

Oracle® Fusion Middleware
Developing Applications with Oracle Coherence

12c (12.1.3)

E47887-04

September 2016

Documentation for Developers and Architects that describes
how to develop applications that use Coherence for
distributed caching and data grid computing. Includes
information for installing Coherence, setting up Coherence
clusters, configuring Coherence caches, and performing data
grid operations.

Oracle Fusion Middleware Developing Applications with Oracle Coherence, 12c (12.1.3)

E47887-04

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiii
Conventions ... xxiv

What's New in This Guide .. xxv

New and Changed Features for 12c (12.1.3) .. xxv
Other Significant Changes in This Document for 12c (12.1.3) .. xxv
New and Changed Features for 12c (12.1.2) .. xxv
Other Significant Changes in This Document for 12c (12.1.2) ... xxvii

Part I Getting Started

1 Introduction to Coherence

Basic Concepts .. 1-1
Clustered Data Management.. 1-1
A single API for the logical layer, XML configuration for the physical layer........................... 1-2
Caching Strategies.. 1-2
Data Storage Options... 1-2
Serialization Options ... 1-3
Configurability and Extensibility .. 1-3
Namespace Hierarchy ... 1-3

Read/Write Caching ... 1-4
NamedCache... 1-4
Requirements for Cached Objects.. 1-4
NamedCache Usage Patterns ... 1-5

Querying the Cache ... 1-6
Invocation Service .. 1-6
Event Programming ... 1-6
Transactions... 1-7
HTTP Session Management... 1-7
Object-Relational Mapping Integration .. 1-7
C++/.NET Integration .. 1-7
Management and Monitoring .. 1-8

iv

2 Installing Oracle Coherence for Java

System Requirements.. 2-1
Performing a Coherence Installation.. 2-2

Running the Coherence Installer ... 2-2
Performing a Coherence Installation In Graphical Mode ... 2-2
Performing a Coherence Installation In Silent Mode .. 2-3

Running the Coherence Quick Installer.. 2-4
Running the Coherence Supplemental Installer.. 2-4
Installing Coherence with WebLogic Server.. 2-5

Browsing the Installation Directory ... 2-5
Setting Environment Variables ... 2-6
Running Coherence for the First Time .. 2-6

Create a Basic Cluster .. 2-6
Create a Cache .. 2-7

Integration with Maven .. 2-8
Deinstalling Coherence... 2-8

3 Understanding Configuration

Overview of the Default Configuration Files... 3-1
Specifying an Operational Configuration File... 3-2

Using the Default Operational Override File... 3-3
Specifying an Operational Override File .. 3-3
Defining Override Files for Specific Operational Elements... 3-4
Viewing Which Operational Override Files are Loaded.. 3-5

Specifying a Cache Configuration File .. 3-6
Using a Default Cache Configuration File.. 3-6
Overriding the Default Cache Configuration File... 3-7
Using the Cache Configuration File System Property.. 3-8
Viewing Which Cache Configuration File is Loaded ... 3-8

Specifying a POF Configuration File ... 3-8
Overriding the Default POF Configuration File.. 3-9
Using the POF Configuration File System Property.. 3-10
Combining Multiple POF Configuration Files ... 3-10
Viewing Which POF Configuration Files are Loaded ... 3-11

Specifying Management Configuration Files ... 3-11
Specifying a Custom Report Group Configuration File .. 3-12

Overriding the Default Report Group Configuration File... 3-12
Using the Report Group Configuration File System Property.. 3-13

Specifying an MBean Configuration File... 3-14
Using the Default MBean Configuration Override File ... 3-14
Using the MBean Configuration File System Property .. 3-14

Viewing Which Management Configuration Files are Loaded.. 3-15
Disabling Schema Validation ... 3-15
Understanding the XML Override Feature .. 3-16

Using the Predefined Override Files .. 3-16
Defining Custom Override Files ... 3-18
Defining Multiple Override Files for the Same Element... 3-19

v

Changing Configuration Using System Properties .. 3-20
Using Preconfigured System Properties .. 3-20
Creating Custom System Properties .. 3-21

4 Building Your First Coherence Application

Task 1: Define the Example Cache.. 4-1
Task 2: Configure and Start the Example Cluster .. 4-2
Task 3: Create and Run a Basic Coherence Standalone Application ... 4-3

Create the Sample Standalone Application.. 4-3
Run the Sample Standalone Application.. 4-4
Verify the Example Cache... 4-4

Task 4: Create and Run a Basic Coherence JavaEE Web Application.. 4-5
Create the Sample Web Application ... 4-5
Deploy and Run the Sample Web Application.. 4-6
Verify the Example Cache... 4-6

Using JDeveloper for Coherence Development... 4-7
Running Coherence in JDeveloper .. 4-7
Viewing Thread Dumps in JDeveloper.. 4-10
Creating Configuration Files in JDeveloper.. 4-11

5 Debugging in Coherence

Overview of Debugging in Coherence .. 5-1
Configuring Logging ... 5-2

Changing the Log Level .. 5-2
Changing the Log Destination ... 5-3

Sending Log Messages to a File .. 5-3
Changing the Log Message Format... 5-3
Setting the Logging Character Limit ... 5-4
Using JDK Logging for Coherence Logs... 5-5
Using Log4J Logging for Coherence Logs.. 5-7
Using SLF4J for Coherence Logs.. 5-8

Performing Remote Debugging .. 5-8
Troubleshooting Coherence-Based Applications .. 5-9

Using Coherence Logs... 5-9
Using JMX Management and Coherence Reports.. 5-10
Using JVM Options to Help Debug.. 5-10
Capturing Thread Dumps.. 5-10
Capturing Heap Dumps... 5-11
Monitoring the Operating System .. 5-12

Part II Using Coherence Clusters

6 Introduction to Coherence Clusters

Cluster Overview.. 6-1
Understanding TCMP ... 6-1
Understanding Clustered Services ... 6-3

vi

7 Setting Up a Cluster

Overview of Setting Up Clusters .. 7-1
Specifying a Cluster's Name .. 7-2
Specifying a Cluster Member's Identity .. 7-2
Configuring Multicast Communication .. 7-4

Specifying a Cluster's Multicast Address ... 7-4
Changing the Multicast Socket Interface... 7-5

Disabling Multicast Communication .. 7-5
Specifying the Multicast Time-to-Live.. 7-6
Specifying the Multicast Join Timeout .. 7-6
Changing the Multicast Threshold .. 7-7

Specifying a Cluster Member's Unicast Address... 7-8
Using Well Known Addresses ... 7-9

Specifying WKA Member Addresses... 7-10
Specifying a WKA Address Provider... 7-11

Enabling Single-Server Mode... 7-13
Configuring Death Detection ... 7-14

Changing TCP-Ring Settings... 7-14
Changing the Heartbeat Interval .. 7-15
Disabling Death Detection ... 7-15

Specifying Cluster Priorities ... 7-16
Specifying a Cluster Member's Priority ... 7-16
Specifying Communication Thread Priorities .. 7-16
Specifying Thread Priorities for Services... 7-17

8 Starting and Stopping Cluster Members

Starting Cache Servers... 8-1
Overview of the DefaultCacheServer Class ... 8-1
Starting Cache Servers From the Command Line ... 8-2
Starting Cache Servers Programmatically .. 8-2

Starting Cache Clients ... 8-3
Disabling Local Storage... 8-3
Using the CacheFactory Class to Start a Cache Client.. 8-3

Stopping Cluster Members .. 8-4
Stopping Cluster Members From the Command Line ... 8-4
Stopping Cache Servers Programmatically ... 8-5

Performing a Rolling Restart ... 8-5
Prerequisites to Performing a Rolling Restart.. 8-6
Restarting Cache Servers for a Rolling Restart .. 8-6

9 Dynamically Managing Cluster Membership

Overview of Managing Cluster Membership... 9-1
Using the Cluster and Service Objects... 9-1
Using the Member Object .. 9-2
Listening to Member Events .. 9-2

vii

10 Tuning TCMP Behavior

Overview of TCMP Data Transmission.. 10-1
Throttling Data Transmission .. 10-2

Adjusting Packet Flow Control Behavior .. 10-2
Disabling Packet Flow Control ... 10-3
Adjusting Packet Traffic Jam Behavior .. 10-3

Bundling Packets to Reduce Load.. 10-4
Changing Packet Retransmission Behavior ... 10-5

Changing the Packet Resend Interval .. 10-5
Changing the Packet Resend Timeout ... 10-6
Configuring Packet Acknowledgment Delays ... 10-6

Configuring the Size of the Packet Buffers.. 10-7
Understanding Packet Buffer Sizing .. 10-7
Configuring the Outbound Packet Buffer Size ... 10-8
Configuring the Inbound Packet Buffer Size .. 10-8

Adjusting the Maximum Size of a Packet .. 10-9
Changing the Packet Speaker Volume Threshold.. 10-10
Configuring the Incoming Message Handler .. 10-11

Changing the Time Variance ... 10-11
Disabling Negative Acknowledgments ... 10-11

Using Network Filters .. 10-12
Using the Compression Filter.. 10-12

Enabling the Compression Filter for Specific Services ... 10-12
Enabling the Compression Filter for All Services ... 10-13
Configuring the Compression Filter ... 10-13

Using Custom Network Filters ... 10-14
Declaring a Custom Filter ... 10-14
Enabling a Custom Filter for Specific Services .. 10-15
Enabling a Custom Filter for All Services .. 10-15

Changing the TCMP Socket Provider Implementation... 10-16
Using the TCP Socket Provider... 10-16
Using the SDP Socket Provider ... 10-17
Using the SSL Socket Provider .. 10-17

11 Using the Service Guardian

Overview ... 11-1
Configuring the Service Guardian... 11-2

Setting the Guardian Timeout... 11-2
Setting the Guardian Timeout for All Threads.. 11-3
Setting the Guardian Timeout Per Service Type ... 11-3
Setting the Guardian Timeout Per Service Instance ... 11-4

Using the Timeout Value From the PriorityTask API ... 11-4
Setting the Guardian Service Failure Policy.. 11-5

Setting the Guardian Failure Policy for All Threads .. 11-5
Setting the Guardian Failure Policy Per Service Type.. 11-6
Setting the Guardian Failure Policy Per Service Instance.. 11-6

viii

Enabling a Custom Guardian Failure Policy ... 11-6
Issuing Manual Guardian Heartbeats ... 11-8

Part III Using Caches

12 Introduction to Coherence Caches

Understanding Distributed Caches ... 12-1
Understanding Replicated Caches ... 12-5
Understanding Optimistic Caches ... 12-7
Understanding Near Caches.. 12-8
Understanding Local Caches... 12-10
Understanding Remote Caches .. 12-11
Summary of Cache Types .. 12-11

13 Configuring Caches

Overview ... 13-1
Defining Cache Mappings .. 13-2

Using Exact Cache Mappings.. 13-2
Using Name Pattern Cache Mappings... 13-2

Defining Cache Schemes ... 13-3
Defining Distributed Cache Schemes... 13-4
Defining Replicated Cache Schemes .. 13-5
Defining Optimistic Cache Schemes .. 13-5
Defining Local Cache Schemes ... 13-6

Controlling the Growth of a Local Cache... 13-7
Specifying a Custom Eviction Policy .. 13-7

Defining Near Cache Schemes .. 13-11
Near Cache Invalidation Strategies ... 13-12

Using Scheme Inheritance ... 13-13
Using Cache Scheme Properties ... 13-14
Using Parameter Macros .. 13-15

Using User-Defined Parameter Macros ... 13-15
Using Predefined Parameter Macros ... 13-17

14 Implementing Storage and Backing Maps

Cache Layers... 14-1
Local Storage .. 14-2
Operations .. 14-3
Capacity Planning ... 14-4
Using Partitioned Backing Maps ... 14-6
Using the Elastic Data Feature to Store Data ... 14-7

Journaling Overview .. 14-7
Defining Journal Schemes.. 14-8

Configuring a RAM Journal Backing Map... 14-8
Configuring a Flash Journal Backing Map... 14-9
Referencing a Journal Scheme.. 14-9

ix

Using Journal Expiry and Eviction.. 14-9
Using a Journal Scheme for Backup Storage.. 14-10
Enabling a Custom Map Implementation for a Journal Scheme 14-10

Changing Journaling Behavior.. 14-10
Configuring the RAM Journal Resource Manager.. 14-11
Configuring the Flash Journal Resource Manager.. 14-11

Using Asynchronous Backup.. 14-12
Using Delta Backup .. 14-13

Enabling Delta Backup ... 14-14
Enabling a Custom Delta Backup Compressor .. 14-14

15 Caching Data Sources

Overview of Caching Data Sources ... 15-1
Pluggable Cache Store .. 15-2
Read-Through Caching ... 15-2
Write-Through Caching .. 15-2
Write-Behind Caching ... 15-3

Write-Behind Requirements... 15-4
Refresh-Ahead Caching .. 15-5

Selecting a Cache Strategy... 15-6
Read-Through/Write-Through versus Cache-Aside .. 15-6
Refresh-Ahead versus Read-Through.. 15-6
Write-Behind versus Write-Through ... 15-6

Creating a Cache Store Implementation .. 15-6
Plugging in a Cache Store Implementation ... 15-7
Sample Cache Store Implementation .. 15-8
Sample Controllable Cache Store Implementation.. 15-13
Implementation Considerations... 15-17

Idempotency .. 15-17
Write-Through Limitations.. 15-17
Cache Queries .. 15-18
Re-entrant Calls ... 15-18
Cache Server Classpath .. 15-18
CacheStore Collection Operations .. 15-18
Connection Pools... 15-18

16 Serialization Paged Cache

Understanding Serialization Paged Cache... 16-1
Configuring Serialization Paged Cache.. 16-2
Optimizing a Partitioned Cache Service... 16-2
Configuring for High Availability... 16-2
Configuring Load Balancing and Failover ... 16-2
Supporting Huge Caches ... 16-3

17 Using Quorum

Overview of Using Quorum.. 17-1

x

Using the Cluster Quorum .. 17-1
Configuring the Cluster Quorum Policy ... 17-2

Using the Partitioned Cache Quorums ... 17-2
Configuring the Partitioned Cache Quorum Policy... 17-3

Using the Proxy Quorum ... 17-4
Configuring the Proxy Quorum Policy.. 17-4

Using Custom Action Policies .. 17-5
Enabling Custom Action Policies.. 17-5
Enabling the Custom Failover Access Policy.. 17-6

18 Cache Configurations by Example

Local Caches (accessible from a single JVM) .. 18-1
In-memory Cache.. 18-1
Size Limited In-memory Cache... 18-2
In-memory Cache with Expiring Entries ... 18-2
In-memory Cache with Disk Based Overflow .. 18-2
NIO In-memory Cache ... 18-3
Cache on Disk .. 18-3
Size Limited Cache on Disk ... 18-3
Persistent Cache on Disk.. 18-4
Cache of a Database .. 18-4

Clustered Caches (accessible from multiple JVMs) .. 18-5
Partitioned Cache .. 18-5
Partitioned Cache with Overflow... 18-5
Partitioned Cache with Journal Storage... 18-6
Partitioned Cache of a Database ... 18-6
Partitioned Cache with a Serializer .. 18-7
Near Cache ... 18-8
Replicated Cache ... 18-8
Replicated Cache with Overflow .. 18-9

19 Extending Cache Configuration Files

Introduction to Extending Cache Configuration Files ... 19-1
Declaring XML Namespaces ... 19-2
Creating Namespace Handlers ... 19-3

Implementing the Namespace Handler Interface .. 19-3
Extending the Namespace Handler Abstract Class ... 19-5

Registering Processors... 19-5
Using Injection to Process Element Content .. 19-6

Example: the JNDI Resource Namespace Handler .. 19-9
Create the JNDI Resource Namespace Handler ... 19-9
Declare the JNDI Namespace Handler .. 19-11
Use the JNDI Resource Namespace Handler.. 19-11

Part IV Performing Data Grid Operations

xi

20 Using Portable Object Format

Understanding Serialization in Coherence .. 20-1
Overview of POF Serialization... 20-2
Using the POF API to Serialize Objects.. 20-2

Implementing the PortableObject Interface .. 20-3
Implementing the PofSerializer Interface .. 20-3
Guidelines for Assigning POF Indexes.. 20-4
Using POF Object References .. 20-4

Enabling POF Object References ... 20-5
Registering POF Object Identities for Circular and Nested Objects................................. 20-5

Registering POF Objects... 20-7
Configuring Coherence to Use the ConfigurablePofContext Class... 20-8

Configure the ConfigurablePofContext Class Per Service... 20-8
Configure the ConfigurablePofContext Class for All Services ... 20-9
Configure the ConfigurablePofContext Class For the JVM... 20-9

Using POF Annotations to Serialize Objects... 20-10
Annotating Objects for POF Serialization ... 20-10
Registering POF Annotated Objects... 20-11
Generating a POF Configuration File... 20-11
Enabling Automatic Indexing ... 20-12
Providing a Custom Codec.. 20-13

Using POF Extractors and POF Updaters ... 20-14
Navigating a POF object... 20-14
Using POF Extractors ... 20-15
Using POF Updaters ... 20-16

Serializing Keys Using POF .. 20-16

21 Pre-Loading a Cache

Bulk Loading Data Into a Cache .. 21-1
Performing Distributed Bulk Loading.. 21-2

A Distributed Bulk Loading Example.. 21-2

22 Querying Data In a Cache

Query Overview .. 22-1
Query Concepts ... 22-2

Performing Queries... 22-2
Efficient Processing of Filter Results .. 22-3

Using Query Indexes .. 22-4
Creating an Index.. 22-4
Creating User-Defined Indexes... 22-5

Implementing the MapIndex Interface ... 22-5
Implementing the IndexAwareExtractor Interface ... 22-6
Using a Conditional Index.. 22-6

Performing Batch Queries ... 22-7
Performing Queries on Multi-Value Attributes.. 22-9
Using Chained Extractors .. 22-9

xii

Evaluating Query Cost and Effectiveness .. 22-9
Creating Query Records... 22-10
Interpreting Query Records... 22-10

Query Explain Plan Record .. 22-11
Query Trace Record... 22-12

Running The Query Record Example .. 22-13

23 Using Continuous Query Caching

Overview of Using Continuous Query Caching ... 23-1
Understanding Use Cases for Continuous Query Caching .. 23-1

Understanding the Continuous Query Cache Implementation... 23-2
Constructing a Continuous Query Cache ... 23-2

Cleaning up the resources associated with a ContinuousQueryCache 23-3
Caching only keys, or caching both keys and values... 23-3

CacheValues Property and Event Listeners .. 23-4
Listening to the ContinuousQueryCache ... 23-4

Achieving a Stable Materialized View... 23-5
Support for Synchronous and Asynchronous Listeners ... 23-5

Making the ContinuousQueryCache Read-Only ... 23-5

24 Processing Data In a Cache

Overview of Processing Data In a Cache.. 24-1
Performing Targeted Processing... 24-1
Performing Parallel Processing ... 24-2
Performing Query-Based Processing ... 24-2
Performing Data-Grid-Wide Processing.. 24-2

Using Agents for Targeted, Parallel and Query-Based Processing ... 24-3
Processing Entries in Multiple Caches... 24-3
Ignoring the Results of an Entry Processor ... 24-5
Processing Entries Asynchronously ... 24-6

Performing Data Grid Aggregation ... 24-7
Performing Node-Based Processing .. 24-9
Using a Work Manager... 24-10

25 Using Map Events

Overview of Map Events ... 25-1
Listener Interface and Event Object.. 25-1
Understanding Event Guarantees .. 25-2
Caches and Classes that Support Events ... 25-2

Signing Up for All Events.. 25-3
Using an Inner Class as a MapListener... 25-4
Configuring a MapListener For a Cache... 25-4
Signing Up For Events On Specific Identities... 25-4
Filtering Events .. 25-5
Using Lite Events... 25-6
Listening to Queries.. 25-7

xiii

Filtering Events Versus Filtering Cached Data... 25-8
Using Synthetic Events .. 25-8
Using Backing Map Events ... 25-9

Producing Readable Backing MapListener Events from Distributed Caches...................... 25-10
Using Synchronous Event Listeners .. 25-11

26 Controlling Map Operations with Triggers

Overview of Map Triggers .. 26-1
A Map Trigger Example ... 26-2

27 Using Live Events

Overview of Live Events .. 27-1
Understanding Live Event Types... 27-1

Understanding Partitioned Cache Events ... 27-2
Entry Events.. 27-2
Entry Processor Events.. 27-2

Understanding Partitioned Service Events ... 27-3
Transfer Events... 27-3
Transaction Events... 27-3

Understanding Lifecycle Events ... 27-4
Handling Live Events ... 27-4

Creating Event Interceptors... 27-5
Understanding Event Threading .. 27-6
Registering Event Interceptors.. 27-7

Registering Event Interceptors For a Specific Cache .. 27-7
Registering Event Interceptors For a Partitioned Service .. 27-8
Registering Event Interceptors For a Cache Configuration Factory................................. 27-8
Using Custom Registration .. 27-9
Guidelines for Registering Event Interceptors .. 27-9

Chaining Event Interceptors.. 27-10
Specifying an Event Interceptor Chain Order ... 27-10

28 Using Coherence Query Language

Understanding Coherence Query Language Syntax .. 28-1
Query Syntax Basics.. 28-2

Using Path-Expressions .. 28-2
Using Bind Variables ... 28-3
Using Key and Value Pseudo-Functions.. 28-3
Using Aliases .. 28-3
Using Quotes with Literal Arguments ... 28-3

Retrieving Data.. 28-4
Retrieving Data from the Cache... 28-4
Filtering Entries in a Result Set .. 28-4

Managing the Cache Lifecycle... 28-5
Creating a Cache .. 28-6
Writing a Serialized Representation of a Cache to a File .. 28-6

xiv

Loading Cache Contents from a File... 28-7
Removing a Cache from the Cluster ... 28-7

Working with Cache Data.. 28-7
Aggregating Query Results .. 28-7
Changing Existing Values... 28-8
Inserting Entries in the Cache .. 28-8
Deleting Entries in the Cache ... 28-8

Working with Indexes .. 28-9
Creating an Index on the Cache... 28-9
Removing an Index from the Cache.. 28-9

Issuing Multiple Query Statements.. 28-9
Processing Query Statements in Batch Mode .. 28-9

Viewing Query Cost and Effectiveness.. 28-10
Using the CohQL Command-Line Tool.. 28-10

Starting the Command-line Tool .. 28-11
Using Command-Line Tool Arguments .. 28-11
A Command-Line Example ... 28-12

Building Filters in Java Programs .. 28-14
Additional Coherence Query Language Examples... 28-15

Simple SELECT * FROM Statements that Highlight Filters.. 28-15
Complex Queries that Feature Projection, Aggregation, and Grouping 28-16
UPDATE Examples... 28-17
Key and Value Pseudo-Function Examples .. 28-17

29 Performing Transactions

Overview of Transactions.. 29-1
Using Explicit Locking for Data Concurrency ... 29-2
Using Entry Processors for Data Concurrency... 29-3
Using the Transaction Framework API... 29-5

Defining Transactional Caches.. 29-6
Performing Cache Operations within a Transaction ... 29-8

Using the NamedCache API .. 29-8
Using the Connection API .. 29-8

Creating Transactional Connections .. 29-10
Using Transactional Connections ... 29-11

Using Auto-Commit Mode... 29-11
Setting Isolation Levels ... 29-12
Using Eager Mode ... 29-13
Setting Transaction Timeout .. 29-13

Using the OptimisticNamedCache Interface .. 29-13
Configuring POF When Performing Transactions... 29-14
Configuring Transactional Storage Capacity .. 29-14
Performing Transactions from Java Extend Clients... 29-15

Create an Entry Processor for Transactions ... 29-16
Configure the Cluster-Side Transaction Caches.. 29-17
Configure the Client-Side Remote Cache... 29-18
Use the Transactional Entry Processor from a Java Client .. 29-19

xv

Viewing Transaction Management Information .. 29-19
CacheMBeans for Transactional Caches... 29-19
TransactionManagerBean ... 29-20

Using the Coherence Resource Adapter ... 29-21
Performing Cache Operations within a Transaction ... 29-21

Creating a Coherence Connection ... 29-23
Getting a Named Cache .. 29-24
Demarcating Transaction Boundaries... 29-24

Packaging the Application... 29-25
Configure the Connection Factory Resource Reference... 29-25
Configure the Resource Adapter Module Reference.. 29-26
Include the Required Libraries .. 29-26

Using the Coherence Cache Adapter for Transactions.. 29-26

30 Working with Partitions

Specifying Data Affinity.. 30-1
Overview of Data Affinity ... 30-1
Specifying Data Affinity with a KeyAssociation.. 30-2
Specifying Data Affinity with a KeyAssociator.. 30-2
Deferring the Key Association Check .. 30-3
Example of Using Affinity ... 30-4

Changing the Number of Partitions .. 30-4
Changing the Partition Distribution Strategy ... 30-5

Specifying a Partition Assignment Strategy.. 30-5
Enabling a Custom Partition Assignment Strategy ... 30-6

31 Managing Thread Execution

Overview of Priority Tasks ... 31-1
Setting Priority Task Timeouts... 31-1

Configuring Execution Timeouts.. 31-1
Command Line Options... 31-3

Creating Priority Task Execution Objects .. 31-3
APIs for Creating Priority Task Objects... 31-4
Errors Thrown by Task Timeouts ... 31-5

32 Constraints on Re-entrant Calls

Overview of Constraints on Re-Entrant Calls ... 32-1
Re-entrancy, Services, and Service Threads... 32-1

Parent-Child Object Relationships.. 32-1
Avoiding Deadlock ... 32-2

Re-entrancy and Listeners ... 32-3

Part V Using the Coherence JCache Implementation

xvi

33 Introduction to Coherence JCache

Overview of the Coherence JCache Implementation... 33-1
Comparison of JCache and NamedCache Features .. 33-3
Dependencies for Coherence JCache... 33-3
Overview of Configuration for the Coherence JCache Provider ... 33-4
JCache Primer... 33-4

What is JCache ... 33-4
JCache Caching Providers and Cache Managers ... 33-5
JCache Caches .. 33-5
JCache Cache Configuration.. 33-6
JCache Custom Programming... 33-6
JCache Management ... 33-7

34 Building Your First Coherence JCache Application

Task 1: Create a Simple Object ... 34-1
Task 2: Store the Object in a Local Cache ... 34-2

Create the Sample JCache Application .. 34-2
Run the Sample JCache Application .. 34-3

Task 3: Configure an Example Cluster.. 34-3
Task 4: Store the Object in a Partitioned Cache .. 34-4

Start the Example Cache Server .. 34-4
Run The Application... 34-4
Verify the Cache .. 34-5

Task 5: Store the Object in a Pass-Through Cache ... 34-6
Define the Example Cache ... 34-6
Start the Example Cache Server .. 34-7
Run the Application.. 34-7
Verify the Cache .. 34-7

35 Performing Basic Coherence JCache Tasks

Specifying Coherence as the JCache Provider... 35-1
Creating Coherence JCache Caches ... 35-2

Creating Local Caches .. 35-2
Creating Partitioned Caches .. 35-3
Creating Pass-Through Caches ... 35-4
Using Native Coherence Functionality from JCache ... 35-5

Accessing NamedCache Instances from JCache.. 35-5
Using Coherence Configuration with JCache.. 35-6

Configuring Coherence JCache Caches .. 35-6
Setting Store-By Semantics .. 35-7
Setting Cache Entry Types... 35-7
Setting Cache Expiry... 35-8
Enabling Read-Through and Write-Through Caching.. 35-9
Enabling Management ... 35-10

Performing Cache Operations .. 35-10
Using Read-Through and Write-Through Caching.. 35-11

xvii

Providing a Read-Through Implementation... 35-11
Pre-Loading a Cache.. 35-12

Providing a Write-Through Implementation.. 35-12
Configuring a JCache POF Configuration file .. 35-13
Viewing JCache Management Information ... 35-13

Understanding the CacheConfiguration MBean.. 35-14
Attributes .. 35-14
Operations... 35-14

Understanding the CacheStatistics MBean ... 35-14
Attributes .. 35-15
Operations... 35-15

Changing the Refresh Interval for Partitioned Cache Statistics ... 35-15

36 Using JCache Events

Overview of Using JCache Events ... 36-1
Creating Event Listeners .. 36-2
Creating Event Filters ... 36-2
Registering Event Listeners and Filters .. 36-3

Registering Event Listeners and Filters During Cache Configuration.................................... 36-3
Registering Event Listeners and Filters at Runtime... 36-4

37 Processing JCache Entries

Overview of Processing JCache Entries .. 37-1
Creating Entry Processors .. 37-1
Using Entry Processors ... 37-2

Invoking Entry Processors for a Single Key .. 37-2
Invoking Entry Processors for Multiple Keys... 37-3

Part VI Appendices

A Operational Configuration Elements

Operational Deployment Descriptor... A-1
Operational Override File.. A-2
Element Reference... A-3

access-controller .. A-5
address-provider ... A-6
address-providers ... A-8
authorized-hosts.. A-9
cache-factory-builder-config.. A-10
callback-handler .. A-11
cluster-config ... A-12
cluster-quorum-policy.. A-14
coherence .. A-15
configurable-cache-factory-config .. A-16
filter ... A-18
filters.. A-19

xviii

flashjournal-manager.. A-20
flow-control.. A-22
host-range... A-23
identity-asserter... A-24
identity-manager... A-25
identity-transformer ... A-26
incoming-message-handler.. A-27
init-param... A-28
init-params ... A-29
instance ... A-30
journaling-config ... A-31
key-store ... A-32
license-config ... A-33
logging-config.. A-34
management-config .. A-35
mbean.. A-37
mbeans .. A-39
mbean-filter .. A-40
member-identity.. A-41
multicast-listener ... A-43
notification-queueing.. A-45
outgoing-message-handler .. A-46
outstanding-packets.. A-47
packet-buffer .. A-48
packet-bundling .. A-49
packet-delivery .. A-50
packet-publisher.. A-51
packet-size .. A-52
packet-speaker ... A-53
pause-detection.. A-54
provider .. A-55
ramjournal-manager ... A-56
reporter ... A-57
security-config ... A-58
serializer ... A-59
serializers.. A-60
service ... A-61

Initialization Parameter Settings.. A-62
DistributedCache Service Parameters ... A-63
ReplicatedCache Service Parameters ... A-68
OptimisticCache Service Parameters ... A-71
Invocation Service Parameters.. A-74
LocalCache Service Parameters .. A-77
Proxy Service Parameters .. A-77
RemoteCache Service Parameters .. A-80
RemoteInvocation Service Parameters .. A-81
NameService Parameters... A-81

xix

RemoteNameService Parameters ... A-81
service-guardian.. A-82
services.. A-83
shutdown-listener ... A-84
socket-address ... A-85
socket-provider.. A-86
socket-providers .. A-88
ssl ... A-89
tcp-ring-listener ... A-91
traffic-jam ... A-92
trust-manager .. A-93
unicast-listener... A-94
volume-threshold.. A-97
well-known-addresses.. A-98

Attribute Reference... A-100

B Cache Configuration Elements

Cache Configuration Deployment Descriptor... B-1
Element Reference... B-3

acceptor-config .. B-6
address-provider ... B-8
async-store-manager... B-10
authorized-hosts.. B-12
back-scheme... B-13
backing-map-scheme.. B-14
backup-storage .. B-16
bdb-store-manager.. B-19
bundle-config... B-21
cache-config.. B-22
cache-mapping .. B-23
cache-service-proxy .. B-24
cachestore-scheme... B-25
caching-scheme-mapping .. B-26
caching-schemes.. B-27
class-scheme... B-29
custom-store-manager.. B-30
defaults ... B-31
distributed-scheme.. B-32
external-scheme... B-40
flashjournal-scheme .. B-44
front-scheme .. B-47
http-acceptor .. B-48
identity-manager... B-49
incoming-message-handler.. B-50
initiator-config ... B-51
init-param... B-52
init-params ... B-53

xx

instance ... B-54
interceptor .. B-55
interceptors... B-56
invocation-scheme .. B-57
invocation-service-proxy.. B-61
key-associator .. B-62
key-partitioning... B-63
key-store ... B-64
listener... B-65
local-address .. B-66
local-scheme... B-67
memcached-acceptor .. B-71
name-service-addresses.. B-72
near-scheme ... B-73
nio-file-manager .. B-75
nio-memory-manager... B-77
operation-bundling ... B-79
optimistic-scheme ... B-80
outgoing-message-handler .. B-84
overflow-scheme ... B-87
paged-external-scheme... B-89
partition-listener.. B-92
partitioned-quorum-policy-scheme ... B-93
provider .. B-94
proxy-config... B-95
proxy-scheme... B-96
proxy-quorum-policy-scheme... B-100
ramjournal-scheme ... B-101
read-write-backing-map-scheme .. B-104
remote-addresses... B-109
remote-cache-scheme.. B-110
remote-invocation-scheme... B-111
replicated-scheme.. B-112
resource-config .. B-116
serializer ... B-117
socket-address ... B-118
socket-provider.. B-119
ssl ... B-120
tcp-acceptor .. B-121
tcp-initiator... B-125
transactional-scheme .. B-127
trust-manager .. B-133

Attribute Reference... B-134

C POF User Type Configuration Elements

POF Configuration Deployment Descriptor.. C-1
Element Index .. C-3

xxi

default-serializer.. C-4
init-param... C-5
init-params ... C-6
pof-config ... C-7
serializer ... C-8
user-type... C-9
user-type-list .. C-10

D System Property Overrides

Overview of System Property Overrides.. D-1
Override Example.. D-1
Preconfigured Override Values.. D-2

E The PIF-POF Binary Format

Overview of the PIF-POF Binary Format.. E-1
Stream Format .. E-1

Integer Values .. E-2
Type Identifiers ... E-3

Binary Formats for Predefined Types ... E-5
Int... E-6

Coercion of Integer Types... E-6
Decimal ... E-7
Floating Point... E-7
Boolean ... E-8
Octet .. E-8
Octet String... E-9
Char ... E-9
Char String ... E-10
Date ... E-11
Year-Month Interval ... E-11
Time... E-11
Time Interval.. E-11
Date-Time... E-11

Coercion of Date and Time Types ... E-11
Day-Time Interval ... E-12
Collections .. E-12
Arrays ... E-12
Sparse Arrays... E-13
Key-Value Maps (Dictionaries) ... E-13
Identity.. E-15
Reference .. E-15

Binary Format for User Types ... E-15
Versioning of User Types... E-16

xxii

xxiii

Preface

Welcome to Developing Applications with Oracle Coherence. This document provides
contextual information, instructions, and examples that are designed to teach
developers and architects how to use Coherence and develop Coherence-based
applications.

Audience
Developing Applications with Oracle Coherence is intended for the following audiences:

■ Primary Audience – Application developers who want to understand core Oracle
Coherence concepts and want to build applications that leverage an Oracle
Coherence data grid.

■ Secondary Audience – System architects who want to understand core Oracle
Coherence concepts and want to build data grid-based solutions.

The audience must be familiar with Java to use this guide. In addition, the examples in
this guide require the installation and use of the Oracle Coherence product. The use of
an IDE is not required to use this guide, but is recommended to facilitate working
through the examples. A database and basic database knowledge is required when
using cache store features.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents that are included in the Oracle
Coherence documentation set:

■ Administering HTTP Session Management with Oracle Coherence*Web

■ Administering Oracle Coherence

■ Developing Remote Clients for Oracle Coherence

xxiv

■ Integrating Oracle Coherence

■ Managing Oracle Coherence

■ Securing Oracle Coherence

■ Tutorial for Oracle Coherence

■ Java API Reference for Oracle Coherence

■ C++ API Reference for Oracle Coherence

■ .NET API Reference for Oracle Coherence

■ Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxv

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the formerly titled Oracle
Coherence Developer's Guide.

New and Changed Features for 12c (12.1.3)
Oracle Coherence 12c (12.1.3) includes the following new and changed features for this
document.

■ JCache provider implementation, which provides client applications with a
common API for using caching in Java. See Appendix V, "Using the Coherence
JCache Implementation."

■ Journal expiry and eviction, which allows entries in a RAM or flash journal to be
automatically removed. See "Using Journal Expiry and Eviction" on page 14-9.

■ Asynchronous entry processors, which allows entry processors to be invoked
asynchronously. See "Processing Entries Asynchronously" on page 24-6.

Other Significant Changes in This Document for 12c (12.1.3)
For 12c (12.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

■ Revised the documentation for specifying multicast address. See "Specifying a
Cluster's Multicast Address" on page 7-4.

■ Revised the documentation for registering event interceptors. See "Registering
Event Interceptors" on page 27-7.

■ Revised the documentation for live events thread model documentation. See
"Understanding Event Threading" on page 27-6.

■ Revised the operational configuration reference for all new and changed elements.
See Appendix A, "Operational Configuration Elements."

■ Revised the cache configuration reference for all new and changed elements. See
Appendix B, "Cache Configuration Elements."

New and Changed Features for 12c (12.1.2)
Oracle Coherence 12c (12.1.2) includes the following new and changed features for this
document.

xxvi

■ Oracle universal installer and patching

– Complete installer, which provides all installation options and can operate in
graphical or silent mode. See "Running the Coherence Installer" on page 2-2.

– Quick installer, which provides a silent installer with no API documentation
or examples. See "Running the Coherence Quick Installer" on page 2-4.

– Supplemental installer, which provides only API documentation and
examples. See "Running the Coherence Supplemental Installer" on page 2-4.

– Deinstaller, which provides the ability to deinstall a Coherence installation.
See "Deinstalling Coherence" on page 2-8.

■ Maven integration, which simplifies and standardize including Coherence in a
build process. See "Integration with Maven" on page 2-8.

■ SLF4J integration, which allows SLF4J logging. See "Using SLF4J for Coherence
Logs" on page 5-8.

■ Cluster priorities, which are used to assign importance for cluster members,
cluster communication components, and threads. See "Specifying Cluster
Priorities" on page 7-16.

■ Logical near cache invalidation strategy, which instructs a near cache to listen to
all backing map events that are not synthetic deletes. See "Near Cache Invalidation
Strategies" on page 13-12.

■ Flash journal high size, which determines when to start removing stale values
from the journal and is the basis for automatic tuning. See "Configuring the Flash
Journal Resource Manager" on page 14-11.

■ Asynchronous Backup, which allows clients to continue to respond to requests
during backup operations. See "Using Asynchronous Backup" on page 14-12.

■ Quorum failover access policy, which moderates client request load during a
failover event in order to allow cache servers adequate opportunity to re-establish
partition backups. See "Enabling the Custom Failover Access Policy" on page 17-6.

■ Custom XML namespaces and namespace handlers, which allow user-defined
XML elements and attributes to be added to a cache configuration file. See
Chapter 19, "Extending Cache Configuration Files".

■ POF configuration generator, which automatically creates a POF configuration file
that includes user type entries for the classes that contain the @Portable
annotation. See "Generating a POF Configuration File" on page 20-11.

■ Implicit locks, which allows cache entries in multiple caches to be updated from a
single entry processor in a transaction-like manner. See "Processing Entries in
Multiple Caches" on page 24-3.

■ Live events, which is an event programming model that allows extensibility
within a cluster when performing operations against a data grid. The model uses
events to represent observable occurrences of cluster operations. See Chapter 27,
"Using Live Events".

■ Partition assignment strategies, which define how partitions are assigned to
storage-enabled cluster members. See "Changing the Partition Distribution
Strategy" on page 30-5.

■ InfiniBand Message Bus (IMB) provider, which is a native InfiniBand protocol that
supports Remote Direct Memory Access (RDMA), zero message copy, kernel
bypass, predictive notifications, and custom off-heap buffers. IMB is only available
on Oracle Exalogic system. See Chapter A–71, " unicast-listener Subelements," and

xxvii

Chapter B–20, " distributed-scheme Subelements," for details about setting the
<reliable-transport> element.

Other Significant Changes in This Document for 12c (12.1.2)
For 12c (12.1.2), this guide has been updated in several ways. Following are the
sections that have been added or changed.

■ Revised the system requirements. See "System Requirements" on page 2-1.

■ Revised the installation directory structure instructions. See "Browsing the
Installation Directory" on page 2-5.

■ Revised the packet buffer configuration instructions. See "Configuring the Size of
the Packet Buffers" on page 10-7 and "Adjusting the Maximum Size of a Packet" on
page 10-9.

■ Revised the near cache invalidation strategy section to include new default
behavior. See "Near Cache Invalidation Strategies" on page 13-12.

■ Added a section about key serialization that lists considerations when serializing
keys. See "Serializing Keys Using POF" on page 20-16.

■ Added a section about deferring key association checks. See "Deferring the Key
Association Check" on page 30-3.

■ Added a section about changing the default number of partitions for a distributed
cache service. See "Changing the Number of Partitions" on page 30-4.

■ Revised the operational configuration reference for all new and changed elements.
See Appendix A, "Operational Configuration Elements."

■ Revised the cache configuration reference for all new and changed elements. See
Appendix B, "Cache Configuration Elements."

xxviii

Part I
Part I Getting Started

Part I contains the following chapters:

■ Chapter 1, "Introduction to Coherence"

■ Chapter 2, "Installing Oracle Coherence for Java"

■ Chapter 3, "Understanding Configuration"

■ Chapter 4, "Building Your First Coherence Application"

■ Chapter 5, "Debugging in Coherence"

1

Introduction to Coherence 1-1

1Introduction to Coherence

[1] This chapter provides an introduction to Coherence concepts and features. It outlines
product capabilities, usage possibilities, and provides a brief overview of how
particular features are implemented. The items discussed in this chapter are detailed
throughout this guide.

This chapter includes the following sections:

■ Basic Concepts

■ Read/Write Caching

■ Querying the Cache

■ Invocation Service

■ Event Programming

■ Transactions

■ HTTP Session Management

■ Object-Relational Mapping Integration

■ C++/.NET Integration

■ Management and Monitoring

Basic Concepts
The topics in this section describes fundamental concepts that are associated with
Coherence and discusses several important features that are associated with using
Coherence to cluster data.

Clustered Data Management
At the core of Coherence is the concept of clustered data management. This implies the
following goals:

■ A fully coherent, single system image (SSI)

■ Scalability for both read and write access

■ Fast, transparent failover and failback

■ Linear scalability for storage and processing

■ No Single-Points-of-Failure (SPOFs)

■ Cluster-wide locking and transactions

Basic Concepts

1-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Built on top of this foundation are the various services that Coherence provides,
including database caching, HTTP session management, grid agent invocation and
distributed queries. Before going into detail about these features, some basic aspects of
Coherence should be discussed.

A single API for the logical layer, XML configuration for the physical layer
Coherence supports many topologies for clustered data management. Each of these
topologies has a trade-off in terms of performance and fault-tolerance. By using a
single API, the choice of topology can be deferred until deployment if desired. This
allows developers to work with a consistent logical view of Coherence, while
providing flexibility during tuning or as application needs change.

Caching Strategies
Coherence provides several cache implementations:

■ Understanding Local Caches—Local on-heap caching for non-clustered caching.

■ Understanding Replicated Caches—Perfect for small, read-heavy caches.

■ Understanding Distributed Caches—True linear scalability for both read and write
access. Data is automatically, dynamically and transparently partitioned across
nodes. The distribution algorithm minimizes network traffic and avoids service
pauses by incrementally shifting data.

■ Understanding Near Caches—Provides the performance of local caching with the
scalability of distributed caching. Several different near-cache strategies are
available and offer a trade-off between performance and synchronization
guarantees.

In-process caching provides the highest level of raw performance, since objects are
managed within the local JVM. This benefit is most directly realized by the Local,
Replicated, Optimistic and Near Cache implementations.

Out-of-process (client/server) caching provides the option of using dedicated cache
servers. This can be helpful when you want to partition workloads (to avoid stressing
the application servers). This is accomplished by using the Partitioned cache
implementation and simply disabling local storage on client nodes through a single
command-line option or a one-line entry in the XML configuration.

Tiered caching (using the Near Cache functionality) enables you to couple local caches
on the application server with larger, partitioned caches on the cache servers,
combining the raw performance of local caching with the scalability of partitioned
caching. This is useful for both dedicated cache servers and co-located caching (cache
partitions stored within the application server JVMs).

See Part III, "Using Caches" for detailed information on configuring and using caches.

Data Storage Options
While most customers use on-heap storage combined with dedicated cache servers,
Coherence has several options for data storage:

■ On-heap—The fastest option, though it can affect JVM garbage collection times.

■ Journal—A combination of RAM storage and disk storage, optimized for solid
state disks, that uses a journaling technique. Journal-based storage requires
serialization/deserialization.

■ File-based—Uses a Berkeley Database JE storage system.

Basic Concepts

Introduction to Coherence 1-3

Coherence storage is transient: the disk-based storage options are for managing cached
data only. For persistent storage, Coherence offers backing maps coupled with a
CacheLoader/CacheStore.

See Chapter 14, "Implementing Storage and Backing Maps," for detailed information.

Serialization Options
Because serialization is often the most expensive part of clustered data management,
Coherence provides the following options for serializing/deserializing data:

■ com.tangosol.io.pof.PofSerializer – The Portable Object Format (also referred
to as POF) is a language agnostic binary format. POF was designed to be
incredibly efficient in both space and time and is the recommended serialization
option in Coherence. See Chapter 20, "Using Portable Object Format."

■ java.io.Serializable – The simplest, but slowest option.

■ java.io.Externalizable – This requires developers to implement serialization
manually, but can provide significant performance benefits. Compared to
java.io.Serializable, this can cut serialized data size by a factor of two or more
(especially helpful with Distributed caches, as they generally cache data in
serialized form). Most importantly, CPU usage is dramatically reduced.

■ com.tangosol.io.ExternalizableLite – This is very similar to
java.io.Externalizable, but offers better performance and less memory usage
by using a more efficient IO stream implementation.

■ com.tangosol.run.xml.XmlBean – A default implementation of
ExternalizableLite.

Configurability and Extensibility
Coherence's API provides access to all Coherence functionality. The most commonly
used subset of this API is exposed through simple XML options to minimize effort for
typical use cases. There is no penalty for mixing direct configuration through the API
with the easier XML configuration.

Coherence is designed to allow the replacement of its modules as needed. For
example, the local "backing maps" (which provide the actual physical data storage on
each node) can be easily replaced as needed. The vast majority of the time, this is not
required, but it is there for the situations that require it. The general guideline is that
80% of tasks are easy, and the remaining 20% of tasks (the special cases) require a little
more effort, but certainly can be done without significant hardship.

Namespace Hierarchy
Coherence is organized as set of services. At the root is the Cluster service. A cluster is
defined as a set of Coherence instances (one instance per JVM, with one or more JVMs
on each computer). Under the cluster service are the various services that comprise the
Coherence API. These include the various caching services (Replicated, Distributed,
and so on) and the Invocation Service (for deploying agents to various nodes of the
cluster). Each instance of a service is named, and there is typically a default service
instance for each type.

The cache services contain named caches (com.tangosol.net.NamedCache), which are
analogous to database tables—that is, they typically contain a set of related objects.

See Chapter 6, "Introduction to Coherence Clusters," for more information on the
cluster service as well the other cluster-based service provided by Coherence.

Read/Write Caching

1-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Read/Write Caching
This section provides an overview of the NamedCache API, which is the primary
interface used by applications to get and interact with cache instances. This section
also includes some insight into the use of the NamedCache API.

NamedCache
The following source code returns a reference to a NamedCache instance. The
underlying cache service is started if necessary. See the Java API Reference for Oracle
Coherence for details on the NamedCache interface.

import com.tangosol.net.*;
...
NamedCache cache = CacheFactory.getCache("MyCache");

Coherence scans the cache configuration XML file for a name mapping for MyCache.
This is similar to Servlet name mapping in a web container's web.xml file. Coherence's
cache configuration file contains (in the simplest case) a set of mappings (from cache
name to cache scheme) and a set of cache schemes.

By default, Coherence uses the coherence-cache-config.xml file found at the root of
coherence.jar. This can be overridden on the JVM command-line with
-Dtangosol.coherence.cacheconfig=file.xml. This argument can reference either a
file system path, or a Java resource path.

The com.tangosol.net.NamedCache interface extends several other interfaces:

■ java.util.Map—basic Map methods such as get(), put(), remove().

■ com.tangosol.util.ObservableMap—methods for listening to cache events. (See
Chapter 25, "Using Map Events".

■ com.tangosol.net.cache.CacheMap—methods for getting a collection of keys (as a
Map) that are in the cache and for putting objects in the cache. Also supports
adding an expiry value when putting an entry in a cache.

■ com.tangosol.util.QueryMap—methods for querying the cache. (See "Query the
Cache" in the Developing Applications with Oracle Coherence)

■ com.tangosol.util.ConcurrentMap—methods for concurrent access such as
lock() and unlock().

■ com.tangosol.util.InvocableMap—methods for server-side processing of cache
data.

Requirements for Cached Objects
Cache keys and values must be serializable (for example, java.io.Serializable).
Furthermore, cache keys must provide an implementation of the hashCode() and
equals() methods, and those methods must return consistent results across cluster
nodes. This implies that the implementation of hashCode() and equals() must be
based solely on the object's serializable state (that is, the object's non-transient fields);
most built-in Java types, such as String, Integer and Date, meet this requirement.
Some cache implementations (specifically the partitioned cache) use the serialized
form of the key objects for equality testing, which means that keys for which equals()
returns true must serialize identically; most built-in Java types meet this requirement
as well.

Read/Write Caching

Introduction to Coherence 1-5

NamedCache Usage Patterns
There are two general approaches to using a NamedCache:

■ As a clustered implementation of java.util.Map with several added features
(queries, concurrency), but with no persistent backing (a "side" cache).

■ As a means of decoupling access to external data sources (an "inline" cache). In
this case, the application uses the NamedCache interface, and the NamedCache takes
care of managing the underlying database (or other resource).

Typically, an inline cache is used to cache data from:

■ a database—The most intuitive use of a cache—simply caching database tables (in
the form of Java objects).

■ a service—Mainframe, web service, service bureau—any service that represents an
expensive resource to access (either due to computational cost or actual access
fees).

■ calculations—Financial calculations, aggregations, data transformations. Using an
inline cache makes it very easy to avoid duplicating calculations. If the calculation
is complete, the result is simply pulled from the cache. Since any serializable object
can be used as a cache key, it is a simple matter to use an object containing
calculation parameters as the cache key.

See Chapter 15, "Caching Data Sources" for more information on inline caching.

Write-back options:

■ write-through—Ensures that the external data source always contains up-to-date
information. Used when data must be persisted immediately, or when sharing a
data source with other applications.

■ write-behind—Provides better performance by caching writes to the external data
source. Not only can writes be buffered to even out the load on the data source,
but multiple writes can be combined, further reducing I/O. The trade-off is that
data is not immediately persisted to disk; however, it is immediately distributed
across the cluster, so the data survives the loss of a server. Furthermore, if the
entire data set is cached, this option means that the application can survive a
complete failure of the data source temporarily as both cache reads and writes do
not require synchronous access the data source.

To implement a read-only inline cache, you simply implement two methods on the
com.tangosol.net.cache.CacheLoader interface, one for singleton reads, the other for
bulk reads. Coherence provides an abstract class
com.tangosol.net.cache.AbstractCacheLoader which provides a default
implementation of the bulk method, which means that you need only implement a
single method: public Object load(Object oKey). This method accepts an arbitrary
cache key and returns the appropriate value object.

If you want to implement read/write caching, you must extend
com.tangosol.net.cache.AbstractCacheStore (or implement the interface
com.tangosol.net.cache.CacheStore), which adds the following methods:

public void erase(Object oKey);
public void eraseAll(Collection colKeys);
public void store(Object oKey, Object oValue);
public void storeAll(Map mapEntries);

The method erase() should remove the specified key from the external data source.
The method store() should update the specified item in the data source if it exists, or
insert it if it does not presently exist.

Querying the Cache

1-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

After the CacheLoader/CacheStore is implemented, it can be connected through the
coherence-cache-config.xml file.

Querying the Cache
Coherence provides the ability to query cached data. With partitioned caches, the
queries are indexed and parallel, which means that adding servers to a partitioned
cache not only increases throughput (total queries per second) but also reduces latency,
with queries taking less user time. To query against a NamedCache, all objects should
implement a common interface (or base class). Any field of an object can be queried;
indexes are optional, and used to increase performance. With a replicated cache,
queries are performed locally, and do not use indexes. See Chapter 22, "Querying Data
In a Cache," for detailed information.

To add an index to a NamedCache, you first need a value extractor (which accepts as
input a value object and returns an attribute of that object). Indexes can be added
blindly (duplicate indexes are ignored). Indexes can be added at any time, before or
after inserting data into the cache.

It should be noted that queries apply only to cached data. For this reason, queries
should not be used unless the entire data set has been loaded into the cache, unless
additional support is added to manage partially loaded sets.

Developers have the option of implementing additional custom filters for queries, thus
taking advantage of query parallel behavior. For particularly performance-sensitive
queries, developers may implement index-aware filters, which can access Coherence's
internal indexing structures.

Coherence includes a built-in optimizer, and applies indexes in the optimal order.
Because of the focused nature of the queries, the optimizer is both effective and
efficient. No maintenance is required.

Invocation Service
The Coherence invocation service can deploy computational agents to various nodes
within the cluster. These agents can be either execute-style (deploy and
asynchronously listen) or query-style (deploy and synchronously listen). See
Chapter 24, "Processing Data In a Cache," for more information on using the
invocation service.

The invocation service is accessed through the com.tangosol.net.InvocationService
interface and includes the following two methods:

Example 1–1 Methods in the InvocationService API

public void execute(Invocable task, Set setMembers, InvocationObserver observer);
public Map query(Invocable task, Set setMembers);

An instance of the service can be retrieved from the com.tangosol.net.CacheFactory
class.

Coherence implements the WorkManager API for task-centric processing.

Event Programming
Coherence supports two event programming models that allow applications to receive
and react to notifications of cluster operations. Applications observe events as logical
concepts regardless of which computer caused the event. Events provide a common

C++/.NET Integration

Introduction to Coherence 1-7

way of extending Coherence with application-specific logic. The event programming
models are:

■ Live Events – The live event programming model uses user-defined event
interceptors that are registered to receive different types of events. Applications
decide what action to take based on the event type. Many events that are available
through the use of map events are also supported using live events. For details,
see Chapter 27, "Using Live Events."

■ Map Events – The map event programming model uses user-defined map listeners
that are attached to the underlying map implementation. Map events offer
customizable server-based filters and lightweight events that can minimize
network traffic and processing. Map listeners follow the JavaBean paradigm and
can distinguish between system cache events (for example, eviction) and
application cache events (for example, get/put operations). For details, see
Chapter 25, "Using Map Events," for more detailed information on using events.

Transactions
Coherence provides various transaction options. The options include: basic data
concurrency using the ConcurrentMap interface and EntryProcessor API,
partition-level transactions using implicit locking and the EntryProcessor API, atomic
transactions using the Transaction Framework API, and atomic transactions with full
XA support using the Coherence resource adapter. See Chapter 29, "Performing
Transactions" for detailed instructions.

HTTP Session Management
Coherence*Web is an HTTP session-management module with support for a wide
range of application servers. See Administering HTTP Session Management with Oracle
Coherence*Web for more information on Coherence*Web.

Using Coherence session management does not require any changes to the application.
Coherence*Web uses the near caching to provide fully fault-tolerant caching, with
almost unlimited scalability (to several hundred cluster nodes without issue).

Object-Relational Mapping Integration
Most ORM products support Coherence as an "L2" caching plug-in. These solutions
cache entity data inside Coherence, allowing application on multiple servers to share
cached data. See Integrating Oracle Coherence for more information.

C++/.NET Integration
Coherence provides support for cross-platform clients (over TCP/IP). All clients use
the same wire protocol (the servers do not differentiate between client platforms).
Also, note that there are no third-party components in any of these clients (such as
embedded JVMs or language bridges). The wire protocol supports event feeds and
coherent in-process caching for all client platforms. See Developing Remote Clients for
Oracle Coherence for complete instructions on using Coherence*Extend to support
remote C++ and .NET clients.

Management and Monitoring

1-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Management and Monitoring
Coherence offers management and monitoring facilities by using Java Management
Extensions (JMX). See Managing Oracle Coherence for detailed information on using
JMX with Coherence.

2

Installing Oracle Coherence for Java 2-1

2Installing Oracle Coherence for Java

[2] This chapter provides instructions for installing and running Oracle Coherence for
Java (simply referred to as Coherence). The chapter does not include instructions for
installing Coherence*Extend client distributions (C++ and .NET) or Coherence*Web.
Refer to the Developing Remote Clients for Oracle Coherence and the Administering HTTP
Session Management with Oracle Coherence*Web, respectively, for instructions on
installing these components.

This chapter includes the following sections:

■ System Requirements

■ Performing a Coherence Installation

■ Browsing the Installation Directory

■ Setting Environment Variables

■ Running Coherence for the First Time

■ Integration with Maven

■ Deinstalling Coherence

System Requirements
The following are the minimum requirements for running the Coherence installer:

■ 300 MHz CPU

■ 512 MB swap space

■ 256 color monitor (required for GUI-based installation only)

■ Java Development Kit (JDK) 1.6.0_4 or later

The following are the suggested minimum system requirements for running
Coherence in a development environment:

■ 100 MB disk space for complete installation (includes API documentation and
examples)

■ 1 GB of RAM (assuming a maximum Java heap size of 512MB) – This amount of
RAM can ideally support a maximum cache size of 150MB on a single node that is
configured to store a backup of all data (150MB x 2) and leaves more than a 1/3 of
the heap available for scratch and JVM tasks. See Administering Oracle Coherence for
recommendations on calculating cache size.

■ JVM (JRE or JDK) 1.7 or later for Cache servers and clients; 1.6 or later for
Coherence*Extend clients. A JDK is often used during development and offers

Performing a Coherence Installation

2-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

tools for monitoring and troubleshooting Java applications, but a JDK is not
required to run Coherence.

■ Windows or UNIX-based system that supports the required Java Version

■ Network adapter

Performing a Coherence Installation
Coherence is installed using the Oracle Universal Installer. The installer provides both
installation and patching services for Oracle products. The following installers are
available for Coherence and detailed in this section.

■ fmw_version_coherence.jar – A full Coherence installation that can be run in
either graphical mode or silent mode. See Running the Coherence Installer.

■ fmw_version_coherence_quick.jar – A minimum Coherence installation that is
always run in silent mode. The quick installer provides a smaller footprint and
does not include API documentation or examples. See Running the Coherence
Quick Installer.

■ fmw_version_coherence_quick_supplemental.jar – A supplemental installation
that is always run in silent mode. The supplemental installer contains only API
documentation and examples. See Running the Coherence Supplemental Installer.

■ fmw_version_wls.jar – A full WebLogic Server installation that includes
Coherence. See Installing Coherence with WebLogic Server.

Coherence is always installed to an ORACLE_HOME/coherence directory. The complete
path to the coherence directory is referred to as COHERENCE_HOME throughout the
Coherence documentation.

Running the Coherence Installer
The Coherence installer is distributed as an executable Java ARchive (JAR) file called
fmw_version_coherence.jar. Use the java command to run the installer on the target
computer. The installer supports both a graphical mode and a silent mode. For
detailed help on the installer's options, use the -help argument when running the
installer.

This section includes the following topics:

■ Performing a Coherence Installation In Graphical Mode

■ Performing a Coherence Installation In Silent Mode

Performing a Coherence Installation In Graphical Mode
To perform a Coherence installation in graphical mode:

1. Copy the fmw_version_coherence.jar file to the target computer.

2. From a command prompt, change directories to the location of the coherence_
version.jar file and execute the following command (assuming that JAVA_
HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence.jar

The Oracle Coherence installer starts and the Welcome screen displays. On
UNIX-based platforms, you are first prompted (prior to the Welcome screen) to
select an inventory directory where Oracle product inventory data is written.
Follow the on-screen instructions to create an inventory directory.

Performing a Coherence Installation

Installing Oracle Coherence for Java 2-3

3. Click Next. The Installation Location screen displays. Use the drop-down list to
select an existing ORACLE_HOME directory to which Coherence will be installed, or
enter an absolute path to create a new Coherence ORACLE_HOME directory. Click
Browse to search for a directory if required. The directory cannot contain an
existing Coherence installation.

4. Click Next. The Installation Type screen displays. Select which options to install.

5. Click Next. The Installation Summary screens displays. Verify the installation.
Click Save Response File if you intend to duplicate this installation on additional
computers. A response file is created that can be used to perform a silent install
with the exact same installation settings. For details on performing a silent install,
see "Performing a Coherence Installation In Silent Mode" on page 2-3.

6. Click Install. The Installation Progress screen displays and shows all tasks that
have succeeded and failed.

7. Click Next. The Installation Complete screen displays and shows a summary of
the installation.

8. Click Finish to close the Oracle Coherence installer.

Performing a Coherence Installation In Silent Mode
Silent mode allows Coherence to be installed without using a graphical interface and is
ideal for remote installations or when incorporating the installation as part of a script.
Silent mode typically uses a response file (.rsp) that contains the installation
parameters as name=value pairs. Create a response file by running the installer in
graphical mode and then saving the installation parameters to a response file at the
Installation Summary screen. Use the saved file to replicate the installation on other
computers or modify the file to change the installation as required.

To perform a Coherence installation in silent mode:

1. Copy the fmw_version_coherence.jar file and a response file to the target
computer.

2. From a command prompt, change directories to the location of the coherence_
version.jar file and execute the following command (assuming that JAVA_
HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence.jar -silent -responseFile full_path_to_
response_file -waitForCompletion

On UNIX-based platforms, the installer requires the location of the oraInst.loc
inventory directory pointer file if it is not found in the default location (/etc). If
this is the first time that an Oracle product has been installed on this computer,
you can use the createCentralInventory.sh script to set up an inventory
directory pointer file in the /etc directory. The script requires root permissions.

If you want to use a custom location for the oraInst.loc file, use the -invPtrLoc
installer option to specify the location. For example:

java -jar fmw_version_coherence.jar -silent -responseFile full_path_to_
response_file -waitForCompletion -invPtrLoc /MyDirectory/oraInst.loc

The contents of the oraInst.loc file contains the location and the ownership
group for the inventory directory. For example:

inventory_loc=/MyDirectory/oraInventory
inst_group=group

Performing a Coherence Installation

2-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Running the Coherence Quick Installer
The quick install is distributed as an executable JAR file called fmw_version_
coherence_quick.jar. Use the java command to run the installer on the target
computer. For detailed help on the installer's options, use the -help argument when
running the installer.

The quick install performs a silent install with no options. The distribution includes
less lifecycle tools but does register the Coherence components as part of the Oracle
inventory, which allows future lifecycle operations to work. In addition, the
installation does not include API documentation or code examples. The result is a
faster installation process and a smaller installation footprint than the regular
Coherence installer and is an ideal method for installing Coherence as part of a script
without user interaction.

To perform a Coherence quick installation:

1. Copy the fmw_version_coherence_quick.jar file to a directory on the target
computer.

2. From a command prompt, change directories to the location of the fmw_version_
coherence_quick.jar file and execute the following command (assuming that
JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence_quick.jar ORACLE_HOME=/oracle

The value of the ORACLE_HOME variable specifies the ORACLE_HOME directory to
which Coherence will be installed. The value must be an absolute path. If the
directory already exists, it must be empty or it must be an existing valid ORACLE_
HOME. The directory cannot contain an existing Coherence installation. If the
directory does not exist, the installer creates the directory. You can also start the
installation from an empty current working directory and omit the ORACLE_HOME
variable; the current working directory becomes the ORACLE_HOME directory. For
example:

cd /oracle
java -jar /tmp/fmw_version_coherence_quick.jar

On UNIX-based platforms, the quick installer attempts to find the oraInst.loc
inventory directory pointer file in the /etc directory. If the file is not found, the
/tmp directory is used as the inventory directory. If this is the first time that an
Oracle product has been installed on this computer, you can use the
createCentralInventory.sh script to set up an inventory directory pointer file in
the /etc directory. The script requires root permissions.

If you want to use a custom location for the oraInst.loc file, use the -invPtrLoc
installer option to specify the location. For example:

java -jar fmw_version_coherence_quick.jar -invPtrLoc /MyDirectory/oraInst.loc

The contents of the oraInst.loc file contains the location and the ownership
group for the inventory directory. For example:

inventory_loc=/MyDirectory/oraInventory
inst_group=group

Running the Coherence Supplemental Installer
The supplemental install is distributed as an executable JAR file called fmw_version_
coherence_quick_supplemental.jar. The distribution is used to install the API

Browsing the Installation Directory

Installing Oracle Coherence for Java 2-5

documentation and code examples to an existing Coherence installation. The
supplemental installer performs a silent install with no options. It is typically used
together with the quick installer to perform an installation as part of a script without
user interaction. If you do not require the API documentation or code examples, then
you can skip the supplemental installation.

1. Copy the fmw_version_coherence_quick_supplemental.jar file to the ORACLE_
HOME directory where Coherence is installed.

2. From a command prompt, change directories to the location of the fmw_version_
coherence_quick_supplemental.jar file and execute the following command
(assuming that JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence_quick_supplemental.jar

The installation starts and status messages are emitted.

Installing Coherence with WebLogic Server
The WebLogic Server installer includes the Coherence distribution and installs
Coherence in the same ORACLE_HOME directory as WebLogic Server. WebLogic Server
includes a Coherence integration that standardizes how Coherence is managed and
deployed within a WebLogic Server domain. The integration makes Coherence a
subsystem of WebLogic Server and allows Coherence environments to be administered
using WebLogic Server tools and infrastructure, such as Java EE-styled packaging and
deployment, remote server management, server clusters, WebLogic Scripting Tool
(WLST) automation, and configuration through the Administration Console. For
details about installing Coherence with WebLogic Server, see Installing and Configuring
Oracle WebLogic Server and Coherence.

Browsing the Installation Directory
The following directories are included in COHERENCE_HOME:

■ bin – This directory includes a set of common scripts for performing different
tasks, such as: starting a cache server, starting development tools, and performing
network tests. The scripts are provided in both Windows (.cmd) and UNIX-based
(.sh) formats.

■ doc – This directory contains the Coherence Java API Reference and a link to the
Coherence documentation on the Oracle Technology Network (OTN). The
Coherence Java API Reference is distributed as a JAR file and must be extracted.
The JAR can also be imported into an IDE for easy access during development.

To extract the Coherence Java API Reference, execute the following command
from the /api directory (assuming that JAVA_HOME/bin is located on the
computer's PATH):

jar -xvf CoherenceJavaDoc-version.jar

■ example – This directory contains a set of examples that demonstrate many
Coherence features and how to use the Coherence API. For detailed instructions
on building and running the examples, see Tutorial for Oracle Coherence.

■ lib – This directory includes all delivered libraries. The coherence.jar library is
the main development and run-time library and is discussed in detail throughout
this documentation.

■ plugins – This directory contains plug-ins for common integrations. Coherence
provides a plug-in for Maven and Java VisualVM. The Maven plug-ins are used to

Setting Environment Variables

2-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

integrate Coherence as part of a Maven build process. For details about the
Coherence Maven plugins, see "Integration with Maven" on page 2-8. The Java
VisualVM plug-in used to provide Coherence monitoring. For details about the
Java VisualVM plug-in, see Managing Oracle Coherence.

Setting Environment Variables
The following system environment variables can be set, but they are not required to
run Coherence:

■ JAVA_HOME – This variable is used when running the scripts that are included in the
COHERENCE_HOME/bin directory. The value of this variable is the full path to the
Java installation directory. If JAVA_HOME is not set, the scripts use the computer's
default Java installation. Set this variable to ensure that the scripts use a specific
Java version.

■ COHERENCE_HOME – This variable is typically set as a convenience. The value of this
variable is the full path to the ORACLE_HOME/coherence directory.

Running Coherence for the First Time
The COHERENCE_HOME/bin directory includes scripts that are used during development
and testing and are provided as a design-time convenience. The cache-server script
starts a cache server using a default configuration. The coherence script starts a cache
factory instance using a default configuration. The cache factory instance includes a
command-line tool that is used to (among other things) create and interact with a
cache.

In this scenario, a basic cluster is created and then the command-line tool is used to
create and interact with a cache that is hosted in the cluster.

Create a Basic Cluster
In this step, a basic cluster is created that contains three separate Java processes: a
cache server and two cache factory instances. For simplicity, the three processes are
collocated on a single computer. The cache server, by default, is configured to store
backup data. The two cache factory instances, by default, are configured not to store
backup data. As each process is started, they automatically join and become cluster
members (also referred to as cluster nodes).

For this example, the Coherence out-of-box default configuration is slightly modified
to create a unique cluster which ensures that these cluster members do not attempt to
join an existing Coherence cluster that may be running on the network.

To create a basic cluster:

1. Using a text editor, open the COHERENCE_HOME/bin/cache-server script.

2. Modify the java_opts variable to include the tangosol.coherence.cluster and
the tangosol.coherence.clusterport system properties as follows:

set java_opts="-Xms%memory% -Xmx%memory% -Dtangosol.coherence.cluster=cluster_

Note: The Coherence default behavior is to use multicast to find
cluster members. Coherence can be configured to use unicast if a
network does not allow the use of multicast. See "Using Well Known
Addresses" on page 7-9 for details.

Running Coherence for the First Time

Installing Oracle Coherence for Java 2-7

name -Dtangosol.coherence.clusterport=port"

Replace cluster_name and port with values that are unique for this cluster. For
example, use your name for the cluster name and the last four digits of your
phone number for the port.

3. Save and close the cache-server script.

4. Repeat steps 1 to 3 for the COHERENCE_HOME/bin/coherence script.

5. Run the cache-server script. The cache server starts and output is emitted that
provides information about this cluster member.

6. Run 2 instances of the coherence script. As each instance is started, output is
emitted that provides information about the respective cluster members. Each
instance returns a command prompt for the command-line tool.

Create a Cache
In this step, a cache is created and hosted on the basic cluster. A simple string is
entered into the cache using the command-line tool of the first cache factory instance.
The string is then retrieved from the cache using the command-line tool of the second
cache factory instance. The example is simplistic and not very practical, but it does
quickly demonstrate the distributed nature of Coherence caches. Moreover, these steps
are typically performed directly using the Coherence API.

To create a cache:

1. At the command prompt for either cache factory instance, create a cache named
Test using the cache command:

cache Test

2. At the command prompt, use the put command to place a simple string in the new
cache by entering a key/value pair (separated by a space):

put key1 Hello

The command returns and displays null. The put command always returns the
previous value for a given key. The null value is returned because this is the first
value entered for this key.

3. Switch to the other cache factory instance and from the command prompt create
the Test cache using the cache command:

cache Test

4. From this command prompt, retrieve the string in the cache using the get
command and entering the key name:

get key1

The command returns and displays hello. Either cache factory process can add or
remove cache entries because the processes are part of the same cluster and
because the Test cache is known to all cluster members. In addition, since the
cache server is storing a backup of the cache data, either cache factory process (or
both) can be shutdown and the cache data persists.

Integration with Maven

2-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Integration with Maven
Maven is a build and dependency system that allows the configuration of project
dependencies, 3rd party dependencies and definition of a build lifecycle. Software
projects often use Maven to simplify and standardize their build process. For details
about Maven, see http://maven.apache.org/.

Oracle Middleware provides a plug-in that synchronizes an Oracle home directory
with a Maven repository and standardizes Maven usage and naming conventions. The
plug-in allows Coherence artifacts to be uploaded to a Maven repository, which
simplifies how the artifacts are consumed in development projects. For details about
setting up Maven and using the synchronization plug-in, see Developing Applications
Using Continuous Integration.

In addition, the Maven integration includes an archetype and packaging plug-in for a
Coherence Grid Archive (GAR). A Coherence GAR is a module type that is typically
used to deploy Coherence applications within a WLS domain. The Maven archetype
plug-in generates a GAR structure and provides example configuration files. The
packaging plug-in generates a GAR based on a project's contents and dependencies
and ensures that the dependencies, source, and configuration files are copied into the
GAR.

The Maven plug-in and configuration files for Coherence are located in the
COHERENCE_HOME/plugins directory. The Maven GAR plug-in and archetype are
installed in the enterprise repository as part of the synchronization plug-in. For
instructions on using the plug-in to incorporate Coherence into a build process, see
Developing Applications Using Continuous Integration.

Deinstalling Coherence
Coherence is deinstalled using the Oracle Fusion Middleware deinstaller. The
deinstaller allows you to select which components in a Coherence ORACLE_HOME
directory to deinstall and can also be used to completely remove a Coherence ORACLE_
HOME directory.

To deinstall Coherence using the deinstallation wizard:

1. Start the deinstaller using the Coherence ORACLE_HOME/oui/bin/deinstall.sh
script on UNIX-based platforms or the Coherence ORACLE_
HOME\oui\bin\deinstall.cmd script on Windows. A shortcut to the script is
available on Windows and is located in the Oracle program group on the start
menu. The Oracle Fusion Middleware Deinstaller starts and the Welcome screen
displays.

2. Click Next. The Deinstallation Summary screen displays and lists the features that
will be deinstalled.

3. Click Deinstall. The Deinstallation Progress screen displays and shows all tasks
that have succeeded and failed.

4. Click Next. The Deinstallation Complete screen displays and shows a summary of
the Deinstallation.

5. Click Finish to close the Oracle Fusion Middleware Deinstaller.

Note: Additional files in the ORACLE_HOME directory must be
manually deleted. On Windows, you must also manually delete the
Oracle program group on the Start menu.

3

Understanding Configuration 3-1

3Understanding Configuration

[3] This chapter describes each of the default configuration files that are distributed with
Coherence and details how applications and solutions override these files when
creating their own Coherence configurations.

This chapter includes the following sections:

■ Overview of the Default Configuration Files

■ Specifying an Operational Configuration File

■ Specifying a Cache Configuration File

■ Specifying a POF Configuration File

■ Specifying Management Configuration Files

■ Disabling Schema Validation

■ Understanding the XML Override Feature

■ Changing Configuration Using System Properties

Overview of the Default Configuration Files
The Coherence distribution includes a set of default XML configuration files that are
included within the COHERENCE_HOME\lib\coherence.jar library. The easiest way to
inspect these files and their associated schemas is to extract the Coherence library to a
directory.

The configuration files provide a default setup that allows Coherence to be used
out-of-box with minimal changes. The files are for demonstration purposes only and
can be reused or changed as required for a particular application or solution. However,
the recommended approach is to provide configuration files that override the default
configuration files.

The default configuration files include:

■ tangosol-coherence.xml – This files provides operational and run-time settings
and is used to create and configure cluster, communication, and data management
services. This file is typically referred to as the operational deployment descriptor.
The schema for this file is the coherence-operational-config.xsd file. See
Appendix A, "Operational Configuration Elements," for a complete reference of
the elements in the operational deployment descriptor.

■ tangosol-coherence-override-dev.xml – This file overrides operational settings
in the tangosol-coherence.xml file when Coherence is started in developer mode.
By default, Coherence is started in developer mode and the settings in this file are
used. The settings in this file are suitable for development environments. The

Specifying an Operational Configuration File

3-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

schema file for this override file and the schema for the operational deployment
descriptor are the same.

■ tangosol-coherence-override-eval.xml – This file overrides operational settings
in the tangosol-coherence.xml file when Coherence is started in evaluation
mode. The settings in this file are suitable for evaluating Coherence. The schema
file for this override file and the schema for the operational deployment descriptor
are the same.

■ tangosol-coherence-override-prod.xml – This file overrides operational settings
in the tangosol-coherence.xml file when Coherence is started in production
mode. The settings in this file are suitable for production environments. The
schema file for this override file and the schema for the operational deployment
descriptor are the same.

■ coherence-cache-config.xml – This file is used to specify the various types of
caches which can be used within a cluster. This file is typically referred to as the
cache configuration deployment descriptor. The schema for this file is the
coherence-cache-config.xsd file. See Appendix B, "Cache Configuration
Elements," for a complete reference of the elements in this file.

■ coherence-pof-config.xml – This file is used to specify custom data types when
using Portable Object Format (POF) to serialize objects. This file is typically
referred to as the POF configuration deployment descriptor. The schema for this
file is the coherence-pof-config.xsd file. See Appendix C, "POF User Type
Configuration Elements," for a complete reference of the elements in this file.

■ Management configuration files – A set of files that are used to configure
Coherence management reports. The files are located in the /reports directory
within coherence.jar. The files include a report group configuration files
(report-group.xml, the default), which refer to any number of report definition
files. Each report definition file results in the creation of a report file that displays
management information based on a particular set of metrics. The schema for
these files are the coherence-report-config.xsd file and the
coherence-report-group-config.xsd file, respectively. See Managing Oracle
Coherence for detailed information on using reports and a reference for the
elements in these configuration files.

