUpSync action can be used to synchronize any pending changes in a row to the Fusion web application. The ADF Table component's DeleteFlaggedRows action can be invoked to delete flagged rows. For more information about ADF Table component actions, see Section A.12.3, "ADF Table Component Actions."

	
EditOptions

	
When invoked, this action launches a dialog that shows the current value of the WebAppRoot property and allows the end user to enter a new value.

If the end user chooses to change the value of WebAppRoot, a confirmation dialog appears after the end user clicks OK. Once the change is confirmed, the following events occur:

	
Workbook ClearAllData action is invoked

	
Workbook Logout action is invoked

	
All data referenced by bindings in the workbook is removed

	
References to WebAppRoot are updated in the Excel workbook's configuration

	
Workbook Login action is invoked to authenticate the user with the Fusion web application that is specified as the value for WebAppRoot

The ClearAllData workbook action clears all resource bundles referenced by the integrated Excel workbook. After WebAppRoot is changed, the integrated Excel workbook attempts to retrieve resource bundles from the Fusion web application as part of the reinitialization process. This request to the Fusion web application triggers the authentication process.

	
ViewAboutDialog

	
When invoked, this action launches a dialog called About that displays information defined in the BrandingItems workbook property and other information such as the versions of supporting software.

Table A-21 lists alphabetically the ADF Desktop Integration properties that an Excel workbook can use.

Table A-21 Workbook Properties

	Name	Type	EL	Description
	
ApplicationHomeFolder

	
String

	
N

	
Specify the absolute path to the directory that is the root for the JDeveloper application workspace (.jws) where you developed the desktop integration project.

For example, the value of this property in a workbook integrated with the Summit sample application for ADF Desktop Integration could be something similar to the following:

D:\Oracle\Applications\Summit_ADFdi

­ADF Desktop Integration prompts you to specify a value for this property the first time that you open an integrated Excel workbook.

For more information, see Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

	
BrandingItems

	
Array

	
N

	
An array of name-value pairs that resolve to resource bundle references (for example, #{res['myAppName']}) or a literal string. Each pair in the array consists of a name and a value. Each name and value can reference a literal string or an EL expression.

For information about branding your integrated Excel workbook, see Section 9.6, "Branding Your Integrated Excel Workbook."

	
CustomizationEnabled

	
Boolean

	
N

	
Specify whether the workbook is customizable. If True, the published workbook will obtain its metadata from the server, which can be customized at runtime.

For more information about enabling customization, see Section 14.6, "Customizing Workbook Integration Metadata at Runtime."

	
Login.WindowSize

	
Integer

	
N

	
Specify the initial size in pixels of the login dialog that appears to the user. Valid values range from 0 to screen width or height. Values will be revised upwards or downwards as appropriate at runtime if the specified values are too large or too small. The default value for Height is 625 and Width is 600.

	
Parameters

	
Array

	
N

	
An array of workbook initialization parameters that you configure to pass the parameters from a page in a Fusion web application to an integrated Excel workbook. You can define multiple workbook initialization parameters in the Fusion web application's page. Each workbook initialization parameter (parameter that references a URL argument) that you define in a page must be specified in a Parameter property of this array, otherwise it is ignored.

Each element in the array supports the following properties:

	
Annotation

For more information about this property, see Table A-1.

	
Parameter

You specify the name of the workbook initialization parameter you defined in the page of the Fusion web application from which the end user downloads the integrated Excel workbook.

For information about using this property, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

	
Project

	
String

	
N

	
Specify the name of a JDeveloper project in the current JDeveloper workspace. ADF Desktop Integration attempts to load the .jpr file that corresponds to the project that you specify. An error appears if the .jpr file is not available or is not in the expected format.

When you open an integrated Excel workbook for the first time in design mode, ADF Desktop Integration searches for a .jpr file in the parent folder hierarchy. If it finds a .jpr file, it sets the value of Project to the name of the project that corresponds to the .jpr file.

ADF Desktop Integration loads the names of the available projects from the application_name.jws file specified by ApplicationHomeFolder.

	
RemoteServletPath

	
String

	
N

	
Specify the path to the ADF Desktop Integration remote servlet. This path must be relative to the value specified for WebAppRoot. Note that the value you specify for RemoteServletPath must match the value that is specified in the web application's deployment descriptor file (web.xml). The default value for this property is:

/adfdiRemoteServlet

	
Resources

	
Array

	
N

	
Specifies an array of resource bundles to register with the workbook. Each element in the array supports the following properties:

	
Alias

Specify a string value that is unique within Workbook.Resources. EL expressions use this string to reference the resource bundle.

	
Annotation

For more information about this property, see Table A-1.

	
Class

Specify a fully qualified class name, but do not include the file extension. The class name that you specify is expected to be a Java resource bundle class that the Fusion web application you integrate your workbook with uses.

For example, the EditCustomers-DT.xlsx workbook in the Summit sample application for ADF Desktop Integration references the following resource bundle:

oracle.summitdi.resources.UIStrings

For more information, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

	
Runtime Ribbon Tab

	
-

	
-

	
This group of properties defines whether and how a Ribbon tab appears in Excel at runtime. The following entries in this table describe the properties in the Runtime Ribbon Tab group. For more information about Ribbon tab and its commands, see Section 8.3, "Configuring the Runtime Ribbon Tab."

	
Runtime Ribbon Tab.Annotation

	
String

	
N

	
For information about this property, see Section A.1, "Frequently Used Properties in the ADF Desktop Integration."

	
Runtime Ribbon Tab.Visible

	
Boolean

	
N

	
If TRUE,the Ribbon tab appears at runtime. The Ribbon tab does not appear if you set Enabled to FALSE. TRUE is the default value.

	
Runtime Ribbon Tab.Title

	
String

	
Y

	
Specify an EL expression that evaluates to the title that appears for the Ribbon tab in the title area. Excel imposes a maximum limit of 1024 characters for Ribbon tab titles. Ensure that the runtime value of the EL expression you specify does not exceed 1024 characters as ADF Desktop Integration truncates the value so that Excel does not generate an error message.

If you choose to assign a key tip character using the & character, consider avoiding the letter K for the Runtime Ribbon Tab.Title. Excel does not allow the letter K to be used here when the workbook is running in the ar_SA culture.

	
Runtime Ribbon Tab.Workbook Commands

	
Array

	
N

	
Each element in this array corresponds to a workbook command at runtime. Each element in the array uses the following properties:

	
Annotation

For more information about this property, see Table A-1.

	
Label

For more information about this property, see Table A-1.

If you want the & character to appear in the command label, you must specify &&. Excel interprets a single & character as a special character, and assigns the next character after & as the keyboard accelerator for the workbook command at runtime.

	
Method

Specify the workbook action that the workbook ribbon button invokes. For more information about workbook actions, see Table A-20.

	
WebAppRoot

	
String

	
N

	
A fully qualified URL to the Fusion web application's root.

	
WebPagesFolder

	
String

	
N

	
Specify the path to the directory that contains the web pages that you intend to use with your integrated Excel workbooks. The value that you specify for the path most be relative to the value of ApplicationHomeFolder.

	
WorkbookID

	
String

	
N

	
A unique identifier for the integrated Excel workbook. ADF Desktop Integration generates the unique identifier when you open the workbook for the first time in design mode.

The value cannot be modified. However, ADF Desktop Integration can generate a new value if you use the Reset WorkbookID link in the Edit Workbook Properties dialog.

The value of this property is used during tamper check, as described in Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata."

A.16 Worksheet Actions and Properties

An Excel worksheet with ADF Desktop Integration can invoke the following actions:

	
UpSync

Synchronizes any pending changes from the ADF Input Text and ADF List of Values components in the worksheet to the Fusion web application.

	
DownSync

Downloads any changes from the Fusion web application to the ADF Input Text, ADF Output Text, and ADF List of Values components in the worksheet.

	
DisplayWorksheetErrors

Displays a detailed list of errors in a message dialog for the integrated Excel worksheet if any errors are available. Invoke this action in an action set that is invoked by an ADF component (other than the ADF Table-type components) or a worksheet ribbon button.

When you configure an ADF Button component to invoke an action binding or method action binding, the action set to invoke when a user clicks the ADF Button component at runtime is populated as follows by default:

	
UpSync

	
Action or method action binding that you specify for the ADF Button component

	
DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync worksheet action, you may encounter errors. For this reason, ensure that the first action invoked is the DownSync worksheet action. You can configure the ADF Button component's action set or one of the worksheet events (Startup or Activate) described in Table A-22 to invoke the DownSync worksheet action first.

Table A-22 describes the ADF Desktop Integration properties that an Excel worksheet can use.

Table A-22 Worksheet Properties

	Name	Type	EL	Description
	
Annotation

	
String

	
N

	
For information about this property, see Table A-1.

	
Events

	
Array

	
N

	
Each element in this array specifies an action set to invoke if the associated worksheet event occurs. For information about action sets, see Section A.14, "Action Set Properties." For information about worksheet events, see the entry in this table for Events.n.Event.

The following entries in this table prefaced by Events.n describe the properties that an element in this array supports where n refers to a specific element in the array.

	
Events.n.ActionSet

	
ActionSet

	
N

	
For more information about the properties of action sets, see Section A.14, "Action Set Properties."

	
Events.n.InvokeOnceOnly

	
Boolean

	
N

	
The default value of this property is FALSE.

When set to TRUE, the workbook stores information about whether the worksheet invoked the action set for this event and, if so, prevents the worksheet from invoking the action set a second time. Note that if the workbook is not saved, this information is lost. This means that the worksheet can invoke the event again the next time that the workbook opens.

	
Events.n.Annotation

	
String

	
N

	
For information about the annotation property, see Table A-1.

	
Events.n.Event

	
List

	
N

	
The worksheet supports the following events that you can configure to invoke an action set:

	
Startup

Excel workbook opens and the worksheet is activated for the first time.

	
Shutdown

Excel workbook closes or Excel application exits.

	
Activate

User navigates to the current worksheet.

	
Deactivate

User navigates away from the current worksheet or Shutdown event triggered.

Note that the worksheet events complete execution even if the action sets that they invoke fail.

For more information about worksheet events and action sets, see Section 8.2.4, "How to Invoke an Action Set from a Worksheet Event."

	
Protection.Mode

	
List

	
N

	
The worksheet provides two options:

	
Off

Worksheet protection is not used at runtime.

	
Automatic

Worksheet protection is enabled automatically at runtime.

The default value for this property is Off.

	
Protection.Password

	
String

	
N

	
Specify a password to prevent end-users from turning off sheet protection at runtime. The maximum password length allowed by Excel is 255 characters.

	
Ribbon Commands

	
Array

	
N

	
Specify one or more workbook actions that appear as commands at runtime. Each command is an element in the WorksheetMenuItem array. Entries in this array support the following properties:

	
Annotation

	
Label

	
SelectActionSet

For more information about the Annotation and Label properties, see Table A-1. For more information about the SelectActionSet property, see Section A.14, "Action Set Properties."

If you want the & character to appear in the command label, you must specify &&. Excel interprets a single & character as a special character, and assigns the next character after & as the keyboard accelerator for the worksheet command at runtime.

	
Page Definition

	
String

	
N

	
Specify the page definition file to associate with the worksheet. For information about page definition files, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
Parameters

	
Array

	
N

	
An array of worksheet parameters that you configure to pass the parameters from a workbook Parameters property to a worksheet in an integrated Excel workbook. Each element in the array supports the following properties:

	
Annotation

For more information about this property, see Table A-1.

	
Parameter

Specify the ID of a parameter element that you added to the page definition file associated with the worksheet.

	
Value

Write an EL expression that references the value of the Parameter property you specified for the workbook initialization parameter (workbook Parameters.Parameter property). The workbook Parameters.Parameter property supplies this value the first time that the page definition file associated with this worksheet is initialized.

For information about using this property, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

	
RowData

	
	
	
Set values for the CachedAttributes property when you want to cache data in an integrated Excel workbook across a multiple sessions with the Fusion web application.

Set a value for the ChangeIndicatorAttributeID property to determine if a row has been modified by another user since you downloaded it from the Fusion web application.

	
RowData.CachedAttributes

	
Array

	
N

	
Specify values for the properties in this array to determine the attributes for which data is cached. Each CachedAttribute element in this array supports the following properties:

	
AttributeID

This property references the attribute binding for which data is to be cached. Do not specify an attribute binding for AttributeID and as an editable field in a form (for example, in an ADF Input Text component) in the same worksheet.

	
Annotation

For more information about this property, see Table A-1.

For more information about clearing the values of cached attributes, see Section 7.21, "Clearing the Values of Cached Attributes in an ADF Table Component."

	
RowData.ChangeIndicatorAttributeID

	
Binding

	
N

	
Specify the row-specific attribute of the tree binding used to determine if a row has been modified by another user since the row was last downloaded by to your integrated Excel workbook.

For more information, see Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook."

	
ServerContext

	
	
	
This group of properties references the attribute bindings that uniquely identify the row displayed in the current worksheet so that you can reestablish server data context across multiple sessions.

For more information, see Section 15.2, "Restore Server Data Context Between Sessions."

	
ServerContext.CacheDataContexts

	
Array

	
N

	
Add elements to the CacheDataContexts array for cases where there is more than one iterator defined in the binding container whose server-side context must be reestablished. The CacheDataContexts array supports the following properties to store the worksheet's cached data context:

	
RestoreDataContextActionID

References an action binding to invoke.

	
CachedServerContexts

An array that identifies the attribute binding values to cache and set before the action binding specified by RestoreDataContextActionID is invoked. Each element in the CachedServerContext array supports the CachedAttributeID and RestoredAttributeID properties. CachedAttributeID identifies the attribute binding value to cache in the worksheet. RestoredAttributeID is an optional property for which you specify a value when the destination attribute binding value is different from the source attribute binding value. If you do not specify a value for RestoredAttributeID, the value of CachedAttributeID is used as the destination attribute binding value and its value is set before invoking the action set.

	
Annotation

For more information about this property, see Section A.1, "Frequently Used Properties in the ADF Desktop Integration."

	
ServerContext.IDAttributeID

	
Binding

	
N

	
Specifies an attribute binding that uniquely identifies the row displayed in the current worksheet. This property is used at runtime to determine whether the server context has been reestablished properly for non-table type components in the worksheet.

	
ServerContext.SendParameters

	
Boolean

	
N

	
The default value of this property is FALSE.

When set to TRUE, the workbook sends initialization parameters for this worksheet when reestablishing context across multiple sessions.

	
SetupActionID

	
Binding

	
N

	
Specify the ADFm action binding to be invoked before the binding container metadata is retrieved.

A value for this property is optional.

If two, or more, worksheets are using the same page definition, the action binding specified for the last worksheet will be invoked. Hence, create a page definition for each worksheet and do not specify a page definition to multiple worksheets.

	
Title

	
String

	
Y

	
Specifies an EL expression that resolves to a string and sets the name of the worksheet. At design time, the EL expression can be of any length and can include the following special characters:

[] \ / * ?

At runtime, the evaluated string can display a maximum of 31 characters and ignores the above special characters. If the length of the evaluated string exceeds 31 characters, the extra characters are truncated and are not displayed.

Note that the Title property does not support binding parts in the EL expression. The expected usage is a resource-type expression.

Ensure that the EL expressions you write for the Title property generate unique values for each worksheet at runtime and contain fewer than 31 characters.

B ADF Desktop Integration EL Expressions

This appendix describes the syntax for EL expressions in ADF Desktop Integration, provides guidelines for writing EL expressions, and how to use attribute control hints in EL expressions.

This appendix includes the following sections:

	
Section B.1, "Guidelines for Creating EL Expressions"

	
Section B.2, "EL Syntax for ADF Desktop Integration Components"

	
Section B.3, "Attribute Control Hints in ADF Desktop Integration"

B.1 Guidelines for Creating EL Expressions

The following list describes the characteristics that EL expressions for your integrated Excel workbook can have and provides suggestions for writing EL expressions:

	
Literal values that evaluate correctly to the type expected for the Oracle ADF component property. The following list describes some examples:

	
Boolean values true and false

	
Integer values such as -1, 0, and 100

	
String values such as hello world

	
Strings that contain one or more valid EL expression parts. The following list shows examples of valid syntax:

	
#{row.bindings.ProductId.inputValue}

	
#{components.TAB416222534.errors}

	
#{res['excel.saveButton.label']}

	
A valid Excel formula. An Excel formula string must start with the = character. If the literal string includes an #{...} expression, ADF Desktop Integration evaluates this expression first and inserts the resulting value into the Excel formula string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:

	
Excel formula elements must not be used inside an #{...} expression.

	
EL expressions should not contain references to Excel cells because EL expressions are managed within ADF configuration. Excel cannot update the ADF configuration if the referenced cell moves. A workaround is to define a named cell reference or range using the Name box in the Excel Formula Bar. You can reference the named cell reference or named cell range reference from an EL expression. For information about defining named cell references or ranges, see Excel's documentation.

	
EL expressions in a page definition file

For information about the syntax that you use to write EL expressions in a page definition file, see Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

	
Excel formulas that include EL expressions

Ensure that any Excel formula that includes EL expression has no more than 255 characters. This also applies to formulas used to set conditional values to component properties.

B.2 EL Syntax for ADF Desktop Integration Components

Table B-1 lists supported expression properties for the ADF Desktop Integration components that support EL expressions.

The EL expressions use the following syntax to reference these properties:

#{components.componentID.property}

where componentID references the ID of the component and property references the property (for example, rowCount).

Table B-1 Expression Properties for ADF Desktop Integration Components

	Property	Component Type	Property Type	Expected Runtime Values	Value at Design Time
	
rowCount

	
Table

Read-only Table

	
Int

	
>=0

	
0

	
currentRowIndex

	
Table

Read-only Table

	
Int

	
>= 0 AND < RowCount (zero based index)

	
-1

	
currentRowMode

	
Table

	
String

	
"insert"

"update"

	
"unknown"

	
errors

	
Table

	
String

	
N/A

	
N/A

	
readOnly

	
Table.Column

	
Boolean

	
TRUE

FALSE

	
FALSE

Write EL expressions with the following syntax to retrieve:

	
Worksheet errors at runtime

#{worksheet.errors}

For more information about worksheet errors, see Section 12.4, "Error Reporting in an Integrated Excel Workbook."

	
Workbook initialization parameters

#{workbook.params.parameterName}

where parameterName is the name of the workbook initialization parameter. For information about using these parameters, see Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a Workbook."

	
Resource bundle string key values

#{resourceBundleAlias['resourceBundleKey']}

where resourceBundleAlias is the alias of the resource bundle and resourceBundleKey is the string key value. For more information about resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook."

Table B-2 describes the supported syntax and properties for Oracle ADF control bindings. For information about the attribute control hints (controlHint) that ADF Desktop Integration supports, see Table B-3.

You can use the expression builder described in Section 5.8, "Using the Expression Builder" to generate some of the EL expressions described in Table B-2. You have to write some other EL expressions as indicated in Table B-2.

Table B-2 Expression Properties and Syntax for Oracle ADF Control Bindings

	Syntax	Component Type	Object Property	Value at Design Time
	
Use the expression builder to generate EL expressions with the following syntax:

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the following EL expression:

#{bindings.attributeID.inputValue}

	
Attribute

	
Attribute control hint

	

""

	
Use the expression builder to generate EL expressions with the following syntax:

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

	
List

	
Attribute control hint

	

""

	
Write EL expressions with the following syntax for a column in a table-type component

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a dynamic column to an ADF Table component as described in Section 7.16, "Adding a Dynamic Column to Your ADF Table Component":

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}
#{bindings.TreeID.AttributeNamePrefix*.inputValue}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.controlHint}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

A value for AttributeNamePrefix and [TreeNodeID] is optional while * is required.

	
Table.Column

	
inputValue

	

""

B.3 Attribute Control Hints in ADF Desktop Integration

ADF Desktop Integration can read the values of the attribute control hint names described in Table B-3. You write EL expressions that ADF Desktop Integration uses to retrieve the value of an attribute control hint from your Fusion web application. Table B-2 describes the EL expression syntax that retrieves the values of attribute control hints at runtime.

You configure attribute control hints in your Fusion web application. Information about how to add an attribute control hint to an entity object can be found in the "Defining Attribute Control Hints for Entity Objects" section of the Developing Fusion Web Applications with Oracle Application Development Framework. Information about how to add an attribute control hint to a view object can be found in the "Defining UI Hints for View Objects" section of the Developing Fusion Web Applications with Oracle Application Development Framework.

Table B-3 Attribute Control Hints Used by ADF Desktop Integration

	Attribute Control Hint	Type	Value to configure in the Fusion web application
	
label

	
String

	
Returns the value of the label attribute control hint configured for an entity or view object.

	
updateable

	
Boolean

	
Returns true if the associated attribute binding is updatable.

	
readOnly

	
Boolean

	
This attribute control hint is unique to ADF Desktop Integration. Returns true if the associated attribute binding is not updatable.

To optimize the performance of an integrated Excel workbook when it evaluates Excel formulas in EL expressions, you should write an EL expression with the following syntax for a component's ReadOnly property:

#{bindings.attributeID.hints.readOnly}

rather than:

=NOT(#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readOnly property differs to the ReadOnly property of ADF Desktop Integration components described in Section A.1, "Frequently Used Properties in the ADF Desktop Integration."

	
mandatory

	
Boolean

	
Returns true if a value for the associated attribute binding is required.

	
dataType

	
String

	
Returns the data type of the attribute control hint. A Fusion web application can support many data types with complex names. The dataType attribute control hint was introduced in ADF Desktop Integration to simplify the writing of EL expressions. It maps the data types that a Fusion web application supports to the values supported by ADF Desktop Integration listed here:

	
string

	
number

	
date

	
boolean

	
other

	
tooltip

	
String

	
Returns the message value of the Tooltip attribute control hint configured for an entity or view object.

	
displayWidth

	
String

	
Returns the value of the Width attribute control hint configured for an entity or the view object. The value represents the width in number of characters.

The displayWidth hint can be used in a table column's Width property when ResizeMode for that column is set to SpecifiedWidth.

The ADF Desktop Integration attribute control hints are based on information available in the web application's model configuration. ADF Desktop Integration supports view object or entity object hint values, but does not support programmatic overrides of hint values if they are calculated at a row-by-row level at runtime.

C Troubleshooting an Integrated Excel Workbook

This appendix describes how to troubleshoot an integrated Excel workbook and generate log files when you encounter problems during development. It also describes possible solutions for a number of errors and problems (such as version mismatch, 404 error, and Oracle ADF tab not visible in integrated Excel workbook) that you may encounter.

This appendix includes the following sections:

	
Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop Integration"

	
Section C.2, "Verifying End-User Authentication for Integrated Excel Workbooks"

	
Section C.3, "Generating Log Files for an Integrated Excel Workbook"

	
Section C.4, "Common ADF Desktop Integration Error Messages and Problems"

	
Note:

The property inspector does not validate that values you enter for a property or combinations of properties are valid. Invalid values may cause runtime errors. To avoid runtime errors, make sure you specify valid values for properties in the property inspector. For more information about the property inspector, see Section 5.6, "Using the Property Inspector."

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration

Using a specific URL, you can verify that the Fusion web application is running the ADF Desktop Integration remote servlet (adfdiRemote), and the version of ADF Desktop Integration. This information can be useful if you encounter errors with an integrated Excel workbook. For example, you can determine whether the ADF Desktop Integration remote servlet is running when you are troubleshooting an integrated Excel workbook.

To verify that the ADF Desktop Integration remote servlet is running:

	
Log on to the Fusion web application.

	
Type the concatenated values of the workbook properties WebAppRoot and RemoteServletPath into the address bar of your web browser. This corresponds to a URL similar to the following:

http://hostname:7101/FusionApp/adfdiRemoteServlet

If the ADF Desktop Integration remote servlet is running, a web page returns displaying a message similar to Figure C-1.

Figure C-1 ADF Desktop Integration Remote Servlet

[image: This image is described in the surrounding text]

C.2 Verifying End-User Authentication for Integrated Excel Workbooks

If end users of an integrated Excel workbook do not get prompted for user credentials when they invoke an action that interacts with the Fusion web application configured with ADF security, it may mean that security is not configured correctly for either the integrated Excel workbook or the Fusion web application. You can verify that your secure Fusion web application authenticates end users and that it is security-enabled by carrying out the following procedure.

To verify that a secure Fusion web application authenticates end users, in the web browser's address bar, enter the URL that you used to verify whether ADF Desktop Integration remote servlet is running. For more information, see Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop Integration." If the Fusion web application is security-enabled, it will request that you enter user credentials.

For more information about securing your integrated Excel workbook, see Chapter 11, "Securing Your Integrated Excel Workbook."

C.3 Generating Log Files for an Integrated Excel Workbook

ADF Desktop Integration can generate log files that capture information based on events triggered by the following pieces of software within ADF Desktop Integration:

	
HTTP filter and the ADF Desktop Integration remote servlet on the web server (server-side logging)

For more information about server-side logging, see Section C.3.1, "About Server-Side Logging."

	
Excel workbook which you integrate with your Fusion web application (client-side logging)

For more information about client-side logging, see Section C.3.2, "About Client-Side Logging."

C.3.1 About Server-Side Logging

To know more about server-side logging, see the "Server-Side Logging" section in Administering Oracle ADF Applications.

C.3.2 About Client-Side Logging

You can configure ADF Desktop Integration to save logs of triggered events on the client. By default, no log files are generated. For more information about how to configure ADF Desktop Integration module to save logs, see Section C.3.2.1, "How to Configure ADF Desktop Integration to Save Logs.".

C.3.2.1 How to Configure ADF Desktop Integration to Save Logs

ADF Desktop Integration provides logging tools to generate event logs and make them easily accessible. The logging tools are located in the Logging group of the Oracle ADF tab, and are available in both the design mode and the test mode.

Figure C-2 shows the logging tools in the Oracle ADF tab.

Figure C-2 Logging Tools in Oracle ADF Tab

[image: This image is described in the surrounding text]

The Logging group provides the following buttons:

	
Console

Displays the Logging Console window, which enables you to review the recent log entries while you are developing and testing the integrated Excel workbook. The console displays entries that are logged while the console is open. Figure C-3 illustrates the Logging Console window with error log entries.

The console is a resizable, non-modal window with a buffer size of 64,000 characters. When the buffer is full, the old entries are removed. To save log entries, select and copy them to a text file.

Figure C-3 Logging Console Window

[image: This image is described in the surrounding text]

The dialog has the following buttons:

	
Set Level: Click to set the log output level. The button opens the Logging Output Level dialog, where you can choose the desired log output level.

	
Clear: Click to clear the log buffer.

	
Close: Click to close the dialog.

	
Note:

A common Logging Console window logs entries for all open integrated Excel workbooks.

	
Set Output Level

Prompts you to choose the log output level. Table C-1 describes the log levels that client-side logging supports.

Figure C-4 Logging Output Level Dialog

[image: This image is described in the surrounding text]

Table C-1 Client-Side Logging Levels

	Level	Description
	
Critical

	
Captures critical information.

	
Error

	
Captures information about severe errors and exceptions.

	
Warning

	
Captures irrecoverable conditions.

	
Information

	
Captures lifecycle and control flow events.

	
Verbose

	
Captures detailed information about the execution flow of the application.

	
Off

	
No logs are captured. This is the default value.

	
Note:

The log output level applies to all listeners for a given logger.

	
Add Log Output File

Creates a new temporary logging listener to direct logging output to the specified file or format. In the Add New Temporary Logging Output File dialog, choose the desired file output type (text or XML), and specify the path and file name of the log output file.

Figure C-5 Add New Temporary Logging Output File Dialog

[image: This image is described in the surrounding text]

The temporary listener directs the logging output for the current Excel session only, and is not registered in the ADF Desktop Integration configuration file. After you close the integrated Excel workbook, the temporary listener is removed.

	
Note:

When you click the Add Log Output File button, a new listener is created. The new listener does not replace any existing listener defined in the ADF Desktop Integration configuration file, or any other temporary listener.

	
Refresh Config

Reloads the ADF Desktop Integration configuration file. The ADF Desktop Integration configuration file determines the type of information logged by ADF Desktop Integration. It also determines the location and the output format of the log file.

For more information about the creation and configuration of the ADF Desktop Integration configuration file, see Section C.3.2.2, "About the ADF Desktop Integration Configuration File."

C.3.2.2 About the ADF Desktop Integration Configuration File

The ADF Desktop Integration configuration file is saved as adfdi-excel-addin.dll.config in the Designer edition, and as adfdi-excel-addin-runtime.dll.config in the Runtime edition. To determine the correct file name and location, click the About button in the Workbook group of the Oracle ADF tab. In the dialog that opens, click the Properties tab, and consult the Configuration entry for file name and location of configuration file.

For more information about elements of the configuration file, see the "Configuration File Schema for the .NET Framework" section in Microsoft Developer Network documentation. For more information about trace and debug settings, see the "Trace and Debug Settings Schema" section in Microsoft Developer Network documentation.

Example C-1 shows a sample configuration file, one of many valid ways to configure client-side logging, that generates two different log files with different formats (.txt and .xml). The file captures different types of information such as ThreadId, ProcessId, and DateTime at a Verbose logging level.

Example C-1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="adfdi-common" switchValue="Verbose">
 <listeners>
 <add type="System.Diagnostics.DelimitedListTraceListener"
 name="adfdi-common-excel.txt"
 initializeData="c:\logs\adfdi-common-excel.txt"
 delimiter="|"
 traceOutputOptions="ThreadId, ProcessId, DateTime"/>
 <add type="System.Diagnostics.XmlWriterTraceListener"
 name="adfdi-common-excel.xml"
 initializeData="c:\logs\adfdi-common-excel.xml"
 traceOutputOptions="None"/>
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

C.3.2.3 How to Configure Logging Using User Environment Variables

Users who do not have access to the directory that stores the ADF Desktop Integration configuration file can change the location where log files are saved, and the logging level by setting values for user environment variables. You can add two user environment variables to configure the logging level and location for XML log files.

To add or configure user environment variables on Windows:

	
Click the Windows Start button and then click Control Panel.

	
In the Control Panel, click System, and then Advanced System Settings.

	
In the Advanced tab of System Properties dialog, click Environment Variables.

	
In the Environment Variables dialog, click New under the User variables for username input field, and add variables as described in the Table C-2.

Table C-2 User Environment Variables to Configure Logging

	Enter a variable named...	With a value...
	
adfdi-common-file

	
That defines the directory path and file name for the XML file that captures logging information.

The directory that you specify here must exist before you add the adfdi-common-file variable. The generated log file will be in XML format.

	
adfdi-common-level

	
That specifies the level of logging. Table C-1 lists valid values.

	
Click OK.

C.3.2.4 What You May Need to Know About the adfdi-common Object

The adfdi-common object is an instance of the TraceSource class from the System.Diagnostics namespace in the Microsoft .NET Framework. This object is used to generate log files that capture information about events triggered by the Excel workbook that you integrate with your Fusion web application. To know the location of the log file, check the Log Files attribute in the Properties tab of the About dialog.

For more information about the TraceSource class, see Microsoft Developer Network documentation.

C.4 Common ADF Desktop Integration Error Messages and Problems

While using or configuring the ADF Desktop Integration enabled Fusion web application or workbooks, you might see error messages or have some problems. The following list describes the most common error messages, their cause, and solutions.

	Error message: [ADFDI-00127] A version mismatch was detected for SyncServletResponse. Version x was found, version y was expected
	
Cause: The client version of ADF Desktop Integration does not match the ADF Desktop Integration version in the web application.

	
Action: Uninstall client ADF Desktop Integration, and install the web application specific ADF Desktop Integration version. For more information about installing ADF Desktop Integration client, see Section 3.4, "Installing ADF Desktop Integration."

	Error message: 404 Error - servlet not found
	
Cause: The web.xml deployment descriptor settings are not in sync with Workbook.RemoteServletPath property value.

	
Action: Open Workbook Properties editor and verify the Workbook.RemoteServletPath property value.

	Error message: Programmatic access to Visual Basic Project is not trusted
	
Cause: Macro settings in Excel are not enabled.

	
Action: Verify that the Trust access to the VBA project object model checkbox in the Trust Center dialog is enabled. For more information, see Section 3.3, "Configuring Excel to work with ADF Desktop Integration."

	Problem: Oracle ADF tab is not visible in your integrated Excel Workbook after installing ADF Desktop Integration
	
Cause: The ADF Desktop Integration add-in is not enabled in Excel.

	
Action: Enable the ADF Desktop Integration add-in in the Excel Options dialog. In Excel, click the Microsoft Office button, and then click Excel Options to open the Excel Options dialog. In the Add-Ins tab, open the Manage dropdown list, choose COM Add-ins, and click Go. In the COM Add-ins dialog, select the Oracle ADF Desktop Integration Add-in for Excel checkbox and click OK.

For information about all ADF Desktop Integration error messages, see Oracle Fusion Middleware Error Messages Reference.

If you are a system administrator, you should also see the "Common ADF Desktop Integration Error Messages and Problems" section in Administering Oracle ADF Applications.

D ADF Desktop Integration Settings in the Web Application Deployment Descriptor

This appendix describes the values that you set for the ADF Desktop Integration servlet (adfdiRemote) so that the Fusion web application can use it. The appendix also describes the values in the deployment descriptor file that determine the behavior of the HTTP filter that ADF Desktop Integration provides, and provides a code sample from a deployment descriptor file that shows these values in use.

This appendix includes the following sections:

	
Section D.1, "Configuring the ADF Desktop Integration Servlet"

	
Section D.2, "Configuring the ADF Desktop Integration Excel Download Filter"

	
Section D.3, "Examples in a Deployment Descriptor File"

D.1 Configuring the ADF Desktop Integration Servlet

A Fusion web application with integrated Excel workbooks must contain entries in its deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel workbooks that you integrate with a Fusion web application call this servlet to synchronize data with the Fusion web application. The adf-desktop-integration.jar file stores the servlet in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_12.1.3

where MW_HOME is the Middleware Home directory.

When you add ADF Desktop Integration to your project as described in Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application," ADF Desktop Integration automatically configures your deployment descriptor with the necessary entries to enable the servlet (DIRemoteServlet) on your Fusion web application. If required, then you can configure the servlet manually.

To configure the ADF Desktop Integration servlet:

	
In JDeveloper, locate and open the deployment descriptor file (web.xml) for your ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

	
Click the Servlets page, and then click the Add icon to create a row entry in the Servlets table. The icon is in the top-right corner of the servlets table.

Enter the values as described in Table D-1 to enable the adfdiRemote servlet on the Fusion web application.

Table D-1 Values to Enable adfdiRemote Servlet

	For this property...	Enter this value...
	
Name

	
adfdiRemote

	
Type

	
Servlet Class

	
Servlet Class/JSP file

	
oracle.adf.desktopintegration.servlet.DIRemoteServlet

	
In Servlets page, click the Servlet Mappings tab, and then click the Add icon to create a row in the Servlet Mapping table.

Enter the value as described in Table D-2 to add a URL pattern for the adfdiRemote servlet in the Fusion web application. The value that you enter must match the value that you specify in the integrated Excel workbook for the RemoteServletPath workbook property. Note that values are case sensitive.

Table D-2 Values to Add A URL Pattern to adfdiRemote Servlet

	For this property...	Enter this value...
	
URL Patterns

	
/adfdiRemoteServlet

Figure D-1 displays the Servlets page of web.xml of Summit sample application for ADF Desktop Integration.

Figure D-1 Servlets Page of Deployment Descriptor

[image: This image is described in the surrounding text]

	
Click the Filters page, and verify that whether a adfBindings filter exists in the Filters table. If an entry exists, select it and proceed to the next step. If there is no such entry, then click the Add icon to create a row entry in the Filters table. The icon is available in the top-right corner of the filters table.

Enter the values as described in Table D-3 to add the ADF binding filter to the adfdiRemote servlet.

Table D-3 Values to Add Binding Filter to adfdiRemote Servlet

	For this property...	Enter this value...
	