Specifying an Operational Configuration File
The tangosol-coherence.xml operational deployment descriptor provides operational
and run-time settings and is used to create and configure cluster, communication, and
data management services. At run time, Coherence uses the first instance of
tangosol-coherence.xml that is found in the classpath.

The default operational deployment descriptor that is shipped with Coherence is
located in the root of the coherence.jar library. This file can be changed as required;
however, overriding this file is recommended when configuring the operational run
time. See "Understanding the XML Override Feature" on page 3-16 for detailed
information about the XML override feature.

This section includes the following topics:

■ Using the Default Operational Override File

■ Specifying an Operational Override File

■ Defining Override Files for Specific Operational Elements

■ Viewing Which Operational Override Files are Loaded

Specifying an Operational Configuration File

Understanding Configuration 3-3

Refer to Part II, "Using Coherence Clusters" for detailed instructions on configuring
the operational run time.

Using the Default Operational Override File
Elements in the default tangosol-coherence.xml file are overridden by placing an
operational override file named tangosol-coherence-override.xml in the classpath
at run time. The structure of the override file and the operational deployment
descriptor are the same except that all elements are optional. The override file includes
only the elements that are being changed. Any missing elements are loaded from the
tangosol-coherence.xml file.

In general, using the operational override file provides the most comprehensive
method of configuring the operational run time and is used in both development and
production environments.

To use the default operational override file:

1. Create a file named tangosol-coherence-override.xml.

2. Edit the file and add any operational elements that are to be overridden.

The following example configures a cluster name and overrides the default cluster
name:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name system-property="tangosol.coherence.cluster">
 MyCluster</cluster-name>
 </member-identity>
 </cluster-config>
</coherence>

3. Save and close the file.

4. Make sure the location of the operational override file is located in the classpath at
run time.

The following example demonstrates starting a cache server that uses an override
file that is located in COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Specifying an Operational Override File
The tangosol.coherence.override system property specifies an operational override
file to be used instead of the default tangosol-coherence-override.xml file. The
structure of the specified file and the operational deployment descriptor are the same

Tip: When using the cache-server and coherence scripts during
development, add the location of the
tangosol-coherence-override.xml file to the classpath using the
Java -cp argument in each of the scripts.

Specifying an Operational Configuration File

3-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

except that all elements are optional. Any missing elements are loaded from the
tangosol-coherence.xml file.

The tangosol.coherence.override system property provides an easy way to switch
between different operational configurations and is convenient during development
and testing.

To specify an operational override file:

1. Create a text file.

2. Edit the file and add any operational elements that are to be overridden.

The following example configures the multicast port number:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <port system-property="tangosol.coherence.clusterport">3059</port>
 </multicast-listener>
 </cluster-config>
</coherence>

3. Save the file as an XML file and close the file.

4. Specify the name of the operational override file as a value of the
tangosol.coherence.override system property. If the file is not located in the
classpath, enter the full (or relative) path to the file and the name. The system
property also supports the use of a URL when specifying the location of an
operational override file.

The following example demonstrates starting a cache server and using an
operational override file that is named cluster.xml which is located in
COHERENCE_HOME.

java -Dtangosol.coherence.override=cluster.xml -cp COHERENCE_HOME;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

Defining Override Files for Specific Operational Elements
Override files can be created to override the contents of specific operational elements.
The override files follow the same structure as the operational deployment descriptor
except that their root element must match the element that is to be overridden. See
"Defining Custom Override Files" on page 3-18 for detailed information on defining
override files for specific operational elements.

In general, override files for specific operational elements provides fine-grained
control over which portions of the operational deployment descriptor may be
modified and allows different configurations to be created for different deployment
scenarios.

To define override files for specific operational elements:

1. Create a tangosol-coherence-override.xml file as described in "Using the
Default Operational Override File" on page 3-3.

Specifying an Operational Configuration File

Understanding Configuration 3-5

2. Add an xml-override attribute to an element that is to be overridden. The value of
the xml-override attribute is the name of an override file.

The following example defines an override file named cluster-config.xml that is
used to override the <cluster-config> element.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config xml-override="/cluster-config.xml">
 ...
 </cluster-config>
</coherence>

3. Save and close the file.

4. Create a text file.

5. Edit the file and add an XML node that corresponds to the element that is to be
overridden. The XML root element must match the element that is to be
overridden.

Using the example from step 2, the following node is created to override the
<cluster-config> element and specifies a multicast join timeout.

<?xml version='1.0'?>

<cluster-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <multicast-listener>
 <join-timeout-milliseconds>4000</join-timeout-milliseconds>
 </multicast-listener>
</cluster-config>

6. Save the file as an XML file with the same name used in the xml-override
attribute.

7. Make sure the location of both override files are located in the classpath at run
time.

The following example demonstrates starting a cache server that uses override
files that are located in COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Viewing Which Operational Override Files are Loaded
The output for a Coherence node indicates the location and name of the operational
configuration files that are loaded at startup. The operational configuration messages
are the first messages to be emitted when starting a process. The output is especially
helpful when using multiple override files and is often useful when developing and
testing Coherence applications and solutions.

The following example output demonstrates typical messages that are emitted:

Loaded operational configuration from resource "jar:file:/D:/coherence/lib/

Specifying a Cache Configuration File

3-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 coherence.jar!/tangosol-coherence.xml"
Loaded operational overrides from resource "jar:file:/D:/coherence/lib/
 coherence.jar!/tangosol-coherence-override-dev.xml"
Loaded operational overrides from resource "file:/D:/coherence/
 tangosol-coherence-override.xml"
Optional configuration override "/cluster-config.xml" is not specified
Optional configuration override "/custom-mbeans.xml" is not specified

The above output indicates that the operational deployment descriptor included in
coherence.jar was loaded and that settings in this file are overridden by two loaded
override files: tangosol-coherence-override-dev.xml and
tangosol-coherence-override.xml. In addition, two override files were defined for
specific operational elements but were not found or loaded at run time.

Specifying a Cache Configuration File
The coherence-cache-config.xml cache configuration deployment descriptor file is
used to specify the various types of caches that can be used within a cluster. At run
time, Coherence uses the first coherence-cache-config.xml file that is found in the
classpath. A sample coherence-cache-config.xml file is included with Coherence and
is located in the root of the coherence.jar library. The sample file is provided only for
demonstration purposes. It can be changed or reused as required; however, it is
recommended that a custom cache configuration deployment descriptor be created
instead of using the sample file.

This section includes the following topics:

■ Using a Default Cache Configuration File

■ Overriding the Default Cache Configuration File

■ Using the Cache Configuration File System Property

■ Viewing Which Cache Configuration File is Loaded

Refer to Part III, "Using Caches" for detailed instructions on configuring caches.

Using a Default Cache Configuration File
Coherence is configured out-of-box to use the first coherence-cache-config.xml file
that is found on the classpath. To use a coherence-cache-config.xml file, the file must
be located on the classpath and must precede the coherence.jar library; otherwise,
the sample coherence-cache-config.xml file that is located in the coherence.jar is
used.

To use a default cache configuration file:

Note:

■ It is recommended (although not required) that all cache server
nodes within a cluster use identical cache configuration
descriptors.

■ Coherence requires a cache configuration deployment descriptor
to start. If the cache configuration deployment descriptor is not
found at run time, an error message indicates that there was a
failure loading the configuration resource and also provides the
name and location for the file that was not found.

Specifying a Cache Configuration File

Understanding Configuration 3-7

1. Make a copy of the sample coherence-cache-config.xml file that is located in the
coherence.jar and save it to a different location. The cache definitions that are
included in the sample file are for demonstration purposes and are used as a
starting point for creating solution-specific cache configurations.

2. Ensure that the location where the coherence-cache-config.xml file is saved is in
the classpath at run time and that the location precedes the coherence.jar file in
the classpath.

The following example demonstrates starting a cache server that uses a
coherence-cache-config.xml cache configuration file that is located in
COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Overriding the Default Cache Configuration File
The default name and location of the cache configuration deployment descriptor is
specified in the operational deployment descriptor within the
<configurable-cache-factory-config> element. This element can be overridden to
specify a different name an location to be used for the default cache configuration file.

To override the default cache configuration file:

1. Make a copy of the default coherence-cache-config.xml cache configuration file
that is located in the coherence.jar and save it to a location with a different name.

2. Create a tangosol-coherence-override.xml file as described in "Using the
Default Operational Override File" on page 3-3.

3. Edit the operational override file and enter a
<configurable-cache-factory-config> node that specifies the name of the cache
configuration file created in step 1. If the cache configuration file is not located in
the classpath, enter the full (or relative) path to the file as well. The element also
supports the use of a URL when specifying the location of a cache configuration
file.

The following example specifies a cache configuration deployment descriptor
called MyConfig.xml.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <configurable-cache-factory-config>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value system-property="tangosol.coherence.cacheconfig">
 MyConfig.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

4. Save and close the file.

Specifying a POF Configuration File

3-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

5. Ensure that the location of the operational override file is located in the classpath
at run time.

The following example demonstrates starting a cache server using an operational
override file and a custom cache configuration file that are located in COHERENCE_
HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Using the Cache Configuration File System Property
The tangosol.coherence.cacheconfig system property is used to specify a custom
cache configuration deployment descriptor to be used instead of the configured
default cache configuration deployment descriptor. The system property provides an
easy way to switch between different configurations and is convenient during
development and testing.

To specify a custom cache configuration file, enter the name of the file as a value of the
tangosol.coherence.cacheconfig system property. This is typically done as a -D Java
option when starting a Coherence node. If the file is not located in the classpath, enter
the full (or relative) path to the file and the name. The system property also supports
the use of a URL when specifying the location of a cache configuration file.

The following example starts a cache server and specifies a cache configuration
deployment descriptor called MyConfig.xml that is located in COHERENCE_HOME.

java -Dtangosol.coherence.cacheconfig=MyConfig.xml -cp COHERENCE_HOME;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

Viewing Which Cache Configuration File is Loaded
The output for a Coherence node indicates the location and name of the cache
configuration deployment descriptor that is loaded at startup. The configuration
message is the first message to display after the Coherence copyright text is emitted.
The output is especially helpful when developing and testing Coherence applications
and solutions.

The following example output demonstrates a cache configuration message which
indicates that a cache configuration deployment descriptor named Myconfig.xml was
loaded:

Loaded cache configuration from resource "file:/D:/coherence/Myconfig.xml"

Specifying a POF Configuration File
The pof-config.xml POF configuration deployment descriptor file is used to specify
custom user types when using Portable Object Format (POF) for serialization. At run
time, Coherence uses the first pof-config.xml file that is found in the classpath.

Specifying a POF Configuration File

Understanding Configuration 3-9

This section includes the following topics:

■ Overriding the Default POF Configuration File

■ Using the POF Configuration File System Property

■ Combining Multiple POF Configuration Files

■ Viewing Which POF Configuration Files are Loaded

Refer to Chapter 20, "Using Portable Object Format" for detailed instructions on
configuring POF user types.

Overriding the Default POF Configuration File
The default pof-config.xml POF configuration file is located in the root of the
coherence.jar library. Coherence is configured out-of-box to use the first
pof-config.xml file that is found on the classpath. To use a different pof-config.xml
file, the file must be located on the classpath and must precede the coherence.jar
library; otherwise, the default pof-config.xml file that is located in the coherence.jar
library is used.

The POF configuration file should be customized for a particular application. The
default POF configuration file references the coherence-pof-config.xml file. This is
where the Coherence specific user types are defined and should always be included
when creating a POF configuration file.

To override the Default POF Configuration File:

1. Create an XML file.

2. Edit the file and create a <pof-config> node that includes the default Coherence
POF user types:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 </user-type-list>
</pof-config>

3. Save the file as pof-config.xml and close the file.

4. Ensure that the location of the POF configuration file is located in the classpath at
run time.

Note:

■ It is recommended that all nodes within a cluster use identical
POF configuration deployment descriptors.

■ A POF configuration deployment descriptor is only loaded if the
POF serializer is either configured as part of a cache scheme or
configured globally for all cache schemes. The default
coherence-cache-config.xml provides an example cache scheme
that defines the POF serializer, but it is commented out by default.

Specifying a POF Configuration File

3-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The following example demonstrates starting a cache server and using a POF
configuration file that is located in COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Using the POF Configuration File System Property
The tangosol.pof.config system property is used to specify a custom POF
configuration deployment descriptor to be used instead of the default pof-config.xml
file. The system property provides an easy way to switch between different
configurations and is convenient during development and testing.

To specify a custom POF configuration file:

1. Create an XML file.

2. Edit the file and create a <pof-config> node that includes the default Coherence
POF user types:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 </user-type-list>
</pof-config>

3. Save and close the file.

4. Enter the name of the file as a value of the tangosol.pof.config system property.
This is typically done as a -D Java option when starting a Coherence node. If the
file is not located in the classpath, enter the full (or relative) path to the file and the
name. The system property also supports the use of a URL when specifying the
location of a POF configuration file.

The following example starts a cache server and specifies a POF configuration
deployment descriptor called MyPOF.xml that is located in COHERENCE_HOME.

java -Dtangosol.pof.config=MyPOF.xml -cp COHERENCE_HOME;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

Combining Multiple POF Configuration Files
The <include> element is used within a POF configuration deployment descriptor to
include user types that are defined in different POF configuration deployment
descriptors. This allows user types to be organized in meaningful ways, such as by
application or development group.

Note: When combining multiple POF configuration files, each user
type that is defined must have a unique <type-id>. If no type
identifier is included, then the type identifiers are based on the order
in which the user types appear in the composite configuration file.

Specifying Management Configuration Files

Understanding Configuration 3-11

To combine multiple POF configuration files:

1. Open an existing POF configuration file that is being loaded at startup.

2. Add an <include> element whose value is the name of a POF configuration file. If
the file is not located in the classpath, enter the full (or relative) path to the file and
the name. A URL can also be used to locate the file.

The following example combines two POF configuration files in addition to the
default Coherence POF configuration file:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>hr-pof-config.xml</include>
 <include>crm-pof-config.xml</include>
 </user-type-list>
</pof-config>

3. Save and close the file.

4. If required, ensure that the location of the POF configuration files are located in
the classpath at run time.

The following example demonstrates starting a cache server that uses POF
configuration files that are located in COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Viewing Which POF Configuration Files are Loaded
The output for a Coherence node indicates the location and name of the POF
configuration deployment descriptors that are loaded at startup. The configuration
messages are among the messages that display after the Coherence copyright text is
emitted and are associated with the cache service that is configured to use POF. The
output is especially helpful when developing and testing Coherence applications and
solutions.

The following example output demonstrates POF configuration messages which
indicate that four POF configuration deployment descriptors were loaded:

Loading POF configuration from resource "file:/D:/coherence/my-pof-config.xml"
Loading POF configuration from resource
"file:/D:/coherence/coherence-pof-config.xml"
Loading POF configuration from resource "file:/D:/coherence/hr-pof-config.xml"
Loading POF configuration from resource "file:/D:/coherence/crm-pof-config.xml"

Specifying Management Configuration Files
There are several different configuration files that are used to configure management.
These include:

■ report group configuration file – A report group configuration file is used to list
the name and location of report definition files and the output directory where

Specifying Management Configuration Files

3-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

reports are written. The name and location of this file is defined in the operational
deployment descriptor. By default, the report-group.xml file is used and is
located in the /reports directory of the coherence.jar. Additional report group
configuration file are provided and custom report group files can be created as
required.

■ report configuration files – A report configuration file defines a report and results
in the creation of a report file that displays management information for a
particular set of metrics. Report configuration files must be referenced in a report
group configuration file to be used at run time. The default report configuration
files are located in the /reports directory of the coherence.jar and are referenced
by the default report group configuration file. Custom report configuration files
can be created as required.

■ custom-mbeans.xml – This file is the default MBean configuration override file and
is used to define custom MBeans (that is, application-level MBeans) within the
Coherence JMX management and monitoring framework. This allows any
application-level MBean to be managed and monitored from any node within the
cluster. Custom MBeans can be defined within the operational override file.
However, the MBean configuration override file is typically used instead.

This section includes the following topics:

■ Specifying a Custom Report Group Configuration File

■ Specifying an MBean Configuration File

■ Viewing Which Management Configuration Files are Loaded

See Managing Oracle Coherence for detailed instructions on managing Coherence.

Specifying a Custom Report Group Configuration File
The name and location of the default report group configuration file is specified in the
operational configuration deployment descriptor within the <management-config>
node. A custom report group configuration file can be specified by either using an
operational override file or a system property.

Overriding the Default Report Group Configuration File
The name and location of a custom report group configuration file can be specified
using an operational override file. This mechanism overrides the default name and
location of the report group configuration file.

To override the default report group configuration file:

1. Create an XML file.

2. Edit the file and create a <report-group> node as follows. This example configures
a single report.

<?xml version='1.0'?>

<report-group xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-report-group-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-report-group-config coherence-report-group-config.xsd">

Note: The report group configuration file is only loaded if JMX
management is enabled. The examples in this section demonstrate
enabling JMX management on nodes that host an MBean server.

Specifying Management Configuration Files

Understanding Configuration 3-13

 <frequency>1m</frequency>
 <output-directory>./</output-directory>
 <report-list>
 <report-config>
 <location>reports/report-node.xml</location>
 </report-config>
 </report-list>
</report-group>

3. Save and close the file.

4. Create a tangosol-coherence-override.xml file as described in "Using the
Default Operational Override File" on page 3-3.

5. Edit the file and enter a <management-config> node that specifies the name of the
report group configuration file. If the report group configuration file is not located
in the classpath, enter the full (or relative) path to the file as well. The element also
supports the use of a URL when specifying the location of a report group
configuration file.

The following example enables JMX management and specifies a report group
configuration deployment descriptor called my-group.xml.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <management-config>
 <managed-nodes system-property="tangosol.coherence.management">
 all</managed-nodes>
 <reporter>
 <configuration system-property="tangosol.coherence.management.report.
 configuration">my-group.xml</configuration>
 </reporter>
 </management-config>
</coherence>

6. Save and close the file.

7. Ensure that the location of the operational override file is located in the classpath
at run time.

The following example demonstrates starting a cache server using an operational
override file and a report group configuration file that are located in COHERENCE_
HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Using the Report Group Configuration File System Property
The tangosol.coherence.management.report.configuration system property is
used to specify a custom report group configuration file to be used instead of the
default report-group.xml file. The system property provides an easy way to switch
between different configurations and is convenient during development and testing.

To specify a custom report group configuration file, enter the name of the file as a
value of the tangosol.coherence.management.report.configuration system
property. This is typically done as a -D Java option when starting a Coherence node. If

Specifying Management Configuration Files

3-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

the file is not located in the classpath, enter the full (or relative) path to the file and the
name. The system property also supports the use of a URL when specifying the
location of a report group configuration file.

The following example starts a cache server, enables JMX management, and specifies a
report group configuration file that is named my-group.xml and is located in
COHERENCE_HOME.

java -Dtangosol.coherence.management=all
-Dtangosol.coherence.management.report.configuration=my-group.xml -cp COHERENCE_
HOME;COHERENCE_HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

Specifying an MBean Configuration File
The tangosol-coherence.xml operational deployment descriptor defines an
operational override file that is named custom-mbeans.xml and is specifically used to
define custom MBeans. A name and location of the override file may also be specified
using the MBean configuration file system property.

Using the Default MBean Configuration Override File
Custom MBeans are defined within an override file named custom-mbeans.xml. At run
time, Coherence uses the first instance of custom-mbeans.xml that is found in the
classpath.

To use the default MBean configuration override file:

1. Create a file named custom-mbeans.xml.

2. Edit the file and create an empty <mbeans> node as follows:

<?xml version='1.0'?>

<mbeans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
</mbeans>

3. Save and close the file.

4. Make sure the location of the custom MBean configuration override file is located
in the classpath at run time.

The following example demonstrates starting a cache server that uses a default
MBean configuration override file that is located in COHERENCE_HOME.

java -cp COHERENCE_HOME;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Using the MBean Configuration File System Property
The tangosol.coherence.mbeans system property specifies an MBean configuration
override file to be used instead of the default custom-mbeans.xml override file. The
system property provides an easy way to switch between different MBean
configurations and is convenient during development and testing.

To specify an MBean configuration override file, enter the name of the file as a value of
the tangosol.coherence.mbeans system property. This is typically done as a -D Java
option when starting a Coherence node. If the file is not located in the classpath, enter

Disabling Schema Validation

Understanding Configuration 3-15

the full (or relative) path to the file and the name. The system property also supports
the use of a URL when specifying the location of an MBean configuration override file.

The following example starts a cache server and specifies an MBean configuration
override file that is named my-mbeans.xml and is located in COHERENCE_HOME.

java -Dtangosol.coherence.mbeans=my-mbeans.xml -cp COHERENCE_HOME;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

Viewing Which Management Configuration Files are Loaded
The output for a Coherence node indicates the location and name of the report group
configuration file and the MBean configuration file that are loaded at startup. The
output is especially helpful when developing and testing Coherence applications and
solutions.

Report Group Configuration File
The report group configuration messages are among the messages that display after
the Coherence copyright text is emitted.

The following example output demonstrates a report group configuration message
that indicates the my-group.xml file is loaded:

Loaded Reporter configuration from "file:/D:/coherence/my-group.xml

MBean Configuration Override File
The MBean configuration message is emitted with the other operational override
messages and is among the first messages to be emitted when starting a process. The
output is especially helpful when using override files and is often useful when
developing and testing Coherence applications and solutions.

The following example output demonstrates an operational override message that
indicates the default MBean configuration override file is loaded:

Loaded operational overrides from resource "file:/D:/coherence/custom-mbeans.xml"

Disabling Schema Validation
Coherence uses schema validation to ensure that configuration files adhere to their
respective schema definition. Configuration files that include a schema reference are
automatically validated against the schema when the configuration file is loaded. A
validation error causes an immediate failure and an error message is emitted that
indicates which element caused the error. Schema validation should always be used as
a best practice.

Schema validation can be disabled if required. To disable schema validation, remove
the xsi:schemaLocation attribute from a configuration file. The following example
creates a tangosol-coherence-override.xml file that does not contain a schema
reference and is not validated when loaded:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config">
 ...
</coherence>

Understanding the XML Override Feature

3-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Understanding the XML Override Feature
The XML override feature is a configuration mechanism that allows any operational
settings to be changed without having to edit the default tangosol-coherence.xml
operational deployment descriptor that is located in the coherence.jar. This
mechanism is the preferred way of configuring the Coherence operational run time.

The XML override feature works by associating an XML document, commonly
referred to as an override file, with a specific operational XML element. The XML
element, and any of its subelements, are then modified as required in the override file.
At run time, Coherence loads the override file and its elements replace (or are added
to) the elements that are in the tangosol-coherence.xml file.

An override file does not have to exist at run time. However, if the override file does
exist, then its root element must match the element it overrides. In addition,
subelements are optional. If a subelement is not defined in the override file, it is loaded
from the tangosol-coherence.xml file. Typically, only the subelements that are being
changed or added are placed in the override file.

This section includes the following topics:

■ Using the Predefined Override Files

■ Defining Custom Override Files

■ Defining Multiple Override Files for the Same Element

Using the Predefined Override Files
Multiple override files are predefined and can override elements in the operational
deployment descriptor. These files must be manually created and saved to a location in
the classpath.

■ tangosol-coherence-override.xml – This override file is defined for the
<coherence> root element and is used to override any element in the operational
deployment descriptor. The root element in this file must be the <coherence>
element.

■ custom-mbeans.xml – This override file is defined for the <mbeans> element and is
used to add custom MBeans to the operational deployment descriptor. The root
element in this file must be the <mbeans> element.

■ cache-factory-config.xml – This override file is defined for the
<configurable-cache-factory-config> element and is used to customize a
configurable cache factory. This override file is typically only used to support
container integrations. The <configurable-cache-factory-config> element is not
commonly overridden.

■ cache-factory-builder-config.xml – This override file is defined for the
<cache-factory-builder-config> element and is used to customize a cache
factory builder. This override file is typically only used to support container
integrations. The <cache-factory-builder-config> element is not commonly
overridden.

Note: When schema validation is disabled, Coherence only fails if
the XML is malformed. Syntactical errors are ignored and may not be
immediately apparent.

Understanding the XML Override Feature

Understanding Configuration 3-17

The following example demonstrates a tangosol-coherence-override.xml file that is
used to override the default cluster name. All other operational settings are loaded
from the tangosol-coherence.xml file.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name system-property="tangosol.coherence.cluster">MyCluster
 </cluster-name>
 </member-identity>
 </cluster-config>
</coherence>

The following example demonstrates a tangosol-coherence-override.xml file that is
used to disable local storage for the distributed cache service on this node. Notice the
use of an id attribute to differentiate an element that can have multiple occurrences.
The id attribute must match the id attribute of the element being overridden.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="4">
 <param-name>local-storage</param-name>
 <param-value system-property="tangosol.coherence.distributed.
 localstorage">false</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

The following example demonstrates a custom-mbean.xml file that adds a standard
MBean definition to the list of MBeans.

<mbeans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <mbean id="100">
 <mbean-class>com.oracle.customMBeans.Query</mbean-class>
 <mbean-name>type=Query</mbean-name>
 <enabled>true</enabled>
 </mbean>
</mbeans>

Understanding the XML Override Feature

3-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Defining Custom Override Files
Any element in the tangosol-coherence.xml deployment descriptor can be
overridden using the predefined tangosol-coherence-override.xml file. However,
there may be situations where more fine-grained configuration control is required. For
example, a solution may want to allow changes to certain elements, but does not want
to allow changes to the complete operational deployment descriptor. As another
example, a solution may want to provide different configurations based on different
use cases. Custom override files are used to support these types of scenarios.

Using the xml-override and id attributes
Override files are defined using the xml-override attribute and, if required, the id
attribute. Both of these attributes are optional and are added to the operational
element that is to be overridden. See "Attribute Reference" on page A-100 for a list of
the operational elements that support the use of an override file.

The value of the xml-override attribute is the name of a document that is accessible to
the classes contained in the coherence.jar library using the
ClassLoader.getResourceAsStream(String name) method. In general, the file name
contains a / prefix and is located in the classpath at run time. The attribute also
supports the use of a URL when specifying the location of an override file.

For example, to define an override file named cluster-config.xml that is used to
override the <cluster-config> element, add an xml-override attribute to the
<cluster-config> element in the tangosol-coherence-override.xml file as shown
below:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config xml-override="/cluster-config.xml">
 ...
 </cluster-config>
</coherence>

To use this override file, create a document named cluster-config.xml and ensure
that it and the base document (tangosol-coherence-override.xml in this case) are
located in a directory that is in the classpath at run time. For this example, the override
file's root element must be <cluster-config> as shown below.

<?xml version='1.0'?>

<cluster-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <multicast-listener>
 <join-timeout-milliseconds>4000</join-timeout-milliseconds>
 </multicast-listener>
</cluster-config>

An id attribute is used to distinguish elements that can occur multiple times.

For example, to define a custom override file named dist-service-config.xml that is
used to override the <service> element for the distributed cache service, add an
xml-override attribute to the <service> element whose id is number 3 as shown
below

Understanding the XML Override Feature

Understanding Configuration 3-19

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3" xml-override="/dist-service-config.xml">
 </service>
 </services>
 </cluster-config>
</coherence>

To use this override file, create a document named dist-service-config.xml and
ensure that it is located in a directory that is in the classpath at run time. For this
example, the override file's root element must be <service> as shown below.

<?xml version='1.0'?>

<service id="3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <init-params>
 <init-param id="1">
 <param-name>standard-lease-milliseconds</param-name>
 <param-value>2</param-value>
 </init-param>
 </init-params>
</service>

Defining Multiple Override Files for the Same Element
Multiple override files can be defined for the same element to chain operational
override files. This is typically done to allow operational configurations based on
different deployment scenarios, such as staging and production.

As an example, the tangosol-coherence.xml operational deployment descriptor
located in coherence.jar defines an operational override file for the <coherence>
element as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd"
 xml-override="{tangosol.coherence.override/tangosol-coherence-override-{mode}
 .xml}">
 ...
</coherence>

The mode-specific override files are also located in coherence.jar and are used
depending on the Coherence start mode (the value of the <license-mode> element).

Note: If the element's id in the override document does not have a
match in the base document, the elements are just appended to the
base document.

Changing Configuration Using System Properties

3-20 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Each of the mode-specific operational override files, in turn, defines the default
operational override file as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd"
 xml-override="/tangosol-coherence-override.xml">
 ...
</coherence>

A fourth override file can be defined for the <coherence> element in the
tangosol-coherence-override.xml file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd"
 xml-override="/tangosol-coherence-override-staging.xml">
 ...
</coherence>

The chain can continue as required. The files are all loaded at run time if they are
placed in a location in the classpath. Files higher up in the chain always override files
below in the chain.

Changing Configuration Using System Properties
The command-line override feature allows operational and cache settings to be
overridden using system properties. System properties are typically specified on the
Java command line using the Java -D option. This allows configuration to be
customized for each node in a cluster while using the same operational configuration
file and cache configuration file across the nodes. System properties are also a
convenient and quick way to change settings during development.

This section includes the following topics:

■ Using Preconfigured System Properties

■ Creating Custom System Properties

Using Preconfigured System Properties
Coherence includes many preconfigured system properties that are used to override
different operational and cache settings. Table D–1 lists all the preconfigured system
properties. The preconfigured system properties are defined within the
tangosol-coherence.xml and coherence-cache-config.xml default deployment
descriptors, respectively, using system-property attributes.

For example, the preconfigured tangosol.coherence.log.level system property is
defined in the tangosol-coherence.xml file as follows:

<logging-config>
 ...
 <severity-level system-property="tangosol.coherence.log.level">5
 </severity-level>

Changing Configuration Using System Properties

Understanding Configuration 3-21

 ...
</logging-config>

To use a preconfigured system property, add the system property as a Java -D option at
startup. For the above example, the log level system property is specified as follows
when starting a cache server:

java -Dtangosol.coherence.log.level=3 -cp COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Creating Custom System Properties
Custom system properties can be created for any operational or cache configuration
element. The names of the preconfigured system properties can also be changed as
required.

System properties are defined by adding a system-property attribute to the element
that is to be overridden. The value of the system-property attribute can be any
user-defined name. Custom system properties are typically defined in an operational
override file (such as tangosol-coherence-override.xml) and a custom cache
configuration file.

Defining a System Property for an Operational Element
The following example defines a system property called multicast.join.timeout for
the <join-timeout-milliseconds> operational element and is added to an operational
override file:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <join-timeout-milliseconds system-property="multicast.join.timeout">30000
 </join-timeout-milliseconds>
 </multicast-listener>
 </cluster-config>
</coherence>

Defining a System Property for a Cache Configuration element
The following example defines a system property called cache.name for a
<cache-name> element and is added to a custom cache configuration file:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

Note: When using an operational override file and when creating a
custom cache configuration file; the preconfigured system properties
must always be included along with the element that is to be
overridden; otherwise, the property is no longer available.

Changing Configuration Using System Properties

3-22 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name system-property="cache.name"></cache-name>
 ...

Changing a Preconfigured System Property
The following example changes the preconfigured system property name for the
<cluster-name> operational element and is added to an operational override file:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name system-property="myapp.cluster.name"></cluster-name>
 </member-identity>
 </cluster-config>
</coherence>

Note: To remove a system property, delete the system property
attribute from the element. If a system property is used at run time
and it does not exist, it is disregarded.

4

Building Your First Coherence Application 4-1

4Building Your First Coherence Application

[4] This chapter provides step-by-step instructions for building and running a basic
Coherence example and demonstrates many fundamental Coherence concepts. The
sample application is a simple Hello World application and is implemented both as a
standalone Java application and a JSP application. Lastly, a JDeveloper section has
been included that provides some basic instructions for setting up JDeveloper when
developing with Coherence.

This chapter includes the following sections:

■ Task 1: Define the Example Cache

■ Task 2: Configure and Start the Example Cluster

■ Task 3: Create and Run a Basic Coherence Standalone Application

■ Task 4: Create and Run a Basic Coherence JavaEE Web Application

■ Using JDeveloper for Coherence Development

Task 1: Define the Example Cache
Caches are defined in a cache configuration deployment descriptor and are referred to
by name within an application. This allows configuration changes to be made to a
cache without having to change an application's code. The following cache
configuration defines a basic distributed cache which is mapped to the cache name
hello-example.

To define the example cache:

1. Create an XML file named example-config.xml.

2. Copy the following distributed cache definition to the file:

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config

Note: The example in this chapter is basic and is only intended to
teach general concepts. For more advanced examples, refer to the
examples included with the installation. The examples are also
distributed as part of the Coherence supplemental installation. For
detailed instructions on building and running the examples, see
Tutorial for Oracle Coherence.

Task 2: Configure and Start the Example Cluster

4-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>hello-example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

Task 2: Configure and Start the Example Cluster
Caches are hosted on a Coherence cluster. At run time, any JVM process that is
running Coherence automatically joins the cluster and can access the caches and other
services provided by the cluster. When a JVM joins the cluster, it is called a cluster
node, or alternatively, a cluster member. For the sample applications in this chapter,
two separate Java processes form the cluster: a cache server process and the Hello
World application process. For simplicity, the two processes are collocated on a single
computer. The cache server, by default, is configured to store cache data.

The example cluster uses an operational override file to modify the out-of-box default
cluster configuration. In particular, the default configuration is modified to create a
private cluster which ensures that the two processes do not attempt to join an existing
Coherence cluster that may be running on the network. The default configuration is
also modified to load the example-config.xml cache configuration file instead of the
default cache configuration file.

To configure and start the example cluster:

1. Create a file named tangosol-coherence-override.xml.

2. Add the following override configuration and replace cluster_name and port
with values that are unique for this cluster. For example, use your name for the
cluster name and the last four digits of your phone number for the port.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name>cluster_name</cluster-name>
 </member-identity>

 <multicast-listener>
 <address>224.3.6.0</address>

Task 3: Create and Run a Basic Coherence Standalone Application

Building Your First Coherence Application 4-3

 <port>port</port>
 <time-to-live>0</time-to-live>
 </multicast-listener>
 </cluster-config>

 <configurable-cache-factory-config>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value system-property="tangosol.coherence.cacheconfig">
 example-config.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

3. Save the file to the same directory where the example-config.xml file was saved.

4. From a command prompt, start a cache server instance using the
DefaultCacheServer class and include the location of the coherence.jar library
and the configuration files as a Java -cp option. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Task 3: Create and Run a Basic Coherence Standalone Application
Step 3 is a multi-part step that includes a sample Hello World application and
instructions for running and verifying the example. The application is run from the
command line and starts a cache node that joins with a cache server. The application
puts a key named k1 with the value Hello World! into the hello-example cache and
then gets and prints out the value of the key before exiting. Lastly, an additional
cluster node is started to verify that the key is in the cache.

Create the Sample Standalone Application
Applications use the Coherence API to access and interact with a cache. The
CacheFactory class is used to get an instance of a cache and the NamedCache interface is
used to retrieve and store objects in the cache. The Hello World application is very
basic, but it does demonstrate using the CacheFactory class and the NamedCache
interface.

Example 4–1 The Sample HelloWorld Standalone Application

package com.examples;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

public class HelloWorld {

 public static void main(String[] args) {

 String key = "k1";
 String value = "Hello World!";

 CacheFactory.ensureCluster();
 NamedCache cache = CacheFactory.getCache("hello-example");

Task 3: Create and Run a Basic Coherence Standalone Application

4-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 cache.put(key, value);
 System.out.println((String)cache.get(key));

 CacheFactory.shutdown();
 }
}

Run the Sample Standalone Application
To run the standalone application example:

1. From a command prompt, compile the Hello World application. For example:

javac -cp COHERENCE_HOME\lib\coherence.jar com\examples\HelloWorld.java

2. Run the Hello World application and include the location of the coherence.jar
library and the configuration files as a Java -cp option. In addition, restrict the
client from locally storing partitioned data. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false com.example.HelloWorld

The Hello World application starts. The cache factory instance is created and
becomes a member of the cluster. The k1 key with the Hello World! value is
loaded into the hello-example cache. The key is then retrieved from the cache and
the value is emitted as part of the output. Lastly, the cache factory is shutdown
and leaves the cluster before the Hello World application exits.

Verify the Example Cache
The cache server in this example is configured, by default, to store the cache's data.
The data is available to all members of the cluster and persists even after members
leave the cluster. For example, the Hello World application exits after it loads and
displays a key in the cache. However, the cache and key are still available for all
cluster members.

This step uses the cache factory command-line tool to connect to the hello-example
cache and list all items in the cache. It demonstrates both the persistent and distributed
nature of Coherence caches.

To verify the cache:

1. From a command prompt, start a standalone cache factory instance using the
CacheFactory class and include the location of the coherence.jar library and the
configuration files as a Java -cp option. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false
com.tangosol.net.CacheFactory

The cache factory instance starts and becomes a member of the cluster and returns
a command prompt for the command-line tool.

2. At the command-line tool command prompt, get the hello-example cache using
the cache command:

cache hello-example

3. At the command-line tool command prompt, retrieve the contents of the cache
using the list command.

Task 4: Create and Run a Basic Coherence JavaEE Web Application

Building Your First Coherence Application 4-5

list

The command returns and displays:

k1 = Hello World!

Task 4: Create and Run a Basic Coherence JavaEE Web Application
Step 4 is a multi-part step that includes the Hello World application re-implemented as
a JSP page. Instructions are included for packaging the sample as a Web application to
be deployed to a JavaEE server. The application runs on the application server and
starts a cache node that joins with a cache server. The application puts a key named k2
with the value Hello World! into the hello-example cache and then gets and prints
out the value of the key before exiting. Lastly, an additional cluster node is started to
verify that the key is in the cache.

Create the Sample Web Application
To create the sample Web application:

1. Create a basic Web application directory structure as follows:

/
/WEB-INF
/WEB-INF/classes
/WEB-INF/lib

2. Copy the below JSP to a text file and save the file as hello.jsp in the root of the
Web application directory.

Example 4–2 The Sample Hello World JSP

<html>
 <head>
 <title>My First Coherence Cache</title>
 </head>
 <body>
 <h1>
 <%@ page language="java"
 import="com.tangosol.net.CacheFactory,
 com.tangosol.net.NamedCache"
 %>
 <%
 String key = "k2";
 String value = "Hello World!";

 CacheFactory.ensureCluster();
 NamedCache cache = CacheFactory.getCache("hello-example");

 cache.put(key, value);

Note: WebLogic server includes a Coherence integration that
standardizes the packaging and deployment of Coherence
applications. For Weblogic server instructions about packaging and
deploying Coherence applications, see Administering Oracle Coherence.
The instructions in this section are not specific to, or recommended
for, WebLogic Server.

Task 4: Create and Run a Basic Coherence JavaEE Web Application

4-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 out.println((String)cache.get(key));

 CacheFactory.shutdown();
 %>
 </h1>
 </body>
</html>

3. Copy the following empty Web application deployment descriptor to a text file
and save the file as web.xml in the /WEB-INF directory.

<?xml version = '1.0' ?>
 <web-app/>

4. Copy the coherence.jar file to the WEB-INF/lib directory.

5. Copy the example-config.xml file and the tangosol-coherence-override.xml
file to the WEB-INF/classes directory.

6. Create a Web ARchive file (WAR) using the jar utility and save the file as
hello.war. For example, issue the following command from a command prompt
at the root of the Web application directory:

jar -cvf hello.war *

The archive should contain the following files

/hello.jsp
/WEB-INF/web.xml
/WEB-INF/classes/example-config.xml
/WEB-INF/classes/tangosol-coherence-override.xml
/WEB-INF/lib/coherence.jar

Deploy and Run the Sample Web Application
To deploy and run the Web application example:

1. Deploy the hello.war file to a JavaEE server.

2. From a browser, run the Hello World application by accessing the hello.jsp file
using the following URL. Substitute host and port with values specific to the
deployment.

http://host:port/hello/hello.jsp

The Hello World application starts. The cache factory instance is created and
becomes a member of the cluster. The k2 key with the Hello World! value is
loaded into the hello-example cache. The key is then retrieved from the cache and
the value is displayed in the browser. Lastly, the cache factory shuts down and
leaves the cluster.

Verify the Example Cache
The cache server in this example is configured, by default, to store the cache's data.
The data is available to all members of the cluster and persists even after members
leave the cluster. For example, the Hello World application exits after it loads and
displays a key in the cache. However, the cache and key are still available for all
cluster members.

Using JDeveloper for Coherence Development

Building Your First Coherence Application 4-7

This step uses the cache factory command-line tool to connect to the hello-example
cache and list all items in the cache. It demonstrates both the persistent and distributed
nature of Coherence caches.

To verify the cache:

1. From a command prompt, start a standalone cache factory instance using the
CacheFactory class and include the location of the coherence.jar library and the
configuration files as a Java -cp option. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false
com.tangosol.net.CacheFactory

The cache factory instance starts and becomes a member of the cluster and returns
a command prompt for the command-line tool.

2. At the command-line tool command prompt, get the hello-example cache using
the cache command:

cache hello-example

3. At the command-line tool command prompt, retrieve the contents of the cache
using the list command.

list

The command returns and displays:

k2 = Hello World!

Using JDeveloper for Coherence Development
This section provides basic instructions on how to setup JDeveloper for Coherence
development. The instructions are for running Coherence within the IDE which is a
common approach during development. While the instructions are specific to
JDeveloper, the same approach should be possible with any IDE. See your IDE's
documentation for specific instructions.

■ Running Coherence in JDeveloper

■ Viewing Thread Dumps in JDeveloper

■ Creating Configuration Files in JDeveloper

Running Coherence in JDeveloper
JDeveloper can run cache server (DefaultCacheServer) and cache (CacheFactory)
instances. Each instance is started as a separate Java process and emits standard
output to the process' log. Input (such as cache commands) can be entered directly in
the process as if it were started from the command line. This configuration facilitates
development and testing Coherence solutions.

To run Coherence in JDeveloper:

1. In JDeveloper, create a new Generic Application, which includes a single project. If
you are new to JDeveloper, consult the Online Help for detailed instructions.

2. In the Application Navigator, double-click the new project. The Project Properties
dialog box displays.

Using JDeveloper for Coherence Development

4-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

3. Select the Libraries and Classpath node. The Libraries and Classpath page
displays

4. On the Libraries and Classpath page, click Add JAR/Directory. The Add Archive
or Directory dialog box displays.

5. From the directory tree, select COHERENCE_HOME\lib\coherence.jar and click
Select. The coherence.jar library displays in the Classpath Entries list as shown
below:

6. From the Project Properties dialog box, select the Run/Debug/Profile node. The
Run/Debug/Profile page displays.

7. From the Run/Debug/Profile page, click New. The Create Run Configuration
dialog box displays.

8. In the Name text box, enter a name for the new run configuration. In the Copy
Settings From drop-down box, choose default. Click OK. The new run
configuration displays in the Run Configuration list.

9. From the Run Configuration list, select the new Run Configuration and click Edit.
The Edit Run Configuration dialog box displays and the Launch Settings node is
selected.

10. From the Launch Settings page, click Browse to select a Default Run Target. The
Choose Default Run Target dialog box displays.

11. From the directory tree, select COHERENCE_HOME\lib\coherence.jar\com\
tangosol\net\DefaultCacheServer.class and click Open. The
DefaultCacheServer class is entered as the default run target as shown below:

Using JDeveloper for Coherence Development

Building Your First Coherence Application 4-9

12. Select the Tool Settings Node. The Tool Settings page displays.

13. From the Additional Runner Options section, click the Allow Program Input
check box. A check mark in the box indicates that the option is selected.

14. Click OK.

15. Repeat Steps 6 through 14 and select COHERENCE_HOME\lib\coherence.jar\
com\tangosol\net\CacheFactory.class as the default run target as shown below:

16. Click OK to close the Project Properties dialog box.

17. Use the Run button drop-down list to select and start the run configuration for the
cache server. A cache server instance is started and output is shown in the
process's log tab as shown below:

Tip: Use the Java Options text box to set Coherence system
properties.

Using JDeveloper for Coherence Development

4-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

18. Use the Run button drop-down list to select and start the run configuration for the
cache. A cache instance is started and output is shown in the process's log tab as
shown below.

19. From the Cache Factory's Running Log tab, use the Input text box located at the
bottom of the tab to interact with the cache instance. For example, type help and
press Enter to see a list of valid commands.

Viewing Thread Dumps in JDeveloper
Java can dump a list of threads and all their held locks to standard out. This is
achieved in Linux environments using the kill command and in Windows
environments using ctrl+break. Thread dumps are very useful for troubleshooting
during development (for example, finding deadlocks).

When developing Coherence solutions in JDeveloper, you can view thread dumps
directly in a process's log tab. This is achieved, by sending the above signals to the Java
process running in JDeveloper.

To view thread dumps in JDeveloper:

1. From a shell or command prompt, use JDK_HOME/bin/jps to get the Process ID
(PID) of the Java process for which you want to view a thread dump.

2. On Linux, use kill -3 PID to send a QUIT signal to the process. On Windows, you
must use a third-party tool (such as SendSignal) to send a ctrl+break signal to a
remote Java process.

Using JDeveloper for Coherence Development

Building Your First Coherence Application 4-11

The thread dump is viewable in the process's log in JDeveloper.

Creating Configuration Files in JDeveloper
JDeveloper can create Coherence configuration files. JDeveloper loads the appropriate
XSD files and lists all the elements in the Component Palette. In addition, JDeveloper
validates configuration files against the XSD and provides XML code completion. The
following procedure creates both a cache configuration file and an operational
override file. The same procedure can be used for any of the Coherence configuration
files.

To create a cache configuration and operation override file in JDeveloper:

1. Extract coherence-cache-config.xsd, coherence-cache-config-base.xsd,
coherence-operational-config.xsd, coherence-operational-config-base.xsd,
and coherence-config-base.xsd from the COHERENCE_HOME\lib\coherence.jar
library to a directory on your computer.

2. In the JDeveloper Application Navigator, double-click your coherence project. The
Project Properties dialog box displays.

3. Expand the Project Source Paths node and click Resources. The Resources page
displays.

4. In the Resources section, click Add to find and select the directory where you
extracted the XSD files.

5. In the Included tab, click Add and select the XSD files. Alternatively, you can
allow JDeveloper to include all files in this directory and not explicitly add each
file.

6. Click OK. The XSDs are listed in the Included tab as shown below.

7. Click OK to close the Project Properties dialog box. The XSDs are listed in the
Application Navigator under the Resources folder for your project.

8. From the File menu, click New. The New Gallery dialog box displays.

Using JDeveloper for Coherence Development

4-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

9. From the Categories section, expand the General node and click XML.

10. Select XML Document and click OK. The Create XML File dialog box displays.

11. Enter coherence-cache-config.xml as the file name and save it to the same
directory where the XSD is located. At run time, this file must be found on the
classpath and must be loaded before the coherence.jar file.

12. Click OK. The cache configuration file is created, opened for editing, and listed in
the Application Navigator under the resources folder for your project.

13. Add the following schema reference at the beginning of the file:

<?xml version="1.0" ?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

The Component Palette refreshes and lists all the elements available from the
coherence-cache-config.xsd file.

14. Save the coherence-cache-config.xml file.

15. Repeat steps 8 through 12 to create an operational override file called
tangosol-coherence-override.xml. At run time, this file must be found on the
classpath.

16. Add the following schema references at the beginning of the file:

<?xml version="1.0" ?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">

The Component Palette refreshes and lists all the elements available from the
coherence-operational-config.xsd file.

17. Save the tangosol-coherence-override.xml file.

5

Debugging in Coherence 5-1

5Debugging in Coherence

[5] This chapter provides instructions for configuring logging and includes general advice
for debugging and troubleshooting Coherence applications.

This chapter includes the following sections:

■ Overview of Debugging in Coherence

■ Configuring Logging

■ Performing Remote Debugging

■ Troubleshooting Coherence-Based Applications

Overview of Debugging in Coherence
Coherence applications are typically developed on a single computer. The cache server
and application are started within the IDE and the application is debugged as
required. This type of development environment is easy to setup, performs well, and is
easy to debug. A majority of applications can be created and tested this way. See
"Enabling Single-Server Mode" on page 7-13 for details on configuring Coherence to
run on a single server.

Ideally, most errors can be detected during development using logging, enabling JVM
debug options, and capturing thread and heap dumps as required. Moreover, IDEs
and profiling tools, such as Oracle's Java VisualVM and JConsole, provide features for
diagnosing problems. However, Coherence applications must eventually be tested in a
more distributed environment. Debugging and troubleshooting in the testing
environment is more difficult since data and processes are fully distributed across the
cluster and because the network affects the application. Remote debugging with Java
Debug Wire Protocol (JDWP) together with Coherence's JMX management and
reporting capabilities facilitate debugging and troubleshooting in a distributed
environment.

Using Oracle Support
Oracle support can help debug issues and is available through
https://support.oracle.com. When sending support an issue, always include the
following items in a compressed file:

■ application code

■ configuration files

■ log files for all cluster members

■ Thread and heap dumps are required under certain circumstances. Thread dumps
should be sent if the application is running slow and/or appears to be hung. Heap

Configuring Logging

5-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

dumps should be sent if the application runs out of memory or is consuming more
memory than expected.

Configuring Logging
Coherence has its own logging framework and also supports the use of log4j, slf4j, and
Java logging to provide a common logging environment for an application. Logging in
Coherence occurs on a dedicated and low-priority thread to reduce the impact of
logging on the critical portions of the system. Logging is pre-configured and the
default settings should be changed as required.

This section includes the following topics:

■ Changing the Log Level

■ Changing the Log Destination

■ Changing the Log Message Format

■ Setting the Logging Character Limit

■ Using JDK Logging for Coherence Logs

■ Using Log4J Logging for Coherence Logs

■ Using SLF4J for Coherence Logs

Changing the Log Level
The logger's log level determines which log messages are emitted. The default log
level emits error, warning, informational, and some debug messages. During
development, the log level should be raised to its maximum setting to ensure all
debug messages are logged. The following log levels are available:

■ 0 – This level includes messages that are not associated with a logging level.

■ 1 – This level includes the previous level's messages plus error messages.

■ 2 – This level includes the previous levels' messages plus warning messages.

■ 3 – This level includes the previous levels' messages plus informational messages.

■ 4-9 – These levels include the previous levels' messages plus internal debugging
messages. More log messages are emitted as the log level is increased. The default
log level is 5.

■ -1 – No log messages are emitted.

To change the log level, edit the operational override file and add a <severity-level>
element, within the <logging-config> element, that includes the level number. For
example:

...
<logging-config>
 ...
 <severity-level system-property="tangosol.coherence.log.level">9
 </severity-level>
 ...
</logging-config>
...

The tangosol.coherence.log.level system property is used to specify the log level
instead of using the operational override file. For example:

Configuring Logging

Debugging in Coherence 5-3

-Dtangosol.coherence.log.level=9

Changing the Log Destination
The logger can be configured to emit log messages to several destinations. For
standard output to the console, both stdout and stderr (the default) can be used. The
logger can also emit messages to a specified file.

Coherence also supports the use of JDK, log4j, and SLF4J to allow an application and
Coherence to share a common logging framework. See "Using JDK Logging for
Coherence Logs" on page 5-5, "Using Log4J Logging for Coherence Logs" on page 5-7,
and "Using SLF4J for Coherence Logs" on page 5-8 for detailed instructions.

To change the log destination, edit the operational override file and add a
<destination> element, within the <logging-config> element, that includes the
destination. For example:

...
<logging-config>
 <destination system-property="tangosol.coherence.log">stdout</destination>
 ...
</logging-config>
...

The tangosol.coherence.log system property is used to specify the log destination
instead of using the operational override file. For example:

-Dtangosol.coherence.log=stdout

Sending Log Messages to a File
The logger can be configured to emit log messages to a file by providing a path and
file name in the <destination> element. The specified path must already exist. Make
sure the specified directory can be accessed and has write permissions. Output is
appended to the file and there is no size limit. Process cannot share a log file and the
log file is replaced when a process is restarted. Sending log messages to a file is
typically used during development and testing and is useful if the log messages need
to be sent to Oracle support.

The following example demonstrates specifying a log file named coherence.log that
is written to the /tmp directory:

...
<logging-config>
 <destination system-property="tangosol.coherence.log">/tmp/coherence.log
 </destination>
 ...
</logging-config>
...

Changing the Log Message Format
The default format of log messages can be changed depending on the amount of detail
that is required. A log message can include static text as well as any of the following
parameters that are replaced at run time.

Configuring Logging

5-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

To change the log message format, edit the operational override file and add a
<message-format> element, within the <logging-config> element, that includes the
format. For example:

...
<logging-config>
 ...
 <message-format>[{date}] <{level}> (thread={thread}) -->{text}
 </message-format>
 ...
</logging-config>
...

Setting the Logging Character Limit
The logging character limit specifies the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining

Note: Changing the log message format must be done with caution
as critical information (such as member or thread) can be lost which
makes issues harder to debug.

Parameter Description

{date} This parameter shows the date/time (to a millisecond) when the
message was logged.

{uptime} This parameter shows the amount of time that the cluster members has
been operational.

{product} This parameter shows the product name and license type.

{version} This parameter shows Coherence version and build details.

{level} This parameter shows the logging severity level of the message.

{thread} This parameter shows the thread name that logged the message.

{member} This parameter shows the cluster member id (if the cluster is currently
running).

{location} This parameter shows the fully cluster member identification:
cluster-name, site-name, rack-name, machine-name, process-name and
member-name (if the cluster is currently running).

{role} This parameter shows the specified role of the cluster member.

{text} This parameter shows the text of the message.

{ecid} This parameter shows the Execution Context ID (ECID). The ECID is a
globally unique ID that is attached to requests between Oracle
components. The ECID is an Oracle-specific diagnostic feature and is
used to correlate log messages across log files from Oracle components
and products and is also used to track log messages pertaining to the
same request within a single component when multiple requests are
processed in parallel. Coherence clients that want to include the ECID
in their logs must have an activated Dynamic Monitoring Service
(DMS) execution context when invoking Coherence.

Note: If JDK logging is used with an Oracle Diagnostic Logging (ODL)
handler, then the {ecid} parameter does not apply because the ECID
automatically becomes part of the ODL record form.

Configuring Logging

Debugging in Coherence 5-5

messages in the queue. The messages that are discarded are summarized by the
logging system with a single log entry that details the number of messages that were
discarded and their total size. For example:

Asynchronous logging character limit exceeded; discarding 5 log messages
(lines=14, chars=968)

The truncation is only temporary; when the queue is processed (emptied), the logger is
reset so that subsequent messages are logged.

The character limit is used to avoid situations where logging prevents recovery from a
failing condition. For example, logging can increase already tight timings, which
causes additional failures, which produces more logging. This cycle may continue
until recovery is not possible. A limit on logging prevents the cycle from occurring.

To set the log character limit, edit the operational override file and add a
<character-limit> element, within the <logging-config> element. The character
limit is entered as 0 (Integer.MAX_VALUE) or a positive integer. For example:

...
<logging-config>
 ...
 <character-limit system-property="tangosol.coherence.log.limit">12288
 </character-limit>
</logging-config>
...

The tangosol.coherence.log.limit system property is used to specify the log
character limit instead of using the operational override file. For example:

-Dtangosol.coherence.log.limit=12288

Using JDK Logging for Coherence Logs
Applications that use the JDK logging framework can configure Coherence to use JDK
logging as well. Detailed information about JDK logging is beyond the scope of this
documentation. For details on JDK logging, see
http://download.oracle.com/javase/7/docs/technotes/guides/logging/overview
.html.

To use JDK logging for Coherence logs:

1. Create a logging.properties file. The following example configures the JDK
logger to emit messages to both the console and to a file. Output to the console
and file is configured to use the FINEST log level. For the file handler pattern, the
specified path must already exist. Also, ensure that the specified directory can be
accessed and has write permissions.

handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler

.level=INFO
Coherence.level=FINEST

java.util.logging.FileHandler.pattern=/tmp/coherence%u.log
java.util.logging.FileHandler.limit=50000

Note: The message that caused the total number of characters to
exceed the maximum is never truncated.

http://download.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
http://download.oracle.com/javase/7/docs/technotes/guides/logging/overview.html

Configuring Logging

5-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

java.util.logging.FileHandler.count=1
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

2. Configure Coherence to use JDK logging by specifying jdk as the value of the
<destination> element in an operational override file. For example:

...
<logging-config>
 <destination system-property="tangosol.coherence.log">jdk</destination>
 ...
</logging-config>
...

3. Make sure the logging.properties file is specified using the
java.util.logging.config.file system property. For example:

-Djava.util.logging.config.file=myfile

Mapping JDK Log Levels with Coherence Log Levels
The following table provides a mapping of how JDK log levels are mapped to
Coherence log levels.

Note:

■ In the above example, Coherence is used as the logger object name
and is the default name that is used by the Coherence logging
framework. A different name can be used by specifying the name
within the <logger-name> element in the operational override file
or by specifying the name as the value of the
tangosol.coherence.log.logger system property.

■ Set the JDK logging level to FINEST and allow the Coherence
logging settings to determine which log messages to construct for
JDK logging.

JDK Log Level Coherence Log Level

OFF NONE

FINEST INTERNAL

SEVERE ERROR

WARNING WARNING

INFO INFO

FINE LEVEL_D4

FINER LEVEL_D5

FINEST LEVEL_D6

FINEST LEVEL_D7

FINEST LEVEL_D8

FINEST LEVEL_D9

Configuring Logging

Debugging in Coherence 5-7

Using Log4J Logging for Coherence Logs
Applications that use the log4j logging framework can configure Coherence to use
log4j logging as well. Detailed information about log4j logging is beyond the scope of
this documentation. For details on log4j logging, see
http://logging.apache.org/log4j/1.2/manual.html.

To use log4j logging for Coherence logs:

1. Create a log4j.properties file. The following example configures the log4j logger
to emit messages to both the console and to a file. Output to the console and file
are configured to use the FATAL log level. For the file appender, make sure the
specified directory can be accessed and has write permissions.

log4j.logger.Coherence=FATAL, stdout, file

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n

log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=/tmp/coherence.log
log4j.appender.file.MaxFileSize=10MB
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%m%n

2. Configure Coherence to use log4j logging by specifying log4j as the value of the
<destination> element in an operational override file. For example:

...
<logging-config>
 <destination system-property="tangosol.coherence.log">log4j</destination>
 ...
</logging-config>
...

3. Make sure both the log4j.jar file and the log4j.properties file are found on the
classpath at run time.

ALL ALL

Note:

■ In the above example, Coherence is used as the logger object name
and is the default name that is used by the Coherence logging
framework. A different name can be used by specifying the name
within the <logger-name> element in the operational override file
or by specifying the name as the value of the
tangosol.coherence.log.logger system property.

■ Set the log4j logging level to FATAL and allow the Coherence
logging settings to determine which log messages to construct for
log4j logging.

JDK Log Level Coherence Log Level

http://logging.apache.org/log4j/1.2/manual.html

Performing Remote Debugging

5-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Mapping Log4J Log Levels with Coherence Log Levels
The following table provides a mapping of how log4j log levels are mapped to
Coherence log levels.

Using SLF4J for Coherence Logs
Applications that use SLF4J logging can configure Coherence to use SLF4J logging as
well. Detailed information about SLF4J logging is beyond the scope of this
documentation. For details on SLF4J logging, see http://www.slf4j.org/.

To use SLF4J logging:

1. specify slf4j as the value of the <destination> element in an operational
override file. For example:

...
<logging-config>
 <destination system-property="tangosol.coherence.log">slf4j</destination>
 ...
</logging-config>
...

2. Make sure both the slf4j-api.jar file and the appropriate logging framework
SLF4J binding JAR is located on the classpath.

Performing Remote Debugging
Java Debug Wire Protocol (JDWP) provides the ability to debug a JVM remotely. Most
IDE tools support JDWP and are used to connect to a remote JVM that has remote
debugging enabled. See your IDE's documentation for instructions on how to connect
to a remote JVM.

To enable remote debugging on a cache server, start the cache server with the
following JVM options. Once the cache server has been started, use the IDE's debugger
to connect to the JVM using the port specified (5005 in the example).

-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Log4J Log Level Coherence Log Level

OFF NONE

DEBUG INTERNAL

ERROR ERROR

WARN WARNING

INFO INFO

DEBUG LEVEL_D4

DEBUG LEVEL_D5

DEBUG LEVEL_D6

DEBUG LEVEL_D7

DEBUG LEVEL_D8

DEBUG LEVEL_D9

ALL ALL

http://www.slf4j.org/

Troubleshooting Coherence-Based Applications

Debugging in Coherence 5-9

Remote debugging a Coherence application can be difficult when the application is no
longer on a single node cluster because data is distributed across the members of the
cluster. For example, when performing parallel grid operations, the operations are
performed on the cluster members where the data is located. Since there are no
guarantees on which members the data is located, it is best to constrain a test to use a
singe cache server.

In addition, the guardian and packet timeout can make cluster debugging difficult. If
the debugger pauses the packet publishing, cluster, and service threads, it will cause
disruptions across the cluster. In such scenarios, disable the guardian and increase the
packet timeout during the debugging session. See "service-guardian" on page A-82 for
details on configuring these settings.

Troubleshooting Coherence-Based Applications
The topics in this section provide general troubleshooting advice. Troubleshooting
Coherence-based applications is, for the most part, no different than troubleshooting
other Java application. Most IDEs provide features that facilitate the process. In
addition, many tools, such as: Java VisualVM, JConsole, and third party tools provide
easy ways to monitor and troubleshoot Java applications. See the Troubleshooting Java
SE section on OTN for detailed information on troubleshooting Java:

http://www.oracle.com/technetwork/java/javase/index-138283.html

Troubleshooting a Coherence application on a single server cluster is typically straight
forward. Most Coherence development work is done in such an environment because
it facilitates debugging. Troubleshooting an application that is deployed on a
distributed cluster can become more challenging.

This section includes the following topics:

■ Using Coherence Logs

■ Using JMX Management and Coherence Reports

■ Using JVM Options to Help Debug

■ Capturing Thread Dumps

■ Capturing Heap Dumps

■ Monitoring the Operating System

Using Coherence Logs
Log messages provide information that is used to monitor and troubleshoot
Coherence. Most log messages are explained in the Log Glossary within the
Administering Oracle Coherence. The glossary provides additional details as well as
specific actions that can be taken when a message is encountered.

Configuring logging beyond the default out-of-box configuration is very important
when developing and debugging an application. Specifically, use the highest log level
(level 9 or ALL when using JDK or log4j logging) to ensure that all log messages are
emitted. Also, consider using either JDK or log4j logging. Both of these frameworks
support the use of rolling files and console output simultaneously. Lastly, consider
placing all log files in a common directory. A common directory makes it easier to
review the log files and package them for the Coherence support team. See
"Configuring Logging" on page 5-2 for detailed information on configuring all aspects
of logging.

Troubleshooting Coherence-Based Applications

5-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Using JMX Management and Coherence Reports
Coherence management is implemented using Java Management Extensions (JMX).
Many MBeans are provided that detail the health and stability of Coherence. The
MBeans provide valuable insight and should always be used when moving an
application from a development environment to a fully distributed environment.
MBeans are accessible using JConsole and VisualVM or any management tool that
supports JMX. In addition, Coherence includes reports that gather information from
the MBeans over time and provide a historical context that is not possible simply by
monitoring the MBeans. The reports are most often used to identify trends that are
valuable for troubleshooting. Management and reporting are not enabled by default
and must be enabled. See Managing Oracle Coherence for detailed instructions on using
the management features included with Coherence.

Using JVM Options to Help Debug
Most JVMs include options that facilitate debugging and troubleshooting. These
options should be used to get as much information as possible. Consult your JVM
vendor's documentation for their available options. The JVM options discussed in this
section are Java HotSpot specific. See the Java HotSpot VM Options Web page for
detailed information and usage instructions for all JVM options:

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.ht
ml

The following JVM options (standard and non standard) can help when debugging
and troubleshooting applications:

■ -verbose:gc or -Xloggc:file – These options are used to enable additional logs
for each garbage collection event. In a distributed system, a GC pause on a single
JVM can affect the performance of many JVMs, so it is essential to monitor garbage
collection very closely. The -Xloggc option is similar to verbose GC but includes
timestamps.

■ -Xprof and -Xrunhprof – These options are used to view JVM profile data and are
not intended for production systems.

■ -XX:-PrintGC, -XX:-PrintGCDetails, and -XX:-PrintGCTimeStamps – These
options are also used print messages at garbage collection.

■ -XX:-HeapDumpOnOutOfMemoryError and -XX:HeapDumpPath=./java_
pid<pid>.hprof – These options are used to initiate a heap dump when a
java.lang.OutOfMemoryError is thrown.

■ -XX:ErrorFile=./hs_err_pid<pid>.log – This option saves error data to a file.

Capturing Thread Dumps
Thread dumps are used to see detailed thread information, such as thread state, for
each thread in the JVM. A thread dump also includes information on each deadlocked
thread (if applicable). Thread dumps are useful because of Coherence's multi-threaded
and distributed architecture. Thread dumps are often used to troubleshoot an
application that is operating slowly or is deadlocked. Make sure to always collect
several dumps over a period of time since a thread dump is only snapshot in time.
Always include a set of thread dumps when submitting a support issue.

Coherence provides a native logClusterState JMX operation that is located on the
ClusterMBean MBean and a native logNodeState JMX operation that is located on the
ClusterNodeMBean MBean. These operations initiate a thread dump (including
outstanding polls) on multiple cluster members or on a single cluster member,

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Troubleshooting Coherence-Based Applications

Debugging in Coherence 5-11

respectively. For a detailed reference of Coherence MBeans, see See Managing Oracle
Coherence.

To perform a thread dump locally on Unix or Linux operating systems, press Ctrl+\ at
the application console. To perform a thread dump on Windows, press Ctrl+Break (or
Pause). Both methods include a heap summary with the thread dump.

Most IDEs provide a thread dump feature that can be used to capture thread dumps
while working in the IDE. In addition, Unix and Linux operating systems can use the
kill -3 pid to cause a remote thread dump in the IDE. On Windows, use a third party
tool (such as SendSignal) to send a ctrl+break signal to a remote Java process and
cause a dump in the IDE.

Profiling tools, such as Oracle's Java VirtualVM (jvisualvm) and JConsole (jconsole)
are able to perform thread dumps. These tools are very useful because they provide a
single tool for troubleshooting and debugging and display many different types of
information in addition to just thread details.

Lastly, the jstack tool can be used to capture a thread dump for any process. For
example, use jps to find a Java process ID and then execute the following from the
command line:

jstack <pid>

The jstack tool is unsupported and may or may not be available in future versions of
the JDK.

Capturing Heap Dumps
Heap dumps are used to see detailed information for all the objects in a JVM heap. The
information includes how many instance of an object are loaded and how much
memory is allocated to the objects. Heap information is typically used to find parts of
an application that may potentially be wasting resources and causing poor
performance. In a fully distributed Coherence environment, heap dumps can be tricky
because application processing is occurring across the cluster and problematic objects
may not necessarily be local to a JVM. Make sure to always collect several dumps over
a period of time since a heap dump is only a snapshot in time. Always include heap
dumps when submitting a support issue.

The easiest way to capture a heap dump is to use a profiling tool. Oracle's Java
VirtualVM (jvisualvm) and JConsole (jconsole) provide heap dump features. In
addition, most IDEs provide a heap dump feature that can be used to capture heap
dumps while working in the IDE.

As an alternative, the jmap tool can be used to capture heap dumps, and the jhat tool
can be used to view heap dumps. For example, use jps to find a Java process ID and
then execute the following from the command line:

jmap -dump:format=b,file=/coherence.bin pid

To view the heap dump in a browser, execute the following from the command line
and then browse to the returned address. The file can also be loaded into VisualVM for
viewing.

jhat /coherence.bin

The jmap and jhat tools are unsupported and may or may not be available in future
versions of the JDK.

Troubleshooting Coherence-Based Applications

5-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Monitoring the Operating System
Always monitor a cluster member's operating system when troubleshooting and
debugging Coherence-based applications. Poorly tuned operating systems can affect
the overall performance of the cluster and may have adverse effects on an application.
See Administering Oracle Coherence for details on performance tuning.

In particular, the following areas are important to monitor:

■ CPU – Is the processor running at 100% for extended periods of time?

■ Memory/Swapping – Is the available RAM memory being exhausted and causing
swap space to be used?

■ Network – Is buffer size, the datagram size, and the Maximum Transmission Unit
(MTU) size affecting performance and success rates?

To monitor the overall health of the operating system, use tools such as vmstat and
top for Unix/Linux; for Windows, use perfmon and tools available from Windows
Sysinternals (for example procexp and procmon). See Administering Oracle Coherence for
detailed instructions on how to test network performance.

Part II
Part II Using Coherence Clusters

Part II contains the following chapters:

■ Chapter 6, "Introduction to Coherence Clusters"

■ Chapter 7, "Setting Up a Cluster"

■ Chapter 8, "Starting and Stopping Cluster Members"

■ Chapter 9, "Dynamically Managing Cluster Membership"

■ Chapter 10, "Tuning TCMP Behavior"

■ Chapter 11, "Using the Service Guardian"

6

Introduction to Coherence Clusters 6-1

6Introduction to Coherence Clusters

[6] This chapter describes Coherence clusters and how cluster members use the Tangosol
Cluster Management Protocol (TCMP) to communicate with each other. Clustered
services are also described.

This chapter includes the following sections:

■ Cluster Overview

■ Understanding TCMP

■ Understanding Clustered Services

Cluster Overview
A Coherence cluster is a network of JVM processes that run Coherence. JVMs
automatically join together to form a cluster and are called cluster members or cluster
nodes. Cluster members communicate using the Tangosol Cluster Management
Protocol (TCMP). Cluster members use TCMP for both multicast communication
(broadcast) and unicast communication (point-to-point communication).

A cluster contains services that are shared by all cluster members. The services include
connectivity services (such as the root Cluster service), cache services (such as the
Distributed Cache service), and processing services (such as the Invocation service).
Each cluster member can provide and consume such services. The first cluster member
is referred to as the senior member and typically starts the core services that are
required to create the cluster. If the senior member of the cluster is shutdown, another
cluster member assumes the senior member role.

Understanding TCMP
TCMP is an IP-based protocol that is used to discover cluster members, manage the
cluster, provision services, and transmit data. TCMP can be configured to use:

■ A combination of UDP/IP multicast and UDP/IP unicast. This is the default
configuration.

■ UDP/IP unicast only (that is, no multicast). See "Disabling Multicast
Communication" on page 7-5. This configuration is used for network
environments that do not support multicast or where multicast is not optimally
configured.

■ TCP/IP only (no UDP/IP multicast or UDP/IP unicast). See "Using the TCP
Socket Provider" on page 10-16. This configuration is used for network
environments that favor TCP.

Understanding TCMP

6-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ SDP/IP only (no UDP/IP multicast or UDP/IP unicast). See "Using the SDP
Socket Provider" on page 10-17. This configuration is used for network
environments that favor SDP.

■ SSL over TCP/IP or SDP/IP. See "Using the SSL Socket Provider" on page 10-17.
This configuration is used for network environments that require highly secure
communication between cluster members.

Use of Multicast
Multicast is used as follows:

■ Cluster discovery: Multicast is used to discover if there is a cluster running that a
new member can join.

■ Cluster heartbeat: The most senior member in the cluster issues a periodic
heartbeat through multicast; the rate can be configured and defaults to one per
second.

■ Message delivery: Messages that must be delivered to multiple cluster members
are often sent through multicast, instead of unicasting the message one time to
each member.

Use of Unicast
Unicast is used as follows:

■ Direct member-to-member (point-to-point) communication, including messages,
asynchronous acknowledgments (ACKs), asynchronous negative
acknowledgments (NACKs) and peer-to-peer heartbeats. A majority of the
communication on the cluster is point-to-point.

■ Under some circumstances, a message may be sent through unicast even if the
message is directed to multiple members. This is done to shape traffic flow and to
reduce CPU load in very large clusters.

■ All communication is sent using unicast if multicast communication is disabled.

Use of TCP
TCP is used as follows:

■ A TCP/IP ring is used as an additional death detection mechanism to differentiate
between actual node failure and an unresponsive node (for example, when a JVM
conducts a full GC).

■ TCMP can be configured to exclusively use TCP for data transfers. Like UDP, the
transfers can be configured to use only unicast or both unicast and multicast.

Protocol Reliability
The TCMP protocol provides fully reliable, in-order delivery of all messages. Since the
underlying UDP/IP protocol does not provide for either reliable or in-order delivery,
TCMP uses a queued, fully asynchronous ACK- and NACK-based mechanism for
reliable delivery of messages, with unique integral identity for guaranteed ordering of
messages.

Protocol Resource Utilization
The TCMP protocol (as configured by default) requires only three UDP/IP sockets
(one multicast, two unicast) and six threads per JVM, regardless of the cluster size.
This is a key element in the scalability of Coherence; regardless of the number of

Understanding Clustered Services

Introduction to Coherence Clusters 6-3

servers, each node in the cluster still communicates either point-to-point or with
collections of cluster members without requiring additional network connections.

The optional TCP/IP ring uses a few additional TCP/IP sockets, and an additional
thread.

Protocol Tunability
The TCMP protocol is very tunable to take advantage of specific network topologies,
or to add tolerance for low-bandwidth and high-latency segments in a geographically
distributed cluster. Coherence comes with a pre-set configuration. Some TCMP
attributes are dynamically self-configuring at run time, but can also be overridden and
locked down for deployment purposes.

Understanding Clustered Services
Coherence functionality is based on the concept of services. Each cluster member can
register, provide, and consume services. Multiple services can be running on a cluster
member. A cluster member always contains a single root cluster service and can also
contain any number of grid services. Grid services have a service name that uniquely
identifies the service within the cluster and a service type that defines what the service
can do. There may be multiple instances of each service type (other than the root
cluster service).

The services are categorized below based on functionality. The categories are used for
clarity and do not represent actual components or imply a relationship between
services.

Connectivity Services
■ Cluster Service: This service is automatically started when a cluster node must

join the cluster and is often referred to as the root cluster service; each cluster node
always has exactly one service of this type running. This service is responsible for
the detection of other cluster nodes, for detecting the failure of a cluster node, and
for registering the availability of other services in the cluster.

■ Proxy Service: This service allows connections (using TCP) from clients that run
outside the cluster. While many applications are configured so that all clients are
also cluster members, there are many use cases where it is desirable to have clients
running outside the cluster. Remote clients are especially useful in cases where
there are hundreds or thousands of client processes, where the clients are not
running on the Java platform, or where a greater degree of de-coupling is desired.

Processing Services
■ Invocation Service: This service provides clustered invocation and supports grid

computing architectures. This services allows applications to invoke agents on any
node in the cluster, or any group of nodes, or across the entire cluster. The agent
invocations can be request/response, fire and forget, or an asynchronous
user-definable model.

Data Services
■ Distributed Cache Service: This service allows cluster nodes to distribute

(partition) data across the cluster so that each piece of data in the cache is
managed (held) by only one cluster node. The Distributed Cache Service supports
pessimistic locking. Additionally, to support failover without any data loss, the
service can be configured so that each piece of data is backed up by one or more
other cluster nodes. Lastly, some cluster nodes can be configured to hold no data

Understanding Clustered Services

6-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

at all; this is useful, for example, to limit the Java heap size of an application server
process, by setting the application server processes to not hold any distributed
data, and by running additional cache server JVMs to provide the distributed
cache storage. For more information on distributed caches, see "Understanding
Distributed Caches" on page 12-1.

■ Replicated Cache Service: This is a synchronized replicated cache service that
fully replicates all of its data to all cluster nodes that run the service. Replicated
caches support pessimistic locking to ensure that all cluster members receive the
update when data is modified. Replicated caches are often used to manage
internal application metadata. For more information on replicated caches, see
"Understanding Replicated Caches" on page 12-5.

■ Optimistic Cache Service: This is an optimistic-concurrency version of the
Replicated Cache Service that fully replicates all of its data to all cluster nodes and
employs an optimization similar to optimistic database locking to maintain
coherency. All servers end up with the same current value even if multiple
updates occur at the same exact time from different servers. The Optimistic Cache
Service does not support pessimistic locking; so, in general, it should only be used
for caching most recently known values for read-only uses. This service is rarely
used. For more information on optimistic caches, see "Understanding Optimistic
Caches" on page 12-7.