Name

	
adfBindings

	
Class

	
oracle.adf.model.servlet.ADFBindingFilter

	
In Filters page, click the Filter Mappings tab, and then click the Add icon to create a row in the Filter Mapping table.

Enter the values as described in Table D-4 to add the mapping filter to the adfdiRemote servlet. The filter mapping must match with the Servlet name in Step 2.

Table D-4 Values to Add Mapping Filter to adfdiRemote Servlet

	For this property...	Enter this value...
	
Mapping Type

	
Servlet

	
Mapping

	
adfdiRemote

Figure D-2 displays the Filters page of web.xml of Summit sample application for ADF Desktop Integration.

Figure D-2 Filters Page of Deployment Descriptor

[image: This image is described in the surrounding text]

	
Save the deployment descriptor file, and then rebuild your ADF Desktop Integration project to apply the changes you made.

D.2 Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration includes an HTTP filter in the adf-desktop-integration.jar stored in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_12.1.3

where MW_HOME is the Middleware Home directory.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion web application so that the application invokes the HTTP filter to make changes in an integrated Excel workbook before the integrated Excel workbook is downloaded by the end user from the Fusion web application. These changes ensure that the integrated Excel workbook functions correctly when the end user opens it. The HTTP filter makes the following changes:

	
WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web application from which the end user downloads the integrated Excel workbook.

	
Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the workbook was inadvertently left in design mode or test mode.

By default, JDeveloper adds the HTTP filter to your ADF Desktop Integration project when ADF Desktop Integration is enabled in your project.

To configure the HTTP filter:

	
In JDeveloper, locate and open the deployment descriptor file (web.xml) for your ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

	
Click the Filters page, and verify that an adfBindings filter exists in the Filters table. If an entry exists, select it and proceed to the next step. If there is no such entry, then click the Add icon to create a row entry in the Filters table.

Enter the values as described in Table D-5 to create a filter, or configure the values to modify the existing HTTP filter.

Table D-5 Properties to Configure HTTP Filter

	For this property...	Enter this value...
	
Name

	
adfdiExcelDownload

	
Class

	
oracle.adf.desktopintegration.filter.DIExcelDownloadFilter

	
Display Name

	
(Optional) In General Filter tab, enter a display name for the filter that appears in JDeveloper.

	
Description

	
(Optional) In General Filter tab, enter a description of the filter.

	
In the Filters page, click the Filter Mappings tab, and then click the Add icon to create a row in Filter Mapping table.

Add a filter mapping for integrated Excel workbooks that use the default file format (.xlsx) by entering values as described in Table D-6.

Table D-6 Properties to Configure Filter Mappings

	For this property...	Enter this value...
	
Mapping Type

	
URL Pattern

	
Mapping

	
*.xlsx

	
Dispatcher Type

	
No value is required for this property.

	
Add another filter mapping for integrated Excel workbooks that use the macro-enabled workbook format (.xlsm) by entering values as described in Table D-7.

Table D-7 Properties to Configure Filter Mappings

	For this property...	Enter this value...
	
Mapping Type

	
URL Pattern

	
Mapping

	
*.xlsm

	
Dispatcher Type

	
No value is required for this property.

Figure D-3 displays the Filters page of web.xml of Summit sample application for ADF Desktop Integration.

Figure D-3 Filters Page of Deployment Descriptor

[image: This image is described in the surrounding text]

	
Click the Application page, expand MIME Mappings section, and click the Add icon.

Add a MIME type for integrated Excel workbooks that use the default file format (.xlsx) by entering values as described inTable D-8.

Table D-8 Properties to Add MIME Mappings

	For this property...	Enter this value...
	
Extension

	
*.xlsx

	
MIME Type

	
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

	
Add another MIME type for integrated Excel workbooks that use the macro-enabled workbook format (.xlsm) by entering values as described in Table D-9.

Table D-9 Properties to Add MIME Mappings

	For this property...	Enter this value...
	
Extension

	
*.xlsm

	
MIME Type

	
application/vnd.ms-excel.sheet.macroEnabled.12

Figure D-4 displays the Application page of web.xml of Summit sample application for ADF Desktop Integration.

Figure D-4 Application Page of Deployment Descriptor

[image: This image is described in the surrounding text]

	
Save the deployment descriptor file, and then rebuild your ADF Desktop Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that the filter for ADF Library Web Application Support (<filter-name>ADFLibraryFilter</filter-name>) appears below the adfdiExcelDownload filter entries, so that integrated Excel workbooks can be downloaded from the Fusion web application.

D.3 Examples in a Deployment Descriptor File

The following extracts from the web.xml file of a Fusion web application with ADF Desktop Integration shows the entries that you configure for a desktop integration project. For more information ordering of filters, see Section 4.4.4, "What Happens When You Add ADF Desktop Integration to Your JDeveloper Project."

 <filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>
 oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 </filter>
 <filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
 </filter-mapping>
 <servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 <init-param>
 <param-name>ClientServerVersionCheck.Precision</param-name>
 <param-value>2</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
 </servlet-mapping>
 <mime-mapping>
 <extension>xlsx</extension>
 <mime-type>
 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
 </mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>xlsm</extension>
 <mime-type>
 application/vnd.ms-excel.sheet.macroEnabled.12
 </mime-type>
 </mime-mapping>

E String Keys in the Overridable Resources

This appendix describes the string keys in the reserved resource bundle that you can override.

Table E-1 lists the string keys and their current English values. Create a resource bundle where you define the string keys in Table E-1 and the values that you want to appear at runtime. For information about how to override the reserved resource bundle, see Section 10.2.2, "How to Override Resources That Are Not Configurable."

Table E-1 String Keys and Values in the Reserved Resource Bundle

	Area where string key value appears at runtime	String key	English value in the ADF Desktop Integration reserved resource bundle	Comments
	
Upload Options

	
UPLOAD_OPTIONS_TITLE

	
Upload Options

	

	
Upload Options

	
UPLOAD_OPTIONS_PROMPT

	
Specify options to use during the Upload operation

	

	
Upload Options

	
UPLOAD_OPTIONS_CONTINUE_ON_FAIL_LABEL

	
On failure, continue to upload subsequent rows

	

	
Upload Options

	
UPLOAD_OPTIONS_DOWNLOAD_AFTER_LABEL

	
Download all rows after successful upload

	

	
Table.Download

	
DOWNLOAD_OVERWRITE_TITLE

	
Download

	

	
Table.Download

	
DOWNLOAD_OVERWRITE_PROMPT

	
Do you wish to discard the pending changes?

	

	
Table.Download

	
ROWLIMIT_WARNINGS_TITLE

	
Row limit exceeded

	

	
Table.Initialize

	
INITIALIZE_OVERWRITE_TITLE

	
Initialize

	

	
Table.Initialize

	
INITIALIZE_OVERWRITE_PROMPT

	
Do you wish to discard the pending changes?

	

	
Workbook.ClearAllData

	
CLEARDATA_CONFIRM_TITLE

	
Clear all data

	

	
Workbook.ClearAllData

	
CLEARDATA_CONFIRM_PROMPT

	
This command will log you out of your current session and clear all the data from all worksheets in the workbook. Are you sure?

	

	
Workbook.Logout

	
LOGOUT_STATUS_TITLE

	
Logout

	

	
Workbook.Logout

	
LOGOUT_STATUS_PROMPT

	
You have been logged out from your current session.

	

	
Table.Upload

	
COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_TITLE

	
Upload

	

	
Table.Upload

	
COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_PROMPT

	
One or more dynamic columns is no longer available, do you wish to continue?

	

	
Table status

	
UPLOAD_STATUS_NO_UPDATES

	
No updates detected

	

	
Table status

	
TABLE_UPLOAD_RECORD_NOT_FOUND

	
Record not found

	

	
Table status

	
TABLE_UPLOAD_CANNOT_INSERT_MORE_THAN_ONCE

	
Cannot insert record more than once

	

	
Table status

	
TABLE_COMMIT_FAILED_1

	
See Error Detail {0}

	
{0} is a batch number

	
Table status

	
TABLE_COMMIT_FAILURE_DETAILS_2

	
Error Detail {0}:{1}

	
{0} is a batch number

{1} is an error message

	
Table status

	
TABLE_UPLOAD_ROW_UPDATE_SUCCESS

	
Row updated successfully

	

	
Table status

	
TABLE_UPLOAD_ROW_INSERT_SUCCESS

	
Row inserted successfully

	

	
Table status

	
TABLE_UPLOAD_ROW_UPDATE_FAILURE

	
Update failed

	

	
Table status

	
TABLE_UPLOAD_ROW_INSERT_FAILURE

	
Insert failed

	

	
Table status

	
TABLE_DELETE_ROW_FAILURE

	
Delete failed

	

	
Table status

	
TABLE_ROW_KEY_VALUE_INVALID

	
Key value invalid

	

	
Table status

	
TABLE_DOWNLOAD_FAILURE

	
Download failed

	

	
Table status

	
TABLE_DOWNLOAD_ROW_FAILURE

	
Row download failed

	

	
Table status

	
TABLE_DOWNLOAD_FLAGGED_FAILURE

	
Download flagged rows failed

	

	
Table status

	
TABLE_DOWNLOAD_FOR_INSERT_FAILURE

	
Download for insert failed

	

	
Table status

	
MESSAGE_DETAILS_NONE

	
No error details available

	

	
Table status

	
MESSAGE_DETAILS_ROW_TITLE

	
Row Errors

	

	
Table status

	
MESSAGE_DETAILS_ROW_PROMPT

	
Errors for this row:

	

	
Table status

	
MESSAGE_DETAILS_TABLE_TITLE

	
Table Errors

	

	
Table status

	
MESSAGE_DETAILS_TABLE_PROMPT

	
Error details for this table:

	

	
Table status

Table errors

Worksheet errors

	
MESSAGE_DETAILS_HELP_LABEL

	
Click on each error to reveal additional information

	
Appears in the error list.

	
Table status

Table errors

Worksheet errors

	
MESSAGE_LABEL_DEFAULT_CONTEXT

	
Action

	

	
Worksheet errors

	
MESSAGE_DETAILS_WORKSHEET_TITLE

	
Worksheet Errors

	

	
Worksheet errors

	
MESSAGE_DETAILS_WORKSHEET_PROMPT

	
Error details for this worksheet:

	

	
Worksheet errors

	
MESSAGE_DETAILS_PARSE_FAILURE

	
A problem has occurred while retrieving the error details. The information is no longer available.

	

	
Worksheet errors

	
MESSAGE_LABEL_FAILED_1

	
{0} failed

	
{0} is a context label

	
Workbook.EditOptions

	
SETTINGS_EDIT_TITLE

	
Edit Options

	

	
Workbook.EditOptions

	
SETTINGS_EDIT_PROMPT

	
Enter a value for WebAppRoot. For example: http://localhost:1234/MyApp.

	

	
Workbook.EditOptions

	
SETTINGS_CONFIRM_TITLE

	
Web App Root

	

	
Workbook.EditOptions

	
SETTINGS_CONFIRM_PROMPT

	
Changing the Web App Root will log you out of your current session and clear all the data from all worksheets in the workbook. Are you sure?

	

	
Note:

The keys listed in Table E-1 cannot be used in EL expressions of the following syntax:

#{_ADFDIres['key']}

F Java Data Types Supported By ADF Desktop Integration

This appendix lists the Java data types that an ADF Desktop Integration project supports.

Primitive Java Types

	
boolean

	
double

	
float

	
int

	
long

	
short

Object Java Types

	
java.lang.Boolean

	
java.lang.Double

	
java.lang.Float

	
java.lang.Integer

	
java.lang.Long

	
java.lang.Short

	
java.lang.String

	
java.math.BigDecimal

	
java.sql.Date

	
java.sql.Time

	
java.sql.Timestamp

	
java.util.Date

	
oracle.jbo.domain.Date

	
oracle.jbo.domain.Number

	
oracle.jbo.domain.RowID

	
oracle.jbo.domain.Timestamp

	
oracle.jbo.domain.TimestampLTZ

	
oracle.jbo.domain.TimestampTZ

	
Note:

Using data types not listed in this appendix will generate error at runtime.

G Using the ADF Desktop Integration Model API

There may be certain use cases where you want to allow uploading ADF Table data even when there are no rows available in a tree binding. This appendix describes how to use the ADF Desktop Integration Model API library in custom Java code to access the attribute values sent from the client during the upload process when there are no actual rows available.

This appendix includes the following sections:

	
Section G.1, "About the Temporary Row Object"

	
Section G.2, "About ADF Desktop Integration Model API"

	
Section G.3, "ADF Desktop Integration Model API Classes and Methods"

G.1 About the Temporary Row Object

Each ADF Table component is bound to a tree binding defined within a page definition. Each tree control binding has one (or more) tree nodes defined. For parent-child relationships, the tree binding has two nodes, one for parent table and another for child table. At runtime, the ADF Table component displays both parent and child attributes within each worksheet row. On upload, ADF Desktop Integration sets attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available during Table.Upload request processing. Two common scenarios where a tree node may not have data are:

	
The tree node's iterator result set does not have any data rows available. This could be because of a query returning zero rows.

	
In a parent-child relationship, if the foreign key has not been populated in the parent table, the link between parent and child tree node may not contain actual rows.

There may be certain cases when, even though there is no actual row available on the server, you still want to allow the end user to enter values in the worksheet and upload them to the server. During upload, ADF Desktop Integration creates a temporary row object and stores the values uploaded from the worksheet row. Using the ADF Desktop Integration Model API, you can write custom Java code to access the temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code through a pageDef action binding and then configure the ADF Table component's UpdateRowActionID or InsertAfterRowActionID to point to the pageDef action binding.

G.2 About ADF Desktop Integration Model API

While data is being uploaded, if a tree node of the ADF Table component contains no actual rows, the ADF Desktop Integration remote servlet creates a temporary row object to store the attribute values. If you want to access the temporary row object and its attribute values, you must write custom Java code that uses the ADF Desktop Integration Model API library.

	
Note:

The ADF Desktop Integration Model API is not supported for EJB or Toplink data controls.

For more information about the classes and methods available in the API, see Section G.3, "ADF Desktop Integration Model API Classes and Methods."

G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

You typically add the ADF Desktop Integration Model API Library to your application's data model project. The library is an independent library, not included with any feature. You can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:

	
In the Applications window, right-click the data model project and choose Project Properties.

	
In the Project Properties dialog, select Libraries and Classpath to view the list of libraries available.

	
Click Add Library and in the Add Library dialog, select the ADF Desktop Integration Model API library.

Figure G-1 Add Library Dialog

[image: This image is described in the surrounding text]

	
Click OK. The library name adds to the Classpath Entries list.

	
Click OK to close the Project Properties dialog box.

G.3 ADF Desktop Integration Model API Classes and Methods

The ADF Desktop Integration Model API library contains one public class that contains APIs for retrieving temporary row objects.

G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class

The ModelHelper class is a public class that exposes Model APIs. The following sections describe the methods available in the class.

G.3.1.1 The getAdfdiTempChildRow Method

The method is used to lookup temporary child row object (ViewRowImpl object) associated with a particular master row. When required, the servlet code creates the temporary ViewRowImpl object and stores attribute values when there are no actual ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempChildRow(ViewRowImpl masterRow, java.lang.String childAccessor)

Parameters

	
masterRow – master row object

	
childAccessor – child attribute name

G.3.1.2 The getAdfdiTempRowForView Method

The method is used to lookup temporary child row object (ViewRowImpl object) associated with a particular view. When required, the servlet code creates the temporary ViewRowImpl object and stores attribute values when there are no actual ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempRowForView(ApplicationModuleImpl am,java.lang.String viewDefName)

Parameters

	
am – application module instance

	
viewDefName – view definition name

G.3.1.3 The getChildViewDef Method

The method is used to lookup polymorphic child view definition if the view link destination attributes specify one or more child discriminator attributes. The master row source attributes lookup the correct polymorphic child view definition through ViewObjectImpl.findViewDefFromDiscrValues API. If no child discriminator attributes are defined, or the child view is non-polymorphic, the default child ViewDefImpl object is returned.

The method returns the temporary child ViewRowImpl object containing any attribute values sent from worksheet, or returns null if the object is not found.

Method Syntax

public static final ViewDefImpl getChildViewDef(ViewRowImpl masterRow,java.lang.String childAccessor)

Parameters

	
masterRow – master row object

	
childAccessor – child attribute name

H End User Actions

This appendix describes the actions the end user would be performing while using your application and integrated Excel workbook, such as installing runtime edition of ADF Desktop Integration, importing data from non-integrated Excel workbook, making changes in the workbook at runtime, and handling time zone conversion of date-time values in the workbook.

The actions described in this appendix assume that you have developed a functioning Fusion web application.

This appendix includes the following sections:

	
Section H.1, "Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration"

	
Section H.2, "Importing Data from a Non-Integrated Excel Worksheet"

	
Section H.3, "Removing Personal Information"

	
Section H.4, "Editing an Integrated Excel Workbook at Runtime"

	
Section H.5, "Limitations of an Integrated Excel Workbook at Runtime"

	
Section H.6, "Using An Integrated Excel Workbook"

	
Section H.7, "Handling Time Zone Conversion"

H.1 Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration

End users can install the runtime edition of ADF Desktop Integration using the client installer.

When the ADF Desktop Integration client installer runs, it verifies whether the required software is installed on the system. For more information about the required software, see the following:

	
Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

	
Section 3.3, "Configuring Excel to work with ADF Desktop Integration"

	
Notes:

	
You cannot install the Runtime edition of ADF Desktop Integration from JDeveloper.

	
JDeveloper is not required to install the runtime edition of ADF Desktop Integration.

H.1.1 How to Install Runtime Edition of ADF Desktop Integration

To install the runtime edition, the client installer must be made available to the end user on the end user's local system. Ask your system administrator to make the client installer files available to the end user.

To install the Runtime edition of ADF Desktop Integration:

	
Navigate to the MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_12.1.3 directory, where MW_HOME is the Middleware Home directory.

	
Extract the contents of adfdi-excel-runtime-client-installer.zip to a temporary directory on the end user's local file system (for example, D:\Oracle\ADFDI_Client).

Note that the fully qualified path of the temporary directory must be less than 248 characters.

	
Run the setup.exe file located in the extracted directory of the adfdi-excel-runtime-client-installer.zip file.

Figure H-1 shows an example of the setup.exe file location on a local system, and the installation of runtime edition.

Figure H-1 Installing Runtime Edition of ADF Desktop Integration

[image: This image is described in the surrounding text]

	
Follow the instructions that appear in the dialog boxes launched by setup.exe to successfully install the required components.

	
If prompted, click Yes to restart the system and complete the setup of ADF Desktop Integration.

	
WARNING:

After you install the runtime edition of ADF Desktop Integration, do not delete the directory where you copied the client installer files. You can delete the files after removing the runtime edition of ADF Desktop Integration from the system.

H.1.2 How to Remove the Runtime Edition of ADF Desktop Integration

Use the Microsoft Windows Control Panel to remove the runtime edition of ADF Desktop Integration from the system.

To remove the ADF Desktop Integration add-in:

	
Click the Windows Start button, and then choose Control Panel.

	
In the Control Panel, select and open Programs and Features.

	
Select the Oracle ADF Desktop Integration Runtime add-in for Excel entry in the Uninstall or change a program window, and click Uninstall.

H.1.3 How to Upgrade the Runtime Edition of ADF Desktop Integration On a Local System

To upgrade the runtime edition of ADF Desktop Integration, uninstall the old client version, and install the new version. For more information about uninstalling the runtime edition, see Section H.1.2, "How to Remove the Runtime Edition of ADF Desktop Integration," and for more information about installing the runtime edition, see Section H.1.1, "How to Install Runtime Edition of ADF Desktop Integration."

If the runtime edition of ADF Desktop Integration is installed from a shared file server or a web server, by default, Excel checks the server for ADF Desktop Integration updates when it is launched and if 24 hours have elapsed since the last check for updates. If you do not wish to wait 24 hours and want to check the update manually, you can do so from the Microsoft Windows Control Panel.

To upgrade the Runtime edition of ADF Desktop Integration manually:

	
Click the Windows Start button, and then choose Control Panel.

	
In the Control Panel, select and open Programs and Features.

	
Select the Oracle ADF Desktop Integration Runtime Add-in for Excel entry in the Uninstall or change a program window.

	
With the entry selected, click the Update Information link.

	
Note:

If the runtime edition of ADF Desktop Integration is installed from a web server, open the Update Information link in Internet Explorer to run the installer. Other browsers are not supported.

	
Follow the instructions that appear in the dialog boxes to successfully upgrade ADF Desktop Integration.

H.2 Importing Data from a Non-Integrated Excel Worksheet

End users who use the ADF Table component in an integrated Excel workbook to upload large batches of data rows to the Fusion web application can prepare these rows of data in a non-integrated Excel worksheet. They can then insert the data into the ADF Table component prior to invoking the ADF Table component's Upload action.

To prepare data in a non-integrated Excel workbook:

	
Arrange the layout of data in a non-integrated Excel worksheet to match the layout of the ADF Table component in the integrated Excel workbook.

For example, if an ADF Table component contains columns such as Product, Price, and Description, reproduce this layout in the non-integrated Excel worksheet.

	
Tip:

Copy the column headers from the ADF Table component to the non-integrated Excel worksheet.

	
Use functionality of Excel to import the rows of data into the non-integrated Excel worksheet in rows under the columns arranged in Step 1.

	
Row values that will be inserted into ADF Table component columns that use the TreeNodeList subcomponent must match a choice from the list of values.

	
Tip:

Copy an ADF Table component row from the integrated Excel workbook to another worksheet of the same workbook, as the proper constraints will be defined for such a row and can be reproduced.

To insert data into the ADF Table component from a non-integrated Excel workbook:

	
In the ADF Table component, highlight n existing downloaded rows or new rows at the end of the ADF Table component where n is the number of rows to insert.

	
Right-click and choose Insert from the context menu.

	
In the non-integrated Excel worksheet, select the cells to insert into the rows of the ADF Table component created in Step 2.

	
WARNING:

Select the cells in the non-integrated Excel worksheet and not the rows or columns.

	
In the Excel Ribbon, choose Home > Copy.

	
In the ADF Table component, select the upper left corner cell of the rows inserted in Step 2.

	
In the Excel Ribbon, choose Home > Paste.

	
End users can now invoke the ADF Table component's Upload action using whatever functionality you configured for them as described in Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table Component."

H.3 Removing Personal Information

If the Fusion web application that you integrate an Excel workbook with uses a security mechanism, such as single sign-on, personally identifying information may be stored in cookies on the system where the end user accesses the integrated Excel workbook. End users can remove this information using Microsoft Internet Explorer. End users must log out and close all integrated Excel workbooks to invalidate all active cookie-based web sessions.

For information about removing personal information, see Microsoft Internet Explorer documentation.

H.4 Editing an Integrated Excel Workbook at Runtime

Once you publish and deploy a finalized integrated Excel workbook, as described in Chapter 14, "Deploying Your Integrated Excel Workbook." end users can make the following changes to a workbook at runtime:

	
Delete a column from an ADF Table or ADF Read-only Table component.

	
Drag and drop cells to move ADF components other than an ADF Button component.

	
Insert new rows into an ADF Table component.

	
Change the order of columns in an ADF Table or ADF Read-only Table component.

	
Insert non-integrated columns between the columns of an ADF Table or ADF Read-only Table component.

However, some changes to a workbook at runtime can corrupt the integration and are not supported. For more information about what changes are not allowed at runtime, see Section H.5, "Limitations of an Integrated Excel Workbook at Runtime."

H.5 Limitations of an Integrated Excel Workbook at Runtime

There are some known limitations on changing ADF Desktop Integration components at runtime.

	
Moving a column in ADF Table and ADF Read-only Table components – If the end user moves a column (for example, using native Excel cut-insert operations) to the right of the last table column, the column is considered to be outside of the table boundaries. ADF Desktop Integration will no longer recognize the column as being part of the table component during subsequent table operations.

Instead, to change the last column of a table component at runtime, the end user can perform either of the following actions:

	
Move all columns that are to the right of the desired last column to the left of the desired last column.

	
First, move the desired last column to the immediate left of the current last column, and then move the current last column to the left of the desired last column.

Similar actions should be performed to move a column so that it becomes the left-most column of the table.

	
Deleting an integrated Excel worksheet – If the end user deletes an integrated Excel worksheet, ADF Desktop Integration generates an exception when the end user tries to save the integrated Excel workbook.

To resolve the problem, the end user must close and reopen the workbook without saving changes.

Additional known limitations:

	
Excel's Conditional Formatting feature cannot be used effectively with ADF Desktop Integration table components.

	
The ADF Button components are disabled when the end user zooms in or out on an integrated Excel worksheet. The ADF Button components are active at 100% zoom only.

	
Due to native Excel behavior, sorting a dependent List of Values column at runtime does not sort the cell list validations properly.

H.6 Using An Integrated Excel Workbook

End users who are new to the ADF Desktop Integration technology and integrated Excel workbook must be made aware of the following common actions:

	
To download all rows after uploading the changed data, ensure that Download all rows after successful upload checkbox is selected in Upload Options dialog box.

	
Before uploading the changes, ensure that the Changed column of all modified rows is marked with an upward pointing triangle. A double-click on the upward pointing triangle character removes it, and the data of the relevant row is not uploaded.

	
To have Excel retain the format of a numeric or date value in a cell formatted with a text style while uploading data, add an apostrophe symbol (') before entering the value. The apostrophe symbol acts as an escape character and is not displayed with the value.

	
Do not delete, edit, or clear any cells in the Key column of the table. Any change to these values can lead to upload failures and data corruption.

	
Do not change Excel's settings for Protect Sheet or Protect Workbook. These settings are available in the Changes group of the Review tab.

	
To erase a value from a cell that is integrated with the web application, clear the cell value instead of deleting the Excel cell.

	
If the Fusion web application is running on the https protocol and you have not installed the security certificate on the client, the integrated Excel workbook gives an error on login and the connection is not established. To establish a connection, you must install the security certificate. If you cannot install the certificate from Excel, open Internet Explorer and navigate to the same website. You will be prompted to install the certificate.

	
Some ADF components may have cells that are configured to respond to a double-click to perform some action. For example, the Status column cells of the ADF Table component. You can also right-click in these cells and select Invoke Action.

Some common actions, such as inserting or deleting a row, and sorting data in ADF Table, are described in the subsequent sections.

H.6.1 How to Insert a Row in an ADF Table Component of an Integrated Excel Workbook

To insert a row in an ADF Table component, insert a full row in the worksheet, and add data in all mandatory columns. For more information, see Section 7.7, "Configuring an ADF Table Component to Insert Data."

An ADF Table, with one or more data rows, does not have a placeholder row after the last row of the table. Hence, any data inserted in the cells of the workbook after the last row of the table is not uploaded. To upload data of the row after the last row, you must insert a full Excel row.

To insert a row in an ADF Table component:

	
In the ADF Table component, click the row header, and select the entire row above which you want to insert the new row.

	
With the row selected, right-click and choose Insert.

A new row is inserted above the selected row.

	
Notes:

	
Insert a full Excel row between the table headers and the last row of the table. Do not insert the new row after the last row of the table.

	
If the ADF Table has no data rows, the first row of the table acts as a placeholder row.

H.6.2 How to Sort ADF Table Data in an Integrated Excel Workbook

To sort table data, choose Excel's Sort and Filter command.

To sort ADF Table data based on a particular column:

	
Select the header, or any cell, of the column you want to sort.

	
In the Editing group of the Home tab, click Sort and Filter. Choose the desired sort order from the dropdown list options.

To sort table data based on multiple columns:

	
Select any cell of the table.

	
In the Editing group of the Home tab, click Sort and Filter, and choose Custom Sort.

	
In the Sort dialog, add the columns, and their order preference. Ensure that the My data has headers checkbox is enabled.

	
Click OK.

	
Note:

While sorting the columns in an ADF Table component, ensure that you always choose Expand the selection in the Sort Warning dialog, when prompted, in order to maintain the integrity of the data in all the table rows.

H.6.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

Clearing the cell values of a row does not remove the row, and deleting the row from the Excel worksheet does not delete the row from the web application.

To delete a row in an ADF Table component, flag the row by double-clicking the respective cell of the Flagged column, and click the respective delete button. For more information about row flagging, see Section 7.11.2, "Row Flagging in an ADF Table Component."

	
Note:

If your table does not contain a Flagged column, you will not be able to delete rows from that table.

H.7 Handling Time Zone Conversion

You can configure integrated Excel workbooks to retrieve, edit, and submit data values that represent dates and times. As Excel does not provide native support for managing date or time data when the system time zone changes, ADF Desktop Integration tracks and detects the time zone changes for a workbook. It informs the end user about the time zone update when the workbook is opened, and then converts the date-time data of the workbook to the current time zone setting of the system.

For example, an end user in Arizona (GMT -07:00) downloads the data from the server to the integrated Excel workbook, edits the date-time data in the workbook, saves the data, but does not upload it. Later, the end user travels to Seoul and changes the time zone preference of the computer to GMT +09:00. When the workbook is opened after changing to the Seoul time zone, the end user receives a message, and then all date-time data values in the ADF components are converted from GMT -07:00 (Arizona) to GMT +09:00 (Seoul).

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/img/summit_home.png
Summit sample application for ADF Desktop Integration

Avalable Demos +

The Summit sample application for ADF Desktop Integration is a set of sample demonstrations that ilustrate the main capabilties of ADF
Desktop Integration. Select a demo from the carrousel, or from the menu in the top-right corner, to access the runtime workbooks.

Summit Desktop Integration Editable Table Sample

ation Navigation
it Customers Shast ble

Integration
1 Web Pick

This sample illustrates the most common used ADF |how touse ADF
Desktop Integration Table features. You can download! components and!strates hot
data; insert, update, delete and commit data; interact [ownload, navigate J“gs ?’z"‘

with column st of values, and track changes. P dependent list of VD Picker

lidation in action.
Download workbook

OEBPS/img/table_resizecols.png
e worees s S

Eitthe properties and press OK to save your changes.

[c =]
4 Behavior =
4 Events Startup
e Statup
4 ActionSet Actions (2) 3

b ActionOptions

OEBPS/img/deg_upload.png
| Edit Worksheet Properties.

Edit the properties and press OK to save your changes.

N

4 Behavior

> Events Startup

> Protecton

4 Ribbon Commands Ribbon Commands (3)

40 #lres[excel customers ribbon upload)
Annctaton
D VENTS1833632
Label HiresTexcel customers ribbon.uploadT)
4 SelectictonSet Upload Data

" ActionOptions
4 hctons

Upload Data

e e

Members:

[
)

FEl~

Upload Data properties:
ME]

4 Action
Action
ComponentiD

» Data

» Design

Upload
TAB1598787742

“The name of component method invoked.

[~

OEBPS/img/invoke_comp_method.png
Edit Workshest Properties

Edit the properties and press OK to save your changes.

[c =]
P Sarton 1
A Soo
4 ActionSet (Bt Actions Bg
. dcton0y
 betons
? foere ||| Members Dovrload Data properties:
Annotati 0] + 4 =
» Saus L) a|E
Sovctaton
s coose conporet o
InickeOnced
b Protection Choose an action exposed by components on the current worksheet.
 Fibbon Commands =8 Tt
- Data] CeaCachedRonAtrbutes
Page Defriion = DeleteFaggedRons
Parameers
» Rodsi
o Senvercartent
Actions

“The cllection of actions A

OEBPS/img/jdev_depdesc_servlets.png
web.xnl
@
sppicaton
Serviets
+ X
Fiters
ety Tive Servit Clas /350 Fle B
. FacesSenet ServitClass javax.faces webepp. FacesSenet
5 resources Serviet Class o apache.myfaces. ridad. webapp ResourceServiet 3
s orace. adf.c @
[GRAPHSERWET ServetClass orade.scf. v, faces.bunebapp.GraphServiet 3
(GAUGESERWET ServetClass _ orade.scf.viw.faces.bunebapp, GaugeSenet @
oxServet SerietCass orack.adfiew.faces bnebapp MapProxySenvet
fibResources ServitClass _orack,adf lorary webapp ResourceServiet J
General Sevit | Serviet Mappings Inilzaton Parameters | Secuity Role References.
+X
R patiems E

JadfiRemoteserviet

OEBPS/img/validate_button.png
o

Validate

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing
Applications with Oracle ADF Desktop
Integration, 12¢ (12.1.3)

OEBPS/img/file_system_folder_picker.png
=

Edit Workbook Propertes

ot e et and s Okt sveyur charges

B3

+ Bahaver

" Furime iten Tab

© D

> Brandinghems Brandingtems (5)
Faanere
RemoeSenefath

» R oo or oo
WebAppRoot

obes Crocse Deveper e pges s
mtion
ApplicationHomeFolder
CrtoncsionErals 21 St A0F01
Proect > b
el :
WorkbookD 0 e

» Security » 4 Model

bl SamplesFeed
e o
o 1 ViewController
T o)
‘The file path. relative to ApplicationHomeFolder.

OEBPS/img/button_comp.png
e e T

Eitthe properties and press OK to save your changes

NI
2 Clcklctonset Aotions) 3
 hesonptons
4 Actions Actions (3)
» [0 UpSync
4 [1 First

“The action binding invoked.

(=

OEBPS/img/edit_properties_button.png
B Edit Properties

OEBPS/img/adfdi_remoteservlet.png
Oracle ADF Desktop Integration 12¢

Diagnostic Information
Status | Active
Version | 12.13.0.0.7731

ADFDI_MAIN_NT_130522.1901

About ADF Desktop Integration

Copyright © 1907, 2013, Oracle and/or its affiliates. All rights reserved.

OEBPS/img/alphabet_button.png
21

OEBPS/img/table_comp_rt.png
ChangedFlaggec|status | Name Credit Rating |Phone. Address city Zip Code|Country | Sales Rep. | Comments | Key
Unisports Excellent |55-2066101 |72 Via Bahia _|Sa0 Paolo Brazil Gijum | Customer us
Simms Athletics|Poor 8120101 Takashi osaka Dapan |Nguyen |Customer sh...
Delhi Sports Good o1-10351 Chanakya New Delhi India Nguyen | Customer sp|.
‘Womansport Fair 1-206-104-0103 |281 King Street |Seattle | Washington| 98101 |USA Magee .
Kam's Sporting Goods|Excellent |852-3692888 |95 Queensway | Hong Kong Hong Kong [Dumas
Sportique Excellent 332257201 |4 Rue Chabaud |Cannes France |Dumas | Customer sp.

OEBPS/img/lov_comp.png
#{bindings.Regionid.label} |Regionid

om0

Eithepoperios o ress OKosaveyour chnges
NI
P =

Stylellame _ADFDI_input TextStyle
4 Data

4 ListOValues Regionld
DependsOrlalt =

Regonld =
Mriy

Tooltip ufhmm,ngmmmnm

» Design

> Layout -
ListiD
Alist binding.