A clustered service typically uses one daemon thread and optionally has a thread pool
that can be configured to provide the service with additional processing bandwidth.
For example, the invocation service and the distributed cache service both fully
support thread pooling to accelerate database load operations, parallel distributed
queries, and agent invocations.

The above services are only the basic cluster services and not the full set of types of
caches provided by Coherence. By combining clustered services with cache features,
such as backing maps and overflow maps, Coherence provides an extremely flexible
and configurable set of options for clustered applications.

Within a cache service, there exists any number of named caches. A named cache
provides the standard JCache API, which is based on the Java collections API for
key-value pairs, known as java.util.Map.

7

Setting Up a Cluster 7-1

7Setting Up a Cluster

[7] This chapter provides instructions for setting up and configuring Coherence clusters
and is used to change the default out-of-box cluster settings.

This chapter includes the following sections:

■ Overview of Setting Up Clusters

■ Specifying a Cluster's Name

■ Specifying a Cluster Member's Identity

■ Configuring Multicast Communication

■ Specifying a Cluster Member's Unicast Address

■ Using Well Known Addresses

■ Enabling Single-Server Mode

■ Configuring Death Detection

■ Specifying Cluster Priorities

Overview of Setting Up Clusters
Coherence provides a default out-of-box cluster configuration that is used for
demonstration purposes. It allows clusters to be quickly created and often requires
little or no configuration changes. However, beyond demonstration, the default setup
should not be used. Instead, unique clusters should be set up based on the network
environment in which they run and based on the requirements of the applications that
use them. A cluster that runs in single-server mode can be configured for unit testing
and basic development.

At a minimum, setting up a cluster includes defining the cluster's name and the
cluster's multicast address. If multicast is undesirable or unavailable in an
environment, then setting up the Well Known Addresses (WKA) feature is required.
The rest of the tasks presented in this chapter are typically used when setting up a
cluster and are completed when the default settings must be changed.

Clusters are set up within an operational override file
(tangosol-coherence-override.xml). Each cluster member uses an override file to
specify unique values that override the default configuration that is defined in the
operational deployment descriptor. See "Specifying an Operational Configuration File"
on page 3-2 for detailed information on using an operational override file. In addition,
refer to Appendix A, "Operational Configuration Elements," for descriptions and
usage information for all the operational elements that are discussed in this chapter.

Specifying a Cluster's Name

7-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Specifying a Cluster's Name
A cluster name is a user-defined name that uniquely identifies a cluster from other
clusters that run on the network. Cluster members must specify the same cluster name
to join and form a cluster. A cluster member does not start if the wrong name is
specified when attempting to join an existing cluster. A unique cluster name is often
used with a unique multicast port to create distinct clusters on the same network.

To specify a cluster name, edit the operational override file and add a <cluster-name>
element, within the <member-identity> element, that includes the cluster name. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name system-property="tangosol.coherence.cluster">MyCluster
 </cluster-name>
 </member-identity>
 </cluster-config>
</coherence>

The tangosol.coherence.cluster system property is used to specify the cluster name
instead of using the operational override file. For example:

-Dtangosol.coherence.cluster=name

Specifying a Cluster Member's Identity
A set of identifiers are used to give a cluster member an identity within the cluster. The
identity information is used to differentiate cluster members and conveys the
members' role within the cluster. Some identifiers are also used by the cluster service
when performing cluster tasks. Lastly, the identity information is valuable when
displaying management information (for example, JMX) and facilitates interpreting
log entries. The following list describes each of the identifiers:

■ Site Name – the name of the geographic site that hosts the cluster member. The
server's domain name is used if no name is specified. For WAN clustering, this
value identifies the datacenter where the member is located. The site name can be
used as the basis for intelligent routing, load balancing, and disaster recovery
planning (that is, the explicit backing up of data on separate geographic sites). The
site name also helps determine where to back up data when using distributed
caching and the default partition assignment strategy. Lastly, the name is useful
for displaying management information (for example, JMX) and interpreting log
entries.

Note: A cluster member uses a system generated cluster name if a
name is not explicitly specified. Using the system generated name
(and the out-of-box multicast defaults) increases the chance of having
overlapping cluster configurations on the network. This can lead to
cluster members accidentally joining an unexpected cluster.

Specifying a Cluster Member's Identity

Setting Up a Cluster 7-3

■ Rack Name – the name of the location within a geographic site that the member is
hosted at and is often a cage, rack, or bladeframe identifier. The rack name can be
used as the basis for intelligent routing, load balancing, and disaster recovery
planning (that is, the explicit backing up of data on separate bladeframes). The
rack name also helps determine where to back up data when using distributed
caching and the default partition assignment strategy. Lastly, the name is useful
for displaying management information (for example, JMX) and interpreting log
entries.

■ Machine Name – the name of the server that hosts the cluster member. The
server's host name is used if no name is specified. The name is used as the basis for
creating an ID. The cluster service uses the ID to ensure that data are backed up on
different computers to prevent single points of failure.

■ Process Name – the name of the JVM process that hosts the cluster member. The
JVM process number is used if no name is specified. The process name makes it
possible to easily differentiate among multiple JVMs running on the same
computer.

■ Member Name – the cluster member's unique name. The name makes it easy to
differentiate cluster members especially when multiple members run on the same
computer or within the same JVM. Always specify a member name (as a best
practice) even though it is not required to do so.

■ Role Name – the cluster member's role in the cluster. The role name allows an
application to organize cluster members into specialized roles, such as cache
servers and cache clients. Default role names (CoherenceServer for cache servers
and application_class_name for cache clients) are used if no role name is
specified.

To specify member identity information, edit the operational override file and add the
member identity elements within the <member-identity> element as demonstrated
below:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <site-name system-property="tangosol.coherence.site">pa-1</site-name>
 <rack-name system-property="tangosol.coherence.rack">100A</rack-name>
 <machine-name system-property="tangosol.coherence.machine">prod001
 </machine-name>
 <process-name system-property="tangosol.coherence.process">JVM1
 </process-name>
 <member-name system-property="tangosol.coherence.member">C1</member-name>
 <role-name system-property="tangosol.coherence.role">Server</role-name>
 </member-identity>
 </cluster-config>
</coherence>

The following system properties are used to specify a cluster member's identity
information instead of using the operational override file.

-Dtangosol.coherence.site=pa-1 -Dtangosol.coherence.rack=100A
-Dtangosol.coherence.machine=prod001 -Dtangosol.coherence.process=JVM1
-Dtangosol.coherence.member=C1 -Dtangosol.coherence.role=Server

Configuring Multicast Communication

7-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Configuring Multicast Communication
Cluster members use multicast communication to discover other cluster members and
when a message must be communicated to multiple members of the cluster. The
cluster protocol makes very judicious use of multicast and avoids things such as
multicast storms. By default, data is only transmitted over multicast if it is intended
for more than 25% of the cluster members. The vast majority of traffic is transmitted
using unicast even when multicast is enabled. For typical partitioned cache based
clusters, most transmissions is point-to-point and only cluster membership and
partition ownership is broadcast to the entire cluster.

Multicast communication is configured in an operational override file within the
<multicast-listener> node. Many system properties are also available to configure
multicast communication when starting a cluster member.

This section includes the following topics:

■ Specifying a Cluster's Multicast Address

■ Disabling Multicast Communication

■ Specifying the Multicast Time-to-Live

■ Specifying the Multicast Join Timeout

■ Changing the Multicast Threshold

Specifying a Cluster's Multicast Address
A multicast address (IP address and port) can be specified for a cluster member.
Cluster members must use the same multicast address to join and cluster. A cluster
member uses a default multicast address if an address is not explicitly specified. The
default value depends on the release version and follows the convention of
{build}.{major version}.{minor version}.{patch} for the address and {major
version}.{minor version}.{patch} for the port.

Distinct clusters that are on the same network must always use unique multicast
addresses. Technically, distinct clusters can share either the same IP address or the
same port. However, sharing IP addresses or ports can result in increased and
un-needed network traffic. The extra network traffic can affect performance and can
overload network cards. Therefore, the recommended best practice is to use both a
unique IP address and port for each cluster.

To specify a cluster multicast address, edit the operational override file and add both
an <address> and <port> element and specify the address and port to be used by the
cluster member. For example:

<?xml version='1.0'?>

Note: Using the default multicast address (and the system generated
cluster name) increases the chance of having overlapping cluster
configurations on the network. This can lead to cluster members
accidentally joining an unexpected cluster.

Note: On some versions of Linux, distinct clusters on the same
network must use both a unique IP address and port.

Configuring Multicast Communication

Setting Up a Cluster 7-5

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <address system-property="tangosol.coherence.clusteraddress">224.3.6.0
 </address>
 <port system-property="tangosol.coherence.clusterport">3059</port>
 </multicast-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.clusteraddress and tangosol.coherence.clusterport
system properties are used to specify the cluster multicast address instead of using the
operational override file. For example:

-Dtangosol.coherence.clusteraddress=224.3.6.0
-Dtangosol.coherence.clusterport=3059

Changing the Multicast Socket Interface
The multicast socket is bound to the same network interface (NIC) as the unicast
listener IP address. A different NIC for multicast can be configured but, with rare
exception, it is strongly discouraged as it can lead to partial failure of the cluster.

With two NICs, the interface (and thus network) used for multicast traffic is different
from the interface (and thus network) used for unicast (UDP/IP) and TCP-ring
(TCP/IP) traffic. Communication on one interface (or network) continues to succeed
even if the other interface has failed; this scenario prolongs failure detection and
failover. Since the clustering protocol handles member (and thus interface) failure, it is
preferable to have all communication fail so that a failed member is quickly detected
and removed from the cluster.

To change the default multicast network interface, edit the operational override file
and add an <interface> element that specifies the IP address to which the multicast
socket binds. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <interface>192.168.0.1</interface>
 </multicast-listener>
 </cluster-config>
</coherence>

Disabling Multicast Communication
Multicast traffic may be undesirable or may be disallowed in some network
environments. In this case, use the Well Known Addresses feature to prevent
Coherence from using multicast. This disables multicast discovery and also disable
multicast for all data transfers; unicast (point-to-point) is used instead. Coherence is
designed to use point-to-point communication as much as possible, so most

Configuring Multicast Communication

7-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

application profiles do not see a substantial performance impact. See "Using Well
Known Addresses" on page 7-9.

Specifying the Multicast Time-to-Live
The time-to-live value (TTL) setting designates how far multicast UDP/IP packets can
travel on a network. The TTL is expressed in terms of how many hops a packet
survives; each network interface, router, and managed switch is considered one hop.

The TTL value should be set to the lowest integer value that works. Setting the value
too high can use unnecessary bandwidth on other LAN segments and can even cause
the operating system or network devices to disable multicast traffic. Typically, setting
the TTL value to 1 works on a simple switched backbone. A value of 2 or more may be
required on an advanced backbone with intelligent switching. A value of 0 is used for
single server clusters that are used for development and testing. See "Enabling
Single-Server Mode" on page 7-13 for more information on single server clusters.

To specify the TTL, edit the operational override file and add a <time-to-live>
element that includes the TTL value. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <time-to-live system-property="tangosol.coherence.ttl">3</time-to-live>
 </multicast-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.ttl system property is used to specify the TTL value
instead of using the operational override file. For example:

-Dtangosol.coherence.ttl=3

Specifying the Multicast Join Timeout
The multicast join timeout defines how much time a cluster member waits to join a
cluster. If the timeout is reached and an existing cluster is not detected, then the cluster
member starts its own cluster and elects itself as the senior cluster member. A short
timeout can be specified during development and testing. A timeout of 30 seconds is
generally adequate for production environments.

Note: Disabling multicast does put a higher strain on the network.
However, this only becomes an issue for large clusters with greater
than 100 members.

Note: The first member of the cluster waits the full duration of the
join timeout before it assumes the role of the senior member. If the
cluster startup timeout is less than the join timeout, then the first
member of the cluster fails during cluster startup. The cluster member
timeout is specified using the packet publisher timeout
(<timeout-milliseconds>). See "packet-delivery" on page A-50.

Configuring Multicast Communication

Setting Up a Cluster 7-7

To specify the join timeout, edit the operational override file and add a
<join-timeout-milliseconds> element that includes the timeout value. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <multicast-listener>
 <join-timeout-milliseconds>6000</join-timeout-milliseconds>
 </multicast-listener>
 </cluster-config>
</coherence>

Changing the Multicast Threshold
Cluster members use both multicast and unicast communication when sending cluster
packets. The multicast threshold value is used to determine whether to use multicast
for packet delivery or unicast. Setting the threshold higher or lower can force a cluster
to favor one style of communication over the other. The threshold setting is not used if
multicast communication is disabled.

The multicast threshold is a percentage value and is in the range of 1% to 100%. In a
cluster of n members, a cluster member that is sending a packet to a set of destination
nodes (not counting itself) of size d (in the range of 0 to n-1) sends a packet using
multicast only if the following hold true:

■ The packet is being sent over the network to multiple nodes (d > 1).

■ The number of nodes is greater than the specified threshold (d > (n-1) *
(threshold/100)).

For example, in a 25 member cluster with a multicast threshold of 25%, a cluster
member only uses multicast if the packet is destined for 6 or more members (24 *
.25 = 6).

Setting this value to 1 allows the cluster to use multicast for basically all multi-point
traffic. Setting this value to 100 forces the cluster to use unicast for all multi-point
traffic except for explicit broadcast traffic (for example, cluster heartbeat and
discovery) because the 100% threshold is never exceeded. With the setting of 25 (the
default) a cluster member sends the packet using unicast if it is destined for less than
one-fourth of all nodes, and sends the packet using multicast if it is destined for
one-fourth or more of all nodes.

To specify the multicast threshold, edit the operational override file and add a
<multicast-threshold-percent> element that includes the threshold value. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">

Note: The <join-timeout-milliseconds> setting will be used for
both multicast and unicast communication.

Specifying a Cluster Member's Unicast Address

7-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <cluster-config>
 <multicast-listener>
 <multicast-threshold-percent>40</multicast-threshold-percent>
 </multicast-listener>
 </cluster-config>
</coherence>

Specifying a Cluster Member's Unicast Address
Cluster members use unicast for direct member-to-member (point-to-point)
communication, which makes up the majority of communication on the cluster. A
default unicast address (IP address and ports) is used or an explicit address can be
specified as required within the <unicast-listener> element. The multicast socket
binds to the same interface as defined by the unicast address. See "Changing the
Multicast Socket Interface" on page 7-5.

The unicast listener is configured as follows:

■ <address> – A cluster member attempts to obtain the IP to bind to using the
java.net.InetAddress.getLocalHost() call. The use of localhost may not work
on systems that define localhost as the loopback address; in that case, the
computer name or a specific IP address must be specified. An address must also
be explicitly specified when a computer has multiple IPs or NICs.

The <address> element supports Classless Inter-Domain Routing (CIDR) notation,
which uses a subnet and mask pattern for a local IP address to bind to instead of
specifying an exact IP address. CIDR simplifies configuration by allowing a single
address configuration to be shared across computers on the same subnet. Each
cluster member specifies the same CIDR address block and a local NIC on each
computer is automatically found that matches the address pattern. For example, to
specify a unicast address for multiple multi-NIC computers that are located on the
same network and that will run a cluster on their 192.168.1.* address, specify an
address such as 192.168.1.0/24 and each node finds a local NIC that matches the
pattern. The /24 prefix size matches up to 256 available addresses: from
192.168.1.0 to 192.168.1.255.

■ <port> – A cluster member uses two unicast UDP ports. The default behavior is to
attempt to use port 8088 for the first port (port1). If port 8088 is not available,
automatic port adjustment is used to select the next available port. The second
port (port2) is automatically opened and defaults to the next available port after
port1 (port1 + 1 if available). Automatic port adjustment can be disabled. In this
case, port1 must be available and the second port is always port1 + 1.

Two UDP ports are used because:

– It reduces contention between inbound and outbound traffic and avoids doing
both heavy transmits and receives on the same port

– It allows for coherence members to communicate at the optimal packet size
based on the Maximum Transmission Unit (MTU) of the operating system.
One UDP port is used for large packets, and the other port is for packets with
sizes at or under the network MTU. The separation allows for separate packet
buffers based on size.

– It allows for large clusters (> 500 members) to be run without artificially
increasing the size of the socket buffers

To specify a cluster member's unicast address, edit the operational override file and
add both an <address> and <port> element (and optionally a <port-auto-adjust>

Using Well Known Addresses

Setting Up a Cluster 7-9

element) and specify the address and port to be used by the cluster member. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <address system-property="tangosol.coherence.localhost">192.168.0.1
 </address>
 <port system-property="tangosol.coherence.localport">8090</port>
 <port-auto-adjust system-property="tangosol.coherence.localport.adjust">
 true
 </port-auto-adjust>
 </unicast-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.localhost, tangosol.coherence.localport, and
tangosol.coherence.localport.adjust system properties are used to specify the
unicast address instead of using the operational override file. For example:

-Dtangosol.coherence.localhost=192.168.0.1 -Dtangosol.coherence.localport=8090
-Dtangosol.coherence.localport.adjust=true

Using Well Known Addresses
The Well Known Addresses (WKA) feature is a mechanism that allows cluster
members to discover and join a cluster using unicast instead of multicast. WKA is
most often used when multicast networking is undesirable or unavailable in an
environment or when an environment is not properly configured to support multicast.
All cluster multicast communication is disabled if WKA is enabled.

WKA is enabled by specifying a small subset of cluster members (referred to as WKA
members) that are able to start a cluster. The optimal number of WKA members varies
based on the cluster size. Generally, WKA members should be about 10% of the
cluster. One or two WKA members for each switch is recommended.

WKA members are expected to remain available over the lifetime of the cluster but are
not required to be simultaneously active at any point in time. Only one WKA member
must be operational for cluster members to discover and join the cluster. In addition,
after a cluster member has joined the cluster, it receives the addresses of all cluster
members and then broadcasts are performed by individually sending messages to
each cluster member. This allows a cluster to operate even if all WKA members are
stopped. However, new cluster members are not able to join the cluster unless they
themselves are a WKA member or until a WKA member is started. In this case, the
senior-most member of the cluster polls the WKA member list and allows the WKA
member to rejoin the existing cluster.

There are two ways to specify WKA members. The first method explicitly defines a list
of addresses. The second method uses an address provider implementation to get a list
of WKA addresses. Both methods are configured in an operational override file within
the <well-known-addresses> subelement of the <unicast-listener> element.

This section includes the following topics:

Using Well Known Addresses

7-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Specifying WKA Member Addresses

■ Specifying a WKA Address Provider

Specifying WKA Member Addresses
WKA members are explicitly specified within the <socket-address> element. Any
number of <socket-address> elements can be specified and each must define both the
address and port of a WKA member by using the <address> and <port> elements. If a
cluster member specifies its own address, then the cluster member is a WKA member
when it is started. The list of WKA members must be the same on every cluster
member to ensure that different cluster members do not operate independently from
the rest of the cluster. The following example specifies two WKA members:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <socket-address id="1">
 <address>192.168.0.100</address>
 <port>8088</port>
 </socket-address>
 <socket-address id="2">
 <address>192.168.0.101</address>
 <port>8088</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

Using WKA System Properties
A single WKA member can be specified using the tangosol.coherence.wka and
tangosol.coherence.wka.port system properties instead of specifying the address in
an operational override file. The system properties are intended for demonstration and
testing scenarios to quickly specify a single WKA member. For example:

-Dtangosol.coherence.wka=192.168.0.100 -Dtangosol.coherence.wka.port=8088

To create additional system properties to specify multiple WKA member addresses, an
operational override file must be used to define multiple WKA member addresses and
a system-property attribute must be defined for each WKA member address element.
The attributes must include the system property names to be used to override the
elements. The below example defines two addresses including system properties:

Note: When setting up a WKA member, the port value must match
the port value that is specified for the member's unicast listener port.
See "Specifying a Cluster Member's Unicast Address" on page 7-8 for
more information on setting the unicast port.

Using Well Known Addresses

Setting Up a Cluster 7-11

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <socket-address id="1">
 <address system-property="tangosol.coherence.wka"></address>
 <port system-property="tangosol.coherence.wka.port"></port>
 </socket-address>
 <socket-address id="2">
 <address system-property="tangosol.coherence.wka2"></address>
 <port system-property="tangosol.coherence.wka2.port"></port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

For the above example, the WKA member addresses are specified using the system
properties as follows:

-Dtangosol.coherence.wka=192.168.0.102 -Dtangosol.coherence.wka.port=8090
-Dtangosol.coherence.wka2=192.168.0.103 -Dtangosol.coherence.wka2.port=8094

See "Creating Custom System Properties" on page 3-21 for more information on
defining system properties.

Specifying a WKA Address Provider
A WKA address provider offers a programmatic way to define WKA members. A
WKA address provider must implement the com.tangosol.net.AddressProvider
interface. Implementations may be as simple as a static list or as complex as using
dynamic discovery protocols. The address provider must return a terminating null
address to indicate that all available addresses have been returned. The address
provider implementation is called when the cluster member starts.

Note: Defining additional system properties to specify a list of WKA
members can be used during testing or in controlled production
environments. However, the best practice is to exclusively use an
operational override file to specify WKA members in production
environments. This ensure the same list of WKA members exists on
each cluster member.

Note: implementations must exercise extreme caution since any
delay with returned or unhandled exceptions causes a discovery delay
and may cause a complete shutdown of the cluster service on the
member. Implementations that involve more expensive operations (for
example, network fetch) may choose to do so asynchronously by
extending the com.tangosol.net.RefreshableAddressProvider
class.

Using Well Known Addresses

7-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

To use a WKA address provider implementation, add an <address-provider> element
and specify the fully qualified name of the implementation class within the
<class-name> element. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <address-provider>
 <class-name>package.MyAddressProvider</class-name>
 </address-provider>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

As an alternative, the <address-provider> element supports the use of a
<class-factory-name> element that is used to specify a factory class for creating
AddressProvider instances, and a <method-name> element to specify the static factory
method on the factory class that performs object instantiation. The following example
gets an address provider instance using the getAddressProvider method on the
MyAddressProviderFactory class.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <address-provider>
 <class-factory-name>package.MyAddressProviderFactory
 </class-factory-name>
 <method-name>getAddressProvider</method-name>
 </address-provider>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

Any initialization parameters that are required for a class or class factory
implementation can be specified using the <init-params> element. Initialization
parameters are accessible by implementations that include a public constructor with a
matching signature. The following example sets the iMaxTime parameter to 2000.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>

Enabling Single-Server Mode

Setting Up a Cluster 7-13

 <well-known-addresses>
 <address-provider>
 <class-name>package.MyAddressProvider</class-name>
 <init-params>
 <init-param>
 <param-name>iMaxTime</param-name>
 <param-value>2000</param-value>
 </init-param>
 </init-params>
 </address-provider>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

Enabling Single-Server Mode
Single-Server mode is a cluster that is constrained to run on a single computer and
does not access the network. Single-Server mode offers a quick way to start and stop a
cluster for development and unit testing.

To enable single-server mode, edit the operational override file and add a
<time-to-live> element that is set to 0 and a unicast <address> element that is set to
an address that is routed to loopback. On most computers, setting the address to
127.0.0.1 works. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <address system-property="tangosol.coherence.localhost">127.0.0.1
 </address>
 </unicast-listener>
 <multicast-listener>
 <time-to-live system-property="tangosol.coherence.ttl">0</time-to-live>
 </multicast-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.ttl and tangosol.coherence.localhost system properties
are used to enable single-server mode instead of using the operational override file.
For example:

-Dtangosol.coherence.ttl=0 -Dtangosol.coherence.localhost=127.0.0.1

On some UNIX operating systems, including some versions of Linux and Mac OS X,
setting the TTL to zero may not be enough to isolate a cluster to a single computer. In
such cases, a unique cluster name must also be configured. A cluster member cannot
join an existing cluster if it uses a different cluster name. See "Specifying a Cluster's
Name" on page 7-2 for details on configuring a cluster name.

Lastly, on some versions of Mac OS X and Linux, a loopback route for localhost is not
configured and results in the cluster failing to start. For such scenarios, use the WKA
feature to ensure the discovery of cluster members. For example:

Configuring Death Detection

7-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

-Dtangosol.coherence.localhost=127.0.0.1 -Dtangosol.coherence.ttl=0
-Dtangosol.coherence.wka=127.0.0.1

See "Using Well Known Addresses" on page 7-9 for details on configuring WKA.

Configuring Death Detection
Death detection is a cluster mechanism that quickly detects when a cluster member
has failed. Failed cluster members are removed from the cluster and all other cluster
members are notified about the departed member. Death detection allows the cluster
to differentiate between actual member failure and an unresponsive member, such as
the case when a JVM conducts a full garbage collection.

Death detection identifies both process failures (TcpRing component) and hardware
failure (IpMonitor component). Process failure is detected using a ring of TCP
connections opened on the same port that is used for cluster UDP communication.
Each cluster member issues a unicast heartbeat, and the most senior cluster member
issues the cluster heartbeat, which is a broadcast message. Hardware failure is
detected using the Java InetAddress.isReachable method which either issues a trace
ICMP ping, or a pseudo ping and uses TCP port 7. Death detection is enabled by
default and is configured within the <tcp-ring-listener> element.

This section includes the following topics:

■ Changing TCP-Ring Settings

■ Changing the Heartbeat Interval

■ Disabling Death Detection

Changing TCP-Ring Settings
Several settings are used to change the default behavior of the TCP-ring listener. This
includes changing the amount of attempts and time before determining that a
computer that is hosting cluster members has become unreachable. These default to 3
and 15 seconds, respectively. The TCP/IP server socket backlog queue can also be set
and defaults to the value used by the operating system.

To change the TCP-ring settings, edit the operational override file and add the
following TCP-Ring elements:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <tcp-ring-listener>
 <ip-timeout system-property="tangosol.coherence.ipmonitor.pingtimeout">
 25s</ip-timeout>
 <ip-attempts>5</ip-attempts>
 <listen-backlog>10</listen-backlog>
 </tcp-ring-listener>

Note: The values of the <ip-timeout> and <ip-attempts> elements
should be high enough to insulate against allowable temporary
network outages.

Configuring Death Detection

Setting Up a Cluster 7-15

 </cluster-config>
</coherence>

The tangosol.coherence.ipmonitor.pingtimeout system property is used to specify
a timeout instead of using the operational override file. For example:

-Dtangosol.coherence.ipmonitor.pingtimeout=20s

Changing the Heartbeat Interval
The death detection heartbeat interval can be changed. A higher interval may alleviate
minimal network traffic but may also prolongs detection of failed members. The
default heartbeat value is 1 second.

To change the death detection heartbeat interval, edit the operational override file and
add a <heartbeat-milliseconds> element that includes the heartbeat value. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-delivery>
 <heartbeat-milliseconds>5000</heartbeat-milliseconds>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Disabling Death Detection
Death detection is enabled by default and must be explicitly disabled. Disabling death
detection alleviates only minimal network traffic and prolongs the detection of failed
members. If disabled, a cluster member uses the packet publisher's resend timeout
interval to determine that another member has stopped responding to UDP packets.
By default, the timeout interval is set to 5 minutes. See "Changing the Packet Resend
Timeout" on page 10-6 for more details.

To disable death detection, edit the operational override file and add an <enabled>
element that is set to false. For example:

Note: The heartbeat setting technically controls how often to
evaluate whether or not a heartbeat needs to be emitted. The actual
heartbeat interval may or may not be emitted within the specified
interval depending on the evaluation process.

Note: Using the packet publisher's resend timeout to detect a failed
cluster member is error prone and can produce false positives due to
high garbage collection intervals.

Specifying Cluster Priorities

7-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <tcp-ring-listener>
 <enabled>false</enabled>
 </tcp-ring-listener>
 </cluster-config>
</coherence>

Specifying Cluster Priorities
The cluster priority mechanism allows a priority value to be assigned to a cluster
member and to different threads running within a member.

This section includes the following topics:

■ Specifying a Cluster Member's Priority

■ Specifying Communication Thread Priorities

■ Specifying Thread Priorities for Services

Specifying a Cluster Member's Priority
A cluster member's priority is used as the basis for determining tie-breakers between
members. If a condition occurs in which one of two members is ejected from the
cluster, and in the rare case that it is not possible to objectively determine which of the
two is at fault and should be ejected, then the member with the lower priority is
ejected.

To specify a cluster member's priority, edit the operational override file and add a
<priority> element, within the <member-identity> node, that includes a priority
value between 1 and 10 where 10 is the highest priority. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <priority system-property="tangosol.coherence.priority">1</priority>
 </member-identity>
 </cluster-config>
</coherence>

The tangosol.coherence.priority system property can also be used to specify a
cluster member's priority instead of using the operational override file. For example:

-Dtangosol.coherence.priority=1

Specifying Communication Thread Priorities
Multiple cluster components support thread priority. The priority is used as the basis
for determining Java thread execution importance. The components include: the

Specifying Cluster Priorities

Setting Up a Cluster 7-17

multicast listener, the unicast listener, the TCP ring listener, the packet speaker, the
packet publisher, and the incoming message handler. The default priority setup gives
the packet publisher the highest priority followed by the incoming message handler
followed by the remaining components.

Thread priority is specified within each component's configuration element
(<unicast-listener>, <multicast-listener>, <packet-speaker>,
<packet-publisher>, <tcp-ring-listener>, and <incoming-message-handler>
elements, respectively). For example, to specify a thread priority for the unicast
listener, edit the operational override file and add a <priority> element, within the
<unicast-listener> node, that includes a priority value between 1 and 10 where 10 is
the highest priority:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <priority>5</priority>
 </unicast-listener>
 </cluster-config>
</coherence>

Specifying Thread Priorities for Services
Cluster services support thread priority. The priority is used as the basis for
determining Java thread execution importance and indicates which threads of a
service are considered critical. There are three types of threads that can have a priority:
service threads, event dispatcher threads, and worker threads. The default setup gives
service and event dispatcher threads precedence followed by worker threads.

Thread priorities for services can be changed for all services in a cluster by overriding
the <service> element in an operational override file. However, a better practice is to
configure thread priorities for a service instance within in a cache configuration file
when defining a cache scheme. See "Defining Cache Schemes" on page 13-3 for more
information on how to define caches. Use the <service-priority>,
<event-dispatcher-priority>, and <worker-priority> subelements, respectively
and enter a value between 1 and 10 where 10 is the highest priority. For example:

...
<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MyDistributedService</service-name>
 <service-priority>10</service-priority>
 <event-dispatcher-priority>10</event-dispatcher-priority>
 <worker-priority>5</worker-priority>
 ...
</distributed-scheme>
...

Specifying Cluster Priorities

7-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

8

Starting and Stopping Cluster Members 8-1

8Starting and Stopping Cluster Members

[8] This chapter provides basic instructions for starting and stopping cache servers and
cache clients. If you are having difficulties establishing a cluster when using multicast,
see Administering Oracle Coherence for instructions on performing a multicast
connectivity test.

This chapter includes the following sections:

■ Starting Cache Servers

■ Starting Cache Clients

■ Stopping Cluster Members

■ Performing a Rolling Restart

Starting Cache Servers
Cache servers are cluster members that are responsible for storing cached data. A
cluster may be comprised of many cache servers. Each cache server runs in its own
JVM.

This section includes the following topics:

■ Overview of the DefaultCacheServer Class

■ Starting Cache Servers From the Command Line

■ Starting Cache Servers Programmatically

Overview of the DefaultCacheServer Class
The com.tangosol.net.DefaultCacheServer class is used to start a cache server. A
cache server can be started from the command line or can be started programmatically.
The following arguments are used when starting a cache server:

■ the name of a cache configuration file that is found on the classpath or the path to
a Grid ARchive (GAR). If both are provided, the GAR takes precedence. A GAR
includes the artifacts that comprise a Coherence application and adheres to a
specific directory structure. A GAR can be left as a directory or can be archived
with a .gar extension. For details about creating a GAR, see Administering Oracle
Coherence.

■ An optional application name for the GAR. If no name is provided, the archive
name is used (the directory name or the file name without the .gar extension). The
name provides an application scope that is used to separate applications on a
cluster.

Starting Cache Servers

8-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ the number of seconds between checks for stopped services. Stopped services are
only automatically started if they are set to be automatically started (as configured
by an <autostart> element in the cache configuration file). The default value if no
argument is provided is 5 seconds.

Starting Cache Servers From the Command Line
Cache servers are typically started from the command line. Use the Java -cp option to
indicate the location of the coherence.jar file and the location where the
tangosol-coherence-override.xml and coherence-cache-config.xml files are
located. The location of the configuration files must precede the coherence.jar file on
the classpath; otherwise, the default configuration files that are located in the
coherence.jar file are used to start the cache server instance. See Chapter 3,
"Understanding Configuration," for detailed information on configuration files.

The following example starts a cache server member, uses any configuration files that
are placed in the COHERENCE_HOME\config directory, and checks for service restarts
every 2 seconds.

java -server -Xms512m -Xmx512m -cp COHERENCE_HOME\config;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer 2

The following example starts a cache server member and uses the Coherence
application artifacts that are packaged in the MyGar.gar file. The default name (MyGAR)
is used as the application name.

java -server -Xms512m -Xmx512m -cp COHERENCE_HOME\config;COHERENCE_
HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer D:\example\MyGAR.gar

The COHERENCE_HOME\bin\cache-server script is provided as a convenience and can
start a cache server instance. The script sets up a basic environment and then runs the
DefaultCacheServer class. There is a script for both the Windows and UNIX-based
platforms. The scripts are typically modified as required for a particular cluster.

Starting Cache Servers Programmatically
An application can use or extend the DefaultCacheServer class as required when
starting a cache server. For example, an application may want to do some
application-specific setup or processing before starting a cache server and its services.

The following example starts a cache server using the main method:

String[] args = new String[]{"my-cache-config.xml", "5"};
DefaultCacheServer.main(args);

The DefaultCacheServer(ConfigurableCacheFactory) constructor uses a factory
class to create a cache server instance that uses a specified cache configuration file. The
following example uses the ExtensibleConfigurableCacheFactory implementation

Note: The cache configuration file that is packaged in a GAR file
takes precedence over a cache configuration file that is located on the
classpath.

Tip: During testing, it is sometimes useful to create multiple scripts
with different names that uniquely identify each cache server. For
example: cahe-server-a, cache-server-b, and so on.

Starting Cache Clients

Starting and Stopping Cluster Members 8-3

and creates a DefaultCacheServer instance and also uses the startAndMonitor(long)
method to start a cache server as in the previous example:

ExtensibleConfigurableCacheFactory factory;
factory = new ExtensibleConfigurableCacheFactory("my-cache-config.xml");

DefaultCacheServer dcs = new DefaultCacheServer(factory);
dcs.startAndMonitor(5000);

The static method startDaemon() method starts a cache server on a dedicated daemon
thread and is intended for use within managed containers.

Two additional static start methods (start() and start(ConfigurableCacheFactory))
are also available to start a cache server and return control. However, the cache factory
class is typically used instead of these methods, which remain for backward
compatibility.

Applications that require even more fine-grained control can subclass the
DefaultCacheServer class and override its methods to perform any custom processing
as required. See Java API Reference for Oracle Coherence for detailed information on the
DefaultCacheServer class.

Starting Cache Clients
Cache clients are cluster members that join the cluster to interact with the cluster's
services. Cache clients can be as simple as an application that gets and puts data in a
cache or can be as complex as a data grid compute application that processes data that
is in a cache. The main difference between a cache client and a cache server is that
cache clients are generally not responsible for cluster storage.

This section includes the following topics:

■ Disabling Local Storage

■ Using the CacheFactory Class to Start a Cache Client

Disabling Local Storage
Cache clients that use the partition cache service (distributed caches) should not
maintain any partitioned data. Cache clients that have storage disabled perform better
and use less resources. Partitioned data should only be distributed among cache server
instances.

Local storage is disabled on a per-process basis using the
tangosol.coherence.distributed.localstorage system property. This allows cache
clients and servers to use the same configuration descriptors. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false com.MyApp

Using the CacheFactory Class to Start a Cache Client
Applications that use the com.tangosol.net.CacheFactory class to get an instance of a
cache become cluster members and are considered cache clients. The following
example demonstrates the most common way of starting a cache client:

CacheFactory.ensureCluster();
NamedCache cache = CacheFactory.getCache("cache_name");

Stopping Cluster Members

8-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

When starting an application that is a cache client, use the Java -cp option to indicate
the location of the coherence.jar file and the location where the
tangosol-coherence-override.xml and coherence-cache-config.xml files are
located. The location of the configuration files must precede the coherence.jar file on
the classpath; otherwise, the default configuration files that are located in the
coherence.jar file are used to start the cache server instance. See Chapter 3,
"Understanding Configuration," for detailed information on configuration files.

The following example starts an application that is a cache client, uses any
configuration files that are placed in the COHERENCE_HOME\config directory, and
disables storage on the member.

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false com.MyApp

The COHERENCE_HOME\bin\coherence script is provided for testing purposes and can
start a cache client instance. The script sets up a basic environment, sets storage to be
disabled, and then runs the CacheFactory class, which returns a prompt. The prompt
is used to enter commands for interacting with a cache and a cluster. There is a script
for both the Windows and UNIX-based platforms. The scripts are typically modified as
required for a particular cluster. The class can also be started directly from the
command line instead of using the script. For example:

java -cp COHERENCE_HOME\config;COHERENCE_HOME\lib\coherence.jar
-Dtangosol.coherence.distributed.localstorage=false com.tangosol.net.CacheFactory

If a Coherence application is packaged as a GAR, the GAR can be loaded by the
CacheFactory instance using the server command at the prompt after the client
member starts.

server [<path-to-gar>] [<app-name>]

The following example loads the Coherence application artifacts that are packaged in
the MyGar.gar file. The default name (MyGAR) is used as the application name.

Map (?) server D:\example\MyGAR.gar

Stopping Cluster Members
This section includes the following topics:

■ Stopping Cluster Members From the Command Line

■ Stopping Cache Servers Programmatically

Stopping Cluster Members From the Command Line
Cluster members are most often shutdown using the kill command when on the
UNIX platform and Ctrl+c when on the Windows platform. These commands initiate
the standard JVM shutdown hook which is invoked upon normal JVM termination.

Note: Issuing the kill -9 command triggers an abnormal JVM
termination and the shutdown hook does not run. However, a
graceful shutdown is generally not required if a service is known to be
node-safe (as seen using JMX management) before termination.

Performing a Rolling Restart

Starting and Stopping Cluster Members 8-5

The action a cluster member takes when receiving a shutdown command is configured
in the operational override file within the <shutdown-listener> element. The
following options are available:

■ none — perform no explicit shutdown actions. This is the suggested value for
production unless testing has verified that the behavior on external shutdown is
exactly what is desired.

■ force — (default) perform a hard-stop on the node by calling Cluster.stop().
This is the default out-of-box action.

■ graceful — perform a normal shutdown by calling Cluster.shutdown()

■ true — same as force

■ false — same as none

The following example sets the shutdown hook to none.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <shutdown-listener>
 <enabled system-property="tangosol.coherence.shutdownhook">none</enabled>
 </shutdown-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.shutdownhook system property is used to specify the
shutdown hook behavior instead of using the operational override file. For example:

-Dtangosol.coherence.shutdownhook=none

Stopping Cache Servers Programmatically
The DefaultCacheServer class provides two methods that are used to shutdown a
cache server:

■ shutdown() – This is a static method that is used to shut down a cache server that
was started on a different thread using the DefaultCacheServer.main() or
DefaultCacheServer.start() methods.

■ shutdownServer() – This method is called on a DefaultCacheServer instance
which an application keeps hold of.

Performing a Rolling Restart
A rolling restart is a technique for restarting cache servers in a cluster that ensures no
data is lost during the restart. A rolling restart allows the data on a cache server to be
redistributed to other cache servers on the cluster while the cache server is restarted.

Note: Shutdown is supposed to be called in a standalone application
where it shuts down the instance which the DefaultCacheServer class
itself maintains as a static member.

Performing a Rolling Restart

8-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Each cache server in the cluster can be restarted in turn to effectively restart the whole
cluster.

Rolling restarts are commonly performed when a cache server or its host computer
must be updated or when upgrading a cache server to a new point release. However,
the technique can be used whenever you want to restart a cache server that is currently
managing a portion of cached data.

Prerequisites to Performing a Rolling Restart
A rolling restart requires initial consideration and setup prior to starting a cluster. A
rolling restart cannot be performed on a cluster that does not meet the following
prerequisites:

■ The cache servers in a cluster must provide enough capacity to handle the
shutdown of a single cache server (n minus 1 where n is the number of cache
servers in the cluster). An out-of-memory exception can occur during a
redistribution of data if cache servers are running at capacity. For details on
capacity planning see, Administering Oracle Coherence.

■ Remote JMX management must be enabled on all cache servers and at least two
cache servers must contain an operational MBean server. Ensure that you can
connect to the MBean servers using an MBean browser such as JConsole. For
details on configuring JMX management and connecting to an MBean server
instance, see Managing Oracle Coherence.

Restarting Cache Servers for a Rolling Restart
Use these instructions to restart a cache server. If you are restarting the host computer,
then make sure all cache server processes are shutdown before shutting down the
computer.

To restart a cache server:

1. Connect to a Coherence MBean server using an MBean browser. Ensure that the
MBean server is not hosted on the cache server that is being restarted.

2. From the Coherence Service MBean, select a cluster service that corresponds to a
cache that is configured in the cache configuration file.

3. Check the StatusHA attribute for any cluster member to ensure that the attribute's
value is MACHINE-SAFE. The MACHINE-SAFE state indicates that all the cache servers
running on any given computer could be stopped without data loss. If the
attribute is not MACHINE-SAFE, then additional cache servers, possibly on different
computers, must be started before performing a restart. For details on the
StatusHA attribute, see Managing Oracle Coherence.

4. Shutdown the cache server.

5. From the MBean browser, recheck the StatusHA attribute and wait for the state to
return to MACHINE-SAFE.

6. Restart the cache server.

Note: When upgrading a cluster, a rolling restart can only be used to
upgrade patch set or patch set updates, but not major or minor
releases. For details about Oracle Fusion Middleware release numbers,
see Administering Oracle Fusion Middleware.

Performing a Rolling Restart

Starting and Stopping Cluster Members 8-7

7. From the MBean browser, recheck the StatusHA attribute and wait for the state to
return to MACHINE-SAFE.

8. Repeat steps 4 to 7 for additional cache servers that are to be restarted.

Performing a Rolling Restart

8-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

9

Dynamically Managing Cluster Membership 9-1

9Dynamically Managing Cluster Membership

[9] This chapter provides instructions for programmatically managing members and
services in a cluster and listening to member and service events.

This chapter includes the following sections:

■ Overview of Managing Cluster Membership

■ Using the Cluster and Service Objects

■ Using the Member Object

■ Listening to Member Events

Overview of Managing Cluster Membership
Coherence manages cluster membership by automatically adding new servers to the
cluster when they start and automatically detecting their departure when they are shut
down or fail. Applications have full access to this information and can sign up to
receive event notifications when members join and leave the cluster. Coherence also
tracks all the services that each member is providing and consuming. This information
is used to, among other things, plan for service resiliency in case of server failure and
to load-balance data management across all members of the cluster.

Using the Cluster and Service Objects
From any cache, the application can obtain a reference to the local representation of a
cache's service. From any service, the application can obtain a reference to the local
representation of the cluster.

CacheService service = cache.getCacheService();
Cluster cluster = service.getCluster();

From the Cluster object, the application can determine the set of services that run in
the cluster. This is illustrated in Example 9–1.

Example 9–1 Determining Services Running in the Cluster

...
for (Enumeration enum = cluster.getServiceNames(); enum.hasMoreElements();)
 {
 String sName = (String) enum.nextElement();
 ServiceInfo info = cluster.getServiceInfo(sName);
 // ...
 }
...

Using the Member Object

9-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The ServiceInfo object provides information about the service, including its name,
type, version and membership.

For more information on this feature, see the API documentation for NamedCache,
CacheService, Service, ServiceInfo and Cluster.

Using the Member Object
The primary information that an application can determine about each member in the
cluster is:

■ The Member's IP address

■ What date/time the Member joined the cluster

As an example, if there are four servers in the cluster with each server running one
copy ("instance") of the application and all four instances of the application are
clustered, then the cluster is composed of four Members. From the Cluster object, the
application can determine what the local Member is:

Member memberThis = cluster.getLocalMember();

From the Cluster object, the application can also determine the entire set of cluster
members:

Set setMembers = cluster.getMemberSet();

From the ServiceInfo object, the application can determine the set of cluster members
that are participating in that service:

ServiceInfo info = cluster.getServiceInfo(sName);
Set setMembers = info.getMemberSet();

For more information on this feature, see the API documentation for Member.

Listening to Member Events
Applications must create a class that implements the MemberListener interface (see
Example 9–2) to listen for cluster and service membership changes. The listener class is
then added on a service by either using the service's addMemberListener method or by
adding a <member-listener> element to a cache scheme definition.

There are two advantages to using the configuration approach versus the
programmatic approach. First, programmatically, listeners can only be added to a
service that is running. As such, the first MEMBER_JOINED event is missed. Secondly, the
addMemberListener call must be issued on each and every cluster node that runs the
corresponding service. The configuration approach solves both of these issues.

The following example adds a listener implementation named MyMemberListener to a
service using the addMemberListener method:

Service service = cache.getCacheService();
service.addMemberListener(package.MyMemberListener);

The service can also be looked up by its name:

Service service = cluster.getService(sName);
service.addMemberListener(package.MyMemberListener);

Listening to Member Events

Dynamically Managing Cluster Membership 9-3

The following example adds a listener implementation named MyMemberListener to a
service named DistributedCache by adding the <member-listener> element to a
distributed cache scheme definition:

<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <member-listener>
 <class-name>package.MyMemberListener</class-name>
 </member-listener>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>example-binary-backing-map</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

The <member-listener> element can be used within the <distributed-scheme>,
<replicated-scheme>, <optimistic-scheme>, <invocation-scheme>, and
<proxy-scheme> elements. See Appendix B, "Cache Configuration Elements" for a
reference of valid cache configuration elements.

Example 9–2 demonstrates a MemberListener implementation that prints out all the
membership events that it receives:

Example 9–2 A Sample MemberListener Implementation

public class MemberEventPrinter
 extends Base
 implements MemberListener
 {
 public void memberJoined(MemberEvent evt)
 {
 out(evt);
 }

 public void memberLeaving(MemberEvent evt)
 {
 out(evt);
 }

 public void memberLeft(MemberEvent evt)
 {
 out(evt);
 }
 }

The MemberEvent object carries information about the event type (either MEMBER_
JOINED, MEMBER_LEAVING, or MEMBER_LEFT), the member that generated the event, and
the service that acts as the source of the event. Additionally, the event provides a
method, isLocal(), that indicates to the application that it is this member that is
joining or leaving the cluster. This is useful for recognizing soft restarts in which an
application automatically rejoins a cluster after a failure occurs.

Note: A MemberListener implementation must have a public default
constructor when using the <member-listener> element to add a
listener to a service.

Listening to Member Events

9-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 9–3 illustrates how information encapsulated in a MemberEvent object can be
used.

Example 9–3 Using Event Type Information in a MemberEvent Object

public class RejoinEventPrinter
 extends Base
 implements MemberListener
 {
 public void memberJoined(MemberEvent evt)
 {
 if (evt.isLocal())
 {
 out("this member just rejoined the cluster: " + evt);
 }
 }

 public void memberLeaving(MemberEvent evt)
 {
 }

 public void memberLeft(MemberEvent evt)
 {
 }
 }

For more information on these feature, see the API documentation for Service,
MemberListener and MemberEvent.

Note: Calling the CacheFactory.shutdown() method unregisters all
listeners. In this case, both the MEMBER_LEAVING and MEMBER_LEFT
events are sent. If a member terminates for any other reason, only the
MEMBER_LEFT event is sent.

10

Tuning TCMP Behavior 10-1

10Tuning TCMP Behavior

[10] This chapter provides instructions for changing default TCMP settings. A brief
overview of TCMP is also provided. See "Understanding TCMP" on page 6-1 for
additional details on TCMP. Also, see Administering Oracle Coherence which includes
many tuning recommendations and instructions.

This chapter includes the following sections:

■ Overview of TCMP Data Transmission

■ Throttling Data Transmission

■ Bundling Packets to Reduce Load

■ Changing Packet Retransmission Behavior

■ Configuring the Size of the Packet Buffers

■ Adjusting the Maximum Size of a Packet

■ Changing the Packet Speaker Volume Threshold

■ Configuring the Incoming Message Handler

■ Using Network Filters

■ Changing the TCMP Socket Provider Implementation

Overview of TCMP Data Transmission
Cluster members communicate using Tangosol Cluster Management Protocol (TCMP).
TCMP is an IP-based protocol that is used to discover cluster members, manage the
cluster, provision services, and transmit data. TCMP is an asynchronous protocol;
communication is never blocking even when many threads on a server are
communicating at the same time. Asynchronous communication also means that the
latency of the network (for example, on a routed network between two different sites)
does not affect cluster throughput, although it affects the speed of certain operations.

The TCMP protocol is very tunable to take advantage of specific network topologies,
or to add tolerance for low-bandwidth and high-latency segments in a geographically
distributed cluster. Coherence comes with a pre-set configuration. Some TCMP
attributes are dynamically self-configuring at run time, but can also be overridden and
locked down for deployment purposes. TCMP behavior should always be changed
based on performance testing. Coherence includes a datagram test that is used to
evaluate TCMP data transmission performance over the network. See Administering
Oracle Coherence for instructions on using the datagram test utility to test network
performance.

Throttling Data Transmission

10-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

TCMP data transmission behavior is configured within the
tangosol-coherence-override.xml file using the <packet-publisher>,
<packet-speaker>, <incoming-message-handler>, and <outgoing-message-handler>
elements. See Appendix A, "Operational Configuration Elements," for a reference of all
TCMP-related elements that are discussed in this chapter.

Throttling Data Transmission
The speed at which data is transmitted is controlled using the <flow-control> and
<traffic-jam> elements. These elements can help achieve the greatest throughput
with the least amount of packet failure. The throttling settings discussed in this section
are typically changed when dealing with slow networks, or small packet buffers.

This section includes the following topics:

■ Adjusting Packet Flow Control Behavior

■ Disabling Packet Flow Control

■ Adjusting Packet Traffic Jam Behavior

Adjusting Packet Flow Control Behavior
Flow control is used to dynamically throttle the rate of packet transmission to a given
cluster member based on point-to-point transmission statistics which measure the
cluster member's responsiveness. Flow control stops a cluster member from being
flooded with packets while it is incapable of responding.

Flow control is configured within the <flow-control> element. There are two settings
that are used to adjust flow control behavior:

■ <pause-detection> – This setting controls the maximum number of packets that
are resent to an unresponsive cluster member before determining that the member
is paused. When a cluster member is marked as paused, packets addressed to it
are sent at a lower rate until the member resumes responding. Pauses are typically
due to long garbage collection intervals. The value is specified using the
<maximum-packets> element and defaults to 16 packets. A value of 0 disables
pause detection.

■ <outstanding-packets> – This setting is used to define the number of
unconfirmed packets that are sent to a cluster member before packets addressed to
that member are deferred. The value may be specified as either an explicit number
by using the <maximum-packets> element, or as a range by using both a
<maximum-packets> and <minimum-packets> elements. When a range is specified,
this setting is dynamically adjusted based on network statistics. The maximum
value should always be greater than 256 packets and defaults to 4096 packets. The
minimum range should always be greater than 16 packets an defaults to 64
packets.

To adjust flow control behavior, edit the operational override file and add the
<pause-detection> and <outstanding-packets> elements as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>

Throttling Data Transmission

Tuning TCMP Behavior 10-3

 <packet-delivery>
 <flow-control>
 <pause-detection>
 <maximum-packets>32</maximum-packets>
 </pause-detection>
 <outstanding-packets>
 <maximum-packets>2048</maximum-packets>
 <minimum-packets>128</minimum-packets>
 </outstanding-packets>
 </flow-control>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Disabling Packet Flow Control
To disable flow control, edit the operational override file and add an <enabled>
element, within the <flow-control> element, that is set to false. For example

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-delivery>
 <flow-control>
 <enabled>false</enabled>
 </flow-control>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Adjusting Packet Traffic Jam Behavior
A packet traffic jam is when the number of pending packets that are enqueued by
client threads for the packet publisher to transmit on the network grows to a level that
the packet publisher considers intolerable. Traffic jam behavior is configured within
the <traffic-jam> element. There are two settings that are used to adjust traffic jam
behavior:

■ <maximum-packets> – This setting controls the maximum number of pending
packets that the packet publisher tolerates before determining that it is clogged
and must slow down client requests (requests from local non-system threads).
When the configured maximum packets limit is exceeded, client threads are forced
to pause until the number of outstanding packets drops below the specified limit.
This setting prevents most unexpected out-of-memory conditions by limiting the
size of the resend queue. A value of 0 means no limit. The default value is 8192.

■ <pause-milliseconds> – This setting controls the number of milliseconds that the
publisher pauses a client thread that is trying to send a message when the
publisher is clogged. The publisher does not allow the message to go through until

Bundling Packets to Reduce Load

10-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

the clog is gone, and repeatedly sleeps the thread for the duration specified by this
property. The default value is 10.

Specifying a packet limit which is to low, or a pause which is to long, may result in the
publisher transmitting all pending packets and being left without packets to send. A
warning is periodically logged if this condition is detected. Ideal values ensure that the
publisher is never left without work to do, but at the same time prevent the queue
from growing uncontrollably. The pause should be set short (10ms or under) and the
limit on the number of packets be set high (that is, greater than 5000).

When the <traffic-jam> element is used with the <flow-control> element, the
setting operates in a point-to-point mode, only blocking a send if the recipient has too
many packets outstanding. It is recommended that the <traffic-jam> element's
<maximum-packets> subelement value be greater than the <maximum-packets> value
for the <outstanding-packets> element. When <flow-control> is disabled, the
<traffic-jam> setting takes all outstanding packets into account.

To adjust the enqueue rate behavior, edit the operational override file and add the
<maximum-packets> and <pause-milliseconds> elements as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <traffic-jam>
 <maximum-packets>8192</maximum-packets>
 <pause-milliseconds>10</pause-milliseconds>
 </traffic-jam>
 </packet-publisher>
 </cluster-config>
</coherence>

Bundling Packets to Reduce Load
Multiple small packets can be bundled into a single larger packet to reduce the load on
the network switching infrastructure. Packet bundling is configured within the
<packet-bundling> element and includes the following settings:

■ <maximum-defferal-time> – This setting specifies the maximum amount of time
to defer a packet while waiting for additional packets to bundle. A value of zero
results in the algorithm not waiting, and only bundling the readily accessible
packets. A value greater than zero causes some transmission deferral while
waiting for additional packets to become available. This value is typically set
below 250 microseconds to avoid a detrimental throughput impact. If the units are
not specified, nanoseconds are assumed. The default value is 1us (microsecond).

■ <agression-factor> – This setting specifies the aggressiveness of the packet
deferral algorithm. Where as the <maximum-deferral-time> element defines the
upper limit on the deferral time, the <aggression-factor> influences the average
deferral time. The higher the aggression value, the longer the publisher may wait
for additional packets. The factor may be expressed as a real number, and often
times values between 0.0 and 1.0 allows for high packet utilization while keeping
latency to a minimum. The default value is 0.

Changing Packet Retransmission Behavior

Tuning TCMP Behavior 10-5

The default packet-bundling settings are minimally aggressive allowing for bundling
to occur without adding a measurable delay. The benefits of more aggressive bundling
is based on the network infrastructure and the application object's typical data sizes
and access patterns.

To adjust packet bundling behavior, edit the operational override file and add the
<maximum-defferal-time> and <agression-factor> elements as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-delivery>
 <packet-bundling>
 <maximum-deferral-time>1us</maximum-deferral-time>
 <aggression-factor>0</aggression-factor>
 </packet-bundling>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Changing Packet Retransmission Behavior
TCMP utilizes notification packets to acknowledge the receipt of packets which
require confirmation. A positive acknowledgment (ACK) packet indicates that a
packet was received correctly and that the packet must not be resent. Multiple ACKs
for a given sender are batched into a single ACK packet to avoid wasting network
bandwidth with many small ACK packets. Packets that have not been acknowledged
are retransmitted based on the packet publisher's configured resend interval.

A negative acknowledgment (NACK) packet indicates that the packet was received
incorrectly and causes the packet to be retransmitted. Negative acknowledgment is
determined by inspecting packet ordering for packet loss. Negative acknowledgment
causes a packet to be resent much quicker than relying on the publisher's resend
interval. See "Disabling Negative Acknowledgments" on page 10-11 to disable negative
acknowledgments.

This section includes the following topics:

■ Changing the Packet Resend Interval

■ Changing the Packet Resend Timeout

■ Configuring Packet Acknowledgment Delays

Changing the Packet Resend Interval
The packet resend interval specifies the minimum amount of time, in milliseconds,
that the packet publisher waits for a corresponding ACK packet, before resending a
packet. The default resend interval is 200 milliseconds.

To change the packet resend interval, edit the operational override file and add a
<resend-milliseconds> element as follows:

<?xml version='1.0'?>

Changing Packet Retransmission Behavior

10-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-delivery>
 <resend-milliseconds>400</resend-milliseconds>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Changing the Packet Resend Timeout
The packet resend timeout interval specifies the maximum amount of time, in
milliseconds, that a packet continues to be resent if no ACK packet is received. After
this timeout expires, a determination is made if the recipient is to be considered
terminated. This determination takes additional data into account, such as if other
nodes are still able to communicate with the recipient. The default value is 300000
milliseconds. For production environments, the recommended value is the greater of
300000 and two times the maximum expected full GC duration.

To change the packet resend timeout interval, edit the operational override file and
add a <timeout-milliseconds> element as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-delivery>
 <timeout-milliseconds>420000</timeout-milliseconds>
 </packet-delivery>
 </packet-publisher>
 </cluster-config>
</coherence>

Configuring Packet Acknowledgment Delays
The amount of time the packet publisher waits before sending ACK and NACK
packets can be changed as required. The ACK and NACK packet delay intervals are
configured within the <notification-queueing> eminent using the following settings:

■ <ack-delay-milliseconds> – This element specifies the maximum number of
milliseconds that the packet publisher delays before sending an ACK packet. The

Note: The default death detection mechanism is the TCP-ring
listener, which detects failed cluster members before the resend
timeout interval is ever reached. See "Configuring Death Detection" on
page 7-14 for more information on death detection.

Configuring the Size of the Packet Buffers

Tuning TCMP Behavior 10-7

ACK packet may be transmitted earlier if multiple batched acknowledgments fills
the ACK packet. This value should be set substantially lower then the remote
member's packet delivery resend timeout to allow ample time for the ACK to be
received and processed before the resend timeout expires. The default value is 16.

■ <nack-delay-milliseconds> – This element specifies the number of milliseconds
that the packet publisher delays before sending a NACK packet. The default value
is 1.

To change the ACK and NACK delay intervals, edit the operational override file and
add the <ack-delay-milliseconds> and <nack-delay-milliseconds> elements as
follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <notification-queueing>
 <ack-delay-milliseconds>32</ack-delay-milliseconds>
 <nack-delay-milliseconds>1</nack-delay-milliseconds>
 </notification-queueing>
 </packet-publisher>
 </cluster-config>
</coherence>

Configuring the Size of the Packet Buffers
Packet buffers are operating system buffers used by datagram sockets (also referred to
as socket buffers). Packet buffers can be configured to control how many packets the
operating system is requested to buffer. Packet buffers are used by unicast and
multicast listeners (inbound buffers) and by the packet publisher (outbound buffer).

This section includes the following topics:

■ Understanding Packet Buffer Sizing

■ Configuring the Outbound Packet Buffer Size

■ Configuring the Inbound Packet Buffer Size

Understanding Packet Buffer Sizing
Packet buffer size can be configured based on either the number of packets or based on
bytes using the following settings:

■ <maximum-packets> – This setting specifies the number of packets (based on the
configured packet size) that the datagram socket is asked to size itself to buffer.
See java.net.SocketOptions#SO_SNDBUF and java.net.SocketOptions#SO_
RCVBUF properties for additional details. Actual buffer sizes may be smaller if the
underlying socket implementation cannot support more than a certain size. For
details on configuring the packet size, see "Adjusting the Maximum Size of a
Packet" on page 10-9.

■ <size> – Specifies the requested size of the underlying socket buffer in bytes.

Configuring the Size of the Packet Buffers

10-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The operating system only treats the specified packet buffer size as a hint and is not
required to allocate the specified amount. In the event that less space is allocated then
requested, Coherence issues a warning and continues to operate with the constrained
buffer, which may degrade performance. See Administering Oracle Coherence for details
on configuring your operating system to allow larger buffers.

Large inbound buffers can help insulate the Coherence network layer from JVM
pauses that are caused by the Java Garbage Collector. While the JVM is paused,
Coherence cannot dequeue packets from any inbound socket. If the pause is long
enough to cause the packet buffer to overflow, the packet reception is delayed as the
originating node must detect the packet loss and retransmit the packet(s).

Configuring the Outbound Packet Buffer Size
The outbound packet buffer is used by the packet publisher when transmitting
packets. When making changes to the buffer size, performance should be evaluated
both in terms of throughput and latency. A large buffer size may allow for increased
throughput, while a smaller buffer size may allow for decreased latency.

To configure the outbound packet buffer size, edit the operational override file and
add a <packet-buffer> element within the <packet-publisher> node and specify the
packet buffer size using either the <size> element (for bytes) or the
<maximum-packets> element (for packets). The default value is 32 packets. The
following example demonstrates specifying the packet buffer size based on the
number of packets:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-buffer>
 <maximum-packets>64</maximum-packets>
 </packet-buffer>
 </packet-publisher>
 </cluster-config>
</coherence>

Configuring the Inbound Packet Buffer Size
The multicast listener and unicast listener each have their own inbound packet buffer.
To configure an inbound packet buffer size, edit the operational override file and add a
<packet-buffer> element (within either a <multicast-listener> or
<unicast-listener> node, respectively) and specify the packet buffer size using either
the <size> element (for bytes) or the <maximum-packets> element (for packets). The
default value is 64 packets for the multicast listener and 1428 packets for the unicast
listener.

The following example specifies the packet buffer size for the unicast listener and is
entered using bytes:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"

Adjusting the Maximum Size of a Packet

Tuning TCMP Behavior 10-9

 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <packet-buffer>
 <size>1500000</size>
 </packet-buffer>
 </unicast-listener>
 </cluster-config>
</coherence>

The following example specifies the packet buffer size for the multicast listener and is
entered using packets:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-buffer>
 <maximum-packets>128</maximum-packets>
 </packet-buffer>
 </packet-publisher>
 </cluster-config>
</coherence>

Adjusting the Maximum Size of a Packet
The maximum and preferred UDP packet sizes can be adjusted to optimize the
efficiency and throughput of cluster communication. All cluster nodes must use
identical maximum packet sizes. For optimal network utilization, this value should be
32 bytes less then the network maximum transmission unit (MTU).

Packet size is configured within the <packet-size> element and includes the
following settings:

■ <maximum-length> – Specifies the packet size, in bytes, which all cluster members
can safely support. This value must be the same for all members in the cluster. A
low value can artificially limit the maximum size of the cluster. This value should
be at least 512. The default value is 64KB.

■ <preferred-length> – Specifies the preferred size, in bytes, of the DatagramPacket
objects that are sent and received on the unicast and multicast sockets.

This value can be larger or smaller than the <maximum-length> value, and need not
be the same for all cluster members. The ideal value is one which fits within the
network MTU, leaving enough space for either the UDP or TCP packet headers,
which are 32 and 52 bytes respectively.

Note: When specifying a UDP packet size larger then 1024 bytes on
Microsoft Windows a registry setting must be adjusted to allow for
optimal transmission rates. The COHRENCE_HOME/bin/optimize.reg
registration file contains the registry settings. See Administering Oracle
Coherence for details on setting the Datagram size on Windows.

Changing the Packet Speaker Volume Threshold

10-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

This value should be at least 512. A default value is automatically calculated based
on the local nodes MTU. An MTU of 1500 is used if the MTU cannot be obtained
and is adjusted for the packet headers (1468 for UDP and 1448 for TCP).

To adjust the packet size, edit the operational override file and add the
<maximum-length> and <preferred-length> elements as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-publisher>
 <packet-size>
 <maximum-length>49152</maximum-length>
 <preferred-length>1500</preferred-length>
 </packet-size>
 </packet-publisher>
 </cluster-config>
</coherence>

Changing the Packet Speaker Volume Threshold
The packet speaker is responsible for sending packets on the network when the
packet-publisher detects that a network send operation is likely to block. This allows
the packet publisher to avoid blocking on I/O and continue to prepare outgoing
packets. The packet publisher dynamically chooses whether to use the speaker as the
packet load changes.

When the packet load is relatively low it may be more efficient for the speaker's
operations to be performed on the publisher's thread. When the packet load is high
using the speaker allows the publisher to continue preparing packets while the
speaker transmits them on the network.

The packet speaker is configured using the <volume-threshold> element to specify the
minimum number of packets which must be ready to be sent for the speaker daemon
to be activated. If the value is unspecified (the default), it is set to match the packet
buffer.

To specify the packet speaker volume threshold, edit the operational override file and
add the <volume-threshold> element as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <packet-speaker>
 <enabled>true</enabled>
 <volume-threshold>
 <minimum-packets>32</minimum-packets>
 </volume-threshold>
 </packet-speaker>
 </cluster-config>
</coherence>

Configuring the Incoming Message Handler

Tuning TCMP Behavior 10-11

Configuring the Incoming Message Handler
The incoming message handler assembles UDP packets into logical messages and
dispatches them to the appropriate Coherence service for processing. The incoming
message handler is configured within the <incoming-message-handler> element.

This section includes the following topics:

■ Changing the Time Variance

■ Disabling Negative Acknowledgments

Changing the Time Variance
The <maximum-time-variance> element specifies the maximum time variance between
sending and receiving broadcast messages when trying to determine the difference
between a new cluster member's system time and the cluster time. The smaller the
variance, the more certain one can be that the cluster time is closer between multiple
systems running in the cluster; however, the process of joining the cluster is extended
until an exchange of messages can occur within the specified variance. Normally, a
value as small as 20 milliseconds is sufficient; but, with heavily loaded clusters and
multiple network hops, a larger value may be necessary. The default value is 16.

To change the maximum time variance, edit the operational override file and add the
<maximum-time-variance> element as follows:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <incoming-message-handler>
 <maximum-time-variance>16</maximum-time-variance>
 </incoming-message-handler>
 </cluster-config>
</coherence>

Disabling Negative Acknowledgments
Negative acknowledgments can be disabled for the incoming message handler. When
disabled, the handler does not notify the packet sender if packets were received
incorrectly. In this case, the packet sender waits the specified resend timeout interval
before resending the packet. See "Changing Packet Retransmission Behavior" on
page 10-5 for more information on packet acknowledgments.

To disable negative acknowledgment, edit the operational override file and add a
<use-nack-packets> element that is set to false. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <incoming-message-handler>
 <use-nack-packets>false</use-nack-packets>
 </incoming-message-handler>

Using Network Filters

10-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 </cluster-config>
</coherence>

Using Network Filters
A network filter is a mechanism for plugging into the low-level TCMP stream
protocol. Every message that is sent across the network by Coherence is streamed
through this protocol. Coherence includes a predefined compression filter and also
supports custom filters as required.

This section includes the following topics:

■ Using the Compression Filter

■ Using Custom Network Filters

Filters are defined in the operational deployment descriptor and must be explicitly
enabled within a tangosol-coherence-override.xml file.

Using the Compression Filter
The compression filter is based on the java.util.zip package and compresses
message contents to reduce network load. This filter is useful when there is ample
CPU available but insufficient network bandwidth. The compression filter is defined
in the com.tangosol.net.CompressionFilter class and declared in the operational
deployment descriptor within the <filters> node. The compression filter's configured
name is gzip, which is used when enabling the filter for specific services or when
enabling the filter for all services.

The following topics are included in this section:

■ Enabling the Compression Filter for Specific Services

■ Enabling the Compression Filter for All Services

■ Configuring the Compression Filter

Enabling the Compression Filter for Specific Services
To enable the compression filter for a specific service, include the <use-filters>
element within the service's definition and add a <filter-name> subelement that is set
to gzip. The following example configures the Distributed Cache service definition to
enable the compression filter. All services that are instances of this service
automatically use the filter.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <service-type>DistributedCache</service-type>

Note: Use filters in an all-or-nothing manner: if one cluster member
is using a filter and another is not, the messaging protocol fails. Stop
the entire cluster before configuring filters.

Using Network Filters

Tuning TCMP Behavior 10-13

 <service-component>PartitionedService.PartitionedCache
 </service-component>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 </service>
 </services>
 </cluster-config>
</coherence>

Enabling the Compression Filter for All Services
To enable the compression filter for all services, add the <use-filters> element within
the <outgoing-message-handler> element and add a <filter-name> subelement that
is set to gzip. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <outgoing-message-handler>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 </outgoing-message-handler>
 </cluster-config>
</coherence>

Configuring the Compression Filter
The compression filter includes parameters that can configure the filter's behavior.
Table 10–1 describes each of the parameters that are available. See
java.util.zip.Deflater for additional details.

The following example demonstrates configuring the compression filter and changes
the default compression strategy and level:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <filters>
 <filter id="1">
 <filter-name>gzip</filter-name>
 <filter-class>com.tangosol.net.CompressionFilter</filter-class>
 <init-params>
 <init-param id="1">
 <param-name>strategy</param-name>
 <param-value>huffman-only</param-value>
 </init-param>
 <init-param id="2">
 <param-name>level</param-name>
 <param-value>speed</param-value>

Using Network Filters

10-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 </init-param>
 </init-params>
 </filter>
 </filters>
 </cluster-config>
</coherence>

Using Custom Network Filters
Custom network filters can be created as required. Custom filters must implement the
com.tangosol.io.WrapperStreamFactory interface. The WrapperStreamFactory
interface provides the stream to be wrapped ("filtered") on input (received message) or
output (sending message) and expects a stream back that wraps the original stream.
These methods are called for each incoming and outgoing message. See Java API
Reference for Oracle Coherence for details on these APIs.

The following topics are included in this section:

■ Declaring a Custom Filter

■ Enabling a Custom Filter for Specific Services

■ Enabling a Custom Filter for All Services

Declaring a Custom Filter
Custom filters are declared within the <filters> element in the
tangosol-coherence-override.xml file. The following example demonstrates
defining a custom filter named MyFilter. When declaring a custom filter, the filter id
must be greater than 3 because there are three predefined filters that are declared in
the operational deployment descriptor.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <filters>

Table 10–1 Compression Filter Parameters

Parameter Name Description

buffer-length Specifies compression buffer length in bytes. Legal values are
positive integers or zero. The default value is 0.

level Specifies the compression level. Legal values are:

■ default (default)

■ compression

■ speed

■ none

strategy Specifies the compressions strategy. Legal values are:

■ gzip (default)

■ huffman-only

■ filtered

■ default

Using Network Filters

Tuning TCMP Behavior 10-15

 <filter id="4">
 <filter-name>MyFilter</filter-name>
 <filter-class>package.MyFilter</filter-class>
 <init-params>
 <init-param id="1">
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </init-param>
 </init-params>
 </filter>
 </filters>
 </cluster-config>
</coherence>

Enabling a Custom Filter for Specific Services
To enable a custom filter for a specific service, include the <use-filters> element
within the service's definition and add a <filter-name> subelement that is set to the
filters name. The following example enables a custom filter called MyFilter for the
Distributed Cache service. All caches that are derived from this service automatically
use the filter. Coherence instantiates the filter when the service starts and holds it until
the service stops.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <service-type>DistributedCache</service-type>
 <service-component>PartitionedService.PartitionedCache
 </service-component>
 <use-filters>
 <filter-name>MyFilter</filter-name>
 </use-filters>
 </service>
 </services>
 </cluster-config>
</coherence>

Enabling a Custom Filter for All Services
To enable a custom filter globally for all services, add the <use-filters> element
within the <outgoing-message-handler> element and add a <filter-name>
subelement that is set to the filter name. The following example enables a custom filter
called MyFilter for all services. Coherence instantiates the filter on startup and holds it
until the cluster stops.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <outgoing-message-handler>
 <use-filters>

Changing the TCMP Socket Provider Implementation

10-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <filter-name>MyFilter</filter-name>
 </use-filters>
 </outgoing-message-handler>
 </cluster-config>
</coherence>

Changing the TCMP Socket Provider Implementation
Coherence provides multiple underlying socket provider implementations (besides the
default system socket provider) for use by TCMP. Socket providers for use by TCMP
are configured for the unicast listener within the <unicast-listener> element.

This section includes the following topics:

■ Using the TCP Socket Provider

■ Using the SDP Socket Provider

■ Using the SSL Socket Provider

Using the TCP Socket Provider
The TCP socket provider is a socket provider which, whenever possible, produces
TCP-based sockets. This socket provider creates DatagramSocket instances which are
backed by TCP. When used with the WKA feature (mulitcast disabled), TCMP
functions entirely over TCP without the need for UDP.

The TCP socket provider uses up to two TCP connections between each pair of cluster
members. No additional threads are added to manage the TCP traffic as it is all done
using nonblocking NIO based sockets. Therefore, the existing TCMP threads handle all
the connections. The connections are brought up on demand and are automatically
reopened as needed if they get disconnected for any reason. Two connections are
utilized because it reduces send/receive contention and noticeably improves
performance. TCMP is largely unaware that it is using a reliable protocol and as such
still manages guaranteed delivery and flow control.

To specify the TCP socket provider, edit the operational override file and add a
<socket-provider> element that includes the tcp value. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider system-property="tangosol.coherence.socketprovider">tcp
 </socket-provider>
 </unicast-listener>
 </cluster-config>
</coherence>

Note: if this socket provider is used without the WKA feature
(multicast enabled), TCP is used for all unicast communications;
while, multicast is utilized for group based communications.

Changing the TCMP Socket Provider Implementation

Tuning TCMP Behavior 10-17

The tangosol.coherence.socketprovider system property is used to specify the
socket provider instead of using the operational override file. For example:

-Dtangosol.coherence.socketprovider=tcp

Using the SDP Socket Provider
The SDP socket provider is a socket provider which, whenever possible, produces
SDP-based sockets provided that the JVM and underlying network stack supports
SDP. This socket provider creates DatagramSocket instances which are backed by SDP.
When used with the WKA feature (mulitcast disabled), TCMP functions entirely over
SDP without the need for UDP.

To specify the SDP socket provider, edit the operational override file and add a
<socket-provider> element that includes the sdp value. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider system-property="tangosol.coherence.socketprovider">sdp
 </socket-provider>
 </unicast-listener>
 </cluster-config>
</coherence>

The tangosol.coherence.socketprovider system property is used to specify the
socket provider instead of using the operational override file. For example:

-Dtangosol.coherence.socketprovider=sdp

Using the SSL Socket Provider
The SSL socket provider is a socket provider which only produces SSL protected
sockets. This socket provider creates DatagramSocket instances which are backed by
SSL/TCP or SSL/SDP. SSL is not supported for multicast sockets; therefore, the WKA
feature (multicast disabled) must be used for TCMP to function with this provider.

The default SSL configuration allows for easy configuration of two-way SSL
connections, based on peer trust where every trusted peer resides within a single JKS
keystore. More elaborate configuration can be defined with alternate identity and trust
managers to allow for Certificate Authority trust validation. See Securing Oracle
Coherence for detailed instructions on configuring and using SSL with TCMP.

Note: if this socket provider is used without the WKA feature
(multicast enabled), SDP is used for all unicast communications;
while, multicast is utilized for group based communications.

Changing the TCMP Socket Provider Implementation

10-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

11

Using the Service Guardian 11-1

11Using the Service Guardian

[11] This chapter provides instructions for using and configuring the service guardian to
detect and resolve deadlocked service threads and includes instructions for
implementing custom failure policies.

This chapter includes the following sections:

■ Overview

■ Configuring the Service Guardian

■ Issuing Manual Guardian Heartbeats

Overview
The service guardian is a mechanism that detects and attempts to resolve deadlocks in
Coherence threads. Deadlocked threads on a member may result in many undesirable
behaviors that are visible to the rest of the cluster, such as the inability to add new
nodes to the cluster and the inability to service requests by nodes currently in the
cluster.