OEBPS/img/dlov_tablecolumns_dt.png
ADF_ChangedColumn
ADF_FlagColumn
ADF_StatusColumn

E{row bindings Name inputValuq
#{row bindings CreditRatingld i
#row bindings Phone inputValul
#row bindings Address inputVa
#row bindings City inputValue} |
Hrow bindings State inputValue|
#{row bindings ZipCode.inputla
#row bindings Regionld inputVg
#row bindings. Countryld input
#row bindings SalesRepld inpui
#row bindings Comments input|
_ADF_RowKeyColumn

_ADFDI_TableCeliStyle
_ADFDI_HeaderStyle

Fase.
#Hbindings Customers hints Countryld labe

Tue 1
#Hrow bindings Countryld inputValue} (Tre
#irow bindings Regionld input Value} [..)
#H{row bindings Countryld input Value)

False

4 Design
Anrotation
D Countryld >

DependsOnList
‘Atree atrbute binding on which this Tree Nods List component depends.

o] e]

OEBPS/img/adfdi_components.png
1| Oracle ADF Desktop Integration v x

{res['excel.customers.title']}

pesgeroeluon
Chastenmorz] ol [Createlnsert (action)

e v ——— 8 Deete (action)

3 [Commit (action)
wace
i Ers
PLASEEUO0 g oo Hinoge S Woindngs st Wi WHOEE BBOSZ0 icosome ptrgtite yGE
oo eniETe Taeers e MEENENTS TAB) cmerstitsNa. | ot Ced mes s Phon, ometshois Add stomershis. ST SN 15 Byl mes s Sales | #7972 ens T
E TR el aigila ehbel e e Zocotel plresen o
: o e
Bty
shonsin
i Woubindng | vt Whosbindn | ycubicn [—

owtindings | Fatingdin | #fow bindings P | ddressinputfals| iy inputaly |5 Stateinpu 95 ZpCodel | o sindngs Coun sFepldinpualy
menputaluel, |pu¥ahe} | honeinpuc¥atet o o Wit | nputvlue | nidinpuvabet|of outindngs Comment nputluc Insert Binding

OEBPS/img/input_text_comp_rt.png
Edit Summit Warehouses

Warehouse 1d. 201 Manager |Roberta Menchu

Region |South America Country |Brazil

Address |68 Via Centrale

Gty | S0 Paulo State

Zip Code. Phone

OEBPS/img/dlov_tablecolumnsform_rt.png
Region | North America
Status Warehouse Id. |Manager |Country Phor
Molly
101]Urguhart |usa 0
Marta
501 Havel |Dominicen
Region |Asia
Status Warehouse Id. |Manager |Country Pho
Molly
101|Urguhart [rapan 0
varta [
501 Havel
Havel | iong kong

OEBPS/img/apply_style.png
Edit Expression

Boresson: EX

— oo ko et o) —]

&m Curency 2
@ Curency [0]
am Bxplanstory Text
am Good

& Headng 1
am Headng 2
am Headng 3
am Headng 4

@ Input

& Linked Cell

& Neural

& Nomal

am Note

am Output

am Percent

& SummitFom e >

OEBPS/img/adfdi_tables.png
Changed | Flagged |Status |Name Credit Rati|Phone Address city State Zip Code |Country |SalesRep. |Comments Key
Unisports Excellent |55-2066101 |72 Via Bahia | Sao Paulo Brazil Henry Giljum | Customer usually orders large ai
‘simms Athletics [Poor _|81-20101 (Takashi Osaka apan Mai Nguyen | Customer should always pay by ...
Delhi Sports_|Good__|01-10351 Chanakya _|New Delhi ndia Mai Nguyen | Customer specializes in baseball
Womansport _|Fair _|1-206-104-0103 |281 King Street Seattle Washington | 98101/USA Colin Magee .
Kam's Sporting GExcellent |852-3692888 |95 Queensway | Hong Kong Hong Kong | Andre Dumas

ADF Table

Name |Address Phone. [city State |Country |Zip Code |Sales Rep. |Credit Rating|Comments |

Unisports 72 Via Bahia 552066101 Sao Paulo 1 2 1 Customer usually

Simms Athletics Takashi 8120101 osaka 2 14 4 Customer should 2

Delhi Sports Chanakya o1-10351 New Dethi 3 14 2 Customer speciali

Womansport 281King Street 1-206-104-0103 Seattle Washingto 4 osi1 1 3

Kam's Sporting Goods 95 Queensway 852-3692888 Hong Kong H 15 1

ADF Read-only Table

OEBPS/img/publish_button.png
E)

Publish

OEBPS/img/button_rt.png
Edit Summit Warehouses

‘Warehouse Id.
Region
Address

aty

Zip Code

101 Manager |Molly Urguhart
North America Country |USA
1283 King Street
Seattle State | WA
Phone

Worksheet Errors

OEBPS/img/table_property_inspector.png
et componer A0t 12+

Edit the properties and press OK to save your changes.

=
G
»[o _ADF_ChangedColumn
b0 _ADF_FlagColumn
> @2 _ADF_StatusColumn
» B #{row bindings Name inputValue}
b Ml #fow bindings Credt Ratingld inputValue} E
> B #{row bindings.Phone inputValue}
> I8 #{row bindings Address inputValue}
> m #{row bindings Ciy inputValue}
> 8 #{row bindings State inputValue}
b8 #{row bindings ZipCode inputValue)
> [10) #irow bindings. Regionld inputValue}
b #{row bindings Countryld inputValue}
v 12 #{row bindings SalesRepld inputValue}
v (13 #{row bindings Comments inputValue}
s e “A0F FowkerCotmn
+ Roubos
Tree> Customers i
Colums
The eolesion o e columrs

OEBPS/img/jdev_appnavigator_excel.png

OEBPS/img/worksheet_pagedefinition.png
Edit Workshest Properties

Edit the properties and press OK to save your changes.

(=S|
4 Behavior
> Everts Statp
> Proecton
> Ribbon Commands Fibbon Commands (2)
4 Data
Page Defrifion ExcelEcitCustomers
Parameters
s E
> ServerContext
bl Choose a Page Defriton
4 Design
Annotation ExcelEdtinventory
orsce_ s view_ndexPageDef
orace_ i iew VisehousesindexPageDel
orace i, vien_TestPageDel
Page Definibon
The page defirtonfle s

Ealn=—n|

OEBPS/img/adfdi_styles.png
_ADFDI_TableChangedColumnStyle

_ADFDI _TableDoubleClickCellStyle

_ADFDI TableCellStyle

Explanatory Text

Changed Flagged status | Name g.‘f""'; Phone Address cty State |zip Code |Region Country |SalesRep. |Comments Key
Unisports Excellent [55-2066101 |72 Via Bahia__|5a0 Paulo South America [Brazi |Henry Gilum _|usuall orders -
Simms Athletics |Poor |81-20101 Takashi Osaka s Japan |MaiNguyen | always pay by -
DelhiSports_[Good _|91-10351 Chanakya |New Delhi s India |MaiNguen |specialzesin |..__
| Womansport |Fair | 1-206-104-0103 |281 King Street [Seattle |WA | 98101 North America |USA | Colin Magee]

_ADFDI_TableFlagColumnStyle

_ADFDI TableKeyCellStyle

OEBPS/img/multiple_comp.png
Edit Actions

Dowrlnd prpaes:
M|

(4] B Action
24 Action

et
=

‘Choose an action exposed by components on the curent worksheet.

= ROT956024323
{E] Download

=-E ROT1091543040
{E] Download

oK

OEBPS/img/row_level_precommit.png
Changed | Flagged |Status. Name. Credit Rati|Phone Address city Zip Code | Country
Unisports Excellent |55-2066101 |72 Via Bahia | Sao Paulo Brazil
‘Simms Athletics Poor |s1-20101 Takashi osaka Japan
A el Sports Good |91-10351 Chanakya New Delhi text India
A 'Womansports Fair |1-206-104-0103 281 King Street |Seattle | Washington 98101)UsA

OEBPS/img/saveworkbook.png
ORACLE' Summit sample application for ADF Desktop Integration

——

‘The Summit sample application for ADF Desktop Integration is a set of sample demonstrations tt Ediable Table Sample

Desktop Integration. Select 3 demo from the carrousel, or from the menu in the top-right COMer, yayigagon Form samgle

e Edtable Table With Web Picker

Form and Tabe QuikLocaton Change
Summit Desktop Integration Editable Table Sampre=—+ —

Do you want to open or save this file?

& Name: EditCustomersaisk
Type: Microsoft Office Excel Worksheet
From: localhost

ways ask befors openingthis type of e

This sample ilust

Desktop Integratio| 2 ‘While files from the Intemet can be useful, some files can potentially
data; insert, upda ham your computer. F you do not trus the source. do nct open or
o H save: ‘sthe risk?
| vith column I Galenies

| Download workbook

OEBPS/img/adf_image_rt.png
@\ Edit Customers Sheet

OEBPS/img/adf_tooltip-rt.png
Edit Summit Warehouses

Warehouse 1d. 2001 Manager
Region |South America Country
Address |68 Via Centrale

City a0 Paulo State
Zip Code. Phone

Roberta Menchu

Brazil

Worksheet Errors

alilaia

Enter 8 digit phone number

OEBPS/img/adf_worksheererror_dt.png
#{worksheet.errors}
#{res"excel.worksheet.errors T}

e 2 20

Edt the propeftes and press OK to save your changes.

I

_ADFDI_FormDoubleClickCellStyle.

!
E
5

DisplayWorksheet Errors.

#Hworksheet errors}

OutputText
The properies that gove the Output Tex.

OEBPS/img/table_rowlimit.png
Edit Component: ADF Table

Edit the properties and press OK to save your changes.

[c =]

1 Appearance =
4 Behavior

b BatchOptions

b Rowicfions

OEBPS/img/workbook_saveandopen.png
Changed | Flagged |Status. Name. Credit Rati|Phone Address city State Zip Code

Unisports Excellent |55-2066101 |72 Via Bahia___|Sa0 Paulo
simms Athletics [Poor |81-20101 Takashi osaka

N Delhi Sports | Good

A Womansport | Fair 98101
Kam's Sporting G{Excellent
Sportique Excellent A, Doyouvish to discad the pending changes?
‘Sweet Rock Spor{Good
Muench Sports_|Fair

L fmmas (e ===

Futbol Sonora__|Excellent.

OEBPS/img/row_level_postcommit.png
Changed | Flagged |Status. Name. Credit Rati|Phone Address city State Zip Code | Country
Unisports Excellent [55-2066101 |72 Via Bahia | Sao Paulo Brazil
Simms Athletics Poor |s1-20101 Takashi osaka Japan
N Update failed Delhi Sports Good |91-10351 Chanakya New Delhi text India
Row updated successfully _|womansports Fair |1-206-104-0103 |281 King Street |Seattle | Washington 98101)UsA
Kam's Sporting Goods |Excellent |852-3692888 |95 Queensway |Hong Kong. Hong Kong

OEBPS/img/dlov_tablecolumns.png
Region Country Sales F
South America | [Brazil lnry
South America_ =B i g
South America Wi Ng
South America Colin M
South America Andre ©
Region Country Sales
Asia iapan <y
South America [i
South America__|HongKong i
South America Colin

South America

Andre

OEBPS/img/logging_addlistener.png
‘Add New Temporary Logging Output File

Output Type:
Log Fie Path

Tex

adfidog b

o] o]

OEBPS/img/workbook_collection_editor.png
Edit Workbook Properties

Edit the properties and press OK to save your changes.

pl=|
4 Behavior
4 Runtime Ribbon Tab
Amoation
Title
Visible

Customers
Te.

B N CE=E— S

Reset WorkbookiD

‘Workbook
The collection o

Members: ClearAllData properties:

CearAliData

OEBPS/img/designertab_designmode2.png
Home Inset Pagelayout Fomulas Data Review View | Oracle ADF

) Workbook properties (2 bxport | 8§ Insert Component ~ @) Refresh Bincings @ >
@ Worksheet propertes (& Import | B Ecit roperties

B vout X oeiete @ Reresh Confia
Workbook 5 T 5 T Logging Publish

A set Qutput Level @
6 Add Log Output File
Validte Run Stop | Console Pubish

OEBPS/img/table_default_props.png
Edit Component: ADF Table

Edit the properties and press OK to save your changes.

[c =]

+ Appearnce
ResizeCotumnhiode UseCommoe

InsertRowsAfterUploadEn: False.
UpdateRowActionlD
UpdateRouEnabled T

b Rowlimit

» Data

» Design

> Layout

RowActions
‘The propertes that govern row-ise behavior

(=

OEBPS/img/workbook_rt_tab.png
EditCustomers.xisx - Microsoft Excel

G
Home Inset Pagelayout Fomnulas Data Revdew View | Customers

& BB ¢ D

Edit | Upload Remove Clear || About
Options Selected AllData
Connection Worksheet Clear || About

OEBPS/img/binding_id_picker_action.png
Insert Component: ADF Button

=)

534 values for the propertes and press OK 1o save your changes.

T

4 Behavior
4 ClickActionSet
4 ActionOptions,
AbortOnFailure
FailureActionlD
‘SuccessActionlD.
b Actions
b Aert

“The action binding invoked when

PR

Page Defintion: ExcelEditCustomers

(& Cresteinser (acton)
(& Delete (acton)
(& Commit actor)

Ealn=—n|

OEBPS/img/jdev_depdesc_application.png
Locale Encoding Mapping +X

5 MIME Mappings + X

OEBPS/img/alert_msg_prop_as.png
Edit the properties and press OK to save your changes.

[c =]
4 Behavior =
b Events Startup
b Protection
4 Ritbon Commands Ribbon Commands (3)
>l Hieslexcel customers sbbon pload
i islexcel customers sbbon deleteT)
Hfes[excel customerssbon dowrload
MENSE510202¢
Hires[excel customers ribbon download 1
Actions (2)
Actions 2)
True

Hires[excel customers ribbon download alet failure T}
Hires[excel customers ribbon download alert button'T)
itfres[lexcel.customers sibbon.download alert successT} ()
Hires[excel customers ribbon download alet ttle

“The text that appears i the main area of the alert window when the actions complete successfully. I this property
s empty, 2 default text appears t runime.

(=

OEBPS/img/col_rot_runtime.png
Name Credit Rating | Phone |Address [city State ZipCode |Country |SalesRep. |Comments

Unisports 1552066101 72 ViaBahia Sao Paolo 1 12 Customer usua
Simms Athletic 48120101 Takashi Osaka 2 14 Customer shou
Delhi Sports 29110351 Chanakya New Delhi 3 14 Customer spec
Womansport 31-206-104-0103 281 King Stree! Seattle Washington 98101 4 1

Ka's Sporting 1852-3692888 95 Queensway Hong Kong B 15

Sportique 1332257201 4 Rue Chabaud Cannes 6 15 Customer spec
‘Sweet Rock Sp 22346036201 6 Saint Antoine Lagos 7

Muench Sports 3 49-527454 Marktplatz Stuttgart 8 15 Customer usua
Beisbol Sit 1 809-352689 ‘San Pedro de Macon's 9 1

OEBPS/img/worksheet_parameters.png
Edt the propeftes and press OK to save your changes.

I
> Boaior =
% oun
ExcelEHCustomers
. ProductNomePorom
Frssantanaramn
Product Name
ProductNomeParom
#{workbook params productName} ~

The collcton of worksheetevel parameters that associate an expresson to a page|

e gt
e

OEBPS/img/act_col_edit_ddlist.png

OEBPS/img/migrate_workbook.png
mgme ook [

Do you wish to migrate this workbook to the current version of Oracle
ADF Desktop Integration 12c? Any pending changes will be saved. Click
Yes to migrate now.

Yes No

OEBPS/img/format_cells_date.png
lundi 7 décembre 1992
Jeudi 13 avril 1995

Regon i nooo S, SR

mercredi 14 janvier 1987
‘samedi 15 janvier 2011

mardi 17 janvier 1967,
mardi 8 juin 1999|

dimanche 19 janvier 1992)

mardi 21 janvier 1992)

lundi 12 juin 1967}

Fomats | Location | Keyboards and Languages | Adminitrative |

Format:

[French (France) B
Date and time formats
Sonane
Long e
Sorine]
gine
v
What does the notation mean?
Bamples
Short date: 18/05/2012
Long date: vendredi 18 mai 2012

OEBPS/img/quick_query_search_button.png
#{res[excel searchButton abel T}
e e R

Edit the properties and press OK to save your changes.

|

4 Behavior
4 ClickActionSet Actions (4)
 ActonOgions
[T Actions (4) =)
> pushthe query spec Lp tothe <
> m invoke my query actions
> @ refresh the query specin caset
> B Download Resuts -

Actions
“The collection of actions invoked.

(=

OEBPS/img/search_action_results.png
et Worset i | -

Edt the propettes and press OK to save your changes.

!
T ool seach Hhensoac) ~

onaaon

) wenssisetsio

Label #{res[excel search ribbon search

4 SelectActionSet Actions (2)
 ActionOptions
4 Actions Actions (2)
4 [0 #ires[excel search popup title T}
St
Fage Roces/estemel/scarchFom spx
Granone T
Target Popup
Tile: #{res[excel search popup title T}
 Widonsas 100200
& [Download Resuits from Table:
Acten Dowriosd
ot Dowrlood Resuls from Table
Componetd TABS0366901
Damsmabesssze i
0]

o] o]

Credit
Filter Customers.

Unisports | Excellent Processing... Braz
Simms = =

Athletics _|Poor ape
Delhi Dowrload data —
Sports |Good ndi
Womansp —
ort Fair 281 King Street 1-206-104-0103 | Seattle North America |USA

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing
Applications with Oracle ADF Desktop
Integration, 12¢ (12.1.3)

OEBPS/img/runtime_tab.png
Home Insert Pagelayout Formulas Review View | Warenouses

BE & llé@

Login logout Edit || Commit Rollback |~ Clear | About
Options AllData

Connection Worksheet || Clear || About

OEBPS/img/adfdi_designer_taskpane.png
Oracle ADF Desktop Integration 12c ¥

Bndngs
‘Bindings Available (ExcelEditCustomers)
2] Customers (tree)

(& Createlnsert (action)
(& Delete (action)
(& Commit (action)

Insert Binding

Worksheet Properties...
WorkbookProperties...

‘about Orale ADF Desktop Intearation 12c...