The service guardian receives periodic heartbeats that are issued by Coherence-owned
and created threads. Should a thread fail to issue a heartbeat before the configured
timeout, the service guardian takes corrective action. Both the timeout and corrective
action (recovery) can be configured as required.

Interfaces That Are Executed By Coherence
Implementations of the following interfaces are executed by Coherence-owned
threads. Any processing in an implementation that exceeds the configured guardian
timeout results in the service guardian attempting to recover the thread. The list is not
exhaustive and only provides the most common interfaces that are implemented by
end users.

com.tangosol.net.Invocable
com.tangosol.net.cache.CacheStore
com.tangosol.util.Filter
com.tangosol.util.InvocableMap.EntryAggregator
com.tangosol.util.InvocableMap.EntryProcessor

Note: The term deadlock does not necessarily indicate a true
deadlock; a thread that does not issue a timely heartbeat may be
executing a long running process or waiting on a slow resource. The
service guardian does not have the ability to distinguish a deadlocked
thread from a slow one.

Configuring the Service Guardian

11-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

com.tangosol.util.MapListener
com.tangosol.util.MapTrigger

Understanding Recovery
The service guardian's recovery mechanism uses a series of steps to determine if a
thread is deadlocked. Corrective action is taken if the service guardian concludes that
the thread is deadlocked. The action to take can be configured and custom actions can
be created if required. The recovery mechanism is outlined below:

■ Soft Timeout – The recovery mechanism first attempts to interrupt the thread just
before the configured timeout is reached. The following example log message
demonstrates a soft timeout message:

<Error> (thread=DistributedCache, member=1): Attempting recovery (due to soft
timeout) of Daemon{Thread="Thread[WriteBehindThread:CacheStoreWrapper(com.
tangosol.examples.rwbm.TimeoutTest),5,WriteBehindThread:CacheStoreWrapper(com.
tangosol.examples.rwbm.TimeoutTest)]", State=Running}

If the thread can be interrupted and it results in a heartbeat, normal processing
resumes.

■ Hard Timeout – The recovery mechanism attempts to stop a thread after the
configured timeout is reached. The following example log message demonstrates a
hard timeout message:

<Error> (thread=DistributedCache, member=1): Terminating guarded execution (due
to hard timeout) of Daemon{Thread="Thread[WriteBehindThread:CacheStoreWrapper
(com.tangosol.examples.rwbm.TimeoutTest),5,WriteBehindThread:CacheStoreWrapper
(com.tangosol.examples.rwbm.TimeoutTest)]", State=Running}

■ Lastly, if the thread cannot be stopped, the recovery mechanism performs an
action based on the configured failure policy. Actions that can be performed
include: shutting down the cluster service, shutting down the JVM, and
performing a custom action. The following example log message demonstrates an
action taken by the recovery mechanism:

<Error> (thread=Termination Thread, member=1): Write-behind thread timed out;
stopping the cache service

Configuring the Service Guardian
The service guardian is enabled out-of-the box and has two configured items: the
timeout value and the failure policy. The timeout value is the length of time the service
guardian waits to receive a heartbeat from a thread before starting recovery. The
failure policy is the corrective action that the service guardian takes after it concludes
that the thread is deadlocked.

Setting the Guardian Timeout
The service guardian timeout can be set in three different ways based on the level of
granularity that is required:

■ All threads – This option allows a single timeout value to be applied to all
Coherence-owned threads on a cluster node. This is the out-of-box configuration
and is set at 305000 milliseconds by default.

■ Threads per service type – This option allows different timeout values to be set for
specific service types. The timeout value is applied to the threads of all service

Configuring the Service Guardian

Using the Service Guardian 11-3

instances. If a timeout is not specified for a particular service type, then the
timeout defaults to the timeout that is set for all threads.

■ Threads per service instance – This option allows different timeout values to be set
for specific service instances. If a timeout is not set for a specific service instance,
then the service's timeout value, if specified, is used; otherwise, the timeout that is
set for all threads is used.

Setting the timeout value to 0 stops threads from being guarded. In general, the service
guardian timeout value should be set equal to or greater than the timeout value for
packet delivery.

Setting the Guardian Timeout for All Threads
To set the guardian timeout for all threads in a cluster node, add a
<timeout-milliseconds> element to an operational override file within the
<service-guardian> element. The following example sets the timeout value to 120000
milliseconds:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <service-guardian>
 <timeout-milliseconds>120000</timeout-milliseconds>
 </service-guardian>
 </cluster-config>
</coherence>

The <timeout-milliseconds> value can also be set using the
tangosol.coherence.guard.timeout system property.

Setting the Guardian Timeout Per Service Type
To set the guardian timeout per service type, override the service's guardian-timeout
initialization parameter in an operational override file. The following example sets the
guardian timeout for the DistributedCache service to 120000 milliseconds:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="17">
 <param-name>guardian-timeout</param-name>

Note: The guardian timeout can also be used for cache store
implementations that are configured with a read-write-backing-map
scheme. In this case, the <cachestore-timeout> element is set to 0,
which defaults the timeout to the guardian timeout. See
"read-write-backing-map-scheme" on page B-104.

Configuring the Service Guardian

11-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <param-value>120000</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

The guardian-timeout initialization parameter can be set for the DistributedCache,
ReplicatedCache, OptimisticCache, Invocation, and Proxy services. Refer to the
tangosol-coherence.xml file that is located in the coherence.jar file for the correct
service ID and initialization parameter ID to use when overriding the
guardian-timeout parameter for a service.

Each service also has a system property that sets the guardian timeout, respectively:

tangosol.coherence.distributed.guard.timeout
tangosol.coherence.replicated.guard.timeout
tangosol.coherence.optimistic.guard.timeout
tangosol.coherence.invocation.guard.timeout
tangosol.coherence.proxy.guard.timeout

Setting the Guardian Timeout Per Service Instance
To set the guardian timeout per service instance, add a <guardian-timeout> element
to a cache scheme definition in the cache configuration file. The following example sets
the guardian timeout for a distributed cache scheme to 120000 milliseconds.

<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <guardian-timeout>120000</guardian-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>example-binary-backing-map</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

The <guardian-timeout> element can be used in the following schemes:
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<transaction-scheme>, <invocation-scheme>, and <proxy-scheme>.

Using the Timeout Value From the PriorityTask API
Custom implementations of the Invocable, EntryProcessor, and EntryAggregator
interface can implement the com.tangosol.net.PriorityTask interface. In this case,
the service guardian attempts recovery after the task has been executing for longer
than the value returned by getExecutionTimeoutMillis(). See Chapter 31, "Managing
Thread Execution," for more information on using the API.

The execution timeout can be set using the <task-timeout> element within an
<invocation-scheme> element defined in the cache configuration file. For the
Invocation service, the <task-timeout> element specifies the timeout value for
Invocable tasks that implement the PriorityTask interface, but do not explicitly
specify the execution timeout value; that is, the getExecutionTimeoutMillis()
method returns 0.

Configuring the Service Guardian

Using the Service Guardian 11-5

If the <task-timeout> element is set to 0, the default guardian timeout is used. See
Appendix B, "Cache Configuration Elements" for more information on the different
cache schemes that support the use of the <task-timeout> element.

Setting the Guardian Service Failure Policy
The service failure policy determines the corrective action that the service guardian
takes after it concludes that a thread is deadlocked. The following policies are
available:

■ exit-cluster – This policy attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the associated
service. If the associated service cannot be stopped, this policy causes the local
node to stop the cluster services. This is the default policy if no policy is specified.

■ exit-process – This policy attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the associated
service. If the associated service cannot be stopped, this policy cause the local node
to exit the JVM and terminate abruptly.

■ logging – This policy logs any detected problems but takes no corrective action.

■ custom – the name of a Java class that provides an implementation for the
com.tangosol.net.ServiceFailurePolicy interface. See "Enabling a Custom
Guardian Failure Policy" on page 11-6.

The service guardian failure policy can be set three different ways based on the level of
granularity that is required:

■ All threads – This option allows a single failure policy to be applied to all
Coherence-owned threads on a cluster node. This is the out-of-box configuration.

■ Threads per service type – This option allows different failure policies to be set for
specific service types. The policy is applied to the threads of all service instances. If
a policy is not specified for a particular service type, then the timeout defaults to
the timeout that is set for all threads.

■ Threads per service instance – This option allows different failure policies to be set
for specific service instances. If a policy is not set for a specific service instance,
then the service's policy, if specified, is used; otherwise, the policy that is set for all
threads is used.

Setting the Guardian Failure Policy for All Threads
To set a guardian failure policy, add a <service-failure-policy> element to an
operational override file within the <service-guardian> element. The following
example sets the failure policy to exit-process:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <service-guardian>
 <service-failure-policy>exit-process</service-failure-policy>
 </service-guardian>
 </cluster-config>
</coherence>

Configuring the Service Guardian

11-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Setting the Guardian Failure Policy Per Service Type
To set the failure policy per service type, override the service's
service-failure-policy initialization parameter in an operational override file. The
following example sets the failure policy for the DistributedCache service to the
logging policy:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="18">
 <param-name>service-failure-policy</param-name>
 <param-value>logging</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

The service-failure-policy initialization parameter can be set for the
DistributedCache, ReplicatedCache, OptimisticCache, Invocation, and Proxy
services. Refer to the tangosol-coherence.xml file that is located in the
coherence.jar file for the correct service ID and initialization parameter ID to use
when overriding the service-failure-policy parameter for a service.

Setting the Guardian Failure Policy Per Service Instance
To set the failure policy per service instance, add a <service-failure-policy>
element to a cache scheme definition in the cache configuration file. The following
example sets the failure policy to logging for a distributed cache scheme:

<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <guardian-timeout>120000</guardian-timeout>
 <service-failure-policy>logging</service-failure-policy>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>example-binary-backing-map</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

The <service-failure-policy> element can be used in the following schemes:
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<transaction-scheme>, <invocation-scheme>, and <proxy-scheme>.

Enabling a Custom Guardian Failure Policy
To use a custom failure policy, include an <instance> subelement and provide a fully
qualified class name that implements the ServiceFailurePolicy interface. See
"instance" on page A-30 for detailed instructions on using the <instance> element. The

Configuring the Service Guardian

Using the Service Guardian 11-7

following example enables a custom failure policy that is implemented in the
MyFailurePolicy class. Custom failure policies can be enabled for all threads (as
shown below) or can be enabled per service instance within a cache scheme definition.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <service-guardian>
 <service-failure-policy>
 <instance>
 <class-name>package.MyFailurePolicy</class-name>
 </instance>
 </service-failure-policy>
 </service-guardian>
 </cluster-config>
</coherence>

As an alternative, the <instance> element supports the use of a
<class-factory-name> element to use a factory class that is responsible for creating
ServiceFailurePolicy instances, and a <method-name> element to specify the static
factory method on the factory class that performs object instantiation. The following
example gets a custom failure policy instance using the getPolicy method on the
MyPolicyFactory class.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <service-guardian>
 <service-failure-policy>
 <instance>
 <class-factory-name>package.MyPolicyFactory</class-factory-name>
 <method-name>getPolicy</method-name>
 </instance>
 </service-failure-policy>
 </service-guardian>
 </cluster-config>
</coherence>

Any initialization parameters that are required for an implementation can be specified
using the <init-params> element. The following example sets the iMaxTime parameter
to 2000.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <service-guardian>
 <service-failure-policy>
 <instance>
 <class-name>package.MyFailurePolicy</class-name>

Issuing Manual Guardian Heartbeats

11-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <init-params>
 <init-param>
 <param-name>iMaxTime</param-name>
 <param-value>2000</param-value>
 </init-param>
 </init-params>
 </instance>
 </service-failure-policy>
 </service-guardian>
 </cluster-config>
</coherence>

Issuing Manual Guardian Heartbeats
The com.tangosol.net.GuardSupport class provides heartbeat methods that
applications can use to manually issue heartbeats to the guardian:

GuardSupport.heartbeat();

For known long running operations, the heartbeat can be issued with the number of
milliseconds that should pass before the operation is considered "stuck:"

GuardSupport.heartbeat(long cMillis);

Part III
Part III Using Caches

Part III contains the following chapters:

■ Chapter 12, "Introduction to Coherence Caches"

■ Chapter 13, "Configuring Caches"

■ Chapter 14, "Implementing Storage and Backing Maps"

■ Chapter 15, "Caching Data Sources"

■ Chapter 16, "Serialization Paged Cache"

■ Chapter 17, "Using Quorum"

■ Chapter 18, "Cache Configurations by Example"

12

Introduction to Coherence Caches 12-1

12Introduction to Coherence Caches

[12] This chapter provides an overview and comparison of basic cache types offered by
Coherence.

This chapter includes the following sections:

■ Understanding Distributed Caches

■ Understanding Replicated Caches

■ Understanding Optimistic Caches

■ Understanding Near Caches

■ Understanding Local Caches

■ Understanding Remote Caches

■ Summary of Cache Types

Understanding Distributed Caches
A distributed, or partitioned, cache is a clustered, fault-tolerant cache that has linear
scalability. Data is partitioned among all storage members of the cluster. For
fault-tolerance, partitioned caches can be configured to keep each piece of data on one
or more unique computers within a cluster. Distributed caches are the most commonly
used caches in Coherence.

Coherence defines a distributed cache as a collection of data that is distributed across
any number of cluster nodes such that exactly one node in the cluster is responsible for
each piece of data in the cache, and the responsibility is distributed (or, load-balanced)
among the cluster nodes.

There are several key points to consider about a distributed cache:

■ Partitioned: The data in a distributed cache is spread out over all the servers in
such a way that no two servers are responsible for the same piece of cached data.
The size of the cache and the processing power associated with the management of
the cache can grow linearly with the size of the cluster. Also, it means that read
operations against data in the cache can be accomplished with a "single hop," in
other words, involving at most one other server. Write operations are "single hop"
if no backups are configured.

■ Load-Balanced: Since the data is spread out evenly over the servers, the
responsibility for managing the data is automatically load-balanced across the
cluster.

■ Location Transparency: Although the data is spread out across cluster nodes, the
exact same API is used to access the data, and the same behavior is provided by

Understanding Distributed Caches

12-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

each of the API methods. This is called location transparency, which means that
the developer does not have to code based on the topology of the cache, since the
API and its behavior is the same with a local JCache, a replicated cache, or a
distributed cache.

■ Failover: All Coherence services provide failover and failback without any data
loss, and that includes the distributed cache service. The distributed cache service
allows the number of backups to be configured; if the number of backups is one or
higher, any cluster node can fail without the loss of data.

Access to the distributed cache often must go over the network to another cluster
node. All other things equals, if there are n cluster nodes, (n - 1) / n operations go over
the network:

Figure 12–1 provides a conceptual view of a distributed cache during get operations.

Figure 12–1 Get Operations in a Distributed Cache

Since each piece of data is managed by only one cluster node, read operations over the
network are only "single hop" operations. This type of access is extremely scalable,
since it can use point-to-point communication and thus take optimal advantage of a
switched network.

Figure 12–2 provides a conceptual view of a distributed cache during put operations.

Understanding Distributed Caches

Introduction to Coherence Caches 12-3

Figure 12–2 Put Operations in a distributed Cache Environment

In the figure above, the data is being sent to a primary cluster node and a backup
cluster node. This is for failover purposes, and corresponds to a backup count of one.
(The default backup count setting is one.) If the cache data were not critical, which is to
say that it could be re-loaded from disk, the backup count could be set to zero, which
would allow some portion of the distributed cache data to be lost if a cluster node fails.
If the cache were extremely critical, a higher backup count, such as two, could be used.
The backup count only affects the performance of cache modifications, such as those
made by adding, changing or removing cache entries.

Modifications to the cache are not considered complete until all backups have
acknowledged receipt of the modification. There is a slight performance penalty for
cache modifications when using the distributed cache backups; however it guarantees
that if a cluster node were to unexpectedly fail, that data consistency is maintained
and no data is lost.

Failover of a distributed cache involves promoting backup data to be primary storage.
When a cluster node fails, all remaining cluster nodes determine what data each holds
in backup that the failed cluster node had primary responsible for when it died. Those
data becomes the responsibility of whatever cluster node was the backup for the data.

Figure 12–3 provides a conceptual view of a distributed cache during failover.

Understanding Distributed Caches

12-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Figure 12–3 Failover in a Distributed Cache

If there are multiple levels of backup, the first backup becomes responsible for the
data; the second backup becomes the new first backup, and so on. Just as with the
replicated cache service, lock information is also retained with server failure; the sole
exception is when the locks for the failed cluster node are automatically released.

The distributed cache service also allows certain cluster nodes to be configured to store
data, and others to be configured to not store data. The name of this setting is local
storage enabled. Cluster nodes that are configured with the local storage enabled option
provides the cache storage and the backup storage for the distributed cache.
Regardless of this setting, all cluster nodes have the same exact view of the data, due
to location transparency.

Figure 12–4 provides a conceptual view of local storage in a distributed cache during
get and put operations.

Understanding Replicated Caches

Introduction to Coherence Caches 12-5

Figure 12–4 Local Storage in a Distributed Cache

There are several benefits to the local storage enabled option:

■ The Java heap size of the cluster nodes that have turned off local storage enabled
are not affected at all by the amount of data in the cache, because that data is
cached on other cluster nodes. This is particularly useful for application server
processes running on older JVM versions with large Java heaps, because those
processes often suffer from garbage collection pauses that grow exponentially with
the size of the heap.

■ Coherence allows each cluster node to run any supported version of the JVM. That
means that cluster nodes with local storage enabled turned on could be running a
newer JVM version that supports larger heap sizes, or Coherence's off-heap
storage using elastic data. Different JVM versions are fine between storage enabled
and disabled nodes, but all storage enabled nodes should use the same JVM
version.

■ The local storage enabled option allows some cluster nodes to be used just for
storing the cache data; such cluster nodes are called Coherence cache servers.
Cache servers are commonly used to scale up Coherence's distributed query
functionality.

Understanding Replicated Caches
A replicated cache is a clustered, fault tolerant cache where data is fully replicated to
every member in the cluster. This cache offers the fastest read performance with linear
performance scalability for reads but poor scalability for writes (as writes must be
processed by every member in the cluster). Adding servers does not increase
aggregate cache capacity because data is replicated to all servers. Replicated caches are
typically used for small data sets that are read-only.

Understanding Replicated Caches

12-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Replicated caches have very high access speeds since the data is replicated to each
cluster node (JVM), which accesses the data from its own memory. This type of access
is often referred to as zero latency access and is perfect for situations in which an
application requires the highest possible speed in its data access. However, it is
important to remember that zero latency access only occurs after the data has been
accessed for the first time. That is, replicated caches store data in serialized form until
the data is accessed, at which time the data must be deserialized. Each cluster node
where the data is accessed must perform the initial deserialization step as well (even
on the node where the data was originally created). The deserialization step adds a
performance cost that must be considered when using replicated caches.

There are several challenges to building a reliable replicated cache. The first is how to
get it to scale and perform well. Updates to the cache have to be sent to all cluster
nodes, and all cluster nodes have to end up with the same data, even if multiple
updates to the same piece of data occur at the same time. Also, if a cluster node
requests a lock, it should not have to get all cluster nodes to agree on the lock,
otherwise it scales extremely poorly; yet with cluster node failure, all of the data and
lock information must be kept safely. Coherence handles all of these scenarios
transparently and provides a scalable and highly available replicated cache
implementation.

Figure 12–5 provides a conceptual view of replicated caches during a get operations.

Figure 12–5 Get Operation in a Replicated Cache

For put operations, updating a replicated cache requires pushing the new version of
the data to all other cluster nodes. Figure 12–6 provides a conceptual view of
replicated caches during a put operations.

Note: Unlike distributed caches, replicated caches do not
differentiate between storage-enabled and storage-disabled cluster
members.

Understanding Optimistic Caches

Introduction to Coherence Caches 12-7

Figure 12–6 Put Operation in a Replicated Cache

Coherence implements its replicated cache service in such a way that all read-only
operations occur locally, all concurrency control operations involve at most one other
cluster node, and only update operations require communicating with all other cluster
nodes. The result is excellent scalable performance, and as with all of the Coherence
services, the replicated cache service provides transparent and complete failover and
failback.

The limitations of the replicated cache service should also be carefully considered:

■ Data is managed by the replicated cache service on every cluster node that has
joined the service. Therefore, memory utilization (the Java heap size) is increased
for each cluster node and can impact performance.

■ Replicated caches that have a high incidence of updates do not scale linearly as the
cluster grows. The cluster suffers diminishing returns as cluster nodes are added.

■ Replicated caches do not support per-entry expiration. Expiry needs to be set at
the cache level. Expiry and eviction are enforced locally by the backing map, so
data may expire independently on each node. Entries may expire at slightly
different times and may be available slightly longer on different nodes. When
using expiry and eviction, an application must be designed to accommodate a
partial data set. If a system of record (such as a database) is used, then it should be
irrelevant to an application whether an item has been expired or evicted.

Understanding Optimistic Caches
An optimistic cache is a clustered cache implementation similar to the replicated cache
implementation but without any concurrency control. This implementation offers
higher write throughput than a replicated cache. It also allows an alternative
underlying store for the cached data (for example, a MRU/MFU-based cache).
However, if two cluster members are independently pruning or purging the
underlying local stores, the stored content held by each member may be different.

Understanding Near Caches

12-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Understanding Near Caches
A near cache is a hybrid cache; it typically fronts a distributed cache or a remote cache
with a local cache. Near cache invalidates front cache entries, using a configured
invalidation strategy, and provides excellent performance and synchronization. Near
cache backed by a partitioned cache offers zero-millisecond local access for repeat data
access, while enabling concurrency and ensuring coherency and fail over, effectively
combining the best attributes of replicated and partitioned caches.

The objective of a near cache is to provide the best of both worlds between the extreme
performance of replicated caches and the extreme scalability of distributed caches by
providing fast read access to Most Recently Used (MRU) and Most Frequently Used
(MFU) data. Therefore, a near cache is an implementation that wraps two caches: a
"front cache" and a "back cache" that automatically and transparently communicate
with each other by using a read-through/write-through approach.

The "front cache" provides local cache access. It is assumed to be inexpensive, in that it
is fast, and is limited in terms of size. The "back cache" can be a centralized or
multitiered cache that can load-on-demand in case of local cache misses. The "back
cache" is assumed to be complete and correct in that it has much higher capacity, but
more expensive in terms of access speed.

This design allows near caches to configure cache coherency, from the most basic
expiry-based caches and invalidation-based caches, up to advanced caches that
version data and provide guaranteed coherency. The result is a tunable balance
between the preservation of local memory resources and the performance benefits of
truly local caches.

The typical deployment uses a local cache for the "front cache". A local cache is a
reasonable choice because it is thread safe, highly concurrent, size-limited,
auto-expiring, and stores the data in object form. For the "back cache", a partitioned
cache is used.

The following figure illustrates the data flow in a near cache. If the client writes an
object D into the grid, the object is placed in the local cache inside the local JVM and in
the partitioned cache which is backing it (including a backup copy). If the client
requests the object, it can be obtained from the local, or "front cache", in object form
with no latency.

Figure 12–7 provides a conceptual view of a near cache during put operations.

Note: Because entries are stored in object form in the front of the
near cache, the application must take care of synchronizing access by
multiple threads in the same JVM. For example, if a thread mutates an
entry that has been retrieved from the front of a near cache, the change
is immediately visible to other threads in the same JVM.

Understanding Near Caches

Introduction to Coherence Caches 12-9

Figure 12–7 Put Operations in a Near Cache

If the client requests an object that has been expired or invalidated from the "front
cache", then Coherence automatically retrieves the object from the partitioned cache.
The "front cache" stores the object before the object is delivered to the client.

Figure 12–8 provides a conceptual view of a near cache during get operations.

Understanding Local Caches

12-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Figure 12–8 Get Operations in a Near Cache

Understanding Local Caches
While it is not a clustered service, the local cache implementation is often used in
combination with various clustered cache services as part of a near cache.

A local cache is completely contained within a particular cluster node. There are
several attributes of the local cache that are particularly interesting:

■ The local cache implements the same standard collections interface that the
clustered caches implement, meaning that there is no programming difference
between using a local or a clustered cache. Just like the clustered caches, the local
cache is tracking to the JCache API, which itself is based on the same standard
collections API that the local cache is based on.

Note: Applications that use a local cache as part of a near cache must
make sure that keys are immutable. Keys that are mutable can cause
threads to hang and deadlocks to occur.

In particular, the near cache implementation uses key objects to
synchronize the local cache (front map), and the key may also be
cached in an internal map. Therefore, a key object passed to the get()
method is used as a lock. If the key object is modified while a thread
holds the lock, then the thread may fail to unlock the key. In addition,
if there are other threads waiting for the locked key object to be freed,
or if there are threads who attempt to acquire a lock to the modified
key, then threads may hang and deadlocks can occur. For details on
the use of keys, see the java.util.Map API documentation.

Summary of Cache Types

Introduction to Coherence Caches 12-11

■ The local cache can be size-limited. The local cache can restrict the number of
entries that it caches, and automatically evict entries when the cache becomes full.
Furthermore, both the sizing of entries and the eviction policies can be
customized. For example, the cache can be size-limited based on the memory used
by the cached entries. The default eviction policy uses a combination of Most
Frequently Used (MFU) and Most Recently Used (MRU) information, scaled on a
logarithmic curve, to determine what cache items to evict. This algorithm is the
best general-purpose eviction algorithm because it works well for short duration
and long duration caches, and it balances frequency versus recentness to avoid
cache thrashing. The pure LRU and pure LFU algorithms are also supported, and
the ability to plug in custom eviction policies.

■ The local cache supports automatic expiration of cached entries, meaning that each
cache entry can be assigned a time to live in the cache.

■ The local cache is thread safe and highly concurrent, allowing many threads to
simultaneously access and update entries in the local cache.

■ The local cache supports cache notifications. These notifications are provided for
additions (entries that are put by the client, or automatically loaded into the
cache), modifications (entries that are put by the client, or automatically reloaded),
and deletions (entries that are removed by the client, or automatically expired,
flushed, or evicted.) These are the same cache events supported by the clustered
caches.

■ The local cache maintains hit and miss statistics. These run-time statistics can
accurately project the effectiveness of the cache, and adjust its size-limiting and
auto-expiring settings accordingly while the cache is running.

The local cache is important to the clustered cache services for several reasons,
including as part of Coherence's near cache technology, and with the modular backing
map architecture.

Understanding Remote Caches
A remote cache describes any out-of-process cache accessed by a Coherence*Extend
client. All cache requests are sent to a Coherence proxy where they are delegated to a
cache (Replicated, Optimistic, Partitioned). See Developing Remote Clients for Oracle
Coherence for more information on using remote caches.

Summary of Cache Types
Numerical Terms:

■ JVMs = number of JVMs

■ DataSize = total size of cached data (measured without redundancy)

■ Redundancy = number of copies of data maintained

■ LocalCache = size of local cache (for near caches)

Summary of Cache Types

12-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Notes:
1. As a rough estimate, with 100mb Ethernet, network reads typically require ~20ms

for a 100KB object. With gigabit Ethernet, network reads for 1KB objects are
typically sub-millisecond.

2. Requires UDP multicast or a few UDP unicast operations, depending on JVM
count.

3. Requires a few UDP unicast operations, depending on level of redundancy.

4. Partitioned caches can be configured with as many levels of backup as desired, or
zero if desired. Most installations use one backup copy (two copies total)

5. Limited by local CPU/memory performance, with negligible processing required
(typically sub-millisecond performance).

6. Listener-based Near caches are coherent; expiry-based near caches are partially
coherent for non-transactional reads and coherent for transactional access.

Table 12–1 Summary of Cache Types and Characteristics

Replicated
Cache

Optimistic
Cache

Partitioned
Cache

Near Cache
backed by
partitioned cache

LocalCache
not clustered

Topology Replicated Replicated Partitioned
Cache

Local Caches +
Partitioned Cache

Local Cache

Read
Performance

Instant 5 Instant 5 Locally cached:
instant 5
Remote:
network speed
1

Locally cached:
instant 5 Remote:
network speed 1

Instant 5

Fault
Tolerance

Extremely High Extremely High Configurable 4
Zero to
Extremely
High

Configurable 4
Zero to Extremely
High

Zero

Write
Performance

Fast 2 Fast 2 Extremely fast
3

Extremely fast 3 Instant 5

Memory
Usage (Per
JVM)

DataSize DataSize DataSize/JVMs
x Redundancy

LocalCache +
[DataSize / JVMs]

DataSize

Coherency fully coherent fully coherent fully coherent fully coherent 6 n/a

Memory
Usage (Total)

JVMs x DataSize JVMs x DataSize Redundancy x
DataSize

[Redundancy x
DataSize] + [JVMs
x LocalCache]

n/a

Locking fully transactional none fully
transactional

fully transactional fully
transactional

Typical Uses Metadata n/a (see Near
Cache)

Read-write
caches

Read-heavy caches
w/ access affinity

Local data

13

Configuring Caches 13-1

13Configuring Caches

[13] This chapter provides detailed instructions on how use the Coherence cache
configuration deployment descriptor to define and configure caches for use by an
application. Refer to Appendix B, "Cache Configuration Elements," for a complete
reference of all the elements available in the cache configuration deployment
descriptor. In addition, see Chapter 18, "Cache Configurations by Example," for
various sample cache configurations.

This chapter includes the following sections:

■ Overview

■ Defining Cache Mappings

■ Defining Cache Schemes

■ Using Scheme Inheritance

■ Using Cache Scheme Properties

■ Using Parameter Macros

Overview
Caches are configured in a Coherence cache configuration deployment descriptor. By
default, the first coherence-cache-config.xml deployment descriptor file that is
found on the classpath is loaded. Coherence includes a sample
coherence-cache-config.xml file in the coherence.jar library. To use a different
coherence-cache-config.xml file, the file must be located on the classpath and must
be loaded before the coherence.jar library; otherwise, the sample cache configuration
deployment descriptor is used. See "Specifying a Cache Configuration File" on
page 3-6 for alternate methods that are available for specifying a cache configuration
deployment descriptor.

The cache configuration descriptor allows caches to be defined independently from
the application code. At run time, applications get an instance of a cache by referring
to a cache using the name that is defined in the descriptor. This allows application
code to be written independent of the cache definition. Based on this approach, cache
definitions can be modified without making any changes to the application code. This
approach also maximizes cache definition reuse.

The schema definition of the cache configuration descriptor is the
coherence-cache-config.xsd file, which imports the
coherence-cache-config-base.xsd file, which, in turn, implicitly imports the
coherence-config-base.xsd file. This file is located in the root of the coherence.jar
file. A cache configuration deployment descriptor consists of two primary elements
that are detailed in this chapter: the <caching-scheme-mapping> element and the

Defining Cache Mappings

13-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<caching-schemes> element. These elements are used to define caches schemes and to
define cache names that map to the cache schemes.

Defining Cache Mappings
Cache mappings map a cache name to a cache scheme definition. The mappings
provide a level of separation between applications and the underlying cache
definitions. The separation allows cache implementations to be changed as required
without having to change application code. Cache mappings can also be used to set
initialization parameters that are applied to the underlying cache scheme definition.

Cache mappings are defined using a <cache-mapping> element within the
<cache-scheme-mapping> node. Any number of cache mappings can be created. The
cache mapping must include the cache name and the scheme name to which the cache
name is mapped. See "cache-mapping" on page B-23 for a detailed reference of the
<cache-mappings> element.

Using Exact Cache Mappings
Exact cache mappings map a specific cache name to a cache scheme definition. An
applications must provide the exact name as specified in the mapping to use a cache.
Example 13–1 creates a single cache mapping that maps the cache name example to a
distributed cache scheme definition with the scheme name distributed.

Example 13–1 Sample Exact Cache Mapping

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Using Name Pattern Cache Mappings
Name pattern cache mappings allow applications to use patterns when specifying a
cache name. Patterns use the asterisk (*) wildcard. Name patterns alleviate an
application from having to know the exact name of a cache. Example 13–2 creates two
cache mappings. The first mapping uses the wildcard (*) to map any cache name to a
distributed cache scheme definition with the scheme name distributed. The second
mapping maps the name pattern account-* to the cache scheme definition with the
scheme name account-distributed.

Defining Cache Schemes

Configuring Caches 13-3

Example 13–2 Sample Cache Name Pattern Mapping

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>account-*</cache-name>
 <scheme-name>account-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 </distributed-scheme>
 <distributed-scheme>
 <scheme-name>account-distributed</scheme-name>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

For the first mapping, an application can use any name when creating a cache and the
name is mapped to the cache scheme definition with the scheme name distributed.
The second mapping requires an application to use a pattern when specifying a cache
name. In this case, an application must use the prefix account- before the name. For
example, an application that specifies account-overdue as the cache name uses the
cache scheme definition with the scheme name account-distributed.

As shown in Example 13–2, it is possible to have a cache name (for example
account-overdue) that can be matched to multiple cache mappings. In such cases, if an
exact cache mapping is defined, then it is always selected over any wildcard matches.
Among multiple wildcard matches, the last matching wildcard mapping (based on the
order in which they are defined in the file) is selected. Therefore, it is common to
define less specific wildcard patterns earlier in the file that can be overridden by more
specific wildcard patterns later in the file.

Defining Cache Schemes
Cache schemes are used to define the caches that are available to an application. Cache
schemes provide a declarative mechanism that allows caches to be defined
independent of the applications that use them. This removes the responsibility of
defining caches from the application and allows caches to change without having to
change an application's code. Cache schemes also promote cache definition reuse by
allowing many applications to use the same cache definition.

Cache schemes are defined within the <caching-schemes> element. Each cache type
(distributed, replicated, and so on) has a corresponding scheme element and
properties that are used to define a cache of that type. Cache schemes can also be
nested to allow further customized and composite caches such as near caches. See
"caching-schemes" on page B-27 for a detailed reference of the <caching-schemes>
element.

Defining Cache Schemes

13-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

This section describes how to define cache schemes for the most often used cache
types and does not represent the full set of cache types provided by Coherence.
Instructions for defining cache schemes for additional cache types are found
throughout this guide and are discussed as part of the features that they support. This
section includes the following topics:

■ Defining Distributed Cache Schemes

■ Defining Replicated Cache Schemes

■ Defining Optimistic Cache Schemes

■ Defining Local Cache Schemes

■ Defining Near Cache Schemes

Defining Distributed Cache Schemes
The <distributed-scheme> element is used to define distributed caches. A distributed
cache utilizes a distributed (partitioned) cache service instance. Any number of
distributed caches can be defined in a cache configuration file. See
"distributed-scheme" on page B-32 for a detailed reference of the
<distributed-scheme> element.

Example 13–3 defines a basic distributed cache that uses distributed as the scheme
name and is mapped to the cache name example. The <autostart> element is set to
true to start the service on a cache server node.

Example 13–3 Sample Distributed Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

In the example, the distributed cache defines a local cache to be used as the backing
map. See Chapter 14, "Implementing Storage and Backing Maps" for more information
on configuring backing maps.

Defining Cache Schemes

Configuring Caches 13-5

Defining Replicated Cache Schemes
The <replicated-scheme> element is used to define replicated caches. A replicated
cache utilizes a replicated cache service instance. Any number of replicated caches can
be defined in a cache configuration file. See "replicated-scheme" on page B-112 for a
detailed reference of the <replicated-scheme> element.

Example 13–4 defines a basic replicated cache that uses replicated as the scheme
name and is mapped to the cache name example. The <autostart> element is set to
true to start the service on a cache server node.

Example 13–4 Sample Replicated Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>replicated</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <replicated-scheme>
 <scheme-name>replicated</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </replicated-scheme>
 </caching-schemes>
</cache-config>

In the example, the replicated cache defines a local cache to be used as the backing
map. See Chapter 14, "Implementing Storage and Backing Maps" for more information
on configuring backing maps.

Defining Optimistic Cache Schemes
The <optimistic-scheme> element is used to define optimistic caches. An optimistic
cache utilizes an optimistic cache service instance. Any number of optimistic caches
can be defined in a cache configuration file. See "optimistic-scheme" on page B-80 for a
detailed reference of the <optimistic-scheme> element.

Example 13–5 defines a basic optimistic cache that uses optimistic as the scheme
name and is mapped to the cache name example. The <autostart> element is set to
true to start the service on a cache server node.

Example 13–5 Sample Optimistic Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

Defining Cache Schemes

13-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>optimistic</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <optimistic-scheme>
 <scheme-name>optimistic</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </optimistic-scheme>
 </caching-schemes>
</cache-config>

In the example, the optimistic cache defines a local cache to be used as the backing
map. See Chapter 14, "Implementing Storage and Backing Maps" for more information
on configuring backing maps.

Defining Local Cache Schemes
The <local-scheme> element is used to define local caches. Local caches are generally
nested within other cache schemes, for instance as the front-tier of a near cache. Thus,
this element can appear as a sub-element of any of the following elements:
<caching-schemes>, <distributed-scheme>, <replicated-scheme>,
<optimistic-scheme>, <near-scheme>, <overflow-scheme>,
<read-write-backing-map-scheme>, and <backing-map-scheme>. See "local-scheme"
on page B-67 for a detailed reference of the <local-scheme> element.

Example 13–6 defines a local cache that uses local as the scheme name and is mapped
to the cache name example.

Example 13–6 Sample Local Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <local-scheme>
 <scheme-name>local</scheme-name>

Note: A local cache is not typically used as a standalone cache on a
cache server; moreover, a clustering cache server distribution does not
start if the only cache definition in the cache configuration file is a
local cache.

Defining Cache Schemes

Configuring Caches 13-7

 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 </local-scheme>
 </caching-schemes>
</cache-config>

See "Defining a Local Cache for C++ Clients" and "Configuring a Local Cache for .NET
Clients" in the Developing Remote Clients for Oracle Coherence when using
Coherence*Extend.

Controlling the Growth of a Local Cache
As shown in Table 13–6, the <local-scheme> provides several optional sub-elements
that control the growth of the cache. For example, the <low-units> and <high-units>
sub-elements limit the cache in terms of size. When the cache reaches its maximum
allowable size it prunes itself back to a specified smaller size, choosing which entries
to evict according to a specified eviction-policy (<eviction-policy>). The entries and
size limitations are measured in terms of units as calculated by the scheme's
unit-calculator (<unit-calculator>).

Local caches use the <expiry-delay> cache configuration element to configure the
amount of time that items may remain in the cache before they expire. Client threads
initiate these actions while accessing the cache. Therefore, the <expiry-delay> may be
reached, but not initiated until a client thread accesses the cache. For example, if the
<expiry-delay> value is set at 10 seconds (10s) and a client accesses the cache after 15
seconds, then expiry occurs after 15 seconds.

Specifying a Custom Eviction Policy
The LocalCache class is used for size-limited caches. It is used both for caching
on-heap objects (as in a local cache or the front portion of a near cache) and as the
backing map for a partitioned cache. Applications can provide custom eviction
policies for use with a LocalCache.

Coherence's default eviction policy is very effective for most workloads; the majority
of applications do not have to provide a custom policy. Generally, it is best to restrict
the use of eviction policies to scenarios where the evicted data is present in a backing
system (that is, the back portion of a near cache or a database). Eviction should be
treated as a physical operation (freeing memory) and not a logical operation (deleting
an entity).

Example 13–7 shows the implementation of a simple custom eviction policy:

Example 13–7 Implementing a Custom Eviction Policy

package com.tangosol.examples.eviction;

import com.tangosol.net.cache.AbstractEvictionPolicy;
import com.tangosol.net.cache.ConfigurableCacheMap;

Note: The client thread performs the evictions, not a background
thread. In addition, the expiry delay parameter (cExpiryMillis) is
defined as an integer and is expressed in milliseconds. Therefore, the
maximum amount of time can never exceed Integer.MAX_VALUE
(2147483647) milliseconds or approximately 24 days.

Defining Cache Schemes

13-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

import com.tangosol.net.cache.LocalCache;
import com.tangosol.net.BackingMapManagerContext;
import com.tangosol.util.ConverterCollections;
import java.util.Iterator;
import java.util.Map;

/**
 * Custom eviction policy that evicts items randomly (or more specifically,
 * based on the natural order provided by the map's iterator.)
 * This example may be used in cases where fast eviction is required
 * with as little processing as possible.
 */
public class SimpleEvictionPolicy
 extends AbstractEvictionPolicy
 {
 /**
 * Default constructor; typically used with local caches or the front
 * parts of near caches.
 */
 public SimpleEvictionPolicy()
 {
 }

 /**
 * Constructor that accepts {@link BackingMapManagerContext}; should
 * be used with partitioned cache backing maps.
 *
 * @param ctx backing map context
 */
 public SimpleEvictionPolicy(BackingMapManagerContext ctx)
 {
 m_ctx = ctx;
 }

 /**
 * {@inheritDoc}
 */
 public void entryUpdated(ConfigurableCacheMap.Entry entry)
 {
 }

 /**
 * {@inheritDoc}
 */
 public void entryTouched(ConfigurableCacheMap.Entry entry)
 {
 }

 /**
 * {@inheritDoc}
 */
 public void requestEviction(int cMaximum)
 {
 ConfigurableCacheMap cache = getCache();
 Iterator iter = cache.entrySet().iterator();

 for (int i = 0, c = cache.getUnits() - cMaximum; i < c && iter.hasNext();
 i++)
 {
 ConfigurableCacheMap.Entry entry = (ConfigurableCacheMap.Entry)

Defining Cache Schemes

Configuring Caches 13-9

 iter.next();
 StringBuffer buffer = new StringBuffer();

 // If the contents of the entry (for example the key/value) need
 // to be examined, invoke convertEntry(entry) in case
 // the entry must be deserialized
 Map.Entry convertedEntry = convertEntry(entry);
 buffer.append("Entry: ").append(convertedEntry);

 // Here's how to get metadata about creation/last touched
 // timestamps for entries. This information might be used
 // in determining what gets evicted.
 if (entry instanceof LocalCache.Entry)
 {
 buffer.append(", create millis=");
 buffer.append(((LocalCache.Entry) entry).getCreatedMillis());
 }
 buffer.append(", last touch millis=");
 buffer.append(entry.getLastTouchMillis());

 // This output is for illustrative purposes; this may generate
 // excessive output in a production system
 System.out.println(buffer);

 // iterate and remove items
 // from the cache until below the maximum. Note that
 // the non converted entry key is passed to the evict method
 cache.evict(entry.getKey());
 }
 }

 /**
 * If a {@link BackingMapManagerContext} is configured, wrap the
 * Entry with {@link ConverterCollections.ConverterEntry} in order
 * to deserialize the entry.
 *
 * @see ConverterCollections.ConverterEntry
 * @see BackingMapManagerContext
 *
 * @param entry entry to convert if necessary
 *
 * @return an entry that deserializes its key and value if necessary
 */
 protected Map.Entry convertEntry(Map.Entry entry)
 {
 BackingMapManagerContext ctx = m_ctx;
 return ctx == null ? entry :
 new ConverterCollections.ConverterEntry(entry,
 ctx.getKeyFromInternalConverter(),
 ctx.getValueFromInternalConverter(),
 ctx.getValueToInternalConverter());
 }

 private BackingMapManagerContext m_ctx;
 }

Example 13–8 illustrates a Coherence cache configuration file with an eviction policy:

Defining Cache Schemes

13-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 13–8 Custom Eviction Policy in a coherence-cache-config.xml File

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>example-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <near-scheme>
 <scheme-name>example-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <eviction-policy>
 <class-scheme>
 <class-name>
 com.tangosol.examples.eviction.SimpleEvictionPolicy
 </class-name>
 </class-scheme>
 </eviction-policy>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>example-distributed</scheme-ref>
 </distributed-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 <autostart>true</autostart>
 </near-scheme>

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <eviction-policy>
 <class-scheme>
 <class-name>
 com.tangosol.examples.eviction.SimpleEvictionPolicy
 </class-name>
 <init-params>
 <!--
 Passing the BackingMapManagerContext to the eviction policy;
 this is required for deserializing entries
 -->
 <init-param>
 <param-type>
 com.tangosol.net.BackingMapManagerContext</param-type>
 <param-value>{manager-context}</param-value>
 </init-param>
 </init-params>
 </class-scheme>

Defining Cache Schemes

Configuring Caches 13-11

 </eviction-policy>
 <high-units>20</high-units>
 <unit-calculator>binary</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Defining Near Cache Schemes
The <near-scheme> element is used to define a near cache. A near cache is a composite
cache because it contains two caches: the <front-scheme> element is used to define a
local (front-tier) cache and the <back-scheme> element is used to define a (back-tier)
cache. Typically, a local cache is used for the front-tier, however, the front-tier can also
use schemes based on Java Objects (using the <class-scheme>) and non-JVM
heap-based caches (using <external-scheme> or <paged-external-scheme>). The
back-tier cache is described by the <back-scheme> element. A back-tier cache can be
any clustered cache type and any of the standalone cache types. See "near-scheme" on
page B-73 for a detailed reference of the <near-scheme> element.

Example 13–9 defines of a near cache that uses near as the scheme name and is
mapped to the cache name example. The front-tier is a local cache and the back-tier is a
distributed cache.

Example 13–9 Sample Near Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <near-scheme>
 <scheme-name>near</scheme-name>
 <front-scheme>
 <local-scheme/>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-name>near-distributed</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>

Note: Near caches are used for cache clients and are not typically
used on a cache server; moreover, a cache server does not start if the
only cache definition in the cache configuration file is a near cache.

Defining Cache Schemes

13-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 </distributed-scheme>
 </back-scheme>
 </near-scheme>
 </caching-schemes>
</cache-config>

See "Defining a Near Cache for C++ Clients" and "Defining a Near Cache for .NET
Clients" in the Developing Remote Clients for Oracle Coherence when using
Coherence*Extend.

Near Cache Invalidation Strategies
The <invalidation-strategy> is an optional subelement for a near cache. An
invalidation strategy is used to specify how the front-tier and back-tier objects are kept
synchronous. A near cache can be configured to listen to certain events in the back
cache and automatically update or invalidate entries in the front cache. Depending on
the interface that the back cache implements, the near cache provides five different
strategies of invalidating the front cache entries that have changed by other processes
in the back cache.

Table 13–1 describes the invalidation strategies. You can find more information on the
invalidation strategies and the read-through/write-through approach in Chapter 15,
"Caching Data Sources."

Note: When using an invalidation strategy of all, cache operations
that modify a large number of entries (for example, a clear operation)
can cause a flood of events that may saturate the network.

Table 13–1 Near Cache Invalidation Strategies

Strategy Name Description

auto The default strategy if no strategy is specified. This strategy is
identical to the present strategy.

present This strategy instructs a near cache to listen to the back cache
events related only to the items currently present in the front
cache. This strategy works best when each instance of a front
cache contains distinct subset of data relative to the other front
cache instances (for example, sticky data access patterns).

all This strategy instructs a near cache to listen to all back cache
events. This strategy is optimal for read-heavy tiered access
patterns where there is significant overlap between the different
instances of front caches.

logical This strategy instructs a near cache to listen to all backing map
events that are not synthetic deletes. A synthetic delete event
could be emitted as a result of eviction or expiration. With this
invalidation strategy, it is possible for the front map to contain
cache entries that have been synthetically removed from the
backing map. Any subsequent re-insertion of the entries to the
backing map causes the corresponding entries in the front map
to be invalidated.

none This strategy instructs the cache not to listen for invalidation
events at all. This is the best choice for raw performance and
scalability when business requirements permit the use of data
which might not be absolutely current. Freshness of data can be
guaranteed by use of a sufficiently brief eviction policy for the
front cache.

Using Scheme Inheritance

Configuring Caches 13-13

Using Scheme Inheritance
Scheme inheritance allows cache schemes to be created by inheriting another scheme
and selectively overriding the inherited scheme's properties as required. This
flexibility enables cache schemes to be easily maintained and promotes cache scheme
reuse. The <scheme-ref> element is used within a cache scheme definition and
specifies the name of the cache scheme from which to inherit.

Example 13–10 creates two distributed cache schemes that are equivalent. The first
explicitly configures a local scheme to be used for the backing map. The second
definition use the <scheme-ref> element to inherit a local scheme named
LocalSizeLimited:

Example 13–10 Using Cache Scheme References

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

<local-scheme>
 <scheme-name>LocalSizeLimited</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
</local-scheme>

In Example 13–10, the first distributed scheme definition is more compact; however,
the second definition offers the ability to easily reuse the LocalSizeLimited scheme
within multiple schemes. Example 13–11 demonstrates multiple schemes reusing the
same LocalSizeLimited base definition and overriding the expiry-delay property.

Example 13–11 Multiple Cache Schemes Using Scheme Inheritance

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

Using Cache Scheme Properties

13-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<replicated-scheme>
 <scheme-name>ReplicatedInMemoryCache</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 <expiry-delay>10m</expiry-delay>
 </local-scheme>
 </backing-map-scheme>
</replicated-scheme>

<local-scheme>
 <scheme-name>LocalSizeLimited</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
</local-scheme>

Using Cache Scheme Properties
Cache scheme properties modify cache behavior as required for a particular
application. Each cache scheme type contains its own set of properties that are valid
for the cache. Cache properties are set within a cache scheme definition using their
respective elements. See Appendix B, "Cache Configuration Elements," for a reference
of all the properties that are supported for each cache scheme type.

Many cache properties use default values unless a different value is explicitly given
within the cache scheme definition. The clustered caches (distributed, replicated and
optimistic) use the default values as specified by their respective cache service
definition. Cache services are defined in the operational deployment descriptor. While
it is possible to change property values using an operational override file, cache
properties are most often set within the cache scheme definition.

Example 13–12 creates a basic distributed cache scheme that sets the service thread
count property and the request timeout property. In addition, the local scheme that is
used for the backing map sets properties to limit the size of the local cache.
Instructions for using cache scheme properties are found throughout this guide and
are discussed as part of the features that they support.

Example 13–12 Setting Cache Properties

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>

Using Parameter Macros

Configuring Caches 13-15

 <service-name>DistributedCache</service-name>
 <thread-count>4</thread-count>
 <request-timeout>60s</request-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <local-scheme>
 <scheme-name>LocalSizeLimited</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
 </local-scheme>
 </caching-schemes>
</cache-config>

Using Parameter Macros
The cache configuration deployment descriptor supports the use of parameter macros.
Parameter macros are literal strings that are replaced with an actual value at runtime.
Coherence includes predefined macros and also allows user-defined macros. This
section includes the following topics:

■ Using User-Defined Parameter Macros

■ Using Predefined Parameter Macros

Using User-Defined Parameter Macros
User-defined parameter macros allow property values in a scheme to be replaced at
runtime by values that are configured within cache mapping initialization parameters.
User-defined parameter macros maximize the reuse of cache scheme definitions and
can significantly reduce the size of a cache configuration file.

To define a user-defined parameter macro, place a literal string within curly braces as
the value of a property. A parameter macro can also include an optional default value
by placing the value after the string preceded by a space. The form of a user-defined
macro is as follows:

{user-defined-name default_value}

The following example creates a user-defined macro that is called back-size-limit.
The macro is used for the <high-units> property of a backing map and allows the
property value to be replaced at runtime. The macro specifies a default value of 500 for
the <high-units> property.

<caching-schemes>
 <distributed-scheme>

Note: Parameter macros should not be used for service-scoped
(shared by all caches in the same service) items, such as thread count,
partition count, and service name. Parameter macros should only be
used for cache-scoped items, such as expiry, high units, or cachec
stores to name a few.

Using Parameter Macros

13-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <scheme-name>distributed</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <high-units>{back-size-limit 500}</high-units>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
</caching-schemes>

At runtime, the <high-units> value can be replaced by using an initialization
parameter that is defined within a cache mapping definition. The following example
overrides the default value of 500 with 1000 by using an <init-param> element and
setting the <param-name> element to back-size-limit and the <param-value> element
to 1000. See "init-param" on page B-52 for a detailed reference of the <init-param>
element.

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 <init-params>
 <init-param>
 <param-name>back-size-limit</param-name>
 <param-value>1000</param-value>
 </init-param>
 </init-params>
 </cache-mapping>
<caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <high-units>{back-size-limit 500}</high-units>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
</caching-schemes>

The benefit of using user-defined parameter macros is that multiple cache mappings
can use the same cache scheme and set different property values as required.
Example 13–13 demonstrates two cache mappings that reuse the same cache scheme.
However, the mappings result in caches with different values for the <high-units>
element.

Example 13–13 Overriding User-Defined Macros From a Cache Mapping

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 <init-params>

Using Parameter Macros

Configuring Caches 13-17

 <init-param>
 <param-name>back-size-limit</param-name>
 <param-value>1000</param-value>
 </init-param>
 </init-params>
 </cache-mapping>
<caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <high-units>{back-size-limit 500}</high-units>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
</caching-schemes>

Using Predefined Parameter Macros
Coherence includes predefined parameter macros that minimize custom coding and
enable the specification of commonly used attributes when configuring class
constructor parameters. The macros must be entered within curly braces and are
specific to either the param-type or param-value elements.

Table 13–2 describes the predefined parameter macros that may be specified.

Using Parameter Macros

13-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Table 13–2 Predefined Parameter Macros for Cache Configuration

<param-type> <param-value> Description

java.lang.String {cache-name} Used to pass the current cache name as a constructor parameter
For example:

<class-name>com.mycompany.cache.CustomCacheLoader
</class-name>
<init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
</init-params>

java.lang.ClassLoader {class-loader} Used to pass the current classloader as a constructor parameter.
For example:

<class-name>com.mycompany.cache.CustomCacheLoader
</class-name>
<init-params>
 <init-param>
 <param-type>java.lang.ClassLoader</param-type>
 <param-value>{class-loader}</param-value>
 </init-param>
</init-params>

Using Parameter Macros

Configuring Caches 13-19

com.tangosol.net.Backi
ngMapManagerContext

{manager-context} Used to pass the current BackingMapManagerContext object as a
constructor parameter. For example:

<class-name>com.mycompany.cache.CustomCacheLoader
</class-name>
<init-params>
 <init-param>
 <param-type>
 com.tangosol.net.BackingMapManagerContext
 </param-type>
 <param-value>{manager-context}</param-value>
 </init-param>
</init-params>

{scheme-ref} local-scheme Instantiates an object defined by the <class-scheme>,
<local-scheme> or <file-scheme> with the specified
<scheme-name> value and uses it as a constructor parameter.
For example:

<class-scheme>
 <scheme-name>dbconnection</scheme-name>
 <class-name>com.mycompany.dbConnection</class-name>
 <init-params>
 <init-param>
 <param-name>driver</param-name>
 <param-type>String</param-type>
 <param-value>org.gjt.mm.mysql.Driver
 </param-value>
 </init-param>
 <init-param>
 <param-name>url</param-name>
 <param-type>String</param-type>
 <param-value>
 jdbc:mysql://dbserver:3306/companydb
 </param-value>
 </init-param>
 <init-param>
 <param-name>user</param-name>
 <param-type>String</param-type>
 <param-value>default</param-value>
 </init-param>
 <init-param>
 <param-name>password</param-name>
 <param-type>String</param-type>
 <param-value>default</param-value>
 </init-param>
 </init-params>
</class-scheme>
...
<class-name>com.mycompany.cache.CustomCacheLoader
</class-name>
<init-params>
 <init-param>
 <param-type>{scheme-ref}</param-type>
 <param-value>dbconnection</param-value>
 </init-param>
</init-params>

Table 13–2 (Cont.) Predefined Parameter Macros for Cache Configuration

<param-type> <param-value> Description

Using Parameter Macros

13-20 Oracle Fusion Middleware Developing Applications with Oracle Coherence

{cache-ref} cache name Used to obtain a NamedCache reference for the specified cache
name. Consider the following configuration example:

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>boston-*</cache-name>
 <scheme-name>wrapper</scheme-name>
 <init-params>
 <init-param>
 <param-name>delegate-cache-name</param-name>
 <param-value>london-*</param-value>
 </init-param>
 </init-params>
 </cache-mapping>
 <cache-mapping>
 <cache-name>london-*</cache-name>
 <scheme-name>partitioned</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <class-scheme>
 <scheme-name>wrapper</scheme-name>
 <class-name>
 com.tangosol.net.cache.WrapperNamedCache
 </class-name>
 <init-params>
 <init-param>
 <param-type>{cache-ref}</param-type>
 <param-value>{delegate-cache-name}
 </param-value>
 </init-param>
 <init-param>
 <param-type>string</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 <distributed-scheme>
 <scheme-name>partitioned</scheme-name>
 <service-name>partitioned</service-name>
 <backing-map-scheme>
 <local-scheme>
 <unit-calculator>BINARY</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

The CacheFactory.getCache("london-test") call would result
in a standard partitioned cache reference. Conversely, the
CacheFactory.getCache("boston-test") call would resolve
the value of the delegate-cache-name parameter to
london-test and would construct an instance of the
WrapperNamedCache delegating to the NamedCache returned by
the CacheFactory.getCache("london-test") call.

Table 13–2 (Cont.) Predefined Parameter Macros for Cache Configuration

<param-type> <param-value> Description

14

Implementing Storage and Backing Maps 14-1

14Implementing Storage and Backing Maps

[14] This chapter describes how storage is implemented in Coherence and includes
instructions for configuring Coherence backing maps.

This chapter includes the following sections:

■ Cache Layers

■ Local Storage

■ Operations

■ Capacity Planning

■ Using Partitioned Backing Maps

■ Using the Elastic Data Feature to Store Data

■ Using Asynchronous Backup

■ Using Delta Backup

Cache Layers
Partitioned (Distributed) cache service in Coherence has three distinct layers:

■ Client View – The client view represents a virtual layer that provides access to the
underlying partitioned data. Access to this tier is provided using the NamedCache
interface. In this layer you can also create synthetic data structures such as
NearCache or ContinuousQueryCache.

■ Storage Manager – The storage manager is the server-side tier that is responsible
for processing cache-related requests from the client tier. It manages the data
structures that hold the actual cache data (primary and backup copies) and
information about locks, event listeners, map triggers, and so on.

■ Backing Map – The Backing Map is the server-side data structure that holds actual
data.

Coherence allows users to configure out-of-the-box and custom backing map
implementations. The only constraint for a Map implementation is the understanding
that the Storage Manager provides all keys and values in internal (Binary) format. To
deal with conversions of that internal data to and from an Object format, the Storage
Manager can supply Backing Map implementations with a
BackingMapManagerContext reference.

Figure 14–1 shows a conceptual view of backing maps.

Local Storage

14-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Figure 14–1 Backing Map Storage

Local Storage
Local storage refers to the data structures that actually store or cache the data that is
managed by Coherence. For an object to provide local storage, it must support the
same standard collections interface, java.util.Map. When a local storage
implementation is used by Coherence to store replicated or distributed data, it is called
a backing map because Coherence is actually backed by that local storage
implementation. The other common uses of local storage is in front of a distributed
cache and as a backup behind the distributed cache.

Coherence supports the following local storage implementations:

■ Safe HashMap: This is the default lossless implementation. A lossless
implementation is one, like the Java Hashtable class, that is neither size-limited
nor auto-expiring. In other words, it is an implementation that never evicts
("loses") cache items on its own. This particular HashMap implementation is
optimized for extremely high thread-level concurrency. For the default

Caution: Be careful when using any backing map that does not store
data on heap, especially if storing more data than can actually fit on
heap. Certain cache operations (for example, unindexed queries) can
potentially traverse a large number of entries that force the backing
map to bring those entries onto the heap. Also, partition transfers (for
example, restoring from backup or transferring partition ownership
when a new member joins) force the backing map to bring lots of
entries onto the heap. This can cause GC problems and potentially
lead to OutOfMemory errors.

Operations

Implementing Storage and Backing Maps 14-3

implementation, use class com.tangosol.util.SafeHashMap; when an
implementation is required that provides cache events, use
com.tangosol.util.ObservableHashMap. These implementations are thread-safe.

■ Local Cache: This is the default size-limiting and auto-expiring implementation.
See "Capacity Planning" on page 14-4, for details on configuration. A local cache
limits the size of the cache and automatically expires cache items after a certain
period. For the default implementation, use
com.tangosol.net.cache.LocalCache; this implementation is thread safe and
supports cache events, com.tangosol.net.CacheLoader, CacheStore and
configurable/pluggable eviction policies.

■ Read/Write Backing Map: This is the default backing map implementation for
caches that load from a backing store (such as a database) on a cache miss. It can
be configured as a read-only cache (consumer model) or as either a write-through
or a write-behind cache (for the consumer/producer model). The write-through
and write-behind modes are intended only for use with the distributed cache
service. If used with a near cache and the near cache must be kept synchronous
with the distributed cache, it is possible to combine the use of this backing map
with a Seppuku-based near cache (for near cache invalidation purposes). For the
default implementation, use class
com.tangosol.net.cache.ReadWriteBackingMap.

■ Binary Map (Java NIO): This is a backing map implementation that can store its
information in memory but outside of the Java heap, or even in memory-mapped
files, which means that it does not affect the Java heap size and the related JVM
garbage-collection performance that can be responsible for application pauses.
This implementation is also available for distributed cache backups, which is
particularly useful for read-mostly and read-only caches that require backup for
high availability purposes, because it means that the backup does not affect the
Java heap size yet it is immediately available in case of failover.

■ Serialization Map: This is a backing map implementation that translates its data
to a form that can be stored on disk, referred to as a serialized form. It requires a
separate com.tangosol.io.BinaryStore object into which it stores the serialized
form of the data. Serialization Map supports any custom implementation of
BinaryStore. For the default implementation of Serialization Map, use
com.tangosol.net.cache.SerializationMap.

■ Serialization Cache: This is an extension of the SerializationMap that supports
an LRU eviction policy. For example, a serialization cache can limit the size of disk
files. For the default implementation of Serialization Cache, use
com.tangosol.net.cache.SerializationCache.

■ Journal: This is a backing map implementation that stores data to either RAM,
disk, or both RAM and disk. Journaling use the
com.tangosol.io.journal.JournalBinaryStore class. For details about using
journals, see "Using the Elastic Data Feature to Store Data" on page 14-7.

■ Overflow Map: An overflow map does not actually provide storage, but it
deserves mention in this section because it can combine two local storage
implementations so that when the first one fills up, it overflows into the second.
For the default implementation of OverflowMap, use
com.tangosol.net.cache.OverflowMap.

Operations
There are number of operation types performed against the Backing Map:

Capacity Planning

14-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Natural access and update operations caused by the application usage. For
example, NamedCache.get() call naturally causes a Map.get() call on a
corresponding Backing Map; the NamedCache.invoke() call may cause a sequence
of Map.get() followed by the Map.put(); the NamedCache.keySet(filter) call
may cause an Map.entrySet().iterator() loop, and so on.

■ Remove operations caused by the time-based expiry or the size-based eviction. For
example, a NamedCache.get() or NamedCache.size() call from the client tier could
cause a Map.remove() call due to an entry expiry timeout; or NamedCache.put()
call causing some Map.remove() calls (for different keys) caused by the total
amount data in a backing map reaching the configured high water-mark value.

■ Insert operations caused by a CacheStore.load() operation (for backing maps
configured with read-through or read-ahead features)

■ Synthetic access and updates caused by the partition distribution (which in turn
could be caused by cluster nodes fail over or fail back). In this case, without any
application tier call, some entries could be inserted or removed from the backing
map.

Capacity Planning
Depending on the actual implementation, the Backing Map stores the cache data in the
following ways:

■ on-heap memory

■ off-heap memory

■ disk (memory-mapped files or in-process DB)

■ solid state device (journal files)

■ combination of any of the above

Keeping data in memory naturally provides dramatically smaller access and update
latencies and is most commonly used.

More often than not, applications must ensure that the total amount of data placed
into the data grid does not exceed some predetermined amount of memory. It could be
done either directly by the application tier logic or automatically using size- or
expiry-based eviction. The total amount of data held in a Coherence cache equals the
sum of data volume in all corresponding backing maps (one per each cluster node that
runs the corresponding partitioned cache service in a storage enabled mode).

Consider following cache configuration excerpts:

<backing-map-scheme>
 <local-scheme/>
</backing-map-scheme>

The backing map above is an instance of com.tangosol.net.cache.LocalCache and
does not have any pre-determined size constraints and has to be controlled explicitly.
Failure to do so could cause the JVM to go out-of-memory. The following example
configures size constraints on the backing map:

<backing-map-scheme>
 <local-scheme>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <unit-factor>1048576</unit-factor>

Capacity Planning

Implementing Storage and Backing Maps 14-5

 </local-scheme>
</backing-map-scheme>

This backing map above is also a com.tangosol.net.cache.LocalCache and has a
capacity limit of 100MB. As the total amount of data held by this backing map exceeds
that high watermark, some entries are removed from the backing map, bringing the
volume down to the low watermark value (<low-units> configuration element, which
defaults to 80% of the <high-units>). The choice of the removed entries is based on
the LRU (Least Recently Used) eviction policy. Other options are LFU (Least
Frequently Used) and Hybrid (a combination of the LRU and LFU). The value of
<high-units> is limited to Integer.MAX_VALUE (or approximately 2GB). To overcome
that limitation (but maintain backward compatibility) Coherence uses the
<unit-factor> element. For example, the <high-units> value of 8192 with a
<unit-factor> of 1048576 results in a high watermark value of 8GB.

The following backing map automatically evicts any entries that have not been
updated for more than an hour. Note, that the eviction is "lazy" and can happen any
time after an hour since the last update happens; the only guarantee Coherence
provides is that entries that exceed one hour are not returned to a caller.

<backing-map-scheme>
 <local-scheme>
 <expiry-delay>1h</expiry-delay>
 </local-scheme>
</backing-map-scheme>

The following backing map is an instance of
com.tangosol.net.cache.SerializationCache which stores values in the extended
(nio) memory and has a capacity limit of 100MB (100*1048576).

<backing-map-scheme>
 <external-scheme>
 <nio-memory-manager>
 <initial-size>1MB</initial-size>
 <maximum-size>100MB</maximum-size>
 </nio-memory-manager>
 <high-units>100</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <unit-factor>1048576</unit-factor>
 </external-scheme>
</backing-map-scheme>

 Configure a backup storage for this cache being off-heap (or file-mapped):

<backup-storage>
 <type>off-heap</type>
 <initial-size>1MB</initial-size>
 <maximum-size>100MB</maximum-size>
</backup-storage>

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

Using Partitioned Backing Maps

14-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Using Partitioned Backing Maps
The conventional backing map implementation contained entries for all partitions
owned by the corresponding node. (During partition transfer, it could also hold "in
flight" entries that from the clients' perspective are temporarily not owned by anyone).

Figure 14–2 shows a conceptual view of the conventional backing map
implementation.

Figure 14–2 Conventional Backing Map Implementation

A partitioned backing map is basically a multiplexer of actual Map implementations,
each of which would contain only entries that belong to the same partition.

Figure 14–3 shows a conceptual view of the partitioned backing map implementation.

Figure 14–3 Partitioned Backing Map Implementation

To configure a partitioned backing map, add a <partitioned> element with a value of
true. For example:

<backing-map-scheme>

Using the Elastic Data Feature to Store Data

Implementing Storage and Backing Maps 14-7

 <partitioned>true</partitioned>
 <external-scheme>
 <nio-memory-manager>
 <initial-size>1MB</initial-size>
 <maximum-size>50MB</maximum-size>
 </nio-memory-manager>
 <high-units>8192</high-units>
 <unit-calculator>BINARY</unit-calculator>
 <unit-factor>1048576</unit-factor>
 </external-scheme>
</backing-map-scheme>

This backing map is an instance of
com.tangosol.net.partition.PartitionSplittingBackingMap, with individual
partition holding maps being instances of
com.tangosol.net.cache.SerializationCache that each store values in the extended
(nio) memory. The individual nio buffers have a limit of 50MB, while the backing map
as whole has a capacity limit of 8GB (8192*1048576).

Using the Elastic Data Feature to Store Data
The Elastic Data feature is used to seamlessly store data across memory and
disk-based devices. This feature is especially tuned to take advantage of fast
disk-based devices such as Solid State Disks (SSD) and enables near memory speed
while storing and reading data from SSDs. The Elastic Data feature uses a technique
called journaling to optimize the storage across memory and disk.

Elastic data contains two distinct components: the RAM journal for storing data
in-memory and the flash journal for storing data to disk-based devices. These can be
combined in different combinations and are typically used for backing maps and
backup storage but can also be used with composite caches (for example, a near
cache). The RAM journal always works with the flash journal to enable seamless
overflow to disk.

Caches that use RAM and flash journals are configured as part of a cache scheme
definition within a cache configuration file. Journaling behavior is configured, as
required, by using an operational override file to override the out-of-box
configuration.

This section includes the following topics:

■ Journaling Overview

■ Defining Journal Schemes

■ Changing Journaling Behavior

Journaling Overview
Journaling refers to the technique of recording state changes in a sequence of
modifications called a journal. As changes occur, the journal records each value for a
specific key and a tree structure that is stored in memory keeps track of which journal
entry contains the current value for a particular key. To find the value for an entry, you
find the key in the tree which includes a pointer to the journal entry that contains the
latest value.

As changes in the journal become obsolete due to new values being written for a key,
stale values accumulate in the journal. At regular intervals, the stale values are
evacuated making room for new values to be written in the journal.

Using the Elastic Data Feature to Store Data

14-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The Elastic Data feature includes a RAM journal implementation and a Flash journal
implementation that work seamlessly with each other. If for example the RAM Journal
runs out of memory, the Flash Journal automatically accepts the overflow from the
RAM Journal, allowing for caches to expand far beyond the size of RAM.

A resource manager controls journaling. The resource manager creates and utilizes a
binary store to perform operations on the journal. The binary store is implemented by
the JournalBinaryStore class. All reads and writes through the binary store are
handled by the resource manager. There is a resource manager for RAM journals
(RamJournalRM) and one for flash journals (FlashJournalRM). For details about these
APIs, see Java API Reference for Oracle Coherence.

Defining Journal Schemes
The <ramjournal-scheme> and <flashjournal-scheme> elements are used to
configure RAM and Flash journals (respectively) in a cache configuration file. See the
"ramjournal-scheme" on page B-101 and the "flashjournal-scheme" on page B-44 for
detailed configuration options for these scheme types.

This section includes the following topics:

■ Configuring a RAM Journal Backing Map

■ Configuring a Flash Journal Backing Map

■ Referencing a Journal Scheme

■ Using Journal Expiry and Eviction

■ Using a Journal Scheme for Backup Storage

■ Enabling a Custom Map Implementation for a Journal Scheme

Configuring a RAM Journal Backing Map
To configure a RAM journal backing map, add the <ramjournal-scheme> element
within the <backing-map-scheme> element of a cache definition. The following
example creates a distributed cache that uses a RAM journal for the backing map. The
RAM journal automatically delegates to a flash journal when the RAM journal exceeds
the configured memory size. See "Changing Journaling Behavior" on page 14-10 to
change memory settings.

<distributed-scheme>
 <scheme-name>distributed-journal</scheme-name>
 <service-name>DistributedCacheRAMJournal</service-name>
 <backing-map-scheme>
 <ramjournal-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Note: Elastic data is ideal when performing key-based operations
and typically not recommend for large filter-based operations. When
journaling is enabled, additional capacity planning is required if you
are performing data grid operations (such as queries and
aggregations) on large result sets. See Administering Oracle Coherence
for details.

Using the Elastic Data Feature to Store Data

Implementing Storage and Backing Maps 14-9

Configuring a Flash Journal Backing Map
To configure a flash journal backing map, add the <flashjournal-scheme> element
within the <backing-map-scheme> element of a cache definition. The following
example creates a distributed scheme that uses a flash journal for the backing map.

<distributed-scheme>
 <scheme-name>distributed-journal</scheme-name>
 <service-name>DistributedCacheFlashJournal</service-name>
 <backing-map-scheme>
 <flashjournal-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Referencing a Journal Scheme
The RAM and flash journal schemes both support the use of scheme references to
reuse scheme definitions. The following example creates a distributed cache and
configures a RAM journal backing map by referencing the RAM scheme definition
called default-ram.

<caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-journal</scheme-name>
 <service-name>DistributedCacheJournal</service-name>
 <backing-map-scheme>
 <ramjournal-scheme>
 <scheme-ref>default-ram</scheme-ref>
 </ramjournal-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <ramjournal-scheme>
 <scheme-name>default-ram</scheme-name>
 </ramjournal-scheme>
</caching-schemes>

Using Journal Expiry and Eviction
The RAM and flash journal can be size-limited. They can restrict the number of entries
to store and automatically evict entries when the journal becomes full. Furthermore,
both the sizing of entries and the eviction policies can be customized. The following
example defines expiry and eviction settings for a RAM journal:

<distributed-scheme>
 <scheme-name>distributed-journal</scheme-name>
 <service-name>DistributedCacheFlashJournal</service-name>
 <backing-map-scheme>
 <ramjournal-scheme>
 <eviction-policy>LFU</eviction-policy>
 <high-units>100</high-units>
 <low-units>80</low-units>
 <unit-calculator>Binary</unit-calculator>
 <unit-factor>1</unit-factor>
 <expiry-delay>0</expiry-delay>
 </ramjournal-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>

Using the Elastic Data Feature to Store Data

14-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

</distributed-scheme>

Using a Journal Scheme for Backup Storage
Journal schemes are used for backup storage as well as for backing maps. By default,
Flash Journal is used as the backup storage. This default behavior can be modified by
explicitly specifying the storage type within the <backup-storage> element. The
following configuration uses a RAM journal for the backing map and explicitly
configures a RAM journal for backup storage:

<caching-schemes>
 <distributed-scheme>
 <scheme-name>default-distributed-journal</scheme-name>
 <service-name>DistributedCacheJournal</service-name>
 <backup-storage>
 <type>scheme</type>
 <scheme-name>example-ram</scheme-name>
 </backup-storage>
 <backing-map-scheme>
 <ramjournal-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <ramjournal-scheme>
 <scheme-name>example-ram</scheme-name>
 </ramjournal-scheme>
</caching-schemes>

Enabling a Custom Map Implementation for a Journal Scheme
Journal schemes can be configured to use a custom backing map as required. Custom
map implementations must extend the CompactSerializationCache class and declare
the exact same set of public constructors. For details about this API, see Java API
Reference for Oracle Coherence.

To enable, a custom implementation, add a <class-scheme> element whose value is
the fully qualified name of the custom class. Any parameters that are required by the
custom class can be defined using the <init-params> element. The following example
enables a custom map implementation called MyCompactSerializationCache.

<flashjournal-scheme>
 <scheme-name>example-flash</scheme-name>
 <class-name>package.MyCompactSerializationCache</class-name>
</flashjournal-scheme>

Changing Journaling Behavior
A resource manager controls journaling behavior. There is a resource manager for
RAM journals (RamJournalRM) and a resource manager for Flash journals
(FlashJournalRM). The resource managers are configured for a cluster in the
tangosol-coherence-override.xml operational override file. The resource managers'
default out-of-box settings are used if no configuration overrides are set.

This section includes the following topics:

■ Configuring the RAM Journal Resource Manager

■ Configuring the Flash Journal Resource Manager

Using the Elastic Data Feature to Store Data

Implementing Storage and Backing Maps 14-11

Configuring the RAM Journal Resource Manager
The <ramjournal-manager> element is used to configure RAM journal behavior. The
following list summarizes the default characteristics of a RAM journal. See
"ramjournal-manager" on page A-56 for details on all settings that are available and
their defaults.

■ Binary values are limited by default to 64KB (and a maximum of 4MB). A flash
journal is automatically used if a binary value exceeds the configured limit.

■ An individual buffer (a journal file) is limited by default to 2MB (and a maximum
of 2GB). The maximum file size should not be changed.

■ A journal is composed of up to 512 files. 511 files are usable files and one file is
reserved for depleted states.

■ The total memory used by the journal is limited to 1GB by default (and a
maximum of 64GB). A flash journal is automatically used if the total memory of
the journal exceeds the configured limit.

To configure a RAM journal resource manager, add a <ramjournal-manager> element
within a <journaling-config> element and define any subelements that are to be
overridden. The following example demonstrates overriding RAM journal
subelements:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <journaling-config>
 <ramjournal-manager>
 <maximum-value-size>64K</maximum-value-size>
 <maximum-size system-property="tangosol.coherence.ramjournal.size">
 2G</maximum-size>
 </ramjournal-manager>
 </journaling-config>
 </cluster-config>
</coherence>

Configuring the Flash Journal Resource Manager
The <flashjournal-manager> element is used to configure flash journal behavior. The
following list summarizes the default characteristics of a flash journal. See
"flashjournal-manager" on page A-20 for details on all settings that are available and
their defaults.

■ Binary values are limited by default to 64MB.

■ An individual buffer (a journal file) is limited by default to 2GB (and maximum
4GB).