OEBPS/img/pass_parameter_flow.png
Name/Value Pairs as URL Arguments

<af:link text="Passing Parameter to Excel” id="linkl"
destination="/excel/EditableCustonerSeazchPazan, xlax {CItyIDA (bindings, CityID, acczibuceValue} />

Edit Workbook Properties Dialog Dot i | Edit Worksheet Properties Dialog
Wkt
T — e) Erme———
E———————— TN R ——————
= mach o -
[Eps] Werkbik @]9
» Behavior Parameter © Behavior -
4 Data property 4 Data
> Brandngtems Brandinghems (5) Page Defiiion ExcelSearchCustomers
4 Parameters aayiD 4 Parameters GtylDParam
PR CaylD Contre e @ CiylDParam
—
Fonet prorerty of
R Gy D | e =)
st Wotos rtstest 2] <
cirenca o
Porameter [strie
The name of the workbook parameter. Parametr

Page Definition File

AR ke E

1,07 encoding="UTE-2" 7>

8 <pageDefinition wmlns="hctp://wmlns.oracle.con/adfn/uinodel" version="1l.1.1.63.3" id="ExcelCustonersSeazch”
Package="oracle. summitdl .view.pageDesa”>

B <parameters> [
<paraneter idr"Cicyldearam” />
</paraneters>

<executables> <varia
B <bindings>

<tree IterBinding=rC ... eDefinition> </tree>
<action IterBinding= ... ="createlnsertRos/>
<action IterBinding= ... "removeCurrentRos"/>

<action id="Commit™ ... commitTransaction”/>
<methodaction Itersi ... sModule.Customers”/>

257/> </executables>

B <methodAction id="filterByCityld" RequiresUpdateModel="true’
Action="invokeMethod" MethodName="filterByCityld"
IsViewObjectiethod="false” DataControl="AppModuleDaraContzol”

Instancellare="pploduleDaraControl . dataProvider™>
<NamedData NDNeme="CityIdArg"NDValue="3 (bindings [CLtyTAFaFaR] NDIype="Java.lang.Long"/>

</methodAction>

Ensure that the
Paramelzr
property matches
the Hatirbute
from the pace.
cfinfion
parametor
ciment

Tocontrcl
server-sids
g, use pages
afinfion
parametor as
HamecData.
argument o
Appleation
Hecuk methods
thiough
methorlaction
bincings

OEBPS/img/worksheet_protection_error.png
Edit{ Customeys Sheet
e L=

i “The cell or chart that you are trying to change is potected and therefore read-only.
5% 7o modfy a protected cell or chart, first remove protection using the Unprotect Sheet command (Review tab, Changes group). You may be prompted for a password.

o]

OEBPS/img/actionset_download.png
Edit Workshest Properties ()
e popeties andires Ko v yrchnges
]
"+ Beteor
= —
> o Startup.
v -
Menber: P
¢ 4 @@=
= BEEs
4 ActionSet Download Data
© ActionOptions
by Dowrond Data
pryw— o
Merber: [——
¢ 4 @@=
= B
Action Download
o croesecomponensacien T
||| Choose an action exposed by components on the cument worksheet.
=3 TAB1598787742 A
{E] ClearCachedRowAttributes I
=] DeleteFlaggedRows
{E] DisplayRowEmors =
& DisplayTableErors

{E] FagAlRows
{E Initaize:

{E] DownloadFlaggedRows B
{E] DowrioadForinsett

OEBPS/img/adf_table.png
ChangedFlaggec|status | Name Credit Rating |Phone. Address city Zip Code|Country | Sales Rep. | Comments Key
Unisports Excellent |55-2066101 |72 Via Bahia _|Sa0 Paolo Brazil Gijum | customer usually orders large
Simms Athletics_|Poor 8120101 Takashi osaka Japan [Nguyen |Customer should always pay by...
Delhi Sports Good o1-10351 Chanakya New Delhi ndia Nguyen | Customer specializes in basebz
‘Womansport Fair 1-206-104-0103 |281 King Street |Seattle | Washington| 98101 |USA Magee .
Kam's Sporting Goods |Excellent |852-3602888 |95 Queensway |Hong Kong Hong Kong |Dumas

OEBPS/img/status_col.png
Status

Row updated successfully

OEBPS/img/delete_component.png
(CHEEEGED - - EditCustomers-DT.ads - Microsoft Excel

h.l
Wome inmer Pagelyout fomuss Data Review View | Orade AOF |
@] Workbook Properties i Insert Component =) Refresh Bindings @ > A set Output Level a
Worksneet Properties | & Edit Propertes =1 (& add Log Output File
e o e o oo oot g SOOI
[e fx | #{_ADFDIres['COMPONENTS_TABLE_CHANGED_COL_LABEL']}
A 5 Lcl o £ G . W l
1] H {
#{res['excel.customers.title']}
e
vy st thtyou vt el the'AOF Tbe component
A s
e ™
. #{bindings.C
ADFDIres['COMPONERTS_TABLE .lab e

OEBPS/img/apply_style_rt.png
Edit Summit Warehouses

Warehouse Id.

101

Region |North America

Manager |Molly Urguhart

Country |USA

OEBPS/img/config_validation_error.png
#{res['excel.worksheet.errors'T} #{worksheet.error s}

Configuration Vaiidat =

Workshest _Component __Propetty_Description

Valve Invald exp

Property: OutpucText.Value =
Value: #(worksheet.error 3}
Component. Location: 05

e eidem i 1

OEBPS/img/adfdi01.png
Mici

soft Office!

N

| WTTPMTTPS -

Application Server
Oracle ADF

I vicrosot

[orace p0F

[ADF Deskiop negraon

OEBPS/img/format_cells_date_eng.png
Hond, December 7, 1952 5 Reion o Longuoo | W

Thursday, April 13, 1995
Wednesday, January 14, 1987 | | Fomat |Location | Keyboards and Languages | Admiisttive |

‘Saturday, January 15, 2011 £
Engiish (United states)

‘

Tuesday, January 17, 1967
Tuesday, June 08, 1999
‘Sunday, January 19, 1992
Tuesday, March 23, 2010) Short date:

Tuesday, January 21, 1992| Long date MMMV G, yyyy.
Monday, June 12, 1967

Date and time formats

Long time:
Firstday of week: [Sunday

‘What does the notation mean?

Eamples
Short date: 05718712

Long date: Friday, May 18, 2012

{
i

OEBPS/img/form_components.png
Worksheet Errors —— ADF Output Text

Manager Mouy Urguhart []
ADF Button

untry [France]
—

del

ADF Label ADF List of Values ADF Input Text

OEBPS/img/jdev_gallery_pagedef.png
Show All Descrptions

[E] ADF Desktop Integration Page Defintion

Launches the Create ADF Desktop Integration Page Definition dialog, in which you
Geate new Page Defion fr se n 2 ADF Desiop Inteato cnabled Excel
riock To e 3 pton, ou st select 8 ojecta i i 2 gt
e soicaton naviastor

B Marosoft xcel Workook

Launches the Create ADF Desktop Integration-Enabled Excel Workbook dialog, in
‘which you reate a new ADF Desktop Integration-enabled Excel workbook n 2
specifed location. To enable this opton, you must select a project or a fie within 2
projectin the application navigator.

OEBPS/img/status_msg_actionsetcancel.png
cononer s oo

‘Submiting records tothe application

Canceling

Eeee——— 000000

=

OEBPS/img/status_msg_adfmaction.png
comt

OEBPS/img/dlov_worksheet_dt.png
Edit Component: ADF List of Values.

Edit the properties and press OK to save your

i PRETT

° g Page Defintion: ExcelEditilarehouses

.

e
DependsOnListiD (lgh Countryl (i)
ListiD (g Managerld (ist)
-

=

© Design

i

i

DependsOnlistiD
Alist binding on which this List of Values

OEBPS/img/navigation_buttons.png
Edit Summit Warehouses

Worksheet Errors

Warehouse Id. 201 Manager |Roberta Menchu (=]
Region |South America Country |Brazil =2
Address |68 Via Centrale Previous
City |Sao Paulo State. Last
Zip Code | Phone.

OEBPS/img/workbook_def_edit.png
G ARk E

<orasding>
<randing>

Cnmsesiorkoock Name</nases,

<valuesEait Customers New fiorkbook</value>
<oranding>
<randing>

Cnmsesiorkbook Versionc/name>

<valuest. oc/vatues
</brandings

OEBPS/img/adf_tableerror-dt.png
-~ : — #(components. TAB1598787742.errors}

i companen 07 O T A

Edt the propeftes and press OK to save your changes.

=R
= Aopearance B
‘StyleName _ADFDI_FormDoubleClickCell Style
+ Data
Hoomponents TABTS98787742 erors)
4 DoubleClickActionSet ‘TAB1598787742 Display TableErrors.
 ActionOptions
4 Actions 'TAB1598787742 Display TableErrors. =
a [0 TAB1598787742.Display TableErors.
Action DisplayTableErors
sonctaion
ConponeriiD TABTS9878742
DetetSicusbessage
> Mt
Sonction
o Sus
Value #{components TAB1598787742 erors}
Tooltip =
OuputText
The propetes it gover he Ot Text

o] o]

OEBPS/img/set_output_button.png
[BA set Output Level

OEBPS/img/secure_connection.png
wisorsseorty

‘The server 127,001 at weblogic requires a usermame and password.
‘Warning: This server i requesting that your username and password be

sentin an insecure manner (basic authentication without 2 secure
connection).

Remember my credentials

([Cox J Lo]

OEBPS/img/runtime_toolbar_buttons.png
B> >N

Validate Run Stop Validate Run Stop.

Test Test

Buttons in Design mode Buttons in Test mode

OEBPS/img/excel_trust_center.png
Excel Optons B 5

Popular 3
P Q Help keep your documer
Formulas
Procfing Protecting your privacy.
Save Microsoft cares about your privacy. For mor information about how Microsoft Offce Excelhelps to protect your privacy,
please see the privacy statements.
Advanced

Show the Microsoft Office Excel privacy statement
Customize Microsoft Office Oniine privaqy statement
Customer Experience Improvement Program

e]| s |
CEee e

Trusted Publishers

Mot Setings
Tseatoations || S

macros in ne Trust Center Settings...
sains Dialc ll oo wihoutnaition |

Disable all macros with notification
Disable all macros except digitally signed macros.

Enable all macros (not recommended; potentially
‘dangerous code can run)

ActiveX Settings.

Message Bar

External Content o

Prvacy Options ffrist access fo the VBA project object model

Cox] [Comer)

OEBPS/img/rt_worksheet_group.png
3 Download

Upload Remove
Selected

Worksheet

OEBPS/img/lov_dlov_together.png
Edit Summit Warehouses

Warehouse 1d. 101 Manager [Molly Urguhart
Region |North America Country
ddress 1283 King Street Donincan Repbic

City |Seattle State | WA
Zip Code. Phone

Edit Summit Warehouses

Warehouse 1d. 101 Manager [Molly Urguhart
Region [europe country
France
Germany
‘Address |283 King Street o Ao
Russia
City |Seattle State WA

Zip Code. Phone

OEBPS/img/picker_action_props.png
Egit Columns)

i
|

OEBPS/img/examples_of_labels_dt.png
#{res['excel.warehouses.title']}

#{bindings.Warehouseld. abel}

#{bindings.Regionid. abel}
#{bindings. Addressabel}

#{bindings.City.label}

#{bindings.ZipCode.Iabel}

#{bindings. Warehouseld) #{bindings.Managerld.label} |Managerld
Regionld #{bindings.Countryld.label} |Countryld
#(bindings.Address}

#(bindings.City} #{bindings.State.label) | #(bindings.State}
#(bindings.ZipCode} #{bindings.Phone.label) | #(bindings.Phone}

OEBPS/img/row_detail_msg.png
oo =~

Errors for this row:

> The 2 code needs to be between 5 and 7 diits e.g. 00001

OEBPS/img/search_propins.png
e =

Edt the propeftes and press OK to save your changes.

3|2
4 Behavior -
b Everts Startup.
b Protection
4 Ribbon Commands Ribbon Commands (2)
Pt #les[excel search ibbon search)
Anrotation
D MEN1551960310
Label #Hires['excel search ribbon search}
4 SelectActionSet Actions (2)
> ActonOptions
4 Actons Actions (2)
PR #les[excelsearch popup i)
Anrotation
Aaces/extemal /searchForm jspx [..)
ShareFrame. Te.
Terget Popup
T #Hres['excel search popup title')
b WindowSize 400.200
am Download Resuitsfrom Table.
Adton
Anrotation
ComponentiD
DetaiStatusMessage >
Page
The web pageto be displayed inthe didogis browser regon.

OEBPS/img/rt_validation_errors.png
Table Errors

Worksheet Errors

Table Errors

Upload to Server failed

one or more rows could not be uploaded

OEBPS/img/adv_seach.png
Country Based Search

[search Customer By Country
‘Country niame

OEBPS/img/managed_bean_eg_output.png
Connected as sking

OEBPS/img/confirmation_dialog.png
cortmaien

! You willloose unsaved data, would you i to continue?

(e |

OEBPS/img/expres_builder_attrib.png
Edit Component: ADF Table.

Edt the propeftes and press OK to save your changes.

-‘Hj

Behavior

Columns. Columns (14)

Members: #row bindings Phone inputValue) properies:

_ADF_ChangedColumn =
o P &=
ADF_StatusColumn 4 Appearance
Hirow.bindings.Name input alue CelStyleNan _ADFDI_TableCellStyle:
Flrow tindings CrediRatngld i HeaderStyle _ADFDI_HeaderStyle

4 Data

OEBPS/img/delete_button.png
K Delete

OEBPS/img/dt_view_branding.png
Edit Workbook Properties

Edt the propettes and press OK to save your changes.

[c =]

4 Behavior
» Rurtime Rbbon Tab,
4 Data

1| Application Version
2| Workbook Name

3 3| Workbook Version
4] Copyright

Application Name properties:
ME]

Application Name [=

Ve Summit ADF Desktop Integration Applica

OEBPS/img/rt_view_branding.png
About

About | Versions | Propertes
Name Value
‘Summit ADF Desktop Integration Application
 ppication Verson |10
Workbook Name | Edt Customers Workbook.
Workbook Verson | 1.0
.. (Copyright () 2012, Oracle and/or s afiates. Al ights.

(B

OEBPS/img/adfdi_localization.png
Windows Control Panel

Culture Controlled By

Windows Operating System

Desktop Client
Browser Setings

Locale Controlled by

Application Server

WS Office Language Settings

Excel
Resources

ADFdi Server
Resources

ADFdi Client
Resources

Internet Explorer
Browser S

ettings.

OEBPS/img/table_col_dropdown_rt.png
Sa0 Paolo.

osaka

New Delhi

Seatle | Washington| 98101

Hong Kong

Cannes

OEBPS/img/action_collection_editor.png
Edit Workshest Properties

it the properiesand press OK o saveyour charges

G

2 Bohavir

> Evens Statup

» Frtecion

2 Fiston Commands Ribbon Commands (2)

a [0 #i{res[excel customers ribbon upload T}

Sovotaion
© wentsiesse
Lol

B (e

b ActionOptons
b Actions
b Aert

b Swtus
[l

4 Data
Fage Definition
Parameters

b RowData

Actions

“The cllection of actions i

OEBPS/img/adf_table_resizemode.png
o conponert: A0 LR

o conponert: A0 LR

Edt the propeftes and press OK to save your changes.

Edt the propeftes and press OK to save your changes.

DynamicColum False:
Headerlabel ##{bindings.Customers hits. |
HeaderSiyleNz _ADFDI_HeaderStyle

I I
a5 #{row bindings Address inputValL > 6] #{row bindings Address inputValL
Annotation am #{row bindings City inputValue}
CellStyleName _ADFDI_TableCellStyle Annotation

CeliSyieNiame _ADFDI_TableCellStyle:
DynamicColum False: Ml
Headerlzbel f#{bindings Customers hints.

Cortrols whether and how tis column s resized.

Address = HeaderStieN: _ADFDI_HeaderStyle =
n Gy
nsertUseslpd Tue. InsetCompone
hentFromTable = nsertUseslpd Te.
Tootp #ibindings Customers hints. AstoFitWithHeader [<]
' UpdateCompor ##irow bindings. Address.inpi Tootp #ibindings Customers hints.
Visble: Tre ' UpdateCompor f#irow bindings City inputVa,
widh - Visble: True -
ResizeMode ResizeMode

Cortrols whether and how tis column s resized.

o] o]

o] o]

Edit Component: ADF Table

e

Edt the propeftes and press OK to save your changes.

Edt the propeftes and press OK to save your changes.

HeaderSiyleName _ADFDI_HeaderStyle
D State

B = B =
B Hiow bindngs State putVal, ~ 3] How bindings Address npLtVal. ~
Aonctstion o m #iow bincings Cty inputValue}
CelltyieName _ADFDI_TableCell v | Hiow bindings Sate npValue}
DynamicColumn False: aB #iow bindings ZpCode nputVak
Headerlabel fH{bindings.Customers hin Aonctstion m

CeliSyieNiame _ADFDI_TableCellStyle:
DynamicColum False: =
Headerlabel ~ #{bindings Customers hints.
HeaderSiyleNz _ADFDI_HeaderStyle

Cortrols whether and how tis column s resized.

=) n ZpCode
IsertCompone
' UpdateComponer #{row bindings. State inpt. nsertUseslpd Tue.
Visble: True AstoFitWithoutHeader [<]
Widh #Hbindings Customers i ~ <
ResizeMode

Cortrols whether and how tis column s resized.

o] o]

o] o]

OEBPS/img/table_disperrors_rt.png
Worksheet Errors Upload failed

Table Errors [one or more rows could not be uploaded

e R

‘one or more rows could not be uploaded

> Error Detal 1: ORA-01722: nvald number

OEBPS/img/summit_browser.png
€ MainPage s - Windows Interet Explorer

)=) i tocabors ity e

i Favortes | €@ MainPagejst

Summit sample application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration is a set of sample demonstrations that llustra
Desktop Integration. Select a demo from the carrousel, or from the menu in the top-right corner, to acces

Summit Desktop Integration Editable Table Sample
ati
ple

Edit Customers Sheet

OEBPS/img/quick_query_search.png
2 (bindings.searchTerm)

Edit Component: ADF Input Text.

Editthe properties and press OK to save your changes.

Bua
4 Appearance £
StyleName mplinput Text Field
4 Data
. #ibindings searchTerm} i
» DoubleClickActionSet
ReadOnly False.
Value #Hbindings searchTerm}
Tooltip s
Inputfext
The propertis that govern the Input Text.

(=

OEBPS/img/componentpalette.png
Oracle ADF Desktop Integration 12c -
Bindings Components

e
A\ ADF Output Text

A\ ADF Output Text (Worksheet Errors)

/A ADF Output Text (Table Errors)

& ADF Label

ADF Listof Values

bl

[ADF Image

[E ADF Table

[ADF Read-only Table

Insert Component

Worksheet Properties...
WorkbookProperties...

‘about Orale ADF Desktop Intearation 12c...

OEBPS/img/refresh_bindings_button.png
R Refresh Bindings

OEBPS/img/resource_bundle_col.png
[dit Workbook Propertes.

Eitthe properties and press OK to save your changes

[c =]
4 Behavior
> Runtime Ribbon Tab
4 Data
>

ApplicaiontlomeFl
CustomizationEnsbied
Proect
ViebPagesFolder
VierkbookiD.

4 Secuity

> Login

Reset WorkbookiD

Resources

et

Alias
The alias, unique o this workbook, used o access this resource
bundle in EL expressions

[~

OEBPS/img/jdev_add_features.png
o areos .

Select any additonsl features you want o add to your project.

Project Features Generated Components | Assodated Libraries

ADF Desktop Integraton Feature Description:

ADF Desktop Integration (ADFd) extends the power of the Oradk Appication Development
Framework into Mcrosoft Office. Using ADF, developers are able o re-use ther existing
‘services and data bindings to buld transactional user interfaces in products such as Microsoft

b o] cancd

OEBPS/img/worksheet_protection.png
Edit Worksheet Propertes NSNS

Edt the propettes and press OK to save your changes.

B
A
ot S
g
Auomaic

T — oo
+ i Commards Risbor Commards G)
Poseword
“The (optional) password used when workshest protection s automatic.

o] o]

OEBPS/img/worksheet_setupaction.png
Edit Worksheet Propertes | NNNNNNINNINNNIIN

it the proprtiesand ress OK'osaveyour charges
@ua
Erenis Starun

Ribbon Commands (3)

|

Excel EcitCustomers

I

L]
Title #tfres[lexcel.customers sheet fitle T}

4 Design -

‘SetupActionlD

‘The action responsible for configuring new binding container instances on the server

(=

OEBPS/img/dlov_worksheet.png
Edit Summit Warehouses
Warehouse Id. 101 Manager
Region | Europe Country
Address |283 King Street

cty |seattle state

Zip Code. Phone

Molly Urguhart

France

France

OEBPS/img/run_button.png

OEBPS/img/modelapilibrary_dialog.png
0 Project Properties - DO

0 e S S

it ADFdi\Model\Mo..

Q search

Project Source Paths
ADF Business Components
ADF Model
ADF View

]

Qr(Class name

Libraries:

5 promet
=g
& B Extenson
gl Absoutelayout
1] AOF Conmon vieb Runtine
g 20F Controle Runtime

] ADF Desktop Integraton Runtime:
i ADF DVT Core Runtime:
-] ADF DVT Faces Databinding MDS Runtine
i ADF DVT Faces Databincing Runtime:
] ADF DVT Faces Runtine:
il AOF Faces Change Manager Runtine 11
-] ADF Faces Databincing Runtime
il AOF Faces Dynamic Conponents
] ADF Faces X Runtine 11
A 40 Eaces Runtime 11

New... Loador.

e oK Cancel

OEBPS/img/jdev_depdesc_filters.png
Searty Name oss 3
e [siter oradesecuity.jps.ce it JpsFter
5 frided org-apache.myfaces. indad.webepp Tridadter | |
¢
oroce,adt descpintesraton lter DlExceDon.. | | g
aryeter oradk.adt orary webapp.LbraryFiter J
(Generaiiter | Fiter Mappings _ Intialzaton Parameters
* X
Mapping Type: Mapping Dispatcher Type <]
serviet Faces Serviet FORWARD, REQUEST
serviet adfiRemote

OEBPS/img/logout_xpstyle.png
e .

@ You have been fogged out from your curent session.

e

OEBPS/img/publishing_workbook.png
@

Home Insert

Pagelayout Formulas

| citCustomens:DTs: Micosoft

Data Review

>N

@] Workbook Properties i Insert Component =) Refresh Bindings @ A set Output Level a
Worksneet Properties | & Edit Propertes £ Add Log Output File
2 Avout K pelete v T Refresh Config
s
5 [<
') pusieh
. {res['ex
—)L <« summitdi » excel » published + | ¢ [l Search published o
s
[@
. - Name Dmemodficd e
B
8 [Desktop
#{bin
conronenrs_Tanay e
B % Computer Slalr i »
e name: EdiCustomers -
Save astypes [Excel Workbook (ois) B| | -
10 el
n (&) Hide Folders Save Cancel |
=

Publish button

OEBPS/img/worksheet_disperrors_rt.png
Worksheet Errors | Next failed

CEEEE—

Next failed

> The 2p code needs to be between 5:and 7 numbers e.g 00001
> ADFDI-55041: Aborting the commit action for a transacton.

OEBPS/img/adfdi_client_installer.png
QU

» Computer » Data(D) » Oracle » ADFDLClient b adfdi-excel-runtime-client-installer »

File Edt View Tools Help

Organize + Include in library +

Sharewith v Bum Newfolder

¢ Favorites

B pestop

Name Datemodiied Type
3l Application Fies /21211050 AM Fiefolder
2} adfd-excel-addin-runtimeasto 9/6/20111034 AM VSTO Deployment
5] adfdi-public-key.cer 6/16/201110:50 AM Security Certificate
B setvpoce 9/6/2011 1034 AM Application

Size

12K8
2K
93K

e one oo T

Publisher has been verified

Are you sure you want to install this customization?

Name: Oracle ADF Desktop Integration Runtime Add-in for Excel

e file///D:/Oracle/ADFDI Client/adfdi-excel-untime-client-installer/adfdi-excel-

addin-runtimeysto
Publisher: Oracle America, Inc

While Office customizations can be useful, they can potentially harm your computer. I you

do not trust the source, do not insta this software. More Information.

Install

Don'tInstall

OEBPS/img/customers_tab.png
EditableCustomerSearch.isx - Microsoft Excel

Home Inset Pagelayout Fomulas Data Review View Developer | Customers

BES BE &S @

Login Logout _Edit Filter Display | Clear | About
Options || Customers Al || AllData

Connection Worksheet Clear || About

OEBPS/img/table_col_dropdown.png
Edit Component: ADF Table

Edit the properties and press OK to save your changes.

3|2
b0y #irow bindings. Regionld inputValue} A
& 1] #{row bindings Countryld inputValue}
Sovctaion
CellStyleName _ADFDI_TableCellStyle
DynamicColumn False.
HeaderLabel #{bindings Customers hints Countryld label}
HeaderStyleName _ADFDI_HeaderStyle
o Countryid
InserConparert
InsertUsesUpdate True
ResizeMode FhesfonTabe
Toolin
4 UpdateComponent #{row bindings Countryld inputValue} (TreeNodelList)
Demvl‘kcnu:l #{row bindings._Regionid input Value}
i i Cortoy Vo) =
Fesconly
Visile e
vidh
» 12 #{row bindings SalesRepld input Value} -
st
A e st bicing et hs a modeldrven st defined

(=

OEBPS/img/dlov_tablecolumnsform_dt.png
Edit Component: ADF Table

e —— o——
I
4 Columns. Columns (12) B
» o[_ADF_ChangedColumn
> _ADF_FlagColumn
> _ADF_StatusColumn
b B #{row bindings Id inputValue}
> #{row bindings Managerld inputValue}
a5 #{row bindings Countryld inputValue}
Jr—
CellStyleName _ADFDI_TableCellStyle
DynamicColumn False.
Headerlabel #{bindings Warehouses hints Countryld label}
HeaderStyleName _ADFDI_HeaderStyle
o Countyid
[—
InsertUsesUpdate: True
4 UpdateComponent #{row bindings Countryld inputValue} (TreeNodelList)
DependsOnList #{bindings RegionlList}
List #{row bindings Countryld inputValue}
Fesiry ot e b A Lo e A
DependsOniin
Atree attnbute binding on which this Tree
58 Warehouses ree)
E+{E] WarehouseView
@
=
@@ Countryld
@ e
@ o
@A Cy
@ 50

OEBPS/img/composite_expression.png
Insert Component: ADF Output Text

534 values for the propertes and press OK 1o save your changes.

B =
4 Appearance
SyleName _ADFDI_Output TextStyle:
4 Data
4 OupuText ~(('H{row bindings.ListPrice input Value}"™"##{row bind
' DoubleClickActonSet
Vaie ~(('#{row bindings.ListPrice input Value}™"f#{row bind

binding

& Insert Into Expression

OEBPS/img/row_limit_msg.png
Row Limit Exceeded

There are too many rows available. Do you want to show the first 5

ez ——)

OEBPS/img/property_inspector_window.png
e componens 201 o

Add values for the properties and press OK to save your changes.

B =
4 Behavior 3
4 ClickictionSet Actions (3)

» ActonOptions

o Actons Actions (3)

b et

ComponentiD BTN1622553188

b LowerRightComer 5is15
b Position sis15 -

(] (o)

OEBPS/img/hyperlink_rt.png
Oracle ADF Deskiop Integration - Windows Interet

2] /s racie.comtechnetworkdeveloper-tools/ac/oveniew/index-085534.html

¢ Favorites] Oracle ADF Desktop Integration \ |

ORACI-e' (Sign In/Register for Account | Help) United States v Communities v lsma.. v |wantto.

‘M-ﬂmmmmwn—wmm

Oracle Technology Network > Developer Tools > Application Development Framework > Overview

IDeveloper Overview | Downloads || Documentatin || Community || Leam ore |
Application Testing Sute

SQL Developer ORACLE Oracle ADF Desktop Integration
SQL Developer Data

FUSION MIDDLEWARE ADF Desklop Integration extends the Oracle Application Development
APPLICATION DEVELOPMENT Framework into the world of desktop applications like Microsoft Excel.

Modeler

OEBPS/img/workbook_def_import.png
Eitthe properties and press OK to save your changes

[c =]

Behavior
b

Brandingtems (5)

bl Copyight

OEBPS/img/error_message_el_expression.png
#({res['excel.worksheet.errorsT} #{worksheet.errors}

#(res['excel.customers.table.errorsT) ___#{components.TAB1598787742.errors}

OEBPS/img/alert_msg_rt.png
8120101 Takashi osaka Japan
91-10351 Chanakya New Delhi India
1-206-104-0103 [[p, — usa
852-3692888 [Hong Kon
Allrecords successiuly retrieved from applicaton
33-2257201 A France
234-6036201 Nigeria
49-527454 (Germany
809-352689 Dominicar
Nogales Mexico

52-404562

1256 W Sage Street

OEBPS/img/flagged_col.png
Flagged

OEBPS/img/worksheet_properties_button.png
[Worksheet roperties

OEBPS/img/jdev_gallery_workbook.png
Show All Descrptions

(] A0F Deskop Inegraton Page Defion

Launches the Create ADF Desktop Integration Page Definition dialog, n which you
reate a new Page Definiton for use in 2 ADF Desktop Integration-enabled Excel
workbook. To enable this opton, you must select a roject or a fle within a projectin
the application navigator.

5 Microsoft Excel Workbook

Launches the Create ADF Deskiop Integration-Enabled Excel Workbook didlog, in
‘which you areate 2 new ADF Desktop Integration-enabled Excel workbook i a
specifed location. To enable tis opton, you must select a poject or a fle within .
profectin the appiication naviaator.

OEBPS/img/config_validation_noerror.png
@ Configuration Validati =

Wokshest Comporent Propety Desorption

Total valdaton falures: 0

OEBPS/img/workbook_properties.png
Edit Workbook Propertis (NI

Edit the properties and press OK to save your changes.

B =
4 Behavior
> Runtime Ribbon Tab
4 Data
> Brandnghems Brandingltems (5)
Parameters
RemoteSenietPath /adiiRemoteServiet
> Resources s
\WebAppRoot hitp://localhost:7101/summit
4 Desion
Annotsion
ApplicationHomeFolder D:\Oracle\Applications\Summit_ADFdi
CustomizstonErabled False
Proect ViewController
\WebPagesFolder ViewController\public_html
VierkbookiD. 137060774505 4adl e (5554026126
> Secuty
Reset WrkbooklD
Behavior

(] (o)

OEBPS/img/page_definition_jdevexcel.png
] excelcustomerspageDefanl

Q Find

Page Data Binding Definton

i shows the rade ADF dotaBinings deind for
bata Bndng Regty: xadeleunit e Dated
‘Bindings and Executables Contextual Events

Bindings +/7%

Page Definition Bindings in JDeveloper

Oracle ADF Desktop Integration 12¢.

Bndngs [Components |

Bindings Available (ExcelEditCustomers)

(&} Createinsert(acton)
(& Delete (action)
(& Commit (acion)

Insert Binding

Worksheet Properties
WorkbookProperties...

‘about Orale ADF Desktop Intearation 12c...

Page Definition Bindings in Excel

OEBPS/img/worksheet_param_testdlg.png
@ ok roors

Ertertest values for workbook parameters and clck OK to procesd

[Fodsaane |]

oo

OEBPS/img/context_menu.png
#{res'excel.worksheet.errors T}

#{res'excel.customers.table.errorsT}

- —

#{worksheet.errors}

#({components. TAB1598787742.

&

B U

cut

copy

paste

Paste Special
Insert.
Delete.

Clear Contents

Fiter »
sot »
Insert Comment

Format Cells.

Pick From Drop-down List.
Name 3 Range.

Hypertink.

Edit ADF Component Properties.
Delete ADF Component

OEBPS/img/changed_col.png
(changed|

a

OEBPS/img/category_button.png

OEBPS/img/import_toolbar.png
1% import

OEBPS/img/expression_builder.png
et oresin SR

Expression: 0 ee

& Insert Into Expression

OEBPS/img/table_tooltip-rt.png
Edit Customers Sheet

o] customer Name
Changed | Fiagged |Status Name. [+ Retng ™™ Address
Unisports Excellent |55-2066101 72 Via Bahia
Simms Athletics Poor |81-20101 Takashi
Delhi Sports Good o1-10351 Chanakya
‘Womansport Fair 1-206-104-0103 |81 King Street
Ojibway Retail Fair 1-716-555-7171 415 Main Street

OEBPS/img/worksheet_sendparameters.png
Edit Worksheet Properties IS

Edt the propeftes and press OK to save your changes.

[ca =]
4 Data =
Page Definon ExcelEdiCustomers
b Parameters ProductNameParam

I

Incicates whether the workshest parameters wil be set when
re-establshing contet across multple sessions.

o] o]

OEBPS/img/examples_of_labels_rt.png
Edit Summit Warehouses Worksheet Errors

Warehouse 1d, 101 Manager |Molly Urguhart

Region |North America Country {usa

Address |283 King Street

alilaia

Gty | Seattle State | WA

Zip Code | Phone.

OEBPS/img/add_logoutput_button.png
i€ Add Log Output File.

OEBPS/img/excel_enable_adfdi.png
“This workbook will be enabled to be used with Oracle ADF Desktop
Integration 12c. Do you want to continue?

7 ——)

OEBPS/img/workbook_def_editjdev.png
Frd G AR E

[<2xml version="1.0" encoding="utf-8"2>

1370677-4305- 42d0-27ec-£5995402£36" achema-version="1" xulns
source-document="EditCustoners-DT.x1sx" client-version="12.1.3.0.0.8292"
<resource-list>

OEBPS/img/col_rot_designtime.png
(bindings. Customers.
ts.Address label}

#{row.bindings Addre
nputvalue}

Edit Component: ADF Read-only. 'ik‘

Edit the properties and press OK to save your changes.

=R
 Behavior =
4 Data
+ [T Columns (11))
> [0 #{row bindings Address inputValue}
b0 #{row bindings City input Value}
> 2 #{row bindings Comments inputValue}
> B #lrow bindings Regionld inputValue} 3
> M #{row bindings Countryld input Value}
» B #{row bindings CreditRatingld input Value}
> 16l #{row bindings Name inputValue}
vl #{row bindings Phone input Value}
> B #{row bindings SalesRepld inputValue}
b8 #{row bindings State inputValue}
> [10] #{row bindings ZipCode input Value}
TreelD Customers. -
Columns
The callection ofread-only calums.

(=

OEBPS/img/page_definition.png

OEBPS/img/output_text_comp_rt.png
Edit Summit Warehouses

Warehouse Id.

Region

Address

aty

Roberta Menchu

201 Manager
‘South America Country |Brazil
68 Via Centrale
Sa0 Faulo State
phone [

Zip Code

OEBPS/img/adf_image.png
EditComponent: ADFImage W e

Edit the properties and press OK to save your changes.

=Rl
 Data

ShortDesc /ADF DI Logo
images/ibgo.ong SR /mages/logo.png
© Design
o Layau

‘Source.
An absolute or relative URL to the image fle.

(=

OEBPS/img/workbook_properties_rt_tab.png
st worsok ropei S

Eitthe properties and press OK to save your changes

NI
:
Srnctoion
Te Cusomers £
Ve T
PRm— Woekbook Commands (3
»[o ClearAllData
b ‘EditOptions
> @2 ViewAboutDialog -
Reset akbokD
Runtime RibbonTob
The optentat detarin th cortent nd ki of he i b,

(=

OEBPS/img/status_msg_actionset.png
Edt the propeftes and press OK to save your changes.

=]
4 Behavior =
b Everts Startup.
b Protection
4 Ribbon Commands Ribbon Commands (4)
P #les[excel customers ibbon upload
Anrotation |
D MEN191833632
Label #fres{lexcel.customers ribbon.upload T}
4 SelectActionSet Upload Data
b ActonOptions
b Actons Upload Data
b Aet

True

Te.