■ A journal is composed of up to 512 files. 511 files are usable files and one file is
reserved for depleted states. A journal is limited by default to 1TB, with a
theoretical maximum of 2TB.

■ A journal has a high journal size of 11GB by default. The high size determines
when to start removing stale values from the journal. This is not a hard limit on
the journal size, which can still grow to the maximum file count (512).

Using Asynchronous Backup

14-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Keys remain in memory in a compressed format. For values, only the unwritten
data (being queued or asynchronously written) remains in memory. When sizing
the heap, a reasonable estimate is to allow 50 bytes for each entry to hold key data
(this is true for both RAM and Flash journals) and include additional space for the
buffers (16MB). The entry size is increased if expiry or eviction is configured.

To configure a flash journal resource manager, add a <flashjournal-manager>
element within a <journaling-config> element and define any subelements that are
to be overridden. The following example demonstrates overriding flash journal
subelements:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <journaling-config>
 <flashjournal-manager>
 <maximum-value-size>64K</maximum-value-size>
 <maximum-file-size>8M</maximum-file-size>
 <block-size>512K</block-size>
 <maximum-pool-size>32M</maximum-pool-size>
 <directory>/coherence_storage</directory>
 <async-limit>32M</async-limit>
 <high-journal-size
 system-property="tangosol.coherence.flashjournal.highjournalsize">
 11GB</high-journal-size>
 </flashjournal-manager>
 </journaling-config>
 </cluster-config>
</coherence>

Using Asynchronous Backup
Distributed caches support both synchronous and asynchronous backup. With
synchronous backup, clients are blocked until a backup operation completes. With
asynchronous backup, clients continue to respond to requests during backup
operations. Backups are performed synchronously unless asynchronous backup is
explicitly enabled.

Asynchronous backup is typically used to increase client performance. However,
applications that use asynchronous backup must handle the possible effects on data
integrity. Specifically, cache operations may complete before backup operations
complete (successfully or unsuccessfully) and backup operations may complete in any
order. Consider using asynchronous backup if an application does not require backups
(that is, data can be restored from a system of record if lost) but the application still
wants to offer fast recovery in the event of a node failure.

To enable asynchronous backup for a distributed cache, add an <async-backup>
element, within a <distributed-scheme> element, that is set to true. For example:

<distributed-scheme>

Note: The directory specified for storing journal files must exist. If
the directory does not exist, a warning is logged and the default
temporary file directory, as designated by the JVM, is used.

Using Delta Backup

Implementing Storage and Backing Maps 14-13

 ...
 <async-backup>true</async-backup>
 ...
</distributed-scheme>

To enable asynchronous backup for all instances of the distributed cache service type,
override the partitioned cache service's async-backup initialization parameter in an
operational override file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="27">
 <param-name>async-backup</param-name>
 <param-value
 system-property="tangosol.coherence.distributed.asyncbackup">
 false
 </param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

The tangosol.coherence.distributed.asyncbackup system property is used to
enable asynchronous backup for all instances of the distributed cache service type
instead of using the operational override file. For example:

-Dtangosol.coherence.distributed.asyncbackup=true

Using Delta Backup
Delta backup is a technique that is used to apply changes to a backup binary entry
rather than replacing the whole entry when the primary entry changes. Delta backup
is ideal in situations where the entry being updated is large but only small changes are
being made. In such cases, the cost for changing only a small portion of the entry is
often less than the cost associated with rewriting the whole entry and results in better
performance. However, entries that change by more than 50% typically demonstrate
little or no performance gain. In this case, the use of delta backup should only be used
if no adverse effect on performance is observed.

Delta backup uses a compressor that compares two in-memory buffers containing an
old and a new value and produces a result (called a delta) that can be applied to the
old value to create the new value. Coherence provides standard delta compressors for
POF and non-POF formats. Custom compressors can also be created and configured as
required.

Using Delta Backup

14-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Enabling Delta Backup
Delta backup is only available for distributed caches and is disabled by default. Delta
backup is enabled either individually for each distributed cache or for all instances of
the distributed cache service type.

To enable delta backup for a distributed cache, add a <compressor> element, within a
<distributed-scheme> element, that is set to standard. For example:

<distributed-scheme>
 ...
 <compressor>standard</compressor>
 ...
</distributed-scheme>

To enable delta backup for all instances of the distributed cache service type, override
the partitioned cache service's compressor initialization parameter in an operational
override file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="22">
 <param-name>compressor</param-name>
 <param-value
 system-property="tangosol.coherence.distributed.compressor">
 standard</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

The tangosol.coherence.distributed.compressor system property is used to enable
delta backup for all instances of the distributed cache service type instead of using the
operational override file. For example:

-Dtangosol.coherence.distributed.compressor=standard

Enabling a Custom Delta Backup Compressor
To use a custom compressor for performing delta backup, include an <instance>
subelement and provide a fully qualified class name that implements the
DeltaCompressor interface. See "instance" on page B-54 for detailed instructions on
using the <instance> element. The following example enables a custom compressor
that is implemented in the MyDeltaCompressor class.

<distributed-scheme>
 ...
 <compressor>
 <instance>
 <class-name>package.MyDeltaCompressor</class-name>

Using Delta Backup

Implementing Storage and Backing Maps 14-15

 </instance>
 </compressor>
 ...
</distributed-scheme>

As an alternative, the <instance> element supports the use of a
<class-factory-name> element to use a factory class that is responsible for creating
DeltaCompressor instances, and a <method-name> element to specify the static factory
method on the factory class that performs object instantiation. The following example
gets a custom compressor instance using the getCompressor method on the
MyCompressorFactory class.

<distributed-scheme>
 ...
 <compressor>
 <instance>
 <class-factory-name>package.MyCompressorFactory</class-factory-name>
 <method-name>getCompressor</method-name>
 </instance>
 </compressor>
 ...
</distributed-scheme>

Any initialization parameters that are required for an implementation can be specified
using the <init-params> element. The following example sets the iMaxTime parameter
to 2000.

<distributed-scheme>
 ...
 <compressor>
 <instance>
 <class-name>package.MyDeltaCompressor</class-name>
 <init-params>
 <init-param>
 <param-name>iMaxTime</param-name>
 <param-value>2000</param-value>
 </init-param>
 </init-params>
 </instance>
 </compressor>
 ...
</distributed-scheme>

Using Delta Backup

14-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

15

Caching Data Sources 15-1

15Caching Data Sources

[15] This chapter provides instructions for caching data sources and using Coherence as a
temporary system-of-record. The chapter includes samples and implementation
considerations.

This chapter includes the following sections:

■ Overview of Caching Data Sources

■ Selecting a Cache Strategy

■ Creating a Cache Store Implementation

■ Plugging in a Cache Store Implementation

■ Sample Cache Store Implementation

■ Sample Controllable Cache Store Implementation

■ Implementation Considerations

Overview of Caching Data Sources
Coherence supports transparent read/write caching of any data source, including
databases, web services, packaged applications and file systems; however, databases
are the most common use case. As shorthand, "database" is used to describe any
back-end data source. Effective caches must support both intensive read-only and
read/write operations, and for read/write operations, the cache and database must be
kept fully synchronized. To accomplish caching of data sources, Coherence supports
Read-Through, Write-Through, Refresh-Ahead and Write-Behind caching.

The following topics are include in this section:

■ Pluggable Cache Store

■ Read-Through Caching

■ Write-Through Caching

■ Write-Behind Caching

■ Refresh-Ahead Caching

Note: Read-through/write-through caching (and variants) are
intended for use only with the Partitioned (Distributed) cache
topology (and by extension, Near cache). Local caches support a
subset of this functionality. Replicated and Optimistic caches should
not be used.

Overview of Caching Data Sources

15-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Pluggable Cache Store
A cache store is an application-specific adapter used to connect a cache to a underlying
data source. The cache store implementation accesses the data source by using a data
access mechanism (for example, Hibernate, Toplink, JPA, application-specific JDBC calls,
another application, mainframe, another cache, and so on). The cache store
understands how to build a Java object using data retrieved from the data source, map
and write an object to the data source, and erase an object from the data source.

Both the data source connection strategy and the data source-to-application-object
mapping information are specific to the data source schema, application class layout,
and operating environment. Therefore, this mapping information must be provided by
the application developer in the cache store implementation. See "Creating a Cache
Store Implementation" on page 15-6 for more information.

Read-Through Caching
When an application asks the cache for an entry, for example the key X, and X is not in
the cache, Coherence automatically delegates to the CacheStore and asks it to load X
from the underlying data source. If X exists in the data source, the CacheStore loads it,
returns it to Coherence, then Coherence places it in the cache for future use and finally
returns X to the application code that requested it. This is called Read-Through
caching. Refresh-Ahead Cache functionality may further improve read performance
(by reducing perceived latency). See "Refresh-Ahead Caching" on page 15-5 for more
information.

Figure 15–1 Read-Through Caching

Write-Through Caching
Coherence can handle updates to the data source in two distinct ways, the first being
Write-Through. In this case, when the application updates a piece of data in the cache
(that is, calls put(...) to change a cache entry,) the operation does not complete (that is,
the put does not return) until Coherence has gone through the cache store and
successfully stored the data to the underlying data source. This does not improve write
performance at all, since you are still dealing with the latency of the write to the data

Overview of Caching Data Sources

Caching Data Sources 15-3

source. Improving the write performance is the purpose for the Write-Behind Cache
functionality. See "Write-Behind Caching" on page 15-3 for more information.

Figure 15–2 Write-Through Caching

Write-Behind Caching
In the Write-Behind scenario, modified cache entries are asynchronously written to
the data source after a configured delay, whether after 10 seconds, 20 minutes, a day, a
week or even longer. Note that this only applies to cache inserts and updates - cache
entries are removed synchronously from the data source. For Write-Behind caching,
Coherence maintains a write-behind queue of the data that must be updated in the
data source. When the application updates X in the cache, X is added to the
write-behind queue (if it is not there; otherwise, it is replaced), and after the specified
write-behind delay Coherence calls the CacheStore to update the underlying data
source with the latest state of X. Note that the write-behind delay is relative to the first
of a series of modifications—in other words, the data in the data source never lags
behind the cache by more than the write-behind delay.

The result is a "read-once and write at a configured interval" (that is, much less often)
scenario. There are four main benefits to this type of architecture:

■ The application improves in performance, because the user does not have to wait
for data to be written to the underlying data source. (The data is written later, and
by a different execution thread.)

■ The application experiences drastically reduced database load: Since the amount
of both read and write operations is reduced, so is the database load. The reads are
reduced by caching, as with any other caching approach. The writes, which are
typically much more expensive operations, are often reduced because multiple
changes to the same object within the write-behind interval are "coalesced" and
only written once to the underlying data source ("write-coalescing"). Additionally,
writes to multiple cache entries may be combined into a single database
transaction ("write-combining") by using the CacheStore.storeAll() method.

■ The application is somewhat insulated from database failures: the Write-Behind
feature can be configured in such a way that a write failure results in the object
being re-queued for write. If the data that the application is using is in the

Overview of Caching Data Sources

15-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Coherence cache, the application can continue operation without the database
being up. This is easily attainable when using the Coherence Partitioned Cache,
which partitions the entire cache across all participating cluster nodes (with
local-storage enabled), thus allowing for enormous caches.

■ Linear Scalability: For an application to handle more concurrent users you need
only increase the number of nodes in the cluster; the effect on the database in
terms of load can be tuned by increasing the write-behind interval.

Figure 15–3 Write-Behind Caching

Write-Behind Requirements
While enabling write-behind caching is simply a matter of adjusting one configuration
setting, ensuring that write-behind works as expected is more involved. Specifically,
application design must address several design issues up-front.

The most direct implication of write-behind caching is that database updates occur
outside of the cache transaction; that is, the cache transaction usually completes before
the database transaction(s) begin. This implies that the database transactions must
never fail; if this cannot be guaranteed, then rollbacks must be accommodated.

As write-behind may re-order database updates, referential integrity constraints must
allow out-of-order updates. Conceptually, this is similar to using the database as
ISAM-style storage (primary-key based access with a guarantee of no conflicting
updates). If other applications share the database, this introduces a new
challenge—there is no way to guarantee that a write-behind transaction does not
conflict with an external update. This implies that write-behind conflicts must be
handled heuristically or escalated for manual adjustment by a human operator.

As a rule of thumb, mapping each cache entry update to a logical database transaction
is ideal, as this guarantees the simplest database transactions.

Because write-behind effectively makes the cache the system-of-record (until the
write-behind queue has been written to disk), business regulations must allow
cluster-durable (rather than disk-durable) storage of data and transactions.

Overview of Caching Data Sources

Caching Data Sources 15-5

Refresh-Ahead Caching
In the Refresh-Ahead scenario, Coherence allows a developer to configure a cache to
automatically and asynchronously reload (refresh) any recently accessed cache entry
from the cache loader before its expiration. The result is that after a frequently
accessed entry has entered the cache, the application does not feel the impact of a read
against a potentially slow cache store when the entry is reloaded due to expiration.
The asynchronous refresh is only triggered when an object that is sufficiently close to
its expiration time is accessed—if the object is accessed after its expiration time,
Coherence performs a synchronous read from the cache store to refresh its value.

The refresh-ahead time is expressed as a percentage of the entry's expiration time. For
example, assume that the expiration time for entries in the cache is set to 60 seconds
and the refresh-ahead factor is set to 0.5. If the cached object is accessed after 60
seconds, Coherence performs a synchronous read from the cache store to refresh its
value. However, if a request is performed for an entry that is more than 30 but less
than 60 seconds old, the current value in the cache is returned and Coherence
schedules an asynchronous reload from the cache store.

Refresh-ahead is especially useful if objects are being accessed by a large number of
users. Values remain fresh in the cache and the latency that could result from excessive
reloads from the cache store is avoided.

The value of the refresh-ahead factor is specified by the <refresh-ahead-factor>
subelement of the <read-write-backing-map-scheme> element in the
coherence-cache-config.xml file. Refresh-ahead assumes that you have also set an
expiration time (<expiry-delay>) for entries in the cache.

Example 15–1 configures a refresh-ahead factor of 0.5 and an expiration time of 20
seconds for entries in the local cache. If an entry is accessed within 10 seconds of its
expiration time, it is scheduled for an asynchronous reload from the cache store.

Example 15–1 Specifying a Refresh-Ahead Factor

<distributed-scheme>
 <scheme-name>categories-cache-all-scheme</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>

 <read-write-backing-map-scheme>
 <scheme-name>categoriesLoaderScheme</scheme-name>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>categories-eviction</scheme-ref>
 </local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.demo.cache.coherence.categories.CategoryCacheLoader
 </class-name>
 </class-scheme>
 </cachestore-scheme>
 <refresh-ahead-factor>0.5</refresh-ahead-factor>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>
<local-scheme>

Selecting a Cache Strategy

15-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <scheme-name>categories-eviction</scheme-name>
 <expiry-delay>20s</expiry-delay>
</local-scheme>

Selecting a Cache Strategy
This section compares and contrasts the benefits of several caching strategies.

■ Read-Through/Write-Through versus Cache-Aside

■ Refresh-Ahead versus Read-Through

■ Write-Behind versus Write-Through

Read-Through/Write-Through versus Cache-Aside
There are two common approaches to the cache-aside pattern in a clustered
environment. One involves checking for a cache miss, then querying the database,
populating the cache, and continuing application processing. This can result in
multiple database visits if different application threads perform this processing at the
same time. Alternatively, applications may perform double-checked locking (which
works since the check is atomic for the cache entry). This, however, results in a
substantial amount of overhead on a cache miss or a database update (a clustered lock,
additional read, and clustered unlock - up to 10 additional network hops, or 6-8ms on
a typical gigabit Ethernet connection, plus additional processing overhead and an
increase in the "lock duration" for a cache entry).

By using inline caching, the entry is locked only for the 2 network hops (while the data
is copied to the backup server for fault-tolerance). Additionally, the locks are
maintained locally on the partition owner. Furthermore, application code is fully
managed on the cache server, meaning that only a controlled subset of nodes directly
accesses the database (resulting in more predictable load and security). Additionally,
this decouples cache clients from database logic.

Refresh-Ahead versus Read-Through
Refresh-ahead offers reduced latency compared to read-through, but only if the cache
can accurately predict which cache items are likely to be needed in the future. With full
accuracy in these predictions, refresh-ahead offers reduced latency and no added
overhead. The higher the rate of inaccurate prediction, the greater the impact is on
throughput (as more unnecessary requests are sent to the database) - potentially even
having a negative impact on latency should the database start to fall behind on request
processing.

Write-Behind versus Write-Through
If the requirements for write-behind caching can be satisfied, write-behind caching
may deliver considerably higher throughput and reduced latency compared to
write-through caching. Additionally write-behind caching lowers the load on the
database (fewer writes), and on the cache server (reduced cache value deserialization).

Creating a Cache Store Implementation
Cache store implementations are pluggable and depending on the cache's usage of the
data source must implement one of the following interfaces:

Plugging in a Cache Store Implementation

Caching Data Sources 15-7

■ CacheLoader – read-only caches

■ CacheStore – read/write caches

■ BinaryEntryStore – read/write for binary entry objects.

These interfaces are located in the com.tangosol.net.cache package. The
CacheLoader interface has two main methods: load(Object key) and
loadAll(Collection keys), and the CacheStore interface adds the methods
store(Object key, Object value), storeAll(Map mapEntries), erase(Object key),
and eraseAll(Collection colKeys). The BinaryEntryStore interface provides the
same methods as the other interfaces, but it works directly on binary objects.

See "Sample Cache Store Implementation" on page 15-8 and "Sample Controllable
Cache Store Implementation" on page 15-13 for example CacheStore implementations.

Plugging in a Cache Store Implementation
To plug in a cache store implementation, specify the implementation class name within
the distributed-scheme, backing-map-scheme, cachestore-scheme, or
read-write-backing-map-scheme, cache configuration element.

The read-write-backing-map-scheme configures a
com.tangosol.net.cache.ReadWriteBackingMap. This backing map is composed of
two key elements: an internal map that actually caches the data (see
internal-cache-scheme), and a cache store implementation that interacts with the
database (see cachestore-scheme).

Example 15–2 illustrates a cache configuration that specifies a cache store
implementation. The <init-params> element contains an ordered list of parameters
that is passed into the constructor. The {cache-name} configuration macro is used to
pass the cache name into the implementation, allowing it to be mapped to a database
table. For a complete list of available macros, see "Using Parameter Macros" on
page 13-15.

For more detailed information on configuring write-behind and refresh-ahead, see the
read-write-backing-map-scheme, taking note of the write-batch-factor,
refresh-ahead-factor, write-requeue-threshold, and
rollback-cachestore-failures elements.

Example 15–2 Example Cachestore Module

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>com.company.dto.*</cache-name>
 <scheme-name>distributed-rwbm</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-rwbm</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>

Sample Cache Store Implementation

15-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>com.example.MyCacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Sample Cache Store Implementation
This section provides a very basic implementation of the
com.tangosol.net.cache.CacheStore interface. The implementation in Example 15–3
uses a single database connection by using JDBC, and does not use bulk operations. A
complete implementation would use a connection pool, and, if write-behind is used,
implement CacheStore.storeAll() for bulk JDBC inserts and updates. "Cache of a
Database" on page 18-4 provides an example of a database cache configuration.

Example 15–3 Implementation of the CacheStore Interface

package com.tangosol.examples.coherence;

import com.tangosol.net.cache.CacheStore;
import com.tangosol.util.Base;

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

Note: The use of a cache store implementation substantially
increases the consumption of cache service threads (even the fastest
database select is orders of magnitude slower than updating an
in-memory structure). Consequently, the cache service thread count
must be increased (typically in the range 10-100). The most noticeable
symptom of an insufficient thread pool is increased latency for cache
requests (without corresponding behavior in the backing database).

Tip: Save processing effort by bulk loading the cache. The following
example use the put method to write values to the cache store. Often,
performing bulk loads with the putAll method results in a savings in
processing effort and network traffic. For more information on bulk
loading, see Chapter 21, "Pre-Loading a Cache."

Sample Cache Store Implementation

Caching Data Sources 15-9

import java.sql.SQLException;

import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

/**
* An example implementation of CacheStore
* interface.
*
* @author erm 2003.05.01
*/
public class DBCacheStore
 extends Base
 implements CacheStore
 {
 // ----- constructors ---
 /**
 * Constructs DBCacheStore for a given database table.
 *
 * @param sTableName the db table name
 */
 public DBCacheStore(String sTableName)
 {
 m_sTableName = sTableName;
 configureConnection();
 }

 /**
 * Set up the DB connection.
 */
 protected void configureConnection()
 {
 try
 {
 Class.forName("org.gjt.mm.mysql.Driver");
 m_con = DriverManager.getConnection(DB_URL, DB_USERNAME,
DB_PASSWORD);
 m_con.setAutoCommit(true);
 }
 catch (Exception e)
 {
 throw ensureRuntimeException(e, "Connection failed");
 }
 }

 // ---- accessors ---

 /**
 * Obtain the name of the table this CacheStore is persisting to.
 *
 * @return the name of the table this CacheStore is persisting to
 */
 public String getTableName()
 {
 return m_sTableName;

Sample Cache Store Implementation

15-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 }

 /**
 * Obtain the connection being used to connect to the database.
 *
 * @return the connection used to connect to the database
 */
 public Connection getConnection()
 {
 return m_con;
 }

 // ----- CacheStore Interface --

 /**
 * Return the value associated with the specified key, or null if the
 * key does not have an associated value in the underlying store.
 *
 * @param oKey key whose associated value is to be returned
 *
 * @return the value associated with the specified key, or
 * <tt>null</tt> if no value is available for that key
 */
 public Object load(Object oKey)
 {
 Object oValue = null;
 Connection con = getConnection();
 String sSQL = "SELECT id, value FROM " + getTableName()
 + " WHERE id = ?";
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);

 stmt.setString(1, String.valueOf(oKey));

 ResultSet rslt = stmt.executeQuery();
 if (rslt.next())
 {
 oValue = rslt.getString(2);
 if (rslt.next())
 {
 throw new SQLException("Not a unique key: " + oKey);
 }
 }
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Load failed: key=" + oKey);
 }
 return oValue;
 }

 /**
 * Store the specified value under the specific key in the underlying
 * store. This method is intended to support both key/value creation
 * and value update for a specific key.
 *
 * @param oKey key to store the value under

Sample Cache Store Implementation

Caching Data Sources 15-11

 * @param oValue value to be stored
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void store(Object oKey, Object oValue)
 {
 Connection con = getConnection();
 String sTable = getTableName();
 String sSQL;

 // the following is very inefficient; it is recommended to use DB
 // specific functionality that is, REPLACE for MySQL or MERGE for Oracle
 if (load(oKey) != null)
 {
 // key exists - update
 sSQL = "UPDATE " + sTable + " SET value = ? where id = ?";
 }
 else
 {
 // new key - insert
 sSQL = "INSERT INTO " + sTable + " (value, id) VALUES (?,?)";
 }
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);
 int i = 0;
 stmt.setString(++i, String.valueOf(oValue));
 stmt.setString(++i, String.valueOf(oKey));
 stmt.executeUpdate();
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Store failed: key=" + oKey);
 }
 }

 /**
 * Remove the specified key from the underlying store if present.
 *
 * @param oKey key whose mapping is to be removed from the map
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void erase(Object oKey)
 {
 Connection con = getConnection();
 String sSQL = "DELETE FROM " + getTableName() + " WHERE id=?";
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);

 stmt.setString(1, String.valueOf(oKey));
 stmt.executeUpdate();
 stmt.close();
 }
 catch (SQLException e)
 {

Sample Cache Store Implementation

15-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 throw ensureRuntimeException(e, "Erase failed: key=" + oKey);
 }
 }

 /**
 * Remove the specified keys from the underlying store if present.
 *
 * @param colKeys keys whose mappings are being removed from the cache
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void eraseAll(Collection colKeys)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Return the values associated with each the specified keys in the
 * passed collection. If a key does not have an associated value in
 * the underlying store, then the return map does not have an entry
 * for that key.
 *
 * @param colKeys a collection of keys to load
 *
 * @return a Map of keys to associated values for the specified keys
 */
 public Map loadAll(Collection colKeys)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Store the specified values under the specified keys in the underlying
 * store. This method is intended to support both key/value creation
 * and value update for the specified keys.
 *
 * @param mapEntries a Map of any number of keys and values to store
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void storeAll(Map mapEntries)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Iterate all keys in the underlying store.
 *
 * @return a read-only iterator of the keys in the underlying store
 */
 public Iterator keys()
 {
 Connection con = getConnection();
 String sSQL = "SELECT id FROM " + getTableName();
 List list = new LinkedList();

 try
 {

Sample Controllable Cache Store Implementation

Caching Data Sources 15-13

 PreparedStatement stmt = con.prepareStatement(sSQL);
 ResultSet rslt = stmt.executeQuery();
 while (rslt.next())
 {
 Object oKey = rslt.getString(1);
 list.add(oKey);
 }
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Iterator failed");
 }

 return list.iterator();
 }

 // ----- data members ---

 /**
 * The connection.
 */
 protected Connection m_con;

 /**
 * The db table name.
 */
 protected String m_sTableName;

 /**
 * Driver class name.
 */
 private static final String DB_DRIVER = "org.gjt.mm.mysql.Driver";

 /**
 * Connection URL.
 */
 private static final String DB_URL = "jdbc:mysql://localhost:3306/CacheStore";

 /**
 * User name.
 */
 private static final String DB_USERNAME = "root";

 /**
 * Password.
 */
 private static final String DB_PASSWORD = null;
 }

Sample Controllable Cache Store Implementation
This section illustrates the implementation of a controllable cache store. In this
scenario, the application can control when it writes updated values to the data store.
The most common use case for this scenario is during the initial population of the
cache from the data store at startup. At startup, there is no requirement to write values
in the cache back to the data store. Any attempt to do so would be a waste of
resources.

Sample Controllable Cache Store Implementation

15-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The Main.java file in Example 15–4 illustrates two different approaches to interacting
with a controllable cache store:

■ Use a controllable cache (note that it must be on a different service) to enable or
disable the cache store. This is illustrated by the ControllableCacheStore1 class.

■ Use the CacheStoreAware interface to indicate that objects added to the cache do
not require storage. This is illustrated by the ControllableCacheStore2 class.

Both ControllableCacheStore1 and ControllableCacheStore2 extend the
com.tangosol.net.cache.AbstractCacheStore class. This helper class provides
unoptimized implementations of the storeAll and eraseAll operations.

The CacheStoreAware interface can be used to indicate that an object added to the
cache should not be stored in the database.

See "Cache of a Database" on page 18-4 for a sample cache configurations.

Example 15–4 provides a listing of the Main.java interface.

Example 15–4 Main.java - Interacting with a Controllable CacheStore

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.net.cache.AbstractCacheStore;
import com.tangosol.util.Base;

import java.io.Serializable;
import java.util.Date;

public class Main extends Base
 {

 /**
 * A cache controlled CacheStore implementation
 */
 public static class ControllableCacheStore1 extends AbstractCacheStore
 {
 public static final String CONTROL_CACHE = "cachestorecontrol";

 String m_sName;

 public static void enable(String sName)
 {
 CacheFactory.getCache(CONTROL_CACHE).put(sName, Boolean.TRUE);
 }

 public static void disable(String sName)
 {
 CacheFactory.getCache(CONTROL_CACHE).put(sName, Boolean.FALSE);
 }

 public void store(Object oKey, Object oValue)
 {
 Boolean isEnabled = (Boolean) CacheFactory.getCache(CONTROL_
CACHE).get(m_sName);
 if (isEnabled != null && isEnabled.booleanValue())
 {
 log("controllablecachestore1: enabled " + oKey + " = " + oValue);
 }
 else
 {

Sample Controllable Cache Store Implementation

Caching Data Sources 15-15

 log("controllablecachestore1: disabled " + oKey + " = " + oValue);
 }
 }

 public Object load(Object oKey)
 {
 log("controllablecachestore1: load:" + oKey);
 return new MyValue1(oKey);
 }

 public ControllableCacheStore1(String sName)
 {
 m_sName = sName;
 }

 }

 /**
 * a valued controlled CacheStore implementation that
 * implements the CacheStoreAware interface
 */
 public static class ControllableCacheStore2 extends AbstractCacheStore
 {

 public void store(Object oKey, Object oValue)
 {
 boolean isEnabled = oValue instanceof CacheStoreAware ?
!((CacheStoreAware) oValue).isSkipStore() : true;
 if (isEnabled)
 {
 log("controllablecachestore2: enabled " + oKey + " = " + oValue);
 }
 else
 {
 log("controllablecachestore2: disabled " + oKey + " = " + oValue);
 }
 }

 public Object load(Object oKey)
 {
 log("controllablecachestore2: load:" + oKey);
 return new MyValue2(oKey);
 }

 }

 public static class MyValue1 implements Serializable
 {
 String m_sValue;

 public String getValue()
 {
 return m_sValue;
 }

 public String toString()
 {
 return "MyValue1[" + getValue() + "]";
 }

Sample Controllable Cache Store Implementation

15-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 public MyValue1(Object obj)
 {
 m_sValue = "value:" + obj;
 }
 }

 public static class MyValue2 extends MyValue1 implements CacheStoreAware
 {
 boolean m_isSkipStore = false;

 public boolean isSkipStore()
 {
 return m_isSkipStore;
 }

 public void skipStore()
 {
 m_isSkipStore = true;
 }

 public String toString()
 {
 return "MyValue2[" + getValue() + "]";
 }

 public MyValue2(Object obj)
 {
 super(obj);
 }

 }

 public static void main(String[] args)
 {
 try
 {

 // example 1

 NamedCache cache1 = CacheFactory.getCache("cache1");

 // disable cachestore
 ControllableCacheStore1.disable("cache1");
 for(int i = 0; i < 5; i++)
 {
 cache1.put(new Integer(i), new MyValue1(new Date()));
 }

 // enable cachestore
 ControllableCacheStore1.enable("cache1");
 for(int i = 0; i < 5; i++)
 {
 cache1.put(new Integer(i), new MyValue1(new Date()));
 }

 // example 2

 NamedCache cache2 = CacheFactory.getCache("cache2");

 // add some values with cachestore disabled

Implementation Considerations

Caching Data Sources 15-17

 for(int i = 0; i < 5; i++)
 {
 MyValue2 value = new MyValue2(new Date());
 value.skipStore();
 cache2.put(new Integer(i), value);
 }

 // add some values with cachestore enabled
 for(int i = 0; i < 5; i++)
 {
 cache2.put(new Integer(i), new MyValue2(new Date()));
 }

 }
 catch(Throwable oops)
 {
 err(oops);
 }
 finally
 {
 CacheFactory.shutdown();
 }
 }

 }

Implementation Considerations
Please keep the following in mind when creating a cache store implementation.

Idempotency
All operations should be designed to be idempotent (that is, repeatable without
unwanted side-effects). For write-through and write-behind caches, this allows
Coherence to provide low-cost fault-tolerance for partial updates by re-trying the
database portion of a cache update during failover processing. For write-behind
caching, idempotency also allows Coherence to combine multiple cache updates into a
single invocation without affecting data integrity.

Applications that have a requirement for write-behind caching but which must avoid
write-combining (for example, for auditing reasons), should create a "versioned" cache
key (for example, by combining the natural primary key with a sequence id).

Write-Through Limitations
Coherence does not support two-phase operations across multiple cache store
instances. In other words, if two cache entries are updated, triggering calls to cache
store implementations that are on separate cache servers, it is possible for one database
update to succeed and for the other to fail. In this case, it may be preferable to use a
cache-aside architecture (updating the cache and database as two separate components
of a single transaction) with the application server transaction manager. In many cases
it is possible to design the database schema to prevent logical commit failures (but
obviously not server failures). Write-behind caching avoids this issue as "puts" are not
affected by database behavior (as the underlying issues have been addressed earlier in
the design process).

Implementation Considerations

15-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Cache Queries
Cache queries only operate on data stored in the cache and do not trigger a cache store
implementation to load any missing (or potentially missing) data. Therefore,
applications that query cache store-backed caches should ensure that all necessary
data required for the queries has been pre-loaded. For efficiency, most bulk load
operations should be done at application startup by streaming the data set directly
from the database into the cache (batching blocks of data into the cache by using
NamedCache.putAll(). The loader process must use a "Controllable Cachestore"
pattern to disable circular updates back to the database. The cache store may be
controlled by using an Invocation service (sending agents across the cluster to modify
a local flag in each JVM) or by setting the value in a Replicated cache (a different cache
service) and reading it in every cache store implementation method invocation
(minimal overhead compared to the typical database operation). A custom MBean can
also be used, a simple task with Coherence's clustered JMX facilities.

Re-entrant Calls
The cache store implementation must not call back into the hosting cache service. This
includes ORM solutions that may internally reference Coherence cache services. Note
that calling into another cache service instance is allowed, though care should be taken
to avoid deeply nested calls (as each call consumes a cache service thread and could
result in deadlock if a cache service thread pool is exhausted).

Cache Server Classpath
The classes for cache entries (also known as Value Objects, Data Transfer Objects, and
so on) must be in the cache server classpath (as the cache server must
serialize-deserialize cache entries to interact with the cache store.

CacheStore Collection Operations
The CacheStore.storeAll method is most likely to be used if the cache is configured
as write-behind and the <write-batch-factor> is configured. The
CacheLoader.loadAll method is also used by Coherence. For similar reasons, its first
use likely requires refresh-ahead to be enabled.

Connection Pools
Database connections should be retrieved from the container connection pool (or a
third party connection pool) or by using a thread-local lazy-initialization pattern. As
dedicated cache servers are often deployed without a managing container, the latter
may be the most attractive option (though the cache service thread-pool size should be
constrained to avoid excessive simultaneous database connections).

16

Serialization Paged Cache 16-1

16Serialization Paged Cache

[16] This chapter provides general information about caching large amounts of binary data
off-heap.

This chapter includes the following sections:

■ Understanding Serialization Paged Cache

■ Configuring Serialization Paged Cache

■ Optimizing a Partitioned Cache Service

■ Configuring for High Availability

■ Configuring Load Balancing and Failover

■ Supporting Huge Caches

Understanding Serialization Paged Cache
Coherence provides explicit support for efficient caching of huge amounts of
automatically-expiring data using potentially high-latency storage mechanisms such
as disk files. The benefits include supporting much larger data sets than can be
managed in memory, while retaining an efficient expiry mechanism for timing out the
management (and automatically freeing the resources related to the management) of
that data. Optimal usage scenarios include the ability to store many large objects, XML
documents or content that are rarely accessed, or whose accesses tolerates a higher
latency if the cached data has been paged to disk. See Chapter 14, "Implementing
Storage and Backing Maps."

Serialization Paged Cache is defined as follows:

■ Serialization implies that objects stored in the cache are serialized and stored in a
Binary Store; refer to the existing features Serialization Map and Serialization Cache.

■ Paged implies that the objects stored in the cache are segmented for efficiency of
management.

■ Cache implies that there can be limits specified to the size of the cache; in this case,
the limit is the maximum number of concurrent pages that the cache manages
before expiring pages, starting with the oldest page.

The result is a feature that organizes data in the cache based on the time that the data
was placed in the cache, and then can efficiently expire that data from the cache, an
entire page at a time, and typically without having to reload any data from disk.

Configuring Serialization Paged Cache

16-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Configuring Serialization Paged Cache
The primary configuration for the Serialization Paged Cache is composed of two
parameters: The number of pages that the cache manages, and the length of time a
page is active. For example, to cache data for one day, the cache can be configured as
24 pages of one hour each, or 96 pages of 15 minutes each, and so on.

Each page of data in the cache is managed by a separate Binary Store. The cache
requires a Binary Store Manager, which provides the means to create and destroy these
Binary Stores. Coherence provides Binary Store Managers for all of the built-in Binary
Store implementations, including Berkley DB (referred to as "BDB").

Serialization paged caches are configured within the <external-scheme> and
<paged-external-scheme> element in the cache configuration file. See
"external-scheme" on page B-40 and "paged-external-scheme" on page B-89 for details.

Optimizing a Partitioned Cache Service
Coherence provides an optimization for the partitioned cache service, since - when it is
used to back a partitioned cache—the data being stored in any of the Serialization
Maps and Caches is entirely binary in form. This is called the Binary Map
optimization, and when it is enabled, it gives the Serialization Map, the Serialization
Cache and the Serialization Paged Cache permission to assume that all data being
stored in the cache is binary. The result of this optimization is a lower CPU and
memory utilization, and also slightly higher performance. See the <external-scheme>
and <paged-external-scheme> cache configuration elements.

Configuring for High Availability
Explicit support is also provided in the Serialization Paged Cache for the
high-availability features of the partitioned cache service, by providing a configuration
that can be used for the primary storage of the data and a configuration that is
optimized for the backup storage of the data. The configuration for the backup storage
is known as a passive model, because it does not actively expire data from its storage,
but rather reflects the expiration that is occurring on the primary cache storage. When
using the high-availability data feature (a backup count of one or greater; the default
value is one) for a partitioned cache service, and using the Serialization Paged Cache
as the primary backing storage for the service, it is a best practice to also use the
Serialization Paged Cache as the backup store, and configure the backup with the
passive option. See the <paged-external-scheme> cache configuration elements.

Configuring Load Balancing and Failover
When used with the distributed cache service, special considerations should be made
for load balancing and failover purposes. The partition-count parameter of the
distributed cache service should be set higher than normal if the amount of cache data
is very large. A high partition count breaks up the overall cache into smaller chunks
for load-balancing and recovery processing due to failover. For example, if the cache is
expected to be one terabyte, twenty thousand partitions breaks the cache up into units
averaging about 50MB. If a unit (the size of a partition) is too large, it causes an
out-of-memory condition when load-balancing the cache. (Remember to ensure that
the partition count is a prime number; see http://primes.utm.edu/lists/small/ for
lists of prime numbers that you can use.)

Supporting Huge Caches

Serialization Paged Cache 16-3

Supporting Huge Caches
To support huge caches (for example, terabytes) of expiring data, the expiration
processing is performed concurrently on a daemon thread with no interruption to the
cache processing. The result is that many thousands or millions of objects can exist in a
single cache page, and they can be expired asynchronously, thus avoiding any
interruption of service. The daemon thread is an option that is enabled by default, but
it can be disabled. See the <external-scheme> and <paged-external-scheme> cache
configuration elements.

When the cache is used for large amounts of data, the pages are typically disk-backed.
Since the cache eventually expires each page, thus releasing the disk resources, the
cache uses a virtual erase optimization by default. Data that is explicitly removed or
expired from the cache is not actually removed from the underlying Binary Store, but
when a page (a Binary Store) is completely emptied, it is erased in its entirety. This
reduces I/O by a considerable margin, particularly during expiry processing and
during operations such as load-balancing that have to redistribute large amounts of
data within the cluster. The cost of this optimization is that the disk files (if a
disk-based Binary Store option is used) tends to be larger than the data that they are
managing would otherwise imply; since disk space is considered to be inexpensive
compared to other factors such as response times, the virtual erase optimization is
enabled by default, but it can be disabled. Note that the disk space is typically
allocated locally to each server, and thus a terabyte cache partitioned over one
hundred servers would only use about 20GB of disk space per server (10GB for the
primary store and 10GB for the backup store, assuming one level of backup.)

Supporting Huge Caches

16-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

17

Using Quorum 17-1

17Using Quorum

[17] This chapter provides instructions for using and configuring quorum policies to
control when specific service actions are allowed in a cluster in order to ensure that a
cluster is adequately provisioned.

This chapter includes the following sections:

■ Overview of Using Quorum

■ Using the Cluster Quorum

■ Using the Partitioned Cache Quorums

■ Using the Proxy Quorum

■ Using Custom Action Policies

Overview of Using Quorum
A quorum, in Coherence, refers to the minimum number of service members that are
required in a cluster before a service action is allowed or disallowed. Quorums are
beneficial because they automatically provide assurances that a cluster behaves in an
expected way when member thresholds are reached. For example, a partitioned cache
backup quorum might require at least 5 storage-enabled members before the
partitioned cache service is allowed to back up partitions.

Quorums are service-specific and defined within a quorum policy; there is a cluster
quorum policy for the Cluster service, a partitioned quorum policy for the Partitioned
Cache service, and a proxy quorum policy for the Proxy service. Quorum thresholds
are set on the policy using a cache configuration file.

Each quorum provides benefits for its particular service. However, in general,
quorums:

■ control service behavior at different service member levels

■ mandate the minimum service member levels that are required for service
operations

■ ensure an optimal cluster and cache environment for a particular application or
solution

Using the Cluster Quorum
The cluster quorum policy defines a single quorum (the timeout survivor quorum) for
the Cluster Service. The timeout survivor quorum mandates the minimum number of
cluster members that must remain in the cluster when the cluster service is

Using the Partitioned Cache Quorums

17-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

terminating suspect members. A member is considered suspect if it has not responded
to network communications and is in imminent danger of being disconnected from the
cluster. The quorum can be specified generically across all members or constrained to
members that have a specific role in the cluster, such as client or server members. See
the <role-name> element in "member-identity" on page A-41 for more information on
defining role names for cluster members.

This quorum is typically used in environments where network performance varies.
For example, intermittent network outages may cause a high number of cluster
members to be removed from the cluster. Using this quorum, a certain number of
members are maintained during the outage and are available when the network
recovers. This behavior also minimizes the manual intervention required to restart
members. Naturally, requests that require cooperation by the nodes that are not
responding are not able to complete and are either blocked for the duration of the
outage or are timed out.

Configuring the Cluster Quorum Policy
The timeout survivor quorum threshold is configured in an operational override file
using the <timeout-survivor-quorum> element and optionally the role attribute. This
element must be used within a <cluster-quorum-policy> element. The following
example demonstrates configuring the timeout survivor quorum threshold to ensure
that5 cluster members with the server role are always kept in the cluster while
removing suspect members:

<cluster-config>
 <member-identity>
 <role-name>server</role-name>
 </member-identity>
 <cluster-quorum-policy>
 <timeout-survivor-quorum role="Server">5</timeout-survivor-quorum>
 </cluster-quorum-policy>
</cluster-config>

Using the Partitioned Cache Quorums
The partitioned cache quorum policy defines four quorums for the partitioned cache
service (DistributedCache) that mandate how many service members are required
before different partitioned cache service operations can be performed:

■ Distribution Quorum – This quorum mandates the minimum number of
storage-enabled members of a partitioned cache service that must be present
before the partitioned cache service is allowed to perform partition distribution.

■ Restore Quorum – This quorum mandates the minimum number of
storage-enabled members of a partitioned cache service that must be present
before the partitioned cache service is allowed to restore lost primary partitions
from backup.

■ Read Quorum – This quorum mandates the minimum number of storage-enabled
members of a partitioned cache service that must be present to process read
requests. A read request is any request that does not mutate the state or contents of
a cache.

■ Write Quorum – This quorum mandates the minimum number of storage-enabled
members of a partitioned cache service that must be present to process write
requests. A write request is any request that may mutate the state or contents of a
cache.

Using the Partitioned Cache Quorums

Using Quorum 17-3

These quorums are typically used to indicate at what service member levels different
service operations are best performed given the intended use and requirements of a
distributed cache. For example, a small distributed cache may only require three
storage-enabled members to adequately store data and handle projected request
volumes. While; a large distributed cache may require 10, or more, storage-enabled
members to adequately store data and handle projected request volumes. Optimal
member levels are tested during development and then set accordingly to ensure that
the minimum service member levels are provisioned in a production environment.

If the number of storage-enabled nodes running the service drops below the
configured level of read or write quorum, the corresponding client operation are
rejected by throwing the com.tangosol.net.RequestPolicyException. If the number
of storage-enabled nodes drops below the configured level of distribution quorum,
some data may become "endangered" (no backup) until the quorum is reached.
Dropping below the restore quorum may cause some operation to be blocked until the
quorum is reached or to be timed out.

Configuring the Partitioned Cache Quorum Policy
Partitioned cache quorums are configured in a cache configuration file within the
<partitioned-quorum-policy-scheme> element. The element must be used within a
<distributed-scheme> element. The following example demonstrates configuring
thresholds for the partitioned cache quorums. Ideally, the threshold values would
indicate the minimum amount of service members that are required to perform the
operation.

<distributed-scheme>
 <scheme-name>partitioned-cache-with-quorum</scheme-name>
 <service-name>PartitionedCacheWithQuorum</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <distribution-quorum>4</distribution-quorum>
 <restore-quorum>3</restore-quorum>
 <read-quorum>3</read-quorum>
 <write-quorum>5</write-quorum>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

The <partitioned-quorum-policy-scheme> element also supports the use of scheme
references. In the below example, a <partitioned-quorum-policy-scheme>, with the
name partitioned-cache-quorum, is referenced from within the
<distributed-scheme> element:

<distributed-scheme>
 <scheme-name>partitioned-cache-with-quorum</scheme-name>
 <service-name>PartitionedCacheWithQuorum</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <scheme-ref>partitioned-cache-quorum</scheme-ref>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

<distributed-scheme>

Using the Proxy Quorum

17-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <scheme-name>dist-example</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <scheme-name>partitioned-cache-quorum</scheme-name>
 <distribution-quorum>4</distribution-quorum>
 <restore-quorum>3</restore-quorum>
 <read-quorum>3</read-quorum>
 <write-quorum>5</write-quorum>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Using the Proxy Quorum
The proxy quorum policy defines a single quorum (the connection quorum) for the
proxy service. The connection quorum mandates the minimum number of proxy
service members that must be available before the proxy service can allow client
connections.

This quorum is typically used to ensure enough proxy service members are available
to optimally support a given set of TCP clients. For example, a small number of clients
may efficiently connect to a cluster using two proxy services. While; a large number of
clients may require 3 or more proxy services to efficiently connect to a cluster. Optimal
levels are tested during development and then set accordingly to ensure that the
minimum service member levels are provisioned in a production environment.

Configuring the Proxy Quorum Policy
The connection quorum threshold is configured in a cache configuration file within the
<proxy-quorum-policy-scheme> element. The element must be used within a
<proxy-scheme> element. The following example demonstrates configuring the
connection quorum threshold to ensures that 3 proxy service members are present in
the cluster before the proxy service is allowed to accept TCP client connections:

<proxy-scheme>
 <scheme-name>proxy-with-quorum</scheme-name>
 <service-name>TcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>32000</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <proxy-quorum-policy-scheme>
 <connect-quorum>3</connect-quorum>
 </proxy-quorum-policy-scheme>
 <autostart>true</autostart>
</proxy-scheme>

The <proxy-quorum-policy-scheme> element also supports the use of scheme
references. In the below example, a <proxy-quorum-policy-scheme>, with the name
proxy-quorum, is referenced from within the <proxy-scheme> element:

Using Custom Action Policies

Using Quorum 17-5

<proxy-scheme>
 <scheme-name>proxy-with-quorum</scheme-name>
 <service-name>TcpProxyService</service-name>
 ...
 <proxy-quorum-policy-scheme>
 <scheme-ref>proxy-quorum</scheme-ref>
 </proxy-quorum-policy-scheme>
 <autostart>true</autostart>
</proxy-scheme>
<proxy-scheme>
 <scheme-name>proxy-example</scheme-name>
 <service-name>TcpProxyService</service-name>
 ...
 <proxy-quorum-policy-scheme>
 <scheme-name>proxy-quorum</scheme-name>
 <connect-quorum>3</connect-quorum>
 </proxy-quorum-policy-scheme>
 <autostart>true</autostart>
</proxy-scheme>

Using Custom Action Policies
Custom action policies can be used instead of the default quorum policies for the
Cluster service, Partitioned Cache service, and Proxy service. Custom action policies
must implement the com.tangosol.net.ActionPolicy interface.

This section includes the following topics:

■ Enabling Custom Action Policies

■ Enabling the Custom Failover Access Policy

Enabling Custom Action Policies
To enable a custom policy, add a <class-name> element within a quorum policy
scheme element that contains the fully qualified name of the implementation class.
The following example adds a custom action policy to the partitioned quorum policy
for a distributed cache scheme definition:

<distributed-scheme>
 <scheme-name>partitioned-cache-with-quorum</scheme-name>
 <service-name>PartitionedCacheWithQuorum</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <class-name>package.MyCustomAction</class-name>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

As an alternative, a factory class can create custom action policy instances. To define a
factory class, use the <class-factory-name> element to enter the fully qualified class
name and the <method-name> element to specify the name of a static factory method
on the factory class which performs object instantiation. For example.

<distributed-scheme>
 <scheme-name>partitioned-cache-with-quorum</scheme-name>
 <service-name>PartitionedCacheWithQuorum</service-name>

Using Custom Action Policies

17-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <class-factory-name>package.Myfactory</class-factory-name>
 <method-name>createPolicy</method-name>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Enabling the Custom Failover Access Policy
Coherence provides a pre-defined custom action policy that moderates client request
load during a failover event in order to allow cache servers adequate opportunity to
re-establish partition backups. Use this policy in situations where a heavy load of
high-latency requests may prevent, or significantly delay, cache servers from
successfully acquiring exclusive access to partitions needing to be transferred or
backed up.

To enable the custom failover access policy, add a <class-name> element within a
<partition-quorum-policy-scheme> element that contains the fully qualified name of
the failover access policy (com.tangosol.net.partition.FailoverAccessPolicy). The
policy accepts the following parameters:

■ cThresholdMillis – Specifies the delay before the policy should start holding
requests (after becoming endangered). The default value is 5000 milliseconds.

■ cLimitMillis – Specifies the delay before the policy makes a maximal effort to
hold requests (after becoming endangered). The default values is 60000
milliseconds.

■ cMaxDelayMillis – Specifies the maximum amount of time to hold a request. The
default value is 5000 milliseconds.

The following example enables the custom failover access policy and sets each of the
parameters:

<distributed-scheme>
 <scheme-name>partitioned-cache-with-quorum</scheme-name>
 <service-name>PartitionedCacheWithQuorum</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <class-name>com.tangosol.net.partition.FailoverAccessPolicy/class-name>
 <init-params>
 <init-param>
 <param-name>cThresholdMillis</param-name>
 <param-value>7000</param-value>
 </init-param>
 <init-param>
 <param-name>cLimitMillis</param-name>
 <param-value>30000</param-value>
 </init-param>
 <init-param>
 <param-name>cMaxDelayMillis</param-name>
 <param-value>2000</param-value>
 </init-param>
 </init-params>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>

Using Custom Action Policies

Using Quorum 17-7

</distributed-scheme>

Using Custom Action Policies

17-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

18

Cache Configurations by Example 18-1

18Cache Configurations by Example

[18] This chapter provides a series of basic cache scheme definitions that can be used or
modified as required. See Chapter 13, "Configuring Caches," for detailed instructions
on how to configure caches. In addition, the samples in this chapter build upon one
another and often use a <scheme-ref> element to reuse other samples as nested
schemes. See "Using Scheme Inheritance" on page 13-13 for details on using the
<scheme-ref> element. Lastly, these samples only specify a minimum number of
settings, follow the embedded links to a scheme's documentation to see the full set of
options.

This chapter contains the following sections:

■ Local Caches (accessible from a single JVM)

■ Clustered Caches (accessible from multiple JVMs)

Local Caches (accessible from a single JVM)
This section defines a series of local cache schemes. In this context "local" means that
the cache is only directly accessible by a single JVM. Later in this document local
caches are used as building blocks for clustered caches. See "Clustered Caches
(accessible from multiple JVMs)" on page 18-5.

This section contains the following topics:

■ In-memory Cache

■ Size Limited In-memory Cache

■ In-memory Cache with Expiring Entries

■ In-memory Cache with Disk Based Overflow

■ NIO In-memory Cache

■ Cache on Disk

■ Size Limited Cache on Disk

■ Persistent Cache on Disk

■ Cache of a Database

In-memory Cache
Example 18–1 uses a local-scheme to define an in-memory cache. The cache stores as
much as the JVM heap allows.

Local Caches (accessible from a single JVM)

18-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 18–1 Configuration for a Local, In-memory Cache

<local-scheme>
 <scheme-name>SampleMemoryScheme</scheme-name>
</local-scheme>

Size Limited In-memory Cache
Adding a <high-units> sub element to <local-scheme> limits the size of the cache.
Here the cache is size limited to one thousand entries. When the limit is exceeded, the
scheme's <eviction-policy> determines which elements to evict from the cache.

Example 18–2 Configuration for a Size Limited, In-memory, Local Cache

<local-scheme>
 <scheme-name>SampleMemoryLimitedScheme</scheme-name>
 <high-units>1000</high-units>
</local-scheme>

In-memory Cache with Expiring Entries
Adding an <expiry-delay> subelement to <local-scheme> causes cache entries to
automatically expire if they are not updated for a given time interval. When expired
the cache invalidates the entry, and remove it from the cache.

Example 18–3 Configuration for an In-memory Cache with Expiring Entries

<local-scheme>
 <scheme-name>SampleMemoryExpirationScheme</scheme-name>
 <expiry-delay>5m</expiry-delay>
</local-scheme>

In-memory Cache with Disk Based Overflow
Example 18–4 uses an overflow-scheme to define a size limited in-memory cache,
when the in-memory (<front-scheme>) size limit is reached, a portion of the cache
contents are moved to the on disk (<back-scheme>). The front-scheme's
<eviction-policy> determines which elements to move from the front to the back.

Note that this example reuses the examples in "Size Limited Cache on Disk" and
"Cache on Disk" on page 18-3. to implement the front and back of the cache.

Example 18–4 Configuration for In-memory Cache with Disk Based Overflow

<overflow-scheme>
 <scheme-name>SampleOverflowScheme</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryLimitedScheme</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <external-scheme>
 <scheme-ref>SampleDiskScheme</scheme-ref>
 </external-scheme>
 </back-scheme>
</overflow-scheme>

Local Caches (accessible from a single JVM)

Cache Configurations by Example 18-3

NIO In-memory Cache

Example 18–5 uses an external-scheme to define an in-memory cache using an
nio-memory-manager. The advantage of an NIO memory based cache is that it allows
for large in-memory cache storage while not negatively impacting the JVM's GC times.
The size of the cache is limited by the maximum size of the NIO memory region. See
the <maximum-size> subelement of nio-memory-manager.

Example 18–5 Configuration for a NIO In-memory Cache

<external-scheme>
 <scheme-name>SampleNioMemoryScheme</scheme-name>
 <nio-memory-manager/>
</external-scheme>

Cache on Disk
Example 18–6 uses an external-scheme to define an on disk cache.

Example 18–6 Configuration to Define a Cache on Disk

<external-scheme>
 <scheme-name>SampleDiskScheme</scheme-name>
 <bdb-store-manager/>
</external-scheme>

Size Limited Cache on Disk
Adding a <high-units> sub- element to external-scheme limits the size of the cache.
The cache is size limited to one million entries. When the limit is exceeded, LRU
eviction is used determine which elements to evict from the cache. Refer to
"paged-external-scheme" on page B-89 for an alternate size limited external caching
approach.

Example 18–7 Configuration for a Size Limited Cache on Disk

<external-scheme>
 <scheme-name>SampleDiskLimitedScheme</scheme-name>
 <bdb-store-manager/>
 <high-units>1000000</high-units>
</external-scheme>

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

Note: This example uses the bdb-store-manager (Berkeley Database)
for its on disk storage implementation. See external-scheme for
additional external storage options.

Local Caches (accessible from a single JVM)

18-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Persistent Cache on Disk
Example 18–8 uses an external-scheme to implement a cache suitable for use as
long-term storage for a single JVM.

External caches are generally used for temporary storage of large data sets, and are
automatically deleted on JVM shutdown. An external-cache can be used for long term
storage (see "Persistence (long-term storage)" on page B-41) in non-clustered caches
when using either the bdb-store-manager storage managers. For clustered persistence
see the "Partitioned Cache of a Database" on page 18-6 sample.

The {cache-name} macro is used to specify the name of the file the data is stored in.
See "Using Parameter Macros" on page 13-15 for more information on this macro.

Example 18–8 Configuration for Persistent cache on disk with Berkeley DB

<external-scheme>
 <scheme-name>SampleDiskPersistentScheme</scheme-name>
 <bdb-store-manager>
 <directory>/my/storage/directory</directory>
 <store-name>{cache-name}.store</store-name>
 </bdb-store-manager>
</external-scheme>

Cache of a Database
Example 18–9 uses a read-write-backing-map-scheme to define a cache of a database.
This scheme maintains local cache of a portion of the database contents. Cache misses
are read-through to the database, and cache writes are written back to the database.

The cachestore-scheme element is configured with a custom class implementing
either the com.tangosol.net.cache.CacheLoader or
com.tangosol.net.cache.CacheStore interface. This class is responsible for all
operations against the database, such as reading and writing cache entries. See
"Sample Cache Store Implementation" on page 15-8 implementations for examples of
writing a cache store.

The {cache-name} macro is used to inform the cache store implementation of the name
of the cache it backs. See "Using Parameter Macros" on page 13-15 for more
information on this macro.

Example 18–9 Configuration for the Cache of a Database

<read-write-backing-map-scheme>
 <scheme-name>SampleDatabaseScheme</scheme-name>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <class-name>com.tangosol.examples.coherence.DBCacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>

Clustered Caches (accessible from multiple JVMs)

Cache Configurations by Example 18-5

 </cachestore-scheme>
</read-write-backing-map-scheme>

Clustered Caches (accessible from multiple JVMs)
This section defines a series of clustered cache examples. Clustered caches are
accessible from multiple JVMs (any cluster node running the same cache service). The
internal cache storage (backing-map) on each cluster node is defined using local caches
(see "Local Caches (accessible from a single JVM)" on page 18-1). The cache service
provides the capability to access local caches from other cluster nodes.

This section contains the following topics:

■ Partitioned Cache

■ Partitioned Cache with Overflow

■ Partitioned Cache with Journal Storage

■ Partitioned Cache of a Database

■ Partitioned Cache with a Serializer

■ Near Cache

■ Replicated Cache

■ Replicated Cache with Overflow

Partitioned Cache
Example 18–10 uses the distributed-scheme to define a clustered cache in which cache
storage is partitioned across all cluster nodes.

The "In-memory Cache" on page 18-1 is used to define the cache storage on each
cluster node. The total storage capacity of the cache is the sum of all storage enabled
cluster nodes running the partitioned cache service. See the <local-storage>
subelement of "distributed-scheme" on page B-32.

Example 18–10 Configuration for a Partitioned Cache

<distributed-scheme>
 <scheme-name>SamplePartitionedScheme</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

Partitioned Cache with Overflow
The backing-map-scheme element can use a scheme reference to specify any of the
other local cache samples. For instance if it had used the "In-memory Cache with Disk
Based Overflow" on page 18-2, each storage-enabled cluster node would have a local
overflow cache allowing for much greater storage capacity. Note that the cache's
backup storage also uses the same overflow scheme which allows for backup data to
be overflowed to disk.

Clustered Caches (accessible from multiple JVMs)

18-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 18–11 Configuration for a Partitioned Cache with Overflow

<distributed-scheme>
 <scheme-name>SamplePartitionedOverflowScheme</scheme-name>
 <backing-map-scheme>
 <overflow-scheme>
 <scheme-ref>SampleOverflowScheme</scheme-ref>
 </overflow-scheme>
 </backing-map-scheme>
 <backup-storage>
 <type>scheme</type>
 <scheme-name>SampleOverflowScheme</scheme-name>
 </backup-storage>
</distributed-scheme>

Partitioned Cache with Journal Storage
Example 18–12 uses the backing-map-scheme element to define a partitioned cache
that uses a RAM journal for the backing map. The RAM journal automatically
delegates to a flash journal when the RAM journal exceeds a configured memory size.
For details about configuring RAM journals and flash journals, see "Defining Journal
Schemes" on page 14-8.

Example 18–12 Configuration for a Partitioned Cache with RAM Journaling

<distributed-scheme>
 <scheme-name>SamplePartitionedJournalScheme</scheme-name>
 <backing-map-scheme>
 <ramjournal-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Example 18–13 define a partitioned cache that directly uses a flash journal for the
backing map.

Example 18–13 Configuration for a Partitioned Cache with Flash Journaling

<distributed-scheme>
 <scheme-name>SamplePartitionedJournalScheme</scheme-name>
 <backing-map-scheme>
 <flashjournal-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Partitioned Cache of a Database
Switching the backing-map-scheme element to use a read-write-backing-map-scheme
allows the cache to load and store entries against an external source such as a
database.

Example 18–14 reuses the "Cache of a Database" on page 18-4 to define the database
access.

Example 18–14 Configuration for a Partitioned Cache of a Database

<distributed-scheme>

Clustered Caches (accessible from multiple JVMs)

Cache Configurations by Example 18-7

 <scheme-name>SamplePartitionedDatabaseScheme</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <scheme-ref>SampleDatabaseScheme</scheme-ref>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </internal-cache-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
</distributed-scheme>

Partitioned Cache with a Serializer
Example 18–15 uses the serializer element in distributed-scheme to define a serializer
that is used to serialize and deserialize user types. In this case, the partitioned cache
uses POF (ConfigurablePofContext) as its serialization format. Note that if you use
POF and your application uses any custom user type classes, then you must also
define a custom POF configuration for them. See Appendix C, "POF User Type
Configuration Elements" for more information on POF elements.

Example 18–15 Configuration for a Partitioned Cache with a Serializer

<distributed-scheme>
 <scheme-name>SamplePartitionedPofScheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 </instance>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Serializers that are defined in the tangosol-coherence.xml deployment descriptor can
also be referenced.

Example 18–16 Partitioned Cache that References a Serializer

<distributed-scheme>
 <scheme-name>SamplePartitionedPofScheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <serializer>pof</serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Lastly a default serializer can be defined for all cache schemes and alleviates having to
explicitly include a <serializer> element in each cache scheme definition. The global
serializer definitions can also reference serializers that are defined in the
tangosol-coherence.xml deployment descriptor

Clustered Caches (accessible from multiple JVMs)

18-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 18–17 Defining a Default Serializer

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 ...

Near Cache
Example 18–18 uses the near-scheme to define a local in-memory cache of a subset of a
partitioned cache. The result is that any cluster node accessing the partitioned cache
maintains a local copy of the elements it frequently accesses. This offers read
performance close to the replicated-scheme-based caches, while offering the high
scalability of a distributed-scheme-based cache.

The "Size Limited In-memory Cache" on page 18-2 sample is reused to define the
"near" (<front-scheme>) cache, while the "Partitioned Cache" on page 18-5 sample is
reused to define the near-scheme.

Note that the size limited configuration of the front-scheme specifies the limit on how
much of the back-scheme cache is locally cached.

Example 18–18 Configuration for a Local Cache of a Partitioned Cache

<near-scheme>
 <scheme-name>SampleNearScheme</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>SampleLimitedMemoryScheme</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>SamplePartitionedScheme</scheme-ref>
 </distributed-scheme>
 </back-scheme>
</near-scheme>

Replicated Cache
Example 18–19 uses the replicated-scheme element to define a clustered cache in
which a copy of each cache entry is stored on all cluster nodes.

The sample in "In-memory Cache" on page 18-1 is used to define the cache storage on
each cluster node. The size of the cache is only limited by the cluster node with the
smallest JVM heap.

Example 18–19 Configuration for a Replicated Cache

<replicated-scheme>
 <scheme-name>SampleReplicatedScheme</scheme-name>
 <backing-map-scheme>

Clustered Caches (accessible from multiple JVMs)

Cache Configurations by Example 18-9

 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</replicated-scheme>

Replicated Cache with Overflow
The backing-map-scheme element could just as easily specify any of the other local
cache samples. For instance, if it had used the "In-memory Cache with Disk Based
Overflow" on page 18-2, each cluster node would have a local overflow cache allowing
for much greater storage capacity.

Example 18–20 Configuration for a Replicated Cache with Overflow

<replicated-scheme>
 <scheme-name>SampleReplicatedOverflowScheme</scheme-name>
 <backing-map-scheme>
 <overflow-scheme>
 <scheme-ref>SampleOverflowScheme</scheme-ref>
 </overflow-scheme>
 </backing-map-scheme>
</replicated-scheme>

Clustered Caches (accessible from multiple JVMs)

18-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

19

Extending Cache Configuration Files 19-1

19Extending Cache Configuration Files

[19] This chapter provides detailed instructions for extending Coherence cache
configuration files using XML namespaces and namespace handler classes. The
instructions in this chapter assume a general understanding of XML namespaces and
XML processing.

This chapter includes the following sections:

■ Introduction to Extending Cache Configuration Files

■ Declaring XML Namespaces

■ Creating Namespace Handlers

■ Example: the JNDI Resource Namespace Handler

Introduction to Extending Cache Configuration Files
Cache configuration files can include user-defined XML elements and attributes. The
elements and attributes are declared within an XML namespace and are processed by a
namespace handler at runtime. The namespace handler allows application logic to be
executed based on the processing of the elements and attributes.

The following example extends a cache configuration file by declaring a run
namespace that is associated with a RunNamespaceHandler namespace handler class.
At runtime, the handler class processes the <run:runnable> element and its attributes
and executes any logic on the cluster member as required.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-cache-config coherence-cache-config.xsd"
 xmlns:run="class://com.examples.RunNamespaceHandler">
 <run:runnable classname="MyRunnable" every="10m"/>
 ...
</cache-config>

Cache configuration files are typically extended to allow applications to perform
custom initialization, background tasks, or perform monitoring and maintenance of
caches in a cluster. For example, an application can:

■ establish domain-specific cache entry indexes

■ preload cached information

■ load configuration into a cluster

■ run or schedule background tasks against the cluster

Declaring XML Namespaces

19-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ integrate with external systems

Extending cache configuration files offers applications a common and consolidated
place for configuration. In addition, application logic is embedded and managed in a
cluster, which is a high-availability and scalable environment that can provide
automated recovery of failed application logic if required.

Declaring XML Namespaces
Namespaces are declared in a cache configuration file by using a namespace
declaration. The use of XML namespaces must adhere to the XML specification. At
runtime, the XML syntax and XML namespaces are validated and checks are
performed to ensure that the namespace prefixes have a corresponding xmlns
declaration. Errors that are encountered in the cache configuration file results in the
Coherence member failing to start. The following example declares a namespace that
uses the prefix ex:

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd"
 xmlns:ex="URI">
 ...

The URI value for a namespace must be in the format
class://FullyQualifiedClassName. If an incorrect format is provided, then a failure
occurs and the Coherence member fails to start. The handler class provided in the
declaration must be a class that implements the NamespaceHandler interface. For
details about creating handler classes, see "Creating Namespace Handlers" on
page 19-3.

The handler class must be able to process the associated XML elements and attributes
as they occur within the cache configuration file. More specifically, during the
processing of the XML DOM for the cache configuration, all XML elements and
attributes that occur within a namespace are passed to the associated handler instance
for processing. The following example uses the MyNamespaceHandler to process all
elements that use the ex namespace prefix.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd"
 xmlns:ex="class://MyNamespaceHandler">

 <ex:myelement/>
 ...

Guidelines for Declaring an XML Namespace
Use the following guidelines when declaring an XML namespace:

■ A URI class must implement the NamespaceHandler interface; otherwise, the
processing of the cache configuration file fails.

Creating Namespace Handlers

Extending Cache Configuration Files 19-3

■ XML elements and attributes must not use an undeclared namespace prefix;
otherwise, the processing of the cache configuration file fails.

■ The default handler that is used for Coherence elements and attributes cannot be
overridden; otherwise, the processing of the cache configuration file fails. The
default namespace is reserved for Coherence.

Creating Namespace Handlers
Namespace handlers are used to process XML elements and attributes that belong to a
specific XML namespace. Each unique namespace that is used in a cache configuration
file requires a namespace handler. Namespace handlers must implement the
NamespaceHandler interface. Typically, namespace handlers extend the base
AbstractNamespaceHandler implementation class, which provides convenience
methods that can simplify the processing of complex namespaces. Both of these APIs
are discussed in this section and are included in the com.tangosol.config.xml
package. For details about the APIs, see Java API Reference for Oracle Coherence.

This section includes the following topics:

■ Implementing the Namespace Handler Interface

■ Extending the Namespace Handler Abstract Class

Implementing the Namespace Handler Interface
Namespace handlers process the elements and attributes that are used within an XML
namespace. Namespace handlers can directly implement the NamespaceHandler
interface. The interface relies on the DocumentPreprocessor, ElementProcessor, and
AttributeProcessor interfaces. XML processing is performed within a processing
context as defined by the ProcessingContext interface.

Elements and attributes that are encountered in a namespace must be processed by a
processor implementation. Element and attribute processors are responsible for
processing, parsing, and type conversion logic. Document preprocessors are used to
mutate elements, if required, before they are processed.

Example 19–1 provides a basic NamespaceHandler implementation. The
GreetingNamespaceHandler implementation processes a <message> element using an
ElementProcessor implementation (MessageProcessor), which is included as an inner
class. For the example, the following XML is assumed:

<?xml version="1.0">
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd"
 xmlns:ex="class://com.examples.GreetingNamespaceHandler">

 <ex:message>hello</ex:message>
 ...

Example 19–1 Handler Implementation Using the NamespaceHandler Interface

import com.tangosol.config.ConfigurationException;
import com.tangosol.config.xml.AttributeProcessor;
import com.tangosol.config.xml.DocumentPreprocessor;
import com.tangosol.config.xml.ElementProcessor;
import com.tangosol.config.xml.NamespaceHandler;

Creating Namespace Handlers

19-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

import com.tangosol.config.xml.ProcessingContext;
import com.tangosol.run.xml.XmlAttribute;
import com.tangosol.run.xml.XmlElement;
import java.net.URI;

public class GreetingNamespaceHandler implements NamespaceHandler
{
 public AttributeProcessor getAttributeProcessor(XmlAttribute xmlAttribute)
 {
 return null;
 }

 public DocumentPreprocessor getDocumentPreprocessor()
 {
 return null;
 }

 public ElementProcessor getElementProcessor(XmlElement xmlElement)
 {
 if (xmlElement.getName().equals("ex:message"))
 {
 MessageProcessor mp = new MessageProcessor();
 return mp;
 }
 else
 {
 throw new RuntimeException("Unknown element type " +
 xmlElement.getQualifiedName());
 }
 }

 public void onEndNamespace(ProcessingContext processingContext,
 XmlElement xmlElement, String string, URI uRI)
 {
 }

 public void onStartNamespace(ProcessingContext processingContext,
 XmlElement xmlElement, String string, URI uRI)
 {
 }

 public class MessageProcessor implements ElementProcessor
 {
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 System.out.println("Greeting is: " + xmlElement.getString());
 return null;
 }
 }
}

The above class handles the <ex:message> element content. However, it does not
distinguish between the different types of elements that may occur. All elements that
occur within the default XML namespace are provided to the same process method.
In order to process each type of XML element, conditional statement are required
within the process method. This technique may be sufficient for trivial XML content;
however, more complex XML content may require many conditional statements and
can become overly complicated. A more declarative approach is provided with the
AbstractNamespaceHandler class.

Creating Namespace Handlers

Extending Cache Configuration Files 19-5

Namespace Handler Callback Methods
The NamespaceHandler interface provides the onStartNamespace and the
onEndNamespace callback methods. These methods allow additional processing to be
performed on the first and last encounter of a namespace in a cache configuration file.

Extending the Namespace Handler Abstract Class
The AbstractNamespaceHandler class provides a useful and extensible base
implementation of the NamespaceHandler, ElementProcessor and
AttributeProcessor interfaces together with mechanisms to register processor for
specifically named elements and attributes. The class simplifies the processing of
elements and attributes and can, in most cases, remove the requirement to directly
implement the element and attribute processor interfaces.

This section contains the following topics:

■ Registering Processors

■ Using Injection to Process Element Content

Registering Processors
The AbstractNamespaceHandler class provides methods for declaratively registering
element and attribute processors. The methods alleviate the need to check element
names and types. There are two registration mechanisms: explicit registration and
implicit registration.

Explicit Processor Registration
To use explicit processor registration, call the registerProcessor method within a
sub-class constructor and manually register both element and attribute processors.
Example 19–2 re-implements Example 19–1 and uses the registerProcessor method
to register the MessageProcessor element processor.

Example 19–2 AbstractNamespaceHandler Implementation with Explicit Registration

import com.tangosol.config.ConfigurationException;
import com.tangosol.config.xml.AbstractNamespaceHandler;
import com.tangosol.config.xml.ElementProcessor;
import com.tangosol.config.xml.ProcessingContext;
import com.tangosol.run.xml.XmlElement;

public class GreetingNamespaceHandler extends AbstractNamespaceHandler
{
 public GreetingNamespaceHandler()
 {
 registerProcessor("message", new MessageProcessor());
 }

 public class MessageProcessor implements ElementProcessor
 {
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 System.out.println("Greeting is: " + xmlElement.getString());
 return null;
 }
 }
}

Creating Namespace Handlers

19-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Implicit Processor Registration
To use implicit processor registration, annotate processor classes with the
@XmlSimpleName annotation. The processors are automatically registered for use within
the associated namespace.The @XmlSimpleName annotation is used to determine which
of the processor implementations are appropriate to handle XML content encountered
during XML DOM processing. If an XML element or attribute is encountered for
which there is no defined processor, then the onUnknownElement or
onUnknownAttribute methods are called, respectively. The methods allow corrective
action to be taken if possible. By default, a ConfigurationException exception is
raised if unknown XML content is discovered during processing.

Example 19–3 re-implements Example 19–1 and uses the @XmlSimpleName annotation
to register the MessageProcessor element processor.

Example 19–3 AbstractNamespaceHandler Implementation with Implicit Registration

import com.tangosol.config.ConfigurationException;
import com.tangosol.config.xml.AbstractNamespaceHandler;
import com.tangosol.config.xml.ElementProcessor;
import com.tangosol.config.xml.ProcessingContext;
import com.tangosol.config.xml.XmlSimpleName;
import com.tangosol.run.xml.XmlElement;

public class GreetingNamespaceHandler extends AbstractNamespaceHandler
{
 public GreetingNamespaceHandler()
 {
 }

 @XmlSimpleName("message")
 public class MessageProcessor implements ElementProcessor
 {
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 System.out.println("Greeting is: " + xmlElement.getString());
 return null;
 }
 }
}

Using Injection to Process Element Content
Element and attribute processors are used to hand-code the processing of XML
content. However, the task can be repetitive for complex namespaces. To automate the
task, the ProcessingContext.inject method is capable of injecting strongly typed
values into a provided object, based on identifiable setter methods and values
available for a specified XML element.

For example, given the following XML:

<ex:message>
 <ex:english>hello</ex:english>
</ex:message>

An element processor can be used to hand-code the processing of the <english>
element:

import com.tangosol.config.ConfigurationException;

Creating Namespace Handlers

Extending Cache Configuration Files 19-7

import com.tangosol.config.xml.AbstractNamespaceHandler;
import com.tangosol.config.xml.ElementProcessor;
import com.tangosol.config.xml.ProcessingContext;
import com.tangosol.config.xml.XmlSimpleName;
import com.tangosol.run.xml.XmlElement;

public class GreetingNamespaceHandler extends AbstractNamespaceHandler
{
 public GreetingNamespaceHandler()
 {
 }

 @XmlSimpleName("message")
 public class MessageProcessor implements ElementProcessor
 {
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 String engMsg = processingContext.getMandatoryProperty("english",
 String.class, xmlElement);
 Message message = new Message();
 message.setEnglish(engMsg);
 System.out.println("Greeting is: "+ message.getEnglish());

 return message;
 }
 }
}
As an alternative, the inject method can perform the processing:

@XmlSimpleName("message")
public class MessageProcessor implements ElementProcessor
{
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 return processingContext.inject(new Message(), xmlElement);
 }
}

The inject method uses Java reflection, under the assumption that the object to be
configured follows the Java bean naming conventions. First the inject method
identifies the appropriate setter methods that may be called on the Java bean.
Typically, this is achieved by locating setter methods that are annotated with the
@Injectable annotation. Next, it determines the appropriate types of values required
by the setter methods. Lastly, it uses the provided XmlElement to locate, parse, convert,
coerce, and then set appropriately typed values into the object using the available
setter methods. The inject method supports primitives, enumerations, formatted
values, complex user-defined types, and collection types (sets, lists, and maps). A
ConfigurationException exception is thrown if the inject method fails. For example,
it fails to format a value into the expected type.

The following example demonstrates a Message class for the above example that
supports injection with the inject method:

import com.tangosol.config.annotation.Injectable;

public class Message
{

Creating Namespace Handlers

19-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 private String m_sEnglish = "a greeting";
 public Message()
 {
 }

 @Injectable("english")
 public void setEnglish (String sEnglish)
 {
 m_sEnglish = sEnglish;
 }

 public String getEnglish()
 {
 return m_sEnglish;
 }
}

Typically, element and attribute processors follow the same pattern when using the
inject method. For example:

@XmlSimpleName("element")
public class XProcessor implements ElementProcessor
{
 public Object process(ProcessingContext processingContext,
 XmlElement xmlElement) throws ConfigurationException
 {
 return processingContext.inject(new X(), xmlElement);
 }
}

Declarations and registrations for such implementations can be automated using the
registerElementType and registerAttributeType methods for elements and
attributes, respectively. These methods are available in the AbstractNamespaceHandler
class and are often used in constructors of AbstractNamespaceHandler sub-classes. The
following example demonstrates using the registerElementType method and does
not require a processor implementation.

import com.tangosol.config.xml.AbstractNamespaceHandler;

public class GreetingNamespaceHandler extends AbstractNamespaceHandler
{

 public GreetingNamespaceHandler()
 {
 registerElementType("message", Message.class);
 }
}

Note: If the @Injectable annotation property is omitted, then the
inject method tries to use the setter method Java bean name. For the
above example, @injectable("") results in the use of english.

Note: To support type-based registration of classes, the specified
class must provide a no-argument constructor.

Example: the JNDI Resource Namespace Handler

Extending Cache Configuration Files 19-9

Example: the JNDI Resource Namespace Handler
The JNDI resource namespace handler is reproduced here from the Coherence
Incubator project that is hosted on java.net (http://java.net/projects/cohinc). The
Incubator contains several namespace handler implementations, which can be found
within the Common Package module.

The JNDI resource namespace handler provides the ability to lookup and reference
resources defined by a JNDI context. The use of the namespace handler is often used to
replace the need to statically create resources using the <class-scheme> or <instance>
elements in the cache configuration file.

This section includes the following topics:

■ Create the JNDI Resource Namespace Handler

■ Declare the JNDI Namespace Handler

■ Use the JNDI Resource Namespace Handler

Create the JNDI Resource Namespace Handler
The JNDI resource namespace handler is used at runtime to process <resource>
elements that are found in a cache configuration file. The handler extends the
AbstractNamespaceHandler class and registers the JndiBasedParameterizedBuilder
class for the <resource> element. The following example shows the namespace
handler definition.

import com.tangosol.coherence.config.builder.ParameterizedBuilder;
import com.tangosol.config.xml.AbstractNamespaceHandler;

public class JndiNamespaceHandler extends AbstractNamespaceHandler
{
 public JndiNamespaceHandler()
 {
 registerElementType("resource", JndiBasedParameterizedBuilder.class);
 }
}

The JndiBasedParameterizedBuilder class performs a JNDI context lookup to locate
and create an object using the name and initialization parameters that are provided in
the <resource-name> and <init-parms> elements, respectively. The setter methods for
these elements (setResourceNameExpression and setParameterList) use the
@Injectable annotation to pass the values configured in the cache configuration files.

import com.tangosol.coherence.config.ParameterList;
import com.tangosol.coherence.config.SimpleParameterList;
import com.tangosol.coherence.config.builder.ParameterizedBuilder;
import com.tangosol.coherence.config.builder.ParameterizedBuilder.
 ReflectionSupport;
import com.tangosol.config.annotation.Injectable;
import com.tangosol.config.expression.Expression;
import com.tangosol.config.expression.LiteralExpression;
import com.tangosol.config.expression.Parameter;
import com.tangosol.config.expression.ParameterResolver;
import com.tangosol.util.Base;
import java.util.Hashtable;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.naming.InitialContext;
import javax.naming.NamingException;

Example: the JNDI Resource Namespace Handler

19-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

public class JndiBasedParameterizedBuilder implements
 ParameterizedBuilder<Object>, ReflectionSupport
{
 private static final Logger logger =
 Logger.getLogger(JndiBasedParameterizedBuilder.class.getName());

 private Expression<String> m_exprResourceName;

 private ParameterList m_parameterList;

 public JndiBasedParameterizedBuilder()
 {
 m_exprResourceName = new LiteralExpression<String>("");
 m_parameterList = new SimpleParameterList();
 }

 public Expression<String> getResourceNameExpression()
 {
 return m_exprResourceName;
 }

 @Injectable("resource-name")
 public void setResourceNameExpression(Expression<String> exprResourceName)
 {
 m_exprResourceName = exprResourceName;
 }

 public ParameterList getParameterList()
 {
 return m_parameterList;
 }

 @Injectable("init-params")
 public void setParameterList(ParameterList parameterList)
 {
 m_parameterList = parameterList;
 }

 public boolean realizes(Class<?> clazz,
 ParameterResolver parameterResolver,
 ClassLoader classLoader)
 {
 return clazz.isAssignableFrom(realize(parameterResolver, classLoader,
 null).getClass());
 }

 public Object realize(ParameterResolver parameterResolver,
 ClassLoader classLoader,
 ParameterList parameterList)
 {
 InitialContext initialContext;

 try
 {
 String sResourceName = m_exprResourceName.evaluate(parameterResolver);
 Hashtable<String, Object> env = new Hashtable<String, Object>();

 for (Parameter parameter : m_parameterList)
 {

Example: the JNDI Resource Namespace Handler

Extending Cache Configuration Files 19-11

 env.put(parameter.getName(), parameter.evaluate(parameterResolver));
 }

 initialContext = new InitialContext(env);

 if (logger.isLoggable(Level.FINE))
 {
 logger.log(Level.FINE,
 "Looking up {0} using JNDI with the environment {1}",
 new Object[] {sResourceName, env});
 }

 Object resource = initialContext.lookup(sResourceName);

 if (logger.isLoggable(Level.FINE))
 {
 logger.log(Level.FINE, "Found {0} using JNDI", resource);
 }

 return resource;
 }
 catch (NamingException e)
 {
 throw Base.ensureRuntimeException(e, "Unable to resolve the JNDI
 resource: " + m_exprResourceName.toString());
 }
 }

 public String toString()
 {
 return String.format("%s{resourceName=%s, parameters=%s}",
 this.getClass().getName(), m_exprResourceName,
 m_parameterList);
 }
}

Declare the JNDI Namespace Handler
The JNDI resource namespace handler must be declared within the cache
configuration file. Declare the namespace by providing the URI to the handler class
and assigning a namespace prefix. Any prefix can be used. The following example
uses jndi as the prefix:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-cache-config coherence-cache-config.xsd"
 xmlns:jndi="class://com.examples.JndiNamespaceHandler">
...

Use the JNDI Resource Namespace Handler
The JNDI resource namespace handler can be used whenever an application requires a
resource to be located and created. In addition, the namespace can be used when
defining custom implementations using the <class-scheme> or <instance> elements.

Example: the JNDI Resource Namespace Handler

19-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Based on the handler implementation, the <resource> and <resource-name> element
are required and the <init-params> element is optional.

The following example uses a JNDI resource for a cache store when defining a
distributed scheme:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-cache-config coherence-cache-config.xsd"
 xmlns:jndi="class://com.examples.JndiNamespaceHandler">
...

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-rwbm</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <jndi:resource>
 <jndi:resource-name>MyCacheStore</jndi:resource-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </jndi:resource>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 <caching-schemes>
</cache-config>

The following example uses a JNDI resource to resolve a DNS record:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-cache-config coherence-cache-config.xsd"
 xmlns:jndi="class://com.examples.JndiNamespaceHandler">
...
<jndi:resource>
 <jndi:resource-name>dns:///www.oracle.com</jndi:resource-name>
</jndi:resource>

The following example uses a JNDI resource to resolve a JMS connection factory:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-cache-config coherence-cache-config.xsd"
 xmlns:jndi="class://com.examples.JndiNamespaceHandler">

Example: the JNDI Resource Namespace Handler

Extending Cache Configuration Files 19-13

...

<jndi:resource>
 <jndi:resource-name>ConnectionFactory</jndi:resource-name>
 <init-params>
 <init-param>
 <param-name>java.naming.factory.initial</param-name>
 <param-value>org.apache.activemq.jndi.ActiveMQInitialContextFactory
 </param-value>
 </init-param>
 <init-param>
 <param-name>java.naming.provider.url</param-name>
 <param-value system-property="java.naming.provider.url"></param-value>
 </init-param>
 </init-params>
</jndi:resource>

Example: the JNDI Resource Namespace Handler

19-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Part IV
Part IV Performing Data Grid Operations

Part IV contains the following chapters:

■ Chapter 20, "Using Portable Object Format"

■ Chapter 21, "Pre-Loading a Cache"

■ Chapter 22, "Querying Data In a Cache"

■ Chapter 23, "Using Continuous Query Caching"

■ Chapter 24, "Processing Data In a Cache"

■ Chapter 25, "Using Map Events"

■ Chapter 26, "Controlling Map Operations with Triggers"

■ Chapter 27, "Using Live Events"

■ Chapter 28, "Using Coherence Query Language"

■ Chapter 29, "Performing Transactions"

■ Chapter 30, "Working with Partitions"

■ Chapter 31, "Managing Thread Execution"

■ Chapter 32, "Constraints on Re-entrant Calls"

20

Using Portable Object Format 20-1

20Using Portable Object Format

[20] This chapter provides instructions for using the Portable Object Format (POF) to
serialize objects in Coherence. The instructions are specific to using POF for Java
clients. For information on how to work with POF when building .NET extend clients,
see "Building Integration Objects for .NET Clients" in Developing Remote Clients for
Oracle Coherence. For information on how to work with POF when building C++
extend clients, see "Building Integration Objects for C++ Clients" in Developing Remote
Clients for Oracle Coherence.

This chapter includes the following sections:

■ Understanding Serialization in Coherence

■ Overview of POF Serialization

■ Using the POF API to Serialize Objects

■ Using POF Annotations to Serialize Objects

■ Using POF Extractors and POF Updaters

■ Serializing Keys Using POF

Understanding Serialization in Coherence
Coherence caches value objects. These objects may represent data from any source,
either internal (such as session data, transient data, and so on) or external (such as a
database, mainframe, and so on).

Objects placed in the cache must be serializable. Because serialization is often the most
expensive part of clustered data management, Coherence provides different options
for serializing/deserializing data:

■ com.tangosol.io.pof.PofSerializer – The Portable Object Format (also referred
to as POF) is a language agnostic binary format. POF was designed to be
incredibly efficient in both space and time and is the recommended serialization
option in Coherence. See "Using the POF API to Serialize Objects" on page 20-2.

■ java.io.Serializable – The simplest, but slowest option.

■ java.io.Externalizable – This requires developers to implement serialization
manually, but can provide significant performance benefits. Compared to
java.io.Serializable, this can cut serialized data size by a factor of two or more
(especially helpful with Distributed caches, as they generally cache data in
serialized form). Most importantly, CPU usage is dramatically reduced.

Overview of POF Serialization

20-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ com.tangosol.io.ExternalizableLite – This is very similar to
java.io.Externalizable, but offers better performance and less memory usage
by using a more efficient I/O stream implementation.

■ com.tangosol.run.xml.XmlBean – A default implementation of
ExternalizableLite (For more details, see the API Javadoc for XmlBean).

Overview of POF Serialization
Serialization is the process of encoding an object into a binary format. It is a critical
component to working with Coherence as data must be moved around the network.
POF is a language agnostic binary format. POF was designed to be incredibly efficient
in both space and time and has become a cornerstone element in working with
Coherence. For more information on the POF binary stream, see Appendix E, "The
PIF-POF Binary Format."

There are several options available for serialization including standard Java
serialization, POF, and your own custom serialization routines. Each has their own
trade-offs. Standard Java serialization is easy to implement, supports cyclic object
graphs and preserves object identity. Unfortunately, it's also comparatively slow, has a
verbose binary format, and restricted to only Java objects.

POF has the following advantages:

■ It's language independent with current support for Java, .NET, and C++.

■ It's very efficient, in a simple test class with a String, a long, and three ints,
(de)serialization was seven times faster, and the binary produced was one sixth the
size compared with standard Java serialization.

■ It's versionable, objects can evolve and have forward and backward compatibility.

■ It supports the ability to externalize your serialization logic.

■ It's indexed which allows for extracting values without deserializing the whole
object. See "Using POF Extractors and POF Updaters" on page 20-14.

Using the POF API to Serialize Objects
POF requires serialization routines that know how to serialize and deserialize an
object. There are two interfaces available for serializing objects: the
com.tangosol.io.pof.PortableObject interface and the
com.tangosol.io.pof.PofSerializer interface. POF also supports annotations that
automatically implement serialization with out having to implement the
PortableObject or PofSerializer interfaces. See "Using POF Annotations to Serialize
Objects" on page 20-10 for details.

This section includes the following topics:

■ Implementing the PortableObject Interface

■ Implementing the PofSerializer Interface

Note: When serializing an object, Java serialization automatically
crawls every visible object (by using object references, including
collections like Map and List). As a result, cached objects should not
refer to their parent objects directly (holding onto an identifying value
like an integer is allowed). Objects that implement their own
serialization routines are not affected.

Using the POF API to Serialize Objects

Using Portable Object Format 20-3

■ Guidelines for Assigning POF Indexes

■ Using POF Object References

■ Registering POF Objects

■ Configuring Coherence to Use the ConfigurablePofContext Class

Implementing the PortableObject Interface
The PortableObject interface is an interface made up of two methods:

■ public void readExternal(PofReader reader)

■ public void writeExternal(PofWriter writer)

POF elements are indexed by providing a numeric value for each element that you
write or read from the POF stream. It's important to keep in mind that the indexes
must be unique to each element written and read from the POF stream, especially
when you have derived types involved because the indexes must be unique between
the super class and the derived class. The following example demonstrates
implementing the PortableObject interface:

public void readExternal(PofReader in)
 throws IOException
 {
 m_symbol = (Symbol) in.readObject(0);
 m_ldtPlaced = in.readLong(1);
 m_fClosed = in.readBoolean(2);
 }

public void writeExternal(PofWriter out)
 throws IOException
 {
 out.writeObject(0, m_symbol);
 out.writeLong(1, m_ldtPlaced);
 out.writeBoolean(2, m_fClosed);
 }

Implementing the PofSerializer Interface
The PofSerializer interface provides a way to externalize the serialization logic from
the classes you want to serialize. This is particularly useful when you do not want to
change the structure of your classes to work with POF and Coherence. The
PofSerializer interface is also made up of two methods:

■ public Object deserialize(PofReader in)

■ public void serialize(PofWriter out, Object o)

As with the PortableObject interface, all elements written to or read from the POF
stream must be uniquely indexed. Below is an example implementation of the
PofSerializer interface:

Example 20–1 Implementation of the PofSerializer Interface

public Object deserialize(PofReader in)
 throws IOException
 {
 Symbol symbol = (Symbol)in.readObject(0);
 long ldtPlaced = in.readLong(1);
 bool fClosed = in.readBoolean(2);

Using the POF API to Serialize Objects

20-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 // mark that reading the object is done
 in.readRemainder(null);

 return new Trade(symbol, ldtPlaced, fClosed);
 }

public void serialize(PofWriter out, Object o)
 throws IOException
 {
 Trade trade = (Trade) o;
 out.writeObject(0, trade.getSymbol());
 out.writeLong(1, trade.getTimePlaced());
 out.writeBoolean(2, trade.isClosed());

 // mark that writing the object is done
 out.writeRemainder(null);
 }

Guidelines for Assigning POF Indexes
Use the following guidelines when assigning POF indexes to an object's attributes:

■ Order your reads and writes: start with the lowest index value in the serialization
routine and finish with the highest. When deserializing a value, perform reads in
the same order as writes.

■ Non-contiguous indexes are acceptable but must be read/written sequentially.

■ When Subclassing reserve index ranges: index's are cumulative across derived
types. As such, each derived type must be aware of the POF index range reserved
by its super class.

■ Do not re-purpose indexes: to support Evolvable, it's imperative that indexes of
attributes are not re-purposed across class revisions.

■ Label indexes: indexes that are labeled with a public static final int, are
much easier to work with, especially when using POF Extractors and POF
Updaters. See "Using POF Extractors and POF Updaters" on page 20-14. Indexes
that are labeled must still be read and written out in the same order as mentioned
above.

Using POF Object References
POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures. However,
for applications that contain large amounts of data but only few repeats, the use of
object references provides minimal benefits due to the overhead incurred in keeping
track of object identities and references.

The use of object identity and references has the following limitations:

■ Object references are only supported for user defined object types.

■ Object references are not supported for Evolvable objects.

■ Object references are not supported for keys.

Using the POF API to Serialize Objects

Using Portable Object Format 20-5

■ Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The opposite
is also true.

■ POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the ValueExtractor API to query object values or disable
object references.

■ The use of the PofNavigator and PofValue API has the following restrictions
when using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform
collections.

– For read operations, if an object appears in the data stream multiple times,
then the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an IOException: missing identity:
<ID> may be thrown. For example, if there are 3 lists that all contain the same
person object, p. The p object must be read in the first list before it can be read
in the second or third list.

This section includes the following topics:

■ Enabling POF Object References

■ Registering POF Object Identities for Circular and Nested Objects

Enabling POF Object References
Object references are not enabled by default and must be enabled either within a
pof-config.xml configuration file or programmatically when using the
SimplePofContext class.

To enable object references in the POF configuration file, include the
<enable-references> element, within the <pof-config> element, and set the value to
true. For example:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 ...
 <enable-references>true</enable-references>
</pof-config>

To enable object references when using the SimplePofContext class, call the
setReferenceEnabled method with a property set to true. For example:

SimplePofContext ctx = new SimplePofContext();
ctx.setReferenceEnabled(true);

Registering POF Object Identities for Circular and Nested Objects
Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child object that references the parent object will not find the identity of
the parent in the reference map. Object identities can be registered from a serializer

Using the POF API to Serialize Objects

20-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

during the deserialization routine using the
com.tangosol.io.pof.PofReader.registerIdentity method.

The following examples demonstrate two objects (Customer and Product) that contain
a circular reference and a serializer implementation that registers an identity on the
Customer object.

The Customer object is defined as follows:

public class Customer
 {
 private String m_sName;
 private Product m_product;

 public Customer(String sName)
 {
 m_sName = sName;
 }

 public Customer(String sName, Product product)
 {
 m_sName = sName;
 m_product = product;
 }

 public String getName()
 {
 return m_sName;
 }

 public Product getProduct()
 {
 return m_product;
 }

 public void setProduct(Product product)
 {
 m_product = product;
 }
 }

The Product object is defined as follows:

public class Product
 {
 private Customer m_customer;

 public Product(Customer customer)
 {
 m_customer = customer;
 }

 public Customer getCustomer()
 {
 return m_customer;
 }
 }

The serializer implementation registers an identity during deserialization and is
defined as follows:

public class CustomerSerializer implements PofSerializer

Using the POF API to Serialize Objects

Using Portable Object Format 20-7

 {
 @Override
 public void serialize(PofWriter pofWriter, Object o) throws IOException
 {
 Customer customer = (Customer) o;
 pofWriter.writeString(0, customer.getName());
 pofWriter.writeObject(1, customer.getProduct());
 pofWriter.writeRemainder(null);
 }

 @Override
 public Object deserialize(PofReader pofReader) throws IOException
 {
 String sName = pofReader.readString(0);
 Customer customer = new Customer(sName);

 pofReader.registerIdentity(customer);
 customer.setProduct((Product) pofReader.readObject(1));
 pofReader.readRemainder();
 return customer;
 }
 }

Registering POF Objects
Coherence provides the com.tangosol.io.pof.ConfigurablePofContext serializer
class which is responsible for mapping a POF serialized object to an appropriate
serialization routine (either a PofSerializer implementation or by calling through the
PortableObject interface).

Once your classes have serialization routines, the classes are registered with the
ConfigurablePofContext class using a pof-config.xml configuration file. The POF
configuration file has a <user-type-list> element that contains a list of classes that
implement PortableObject or have a PofSerializer associated with them. The
<type-id> for each class must be unique, and must match across all cluster instances
(including extend clients). See Appendix C, "POF User Type Configuration Elements,"
for detailed reference of the POF configuration elements.

The following is an example of a POF configuration file:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>

 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.examples.MyTrade</class-name>
 <serializer>
 <class-name>com.examples.MyTradeSerializer</class-name>
 </serializer>
 </user-type>

 <user-type>

Using the POF API to Serialize Objects

20-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <type-id>1002</type-id>
 <class-name>com.examples.MyPortableTrade</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Configuring Coherence to Use the ConfigurablePofContext Class
Coherence can be configured to use the ConfigurablePofContext serializer class in
three different ways based on the level of granularity that is required:

■ Per Service – Each service provides a full ConfigurablePofContext serializer class
configuration or references a predefined configuration that is included in the
operational configuration file.

■ All Services – All services use a global ConfigurablePofContext serializer class
configuration. Services that provide their own configuration override the global
configuration. The global configuration can also be a full configuration or
reference a predefined configuration that is included in the operational
configuration file.

■ JVM – The ConfigurablePofContext serializer class is enabled for the whole JVM.

Configure the ConfigurablePofContext Class Per Service
To configure a service to use the ConfigurablePofContext class, add a <serializer>
element to a cache scheme in a cache configuration file. See "serializer" on page B-117
for a complete reference of the <serializer> element.

The following example demonstrates a distributed cache that is configured to use the
ConfigurablePofContext class and defines a custom POF configuration file:

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>my-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
</distributed-scheme>

The following example references the default definition in the operational
configuration file. Refer to "serializer" on page A-59 to see the default
ConfigurablePofContext serializer definition.

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>

Note: Coherence reserves the first 1000 type-id's for internal use. As
shown in the above example, the <user-type-list> includes the
coherence-pof-config.xml file that is located in the root of the
coherence.jar file. This is where Coherence specific user types are
defined and should be included in all of your POF configuration files.

Using the POF API to Serialize Objects

Using Portable Object Format 20-9

 <service-name>DistributedCache</service-name>
 <serializer>pof</serializer>
 </distributed-scheme>

Configure the ConfigurablePofContext Class for All Services
To globally configure the ConfigurablePofContext class for all services, add a
<serializer> element within the <defaults> element in a cache configuration file.
Both of the below examples globally configure a serializer for all cache scheme
definitions and do not require any additional configuration within individual cache
scheme definitions. See "defaults" on page B-31 for a complete reference of the
<defaults> element.

The following example demonstrates a global configuration for the
ConfigurablePofContext class and defines a custom POF configuration file:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>my-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 </defaults>
 ...

The following example references the default definition in the operational
configuration file. Refer to "serializer" on page A-59 to see the default
ConfigurablePofContext serializer definition.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 ...

Configure the ConfigurablePofContext Class For the JVM
An entire JVM instance can be configured to use POF using the following system
properties:

■ tangosol.pof.enabled=true - Enables POF for the entire JVM instance.

Using POF Annotations to Serialize Objects

20-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ tangosol.pof.config=CONFIG_FILE_PATH - The path to the POF configuration file
you want to use. If the files is not in the classpath, then it must be presented as a
file resource (for example,
file:///opt/home/coherence/mycustom-pof-config.xml).

Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
PofSerializer interface. Annotations offer an alternative to using the PortableObject
and PofSerializer interfaces and reduce the amount of time and code that is required
to make objects serializable.

This section includes the following topics:

■ Annotating Objects for POF Serialization

■ Registering POF Annotated Objects

■ Generating a POF Configuration File

■ Enabling Automatic Indexing

■ Providing a Custom Codec

Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its properties are POF
serializable:

■ @Portable – Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

■ @PortableProperty – Marks a member variable or method accessor as a POF
serialized attribute. Annotated methods must conform to accessor notation (get,
set, is). Members can be used to specify POF indexes as well as custom codecs
that are executed before or after serialization or deserialization. Index values may
be omitted and automatically assigned. If a custom codec is not entered, the
default codec is used.

The following example demonstrates annotating a class, method, and properties and
assigning explicit property index values. See "Guidelines for Assigning POF Indexes"
on page 20-4 for additional details on POF indexing.

@Portable
public class Person
 {
 @PortableProperty(0)
 public String getFirstName()
 {
 return m_firstName;
 }

 private String m_firstName;

 @PortableProperty(1)
 private String m_lastName;

 @PortableProperty(2)
 private int m_age;

Using POF Annotations to Serialize Objects

Using Portable Object Format 20-11

}

Registering POF Annotated Objects
POF annotated objects, like all POF objects, must be registered in a pof-config.xml
file within a <user-type> element. See Appendix C, "POF User Type Configuration
Elements," for a detailed reference of the POF configuration elements. As an
alternative to manually creating a POF configuration file, the POF Configuration
Generator tool can be used to automatically create a POF configuration file based on
objects that use the @Portable annotation. For details on the POF Configuration
Generator tool, see "Generating a POF Configuration File" on page 20-11.

POF annotated objects use the PofAnnotationSerializer serializer if an object does
not implement PortableObject and is annotated as Portable; however, the serializer
is automatically assumed if an object is annotated and does not need to be included in
the user type definition. The following example registers a user type for an annotated
Person object:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>

 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.examples.Person</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Generating a POF Configuration File
The POF Configuration Generator command line tool automatically creates a POF
configuration file that includes user type entries for the classes that contain the
@Portable annotation. The tool is an alternative to manually creating a POF
configuration file and is ideal as part of a build process.

Start the POF Configuration Generator command line tool by using the COHERENCE_
HOME/bin/pof-config-gen script (.cmd or .sh) or by directly running the
com.tangosol.io.pof.generator.Executor class. Use the -help argument for
detailed usage instructions. The usage is as follows:

pof-config-gen [OPTIONS] -root

The -root argument is required and lists the locations (separated directories, JAR files,
or GAR file) to scan for POF annotated classes. A user type entry and ID is generated
for each annotated class that is found and the resulting pof-config.xml file is written
to the current working directory. For example:

pof-config-gen.cmd -root c:\src\myPofClasses.jar

Using POF Annotations to Serialize Objects

20-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The following optional arguments may be provided:

■ -out: Use the -out argument to specify either the path to an output directory or a
path and filename. The default output directory is the working directory. The
default filename if only a directory is specified is pof-config.xml. If a directory is
specified and a pof-config.xml file already exists, then a new file is created with a
count suffix (pof-config-n.xml). If a path and filename are specified and the file
currently exists, then the file is overwritten.

■ -config: Use the -config argument to specify the path and filename of an existing
POF configuration file from which existing user types must be added to the
generated POF configuration file. Existing user type IDs are retained in the
generated file. This argument can be used to support backwards compatibility
when generating a POF configuration file multiple times.

■ -include: Use the -include argument to specify whether an existing POF
configuration file (as specified by the -config argument) should only be
referenced in the generated POF configuration file. The argument results in an
<include> element that references the existing file. Existing user types and IDs are
not recreated in the generated file. At runtime, the referenced file must be located
in the classpath.

■ -packages: Use the -packages argument to constrain the class scan to specific
packages. The packages are entered as a comma separated list.

■ -startTypeId: Use the -startTypeId argument to specify the user type ID number
from which to start allocating IDs. IDs up to 1000 are reserved for
Coherence-specific types and cannot be used.

The following example scans the c:\classes\pof directory and creates a new POF
configuration file called my-pof-config.xml in the c:\tmp directory that includes (by
reference) the existing c:\tmp\pof-config.xml file.

pof-config-gen.cmd -out c:\tmp\my-pof-config.xml -config c:\tmp\pof-config.xml
 -include -root c:\classes\pof

Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. Omit the index value when defining the
@PortableProperty annotation. Index allocation is determined by the property name.
Any property that does assign an explicit index value is not assigned an automatic
index value. The following table demonstrates the ordering semantics of the automatic
index algorithm. Notice that automatic indexing maintains explicitly defined indexes
(as shown for property c) and assigns an index value if an index is omitted.

Note: If you specify a GAR file as the root, the output is a new GAR
file with a count suffix (filename-n.gar) that includes the generated
POF configuration file.

Note: A reference to the Coherence-specific POF configuration file
(coherence-pof-config.xml) is automatically added to the generated
POF configuration file if it is not found in an existing POF
configuration file and does not need to be added using the -include
argument.

Using POF Annotations to Serialize Objects

Using Portable Object Format 20-13

To enable automatic indexing, the PofAnnotationSerializer serializer class must be
explicitly defined when registering the object as a user type in the POF configuration
file. The fAutoIndex boolean parameter in the constructor enables automatic indexing
and must be set to true. For example:

<user-type>
 <type-id>1001</type-id>
 <class-name>com.examples.Person</class-name>
 <serializer>
 <class-name>com.tangosol.io.pof.PofAnnotationSerializer</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>{type-id}</param-value>
 </init-param>
 <init-param>
 <param-type>class</param-type>
 <param-value>{class}</param-value>
 </init-param>
 <init-param>
 <param-type>boolean</param-type>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </serializer>
</user-type>

Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. The
codec defines how to encode and decode a portable property using the PofWriter and
PofReader interfaces. Codecs are typically used for concrete implementations that
could get lost when being deserialized or to explicitly call a specific method on the
PofWriter interface before serializing an object.

To create a codec, create a class that implements the
com.tangosol.io.pof.reflect.Codec interface. The following example demonstrates
a codec that defines the concrete implementation of a linked list type:

public static class LinkedListCodec implements Codec
 {
 public Object decode(PofReader in, int index) throws IOException
 {
 return (List<String>) in.readCollection(index, new LinkedList<String>());
 }
 public void encode(PofWriter out, int index, Object value) throws IOException

Property Name Explicit Index Determined Index

c 1 1

a omitted 0

b omitted 2

Note: Automatic indexing does not currently support evolvable
classes.

Using POF Extractors and POF Updaters

20-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 {
 out.writeCollection(index, (Collection) value);
 {
 }

To assign a codec to a property, enter the codec as a member of the @PortableProperty
annotation. If a codec is not specified, a default codec (DefaultCodec) is used. The
following example demonstrates assigning the above LinkedListCodec codec:

@PortableProperty(codec = LinkedListCodec.class)
private List<String> m_aliases;

Using POF Extractors and POF Updaters
In Coherence, the ValueExtractor and ValueUpdater interfaces are used to extract and
update values of objects that are stored in the cache. The PofExtractor and
PofUpdater interfaces take advantage of the POF indexed state to extract or update an
object without the requirement to go through the full serialization/deserialization
routines.

PofExtractor and PofUpdater adds flexibility in working with non-primitive types in
Coherence. For many extend client cases, a corresponding Java classes in the grid is no
longer required. Because POF extractors and POF updaters can navigate the binary, the
entire key and value does not have to be deserialized into object form. This implies
that indexing can be achieved by simply using POF extractors to pull a value to index
on. However, a corresponding Java class is still required when using a cache store. In
this case, the deserialized version of the key and value is passed to the cache store to
write to the back end.

Navigating a POF object
Due to the fact that POF is indexed, it's possible to quickly traverse the binary to a
specific element for extraction or updating. It's the responsibility of the PofNavigator
interface to traverse a POF value object and return the desired POF value object. Out of
the box, Coherence provides a SimplePofPath class that can navigate a POF value
based on integer indexes. In the simplest form, provide the index of the attribute to be
extracted/updated.

Consider the following example:

public class Contact
 implements PortableObject
 {
 ...
 // ----- PortableObject interface ---------------------------------------

 public void readExternal(PofReader reader)
 throws IOException
 {
 m_sFirstName = reader.readString(FIRSTNAME);
 m_sLastName = reader.readString(LASTNAME);
 m_addrHome = (Address) reader.readObject(HOME_ADDRESS);
 m_addrWork = (Address) reader.readObject(WORK_ADDRESS);
 m_mapPhoneNumber = reader.readMap(PHONE_NUMBERS, null);
 }

 public void writeExternal(PofWriter writer)
 throws IOException
 {

Using POF Extractors and POF Updaters

Using Portable Object Format 20-15

 writer.writeString(FIRSTNAME, m_sFirstName);
 writer.writeString(LASTNAME, m_sLastName);
 writer.writeObject(HOME_ADDRESS, m_addrHome);
 writer.writeObject(WORK_ADDRESS, m_addrWork);
 writer.writeMap(PHONE_NUMBERS, m_mapPhoneNumber);
 }

 // ----- constants ---

 public static final int FIRSTNAME = 0;
 public static final int LASTNAME = 1;
 public static final int HOME_ADDRESS = 2;
 public static final int WORK_ADDRESS = 3;
 public static final int PHONE_NUMBERS = 4;

 ...
}
Notice that there's a constant for each data member that is being written to and from
the POF stream. This is an excellent practice to follow as it simplifies both writing your
serialization routines and makes it easier to work with POF extractors and POF
updaters. By labeling each index, it becomes much easier to think about the index. As
mentioned above, in the simplest case, the work address can be pulled out of the
contact by using the WORK_ADDRESS index. The SimplePofPath also allows using an
Array of ints to traverse the PofValues. For example, to get the zip code of the work
address use [WORK_ADDRESS, ZIP]. The example are discussed in more detail below.

Using POF Extractors
POF extractors are typically used when querying a cache and improves query
performance. For example, using the class demonstrated above, to query the cache for
all contacts with the last names Jones, the query is as follows:

ValueExtractor veName = new PofExtractor(String.class, Contact.LASTNAME);
Filter filter = new EqualsFilter(veName, "Jones");

// find all entries that have a last name of Jones
Set setEntries = cache.entrySet(filter);

In the above case, PofExtractor has a convenience constructor that uses a
SimplePofPath to retrieve a singular index, in our case the Contact.LASTNAME index.
To find all contacts with the area code 01803, the query is as follows:

ValueExtractor veZip = new PofExtractor(
 String.class, new SimplePofPath(new int[] {Contact.WORK_ADDRESS,
Address.ZIP}));

Filter filter = new EqualsFilter(veZip, "01803");

// find all entries that have a work address in the 01803 zip code
Set setEntries = cache.entrySet(filter);

Notice that in the previous examples, the PofExtractor constructor has a first
argument with the class of the extracted value or null. The reason for passing type
information is that POF uses a compact form in the serialized value when possible. For
example, some numeric values are represented as special POF intrinsic types in which
the type implies the value. As a result, POF requires the receiver of a value to have
implicit knowledge of the type. PofExtractor uses the class supplied in the

Serializing Keys Using POF

20-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

constructor as the source of the type information. If the class is null, PofExtractor
infers the type from the serialized state, but the extracted type may differ from the
expected type. String types, in fact, can be correctly inferred from the POF stream, so
null is sufficient in the previous examples. In general, however, null should not be
used.

Using POF Updaters
POF updaters work in the same way as POF extractors except that they update the
value of an object rather than extract it. To change all entries with the last name of
Jones to Smith, use the UpdaterProcessor class as follows:

ValueExtractor veName = new PofExtractor(String.class, Contact.LASTNAME);
Filter filter = new EqualsFilter(veName, "Jones");
ValueUpdater updater = new PofUpdater(Contact.LASTNAME);

// find all Contacts with the last name Jones and change them to have the last
// name "Smith"

cache.invokeAll(filter, new UpdaterProcessor(updater, "Smith"));

Serializing Keys Using POF
Key objects, like value objects, can be serialized using POF. However, the following
issues must be considered:

■ POF defines a cross-platform object format, it cannot always provide a
symmetrical conversion. That is, when a serialized object is deserialized, the object
type is different than the original type. This occurs because some data types in
Java do not have equivalents in the .NET and C++ platforms. As a result, avoid
using classes that potentially have an asymmetrical POF conversion as keys, or
parts of keys, for caches and other Java collections.

■ Avoided using the java.util.Date type. POF is designed to serialize to
java.sql.Timestamp (which extends java.util.Date). The wire formats for those
two classes are identical, and a deserialization of that wire representation always
results in a java.sql.Timestamp instance. Unfortunately, the equals method of
those two base classes breaks the symmetry requirement for keys in Java
collections. That is, if you have two objects: D (of java.util.Date) and T (of
java.sql.Timestamp) that are equivalent from the POF wire format perspective,
then D.equals(T) yields true, while T.equals(D) yields false. Therefore, the use of
java.util.Date must be avoided. Use a Long representation of the date or the
java.sql.Timestamp type to avoid breaking the key symmetry requirement.

■ Keys that are using POF object references cannot be serialized. In addition, POF
object references support circular references. Therefore, you must ensure that your
key class does not have circular references.

Note: while these examples operate on String based values, this
functionality works on any POF encoded value.

21

Pre-Loading a Cache 21-1

21Pre-Loading a Cache

[21] This chapter describes how to pre-load data into a cache using the bulk loading and
distributed loading patterns.

This chapter includes the following sections:

■ Bulk Loading Data Into a Cache

■ Performing Distributed Bulk Loading

Bulk Loading Data Into a Cache
A common scenario when using Coherence is to pre-populate a cache before an
application uses the data. Example 21–1 demonstrates loading data using the put
method. This technique works, but each call to put may result in network traffic,
especially for partitioned and replicated caches. Additionally, each call to put returns
the object it just replaced in the cache (as defined in the java.util.Map interface)
which adds more unnecessary overhead.

Example 21–1 Pre-Loading a Cache

public static void bulkLoad(NamedCache cache, Connection conn)
 {
 Statement s;
 ResultSet rs;

 try
 {
 s = conn.createStatement();
 rs = s.executeQuery("select key, value from table");
 while (rs.next())
 {
 Integer key = new Integer(rs.getInt(1));
 String value = rs.getString(2);
 cache.put(key, value);
 }
 ...
 }
 catch (SQLException e)
 {...}
 }

Loading the cache can be made much more efficient by using the
ConcurrentMap.putAll method instead. This is illustrated in Example 21–2:

Performing Distributed Bulk Loading

21-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 21–2 Pre-Loading a Cache Using ConcurrentMap.putAll

public static void bulkLoad(NamedCache cache, Connection conn)
 {
 Statement s;
 ResultSet rs;
 Map buffer = new HashMap();

 try
 {
 int count = 0;
 s = conn.createStatement();
 rs = s.executeQuery("select key, value from table");
 while (rs.next())
 {
 Integer key = new Integer(rs.getInt(1));
 String value = rs.getString(2);
 buffer.put(key, value);

 // this loads 1000 items at a time into the cache
 if ((count++ % 1000) == 0)
 {
 cache.putAll(buffer);
 buffer.clear();
 }
 }
 if (!buffer.isEmpty())
 {
 cache.putAll(buffer);
 }
 ...
 }
 catch (SQLException e)
 {...}
 }

Performing Distributed Bulk Loading
When pre-populating a Coherence partitioned cache with a large data set, it may be
more efficient to distribute the work to Coherence cluster members. Distributed
loading allows for higher data throughput rates to the cache by leveraging the
aggregate network bandwidth and CPU power of the cluster. When performing a
distributed load, the application must decide on the following:

■ which cluster members performs the load

■ how to divide the data set among the members

The application should consider the load that is placed on the underlying data source
(such as a database or file system) when selecting members and dividing work. For
example, a single database can easily be overwhelmed if too many members execute
queries concurrently.

A Distributed Bulk Loading Example
This section outlines the general steps to perform a simple distributed load. The
example assumes that the data is stored in files and is distributed to all
storage-enabled members of a cluster.

Performing Distributed Bulk Loading

Pre-Loading a Cache 21-3

1. Retrieve the set of storage-enabled members. For example, the following method
uses the getStorageEnabledMembers method to retrieve the storage-enabled
members of a distributed cache.

Example 21–3 Retrieving Storage-Enabled Members of the Cache

protected Set getStorageMembers(NamedCache cache)
 {
 return ((PartitionedService) cache.getCacheService())
 .getOwnershipEnabledMembers();
 }

2. Divide the work among the storage enabled cluster members. For example, the
following routine returns a map, keyed by member, containing a list of files
assigned to that member.

Example 21–4 Routine to Get a List of Files Assigned to a Cache Member

protected Map<Member, List<String>> divideWork(Set members, List<String>
fileNames)
 {
 Iterator i = members.iterator();
 Map<Member, List<String>> mapWork = new HashMap(members.size());
 for (String sFileName : fileNames)
 {
 Member member = (Member) i.next();
 List<String> memberFileNames = mapWork.get(member);
 if (memberFileNames == null)
 {
 memberFileNames = new ArrayList();
 mapWork.put(member, memberFileNames);
 }
 memberFileNames.add(sFileName);

 // recycle through the members
 if (!i.hasNext())
 {
 i = members.iterator();
 }
 }
 return mapWork;
 }

3. Launch a task that performs the load on each member. For example, use
Coherence's InvocationService to launch the task. In this case, the
implementation of LoaderInvocable must iterate through memberFileNames and
process each file, loading its contents into the cache. The cache operations
normally performed on the client must execute through the LoaderInvocable.

Example 21–5 Class to Load Each Member of the Cache

public void load()
 {
 NamedCache cache = getCache();

 Set members = getStorageMembers(cache);

 List<String> fileNames = getFileNames();

 Map<Member, List<String>> mapWork = divideWork(members, fileNames);

Performing Distributed Bulk Loading

21-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 InvocationService service = (InvocationService)
 CacheFactory.getService("InvocationService");

 for (Map.Entry<Member, List<String>> entry : mapWork.entrySet())
 {
 Member member = entry.getKey();
 List<String> memberFileNames = entry.getValue();

 LoaderInvocable task = new LoaderInvocable(memberFileNames,
cache.getCacheName());
 service.execute(task, Collections.singleton(member), this);
 }
 }

22

Querying Data In a Cache 22-1

22Querying Data In a Cache

[22] This chapter provides instructions for performing queries and using indexes to
retrieve data in a cache that matches a certain criteria. Queries and indexes can be
simple, employing filters packaged with Coherence, or they can be run against
multi-value attributes such as collections and arrays.

This chapter includes the following sections:

■ Query Overview

■ Performing Queries

■ Using Query Indexes

■ Performing Batch Queries

■ Performing Queries on Multi-Value Attributes

■ Using Chained Extractors

■ Evaluating Query Cost and Effectiveness

Query Overview
Coherence provides the ability to search for cache entries that meet a given set of
criteria. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

Queries apply only to currently cached data (and do not use the CacheLoader interface
to retrieve additional data that may satisfy the query). Thus, the data set should be
loaded entirely into cache before queries are performed. In cases where the data set is
too large to fit into available memory, it may be possible to restrict the cache contents
along a specific dimension (for example, "date") and manually switch between cache
queries and database queries based on the structure of the query. For maintainability,
this is usually best implemented inside a cache-aware data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; for
dedicated cache server instances, this implies (usually) that application classes must be
installed in the cache server's classpath.

For Local and Replicated caches, queries can be evaluated locally against unindexed or
indexed data. For Partitioned caches, queries are typically performed in parallel across
the cluster an use indexes. Access to unindexed attributes requires object
deserialization (though indexing on other attributes can reduce the number of objects
that must be evaluated). Lastly, Coherence includes a Cost-Based Optimizer (CBO) and
also provides support for trace and explain reports that help ensure the efficiency of a
query.

Performing Queries

22-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Query Concepts
The concept of querying is based on the ValueExtractor interface. A value extractor is
used to extract an attribute from a given object for querying (and similarly, indexing).
Most developers need only the ReflectionExtractor implementation of this interface.
The implementation uses reflection to extract an attribute from a value object by
referring to a method name which is typically a getter method. For example:

ValueExtractor extractor = new ReflectionExtractor("getName");

Any void argument method can be used, including Object methods like toString()
(useful for prototype/debugging). Indexes may be either traditional field indexes
(indexing fields of objects) or functional-based indexes (indexing virtual object
attributes). For example, if a class has field accessors getFirstName and getLastName,
the class may define a function getFullName which concatenates those names, and this
function may be indexed. See "Using Query Indexes" on page 22-4 for more
information on indexes.

To query a cache that contains objects with getName attributes, a Filter must be used.
A filter has a single method which determines whether a given object meets a
criterion.

Filter filter = new EqualsFilter(extractor, "Bob Smith");

Note that the filters also have convenience constructors that accept a method name
and internally construct a ReflectionExtractor:

Filter filter = new EqualsFilter("getName", "Bob Smith");

The following example shows a routine to select the entries of a cache that satisfy a
particular filter:

for (Iterator iter = cache.entrySet(filter).iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry)iter.next();
 Integer key = (Integer)entry.getKey();
 Person person = (Person)entry.getValue();
 System.out.println("key=" + key + " person=" + person);
 }

The following example uses a filter to select and sort cache entries:

// entrySet(Filter filter, Comparator comparator)
Iterator iter = cache.entrySet(filter, null).iterator();

The additional null argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Performing Queries
Example 22–1 demonstrates how to create a query and uses the GreaterEqualsFilter
filter. Coherence includes many pre-built filters located in the
com.tangosol.util.filter package. See the Java API Reference for Oracle Coherence for
a complete list of all the pre-built filters.

Performing Queries

Querying Data In a Cache 22-3

Example 22–1 Querying the Cache with a Filter

Filter filter = new GreaterEqualsFilter("getAge", 18);

for (Iterator iter = cache.entrySet(filter).iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 Integer key = (Integer) entry.getKey();
 Person person = (Person) entry.getValue();
 System.out.println("key=" + key + " person=" + person);
 }

Coherence provides a wide range of filters in the com.tangosol.util.filter package.

Efficient Processing of Filter Results
Example 22–1 works for small data sets, but it may encounter problems, such as
running out of heap space, if the data set is too large. Example 22–2 illustrates a
pattern to process query results when using large data sets. In this example, all keys
for entries that match the filter are returned, but only BUFFER_SIZE (in this case, 100)
entries are retrieved from the cache at a time.

Example 22–2 Processing Query Results in Batches

public static void performQuery()
 {
 NamedCache c = CacheFactory.getCache("test");

 // Search for entries that start with 'c'
 Filter query = new LikeFilter(IdentityExtractor.INSTANCE, "c%", '\\', true);

 // Perform query, return keys of entries that match
 Set keys = c.keySet(query);

 // The amount of objects to process at a time
 final int BUFFER_SIZE = 100;

 // Object buffer
 Set buffer = new HashSet(BUFFER_SIZE);

 for (Iterator i = keys.iterator(); i.hasNext();)
 {
 buffer.add(i.next());

 if (buffer.size() >= BUFFER_SIZE)

Note: Although queries can be executed through a near cache, the
query does not use the front portion of a near cache. If using a near
cache with queries, the best approach is to use the following sequence:

Set setKeys = cache.key set(filter);
Map mapResult = cache.getAll(setKeys);

Note: The LimitFilter API can process results in parts, similar to
the example below. However LimitFilter is meant for scenarios
where the results are paged, such as in a user interface. It is not an
efficient means to process all data in a query result.

Using Query Indexes

22-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 {
 // Bulk load BUFFER_SIZE number of objects from cache
 Map entries = c.getAll(buffer);

 // Process each entry
 process(entries);

 // Done processing these keys, clear buffer
 buffer.clear();
 }
 }
 // Handle the last partial chunk (if any)
 if (!buffer.isEmpty())
 {
 process(c.getAll(buffer));
 }
 }

public static void process(Map map)
 {
 for (Iterator ie = map.entrySet().iterator(); ie.hasNext();)
 {

 Map.Entry e = (Map.Entry) ie.next();
 out("key: "+e.getKey() + ", value: "+e.getValue());
 }
 }

Using Query Indexes
Query indexes allow values (or attributes of those values) and corresponding keys to
be correlated within a QueryMap to increase query performance.

This section includes the following topics:

■ Creating an Index

■ Creating User-Defined Indexes

Creating an Index
The addIndex method of the QueryMap class is used to create indexes. Any attribute
able to be queried may be indexed using this method. The method includes three
parameters:

addIndex(ValueExtractor extractor, boolean fOrdered, Comparator comparator)

Example 22–3 demonstrates how to create an index:

Example 22–3 Sample Code to Create an Index

NamedCache cache = CacheFactory.getCache("MyCache");
ValueExtractor extractor = new ReflectionExtractor("getAttribute");
cache.addIndex(extractor, true, null);

The fOrdered argument specifies whether the index structure is sorted. Sorted indexes
are useful for range queries, such as "select all entries that fall between two dates" or
"select all employees whose family name begins with 'S'". For "equality" queries, an

Using Query Indexes

Querying Data In a Cache 22-5

unordered index may be used, which may have better efficiency in terms of space and
time.

The comparator argument can provide a custom java.util.Comparator for ordering
the index.

The addIndex method is only intended as a hint to the cache implementation and, as
such, it may be ignored by the cache if indexes are not supported or if the desired
index (or a similar index) exists. It is expected that an application calls this method to
suggest an index even if the index may exist, just so that the application is certain that
index has been suggested. For example in a distributed environment, each server
likely suggests the same set of indexes when it starts, and there is no downside to the
application blindly requesting those indexes regardless of whether another server has
requested the same indexes.

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take
advantage of an index, queries must use extractors that are equal ((Object.equals())
to the one used in the query.

A list of applied indexes can be retrieved from the StorageManagerMBean by using
JMX. See Managing Oracle Coherence for more information on using JMX with
Coherence.

Creating User-Defined Indexes
Applications can choose to create user-defined indexes to control which entries are
added to the index. User-defined indexes are typically used to reduce the memory and
processing overhead required to maintain an index. To create a user-defined index, an
application must implement the MapIndex interface and the IndexAwareExtractor
interfaces. This section also describes the ConditionalIndex and
ConditionalExtractor classes which provide an implementation of the interfaces to
create a conditional index that uses an associated filter to evaluate whether an entry
should be indexed.

Implementing the MapIndex Interface
The MapIndex interface is used to correlate values stored in an indexed Map (or
attributes of those values) to the corresponding keys in the indexed Map. Applications
implement this interface to supply a custom index.

The following example implementation defines an index that only adds entries with
non-null values. This would be useful in the case where there is a cache with a large
number of entries and only a small subset have meaningful, non-null, values.

public class CustomMapIndex implements MapIndex
 {
 public void insert(Map.Entry entry)
 {
 if (entry.getValue()!= null)
 {
 ...
 }
 }
 ...
 }

In the above example, the value of the entry is checked for null before extraction, but
it could be done after. If the value of the entry is null then nothing is inserted into the
index. A similar check for null would also be required for the MapIndex update

Using Query Indexes

22-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

method. The rest of the MapIndex methods must be implemented appropriately as
well.

Implementing the IndexAwareExtractor Interface
The IndexAwareExtractor interface is an extension to the ValueExtractor interface
that supports the creation and destruction of a MapIndex index. Instances of this
interface are intended to be used with the QueryMap API to support the creation of
custom indexes. The following example demonstrates how to implement this interface
and is for the example CustomMapIndex class that was created above:

public class CustomIndexAwareExtractor
 implements IndexAwareExtractor, ExternalizableLite, PortableObject
 {
 public CustomIndexAwareExtractor(ValueExtractor extractor)
 {
 m_extractor = extractor;
 }

 public MapIndex createIndex(boolean fOrdered, Comparator comparator,
 Map mapIndex)
 {
 ValueExtractor extractor = m_extractor;
 MapIndex index = (MapIndex) mapIndex.get(extractor);

 if (index != null)
 {
 throw new IllegalArgumentException(
 "Repetitive addIndex call for " + this);
 }

 index = new CustomMapIndex(extractor, fOrdered, comparator);
 mapIndex.put(extractor, index);
 return index;
 }

 public MapIndex destroyIndex(Map mapIndex)
 {
 return (MapIndex) mapIndex.remove(m_extractor);
 }
 ...
 }

In the above example, an underlying extractor is actually used to create the index and
ultimately extracts the values from the cache entries. The IndexAwareExtractor
implementation is used to manage the creation and destruction of a custom MapIndex
implementation while preserving the existing QueryMap interfaces.

The IndexAwareExtractor is passed into the QueryMap.addIndex and
QueryMap.removeIndex calls. Coherence, in turn, calls createIndex and destroyIndex
on the IndexAwareExtractor. Also note that it is the responsibility of the
IndexAwareExtractor to maintain the Map of extractor-to-index associations that is
passed into createIndex and destroyIndex.

Using a Conditional Index
 A conditional index is a custom index that implements both the MapIndex and
IndexAwareExtractor interfaces as described above and uses an associated filter to
evaluate whether an entry should be indexed. An entry's extracted value is only added

Performing Batch Queries

Querying Data In a Cache 22-7

to the index if the filter evaluates to true. The implemented classes are
ConditionalIndex and ConditionalExtractor, respectively.

The ConditionalIndex is created by a ConditionalExtractor. The filter and extractor
used by the ConditionalIndex are set on the ConditionalExtractor and passed to the
ConditionalIndex constructor during the QueryMap.addIndex call.

The ConditionalExtractor is an IndexAwareExtractor implementation that is only
used to create a ConditionalIndex. The underlying ValueExtractor is used for value
extraction during index creation and is the extractor that is associated with the created
ConditionalIndex in the given index map. Using the ConditionalExtractor to extract
values in not supported. For example:

ValueExtractor extractor = new ReflectionExtractor("getLastName");
Filter filter = new NotEqualsFilter("getId", null);
ValueExtractor condExtractor = new ConditionalExtractor(filter, extractor, true);

// add the conditional index which should only contain the last name values for
the
// entries with non-null Ids
cache.addIndex(condExtractor, true, null);

Performing Batch Queries
In order to preserve memory on the client issuing a query, there are various techniques
that can retrieve query results in batches.

Using the key set form of the queries – combined with getAll() – reduces memory
consumption since the entire entry set is not deserialized on the client simultaneously.
It also takes advantage of near caching. For example:

Example 22–4 Using a key set Query Format

// key set(Filter filter)
Set setKeys = cache.keySet(filter);
Set setPageKeys = new HashSet();
int PAGE_SIZE = 100;
for (Iterator iter = setKeys.iterator(); iter.hasNext();)
 {
 setPageKeys.add(iter.next());
 if (setPageKeys.size() == PAGE_SIZE || !iter.hasNext())
 {
 // get a block of values
 Map mapResult = cache.getAll(setPageKeys);

 // process the block
 // ...

 setPageKeys.clear();
 }
 }

A LimitFilter may be used to limit the amount of data sent to the client, and also to
provide paging. Example 22–5 demonstrates using a LimitFilter:

Example 22–5 Using a Limit Filter

int pageSize = 25;
Filter filter = new GreaterEqualsFilter("getAge", 18);
// get entries 1-25

Performing Batch Queries

22-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Filter limitFilter = new LimitFilter(filter, pageSize);
Set entries = cache.entrySet(limitFilter);

// get entries 26-50
limitFilter.nextPage();
entries = cache.entrySet(limitFilter);

When using a distributed/partitioned cache, queries can be targeted to partitions and
cache servers using a PartitionedFilter. This is the most efficient way of batching
query results as each query request is targeted to a single cache server, thus reducing
the number of servers that must respond to a request and making the most efficient
use of the network.

To execute a query partition by partition:

DistributedCacheService service =
 (DistributedCacheService) cache.getCacheService();
int cPartitions = service.getPartitionCount();

PartitionSet parts = new PartitionSet(cPartitions);
for (int iPartition = 0; iPartition < cPartitions; iPartition++)
 {
 parts.add(iPartition);
 Filter filterPart = new PartitionedFilter(filter, parts);
 Set setEntriesPart = cache.entrySet(filterPart);

 // process the entries ...
 parts.remove(iPartition);
 }

Queries can also be executed on a server by server basis:

DistributedCacheService service =
 (DistributedCacheService) cache.getCacheService();
int cPartitions = service.getPartitionCount();

PartitionSet partsProcessed = new PartitionSet(cPartitions);
for (Iterator iter = service.getStorageEnabledMembers().iterator();
 iter.hasNext();)
 {
 Member member = (Member) iter.next();
 PartitionSet partsMember = service.getOwnedPartitions(member);

 // due to a redistribution some partitions may have been processed
 partsMember.remove(partsProcessed);
 Filter filterPart = new PartitionedFilter(filter, partsMember);
 Set setEntriesPart = cache.entrySet(filterPart);

 // process the entries ...
 partsProcessed.add(partsMember);
 }

// due to a possible redistribution, some partitions may have been skipped

Note: Use of PartitionedFilter is limited to cluster members; it
cannot be used by Coherence*Extend clients. Coherence*Extend
clients may use the two techniques described above, or these queries
can be implemented as an Invocable and executed remotely by a
Coherence*Extend client.

Evaluating Query Cost and Effectiveness

Querying Data In a Cache 22-9

if (!partsProcessed.isFull())
 {
 partsProcessed.invert();
 Filter filter = new PartitionedFilter(filter, partsProcessed);

 // process the remaining entries ...
 }

Performing Queries on Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence verifies if it is a
multi-value type, and then indexes it as a collection rather than a singleton. The
ContainsAllFilter, ContainsAnyFilter and ContainsFilter are used to query
against these collections.

Example 22–6 Querying on Multi-Value Attributes

Set searchTerms = new HashSet();
searchTerms.add("java");
searchTerms.add("clustering");
searchTerms.add("books");

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
Filter filter = new ContainsAllFilter("getWords", searchTerms);

Set entrySet = cache.entrySet(filter);

// iterate through the search results
// ...

Using Chained Extractors
The ChainedExtractor implementation allows chained invocation of zero-argument
(accessor) methods. In Example 22–7, the extractor first uses reflection to call
getName() on each cached Person object, and then uses reflection to call the length
method on the returned String.

Example 22–7 Chaining Invocation Methods

ValueExtractor extractor = new ChainedExtractor("getName.length");

This extractor could be passed into a query, allowing queries (for example) to select all
people with names not exceeding 10 letters. Method invocations may be chained
indefinitely, for example getName.trim.length.

POF extractors and POF updaters offer the same functionality as ChainedExtractors
through the use of the SimplePofPath class. For details about POF extractors and POF
updaters, see "Using POF Extractors and POF Updaters" on page 20-14.

Evaluating Query Cost and Effectiveness
This section provides instructions for creating query explain plan records and query
trace records in order to view the estimated cost and actual effectiveness of each filter

Evaluating Query Cost and Effectiveness

22-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

in a query, respectively. The records are used to evaluate how Coherence is running the
query and to determine why a query is performing poorly or how it can be modified
in order to perform better. See also the StorageManagerMBean reference in Managing
Oracle Coherence for details on viewing query-based statistics.

This section includes the following topics:

■ Creating Query Records

■ Interpreting Query Records

■ Running The Query Record Example

Creating Query Records
The com.tangosol.util.aggregator.QueryRecorder class produces an explain or
trace record for a given filter. The class is an implementation of a parallel aggregator
that is capable querying all nodes in a cluster and aggregating the results. The class
supports two record types: an EXPLAIN record for showing the estimated cost for the
filters in a query, and a TRACE record for showing the actual effectiveness of each filter
in a query.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters of
the aggregate method. The following example creates an explain record:

NamedCache cache = CacheFactory.getCache("mycache");
cache.addIndex(new ReflectionExtractor("getAge"), true, null);

AllFilter filter = new AllFilter(new Filter[]
 {
 new OrFilter(
 new EqualsFilter(new ReflectionExtractor("getAge"), 16),
 new EqualsFilter(new ReflectionExtractor("getAge"), 19)),
 new EqualsFilter(new ReflectionExtractor("getLastName"), "Smith"),
 new EqualsFilter(new ReflectionExtractor("getFirstName"), "Bob"),
 });

QueryRecorder agent = new QueryRecorder(RecordType.EXPLAIN);
Object resultsExplain = cache.aggregate(filter, agent);

System.out.println("\n" + resultsExplain + "\n");

To create a trace record, change the RecordType parameter to TRACE:

QueryRecorder agent = new QueryRecorder(RecordType.TRACE);

Interpreting Query Records
Query records are used to evaluate the filters and indexes that make up a query.
Explain plan records are used to evaluate the estimated cost associated with applying
a filter. Trace records are used to evaluate how effective a filter is at reducing a key set.

This section provides a sample explain plan record and a sample trace record and
discuss how to read and interpret the record. The records are based on an example
query of 1500 entries that were located on a cluster of 4 storage-enabled nodes. The
query consists of a filter that finds any people that are either age 16 or 19 with the first
name Bob and the last name Smith. Lastly, and index is added for getAge. To run the
complete example, see "Running The Query Record Example" on page 22-13.

Evaluating Query Cost and Effectiveness

Querying Data In a Cache 22-11

NamedCache cache = CacheFactory.getCache("mycache");
cache.addIndex(new ReflectionExtractor("getAge"), true, null);

AllFilter filter = new AllFilter(new Filter[]
 {
 new OrFilter(
 new EqualsFilter(new ReflectionExtractor("getAge"), 16),
 new EqualsFilter(new ReflectionExtractor("getAge"), 19)),
 new EqualsFilter(new ReflectionExtractor("getLastName"), "Smith"),
 new EqualsFilter(new ReflectionExtractor("getFirstName"), "Bob"),
 });

Query Explain Plan Record
A query explain record provides the estimated cost of evaluating a filter as part of a
query operation. The cost takes into account whether or not an index can be used by a
filter. The cost evaluation is used to determine the order in which filters are applied
when a query is performed. Filters that use an index have the lowest cost and get
applied first.

Example 22–8 shows a typical query explain plan record. The record includes an
Explain Plain table for evaluating each filter in the query and a Index Lookups table
that lists each index that can be used by the filter. The columns are described as
follows:

■ Name – This column shows the name of each filter in the query. Composite filters
show information for each of the filters within the composite filter.

■ Index – This column shows whether or not an index can be used with the given
filter. If an index is found, the number shown corresponds to the index number on
the Index Lookups table. In the example, an ordered simple map index (0) was
found for getAge().

■ Cost – This column shows an estimated cost of applying the filter. If an index can
be used, the cost is given as 1. The value of 1 is used since the operation of
applying the index requires just a single access to the index content. In the
example, there are 4 storage-enabled cluster members and thus the cost reflects
accessing the index on all four members. If no index exists, the cost is calculated as
EVAL_COST * number of keys. The EVAL_COST value is a constant value and is
1000. This is intended to show the relative cost of doing a full scan to reduce the
key set using the filter. In the example, there are 1500 cache entries which need to
be evaluated. Querying indexed entries is always relatively inexpensive as
compared to non-indexed entries but does not necessarily guarantee effectiveness.

The record in Example 22–8 shows that the equal filter for getAge() has a low cost
because it has an associated index and would be applied before getLastName() and
getFirstName(). However, the getAge() filter, while inexpensive, may not be very
effective if all entries were either 16 and 19 and only few entries matched Bob and
Smith. In this case, it is more effective to add an index for getLastName() and
getFirstName(). Moreover, the cost (mainly memory consumption) associated with
creating an index is wasted if the index does a poor job of reducing the key set.

Example 22–8 Sample Query Explain Plan Record

Explain Plan
Name Index Cost
==
com.tangosol.util.filter.AllFilter | ---- | 0
 com.tangosol.util.filter.OrFilter | ---- | 0
 EqualsFilter(.getAge(), 16) | 0 | 4

Evaluating Query Cost and Effectiveness

22-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 EqualsFilter(.getAge(), 19) | 0 | 4
 EqualsFilter(.getLastName(), Smit | 1 | 1500000
 EqualsFilter(.getFirstName(), Bob | 2 | 1500000

Index Lookups
Index Description Extractor Ordered
==
0 SimpleMapIndex: Extractor=.getAge(), Ord .getAge() true
1 No index found .getLastName() false
2 No index found .getFirstName() false

Query Trace Record
A query trace record provides the actual cost of evaluating a filter as part of a query
operation. The cost takes into account whether or not an index can be used by a filter.
The query is actually performed and the effectiveness of each filter at reducing the key
set is shown.

Example 22–9 shows a typical query trace record. The record includes a Trace table
that shows the effectiveness of each filter in the query and an Index Lookups table that
lists each index that can be used by the filter. The columns are described as follows:

■ Name – This column shows the name of each filter in the query. Composite filters
show information for each of the filters within the composite filter.

■ Index – This column shows whether or not an index can be used with the given
filter. If an index is found, the number shown corresponds to the index number on
the Index Lookups table. In the example, an ordered simple map index (0) was
found for getAge().

■ Effectiveness – This column shows the amount a key set was actually reduced as a
result of each filter. The value is given as prefilter_key_set_size | postfilter_
key_set_size and is also presented as a percentage. The prefilter_key_set_size
value represents the key set size prior to evaluating the filter or applying an index.
The postfilter_key_set_size value represents the size of the key set remaining
after evaluating the filter or applying an index. For a composite filter entry, the
value is the overall results for its contained filters. Once a key set size can no
longer be reduced based on an index, the resulting key set is deserialized and any
non index filters are applied.

■ Duration – This column shows the number of milliseconds spent evaluating the
filter or applying an index. A value of 0 indicates that the time registered was
below the reporting threshold. In the example, the 63 milliseconds is the result of
having to deserialize the key set which is incurred on the first filter getLastName()
only.

The record in Example 22–9 shows that it took approximately 63 milliseconds to
reduce 1500 entries to find 100 entries with the first name Bob, last name Smith, and
with an age of 16 or 19. The key set of 1500 entries was initially reduced to 300 using
the index for getAge(). The resulting 300 entries (because they could not be further
reduced using an index) were then deserialized and reduced to 150 entries based on
getLastName() and then reduced to 100 using getFirstName(). The example shows
that an index on getAge() is well worth the resources because it was able to effectively
reduce the key set by 1200 entries. An index on getLastName and getFirstName would
increase the performance of the overall query but may not be worth the additional
resource required to create the index.

Evaluating Query Cost and Effectiveness

Querying Data In a Cache 22-13

Example 22–9 Sample Query Trace Record

Trace
Name Index Effectiveness Duration
==
com.tangosol.util.filter.AllFilter | ---- | 1500|300(80%) | 0
 com.tangosol.util.filter.OrFilter | ---- | 1500|300(80%) | 0
 EqualsFilter(.getAge(), 16) | 0 | 1500|150(90%) | 0
 EqualsFilter(.getAge(), 19) | 0 | 1350|150(88%) | 0
 EqualsFilter(.getLastName(), Smit | 1 | 300|300(0%) | 0
 EqualsFilter(.getFirstName(), Bob | 2 | 300|300(0%) | 0
com.tangosol.util.filter.AllFilter | ---- | 300|100(66%) | 63
 EqualsFilter(.getLastName(), Smit | ---- | 300|150(50%) | 63
 EqualsFilter(.getFirstName(), Bob | ---- | 150|100(33%) | 0

Index Lookups
Index Description Extractor Ordered
==
0 SimpleMapIndex: Extractor=.getAge(), Ord .getAge() true
1 No index found .getLastName() false
2 No index found .getFirstName() false

Running The Query Record Example
The following example is a simple class that demonstrates creating query records. The
class loads a distributed cache (mycache) with 1500 Person objects, creates an index on
an attribute, performs a query, and creates both a query explain plan record and a
query trace record that is emitted to the console before the class exits.

Example 22–10 A Query Record Example

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.util.Filter;
import com.tangosol.util.aggregator.QueryRecorder;
import static com.tangosol.util.aggregator.QueryRecorder.RecordType;
import com.tangosol.util.extractor.ReflectionExtractor;
import com.tangosol.util.filter.AllFilter;
import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.filter.OrFilter;
import java.io.Serializable;
import java.util.Properties;

public class QueryRecordExanple
 {
 public static void main(String[] args) {

 testExplain();
 testTrace();
 }

 public static void testExplain()
 {
 NamedCache cache = CacheFactory.getCache("mycache");
 cache.addIndex(new ReflectionExtractor("getAge"), true, null);
 PopulateCache(cache);

 AllFilter filter = new AllFilter(new Filter[]

Evaluating Query Cost and Effectiveness

22-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 {
 new OrFilter(
 new EqualsFilter(new ReflectionExtractor("getAge"), 16),
 new EqualsFilter(new ReflectionExtractor("getAge"), 19)),
 new EqualsFilter(new ReflectionExtractor("getLastName"), "Smith"),
 new EqualsFilter(new ReflectionExtractor("getFirstName"), "Bob"),
 });

 QueryRecorder agent = new QueryRecorder(RecordType.EXPLAIN);
 Object resultsExplain = cache.aggregate(filter, agent);
 System.out.println("\nExplain Plan=\n" + resultsExplain + "\n");
 }

 public static void testTrace()
 {
 NamedCache cache = CacheFactory.getCache("hello-example");
 cache.addIndex(new ReflectionExtractor("getAge"), true, null);
 PopulateCache(cache);

 AllFilter filter = new AllFilter(new Filter[]
 {
 new OrFilter(
 new EqualsFilter(new ReflectionExtractor("getAge"), 16),
 new EqualsFilter(new ReflectionExtractor("getAge"), 19)),
 new EqualsFilter(new ReflectionExtractor("getLastName"), "Smith"),
 new EqualsFilter(new ReflectionExtractor("getFirstName"), "Bob"),
 });

 QueryRecorder agent = new QueryRecorder(RecordType.TRACE);
 Object resultsExplain = cache.aggregate(filter, agent);
 System.out.println("\nTrace =\n" + resultsExplain + "\n");
 }

 private static void PopulateCache(NamedCache cache)
 {
 for (int i = 0; i < 1500; ++i)
 {
 Person person = new Person(i % 3 == 0 ? "Joe" : "Bob",
 i % 2 == 0 ? "Smith" : "Jones", 15 + i % 10);
 cache.put("key" + i, person);
 }
 }

 public static class Person implements Serializable
 {
 public Person(String sFirstName, String sLastName, int nAge)
 {
 m_sFirstName = sFirstName;
 m_sLastName = sLastName;
 m_nAge = nAge;
 }

 public String getFirstName()
 {
 return m_sFirstName;
 }

 public String getLastName()
 {
 return m_sLastName;

Evaluating Query Cost and Effectiveness

Querying Data In a Cache 22-15

 }

 public int getAge()
 {
 return m_nAge;
 }

 public String toString()
 {
 return "Person(" +m_sFirstName + " " + m_sLastName + " : " +

 m_nAge + ")";
 }
 private String m_sFirstName;
 private String m_sLastName;
 private int m_nAge;
 }
}

Evaluating Query Cost and Effectiveness

22-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

23

Using Continuous Query Caching 23-1

23Using Continuous Query Caching

[23] This chapter provides instructions for using continuous query caching to ensure that a
query always retrieves the latest results from a cache in real-time.

This chapter includes the following sections:

■ Overview of Using Continuous Query Caching

■ Understanding the Continuous Query Cache Implementation

■ Constructing a Continuous Query Cache

■ Caching only keys, or caching both keys and values

■ Listening to the ContinuousQueryCache

■ Making the ContinuousQueryCache Read-Only

Overview of Using Continuous Query Caching
Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond. For more information on point in time query results and events, see
Chapter 22, "Querying Data In a Cache."

Continuous query is implemented by materializing the results of the query into a
continuous query cache and then keeping that cache up-to-date in real-time using
event listeners on the query. In other words, a continuous query is a cached query
result that never gets out-of-date.

Understanding Use Cases for Continuous Query Caching
There are several different general use categories for continuous query caching:

■ It is an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

■ It is ideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that
query.

■ A continuous query cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard NamedCache
API, and receiving an ongoing stream of events related to that query.

Understanding the Continuous Query Cache Implementation

23-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ A continuous query cache can be used in a manner similar to a Near Cache,
because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near Cache
is invalidation-based, but the continuous query cache actually maintains its data in
an up-to-date manner.

An example use case is a trading system desktop, in which a trader's open orders and
all related information must always be maintained in an up-to-date manner. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Understanding the Continuous Query Cache Implementation
The Coherence implementation of continuous query is found in the
com.tangosol.net.cache.ContinuousQueryCache class. This class, like all Coherence
caches, implements the standard NamedCache interface, which includes the following
capabilities:

■ Cache access and manipulation using the Map interface: NamedCache extends the
standard Map interface from the Java Collections Framework, which is the same
interface implemented by the Java HashMap and Hashtable classes.

■ Events for all objects modifications that occur within the cache: NamedCache
extends the ObservableMap interface.

■ Identity-based clusterwide locking of objects in the cache: NamedCache extends the
ConcurrentMap interface.

■ Querying the objects in the cache: NamedCache extends the QueryMap interface.

■ Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is the
same API provided by all Coherence caches, it is extremely simple to use, and it can be
easily substituted for another cache when its functionality is called for.

Constructing a Continuous Query Cache
There are two items that define a continuous query cache:

1. The underlying cache that it is based on;

2. A query of that underlying cache that produces the sub-set that the continuous
query cache caches.

The underlying cache is any Coherence cache, including another continuous query
cache. A cache is usually obtained from a CacheFactory, which allows the developer
to simply specify the name of the cache and have it automatically configured based on
the application's cache configuration information; for example:

NamedCache cache = CacheFactory.getCache("orders");

Note: continuous query caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Caching only keys, or caching both keys and values

Using Continuous Query Caching 23-3

See Appendix B, "Cache Configuration Elements" for more information on specifying
cache configuration information.

The query is the same type of query that would be used to filter data. For example:

Example 23–1 A Query for a Continuous Query Cache

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));

See Chapter 22, "Querying Data In a Cache" for more information on queries.

Normally, to query a cache, a method from QueryMap is used. For example, to obtain a
snap-shot of all open trades for a trader object:

Example 23–2 Getting Data for the Continuous Query Cache

Set setOpenTrades = cache.entrySet(filter);

Similarly, the continuous query cache is constructed from those same two pieces:

Example 23–3 Constructing the Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

Cleaning up the resources associated with a ContinuousQueryCache
A continuous query cache places one or more event listeners on its underlying cache.
If the continuous query cache is used for the duration of the application, then the
resources are cleaned up when the node is shut down or otherwise stops. However, if
the continuous query cache is only used for a period, then when the application is
done using it, the application must call the release() method on the
ContinuousQueryCache.

Caching only keys, or caching both keys and values
When constructing a continuous query cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a continuous query cache that represents a very large query result set, or if
the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the CacheValues property to be configured; for
example:

Example 23–4 A Constructor that Allows the CacheValues Property

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
false);

If necessary, the CacheValues property can also be modified after the cache has been
instantiated; for example:

Example 23–5 Setting the CacheValues Property

cacheOpenTrades.setCacheValues(true);

Listening to the ContinuousQueryCache

23-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

CacheValues Property and Event Listeners
If the continuous query cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheValues property is automatically set to
true, because the continuous query cache uses the locally cached values to filter events
and to supply the old and new values for the events that it raises.

Listening to the ContinuousQueryCache
Since the continuous query cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Example 23–6 Adding a Listener to a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.addMapListener(listener);

Assuming some processing has to occur against every item that is in the cache and
every item added to the cache, there are two approaches. First, the processing could
occur then a listener could be added to handle any later additions:

Example 23–7 Processing Continuous Query Cache Entries and Adding a Listener

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
for (Iterator iter = cacheOpenTrades.entrySet().iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 // .. process the cache entry
 }
cacheOpenTrades.addMapListener(listener);

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

Example 23–8 Adding a Listener Before Processing Continuous Query Cache Entries

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.addMapListener(listener);
for (Iterator iter = cacheOpenTrades.entrySet().iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 // .. process the cache entry
 }

However, the same entry can appear in both an event an in the Iterator, and the
events can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event
for each item that is in the continuous query cache, whether it was there to begin with
(because it was in the query) or if it got added during or after the construction of the
cache:

Example 23–9 Providing a Listener When Constructing the Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
listener);

Making the ContinuousQueryCache Read-Only

Using Continuous Query Caching 23-5

Achieving a Stable Materialized View
The ContinuousQueryCache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. See Chapter 25, "Using Map Events," for more information on
this option.

Secondly, the ContinuousQueryCache has a two-phase implementation of its initial
population that allows it to first query the underlying cache and then subsequently
resolve all of the events that came in during the first phase. Since achieving these
guarantees of data visibility without any missing or repeated events is fairly complex,
the ContinuousQueryCache allows a developer to pass a listener during construction,
thus avoiding exposing these same complexities to the application developer.

Support for Synchronous and Asynchronous Listeners
By default, listeners to the ContinuousQueryCache have their events delivered
asynchronously. However, the ContinuousQueryCache does respect the option for
synchronous events as provided by the SynchronousListener interface. See
Chapter 23, "Using Continuous Query Caching," for more information on this option.

Making the ContinuousQueryCache Read-Only
The ContinuousQueryCache can be made into a read-only cache; for example:

Example 23–10 Making the Continuous Query Cache Read-Only

cacheOpenTrades.setReadOnly(true);

A read-only ContinuousQueryCache does not allow objects to be added to, changed in,
removed from or locked in the cache.

When a ContinuousQueryCache has been set to read-only, it cannot be changed back to
read/write.

Making the ContinuousQueryCache Read-Only

23-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

24

Processing Data In a Cache 24-1

24Processing Data In a Cache

[24] This chapter provides instructions for using entry processors and aggregators to
perform data grid processing across a cluster. These data grid features perform in a
similar manner to other map-reduce patterns and allow the processing of large
amounts of data at very low latencies.