#Hres['excel customers ribbon upload message'T}
Automatic

#fres{lexcel.customers ribbon.upload file’T} -

The properties of the status feature that may appear wie the Actons are invoked.

o] o]

T

OEBPS/img/about_button.png
 About

OEBPS/img/worksheet_event_actionset.png
Edit Workshest Properties \ \

Eitthe properties and press OK to save your changes

NI

4 Behavior

4 Events Startup.
> 10 Startup

OEBPS/img/rt_calc_formula.png
=SUM(OFFSET(H14.1.0) OFFSET(H61.-1.0))
I H [J [

site Price Difference| Current Margin
$16.99 $7.99) 85.6%
$16.99 5999 142.7%
DT Total [2112038

OEBPS/img/refresh_config_button.png
W Refresh Config

OEBPS/img/logging_loggingoutputlevel.png

OEBPS/img/upload_options.png
Upload Options (o]

Onfaure, ontinue o upload subsequent rows
] Download all rows after successfl upload

OEBPS/img/worksheet_collection_editor.png
eaeibbon command: UM

Members:

[
1| #lres[excel.customers ribbon el
2] #resfexcel customers ribbon dol

R e rr—

#les[excel customers ibbon upload) propertes:

pl=|
4 Behavior
b SelectActionSet Upload Data
Data
Label #{res[excel customers ribbon upload'T}
Toottip #{res[excel customers ribbon upload tooltip™T}
4 Design
Aevtton
) MENT91833632
Tooltip

‘Auseful intabout the effectof tis workshest Command, to display when the:
mouse s over s utton

o] e]

OEBPS/dcommon/oracle.gif

OEBPS/img/login.png
Login

@ You are about to connect to the folowing application URL(S:
hitp/127.00 17101 myspp/sddiRemoteSenviet

Do you want to connect?

Yes No

OEBPS/img/stop_button.png
Stop

OEBPS/img/download_removemessages.png
Changed | Flagged |Status. Name Credtt | e Address
Dovinload
Row updated successfuly |
ia
Row updated successfully A Do you wish to discard the pending changes?
i

Yo Stree
ay
'Sportique Excellent |33-2257201 '4 Rue Chabaud

OEBPS/img/logging_showhideconsole2.png
@ Logging Console: adfdi-common =

Error: ADEDI-00134: An attempt to connect to the web application has failed.
ADEDI-00134: An attempt to comnect to the web application has failed.
The remote server recurned an error: (404) Not Found.

ConnectionfailedExceprion: ADEDI-00134: An attempt to comnect to the web application has failed.
Source: adfdi-datamanager
Scack:
at oracle.adf.client.windows. datamanager. servietrequest. SyncRequest. BeginResponse ()
at oracle.adf.client.windows. datananager. servietrequest.MultiSyncModelRequest . InternalCallSyncser.
at oracle.adf.client.windows. datananager. servietrequest. SyncServietRequest. Callsyncserviet (oolea

<[il] D

OEBPS/img/international_workbook.png
A

A=Y APOR WS F-3 BB #wn

Oracle AOF | D701 |

TEF

TovfE | Av—=r 2 RAES RAEA
noname21
9201/ wergaq

1002 K=
1004 lisi
1003 SR
3110 | melyyy
100/dd
1004 33
1005 5
9001 fiol
1012 ph
1006|cc
1007 dd
1008 ee
1010/
2266 [#4E

b

T
e

Trc

T

e
e
e
e
ey
ey
ey
Ase
Bse
e

haEs

1001 2010608148
200648228

1003 200848 H28H
20054108178

1001 20004108156
200648228

200954838

200951818

2000648156

200952828

200951828

200952828

200854R68

200951838

20105128130

il

9999
124567
33333
9998.9.
797,66
124567
967658,
7792.34
3456.7.
43522,
6697.3|
12836
778649
6688.22]
10000

axvh

Ed

333

20

#r

e

30/0DATBACSBUS2rS62rSEarSnEpH(zPD
20/4301DDAEUSZSEarSezrSnpSQz.0
30/CFD2415DBUS2rS62r Se2rSnEpSQzpa
10 BADB14361EUS2rSEarSezr SnTpSQeD
20/ AFBAGBGEUSrS62rSezrsncplez'n
20|205F16AF RS2 SEarSear SECSED
10 2007817785262 Se2rSnCpS Q20
20/7002C048BtEUSErSEarSezrSnepSQzca
20/5687D91CtBuUS2rS6arSezrSncpHQzPD
E0BDDDDALS2rSezrSearsnepsQa 0
10 4C01249AtEUS2rSEar Sezr SncpSQzaD
10 DBSDOZFAUS2rSearSezr SnepsQzsa
30|FAGT09AT1BUS2rS62rSe2rSnCpSQ2XD
20/3ADDESDABUS2rS62rSE2rSNCpS Q21
30|BE18E774tBUSzrSEerSezr SncpkdL0

OEBPS/img/login_basic_auth.png
Login =]

(T —

‘The server 127,001 at weblogic requires a usermame and password.

‘Warning: This server i requesting that your username and password be
sentin an insecure manner (basic authentication without 2 secure
connection).

Remember my(mdﬂmak

‘D

([Cox] [comee]

OEBPS/img/table_comp.png
#LADE
DiesgC

pindngs Cust | #indings Customer #findings Cust | #findings Custo | #indngs Cust | #iindings Cust #fbindings Custom #fbindings Custo_ #findings Custom | #indings Custom | GMPON
e o | omershints N | sints CredtRatngd omers hints Pho) mers hins Addies | omershints Gt omers hins Stat efs ins ZpCodel | mersints Counir s hints SalesPiel | ershins Comment | ENTS_T
SRR el Tbet nedabel Siabel abel clabel abel disbel ey Ciabel BLER
owKEY.

coLi

#LADFDIesTOM

Dies{ COMPONENTS_TABLETS.TABLY

owbindngs | o bindngs Cred #fon bindngs P #fow bindings Ad | #tow g | #ow bindings 5| #fow bindings Zp | towbindings Co | #fow bindings Sle | #fow binding Com
ame nputslue | Ratngiinputatiel | hone npualu| dressinputVahe} | tyinputYaue} | tteinput¥ate} | Codeinput¥alil | untrgd inputalul | sFepdinputvaue} | ments putvalel

OEBPS/img/dt_calc_formula.png
£] =SUM(OFFSET(G14.1.0) OFFSET(G15.-1.0))
I [I T— I I
hints.ListPrice.abel) diference.Jabel)| *{reslexcel.mar
[#{row.bindings.Lis__#VALUEI _|gs.ListPrice.input
DT Total 1]

OEBPS/img/jdev_tools_menu.png
Manage Libraries...
Configure Palette...
SDL Locally

Oracle Diagnostic Log Analyzer
Plugein HTML Converter
Database >

Convert DTD to XSD.

External Tool

Eestures.
Extension Disgnostics.

Breferences...

Palette. »
Suitch Roles »

OEBPS/img/insert_component_button.png
B insert Component -

OEBPS/img/workbook_jdev.png
erowse For ol

Select JDeveloper Appication Home Folder

4% Computer o
> & System ()
¥ s Data (D)
> & DVD RW Drive ()
» € Network
>3 Control Panel
1@ Recycle Bin j

o e]

I

OEBPS/img/input_text_comp.png
#{bindings.City.label}

bindings.cityy

Edit Component: ADF Input Te

Edit the properties and press OK to save your changes.

[c =]

4 Appearance =
StleName _ADFDI_lnput TextStyle:
4 D
4 InputText #Hbindings Gity)
" DoubleClickActionSet
ReadOnly
_”ﬂ-nﬁmﬂlﬂ =)
Tooltip #Hpindings Gty hints tooltip}
© Design
b Layout -
Value
The value of this component.

I

OEBPS/img/deg_bindings_controls.png
Page Data Binding Definition
This shows the Oracle ADF data bindings defined for your page. Select a binding to see ts elationship to the underlying Data Control

Data Binding Registry: oracle/summitdi/view/DataBindings.cpx
Bidings and Excutabes | ContestlEverts | parameters |

Bindings * /R
Gt Ll

OEBPS/img/search_options_labelled.png
Search Area

e N - ooy 3
! 2 4

0 #{res["excel.search.hits'T}

OEBPS/img/adf_table_resizecolumnsmode.png
Edit Component: ADF Table

Edit the properties and press OK to save your changes.

[c =]

Columns Columns (15)
RowData

TreelD Customers
UniqueAttibute

OEBPS/img/label_comp.png
#{bindings.Country1d.label}_|Countryld

e

Edit the properties and press OK to save your changes.

=R

4 Appearance.
StyleName _ADFDI_LabelStyle

4 Data
[EZI #tindings Countryidlabel) (2]
Toolip

© Design

o Layau

Label
The text displayed by tis component.

(=

OEBPS/img/validation_fix.png
Edit Component: ADF Output T

Edit the properties and press OK to save your changes.

[c =]
4 Appearance
Styame. _ADFDI_FormDoubleClickCellStyle:
4 Dt
4 OuputText Hiworksheet emor s}

OEBPS/img/export_toolbar.png
(@) Export

OEBPS/img/interactive_features.png
Edit Actions

Region Country Sales R
Members: ‘South America | [arazil lry ¢
‘South America i gt
‘South America Wai Nt
‘South America Colin M

Dependent List of Values

Country Based Search

|search Customer By Country
Comtyrame [
Remove
. Search | Cancel

A o] oo | o |

WorksheetMethod

Confirmation ——— Action Sets |

Dislog

Web Page from Fusion Web Application

EditableCustomerSearch.isx - Microsoft

Customers.

Al
-3
Login Logout _Edit Filter Display | Clear | About
Options || Customers Al || AllData

Runtime Ribbon Tab

OEBPS/img/rt_oracleadftab_default.png
Home Inset Pagelayout Fomulas Data Review View OwmdeADF | Customers

&0 @& |D

Edit | Upload Remove Clear || About
Options Selected AllData

Connection Worksheet Clear || About

OEBPS/img/adfdi_designer_shortcuts2.png
[&] Workbook Propeties () Export | [Insert Component -) Refresh Bindings
@ Worksheet propertes &y mport | B Ecit roperties

@ Aot Roetete

Workbook. ADF Components.

OEBPS/img/adf_tooltip-dt.png
e comporen: xS

Edt the propeftes and press OK to save your changes.

Bua
4 Popearance
Stelame. _ADFDI_lnput TextStyle:
4 Data
b oputTet Hibindings Phone)

##{bindings. Phone hints tooltip} J
4 Design

Anrotation
ComponentD ITX1163431079

4 Layout

b Postion 56813

Tooltip

‘Auseful hintabout the content orfunction o this componert,to appear
‘whenthe mouse s over the component’s origin cell

o] o]

OEBPS/img/output_text_comp.png
#{bindings.Warehouseld.label} |#(bindingsWarehouseld}

Ecomp o o

Edit the properties and press OK to save your changes.

NI

4 Appearance.
StyleName _ADFDI_Output Text Style
4 Data
. [T #ibindings Warehouseld)
Tooltip #{bindings Warehouseld hints tooltip}
» Design
> Layout

OutpufText
‘The propertes that govern the Output Text

OEBPS/img/label_rt.png
Edit Summit Warehouses

Warehouse Id.

Region

Address

aty

Zip Code

201 Manager |Roberta Menchu
‘South America Country |prazil
68 Via Centrale
Sa0 Faulo State
phone [

OEBPS/img/jdev_appnavigator_pagedef.png

OEBPS/img/workbook_parameters.png
et Worook roperic S

Edt the propettes and press OK to save your changes.

]

4 Data =

OEBPS/img/workbook_resetid.png
Edit Workbook Properties

Edit the properties and press OK to save your changes.

NI

4 Behavior

4 Runtime Ribbon Tab
Annotation
Tite

Customers

5 oo S

Data
Design

Login

Reset WorkbookiD

Security A Are you sure you want to reset the WorkbookD?

OEBPS/img/managed_bean_eg.png
Edit Component: ADF Label

Edit the properties and press OK to save your changes.

Bua

= Appearance B
StyleName CustomFootNoteStyle

4 Data =
HlresTexcel conectionPrefx} #{bindings logoedinUser] (-]
Toolip

4 Design
Sovciaion u

Label
The text displayed by tis component.

OEBPS/img/jdev_excel_context_root.png
0 Project Propertes - DA\Orack\Applications\Summit ADFd\ViewController\ViewControlierjor (I

Q sexrch Java EE Application

& Project Source Paths O Use Gustom Settings

(3 ADF Busiess Components || (3 e roject setings

- ADF Model =

- ADF View The folowing propertes are used when running this project a a Java EE modue o applicaton

in the ntegrated VLS server.

- Ant

* Wc”" Java EE Web Application Name:

- Degloyment [ummitaDrdAg]
£33 Module 32va EE ieb Context Root:

[[punmi]]
Facelts Tag Lirares

- Features Integrated WLS Command Lne:

$vm) $Gava.options)

Restore Command Line Defauit

P

Edit the properties and press OK to save your changes.

[c =]

» Behavior
b Brandingltems Brandingltems (5)

RemateServietPath JadidiRemoteServiet
b Resources res

hitp://localhost 7101/summit

Reset WorkbookiD

‘WebAppRoot
‘The root URL for the target web application.

(=

OEBPS/img/web_page_picker.png
Insert Component: ADF Button

534 values for the propertes and press OK 1o save your changes.

e
T .
s -
e
4 Actions Edit Actions.
»[o
b
. Merbers: Dislog propertes:
e | 2 @5
el T
= | E -
Message aroet
o =
Title. Page
- v I
=
= — o
[D\Orace\Ppplcatons\Summt_ADFANiewContolerouble ot
o
pi
e
add o[Remowe |
/indexjsf
/Test st
 Aragments/Warehousesindex jsff

OEBPS/img/table_tooltip-dt.png
et conponen A0t 12+

Edt the propeftes and press OK to save your changes.

=R
+ Data A
4 Columns. Columns (15)
b _ADF_ChangedColumn
> _ADF_FlagColumn
> @ _ADF_StatusColumn
4 3 #{row bindings Name inputValue}
Sonctaion
CelStyleName _ADFDI_TableCellStyle
DynamicColumn False.
HeaderlLabel #{bindings Customers hints Name label}
HeaderStyleName _ADFDI_HeaderStyle
m Name
nsexComponert
hsulﬂngﬂe True
FhesfonTable
Hindings Customers hints Name tootip} ()
» UpdateComponent #{row bindings Name input Value} (Input Text)
Vi e
widhn -
Tooltip
sl it st th corten of i coamn o sgpesr when the s s ovr s colu's

o] o]

OEBPS/img/filters_adflibraryfilter.png
@z
+X
ass
oradiesecuity.Js.ce http. Jpsiter @
‘g apache myfaces. rnidad.ebepp Trinided... | B ||
orack. adfmodel.servlet. ADFEindingFter 3
orace o cestaprtegraton.fier DlExceDo...| &

* X

OEBPS/img/delete_multicomponent.png
#{res['excel.work
sheet.errorsT)

#{res['excel.custo
mers.table.errors'

i

Are you sure that you want to delete the § components currently
selected?

[er— p——

OEBPS/img/filters_webxml.png
@
‘Appication
Fiters
+ X
Filters.
B Cass. %
Pages PosFiter rade.security.jps.ee.http.JpsFiter
. frnided apache.myfaces. inided. webapp.TrndadFiter @
lacBindings rade.adf.model servit. ADFBincingFiler 3
¢

OEBPS/img/workbook_properties_button.png
& Workbook Properties

OEBPS/img/console_button.png
Console

OEBPS/img/worksheet_disperrors.png
Edit Component: ADF Output T

Edit the properties and press OK to save your changes.

NI

P =
‘StyleName TableErorStyle

. b

4 OutputText #{worksheet emrors}
4 DoubleClickActionSet DisplayWorksheetEmrors

b Satus
Value #Hworksheet errors}
Tooltip >

Actions
“The collection of actions invoked.

(=

OEBPS/img/asterisk_form.png
= Manager

= Country

Molly Urguhart

usa

OEBPS/img/dev_tools.png
Eitthe properies and press OK to save your changes.

[ca =]
4 Da =
Page Definiion ExcelEditCustomers
Parameters
o RowData
b ServerContext
SetuphctonlD
Title Hires[excel customers sheet ftle
4 Desion
Annctation

I

‘

Data

Cx o)

Property Inspector

PEET——

Expression Builder

PRI

Page Definifon: ExcelEditCustomers.

(& Cresteinser (acton)
(& Delete (acton)
(& Commit actor)

Binding ID Picker

vleb Pages Folder:

File System Folder Picker

s 0 L

[D:\0racle\Applcations\Summt_ADFDI\ViewCortroler\pubiic_himl

Page Prefix:

fraces
Choose Fage:

[ndex st

Choose 2 Page Definition

[ExcelEdiCustomers
ExcelEdtWarchouses.
loracle_summi_view_indexPageDef

Web Page Picker

Confirmation o download properties:

Emyl =

Prompt Hires[lexcel. customers.
Title Hires[lexcel. customers.
4+ Desion
Annctation Confimation to downloa(
Annotation

A

A optional note describing the purpose or usage of

‘)

Collection Editor

OEBPS/img/page_definition_picker.png
Edit Workshest Properties

Edit the properties and press OK to save your changes.

pl=|
4 Behavior
Events Startup
Protection
Ribbon Commands Ribbon Commands (2)
Data
Page Definiion Excel EditCustomers

CESTER —

Choose 2 Page Definition

ExcelEdtinvertory
(oracle_summi_view indexPageDef
(oracle_summi_view_WarehousesindexPageDef
(oracle_summid_view_TestPageDef

oK

OEBPS/img/invoke_confirmation_dialog.png
Corfimationto download propertes:

ME]

+ Data
[EEETETEEN #iesTexcel customers ibbon download. corfimation. cancelbuton))
‘OKButtonLabel #tres['excel customers ribbon.download confirmation okbutton T}
Prompt #{res['excel customers ribbon download confirmation prompt'T}
Tile: #{res[excel customers ribbon download confirmation title T}

4 Desion
Sonctaion

Confirmation to download

CancelButtonLabel

The labelofthe cancel buton in the window. tis propery s empty. adefault text appears at rrtime.

o] e]

OEBPS/img/jdev_depdesc_filters2.png
Name. Class
ter lorade security.jps.ce. http. JpsFiter
frinicad ‘org.apache.myfaces. rinidad. webapp. TrinidadFiter
lorack.adf.model serviet ADFBindngFiter

raryFiler o adf ibrary.mebapp LibraryFiter
GeneralFter | Filter Mappings _ Intilizaton Parameters
+X
Mapping Type. Mapping Dispatcher Type.
pattem o

Pattem =xdsm