This chapter includes the following sections:

■ Overview of Processing Data In a Cache

■ Using Agents for Targeted, Parallel and Query-Based Processing

■ Performing Data Grid Aggregation

■ Performing Node-Based Processing

■ Using a Work Manager

Overview of Processing Data In a Cache
Coherence provides the ideal infrastructure for building data grid services and the
client and server-based applications that use a data grid. At a basic level, Coherence
can manage large amounts of data across a large number of servers in a grid; it can
provide close to zero latency access for that data; it supports parallel queries across
that data in a map-reduce manner; and it supports integration with database and EIS
systems that act as the system of record for that data.

Performing Targeted Processing
Coherence provides for the ability to execute an agent against an entry in any map of
data managed by a data grid:

map.invoke(key, agent);

In the case of partitioned data, the agent executes on the grid node that owns the data.
The queuing, concurrency management, agent execution, data access by the agent, and
data modification by the agent all occur on that grid node. (Only the synchronous
backup of the resultant data modification, if any, requires additional network traffic.)
For many processing purposes, it is much more efficient to move the serialized form of
the agent (at most a few hundred bytes) than to handle distributed concurrency
control, coherency and data updates.

For request and response processing, the agent returns a result:

Object oResult = map.invoke(key, agent);

Overview of Processing Data In a Cache

24-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Coherence, as a data grid, determines the location to execute the agent based on the
configuration for the data topology. It moves the agent to the determined location,
executes the agent (automatically handling concurrency control for the item while
executing the agent), backs up the modifications (if any), and returns a result.

Performing Parallel Processing
Coherence provides map-reduce functionality which allows agents to be executed in
parallel against a collection of entries across all nodes in the grid. Parallel execution
allows large amounts of data to be processed by balancing the work across the grid.
The invokeAll method is used as follows:

map.invokeAll(collectionKeys, agent);

For request and response processing, the agent returns one result for each key
processed:

Map mapResults = map.invokeAll(collectionKeys, agent);

Coherence determines the optimal location(s) to execute the agent based on the
configuration for the data topology. It then moves the agent to the determined
locations, executes the agent (automatically handling concurrency control for the
item(s) while executing the agent), backs up the modifications (if any), and returns the
coalesced results. See "Performing Data Grid Aggregation" on page 24-7 for
instructions on performing aggregation against a result set.

Performing Query-Based Processing
Coherence supports the ability to query across the entire data grid. For details on
creating queries, see Chapter 22, "Querying Data In a Cache." For example, in a trading
system it is possible to query for all open Order objects for a particular trader:

Example 24–1 Querying Across a Data Grid

NamedCache map = CacheFactory.getCache("trades");
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
Set setOpenTradeIds = mapTrades.keySet(filter);

By combining this feature with the use of parallel executions in the data grid,
Coherence provides the ability to execute an agent against a query. As in the previous
section, the execution occurs in parallel, and instead of returning the identities or
entries that match the query, Coherence executes the agent against the entries:

map.invokeAll(filter, agent);

For request and response processing, the agent returns one result for each key
processed:

Map mapResults = map.invokeAll(filter, agent);

Coherence combines parallel query and parallel execution to achieve query-based
agent invocation against a data grid.

Performing Data-Grid-Wide Processing
Passing an instance of AlwaysFilter (or null) to the invokeAll method causes the
passed agent to be executed against all entries in the InvocableMap:

Using Agents for Targeted, Parallel and Query-Based Processing

Processing Data In a Cache 24-3

map.invokeAll((Filter) null, agent);

As with the other types of agent invocation, request and response processing is
supported:

Map mapResults = map.invokeAll((Filter) null, agent);

An application can process all the data spread across a particular map in the data grid
with a single line of code.

Using Agents for Targeted, Parallel and Query-Based Processing
An agent implements the EntryProcessor interface, typically by extending the
AbstractProcessor class.

Several agents are included with Coherence, including:

■ AbstractProcessor - an abstract base class for building an EntryProcessor

■ ExtractorProcessor - extracts and returns a value (such as a property value) from
an object stored in an InvocableMap

■ CompositeProcessor - bundles a collection of EntryProcessor objects that are
invoked sequentially against the same entry

■ ConditionalProcessor - conditionally invokes an EntryProcessor if a Filter
against the entry-to-process evaluates to true

■ PropertyProcessor - an abstract base class for EntryProcessor implementations
that depend on a PropertyManipulator

■ NumberIncrementor - pre- or post-increments any property of a primitive integral
type, and Byte, Short, Integer, Long, Float, Double, BigInteger, BigDecimal

■ NumberMultiplier - multiplies any property of a primitive integral type, and Byte,
Short, Integer, Long, Float, Double, BigInteger, BigDecimal, and returns either
the previous or new value

The EntryProcessor interface (contained within the InvocableMap interface) contains
only two methods: process and processAll. The AbstractProcessor provides the
default implementation of the processAll method. When processing multiple keys, a
single EntryProcessor object is re-used for all the keys and its state should not be
mutated.

The InvocableMap.Entry that is passed to an EntryProcessor is an extension of the
Map.Entry interface that allows an EntryProcessor implementation to obtain the
necessary information about the entry and to make the necessary modifications in the
most efficient manner possible.

Processing Entries in Multiple Caches
Entry processors can update cache entries in multiple caches within a single process
or processAll operation. The caches must be managed by the same service and the

Note: If the processAll call throws an exception, changes are only
made to the underlying Map for entries that were removed from the
setEntries. Changes that are made to the remaining entries are not
processed.

Using Agents for Targeted, Parallel and Query-Based Processing

24-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

entries must be located in the same partition. For details about ensuring that entries
are in the same partition, see "Specifying Data Affinity" on page 30-1.

The process and processAll operations are performed in a transaction-like manner
that uses implicit locks when accessing, inserting, updating, modifying, or removing
cache entries. If an exception is thrown during the processing of the entries, the entries
are rolled back leaving all underlying values unchanged. The processAll operation is
atomic with respect to all entries within a single partition (or member if no service
threads are configured) rather than the individual entry or entire request.

The com.tangosol.net.BackingMapContext API is used to process entries in multiple
caches and provides a way to directly access entries in a cache's backing map. The
backing map is the actual Map implementation where entries are stored (as opposed to
the logical representation of a cache typically used by an application). Entries in a
backing map are stored in binary format and therefore require an application to handle
the serialized form of an entry. For details on backing maps, see Chapter 14,
"Implementing Storage and Backing Maps."

The com.tangosol.util.BinaryEntry API provides easy access to a backing map
context and is typically used by an application. The following sample code
demonstrates how to update entries in two different caches within the process
method of an entry processor using the BinaryEntry API.

public Object process(Entry entry) {
 BinaryEntry binEntry = (BinaryEntry) entry;
 Binary binKey = binEntry.getBinaryKey();
 Trade trade = (Trade) binEntry.getValue();

 // Update a Trade object in cache1

 trade.setPrice(trade.getPrice() + factor);
 binEntry.setValue(trade);

 // update a Trade object in cache2

 BackingMapManagerContext ctx = binEntry.getContext();
 BinaryEntry binEntry2 =
 (BinaryEntry) ctx.getBackingMapContext("cache2").getBackingMapEntry(binKey);
 Trade trade2 = (Trade) binEntry2.getValue();
 trade2.setPrice(trade2.getPrice() + factor);
 binEntry2.setValue(trade2);

 return null;
}

Note: The implicit lock may create a deadlock if entries are locked in
conflicting orders on different threads. The application is responsible
for ensuring that cache entries are accessed (locked) in a deadlock-free
manner. In the case where a deadlock is detected, an exception is
thrown but the underlying service is not stopped.

Using Agents for Targeted, Parallel and Query-Based Processing

Processing Data In a Cache 24-5

Ignoring the Results of an Entry Processor
The processAll method of the AbstractProcessor class returns a map of results to a
client application. The map contains the keys and values for every entry that was
processed. Most often, the entry processor returns results that the client uses.
However, there may be situations where some results are not usable by the client.
More importantly, there may be situations where the processor must evaluate all the
entries in a cache; in which case, the return map contains every key in the cache. In
both situations, the agent should be designed to ignore results that are not wanted.

Designing an agent that only returns wanted results is a good pattern and best
practice, because it:

■ Makes the client's memory footprint independent of the size of the cache.

■ Avoids transferring all affected keys to the client which could result in an
OutOfMemoryError exception on the client if the cache is too large.

■ Avoids deserialization costs in the client for all keys.

■ Avoids transferring the map and all keys through a proxy node (for Extend
clients).

To ignore entry processor results, override the processor's processAll method to
return an empty Map or null. The following example demonstrates a simple entry
processor agent that always returns null after processing an entry. The example is not
very realistic but does show how to override the processAll method.

public static class Agent
 implements InvocableMap.EntryProcessor
 {
 private static final long serialVersionUID = 1L;

 @Override
 public Object process(Entry entry)
 {
 return null;
 }

 @Override
 public Map processAll(Set set)
 {
 for (Entry entry : (Set<Entry>) set)
 {
 process(entry);
 }
 return null;
 }

Note: The getBackingMapEntry method may only be called within
the context of an entry processor invocation. Any changes made to the
entry are persisted with the same lifecycle as those made by the
enclosing invocation. The returned entry is only valid for the duration
of the enclosing invocation and multiple calls to this method within
the same invocation context returns the same entry object.

Using Agents for Targeted, Parallel and Query-Based Processing

24-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Processing Entries Asynchronously
Entry processors can be invoked asynchronously using the AsynchronousProcessor
class. The class implements the standard Java Future interface and also includes a
Coherence-specific flow control mechanism to guard against excessive backlogs.

The AsynchronousProcessor class is used to wrap an entry processor implementation.
For example:

UpdaterProcessor up = new UpdaterProcessor(null, value);
AsynchronousProcessor ap = new AsynchronousProcessor(up);

cache.invokeAll(filter, ap);
ap.getResult();

The above example invokes the underlying entry processor and uses automatic flow
control (as defined by the underlying service’s flow control logic) and a default
unit-of-order ID (assigned to the calling thread's hashCode – as a thread's requests are
naturally expected to execute in order). Ordering is guaranteed for each partition even
during failover. Additional constructors are available to manually control request flow
and assign the unit-of-order ID as required.

For advanced use cases, the AsynchronousProcessor class can be extended to define
custom asynchronous functionality. The following example extends the
AsynchrounousProcessor class and overrides the onResult, onComplete and
onException methods. Refer to the Java API Reference for Oracle Coherence for details on
the AsynchrounousProcessor class and its methods.

AsynchronousProcessor processor = new AsynchronousProcessor(null)
 {

 public synchronized void onResult(Entry entry)
 {
 super.onResult(entry);

 // process the result
 }

 public void onComplete()
 {
 super.onComplete();

 if (m_eReason == null)
 {

 // process the result
 }
 else
 {

 // process the (potentially partial) failure
 }
 }

Note: Overriding implementations of the onComplete, onResult,
and onException methods must be non-blocking and short-lived,
because this call is made on the service thread of the client and blocks
processing for responses on other threads.

Performing Data Grid Aggregation

Processing Data In a Cache 24-7

 public void onException(Throwable eReason)
 {
 super.onException(eReason);

 // process the observed exception
 }
};

Performing Data Grid Aggregation
In addition to scalar agents, the InvocableMap interface also supports entry aggregators
that perform operations against a subset of entries to obtain a single result. Entry
aggregation occurs in parallel across the grid to provide map-reduce support when
working with large amounts of data.

Example 24–2 Aggregation in the InvocableMap API

/**
* Perform an aggregating operation against the entries specified by the
* passed keys.
*
* @param collKeys the Collection of keys that specify the entries within
* this Map to aggregate across
* @param agent the EntryAggregator that is used to aggregate across
* the specified entries of this Map
*
* @return the result of the aggregation
*/
public Object aggregate(Collection collKeys, EntryAggregator agent);

/**
* Perform an aggregating operation against the set of entries that are
* selected by the given Filter.
* <p/>
* Note: calling this method on partitioned caches requires a
* Coherence Enterprise Edition (or higher) license.
*
* @param filter the Filter that is used to select entries within this
* Map to aggregate across
* @param agent the EntryAggregator that is used to aggregate across
* the selected entries of this Map
*
* @return the result of the aggregation
*/
public Object aggregate(Filter filter, EntryAggregator agent);

A simple EntryAggregator processes a set of InvocableMap.Entry objects to achieve a
result:

Example 24–3 EntryAggregator API

/**
* An EntryAggregator represents processing that can be directed to occur
* against some subset of the entries in an InvocableMap, resulting in a
* aggregated result. Common examples of aggregation include functions
* such as min(), max() and avg(). However, the concept of aggregation
* applies to any process that must evaluate a group of entries to
* come up with a single answer.

Performing Data Grid Aggregation

24-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

*/
public interface EntryAggregator
 extends Serializable
 {
 /**
 * Process a set of InvocableMap Entry objects to produce an
 * aggregated result.
 *
 * @param setEntries a Set of read-only InvocableMap Entry objects to
 * aggregate
 *
 * @return the aggregated result from processing the entries
 */
 public Object aggregate(Set setEntries);
 }

For efficient execution in a Data Grid, an aggregation process must be designed to
operate in a parallel manner.

Example 24–4 ParallelAwareAggregator API for running Aggregation in Parallel

/**
* A ParallelAwareAggregator is an advanced extension to EntryAggregator
* that is explicitly capable of being run in parallel, for example in a
* distributed environment.
*/
public interface ParallelAwareAggregator
 extends EntryAggregator
 {
 /**
 * Get an aggregator that can take the place of this aggregator in
 * situations in which the InvocableMap can aggregate in parallel.
 *
 * @return the aggregator that is run in parallel
 */
 public EntryAggregator getParallelAggregator();

 /**
 * Aggregate the results of the parallel aggregations.
 *
 * @return the aggregation of the parallel aggregation results
 */
 public Object aggregateResults(Collection collResults);
 }

Coherence comes with all of the natural aggregation functions, including:

■ Count

■ DistinctValues

■ DoubleAverage

■ DoubleMax

■ DoubleMin

■ DoubleSum

■ LongMax

■ LongMin

Performing Node-Based Processing

Processing Data In a Cache 24-9

■ LongSum

See the com.tangosol.util.aggregator package for a list of Coherence
aggregators. To implement your own aggregator, see the AbstractAggregator
abstract base class.

Performing Node-Based Processing
Coherence provides an Invocation Service which allows execution of single-pass
agents (called Invocable objects) anywhere within the grid. The agents can be executed
on a particular node in the grid, in parallel on a particular set of nodes in the grid, or
in parallel on all nodes of the grid.

An invocation service is configured using the <invocation-scheme> element in the
cache configuration file. Using the name of the service, the application can easily
obtain a reference to the service:

InvocationService service = (InvocationService)CacheFactory.getService
("MyService");

Agents are simply runnable classes that are part of the application. An example of a
simple agent is one designed to request a GC from the JVM:

Example 24–5 Simple Agent to Request Garbage Collection

/**
* Agent that issues a garbage collection.
*/
public class GCAgent
 extends AbstractInvocable
 {
 public void run()
 {
 System.gc();
 }
 }

To execute that agent across the entire cluster, it takes one line of code:

service.execute(new GCAgent(), null, null);

Here is an example of an agent that supports a grid-wide request/response model:

Example 24–6 Agent to Support a Grid-Wide Request and Response Model

/**
* Agent that determines how much free memory a grid node has.
*/
public class FreeMemAgent
 extends AbstractInvocable
 {
 public void run()
 {
 Runtime runtime = Runtime.getRuntime();
 int cbFree = runtime.freeMemory();
 int cbTotal = runtime.totalMemory();

Note: All aggregators that come with Coherence are parallel-aware.

Using a Work Manager

24-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 setResult(new int[] {cbFree, cbTotal});
 }
 }

To execute that agent across the entire grid and retrieve all the results from it, it still
takes only one line of code:

Map map = service.query(new FreeMemAgent(), null);

While it is easy to do a grid-wide request/response, it takes a bit more code to print
the results:

Example 24–7 Printing the Results from a Grid-Wide Request or Response

Iterator iter = map.entrySet().iterator();
while (iter.hasNext())
 {
 Map.Entry entry = (Map.Entry) iter.next();
 Member member = (Member) entry.getKey();
 int[] anInfo = (int[]) entry.getValue();
 if (anInfo != null) // nullif member died
 System.out.println("Member " + member + " has "
 + anInfo[0] + " bytes free out of "
 + anInfo[1] + " bytes total");
 }

The agent operations can be stateful, which means that their invocation state is
serialized and transmitted to the grid nodes on which the agent is to be run.

Example 24–8 Stateful Agent Operations

/**
* Agent that carries some state with it.
*/
public class StatefulAgent
 extends AbstractInvocable
 {
 public StatefulAgent(String sKey)
 {
 m_sKey = sKey;
 }

 public void run()
 {
 // the agent has the key that it was constructed with
 String sKey = m_sKey;
 // ...
 }

 private String m_sKey;
 }

Using a Work Manager
Coherence provides a grid-enabled implementation of the CommonJ Work Manager.
Using a Work Manager, an application can submit a collection of work that must be
executed. The Work Manager distributes that work in such a way that it is executed in
parallel, typically across the grid. In other words, if there are ten work items submitted
and ten servers in the grid, then each server likely processes one work item. Further,

Using a Work Manager

Processing Data In a Cache 24-11

the distribution of work items across the grid can be tailored, so that certain servers
(for example, one that acts as a gateway to a particular mainframe service) is the first
choice to run certain work items, for sake of efficiency and locality of data.

The application can then wait for the work to be completed, and can provide a timeout
for how long it can wait. The API for this purpose is quite powerful, allowing an
application to wait for the first work item to complete, or for a specified set of the
work items to complete. By combining methods from this API, it is possible to do
things like "Here are 10 items to execute; for these 7 unimportant items, wait no more
than 5 seconds, and for these 3 important items, wait no more than 30 seconds".

Example 24–9 Using a Work Manager

Work[] aWork = ...
Collection collBigItems = new ArrayList();
Collection collAllItems = new ArrayList();
for (int i = 0, c = aWork.length; i < c; ++i)
 {
 WorkItem item = manager.schedule(aWork[i]);

 if (i < 3)
 {
 // the first three work items are the important ones
 collBigItems.add(item);
 }

 collAllItems.add(item);
 }

Collection collDone = manager.waitForAll(collAllItems, 5000L);
if (!collDone.containsAll(collBigItems))
 {
 // wait the remainder of 30 seconds for the important work to finish
 manager.waitForAll(collBigItems, 25000L);
 }

Using a Work Manager

24-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

25

Using Map Events 25-1

25Using Map Events

[25] This chapter provides instructions for using map event listeners to receive cache
events and events from any class in Coherence that implements the ObservableMap
interface.

This chapter includes the following sections:

■ Overview of Map Events

■ Signing Up for All Events

■ Using an Inner Class as a MapListener

■ Configuring a MapListener For a Cache

■ Signing Up For Events On Specific Identities

■ Filtering Events

■ Using Lite Events

■ Listening to Queries

■ Using Synthetic Events

■ Using Backing Map Events

■ Using Synchronous Event Listeners

Overview of Map Events
Coherence provides cache events using the JavaBean Event model. The
implementation allows applications to receive the events when and where they are
needed, regardless of where the changes are actually occurring in the cluster.
Developers that are familiar with the JavaBean model should have no difficulties
working with events, even in a complex cluster.

Listener Interface and Event Object
In the JavaBeans Event model, there is an EventListener interface that all listeners
must extend. Coherence provides a MapListener interface, which allows application
logic to receive events when data in a Coherence cache is added, modified or removed.

Note: Coherence also includes the live event programming model.
Live events provide support for common event types and can be used
instead of map events. For details about using live events, see "Using
Live Events" on page 27-1.

Overview of Map Events

25-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

An application object that implements the MapListener interface can sign up for
events from any Coherence cache or class that implements the ObservableMap
interface, simply by passing an instance of the application's MapListener
implementation to a addMapListener() method.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is.

For details about the MapListener interface and the MapEvent class, see the Java API
Reference for Oracle Coherence.

Understanding Event Guarantees
The partitioned cache service guarantees that under normal circumstances an event is
delivered only once. However, there are two scenarios that could break this guarantee:

■ A catastrophic cluster failure that caused the data loss (for example, simultaneous
crash of two machines holding data). In this case, the PARTITION_LOST event is
emitted to all registered PartitionListener instances on the server side.

■ Client disconnect. In this case, the MEMBER_LEFT event is emitted to all registered
MemberListener instances on the client side.

Caches and Classes that Support Events
All Coherence caches implement ObservableMap; in fact, the NamedCache interface that
is implemented by all Coherence caches extends the ObservableMap interface. That
means that an application can sign up to receive events from any cache, regardless of
whether that cache is local, partitioned, near, replicated, using read-through,
write-through, write-behind, overflow, disk storage, and so on.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

■ ObservableHashMap

■ LocalCache

■ OverflowMap

■ NearCache

■ ReadWriteBackingMap

■ AbstractSerializationCache, SerializationCache, and
SerializationPagedCache

■ WrapperObservableMap, WrapperConcurrentMap, and WrapperNamedCache

Note: Regardless of the cache topology and the number of servers,
and even if the modifications are being made by other servers, the
events are delivered to the application's listeners.

Signing Up for All Events

Using Map Events 25-3

Signing Up for All Events
To sign up for events, simply pass an object that implements the MapListener interface
to a addMapListener method on ObservableMap. The addMapListener methods are
illustrated in Example 25–1.

Example 25–1 Methods on the ObservableMap API

public void addMapListener(MapListener listener);
public void addMapListener(MapListener listener, Object oKey, boolean fLite);
public void addMapListener(MapListener listener, Filter filter, boolean fLite);

Let's create an example MapListener implementation. Example 25–2 illustrates a
sample MapListener implementation that prints each event as it receive.

Example 25–2 Sample MapListener Implementation

/**
* A MapListener implementation that prints each event as it receives
* them.
*/
public static class EventPrinter
 extends Base
 implements MapListener
 {
 public void entryInserted(MapEvent evt)
 {
 out(evt);
 }

 public void entryUpdated(MapEvent evt)
 {
 out(evt);
 }

 public void entryDeleted(MapEvent evt)
 {
 out(evt);
 }
 }

Using this implementation, it is extremely simple to print all events from any given
cache (since all caches implement the ObservableMap interface):

cache.addMapListener(new EventPrinter());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

Example 25–3 Holding a Reference to a Listener

Listener listener = new EventPrinter();
cache.addMapListener(listener);
m_listener = listener; // store the listener in a field

Later, to remove the listener:

Example 25–4 Removing a Listener

Listener listener = m_listener;
if (listener != null)

Using an Inner Class as a MapListener

25-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 {
 cache.removeMapListener(listener);
 m_listener = null; // clean up the listener field
 }

Each addMapListener method on the ObservableMap interface has a corresponding
removeMapListener method. To remove a listener, use the removeMapListener method
that corresponds to the addMapListener method that was used to add the listener.

Using an Inner Class as a MapListener
When creating an inner class to use as a MapListener, or when implementing a
MapListener that only listens to one or two types of events (inserts, updates or
deletes), you can use the AbstractMapListener base class. For example, the
anonymous inner class in Example 25–5 prints out only the insert events for the cache.

Example 25–5 Inner Class that Prints Only Cache Insert Events

cache.addMapListener(new AbstractMapListener()
 {
 public void entryInserted(MapEvent evt)
 {
 out(evt);
 }
 });

Another helpful base class for creating a MapListener is the
MultiplexingMapListener, which routes all events to a single method for handling.
This class would allow you to simplify the EventPrinter example to the code
illustrated in Example 25–6. Since only one method must be implemented to capture
all events, the MultiplexingMapListener can also be very useful when creating an
inner class to use as a MapListener.

Example 25–6 Routing All Events to a Single Method for Handling

public static class EventPrinter
 extends MultiplexingMapListener
 {
 public void onMapEvent(MapEvent evt)
 {
 out(evt);
 }
 }

Configuring a MapListener For a Cache
If the listener should always be on a particular cache, then place it into the cache
configuration using the <listener> element and Coherence automatically adds the
listener when it configures the cache.

Signing Up For Events On Specific Identities
Signing up for events that occur against specific identities (keys) is just as simple. For
example, to print all events that occur against the Integer key 5:

cache.addMapListener(new EventPrinter(), new Integer(5), false);

Filtering Events

Using Map Events 25-5

Thus, the code in Example 25–7 would only trigger an event when the Integer key 5 is
inserted or updated:

Example 25–7 Triggering an Event when a Specific Integer Key is Inserted or Updated

for (int i = 0; i < 10; ++i)
 {
 Integer key = new Integer(i);
 String value = "test value for key " + i;
 cache.put(key, value);
 }

Filtering Events
Similar to listening to a particular key, it is possible to listen to particular events. In
Example 25–8 a listener is added to the cache with a filter that allows the listener to
only receive delete events.

Example 25–8 Adding a Listener with Filter for Deleted Events

// Filters used with partitioned caches must be
// Serializable, Externalizable or ExternalizableLite
public class DeletedFilter
 implements Filter, Serializable
 {
 public boolean evaluate(Object o)
 {
 MapEvent evt = (MapEvent) o;
 return evt.getId() == MapEvent.ENTRY_DELETED;
 }
 }

cache.addMapListener(new EventPrinter(), new DeletedFilter(), false);

If you then make the following sequence of calls:

cache.put("hello", "world");
cache.put("hello", "again");
cache.remove("hello");

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

For more information, see the "Listening to Queries" on page 25-7.

Note: Filtering events versus filtering cached data:

When building a filter for querying, the object that is passed to the
evaluate method of the Filter is a value from the cache, or - if the
filter implements the EntryFilter interface - the entire Map.Entry
from the cache. When building a filter for filtering events for a
MapListener, the object that is passed to the evaluate method of the
filter is of type MapEvent.

See "Listening to Queries" on page 25-7, for more information on how
to use a query filter to listen to cache events, .

Using Lite Events

25-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Using Lite Events
By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

Example 25–9 Inserting, Updating, and Removing a Value from the Cache

MapListener listener = new MultiplexingMapListener()
 {
 public void onMapEvent(MapEvent evt)
 {
 out("event has occurred: " + evt);
 out("(the wire-size of the event would have been "
 + ExternalizableHelper.toBinary(evt).length()
 + " bytes.)");
 }
 };
cache.addMapListener(listener);

// insert a 1KB value
cache.put("test", new byte[1024]);

// update with a 2KB value
cache.put("test", new byte[2048]);

// remove the 2KB value
cache.remove("test");

The output from running the test, illustrated inExample 25–10, shows that the first
event carries the 1KB inserted value, the second event carries both the replaced 1KB
value and the new 2KB value, and the third event carries the removed 2KB value.

Example 25–10 Sample Output

event has occurred: CacheEvent{LocalCache added: key=test, value=[B@a470b8}
(the wire-size of the event would have been 1283 bytes.)
event has occurred: CacheEvent{LocalCache updated: key=test, old value=[B@a470b8,
new value=[B@1c6f579}
(the wire-size of the event would have been 3340 bytes.)
event has occurred: CacheEvent{LocalCache deleted: key=test, value=[B@1c6f579}
(the wire-size of the event would have been 2307 bytes.)

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using a addMapListener method that takes an additional
boolean fLite parameter. In Example 25–9, the only change would be:

cache.addMapListener(listener, (Filter) null, true);

Note: Obviously, a lite event's old value and new value may be null.
However, even if you request lite events, the old and the new value
may be included if there is no additional cost to generate and deliver
the event. In other words, requesting that a MapListener receive lite
events is simply a hint to the system that the MapListener does not
have to know the old and new values for the event.

Listening to Queries

Using Map Events 25-7

Listening to Queries
All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity/value pairs (entrySet). The mechanism for determining
the contents of the resulting set is referred to as filtering, and it allows an application
developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath).

The same filters that are used to query a cache can listen to events from a cache. For
example, in a trading system it is possible to query for all open Order objects for a
particular trader:

Example 25–11 Listening for Events from a Cache

NamedCache mapTrades = ...
Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));
Set setOpenTrades = mapTrades.entrySet(filter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

Example 25–12 Listening for Events on an Object

// receive events for all trade IDs that this trader is interested in
mapTrades.addMapListener(listener, new MapEventFilter(filter), true);

The MapEventFilter converts a query filter into an event filter.

The MapEventFilter has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated over
the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. Example 25–13 illustrates these scenarios.

Example 25–13 Using MapEventFilter to Filter on Various Events

// receive all events for all trades that this trader is interested in
nMask = MapEventFilter.E_ALL;
mapTrades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter.E_UPDATED_LEFT | MapEventFilter.E_DELETED;
mapTrades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter.E_INSERTED | MapEventFilter.E_UPDATED_ENTERED;
mapTrades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

// receive events only fornew trades assigned to this trader
nMask = MapEventFilter.E_INSERTED;
mapTrades.addMapListener(listener, new MapEventFilter(nMask, filter), true);

For more information on the various options supported, see the API documentation
for MapEventFilter.

Using Synthetic Events

25-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Filtering Events Versus Filtering Cached Data
When building a Filter for querying, the object that is passed to the evaluate method
of the Filter is a value from the cache, or if the Filter implements the EntryFilter
interface, the entire Map.Entry from the cache. When building a Filter for filtering
events for a MapListener, the object that is passed to the evaluate method of the
Filter is of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query into a Filter that is
used to filter events for a MapListener. In other words, the MapEventFilter is
constructed from a Filter that queries a cache, and the resulting MapEventFilter is a
filter that evaluates MapEvent objects by converting them into the objects that a query
Filter would expect.

Using Synthetic Events
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache while another server is adding several items to a cache
while a third server is removing an item from the same cache, all while fifty threads on
each and every server in the cluster is accessing data from the same cache! All the
modifying actions produces events that any server within the cluster can choose to
receive. We refer to these actions as client actions, and the events as being dispatched to
clients, even though the "clients" in this case are actually servers. This is a natural
concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and every
peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer" is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

■ When entries automatically expire from a cache;

■ When entries are evicted from a cache because the maximum size of the cache has
been reached;

■ When entries are transparently added to a cache as the result of a Read-Through
operation;

■ When entries in a cache are transparently updated as the result of a Read-Ahead
or Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a
sub-class of the MapEvent, called CacheEvent. Using the previous EventPrinter
example, it is possible to print only the synthetic events:

Example 25–14 Determining Synthetic Events

public static class EventPrinter
 extends MultiplexingMapListener
 {
 public void onMapEvent(MapEvent evt)
 {

Using Backing Map Events

Using Map Events 25-9

 if (evt instanceof CacheEvent && ((CacheEvent) evt).isSynthetic())
 {
 out(evt);
)
 }
 }

For more information on this feature, see the API documentation for CacheEvent.

Using Backing Map Events
While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through/write-through and and write-behind data, it is also possible to peek
behind the curtains, so to speak.

For some advanced use cases, it may be necessary to "listen to" the "map" behind the
"service". Replication, partitioning and other approaches to managing data in a
distributed environment are all distribution services. The service still has to have
something in which to actually manage the data, and that something is called a "backing
map".

Backing maps can be configured. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a database,
then use a ReadWriteBackingMap (which knows how to read and write through an
application's DAO implementation), and in turn give the ReadWriteBackingMap a
backing map such as a SafeHashMap or a LocalCache to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronous and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires an
entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event is delivered to those listeners on the
servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an WrapperObservableMap.)

Each backing map event is dispatched once and only once. However, multiple backing
map events could be generated from a single put. For example, if the entry from put
has to be redistributed, then distributed events (deleted from original node, and
inserted in a new node) are created. In this case, the backing map listener is called
multiple times for the single put.

Lastly, backing map listeners are always synchronous; they are fired on a thread that is
doing the modification operation while holding the synchronization monitor for the
backing map itself. Often times for internal backing map listeners, events are not
processed immediately, but are queued and processed later asynchronously.

Using Backing Map Events

25-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

For more information on this feature, see the API documentation for
BackingMapManager.

Producing Readable Backing MapListener Events from Distributed Caches
Backing MapListener events are returned from replicated caches in readable Java
format. However, backing MapListener events returned from distributed caches are in
internal Coherence format. The Coherence Incubator Common project provides an
AbstractMultiplexingBackingMapListener class that enables you to obtain readable
backing MapListener events from distributed caches. See
http://coherence.oracle.com/display/INCUBATOR/Coherence+Common to download
Coherence Common libraries.

To produce readable backing MapListener events from distributed caches:

1. Implement the AbstractMultiplexingBackingMapListener class.

2. Register the implementation in the <listener> section of the backing-map-scheme
in the cache-config file.

3. Start the cache server application file and the client file with the cacheconfig Java
property:

-Dtangosol.coherence.cacheconfig="cache-config.xml"

The AbstractMultiplexingBackingMapListener class provides an onBackingMapEvent
method which you can override to specify how you would like the event returned.

The following listing of the VerboseBackingMapListener class is a sample
implementation of AbstractMultiplexingBackingMapListener. The
onBackingMapEvent method has been over-ridden to send the results to standard
output.

Example 25–15 An AbstractMultiplexingBackingMapListener Implementation

import com.tangosol.net.BackingMapManagerContext;
import com.tangosol.util.MapEvent;

public class VerboseBackingMapListener extends
AbstractMultiplexingBackingMapListener {

 public VerboseBackingMapListener(BackingMapManagerContext context) {
 super(context);
 }

 @Override
 protected void onBackingMapEvent(MapEvent mapEvent, Cause cause) {

 System.out.printf("Thread: %s Cause: %s Event: %s\n",
 Thread.currentThread().getName(), cause, mapEvent);
 }
}

Example 25–16 is an example distributed scheme definition. In the <listener> section
of the file, the VerboseBackingMapListener is identified as being of type
com.tangosol.net.BackingMapManagerContext.

Example 25–16 Distributed Scheme Specifying a Verbose Backing Map Listener

<distributed-scheme>

Using Synchronous Event Listeners

Using Map Events 25-11

 <scheme-name>my-dist-scheme</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme>
 <high-units>0</high-units>
 <expiry-delay>0</expiry-delay>
 </local-scheme>
 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <class-name>CustomCacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <listener>
 <class-scheme>
 <class-name>VerboseBackingMapListener</class-name>
 <init-params>
 <init-param>
 <param-type>com.tangosol.net.BackingMapManagerContext
 </param-type>
 <param-value>{manager-context}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </listener>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Using Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a
MapListener must implement the SynchronousListener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

For more information on this feature, see the API documentation for
MapListenerSupport.SynchronousListener.

Using Synchronous Event Listeners

25-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

26

Controlling Map Operations with Triggers 26-1

26Controlling Map Operations with Triggers

[26] This chapter provides instructions for using map triggers to validate, reject, or modify
map operations before a change is committed to a map entry.

This chapter contains the following sections:

■ Overview of Map Triggers

■ A Map Trigger Example

Overview of Map Triggers
Map triggers supplement the standard capabilities of Coherence to provide a highly
customized cache management system. Map triggers can be used to prevent invalid
transactions, enforce complex security authorizations or complex business rules,
provide transparent event logging and auditing, and gather statistics on data
modifications. Other possible use for triggers include restricting operations against a
cache to those issued during application re-deployment time.

For example, assume that you have code that is working with a NamedCache, and you
want to change an entry's behavior or contents before the entry is inserted into the
map. The addition of a map trigger enables you to make this change without having to
modify all the existing code.

Map triggers could also be used as part of an upgrade process. The addition of a map
trigger could prompt inserts to be diverted from one cache into another.

A map trigger in the Coherence cache is somewhat similar to a trigger that might be
applied to a database. It is a functional agent represented by the MapTrigger interface
that is run in response to a pending change (or removal) of the corresponding map
entry. The pending change is represented by the MapTrigger.Entry interface. This
interface inherits from the InvocableMap.Entry interface, so it provides methods to
retrieve, update, and remove values in the underlying map.

The MapTrigger interface contains the process method that is used to validate, reject,
or modify the pending change in the map. This method is called before an operation
that intends to change the underlying map content is committed. An implementation
of this method can evaluate the pending change by analyzing the original and the new
value and produce any of the following results:

■ override the requested change with a different value

■ undo the pending change by resetting the original value

■ remove the entry from the underlying map

■ reject the pending change by throwing a runtime exception

A Map Trigger Example

26-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ do nothing, and allow the pending change to be committed

MapTrigger functionality is typically added as part of an application start-up process.
It can be added programmatically as described in the MapTrigger API, or it can be
configured using the class-factory mechanism in the coherence-cache-config.xml
configuration file. In this case, a MapTrigger is registered during the very first
CacheFactory.getCache(...) call for the corresponding cache. Example 26–1 assumes
that the createMapTrigger method would return a new MapTriggerListener(new
MyCustomTrigger());:

Example 26–1 Example MapTriggerListener Configuration

<distributed-scheme>
 ...
 <listener>
 <class-scheme>
 <class-factory-name>package.MyFactory</class-factory-name>
 <method-name>createTriggerListener</method-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </listener>
</distributed-scheme>

In addition to the MapTrigger.Entry and MapTrigger interfaces, Coherence provides
the FilterTrigger and MapTriggerListener classes. The FilterTrigger is a generic
MapTrigger implementation that performs a predefined action if a pending change is
rejected by the associated Filter. The FilterTrigger can either reject the pending
operation, ignore the change and restore the entry's original value, or remove the entry
itself from the underlying map.

The MapTriggerListener is a special purpose MapListener implementation that is
used to register a MapTrigger with a corresponding NamedCache. In Example 26–2,
MapTriggerListener is used to register the PersonMapTrigger with the People named
cache.

Example 26–2 A MapTriggerListener Registering a MapTrigger with a Named Cache

NamedCache person = CacheFactory.getCache("People");
MapTrigger trigger = new PersonMapTrigger();
person.addMapListener(new MapTriggerListener(trigger));

These API reside in the com.tangosol.util package. For more information on these
API, see Java API Reference for Oracle Coherence.

A Map Trigger Example
The code in Example 26–3 illustrates a map trigger and how it can be called. In the
PersonMapTrigger class, the process method is implemented to modify an entry
before it is placed in the map. In this case, the last name attribute of a Person object is
converted to upper case characters. The object is then returned to the entry.

Example 26–3 A MapTrigger Class

...

A Map Trigger Example

Controlling Map Operations with Triggers 26-3

public class PersonMapTrigger implements MapTrigger
 {
 public PersonMapTrigger()
 {
 }

 public void process(MapTrigger.Entry entry)
 {
 Person person = (Person) entry.getValue();
 String sName = person.getLastName();
 String sNameUC = sName.toUpperCase();

 if (!sNameUC.equals(sName))
 {
 person.setLastName(sNameUC);

 System.out.println("Changed last name of [" + sName + "] to [" +
person.getLastName() + "]");

 entry.setValue(person);
 }
 }

 // ---- hashCode() and equals() must be implemented

 public boolean equals(Object o)
 {
 return o != null && o.getClass() == this.getClass();
 }
 public int hashCode()
 {
 return getClass().getName().hashCode();
 }
 }

The MapTrigger in Example 26–4, calls the PersonMapTrigger. The new
MapTriggerListener passes the PersonMapTrigger to the People NamedCache.

Example 26–4 Calling a MapTrigger and Passing it to a Named Cache

...

public class MyFactory
 {
 /**
 * Instantiate a MapTriggerListener for a given NamedCache
 */
 public static MapTriggerListener createTriggerListener(String sCacheName)
 {
 MapTrigger trigger;
 if ("People".equals(sCacheName))
 {
 trigger = new PersonMapTrigger();
 }
 else
 {
 throw IllegalArgumentException("Unknown cache name " + sCacheName);
 }

A Map Trigger Example

26-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 System.out.println("Creating MapTrigger for cache " + sCacheName);

 return new MapTriggerListener(trigger);
 }

 public static void main(String[] args)
 {
 NamedCache cache = CacheFactory.getCache("People");
 cache.addMapListener(createTriggerListener("People"));

 System.out.println("Installed MapTrigger into cache People");
 }
 }

27

Using Live Events 27-1

27Using Live Events

[27] This chapter describes live events and provides instructions for being notified of
events using event interceptors. Applications use live events to react to cluster
operations with application logic.

This chapter includes the following sections:

■ Overview of Live Events

■ Understanding Live Event Types

■ Handling Live Events

Overview of Live Events
Coherence provides an event programming model that allows extensibility within a
cluster when performing operations against a data grid. The model uses events to
represent observable occurrences of cluster operations. The events that are currently
supported include:

■ Partitioned Cache Events – A set of events that represent the operations being
performed against a set of entries in a cache. Partitioned cache events include both
entry events and entry processor events. Entry events are related to inserting,
removing, and updating entries in a cache. Entry processor events are related to
the execution of entry processors.

■ Partitioned Service Events – A set of events that represent the operations being
performed by a partitioned service. Partitioned service events include both
partition transfer events and partition transaction events. Partition transfer events
are related to the movement of partitions among cluster members. Partition
transaction events are related to changes that may span multiple caches and are
performed within the context of a single request.

■ Lifecycle Events – A set of events that represent the activation and disposal of a
ConfigurableCacheFactory instance.

Applications create and register event interceptors to consume events. Event
interceptors handle the events and implement any custom logic as required. Events
have different rules which govern whether or not mutable actions may be performed
upon receiving the event.

Understanding Live Event Types
Event types represent observable occurrences of cluster operations. Applications
handle the events using event interceptors and decide what action to take based on the

Understanding Live Event Types

27-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

event type. This section describes each of the supported event types and is organized
according to the functional areas in which the events are raised.

The following topics are included in this section:

■ Understanding Partitioned Cache Events

■ Understanding Partitioned Service Events

■ Understanding Lifecycle Events

Understanding Partitioned Cache Events
Partitioned cache events represent operations that are performed against a set of
entries in a cache. Partitioned cache events include entry events (EntryEvent) and
entry processor events (EntryProcessorEvent). These events are defined within the
com.tangosol.net.events.partition.cache package.

Entry Events
Entry events represent operations for inserting, removing, and updating entries in a
cache. Precommit entry events (INSERTING, REMOVING, and UPDATING) are raised before
the operation is performed to allow modification to an entry. The following holds true
when modifying entries:

■ Event interceptors that are registered for precommit entry events are
synchronously called.

■ A lock is held for each entry during the processing of the event to prevent
concurrent updates.

■ Throwing an exception prevents the operation from being committed.

Postcommit entry events (INSERTED, REMOVED, and UPDATED) are raised after an
operation is performed and in the same order as the events occurred. Postcommit
events indicate that an entry is no longer able to be modified. Event interceptors for
postcommit entry events are asynchronously processed.

 Table 27–1 lists the entry event types.

Entry Processor Events
Entry processor events represent the execution of an entry processor on a set of binary
entries. Precommit entry processor events (EXECUTING) are raised before an entry

Table 27–1 Entry Events

Event Types Description

INSERTING Indicates that an entry (or multiple entries) is going to be inserted in the
cache.

INSERTED Indicates that an entry (or multiple entries) has been inserted in the cache.

REMOVING Indicates that an entry (or multiple entries) is going to be removed from the
cache.

REMOVED Indicates that an entry (or multiple entries) has been removed from the
cache.

UPDATING Indicates that an entry (or multiple entries) is going to be updated in the
cache.

UPDATED Indicates that an entry (or multiple entries) has been updated in the cache.

Understanding Live Event Types

Using Live Events 27-3

processor is executed to allow modification to the entry processor instance. The
following holds true when modifying an entry processor:

■ Event interceptors that are registered for precommit entry processor events are
synchronously called.

■ Entry processors can be shared across threads; therefore, ensure thread safety
when modifying an entry processor.

■ A lock is held for each entry during the processing of the event to prevent
concurrent updates.

■ Throwing an exception prevents the entry processor from being executed.

Postcommit entry processor events (EXECUTED) are raised after an entry processor is
executed and in the same order that the events occurred. Postcommit events indicate
that an entry is no longer able to be modified. Event interceptors for postcommit entry
processor events are asynchronously processed.

Table 27–2 lists the entry processor event types.

Understanding Partitioned Service Events
Partitioned service events represent operations being performed by a partitioned
service. Partitioned service events include transfer events (TransferEvent) and
transaction events (TransactionEvent). These events are defined within the
com.tangosol.net.events.partition package.

Transfer Events
Partitioned service transfer events represent partition transfers between storage
enabled members. The event includes the service name for which the transfer is taking
place, the partition ID, the cluster members involved in the transfer and a map of
cache names to entries. The entries cannot be modified.

Table 27–3 lists the transition event types.

Transaction Events
Partitioned service transaction events represent changes to binary entries (possibly
from multiple caches) that are made in the context of a single service request.

Table 27–2 Entry Processor Events

Event Types Description

EXECUTING Indicates that an entry processor is going to be executed on a set of entries.

EXECUTED Indicates that an entry processor has been executed on a set of entries.

Note: Transfer events are raised while holding a lock on the partition
being transferred that blocks any operations for the partition.

Table 27–3 Transition Events

Event Types Description

DEPARTING Indicates that a set of entries are being transferred from the current
member.

ARRIVED Indicates that a set of entries has been transferred to or restored by the
current member.

Handling Live Events

27-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Precommit transaction events (COMMITTING) are raised before any operations are
performed to allow modification to the entries. The following holds true when
modifying entries:

■ A lock is held for each entry during the processing of the event to prevent
concurrent updates.

■ Throwing an exception prevents the operation from being committed.

Postcommit transaction events (COMMITTED) are raised after an operation is performed.
Postcommit events indicate that the entries are no longer able to be modified.

Table 27–4 lists the transaction event types.

Understanding Lifecycle Events
Lifecycle events (LifecycleEvent) represent actions that occur on a
ConfigurableCacheFactory instance. These events are defined within the
com.tangosol.net.events.application package.

An ACTIVATED event is raised after all services that are associated with a cache factory
are started. The services are defined in the cache configuration file and must be
configured to autostart. A DISPOSING event is raised before all services are shut down
and any resources are reclaimed. Event interceptors that handle a DISPOSING event are
notified before the services are shutdown. A ConfigurableCacheFactory instance can
only be activated and disposed of once.

Table 27–5 lists the lifecycle event types.

Handling Live Events
Applications handle live events using event interceptors. The interceptors explicitly
define which events to receive and what action, if any, to take. Any number of event
interceptors can be created and registered for a specific cache or for all caches
managed by a specific partitioned service. Multiple interceptors that are registered for

Table 27–4 Transaction Events

Event Types Description

COMMITTING Indicates that entries are going to be inserted in their respective cache.

COMMITTED Indicates that entries have been inserted in their respective cache.

Note: Lifecycle events are dispatched to event interceptors by the
same thread calling the lifecycle methods on the
ConfigurableCacheFactory implementation. This thread may be
synchronized. Event interceptors must ensure that any spawned
threads do not synchronize on the same ConfigurableCacheFactory
object.

Table 27–5 Lifecycle Events

Event Types Description

ACTIVATED Indicates that a ConfigurableCacheFactory instance is active.

DISPOSING Indicates that a ConfigurableCacheFactory instance is going to be
disposed.

Handling Live Events

Using Live Events 27-5

the same event type are automatically chained together and executed in the context of
a single event.

This section includes the following topics:

■ Creating Event Interceptors

■ Understanding Event Threading

■ Registering Event Interceptors

■ Chaining Event Interceptors

Creating Event Interceptors
Event interceptors are created by implementing the EventInterceptor interface. The
interface is defined using generics and allows you to subscribe to events by specifying
the generic type of the event as a type parameter. The inherited onEvent method
provides the ability to perform any necessary processing upon receiving an event. For
details on the EventInterceptor API, see Java API Reference for Oracle Coherence. The
following example demonstrates subscribing to all transfer events and is taken from
Example 27–1:

public class RedistributionInterceptor
 implements EventInterceptor<TransferEvent>

 public void onEvent(TransferEvent event)
 {
 ...

The @Interceptor annotation can be used to further restrict the events to specific
event types and also provides further configuration of the interceptor. The following
example defines an interceptor identifier and restricts the events to only transfer
DEPARTING events:

@Interceptor(identifier = "redist", transferEvents = TransferEvent.Type.DEPARTING)
public class RedistributionInterceptor
 implements EventInterceptor<TransferEvent>

 public void onEvent(TransferEvent event)
 {
 ...

The @Interceptor annotation includes the following attributes:

■ identifier – Specifies a unique identifier for the interceptor. The identifier can be
overridden when registering an interceptor class in the cache configuration file.
This attribute is optional. A unique name is automatically generated by the event
infrastructure if the attribute is omitted.

■ entryEvents – Specifies an array of entry event types to which the interceptor
wants to subscribe.

■ entryProcessorEvents – Specifies an array of entry processor event types to
which the interceptor wants to subscribe.

■ transferEvents – Specifies an array of transfer event types to which the
interceptor wants to subscribe.

■ transactionEvents – Specifies an array of transaction event types to which the
interceptor wants to subscribe.

Handling Live Events

27-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ order – Specifies whether the interceptor is placed at the front of a chain of
interceptors. See "Chaining Event Interceptors" on page 27-10. The legal values are
LOW and HIGH. A value of HIGH indicates that the interceptor is placed at the front of
the chain of interceptors. A value of LOW indicates no order preference. The default
value is LOW. The order can be overridden when registering an interceptor class in
the cache configuration file.

The following example demonstrates a basic event interceptor implementation that
subscribes to all transfer event types (both DEPARTING and ARRIVED). The onEvent
method simply logs the events to show partition activity. The example is part of the
Coherence examples.

Example 27–1 Example Event Interceptor Implementation

package com.tangosol.examples.events;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.events.EventInterceptor;
import com.tangosol.net.events.annotation.Interceptor;
import com.tangosol.net.events.partition.TransferEvent;

@Interceptor(identifier = "redist")
public class RedistributionInterceptor
 implements EventInterceptor<TransferEvent>
 {

 public void onEvent(TransferEvent event)
 {
 CacheFactory.log(String.format("Discovered event %s for partition-id %d
 from remote member %s\n", event.getType(), event.getPartitionId(),
 event.getRemoteMember()), CacheFactory.LOG_INFO);
 }
 }

Understanding Event Threading
Event interceptors can have a significant impact on cache operations and must be
careful not to block or otherwise affect any underlying threads. The impact for both
precommit event types and postcommit event types should be carefully considered
when creating event interceptors.

Precommit Events
Precommit event types allow event interceptors to modify entries before the entries are
committed to a cache. The interceptors are processed synchronously and must not
perform long running operations (such as database access) that could potentially block
or slow cache operations. Calls to external resource must always return as quickly as
possible to avoid blocking cache operations.

Note: Event instances are immutable and their lifecycle is controlled
by the underlying system. References to event classes must not be
held across multiple invocations of the onEvent() method.

Note: EventInterceptor instances can be reused; however, they
should be immutable or thread-safe so that they can be dispatched by
multiple threads concurrently.

Handling Live Events

Using Live Events 27-7

Configure a thread pool for a partitioned service if event interceptors are to handle
precommit events. The thread pool is disabled by default and requires setting the
<thread-count> element within a distributed cache definition. For details on the
<thread-count> element, see " distributed-scheme Subelements" on page B-33. The
thread pool creates additional threads to process cache operations and helps alleviate
the overall impact of event interceptors that handle precommit events, but the
potential for blocking still exists.

Postcommit Events
Postcommit events do not allow an event interceptor to modify entries. The events are
raised in the same order as the events occurred and the interceptors are processed
asynchronously. Event interceptors that perform long running operations can cause a
backlog of requests that could ultimately affect performance. It is a best practice to use
the Java Executor service to perform such operations on a separate thread.

Registering Event Interceptors
Event interceptors are registered within a cache configuration file. Event interceptors
are registered either for a specific cache or for a partitioned service. Event interceptor
that are registered for a specific cache only receives events that pertain to that cache.
Event interceptors that are registered for a partitioned service receives events for all
caches that are managed by the service.

This section contains the following topics:

■ Registering Event Interceptors For a Specific Cache

■ Registering Event Interceptors For a Partitioned Service

■ Registering Event Interceptors For a Cache Configuration Factory

■ Using Custom Registration

■ Guidelines for Registering Event Interceptors

Registering Event Interceptors For a Specific Cache
To register interceptors on a specific cache, include an <interceptors> element, within
a <cache-mapping> element, that includes any number of <interceptor> subelements.
Each <interceptor> element must include an <instance> subelement and provide a
fully qualified class name that implements the EventInterceptor interface. See
"interceptor" on page B-55 for a detailed reference of the <interceptor> element. The
following example registers and event interceptor class called MyInterceptor.

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>
 com.tangosol.examples.events.MyInterceptor

Note: Event interceptors for service-level events (such as transfer
events and transaction events) must be registered for a partition
service and cannot be restricted to a specific cache.

Handling Live Events

27-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 </class-name>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
</caching-scheme-mapping>

Registering Event Interceptors For a Partitioned Service
To register interceptors on a partitioned service, include an <interceptors> element,
within a <distributed-scheme> element, that includes any number of <interceptor>
subelements. Each <interceptor> element must include an <instance> subelement
and provide a fully qualified class name that implements the EventInterceptor
interface. See "interceptor" on page B-55 for a detailed reference of the <interceptor>
element. The following example registers the RedistributionInterceptor class
defined in Example 27–1.

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>PartitionedService1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>
 com.tangosol.examples.events.RedistributionInterceptor
 </class-name>
 </instance>
 </interceptor>
 </interceptors>
</distributed-scheme>

Registering Event Interceptors For a Cache Configuration Factory
To register interceptors on a ConfigurableCacheFactory instance, include an
<interceptors> element, within a <cache-config> element, that includes any number
of <interceptor> subelements. Each <interceptor> element must include an
<instance> subelement and provide a fully qualified class name that implements the
EventInterceptor interface. See "interceptor" on page B-55 for a detailed reference of
the <interceptor> element. The following example registers and event interceptor
class called MyInterceptor.

<cache-config>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>com.tangosol.examples.events.MyInterceptor</class-name>
 </instance>
 </interceptor>
 </interceptors>
 ...
</cache-config>

Handling Live Events

Using Live Events 27-9

Using Custom Registration
The @Interceptor annotation and generic types are used by the event infrastructure to
register event interceptors with the appropriate event dispatcher. This mechanism is
acceptable for most uses cases. However, for advanced use cases, an event interceptor
can choose to implement the EventDispatcherAwareInterceptor interface and
manually register an event interceptor with the required event dispatcher.

The introduceEventDispatcher method includes the event dispatcher to which the
interceptor will be registered. The methods on the dispatcher are then used to add and
remove interceptors, restrict specific event types, and configure the interceptor as
required. The following example shows a custom implementation that explicitly
registers an interceptor, subscribes to entry INSERTING events, and configures ordering
to ensure that the interceptor is called and notified first:

public void introduceEventDispatcher(String sIdentifier, EventDispatcher
 dispatcher)
 {
 dispatcher.addEventInterceptor(sIdentifier, this,
 new HashSet(Arrays.asList(EntryEvent.Type.INSERTING)), true);
 }

Interceptors can also be programmatically registered using the InterceptorRegistry
API. Registering an interceptor causes it to be introduced to all currently registered
and future event dispatchers. An interceptor can determine whether or not to bind to a
dispatcher by using the introduceEventDispatcher method as shown in the previous
example.

The InterceptorRegistry API is available from the ConfigurableCacheFactory
interface and is called using the getInterceptorRegistry method. The API can be
used together with the cache configuration file when declaratively registering
interceptors. The API is often used with custom DefaultCacheServer implementations
to add interceptors programmatically, or the API is used to selectively register
interceptors when using the InvocationService interface. The following example
demonstrates registering an interceptor.

CacheFactory.getConfigurableCacheFactory().getInterceptorRegistry()
.registerEventInterceptor(new MyEventIntercepor());

Guidelines for Registering Event Interceptors
Interceptors can be registered in multiple distributed schemes for the same service. In
addition, interceptor classes can be inherited if a distributed scheme uses scheme
references. In both cases, the interceptor classes are registered with the service.

For most cases, registering multiple interceptor classes is not an issue. However, there
are increased chances for duplicating the same interceptor classes and identifier names
for a given service. The following guidelines should be followed to ensure registration
errors do not occur because of duplication:

■ An interceptor class can be duplicated multiple time in a distributed scheme or in
multiple schemes of the same service as long as the identifier names are unique or
no identifier name is defined. For the later, a unique name is automatically
generated by the event infrastructure.

Note: If an interceptor is configured without using the annotations,
then the configuration cannot be overridden using the cache
configuration file.

Handling Live Events

27-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ An interceptor class (duplicated or not) with the same identifier name cannot be
registered multiple times in a distributed scheme and results in a registration error.

■ An interceptor class that is inherited by scheme reference is registered once for
each distinct service name in the reference chain.

Chaining Event Interceptors
Event interceptors that are registered for the same event type are serially called by the
thread responsible for dispatching an event. The ability to chain interceptors in this
manner allows complex processing scenarios where custom logic is executed based on
the outcome of other interceptors in the chain. Each event interceptor in a chain can:

■ Modify data associated with the event if allowed. For example, precommit
operations such as INSERTING, UPDATING, and REMOVING entry events allow data
modifications.

■ Deny a precommit operations by throwing an exception.

■ Enlist a new entry into a partition-level transaction.

■ Observe the results of any side effects caused by event interceptors further down
the chain. If the interceptor chain is associated with a precommitted storage event,
the ability to observe the results provides a second opportunity to deny the
processing.

Observing the side effects of downstream event interceptors is accomplished using
the Event.nextInterceptor method. When this method returns, it signifies that
all downstream event interceptors executed and any changes to the state
associated with the event can be inspected. The Event object holds state on the
processing of the event. The event calls each event interceptor's onEvent method as
long as there are still event interceptors in the chain. If the event interceptor itself
calls the Event.nextInterceptor method, it triggers the next event interceptor in
the chain to execute. If the event interceptor returns, the event itself triggers the
next event interceptor in the chain's onEvent method. Either way, all event
interceptors are executed, but those that choose to call the nextInterceptor
method have the option of taking action based on the side effects that are
observed.

Specifying an Event Interceptor Chain Order
Event interceptors in a chain are executed based on the order in which they are
registered. Use the order attribute on the @Interceptor annotation to specify whether
an interceptor is placed in the front of the chain. A value of HIGH places the interceptor
at the front of the chain. A value of LOW indicates no order preference and is the default
value. For example:

@Interceptor(identifier = "MyInterceptor",
 entryEvents = {Type.INSERTING, Type.INSERTED}
 order = Order.HIGH)
public class MyInterceptor
 implements EventInterceptor<EntryEvent>
...

The order can also be specified declaratively when registering an event interceptor in
the cache configuration file and overrides the order attribute that is specified in an
event interceptor class.

Handling Live Events

Using Live Events 27-11

To specify the ordering of interceptors in the cache configuration file, include an
<order> element, within an <interceptor> element, that is set to HIGH or LOW. For
example:

<interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <order>HIGH</order>
 <instance>
 <class-name>package.MyInterceptor</class-name>
 </instance>
 </interceptor>
 <interceptor>
 <name>MySecondInterceptor</name>
 <instance>
 <class-name>package.MySecondInterceptor</class-name>
 </instance>
 </interceptor>
</interceptors>

Handling Live Events

27-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

28

Using Coherence Query Language 28-1

28Using Coherence Query Language

[28] This chapter describes how to use Coherence Query Language (CohQL) to interact
with Coherence caches. CohQL is a light-weight syntax (in the tradition of SQL) that is
used to perform cache operations on a Coherence cluster. The language can be used
either programmatically or from a command-line tool.

This chapter includes the following sections:

■ Understanding Coherence Query Language Syntax

■ Using the CohQL Command-Line Tool

■ Building Filters in Java Programs

■ Additional Coherence Query Language Examples

Understanding Coherence Query Language Syntax
The following sections describe the functionality provided by CohQL. Each section
describes a particular statement, its syntax, and an example. You can find more query
examples in "Additional Coherence Query Language Examples" on page 28-15.

This section includes the following topics:

■ Query Syntax Basics

■ Retrieving Data

■ Managing the Cache Lifecycle

■ Working with Cache Data

■ Working with Indexes

Note:

■ Although the CohQL syntax may appear similar to SQL, it is
important to remember that the syntax is not SQL and is actually
more contextually related to the Java Persistence Query Language
(JPQL) standard.

■ CQL (Continuous Query Language) is a query language related to
Complex Event Processing (CEP) and should not be confused
with CohQL.

Note: CohQL does not support subqueries.

Understanding Coherence Query Language Syntax

28-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Issuing Multiple Query Statements

■ Viewing Query Cost and Effectiveness

For reference, Table 28–1 lists the Coherence query statements, clauses, and
expressions in alphabetical order.

Query Syntax Basics
This section describes some building blocks of the syntax, such as path expressions,
bind variables, and pseudo-functions.

Using Path-Expressions
One of the main building blocks of CohQL are path-expressions. Path expressions are
used to navigate through a graph of object instances. An identifier in a path expression
is used to represent a property in the Java Bean sense. It is backed by a
ReflectionExtractor that is created by prepending a get and capitalizing the first
letter. Elements are separated by the "dot" (.) character, that represents object traversal.
For example the following path expression is used to navigate an object structure:

a.b.c

It reflectively invokes these methods:

getA().getB().getC()

Table 28–1 Coherence Query Language Statements

For this statement, clause, or expression... See this section

BACKUP CACHE Writing a Serialized Representation of a Cache
to a File

bind variables Using Bind Variables

CREATE CACHE Creating a Cache

CREATE INDEX Creating an Index on the Cache

DELETE Deleting Entries in the Cache

DROP CACHE Removing a Cache from the Cluster

DROP INDEX Removing an Index from the Cache

ENSURE CACHE Creating a Cache

ENSURE INDEX Creating an Index on the Cache

GROUP BY Aggregating Query Results

INSERT Inserting Entries in the Cache

key() pseudo-function Using Key and Value Pseudo-Functions

path-expressions Using Path-Expressions

RESTORE CACHE Loading Cache Contents from a File

SELECT Retrieving Data from the Cache

SOURCE Processing Query Statements in Batch Mode

UPDATE Changing Existing Values

value() pseudo-function Using Key and Value Pseudo-Functions

WHERE Filtering Entries in a Result Set

Understanding Coherence Query Language Syntax

Using Coherence Query Language 28-3

Using Bind Variables
For programmatic uses, the API passes strings to a simple set of query functions. Use
bind variables to pass the value of variables without engaging in string concatenation.
There are two different formats for bind variables.

■ the question mark (?)—Enter a question mark, immediately followed by a number
to signify a positional place holder that indexes a collection of objects that are
"supplied" before the query is run. The syntax for this form is: ?n where n can be
any number. Positional bind variables can be used by the QueryHelper class in the
construction of filters. For example:

QueryHelper.createFilter("number = ?1" , new Object[]{new Integer(42)};

■ the colon (:)—Enter a colon, immediately followed by the identifier to be used as a
named place holder for the object to be supplied as a key value pair. The syntax for
this is :identifier where identifier is an alpha-numeric combination, starting with an
alphabetic character. Named bind variables can be used by the QueryHelper class
in the construction of filters. For example:

HashMap env = new HashMap();
env.put("iNum",new Integer(42));
QueryHelper.createFilter("number = :iNum" , env};

See "Building Filters in Java Programs" on page 28-14 for more information on the
QueryHelper class and constructing filters programmatically.

Using Key and Value Pseudo-Functions
CohQL provides a key() pseudo-function because many users store objects with a key
property. The key() represents the cache's key. The query syntax also provides a
value() pseudo-function. The value() is implicit in chains that do not start with
key(). The key() and value() pseudo-functions are typically used in WHERE clauses,
where they test against the key or value of the cache entry. For examples of using
key() and value(), see "Key and Value Pseudo-Function Examples" on page 28-17 and
"A Command-Line Example" on page 28-12.

Using Aliases
Although not needed semantically, CohQL supports aliases to make code artifacts as
portable as possible to JPQL. CohQL supports aliases attached to the cache name and
at the head of dotted path expressions in the SELECT, UPDATE, and DELETE commands.
CohQL also allows the cache alias as a substitute for the value() pseudo function and
as an argument to the key() pseudo function.

Using Quotes with Literal Arguments
Generally, you do not have to enclose literal arguments (such as cache-name or
service-name) in quotes. Quotes (either single or double) would be required only if
the argument contains an operator (such as -, +, ., <, >, =, and so on) or whitespace.

Filenames should also be quoted. Filenames often contain path separators (/ or \) and
dots to separate the name from the extension.

The compiler throws an error if it encounters an unquoted literal argument or filename
that contains an offending character.

Understanding Coherence Query Language Syntax

28-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Retrieving Data
The following sections describe the SELECT statement and the WHERE clause. These
entities are the basic building blocks of most cache queries.

Retrieving Data from the Cache
The SELECT statement is the basic building block of a query: it retrieves data from the
cache. The clause can take several forms, including simple and complex path
expressions, key expressions, transformation functions, multiple expressions, and
aggregate functions. The SELECT statement also supports the use of aliases.

The form of the SELECT statement is as follows:

SELECT (properties* aggregators* | * | alias)
FROM "cache-name" [[AS] alias]
[WHERE conditional-expression] [GROUP [BY] properties+]

The asterisk (*) character represents the full object instead of subparts. It is not
required to prefix a path with the cache-name. The FROM part of the SELECT statement
targets the cache that forms the domain over which the query should draw its results.
The cache-name is the name of an existing cache.

See "Simple SELECT * FROM Statements that Highlight Filters" on page 28-15 for
additional examples.

Example:
■ Select all of the items from the cache dept.

select * from "dept"

Filtering Entries in a Result Set
Use the WHERE clause to filter the entries returned in a result set. One of the key features
of CohQL is that they can use path expressions to navigate object structure during
expression evaluation. Conditional expressions can use a combination of logical
operators, comparison expressions, primitive and function operators on fields, and so
on.

In the literal syntax of the WHERE clause, use single quotes to enclose string literals; they
can be escaped within a string by prefixing the quote with another single quote.
Numeric expressions are defined according to the conventions of the Java
programming language. Boolean values are represented by the literals TRUE and FALSE.
Date literals are not supported.

Operator precedence within the WHERE clause is as follows:

1. Path operator (.)

2. Unary + and -

3. Multiplication (*) and division (/)

Note: CohQL does not have access to type information. If a getter
returns a numeric type different than the type of the literal, you may
get a false where you would have expected a true on the comparison
operators. The work around is to specify the type of the literal with l,
for long, d for double, or s for short. The defaults are Integer for
literals without a period (.) and Float for literals with a period (.).

Understanding Coherence Query Language Syntax

Using Coherence Query Language 28-5

4. Addition (+) and subtraction (-)

5. Comparison operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS
[NOT] NULL, CONTAINS [ALL|ANY]

6. Logical operators (AND, OR, NOT)

The WHERE clause supports only arithmetic at the language level.

The BETWEEN operator can be used in conditional expressions to determine whether the
result of an expression falls within an inclusive range of values. Numeric, or string
expressions can be evaluated in this way. The form is: BETWEEN lower AND upper.

The LIKE operator can use the _ and % wildcards. The _ wildcard is used to match
exactly one character, while the % wildcard is used to match zero or more occurrences
of any characters. To escape the wildcards, precede them with an escape character that
is defined using the escape keyword. The following example escapes the % wildcard
using the \ escape character in order to select a key literally named k%1.

SELECT key(),value() FROM mycache WHERE key() LIKE "k\%1" escape "\"

In addition, any character may be defined as the escape character. For example:

SELECT key(),value() FROM mycache WHERE key() LIKE "k#%1" escape "#"

The IN operator can check whether a single-valued path-expression is a member of a
collection. The collection is defined as an inline-list or expressed as a bind variable.
The syntax of an inline-list is:

"(" literal* ")"

CONTAINS [ALL|ANY] are very useful operators because Coherence data models
typically use de-normalized data. The CONTAINS operator can determine if a
many-valued path-expression contains a given value. For example:

e.citys CONTAINS "Boston"

The ALL and ANY forms of CONTAINS take a inline-list or bind-variable with the same
syntax as the IN operator.

See "Simple SELECT * FROM Statements that Highlight Filters" on page 28-15 for
additional examples.

Example:
■ Select all of the items in the cache dept where the value of the deptno key equals

10.

select * from "dept" where deptno = 10

Managing the Cache Lifecycle
The following sections describe how to create and remove caches. They also describe
how to backup and restore cache contents.

Note: Coherence provides a programmatic API that enables you to
create standalone Coherence filters based on the WHERE clause
conditional-expression syntax. See "Building Filters in Java Programs"
on page 28-14.

Understanding Coherence Query Language Syntax

28-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Creating a Cache
Before sending queries, connect to an existing cache or create a new cache using the
CREATE CACHE or ENSURE CACHE statements, respectively. This statement first attempts to
connect to a cache with the specified cache-name. If the cache is not found in the
cluster, Coherence attempts to create a cache with the specified name based on the
current cache configuration file. This statement is especially useful on the command
line. If you are using this statement in a program, you have the option of specifying
service and classloader information instead of a name (classloaders cannot be accessed
from the command line).

The syntax is:

[CREATE | ENSURE] CACHE "cache-name"
[SERVICE "service-name"]

Example:
■ Create a cache named dept.

create cache "dept"

Writing a Serialized Representation of a Cache to a File
Use the BACKUP CACHE statement to write a serialized representation of the given cache
to a file represented by the given filename. The filename is an operating
system-dependent path and must be enclosed in single or double quotes. The BACKUP
CACHE statement is available only in the command-line tool. The syntax is:

BACKUP CACHE "cache-name" [TO] [FILE] "filename"

Example:
■ Write a serialized representation of the cache dept to the file textfile.

Note: Cache names and service names must be enclosed in quotes
(either double-quotes (" ") or single-quotes (' ')) in a statement.

Note: The backup (and subsequent restore) functionality is designed
for use in a development and testing environment and should not be
used on a production data set as it makes no provisions to ensure data
consistency. It is not supported as a production backup, snapshot, or
checkpointing utility.

In particular:

■ The backup is slow since it only operates on a single node in the
cluster.

■ The backup is not atomic. That is, it misses changes to elements
which occur during the backup and results in a dirty read of the
data.

■ The backup stops if an error occurs and results in an incomplete
backup. In such scenarios, an IOException is thrown that
describes the error.

■ The backup is not forward or backward compatible between 3.x
and 12.1.x.

Understanding Coherence Query Language Syntax

Using Coherence Query Language 28-7

backup cache "dept" to file "textfile"

Loading Cache Contents from a File
Use the RESTORE CACHE statement to read a serialized representation of the given cache
from a file represented by the given filename. The filename is an operating
system-dependent path and must be enclosed in single or double quotes. The RESTORE
CACHE statement is available only in the command-line tool. The syntax is:

RESTORE CACHE "cache-name" [FROM] [FILE] "filename"

Example:
■ Restore the cache dept from the file textfile.

restore cache "dept" from file "textfile"

Removing a Cache from the Cluster
Use the DROP CACHE statement to remove the specified cache completely from the
cluster. The cache is removed by a call to the Java destroy() method. If any cluster
member holds a reference to the dropped cache and tries to perform any operations on
it, then the member receives an IllegalStateException. The syntax for the Coherence
query DROP CACHE statement is:

DROP CACHE "cache-name"

Example:
■ Remove the cache orders from the cluster.

drop cache "orders"

Working with Cache Data
The following sections describe how to work with data in the cache, such as inserting
and deleting cache data and filtering result sets.

Aggregating Query Results
An aggregate query is a variation on the SELECT query. Use an aggregate query when
you want to group results and apply aggregate functions to obtain summary
information about the results. A query is considered an aggregate query if it uses an
aggregate function or has a GROUP BY clause. The most typical form of an aggregate
query involves the use of one or more grouping expressions followed by aggregate
functions in the SELECT clause paired with the same lead grouping expressions in a
GROUP BY clause.

CohQL supports these aggregate functions: COUNT, AVG, MIN, MAX, and SUM. The
functions can operate on the Double, Long, and BigDecimal types. To specify a type,
include the type followed by an underscore (_) as a prefix to the function. For example:

long_sum, bd_sum

The Double type is assumed if a type is not explicitly specified.

See "Complex Queries that Feature Projection, Aggregation, and Grouping" on
page 28-16 for additional examples.

Note: Backups cannot be restored between 3.x and 12.1.x versions of
Coherence.

Understanding Coherence Query Language Syntax

28-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example:
■ Select the total amount and average price for items from the orders cache,

grouped by supplier.

select supplier,sum(amount),avg(price) from "orders" group by supplier

■ Select the total amount and average price (using a BigDecimal type) for items from
the orders cache, grouped by supplier.

select supplier,bd_sum(amount),bd_avg(price) from "orders" group by supplier

Changing Existing Values
Use the UPDATE statement to change an existing value in the cache. The syntax is:

UPDATE "cache-name" [[AS] alias]
SET update-statement {, update-statement}*
[WHERE conditional-expression]

Each update-statement consists of a path expression, assignment operator (=), and an
expression. The expression choices for the assignment statement are restricted. The
right side of the assignment must resolve to a literal, a bind-variable, a static method,
or a new Java-constructor with only literals or bind-variables. The UPDATE statement
also supports the use of aliases.

See "UPDATE Examples" on page 28-17 for additional examples.

Example:
■ For employees in the employees cache whose ranking is above grade 7, update

their salaries to 1000 and vacation hours to 200.

update "employees" set salary = 1000, vacation = 200 where grade > 7

Inserting Entries in the Cache
Use the INSERT statement to store the given VALUE under the given KEY. If the KEY
clause is not provided, then the newly created object is sent the message getKey(), if
possible. Otherwise, the value object is used as the key.

Note that the INSERT statement operates on Maps of Objects. The syntax is:

INSERT INTO "cache-name"
[KEY (literal | new java-constructor | static method)]
VALUE (literal | new java-constructor | static method)

Example:
■ Insert the key writer with the value David into the employee cache.

insert into "employee" key "writer" value "David"

Deleting Entries in the Cache
Use the DELETE statement to delete specified entries in the cache. The syntax is:

DELETE FROM "cache-name" [[AS] alias]
[WHERE conditional-expression]

The WHERE clause for the DELETE statement functions the same as it would for a SELECT
statement. All conditional-expressions are available to filter the set of entities to be
removed. The DELETE statement also supports the use of aliases.

Understanding Coherence Query Language Syntax

Using Coherence Query Language 28-9

Example:
■ Delete the entry from the cache employee where bar.writer key is not David.

delete from "employee" where bar.writer IS NOT "David"

Working with Indexes
The following sections describe how to create and remove indexes on cache data.
Indexes are a powerful tool that allows Coherence's built-in optimizer to more quickly
and efficiently analyze queries and return results.

Creating an Index on the Cache
Use the CREATE INDEX or the ENSURE INDEX statement to create indexes on an identified
cache. The syntax is:

[CREATE | ENSURE] INDEX [ON] "cache-name" (value-extractor-list)

The value-extractor-list is a comma-delimited list that uses path expressions to
create ValueExtractors. If multiple elements exist, then a MultiExtractor is used. To
create a KeyExtractor, then start the path expression with a key() pseudo-function.

Natural ordering for the index is assumed.

Example:
■ Create a index on the attribute lastname in the orders cache.

create index "orders" lastname

Removing an Index from the Cache
The DROP INDEX statement removes the index based on the given ValueExtractor. This
statement is available only for the command-line tool. The syntax is:

DROP INDEX [ON] "cache-name" (value-extractor-list)

Example:
■ Remove the index on the lastname attribute in the orders cache.

drop index "orders" lastname

Issuing Multiple Query Statements
The following section describes how to more efficiently issue multiple query
statements to the cache.

Processing Query Statements in Batch Mode
The SOURCE statement allows for the "batch" processing of statements. The SOURCE
statement opens and reads one or more query statements from a file represented by
the given filename. The filename is an operating system-dependent path and must be
enclosed in single or double quotes. Each query statement in the file must be separated
by a semicolon (;) character. Sourcing is available only in the command-line tool,
where you naturally want to load files consisting of sequences of commands. Source
files may source other files. The syntax is:

Be Careful: If the WHERE clause is not present, then all entities in the
given cache are removed.

Using the CohQL Command-Line Tool

28-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

SOURCE FROM [FILE] "filename"

SOURCE can be abbreviated with an "at" symbol (@) as in @"filename". On the command
command line only, a "period" symbol '.' can be used as an abbreviation for '@' but
must no contain quotes around the filename.

Example:
■ Process the statements in the file command_file.

source from file "command_file"

or,

@ "command_file"

or,

. command_file

Viewing Query Cost and Effectiveness
The EXPLAIN PLAN FOR and TRACE commands are used to create and output query
records that are used to determine the cost and effectiveness of a query. A query
explain record provides the estimated cost of evaluating a filter as part of a query
operation. A query trace record provides the actual cost of evaluating a filter as part of
a query operation. Both query records take into account whether or not an index can
be used by a filter. See "Interpreting Query Records" on page 22-10 for additional
details on understanding the data provided in an explain plan record and trace record.
The syntax for the commands are:

Query Explain Plan:

EXPLAIN PLAN FOR select statement | update statement | delete statement

Trace:

TRACE select statement | update statement | delete statement

Example:
EXPLAIN PLAN FOR select * from "mycache" where age=19 and firstName=Bob

or,

TRACE SELECT * from "MyCache" WHERE age=19

Using the CohQL Command-Line Tool
The CohQL command-line tool provides a non-programmatic way to interact with
caches by allowing statements to be issued from the command line. The tool can be
run using the com.tangosol.coherence.dslquery.QueryPlus class or, for
convenience, a startup script is available to run the tool and is located in the
COHERENCE_HOME/bin/ directory. The script is available for both Windows (query.cmd)
and UNIX (query.sh).

The script starts a cluster node in console mode; that is, storage is not enabled on the
node. This is the suggested setting for production environments and assumes that the
node joins a cluster that contains storage-enabled cache servers. However, a

Using the CohQL Command-Line Tool

Using Coherence Query Language 28-11

storage-enabled node can be created for testing by changing the storage_enabled
setting in the script to true.

The script provides the option for setting the COHERENCE_HOME environment variable. If
COHERENCE_HOME is not set on the computer, set it in the script to the location where
Coherence was installed.

CohQL uses JLine for enhanced command-line editing capabilities, such as having the
up and down arrows move through the command history. However, JLine is not
required to use CohQL. The script automatically uses the jline.jar library that is
located in the COHERENCE_HOME/lib/ directory. A different location can be specified by
modifying the JLINE_HOME variable and classpath in the script. If the JLine library is
not found, a message displays and CohQL starts without JLine capabilities.

Starting the Command-line Tool
The following procedure demonstrates how to start the CohQL command-line tool
using the startup script and assumes that the storage_enabled setting in the script is
set to false (the default):

1. Start a cache server cluster node or ensure that an existing cache server cluster
node is started.

To start a cache server cluster node, open a command prompt or shell and execute
the cache server startup script that is located in the /bin directory:
cache-server.cmd on the Windows platform or cache-server.sh for UNIX
platforms. The cache server starts and output is emitted that provides information
about this cluster member.

2. Open a command prompt or shell and execute the CohQL command-line startup
script that is located in the /bin directory: query.cmd on the Windows platform or
query.sh for UNIX platforms. Information about the Java environment displays.
The command-line tool prompt (CohQL>) is returned.

3. Enter help at the prompt to view the complete command-line help. Enter
commands to list the help without detailed descriptions.

See "A Command-Line Example" on page 28-12 for a series of query statements
that exercise the command-line tool.

Using Command-Line Tool Arguments
The CohQL command-line tool includes a set of arguments that are read and executed
before the CohQL> prompt returns. This is useful when using the script as part of a

Note: As configured, the startup script uses the default operational
configuration file (tangosol-coherence.xml) and the default cache
configuration file (coherence-cache-config.xml) that are located in
the coherence.jar when creating/joining a cluster and configuring
caches. For more information on configuring Coherence, see
Chapter 3, "Understanding Configuration."

Note: When joining an existing cache server node, modify the
startup script to use the same cluster settings as the existing cache
server node, including the same cache configuration.

Using the CohQL Command-Line Tool

28-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

larger script– for example, as part of a build process or to pipe I/O. Enter help at the
CohQL> prompt to view help for the arguments within the command-line tool.

Examples
Return all entries in the contact cache and print the entries to the standard out then
exit the command-line tool.

query.sh -c -l "select * from contact"

Return all entries in the dist-example cache and print the entries (suppressing extra
verbiage) to the file named myOutput then exit the command-line tool.

query.cmd -s -c -l "select * from 'dist-example'" >myOutput

Process all the segments in the file named myStatements then exit the command-line
tool.

query.sh -c -f myStatements

Read the commands from the myInput file and print the output (suppressing extra
verbiage) to the file named myOutput.

query.sh -s <myInput >myOutput

A Command-Line Example
The following examples illustrate using the command-line tool on Windows. This
example is intended for a single cluster member, so the storage_enabled setting in the
startup script is set to true. The example illustrates creating and dropping a cache,
storing and retrieving entries, and restoring the cache from a backup file. It also
highlights the use of the key() and value() pseudo-functions.

When starting the query.cmd script at the command prompt, information about the
Java environment, the Coherence version and edition, and Coherence cache server is
displayed. Enter query statements at the prompt (CohQL>).

Table 28–2 Coherence Query Language Command-Line Tool Arguments

Argument Description

-t enable trace mode to print debug information.

-c Exit the command-line tool after processing the command-line arguments.
This argument should not be used when redirecting from standard input;
in which case, the tool exits as soon as the command line arguments are
finished being processed and the redirected input is never read.

-s Run the command-line tool in silent mode to remove extraneous verbiage.
This allows the command line tool to be used in pipes or filters by
redirecting standard input (<myInput) and standard output (>myOuput).

-e Run the command-line tool in extended language mode. This mode
allows object literals in update and insert commands. See the
command-line help for complete usage information.

-l statement Execute the given statement. Statements must be enclosed in single or
double quotes. Any number of -l arguments can be used.

-f filename Process the statements in the given file. The statements in the file must be
separated by a semicolon (;). The file is an operating system-dependent
path and must be enclosed in single or double quotes. Any number of -f
arguments can be used.

Using the CohQL Command-Line Tool

Using Coherence Query Language 28-13

Start the CohQL command-line tool:

C:/coherence/bin/query.cmd

Create a cache named employees:

CohQL> create cache "employees"

Insert an entry (key-value pair) into the cache:

CohQL> insert into "employees" key "David" value "ID-5070"

Insert an object into the cache:

CohQL> insert into "employees" value new com.my.Employee("John", "Doe",
"address", 34)

Change the value of the key:

CohQL> update employees set value() = "ID-5080" where key() like "David"

Retrieve the values in the cache:

CohQL> select * from "employees"

Retrieve the value of a key that does not exist. An empty result set is returned:

CohQL> select key(), value() from "employees" where key() is "Richard"

Delete an existing key in the cache. An empty result set is returned:

CohQL> delete from employees where key() = "David"

Delete the contents of the employees cache. An empty result set is returned:

CohQL> delete from "employees"

Destroy the employees cache:

CohQL> drop cache "employees"

Re-create the employees cache:

CohQL> create cache "employees"

Insert more entries into the cache:

CohQL> insert into "employees" key "David" value "ID-5080"

CohQL> insert into "employees" key "Julie" value "ID-5081"

CohQL> insert into "employees" key "Julie" value "ID-5082"

CohQL> insert into "employees" key "Mike" value "ID-5083"

Retrieve the keys and value in the employees cache:

CohQL> select key(), value() from "employees"

Save a serialized representation of the cache in a file:

CohQL> backup cache "employees" to "emp.bkup"

Delete a key from the cache:

CohQL> delete from "employees" where key() = "David"

Building Filters in Java Programs

28-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Retrieve the cache contents again. Notice that the deleted key and value are not
present.

CohQL> select key(), value() from "employees"

Delete the contents of the cache:

CohQL> delete from "employees"

Retrieve the contents of the cache. An empty result set is returned:

CohQL> select * from "employees"

Restore the cache contents from the backup file:

CohQL> restore cache "employees" from file "emp.bkup"

Retrieve the cache contents. Notice that all of the entries have been restored and
returned:

CohQL> select key(), value() from "employees"

Destroy the employees cache:

CohQL> drop cache "employees"

Exit the command-line tool:

CohQL> bye

Building Filters in Java Programs
The FilterBuilder API is a string-oriented way to filter a result set from within a Java
program, without having to remember details of the Coherence API. The API provides
a set of four overloaded createFilter factory methods in the
com.tangosol.util.QueryHelper class.

The following list describes the different forms of the createFilter method. The
passed string uses the Coherence query WHERE clause syntax (as described in "Filtering
Entries in a Result Set" on page 28-4), but without the literal WHERE. The forms that take
an Object array or Map are for passing objects that are referenced by bind variables.
Each form constructs a filter from the provided Coherence query string.

■ public static Filter createFilter(String s)—where s is a String in the
Coherence query representing a Filter.

■ public static Filter createFilter(String s, Object[] aBindings)—where
s is a String in the Coherence query representing a Filter and aBindings is an
array of Objects to use for bind variables.

■ public static Filter createFilter(String s, Map bindings)—where s is a
String in the Coherence query representing a Filter and bindings is a Map of
Objects to use for bind variables.

■ public static Filter createFilter(String s, Object[] aBindings, Map
bindings)—where s is a String in the Coherence query representing a Filter,
aBindings is an array of Objects to use for bind variables, and bindings is a Map
of Objects to use for bind variables.

These factory methods throw a FilterBuildingException if there are any malformed,
syntactically incorrect expressions, or semantic errors. Since this exception is a subclass

Additional Coherence Query Language Examples

Using Coherence Query Language 28-15

of RuntimeException, catching the error is not required, but the process could
terminate if you do not.

Example
The following statement uses the createFilter(String s) form of the method. It
constructs a filter for employees who live in Massachusetts but work in another state.

..
QueryHelper.createFilter("homeAddress.state = 'MA' and workAddress.state !=
'MA'")
...

This statement is equivalent to the following filter/extractor using the Coherence API:

AndFilter(EqualsFilter(ChainedExtractor(#getHomeAddress[], #getState[]), MA),
NotEqualsFilter(ChainedExtractor(#getWorkAddress[], #getState[]), MA)))

The QueryHelper class also provides a createExtractor method that enables you to
create value extractors when building filters. The extractor is used to both extract
values (for example, for sorting or filtering) from an object, and to provide an identity
for that extraction. The following example demonstrates using createExtractor when
creating an index:

cache.addIndex(QueryHelper.createExtractor("key().lastName"),/*fOrdered*/ true,
 /*comparator*/ null);

Additional Coherence Query Language Examples
This section provides additional examples and shows their equivalent Coherence API
calls with instantiated Objects (Filters, ValueExtractors, Aggregators, and so on).
The simple select * examples that highlight Filters can understand the translation
for FilterBuilder API if you focus only on the Filter part. Use the full set of
examples to understand the translation for the QueryBuilder API and the
command-line tool.

The examples use an abbreviated form of the path syntax where the cache name to
qualify an identifier is dropped.

The Java language form of the examples also use ReducerAggregator instead of
EntryProcessors for projection. Note also that the use of KeyExtractor should no
longer be needed given changes to ReflectionExtractor in Coherence 3.5.

Simple SELECT * FROM Statements that Highlight Filters
■ Select the items from the cache orders where 40 is greater than the value of the

price key.

select * from "orders" where 40 > price

■ Select the items from the cache orders where the value of the price key exactly
equals 100, and the value of insurance key is less than 10 or the value of the
shipping key is greater than or equal to 20.

select * from "orders" where price is 100 and insurance < 10 or shipping >= 20

■ Select the items from the cache orders where the value of the price key exactly
equals 100, and either the value of insurance key is less than 10 or the value of the
shipping key is greater than or equal to 20.

Additional Coherence Query Language Examples

28-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

select * from "orders" where price is 100 and (insurance < 10 or shipping >=
20)

■ Select the items from the cache orders where either the value of the price key
equals 100, or the bar key equals 20.

select * from "orders" where price = 100 or shipping = 20

■ Select the items from the cache orders where the value of the insurance key is not
null.

select * from "orders" where insurance is not null

■ Select the items from the cache employees where the emp_id key has a value
between 1 and 1000 or the bar.emp key is not "Smith".

select * from "employees" where emp_id between 1 and 1000 or bar.emp is not
"Smith"

■ Select items from the cache orders where the value of item key is similar to the
value "coat".

select * from "orders" where item like "coat%"

■ Select items from the cache employees where the value of emp_id is in the set 5, 10,
15, or 20.

select * from "employees" where emp_id in (5,10,15,20)

■ Select items from the cache employees where emp_id contains the list 5, 10, 15, and
20.

select * from "employees" where emp_id contains (5,10,15,20)

■ Select items from the cache employees where emp_id contains the all of the items 5,
10, 15, and 20.

select * from "employees" where emp_id contains all (5,10,15,20)

■ Select items from the cache employees where emp_id contains any of the items 5,
10, 15, or 20.

select * from "employees" where emp_id contains any (5,10,15,20)

■ Select items from cache employees where the value of foo key is less than 10 and
occurs in the set 10, 20.

select * from "employees" where emp_id < 10 in (10,20)

Complex Queries that Feature Projection, Aggregation, and Grouping
■ Select the home state and age of employees in the cache ContactInfoCache, and

group by state and age.

select homeAddress.state, age, count() from "ContactInfoCache" group by
homeAddress.state, age

■ Select the spurious frobit key from the orders cache. Note, an empty result set is
returned.

select frobit,supplier,sum(amount),avg(price) from "orders" group by supplier

Additional Coherence Query Language Examples

Using Coherence Query Language 28-17

■ For the items in the orders cache that are greater than $1000, select the items, their
prices and colors.

select item_name,price,color from "orders" where price > 1000

■ Select the total amount for items from the orders cache. The Double type is
assumed.

select sum(amount) from "orders"

■ Select the total amount for items from the orders cache as a Long type.

select long_sum(amount) from "orders"

■ Select the total amount for items from the orders cache as a BigDecimal type.

select bd_sum(amount) from "orders"

■ Select the total amount for items from the orders cache where the color attribute is
red or green.

select sum(amount) from "orders" where color is "red" or color is "green"

■ Select the total amount and average price for items from the orders cache

select sum(amount),avg(price) from "orders"

■ Select one copy of the lastname and city from possible duplicate rows from the
employees cache, where the state is California.

select distinct lastName,city from "employees" where state = "CA"

UPDATE Examples
■ For employees in the employees cache whose ranking is above grade 7, increase

their salaries by 10% and add 50 hours of vacation time.

update "employees" set salary = salary*1.10, vacation = vacation + 50 where
grade > 7

Key and Value Pseudo-Function Examples
This section provides examples of how to use the key() and value()
pseudo-functions. For additional examples, see "A Command-Line Example" on
page 28-12.

■ Select the employees from the ContactInfoCache whose home address is in
Massachusetts, but work out of state.

select key().firstName, key().lastName from "ContactInfoCache" where
homeAddress.state is 'MA' and workAddress.state != "MA"

■ Select the employees from the ContactInfoCache cache whose age is greater than
42.

select key().firstName, key().lastName, age from "ContactInfoCache" where age >
42

Additional Coherence Query Language Examples

28-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

29

Performing Transactions 29-1

29Performing Transactions

[29] This chapter provides instructions for using Coherence's transaction and data
concurrency features. Users should be familiar with transaction principles before
reading this chapter. In addition, the Coherence Resource Adapter requires knowledge
of J2EE Connector Architecture (J2CA), Java Transaction API (JTA) and Java EE
deployment.

This chapter includes the following sections:

■ Overview of Transactions

■ Using Explicit Locking for Data Concurrency

■ Using Entry Processors for Data Concurrency

■ Using the Transaction Framework API

■ Using the Coherence Resource Adapter

Overview of Transactions
Transactions ensure correct outcomes in systems that undergo state changes by
allowing a programmer to scope multiple state changes into a unit of work. The state
changes are committed only if each change can complete without failure; otherwise, all
changes must be rolled back to their previous state.

Transactions attempt to maintain a set of criteria that are commonly referred to as
ACID properties (Atomicity, Consistency, Isolation, Durability):

■ Atomic - The changes that are performed within the transaction are either all
committed or all rolled back to their previous state.

■ Consistent - The results of a transaction must leave any shared resources in a valid
state.

■ Isolated - The results of a transaction are not visible outside of the transaction
until the transaction has been committed.

■ Durable - The changes that are performed within the transaction are made
permanent.

Sometimes ACID properties cannot be maintained solely by the transaction
infrastructure and may require customized business logic. For instance, the
consistency property requires program logic to check whether changes to a system are
valid. In addition, strict adherence to the ACID properties can directly affect
infrastructure and application performance and must be carefully considered.

Using Explicit Locking for Data Concurrency

29-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Coherence offers various transaction options that provide different transaction
guarantees. The options should be selected based on an application's or solution's
transaction requirements.

Table 29–1 summarizes the various transactions option that Coherence offers.

Using Explicit Locking for Data Concurrency
The standard NamedCache interface extends the ConcurrentMap interface which
includes basic locking methods. Locking operations are applied at the entry level by
requesting a lock against a specific key in a NamedCache:

Example 29–1 Applying Locking Operations on a Cache

...
NamedCache cache = CacheFactory.getCache("dist-cache");
Object key = "example_key";
cache.lock(key, -1);
try
 {
 Object value = cache.get(key);
 // application logic
 cache.put(key, value);
 }
finally

Table 29–1 Coherence Transaction Options

Option Name Description

Explicit locking The ConcurrentMap interface (which is extended by the
NamedCache interface) supports explicit locking operations. The
locking API guarantees data concurrency but does not offer
atomic guarantees. For detailed information on this option, see
"Using Explicit Locking for Data Concurrency" on page 29-2.

Entry Processors Coherence also supports a lock-free programming model
through the EntryProcessor API. For many transaction types,
this minimizes contention and latency and improves system
throughput, without compromising the fault-tolerance of data
operations. This option offers high-level concurrency control but
does not offer atomic guarantees. For detailed information on
this option, see "Using Entry Processors for Data Concurrency"
on page 29-3.

Implicit locking Coherence supports partition-level transactions using implicit
locking through the EntryProcessor API. Partition-level
transactions provide atomic guarantees when updating multiple
caches in a single operation. For details, see "Processing Entries
in Multiple Caches" on page 24-3.

Transaction Framework API Coherence Transaction Framework API is a connection-based
API that provides atomic transaction guarantees across
partitions and caches even with a client failure. The framework
supports the use of NamedCache operations, queries, aggregation,
and entry processors within the context of a transaction. For
detailed information on this option, see "Using the Transaction
Framework API" on page 29-5.

Coherence Resource
Adapter

The Coherence resource adapter leverages the Coherence
Transaction Framework API and allows Coherence to participate
as a resource in XA transactions that are managed by a JavaEE
container's transaction manager. This transaction option offers
atomic guarantees. For detailed information on this option, see
"Using the Coherence Resource Adapter" on page 29-21.

Using Entry Processors for Data Concurrency

Performing Transactions 29-3

 {
 // Always unlock in a "finally" block
 // to ensure that uncaught exceptions
 // do not leave data locked
 cache.unlock(key);
 }
...

Coherence lock functionality is similar to the Java synchronized keyword and the C#
lock keyword: locks only block locks. Threads must cooperatively coordinate access to
data through appropriate use of locking. If a thread has locked the key to an item,
another thread can read the item without locking.

Locks are unaffected by server failure and failover to a backup server. Locks are
immediately released when the lock owner (client) fails.

Locking behavior varies depending on the timeout requested and the type of cache. A
timeout of -1 blocks indefinitely until a lock can be obtained, 0 returns immediately,
and a value greater than 0 waits the specified number of milliseconds before timing
out. The boolean return value should be examined to ensure the caller has actually
obtained the lock. See ConcurrentMap.lock() for more details. Note that if a timeout
value is not passed to lock() the default value is zero. With replicated caches, the
entire cache can be locked by using ConcurrentMap.LOCK_ALL as the key, although this
is usually not recommended. This operation is not supported with partitioned caches.

In both replicated and partitioned caches, gets are permitted on keys that are locked.
In a replicated cache, puts are blocked, but they are not blocked in a partitioned cache.
When a lock is in place, it is the responsibility of the caller (either in the same thread or
the same cluster node, depending on the lease-granularity configuration) to release
the lock. This is why locks should always be released with a finally clause (or
equivalent). If this is not done, unhandled exceptions may leave locks in place
indefinitely. For more information on lease-granularity configuration, see
"DistributedCache Service Parameters".

Using Entry Processors for Data Concurrency
The InvocableMap superinterface of NamedCache allows for concurrent lock-free
execution of processing code within a cache. This processing is performed by an entry
processor. In exchange for reduced flexibility compared to the more general
ConcurrentMap explicit locking API, The EntryProcessor API provides the highest
levels of efficiency without compromising data reliability. For details on entry
processors, see Chapter 24, "Processing Data In a Cache."

Since entry processors perform an implicit low-level lock on the entries they are
processing, the end user can place processing code in an EntryProcessor
implementation without having to worry about concurrency control. Note that this is
different than the explicit lock(key) functionality provided by ConcurrentMap API.

InvocableMap provides three methods of starting entry processors:

■ Invoke an entry processor on a specific key. Note that the key need not exist in the
cache to invoke an entry processor on it.

■ Invoke an entry processor on a collection of keys.

■ Invoke an entry processor on a Filter. In this case, the Filter is executed against
the cache entries. Each entry that matches the Filter criteria has the entry
processor executed against it. For more information on Filters, see Chapter 22,
"Querying Data In a Cache".

Using Entry Processors for Data Concurrency

29-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Entry processors are executed in parallel across the cluster (on the nodes that own the
individual entries.) This provides a significant advantage over having a client lock all
affected keys, pull all required data from the cache, process the data, place the data
back in the cache, and unlock the keys. The processing occurs in parallel across
multiple computers (as opposed to serially on one computer) and the network
overhead of obtaining and releasing locks is eliminated.

Here is a sample of high-level concurrency control. Code that requires network access
is commented:

Example 29–2 Concurrency Control without Using EntryProcessors

final NamedCache cache = CacheFactory.getCache("dist-test");
final String key = "key";

cache.put(key, new Integer(1));

// begin processing

// *requires network access*
if (cache.lock(key, 0))
 {
 try
 {
 // *requires network access*
 Integer i = (Integer) cache.get(key);
 // *requires network access*
 cache.put(key, new Integer(i.intValue() + 1));
 }
 finally
 {
 // *requires network access*
 cache.unlock(key);
 }
 }

// end processing

The following is an equivalent technique using an entry processor. Again, network
access is commented:

Example 29–3 Concurrency Control Using EntryProcessors

final NamedCache cache = CacheFactory.getCache("dist-test");
final String key = "key";

cache.put(key, new Integer(1));

// begin processing

// *requires network access*
cache.invoke(key, new MyCounterProcessor());

Note: EntryProcessor implementations must be available in the
classpath for each cluster node.

Using the Transaction Framework API

Performing Transactions 29-5

// end processing

...

public static class MyCounterProcessor
 extends AbstractProcessor
 {
 // this is executed on the node that owns the data,
 // no network access required
 public Object process(InvocableMap.Entry entry)
 {
 Integer i = (Integer) entry.getValue();
 entry.setValue(new Integer(i.intValue() + 1));
 return null;
 }
 }

entry processors are individually executed atomically; however, multiple entry
processor invocations, through the use of InvocableMap.invokeAll(), do not execute
as one atomic unit. As soon as an individual entry processor has completed, any
updates made to the cache is immediately visible while the other entry processors are
executing. Furthermore, an uncaught exception in an entry processor does not prevent
the others from executing. Should the primary node for an entry fail while executing
an entry processor, the backup node performs the execution instead. However if the
node fails after the completion of an entry processor, the entry processor is not
invoked on the backup.

Generally, entry processors should be short lived. Applications with longer running
entry processor should increase the size of the distributed service thread pool so that
other operations performed by the distributed service are not blocked by a long
running entry processor. For more information on the distributed service thread pool,
see "DistributedCache Service Parameters".

Using the Transaction Framework API
The Transaction Framework API allows TCMP clients to perform operations and use
queries, aggregators, and entry processors within the context of a transaction. The
transactions provide read consistency and atomic guarantees across partitions and
caches even with client failure. The framework uses its own concurrency strategy and
storage implementation and its own recovery manager for failed transactions.

Known Limitations
The Transaction Framework API has the following limitations:

■ Database Integration – For existing Coherence users, the most noticeable limitation
is the lack of support for database integration as compared to the existing
Partitioned NamedCache implementation.

■ Server-Side Functionality – Transactional caches do not support eviction or expiry,
though they support garbage collection of older object versions. Backing map
listeners, triggers, and CacheStore modules are not supported.

Note: The TransactionMap API has been deprecated and is
superseded by the Transaction Framework API. The two APIs are
mutually exclusive.

Using the Transaction Framework API

29-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Explicit Locking and Pessimistic Transactions – Pessimistic/explicit locking
(ConcurrentMap interface) are not supported.

■ Filters – Filters, such as PartitionedFilter, LimitFilter and
KeyAssociationFilter, are not supported.

■ Synchronous Listener – The SynchronousListener interface is not supported.

■ Near Cache – Wrapping a near cache around a transactional cache is not
supported.

■ Key Partitioning Strategy – You cannot specify a custom
KeyPartitioningStrategy for a transactional cache; although, KeyAssociation or
a custom KeyAssociator works.

This section includes the following topics:

■ Defining Transactional Caches

■ Performing Cache Operations within a Transaction

■ Creating Transactional Connections

■ Using Transactional Connections

■ Using the OptimisticNamedCache Interface

■ Configuring POF When Performing Transactions

■ Configuring Transactional Storage Capacity

■ Performing Transactions from Java Extend Clients

■ Performing Cache Operations within a Transaction

The Transaction Framework API is also the underling transaction framework for the
Coherence JCA resource adapter. For details on using the resource adapter, see "Using
the Coherence Resource Adapter" on page 29-21.

Defining Transactional Caches
Transactional caches are specialized distributed caches that provide transactional
guarantees. Transactional caches are required whenever performing a transaction
using the Transaction Framework API. Transactional caches are not interoperable with
non-transactional caches.

At run-time, transactional caches are automatically used with a set of internal
transactional caches that provide transactional storage and recovery. Transactional
caches also allow default transaction behavior (including the default behavior of the
internal transactional caches) to be overridden at run-time.

Transactional caches are defined within a cache configuration file using a
<transactional-scheme> element. A transaction scheme includes many of the same
elements and attributes that are available to a distributed cache scheme. For detailed
information about the <transactional-scheme> element and all its subelements, see
"transactional-scheme" on page B-127.

The following example demonstrates defining a transactional cache scheme in a cache
configuration file. The cache is named MyTxCache and maps to a

Note: The use of transaction schemes within near cache schemes is
currently not supported.

Using the Transaction Framework API

Performing Transactions 29-7

<transactional-scheme> that is named example-transactional. The cache name can
also use the tx-* convention which allows multiple cache instances to use a single
mapping to a transactional cache scheme.

Example 29–4 Example Transactional Cache Definition

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<!-- Transactional caching scheme. -->
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <thread-count>10</thread-count>
 <request-timeout>30000</request-timeout>
 <autostart>true</autostart>
 </transactional-scheme>
</caching-schemes>

The <transactional-scheme> element also supports the use of scheme references. In
the below example, a <transactional-scheme> with the name
example-transactional references a <transactional-scheme> with the name
base-transactional:

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>tx-*</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <scheme-ref>base-transactional</scheme-ref>
 <thread-count>10</thread-count>
 </transactional-scheme>

 <transactional-scheme>
 <scheme-name>base-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <request-timeout>30000</request-timeout>
 <autostart>true</autostart>
 </transactional-scheme>
</caching-schemes>

Note: The <service-name> element, as shown in the example below,
is optional. If no <service-name> element is included in the
transactional cache scheme, TransactionalCache is used as the
default service name. In this case, applications must connect to a
transactional service using the default service name. See "Creating
Transactional Connections" on page 29-10.

Using the Transaction Framework API

29-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Performing Cache Operations within a Transaction
Applications perform cache operations within a transaction in one of three ways:

■ Using the NamedCache API – Applications use the NamedCache API to implicitly
perform cache operations within a transaction.

■ Using the Connection API – Applications use the Connection API to explicitly
perform cache operations within a transaction.

■ Using the Coherence Resource Adapter – Java EE applications use the Coherence
Resource Adapter to connect to a Coherence data cluster and perform cache
operations as part of a distributed (global) transaction.

Using the NamedCache API
The NamedCache API can perform cache operations implicitly within the context of a
transaction. However, this approach does not allow an application to change default
transaction behavior. For example, transactions are in auto-commit mode when using
the NamedCache API approach. Each operation is immediately committed when it
successfully completes; multiple operations cannot be scoped into a single transaction.
Applications that require more control over transactional behavior must use the
Connection API. See "Using Transactional Connections" on page 29-11 for a detailed
description of a transaction's default behaviors.

The NamedCache API approach is ideally suited for ensuring atomicity guarantees
when performing single operations such as putAll. The following example
demonstrates a simple client that creates a NamedCache instance and uses the
CacheFactory.getCache()method to get a transactional cache. The example uses the
transactional cache that was defined in Example 29–4. The client performs a putAll
operation that is only committed if all the put operations succeed. The transaction is
automatically rolled back if any put operation fails.

...
String key = "k";
String key2 = "k2";
String key3 = "k3";
String key4 = "k4";

CacheFactory.ensureCluster();
NamedCache cache = CacheFactory.getCache("MyTxCache");

Map map = new HashMap();
map.put(key, "value");
map.put(key2, "value2");
map.put(key3, "value3");
map.put(key4, "value4");

//operations performed on the cache are atomic
cache.putAll(map);

CacheFactory.shutdown();
...

Using the Connection API
The Connection API is used to perform cache operations within a transaction and
provides the ability to explicitly control transaction behavior. For example,
applications can enable or disable auto-commit mode or change transaction isolation
levels.

Using the Transaction Framework API

Performing Transactions 29-9

The examples in this section demonstrate how to use the Connection interface,
DefaultConnectionFactory class, and the OptimisticNamedCache interface which are
located in the com.tangosol.coherence.transaction package. The examples use the
transactional cache that was defined in Example 29–4. The Connection API is
discussed in detail following the examples.

Example 29–5 demonstrates an auto-commit transaction; where, two insert
operations are each executed as separate transactions.

Example 29–5 Performing an Auto-Commit Transaction

...
Connection con = new DefaultConnectionFactory().
 createConnection("TransactionalCache");

OptimisticNamedCache cache = con.getNamedCache("MytxCache");

cache.insert(key, value);
cache.insert(key2, value2);

con.close();
...

Example 29–6 demonstrates a non auto-commit transaction; where, two insert
operations are performed within a single transaction. Applications that use non
auto-commit transactions must manually demarcate transaction boundaries.

Example 29–6 Performing a Non Auto-Commit Transaction

...
Connection con = new DefaultConnectionFactory().
 createConnection("TransactionalCache");

con.setAutoCommit(false);

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

 cache.insert(key, value);
 cache.insert(key2, value2);
 con.commit();

catch (Exception e)
 {
 con.rollback();
 throw e;
 }

finally
 {
 con.close();
 }
...

Example 29–7 demonstrates performing a transaction that spans multiple caches. Each
transactional cache must be defined in a cache configuration file.

Using the Transaction Framework API

29-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 29–7 Transaction Across Multiple Caches

...
Connection con = new DefaultConnectionFactory().
 createConnection("TransactionalCache");

con.setAutoCommit(false);
OptimisticNamedCache cache = con.getNamedCache("MyTxCache");
OptimisticNamedCache cache1 = con.getNamedCache("MyTxCache1");

cache.insert(key, value);
cache1.insert(key2, value2);

con.commit();

con.close();
...

Creating Transactional Connections
The com.tangosol.coherence.transaction.DefaultConnectionFactory class is used
to create com.tangosol.coherence.transaction.Connection instances. The following
code from Example 29–5 demonstrates creating a Connection instance using the
factory's no argument constructor:

Connection con = new DefaultConnectionFactory().
 createConnection("TransactionalCache");

In this example, the first cache configuration file found on the classpath (or specified
using the -Dtangosol.coherence.cacheconfig system property) is used by this
Connection instance. Optionally, a URI can be passed as an argument to the factory
class that specifies the location and name of a cache configuration file. For example,
the following code demonstrates constructing a connection factory that uses a cache
configuration file named cache-config.xml that is located in a config directory found
on the classpath.

Connection con = new DefaultConnectionFactory("config/cache-config.xml").
 createConnection("TransactionalCache");

The DefaultConnectionFactory class provides methods for creating connections:

■ createConnection() – The no-argument method creates a connection that is a
member of the default transactional service, which is named TransactionalCache.
Use the no-argument method when the <transactional-scheme> element being
used does not include a specific<service-name> element. For details on defining
transactional cache schemes and specifying the service name, see "Defining
Transactional Caches" on page 29-6.

■ createConnection(ServiceName) – This method creates a connection that is a
member of a transactional service. The service name is a String that indicates the
transactional service to which this connection belongs. The ServiceName maps to a
<service-name> element that is defined within a <transactional-scheme>
element in the cache configuration file. If no service name is used, the default
name (TransactionalCache) is used as the service name. For details on defining

Note: Transactions can span multiple partitions and caches within
the same service but cannot span multiple services.

Using the Transaction Framework API

Performing Transactions 29-11

transactional cache schemes and specifying the service name, see "Defining
Transactional Caches" on page 29-6.

■ createConnection(ServiceName, loader) – This method also creates a
connection that is a member of a transactional service. In addition, it specifies the
class loader to use. In the above example, the connection is created by only
specifying a service name; in which case, the default class loader is used.

Using Transactional Connections
The com.tangosol.coherence.transaction.Connection interface represents a logical
connection to a Coherence service. An active connection is always associated with a
transaction. A new transaction implicitly starts when a connection is created and also
when a transaction is committed or rolled back.

Transactions that are derived from a connection have several default behaviors that are
listed below. The default behaviors balance ease-of-use with performance.

■ A transaction is automatically committed or rolled back for each cache operation.
See "Using Auto-Commit Mode" on page 29-11.

■ A transaction uses the read committed isolation level. See "Setting Isolation
Levels" on page 29-12.

■ A transaction immediately performs operations on the cache. See "Using Eager
Mode" on page 29-13.

■ A transaction has a default timeout of 300 seconds. See "Setting Transaction
Timeout" on page 29-13.

A connection's default behaviors can be changed using the Connection instance's
methods as required.

Using Auto-Commit Mode
Auto-commit mode allows an application to choose whether each cache operation
should be associated with a separate transaction or whether multiple cache operations
should be executed as a single transaction. Each cache operation is executed in a
distinct transaction when auto-commit is enabled; the framework automatically
commits or rolls back the transaction after an operation completes and then the
connection is associated with a new transaction and the next operation is performed.
By default, auto-commit is enabled when a Connection instance is created.

The following code from Example 29–5 demonstrates insert operations that are each
performed as a separate transaction:

OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

cache.insert(key, value);
cache.insert(key2, value2);

Multiple operations are performed as part of a single transaction by disabling
auto-commit mode. If auto-commit mode is disabled, an application must manually
demarcate transaction boundaries. The following code from Example 29–6
demonstrates insert operations that are performed within a single transaction:

con.setAutoCommit(false);

OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

cache.insert(key, value);
cache.insert(key2, value2);

Using the Transaction Framework API

29-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

con.commit();

An application cannot use the commit() or rollback() method when auto-commit
mode is enabled. Moreover, if auto-commit mode is enabled while in an active
transaction, any work is automatically rolled back.

Setting Isolation Levels
Isolation levels help control data concurrency and consistency. The Transaction
Framework uses implicit write-locks and does not implement read-locks. Any attempt
to write to a locked entry results in an UnableToAcquireLockException; the request
does not block. When a transaction is set to eager mode, the exception is thrown
immediately. In non-eager mode, exceptions may not be thrown until the statement is
flushed, which is typically at the next read or when the transaction commits. See
"Using Eager Mode" on page 29-13.

The Coherence Transaction Framework API supports the following isolation levels:

■ READ_COMMITTED – This is the default isolation level if no level is specified. This
isolation level guarantees that only committed data is visible and does not provide
any consistency guarantees. This is the weakest of the isolation levels and
generally provides the best performance at the cost of read consistency.

■ STMT_CONSISTENT_READ – This isolation level provides statement-scoped read
consistency which guarantees that a single operation only reads data for the
consistent read version that was available at the time the statement began. The
version may or may not be the most current data in the cache. See the note below
for additional details.

■ STMT_MONOTONIC_CONSISTENT_READ – This isolation level provides the same
guarantees as STMT_CONSISTENT_READ, but reads are also guaranteed to be
monotonic. A read is guaranteed to return a version equal or greater than any
version that was previously encountered while using the connection. Due to the
monotinic read guarantee, reads with this isolation may block until the necessary
versions are available.

■ TX_CONSISTENT_READ – This isolation level provides transaction-scoped read
consistency which guarantees that all operations performed in a given transaction
read data for the same consistent read version that was available at the time the
transaction began. The version may or may not be the most current data in the
cache. See the note below for additional details.

■ TX_MONOTONIC_CONSISTENT_READ – This isolation level provides the same
guarantees as TX_CONSISTENT_READ, but reads are also guaranteed to be
monotonic. A read is guaranteed to return a version equal or greater than any
version that was previously encountered while using the connection. Due to the
monotinic read guarantee, the initial read in a transaction with this isolation may
block until the necessary versions are available.

Note: Consistent read isolation levels (statement or transaction) may
lag slightly behind the most current data in the cache. If a transaction
writes and commits a value, then immediately reads the same value in
the next transaction with a consistent read isolation level, the updated
value may not be immediately visible. If reading the most recent value
is critical, then the READ_COMMITTED isolation level is required.

Using the Transaction Framework API

Performing Transactions 29-13

Isolation levels are set on a Connection instance and must be set before starting an
active transaction. For example:

...
Connection con = new DefaultConnectionFactory().
createConnection("TransactionalCache");

con.setIsolationLevel(STMT_CONSISTENT_READ);
...

Using Eager Mode
Eager mode allows an application to control when cache operations are performed on
the cluster. If eager mode is enabled, cache operations are immediately performed on
the cluster. If eager mode is disabled, cache operations are deferred, if possible, and
queued to be performed as a batch operation. Typically, an operation can only be
queued if it does not return a value. An application may be able to increase
performance by disabling eager mode.

By default, eager mode is enabled and cache operations are immediately performed on
the cluster. The following example demonstrates disabling eager mode.

...
Connection con = new DefaultConnectionFactory().
createConnection("TransactionalCache");

con.setEager(false);
...

Setting Transaction Timeout
The transaction timeout allows an application to control how long a transaction can
remain active before it is rolled back. The transaction timeout is associated with the
current transaction and any new transactions that are associated with the connection.

The timeout value is specified in seconds. The default timeout value is 300 seconds.
The following example demonstrates setting the transaction timeout value.

...
Connection con = new DefaultConnectionFactory().
createConnection("TransactionalCache");

con.setTransactionTimeout(420);
...

Using the OptimisticNamedCache Interface
The com.tangosol.coherence.transaction.OptimisticNamedCache interface extends
the NamedCache interface and adds the operations: update(), delete(), and insert().

All transactional caches are derived from this type. This cache type ensures that an
application use the framework's concurrency and data locking implementations.

Note: OptimisticNamedCache does not extend any operations from
the ConcurrentMap interface since it uses its own locking strategy.

Using the Transaction Framework API

29-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The following code sample from Example 29–5 demonstrates getting a transactional
cache called MyTxCache and performs operations on the cache. For this example, a
transactional cache that is named MyTxCache must be located in the cache
configuration file at run-time. For details on defining a transactional cache, see
"Defining Transactional Caches" on page 29-6.

OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

cache.insert(key, value);
cache.insert(key2, value2);

Configuring POF When Performing Transactions
Transactional caches support Portable Object Format (POF) serialization within
transactions. POF is enabled within a transactional cache scheme using the
<serializer> element. The following example demonstrates enabling POF
serialization in a transactional cache scheme.

<transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 </instance>
 </serializer>
 <autostart>true</autostart>
</transactional-scheme>

The Transaction Framework API also includes its own POF types which are defined in
the txn-pof-config.xml POF configuration file which is included in coherence.jar.
The POF types are required and must be found at run-time.

To load the transaction POF types at run time, modify an application's POF
configuration file and include the txn-pof-config.xml POF configuration file using
the <include> element. For example:

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>txn-pof-config.xml</include>
 </user-type-list>
 ...
</pof-config>

See "Combining Multiple POF Configuration Files" on page 3-10 for more information
on using the <include> element to combine POF configuration files.

Configuring Transactional Storage Capacity
The Transaction Framework API stores transactional data in internal distributed
caches that use backing maps. The data includes versions of all keys and their values
for a transactional cache. The framework uses the stored data in roll-back scenarios
and also during recovery.

Using the Transaction Framework API

Performing Transactions 29-15

Due to the internal storage requirements, transactional caches have a constant
overhead associated with every entry written to the cache. Moreover, transactional
caches use multi-version concurrency control, which means that every write operation
produces a new row into the cache even if it is an update. Therefore, the Transaction
Framework API uses a custom eviction policy to help manage the growth of its
internal storage caches. The eviction policy works by determining which versions of
an entry can be kept and which versions are eligible for eviction. The latest version for
a given key (the most recent) is never evicted. The eviction policy is enforced
whenever a configured high-water mark is reached. After the threshold is reached,
25% of the eligible versions are removed.

Because the storage eviction policy is notified on every write where the measured
storage size exceeds the high-water mark, the default high-water mark may have to be
increased so that it is larger than the size of the current data set. Otherwise, the
eviction policy is notified on every write after the size of the current data set exceeds
the high water mark resulting in decreased performance. If consistent reads are not
used, the value can be set so that it slightly exceeds the projected size of the current
data set since no historical versions is ever read. When using consistent reads, the
high-water mark should be high enough to provide for enough historical versions. Use
the below formulas to approximate the transactional storage size.

The high-water mark is configured using the <high-units> element within a
transactional scheme definition. The following example demonstrates configuring a
high-water mark of 20 MB.

<transactional-scheme>
 ...
 <high-units>20M</high-units>
 ...
</trnsactional-scheme>

The following formulas provide a rough estimate of the memory usage for a row in a
transactional cache.

For insert operations:

■ Primary – key(serialized) + key (on-heap size) + value(serialized) + 1095 bytes
constant overhead

■ Backup – key(serialized) + value(serialized) + 530 bytes constant overhead

For updated operations:

■ Primary – value(serialized) + 685 bytes constant overhead

■ Backup – value(serialized) + 420 bytes constant overhead

Note:

■ The eviction policy does not take the entire transactional storage
into account when comparing the high-water mark. Therefore,
transactional storage slightly exceeds the high-water mark before
the storage eviction policy is notified.

■ It is possible that storage for a transactional cache exceeds the
maximum heap size if the cache is sufficiently broad (large
number of distinct keys) since the current entry for a key is never
evicted.

Using the Transaction Framework API

29-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Performing Transactions from Java Extend Clients
The Transaction Framework API provides Java extend clients with the ability to
perform cache operations within a transaction. In this case, the transaction API is used
within an entry processor that is located on the cluster. At run time, the entry
processor is executed on behalf of the Java client.

The instructions in this section do not include detailed instructions on how to setup
and use Coherence*Extend. For those new to Coherence*Extend, see "Setting Up
Coherence*Extend" in Developing Remote Clients for Oracle Coherence. For details on
performing transactions from C++ or .NET clients, see "Performing Transactions for
C++ Clients" and "Performing Transactions for .NET Clients" in the Developing Remote
Clients for Oracle Coherence.

The following topics are included in this section and are required to perform
transactions from Java extend clients:

■ Create an Entry Processor for Transactions

■ Configure the Cluster-Side Transaction Caches

■ Configure the Client-Side Remote Cache

■ Use the Transactional Entry Processor from a Java Client

Create an Entry Processor for Transactions
Transactions are performed using the transaction API within an entry processor that
resides on the cluster. The entry processor is executed on behalf of a Java extend client.

Example 29–8 demonstrates an entry processor that performs a simple update
operation within a transaction. At run time, the entry processor must be located on
both the client and cluster.

Example 29–8 Entry Processor for Extend Client Transaction

public class MyTxProcessor extends AbstractProcessor
 {
 public Object process(InvocableMap.Entry entry)
 {
 // obtain a connection and transaction cache
 ConnectionFactory connFactory = new DefaultConnectionFactory();
 Connection conn = connFactory.createConnection("TransactionalCache");
 OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");

 conn.setAutoCommit(false);

 // get a value for an existing entry
 String sValue = (String) cache.get("existingEntry");

 // create predicate filter
 Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);

 try
 {
 // update the previously obtained value
 cache.update("existingEntry", "newValue", predicate);
 }
 catch (PredicateFailedException e)
 {
 // value was updated after it was read
 conn.rollback();

Using the Transaction Framework API

Performing Transactions 29-17

 return false;
 }
 catch (UnableToAcquireLockException e)
 {
 // row is being updated by another tranaction
 conn.rollback();
 return false;
 }
 try
 {
 conn.commit();
 }
 catch (RollbackException e)
 {
 // transaction was rolled back
 return false;
 }
 return true;
 }
}

Configure the Cluster-Side Transaction Caches
Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. For details on defining a transactional cache, see "Defining
Transactional Caches" on page 29-6.

The following example defines a transactional cache that is named MyTxCache, which is
the cache name that was used by the entry processor in Example 29–8. The example
also includes a proxy scheme and a distributed cache scheme that are required to
execute the entry processor from a remote client. The proxy is configured to accept
client TCP/IP connections on localhost at port 9099.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <thread-count>7</thread-count>
 <high-units>15M</high-units>
 <task-timeout>0</task-timeout>
 <autostart>true</autostart>
 </transactional-scheme>
 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>

Using the Transaction Framework API

29-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Configure the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file.

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 9099. In addition, the name of the remote cache (dist-example)
must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>30s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>

Using the Transaction Framework API

Performing Transactions 29-19

 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Use the Transactional Entry Processor from a Java Client
A Java extend client invokes an entry processor as normal. However, at run time, the
cluster-side entry processor is invoked. The client is unaware that the invocation has
been delegated. The following example demonstrates how a Java client calls the entry
processor shown in Example 29–8.

NamedCache cache = CacheFactory.getCache("dist-example");
Object oReturn = cache.invoke("AnyKey", new MyTxProcessor());

System.out.println("Result of extend tx execution: " + oReturn);

Viewing Transaction Management Information
The transaction framework leverages the existing Coherence JMX management
framework. See Managing Oracle Coherence for detailed information on enabling and
using JMX in Coherence.

This section describes two MBeans that provide transaction information: CacheMBean
and TransactionManagerMBean.

CacheMBeans for Transactional Caches
The CacheMBean managed resource provides attributes and operations for all caches,
including transactional caches. Many of the MBeans attributes are not applicable to
transactional cache; invoking such attributes simply returns a -1 value. A cluster node
may have zero or more instances of cache managed beans for transactional caches. The
object name uses the form:

type=Cache, service=service name, name=cache name, nodeId=cluster node's
id

Table 29–2 describes the CacheMBean attributes that are supported for transactional
caches.

Table 29–2 Transactional Cache Supported Attributes

Attribute Type Description

AverageGetMillis Double The average number of milliseconds per get()
invocation

AveragePutMillis Double The average number of milliseconds per put()
invocation since the cache statistics were last reset.

Description String The cache description.

HighUnits Integer The limit of the cache size measured in units. The
cache prunes itself automatically after it reaches its
maximum unit level. This is often referred to as the
high water mark of the cache.

Size Integer The number of entries in the current data set

TotalGets Long The total number of get() operations since the cache
statistics were last reset.

Using the Transaction Framework API

29-20 Oracle Fusion Middleware Developing Applications with Oracle Coherence

For transactional caches, the resetStatistics operation is supported and resets all
transaction manager statistics.

TransactionManagerBean
The TransactionManagerMBean managed resource is specific to the transactional
framework. It provides global transaction manager statics by aggregating service-level
statistics from all transaction service instances. Each cluster node has an instance of the
transaction manager managed bean per service. The object name uses the form:

type=TransactionManager, service=service name, nodeId=cluster node's id

Table 29–3 describes TransactionManager attributes.

TotalGetsMillis Long The total number of milliseconds spent on get()
operations since the cache statistics were last reset.

TotalPuts Long The total number of put() operations since the cache
statistics were last reset.

TotalPutsMillis Long The total number of milliseconds spent on put()
operations since the cache statistics were last reset.

Note: For certain transaction manager attributes, the count is
maintained at the coordinator node for the transaction, even though
multiple nodes may have participated in the transaction. For example,
a transaction may include modifications to entries stored on multiple
nodes but the TotalCommitted attribute is only incremented on the
MBean on the node that coordinated the commit of that transaction.

Table 29–3 TransactionManagerMBean Attributes

Attribute Type Description

TotalActive Long The total number of currently active transactions.
An active transaction is counted as any transaction
that contains at least one modified entry and has yet
to be committed or rolled back. Note that the count
is maintained at the coordinator node for the
transaction, even though multiple nodes may have
participated in the transaction.

TotalCommitted Long The total number of transactions that have been
committed by the Transaction Manager since the last
time the statistics were reset. Note that the count is
maintained at the coordinator node for the
transaction being committed, even though multiple
nodes may have participated in the transaction.

TotalRecovered Long The total number of transactions that have been
recovered by the Transaction Manager since the last
time the statistics were reset. Note that the count is
maintained at the coordinator node for the
transaction being recovered, even though multiple
nodes may have participated in the transaction.

Table 29–2 (Cont.) Transactional Cache Supported Attributes

Attribute Type Description

Using the Coherence Resource Adapter

Performing Transactions 29-21

The TransactionManagerMBean includes a single operation called resetStatistics,
which resets all transaction manager statistics.

Using the Coherence Resource Adapter
Coherence includes a J2EE Connector Architecture (J2CA) 1.5 compliant resource
adaptor that is used to get connections to a Coherence cache. The resource adapter
leverages the connection API of the Coherence Transaction Framework and therefore
provides default transaction guarantees. In addition, the resource adapter provides full
XA support which allows Coherence to participate in global transactions. A global
transaction is unit of work that is managed by one or more resource managers and is
controlled and coordinated by an external transaction manager, such as the transaction
manager that is included with WebLogic server or OC4J.

The resource adapter is packaged as a standard Resource Adaptor Archive (RAR) and
is named coherence-transaction.rar. The resource adapter is located in COHERENCE_
HOME/lib and can be deployed to any Java EE container compatible with J2CA 1.5.
The resource adapter includes proprietary resource adapter deployment descriptors
for WebLogic (weblogic-ra.xml) and OC4J (oc4j-ra.xml) and can be deployed to
these platforms without modification. Check your application server vendor's
documentation for details on defining a proprietary resource adapter descriptor that
can be included within the RAR.

This section includes the following topics:

■ Performing Cache Operations within a Transaction

■ Packaging the Application

■ Using the Coherence Cache Adapter for Transactions

TotalRolledback Long The total number of transactions that have been
rolled back by the Transaction Manager since the last
time the statistics were reset. Note that the count is
maintained at the coordinator node for the
transaction being rolled back, even though multiple
nodes may have participated in the transaction.

TotalTransactionMillis Long The cumulative time (in milliseconds) spent on
active transactions.

TimeoutMillis Long The transaction timeout value in milliseconds. Note
that this value only applies to transactional
connections obtained after the value is set. This
attribute is currently not supported.

Note: Coherence continues to include the coherence-tx.rar
resource adapter for backward compatibility. However, it is strongly
recommended that applications use the coherence-transaction.rar
resource adapter which provides full XA support. Those accustomed
to using the Coherence CacheAdapter class can continue to do so with
either resource adapter. See "Using the Coherence Cache Adapter for
Transactions" on page 29-26.

Table 29–3 (Cont.) TransactionManagerMBean Attributes

Attribute Type Description

Using the Coherence Resource Adapter

29-22 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Performing Cache Operations within a Transaction
Java EE application components (Servlets, JSPs, and EJBs) use the Coherence resource
adapter to perform cache operations within a transaction. The resource adapters
supports both local transactions and global transactions. Local transactions are used to
perform cache operations within a transaction that is only scoped to a Coherence cache
and cannot participate in a global transaction. Global transactions are used to perform
cache operations that automatically commit or roll back based on the outcome of
multiple resources that are enlisted in the transaction.

Like all JavaEE application components, the Java Naming and Directory Interface
(JNDI) API is used to lookup the resource adapter's connection factory. The connection
factory is then used to get logical connections to a Coherence cache.

The following examples demonstrate how to use the Coherence resource adapter to
perform cache operations within a global transaction. Example 29–9 is an example of
using Container Managed Transactions (CMT); where, the container ensures that all
methods execute within the scope of a global transaction. Example 29–10 is an
example of user-controlled transactions; where, the application component uses the
Java Transaction API (JTA) to manually demarcate transaction boundaries.

Transactions require a transactional cache scheme to be defined within a cache
configuration file. These examples use the transactional cache that was defined in
Example 29–4.

Example 29–9 Performing a Transaction When Using CMT

Context initCtx = new InitialContext();
ConnectionFactory cf = (ConnectionFactory)
 initCtx.lookup("java:comp/env/eis/CoherenceTxCF");

Connection con = cf.createConnection("TransactionalCache");

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

 cache.delete("key1", null);
 cache.insert("key1", "value1");
 }
finally
 {
 con.close();
 }

Example 29–10 Performing a User-Controlled Transaction

Context initCtx = new InitialContext();
ConnectionFactory cf = (ConnectionFactory)
 initCtx.lookup("java:comp/env/eis/CoherenceTxCF");

UserTransaction ut = (UserTransaction) new
 InitialContext().lookup("java:comp/UserTransaction");
ut.begin();

Connection con = cf.createConnection("TransactionalCache");

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

Using the Coherence Resource Adapter

Performing Transactions 29-23

 cache.delete("key1", null);
 cache.insert("key1", "value1");
 ut.commit();
 }

catch (Exception e)
 {
 ut.rollback();
 throw e;
 }

finally
 {
 con.close();
 }

Creating a Coherence Connection
Applications use the com.tangosol.coherence.ConnectionFactory interface to create
connections to a Coherence cluster. An instance of this interface is obtained using a
JNDI lookup. The following code sample from Example 29–10 performs a JNDI lookup
for a connection factory that is bound to the java:comp/env/eis/CoherenceTxCF
namespace:

Context initCtx = new InitialContext();
ConnectionFactory cf = (ConnectionFactory)
 initCtx.lookup("java:comp/env/eis/CoherenceTxCF");

The ConnectionFactory is then used to create a
com.tangosol.coherence.transaction.Connection instance. The Connection
instance represents a logical connection to a Coherence service:

Connection con = cf.createConnection("TransactionalCache");

The creatConnection(ServiceName) method creates a connection that is a member of
a transactional service. The service name is a String that indicates which transactional
service this connection belongs to and must map to a service name that is defined in a
<transactional-scheme> within a cache configuration file. For details on defining
transactional cache schemes and specifying the service name, see "Defining
Transactional Caches" on page 29-6.

A Connection instance always has an associated transaction which is scoped within
the connection. A new transaction is started when a transaction is completed. The
following default behaviors are associated with a connection. For more information on
the Connection interface and changing the default settings, see "Using Transactional
Connections" on page 29-11.

■ Connections are in auto-commit mode by default which means that each statement
is executed in a distinct transaction and when the statement completes the
transaction is committed and the connection is associated with a new transaction.

Using the Coherence Resource Adapter

29-24 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ The connection's isolation level is set to READ_COMMITTED. The transaction can only
view committed data from other transactions.

■ Eager mode is enabled by default which means every operation is immediately
flushed to the cluster and are not queued to be flushed in batches.

■ The default transaction timeout is 300 seconds.

Getting a Named Cache
The com.tangosol.coherence.transaction.OptimisticNamedCache interface extends
the NamedCache interface. It supports all the customary named cache operations and
adds its own operations for updating, deleting, and inserting objects into a cache.
When performing transactions, all cache instances must be derived from this type. The
following code sample from Example 29–10 demonstrates getting a named cache
called MyTxCache and performing operations on the cache. The cache must be defined
in the cache configuration file.

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

 cache.delete("key1", null);
 cache.insert("key1", "value1");

Demarcating Transaction Boundaries
Application components that perform user-controlled transactions use a JNDI lookup
to get a JTA UserTransaction interface instance. The interface provide methods for
demarcating the transaction. The following code sample from Example 29–10
demonstrates getting a UserTransaction instance and demarcating the transaction
boundaries:

UserTransaction ut = (UserTransaction) new

Note: When the connection is used for a global transaction,
auto-commit mode is disabled and cannot be enabled. Cache
operations are performed in a single transaction and either commit or
roll back as a unit. In addition, the Connection interface's commit an
rollback methods cannot be used if the connection is enlisted in a
global transaction.

Note: When the connection is used for a global transaction, the
transaction timeout that is associated with a connection is overridden
by the transaction timeout value that is set by a container's JTA
configuration. If an application attempts to set the transaction timeout
value directly on the connection while it is enlisted in a global
transaction, the attempt is ignored and a warning message is emitted
indicating that the transaction timeout cannot be set. The original
timeout value that is set on the connection is restored after the global
transaction completes.

Note: OptimisticNamedCache does not extend any operations from
the ConcurrentMap interface since it uses its own locking strategy.

Using the Coherence Resource Adapter

Performing Transactions 29-25

 InitialContext().lookup("java:comp/UserTransaction");

ut.begin();
Connection con = cf.createConnection("TransactionalCache");

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

 cache.delete("key1", null);
 cache.insert("key1", "value1");
 ut.commit();

The above code demonstrates a typical scenario where the connection and the named
cache exist within the transaction boundaries. However, the resource adapter also
supports scenarios where connections are used across transaction boundaries and are
obtained before the start of a global transaction. For example:

Connection con = cf.createConnection("TransactionalCache");

try
 {
 OptimisticNamedCache cache = con.getNamedCache("MyTxCache");

 cache.delete("key1", null);

 UserTransaction ut = (UserTransaction) new
 InitialContext().lookup("java:comp/UserTransaction");

 ut.begin();
 cache.insert("key1", "value1");
 ut.commit();

Packaging the Application
This section provides instructions for packaging JavaEE applications that use the
Coherence resource adapter so that they can be deployed to an application server. This
section includes the following topics:

■ Configure the Connection Factory Resource Reference

■ Configure the Resource Adapter Module Reference

■ Include the Required Libraries

Configure the Connection Factory Resource Reference
Application components must provide a resource reference for the resource adapter's
connection factory. For EJBs, the resource references are defined in the ejb-jar.xml
deployment descriptor. For Servlets and JSPs, the resource references are defined in
the web.xml deployment descriptor. The following sample demonstrates defining a
resource reference for the resource adapter's connection factory and is applicable to the
code in Example 29–10:

<resource-ref>
 <res-ref-name>eis/CoherenceTxCF</res-ref-name>
 <res-type>
 com.tangosol.coherence.transaction.ConnectionFactory
 </res-type>
 <res-auth>Container</res-auth>

Using the Coherence Resource Adapter

29-26 Oracle Fusion Middleware Developing Applications with Oracle Coherence

</resource-ref>

In addition to the standard Java EE application component deployment descriptors,
many application servers require a proprietary deployment descriptor as well. For
example, WebLogic server resource references are defined in the weblogic.xml or
weblogic-ejb-jar.xml files respectively:

<reference-descriptor>
 <resource-description>
 <res-ref-name>eis/CoherenceTxCF</res-ref-name>
 <jndi-name>tangosol.coherenceTx</jndi-name>
 </resource-description>
</reference-descriptor>

Consult your application server vendor's documentation for detailed information on
using their proprietary application component deployment descriptors and
information on alternate methods for defining resource reference using dependency
injection or annotations.

Configure the Resource Adapter Module Reference
JavaEE applications must provide a module reference for the Coherence resource
adapter. The module reference is defined in the EAR's application.xml file. The
module reference points to the location of the Coherence RAR file
(coherence-transaction.rar) within the EAR file. For example, the following
definition points to the Coherence resource adapter RAR file that is located in the root
of the EAR file:

<application>
...
<module>
 <connector>coherence-transaction.rar</connector>
</module>
...
</application>

In addition to the standard Java EE application deployment descriptors, many
application servers require a proprietary application deployment descriptor as well.
For example, the Coherence resource adapter is defined in the WebLogic server
weblogic-application.xml file as follows:

<weblogic-application>
 <classloader-structure>
 ...
 <module-ref>
 <module-uri>coherence-transaction.rar</module-uri>
 </module-ref>
 ...
 </classloader-structure>
</weblogic-application>

Consult your application server vendor's documentation for detailed information on
using their proprietary application deployment descriptors

Include the Required Libraries
JavaEE applications that use the Coherence resource adapter must include the
coherence-transaction.rar file and the coherence.jar file within the EAR file. The
following example places the libraries at the root of the EAR file:

Using the Coherence Resource Adapter

Performing Transactions 29-27

/
/coherence-transaction.rar
/coherence.jar

When deploying to WebLogic server, the coherence.jar file must be placed in the
/APP-INF/lib directory of the EAR file. For example:

/
/coherence-transaction.rar
/APP-INF/lib/coherence.jar

This deployment scenario results in a single Coherence cluster node that is shared by
all application components in the EAR. See Administering Oracle Coherence for different
Coherence deployment options.

Using the Coherence Cache Adapter for Transactions
The Coherence CacheAdapter class provides an alternate client approach for creating
transactions and is required when using the coherence-tx.rar resource adapter. The
new coherence-transaction.rar resource adapter also supports the CacheAdapter
class (with some modifications) and allows those accustomed to using the class to
leverage the benefits of the new resource adapter. However, it is recommended that
applications use the Coherence resource adapter natively which offers stronger
transactional support. Examples for both resource adapters is provided in this section.

Example 29–11 demonstrates performing cache operations within a transaction when
using the CacheAdapter class with the new coherence-transaction.rar resource
adapter. For this example a transactional cache named MyTxCache must be configured
in the cache configuration file. The cache must map to a transactional cache scheme
with the service name TransactionalCache. See "Defining Transactional Caches" on
page 29-6 for more information on defining a transactional cache scheme.

Example 29–11 Using the CacheAdapter Class When Using coherence-transaction.rar

Context initCtx = new InitialContext();

CacheAdapter adapter = new CacheAdapter(initCtx,
 "java:comp/env/eis/CoherenceTxCCICF", 0, 0, 0);

adapter.connect("TransactionalCache", "scott", "tiger");

try
 {
 UserTransaction ut = (UserTransaction) new
 InitialContext().lookup("java:comp/UserTransaction");

 ut.begin();
 OptimisticNamedCache cache =
 (OptimisticNamedCache) adapter.getNamedCache("MyTxCache",
 getClass().getClassLoader());
 cache.delete("key", null);
 cache.insert("key", "value");
 ut.commit();

 }
finally
 {
 adapter.close();
 }

Using the Coherence Resource Adapter

29-28 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Example 29–12 demonstrates performing cache operations within a transaction when
using the CacheAdapter class with the coherence-tx.rar resource adapter.

Example 29–12 Using the CacheAdapter Class When Using coherence-tx.rar

String key = "key";
Context ctx = new InitialContext();
UserTransaction tx = null;
try
 {
 // the transaction manager from container
 tx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
 tx.begin();

 // the try-catch-finally block below is the block of code
 // that could be on an EJB and therefore automatically within
 // a transactional context
 CacheAdapter adapter = null;
 try
 {
 adapter = new CacheAdapter(ctx, "tangosol.coherenceTx",
 CacheAdapter.CONCUR_OPTIMISTIC,
 CacheAdapter.TRANSACTION_GET_COMMITTED, 0);

 NamedCache cache = adapter.getNamedCache("dist-test",
 getClass().getClassLoader());

 int n = ((Integer)cache.get(key)).intValue();
 cache.put(key, new Integer(++n));
 }
 catch (Throwable t)
 {
 String sMsg = "Failed to connect: " + t;
 System.err.println(sMsg);
 t.printStackTrace(System.err);
 }
 finally
 {
 try
 {
 adapter.close();
 }
 catch (Throwable ex)
 {
 System.err.println("SHOULD NOT HAPPEN: " + ex);
 }
 }
 }
finally
 {
 try
 {
 tx.commit();
 }
 catch (Throwable t)
 {
 String sMsg = "Failed to commit: " + t;
 System.err.println(sMsg);
 }

Using the Coherence Resource Adapter

Performing Transactions 29-29

 }

30

Working with Partitions 30-1

30Working with Partitions

[30] This chapter provides instructions for using data affinity and includes instructions for
changing the default partition setup. The instructions are specific to distributed caches.

This chapter includes the following sections:

■ Specifying Data Affinity

■ Changing the Number of Partitions

■ Changing the Partition Distribution Strategy

Specifying Data Affinity
This section includes the following topics:

■ Overview of Data Affinity

■ Specifying Data Affinity with a KeyAssociation

■ Specifying Data Affinity with a KeyAssociator

■ Deferring the Key Association Check

■ Example of Using Affinity

Overview of Data Affinity
Data affinity describes the concept of ensuring that a group of related cache entries is
contained within a single cache partition. This ensures that all relevant data is
managed on a single primary cache node (without compromising fault-tolerance).

Affinity may span multiple caches (if they are managed by the same cache service,
which generally is the case). For example, in a master-detail pattern such as an
Order-LineItem, the Order object may be co-located with the entire collection of
LineItem objects that are associated with it.

The are two benefits for using data affinity. First, only a single cache node is required
to manage queries and transactions against a set of related items. Second, all
concurrency operations are managed locally and avoids the need for clustered
synchronization.

Several standard Coherence operations can benefit from affinity, including cache
queries, InvocableMap operations and the getAll, putAll, and removeAll methods.

Specifying Data Affinity

30-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Affinity is specified in terms of a relationship to a partitioned key. In the
Order-LineItem example above, the Order objects would be partitioned normally, and
the LineItem objects would be associated with the appropriate Order object.

The association does not have to be directly tied to the actual parent key - it only must
be a functional mapping of the parent key. It could be a single field of the parent key
(even if it is non-unique), or an integer hash of the parent key. All that matters is that
all child keys return the same associated key; it does not matter whether the associated
key is an actual key (it is simply a "group id"). This fact may help minimize the size
impact on the child key classes that do not contain the parent key information (as it is
derived data, the size of the data may be decided explicitly, and it also does not affect
the behavior of the key). Note that making the association too general (having too
many keys associated with the same "group id") can cause a "lumpy" distribution (if all
child keys return the same association key regardless of what the parent key is, the
child keys are all assigned to a single partition, and are not spread across the cluster).

There are two ways to ensure that a set of cache entries are co-located. Note that
association is based on the cache key, not the value (otherwise updating a cache entry
could cause it to change partitions). Also, note that while the Order is co-located with
the child LineItems, Coherence does not currently support composite operations that
span multiple caches (for example, updating the Order and the collection of LineItems
within a single invocation request
com.tangosol.util.InvocableMap.EntryProcessor).

Specifying Data Affinity with a KeyAssociation
For application-defined keys, the class (of the cache key) may implement
com.tangosol.net.cache.KeyAssociation as follows:

Example 30–1 Creating a Key Association

import com.tangosol.net.cache.KeyAssociation;

public class LineItemId implements KeyAssociation
 {
 // {...}

 public Object getAssociatedKey()
 {
 return getOrderId();
 }

 // {...}
 }

Specifying Data Affinity with a KeyAssociator
Applications may also provide a custom KeyAssociator:

Note: Data affinity is specified in terms of entry keys (not values). As
a result, the association information must be present in the key class.
Similarly, the association logic applies to the key class, not the value
class.

Specifying Data Affinity

Working with Partitions 30-3

Example 30–2 A Custom KeyAssociator

import com.tangosol.net.partition.KeyAssociator;

public class LineItemAssociator implements KeyAssociator
 {
 public Object getAssociatedKey(Object oKey)
 {
 if (oKey instanceof LineItemId)
 {
 return ((LineItemId) oKey).getOrderId();
 }
 else if (oKey instanceof OrderId)
 {
 return oKey;
 }
 else
 {
 return null;
 }
 }

 public void init(PartitionedService service)
 {
 }
 }

The key associator is configured for a NamedCache in the <distributed-scheme>
element that defined the cache:

Example 30–3 Configuring a Key Associator

<distributed-scheme>
 ...
 <key-associator>
 <class-name>LineItemAssociator</class-name>
 </key-associator>
</distributed-scheme>

Deferring the Key Association Check
Key association can be implemented either on the cluster or on the extend client. When
using extend clients, the best practice is to implement key association on the client,
which provides the best performance by processing the keys before they are sent to the
cluster. Key association is processed on the client by default. Existing client
implementations that rely on key association on the cluster must set the
defer-key-association-check parameter in order to force the processing of key
classes on the cluster.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a
<remote-cache-scheme> element, in the client-side cache configuration to true. For
example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Changing the Number of Partitions

30-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

See Developing Remote Clients for Oracle Coherence (.NET and C++) for more information
on deferring key association with .NET and C++ clients, respectively.

Example of Using Affinity
Example 30–4 illustrates how to use affinity to create a more efficient query
(NamedCache.entrySet(Filter)) and cache access (NamedCache.getAll(Collection)).

Example 30–4 Using Affinity for a More Efficient Query

OrderId orderId = new OrderId(1234);

// this Filter is applied to all LineItem objects to fetch those
// for which getOrderId() returns the specified order identifier
// "select * from LineItem where OrderId = :orderId"Filter filterEq = new
EqualsFilter("getOrderId", orderId);

// this Filter directs the query to the cluster node that currently owns
// the Order object with the given identifier
Filter filterAsc = new KeyAssociatedFilter(filterEq, orderId);

// run the optimized query to get the ChildKey objects
Set setLineItemKeys = cacheLineItems.keySet(filterAsc);

// get all the Child objects immediately
Set setLineItems = cacheLineItems.getAll(setLineItemKeys);

// Or remove all immediately
cacheLineItems.keySet().removeAll(setLineItemKeys);

Changing the Number of Partitions
The default partition count for a distributed cache service is 257 partitions. Each cache
server in the cluster that hosts a distributed cache service manages a balanced number
of the partitions. For example, each cache server in a cluster of four cache servers
manages 64 partitions. The default partition count is typically acceptable for clusters
containing up to 16 cache servers. However, larger clusters require more partitions to
ensure optimal performance.

To change the number of partitions for a distribute cache service, edit the cache
configuration file and add a <partition-count> element, within the
<distributed-scheme> element, that includes the number of partitions to use for the
service. For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <partition-count>1181</partition-count>
 ...
</distributed-scheme>

Note: If the parameter is set to true, a key class implementation
must be found on the cluster even if key association is no being used.

Changing the Partition Distribution Strategy

Working with Partitions 30-5

Deciding the number of Partitions
There is no exact formula for selecting a partition count. An ideal partition count
balances the number of partitions on each cluster member with the amount of data
each partition holds. Use the following guidelines when selecting a partition count and
always perform tests to verify that the partition count is not adversely affecting
performance.

■ The partition count should always be a prime number. A list of primes can be
found at http://primes.utm.edu/lists/.

■ The number of partitions must be large enough to support a balanced distribution
without each member managing too few partitions. For example, a partition count
that results in only two partitions on each member is too constraining.

■ The number of partitions must not be too large that network bandwidth is wasted
with transfer overhead and bookkeeping for many partition transfers (a unit of
transfer is a partition). For example, transferring thousands of partitions to a new
cache server member requires a greater amount of network resources and can
degrade cluster performance especially during startup.

■ The amount of data a partition manages must not be too large (the more data a
partition manages: the higher the partition promotion and transfer costs). The
amount of data a partition manages is only limited by the amount of available
memory on the cache server. A partition limit of 50MB typically ensures good
performance. A partition limit between 50MB-100MB (even higher with 10GbE or
faster) can be used for larger clusters. Larger limits can be used with the
understanding that there will be a slight increase in transfer latency and that larger
heaps with more overhead space are required.

As an example, consider a cache server that is configured with a 4G heap and stores
approximately 1.3G of primary data not including indexes (leaving 2/3 of the heap for
backup and scratch space). If the decided partition limit is a conservative 25MB, then a
single cache server can safely use 53 partitions (1365M/25M rounded down to the
previous prime). Therefore, a cluster that contains 20 cache servers can safely use 1051
partitions (53*20 rounded down to the previous prime) and stores approximately 25G
of primary data. A cluster of 100 cache servers can safely use 5297 partitions and can
store approximately 129G of primary data.

Changing the Partition Distribution Strategy
Partition distribution defines how partitions are assigned to storage-enabled cluster
members. There are two styles of distribution available:

■ Autonomous distribution – This method of distribution requires each
storage-enabled service member to calculate its own balanced share of the
available partitions and to request distribution in order to balance the service.

■ Centralized distribution – This method of distribution uses a centralized partition
assignment strategy to make a global distribution decision to be carried out by
each storage-enabled member. The centralized distribution allows for more
expressive distribution algorithms to be utilized and uses a more complete and
global view of the service.

Custom centralized distribution strategy can be created by implementing the
com.tangosol.net.partition.PartitionAssignmentStrategy interface.

Specifying a Partition Assignment Strategy
The following predefined partition assignment strategies are available:

Changing the Partition Distribution Strategy

30-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ legacy – (deprecated) The legacy assignment strategy indicates that partition
distribution is managed individually on each cluster member. The legacy partition
assignment strategy is an autonomous distribution strategy.

■ simple – (default) The simple assignment strategy is a centralized distribution
strategy that attempts to balance partition distribution while ensuring
machine-safety and is more deterministic and efficient than the legacy strategy.

■ mirror:<service-name> – The mirror assignment strategy is a centralized
distribution strategy that attempts to co-locate the service's partitions with the
partitions of the specified service. This strategy is used to increase the likelihood
that key-associated, cross-service cache access remains local to a member.

■ custom – a class that implements the
com.tangosol.net.partition.PartitionAssignmentStrategy interface.

To configure a partition assignment strategy for a specific partitioned cache service,
add a <partition-assignment-strategy> element within a distributed cache
definition:

<distributed-scheme>
 ...
 <partition-assignment-strategy>mirror:<MyService>
 </partition-assignment-strategy>
 ...
</distributed-scheme>

To configure the partition assignment strategy for all instances of the distributed cache
service type, override the partitioned cache service's partition-assignment-strategy
initialization parameter in an operational override file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <service id="3">
 <init-params>
 <init-param id="21">
 <param-name>partition-assignment-strategy</param-name>
 <param-value>mirror:<MyService></param-value>
 </init-param>
 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

Enabling a Custom Partition Assignment Strategy
To specify a custom partition assignment strategy, include an <instance> subelement
within the <partition-assignment-strategy> element and provide a fully qualified
class name that implements the
com.tangosol.net.partition.PartitionAssignmentStrategy interface. A custom
class can also extend the com.tangosol.net.partition.SimpleAssignmentStrategy
class. See "instance" on page B-54 for detailed instructions on using the <instance>

Changing the Partition Distribution Strategy

Working with Partitions 30-7

element. The following example enables a partition assignment strategy that is
implemented in the MyPAStrategy class.

<distributed-scheme>
 ...
 <partition-assignment-strategy>
 <instance>
 <class-name>package.MyPAStrategy</class-name>
 </instance>
 </partition-assignment-strategy>
 ...
</distributed-scheme>

As an alternative, the <instance> element supports the use of a
<class-factory-name> element to use a factory class that is responsible for creating
PartitionAssignmentStrategy instances, and a <method-name> element to specify the
static factory method on the factory class that performs object instantiation. The
following example gets a strategy instance using the getStrategy method on the
MyPAStrategyFactory class.

<distributed-scheme>
 ...
 <partition-assignment-strategy>
 <instance>
 <class-factory-name>package.MyPAStrategyFactory</class-factory-name>
 <method-name>getStrategy</method-name>
 </instance>
 </partition-assignment-strategy>
 ...
</distributed-scheme>

Any initialization parameters that are required for an implementation can be specified
using the <init-params> element. The following example sets the iMaxTime parameter
to 2000.

<distributed-scheme>
 ...
 <partition-assignment-strategy>
 <instance>
 <class-name>package.MyPAStrategy</class-name>
 <init-params>
 <init-param>
 <param-name>iMaxTime</param-name>
 <param-value>2000</param-value>
 </init-param>
 </init-params>
 </instance>
 </partition-assignment-strategy>
 ...
</distributed-scheme>

Changing the Partition Distribution Strategy

30-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

31

Managing Thread Execution 31-1

31Managing Thread Execution

[31] This chapter provides instructions for controlling the execution behavior of Coherence
service threads using task timeouts and the PriorityTask API for custom execution
processing.

This chapter includes the following sections:

■ Overview of Priority Tasks

■ Setting Priority Task Timeouts

■ Creating Priority Task Execution Objects

Overview of Priority Tasks
Coherence priority tasks provide applications that have critical response time
requirements better control of the execution of processes within Coherence. Execution
and request timeouts can be configured to limit wait time for long running threads. In
addition, a custom task API allows applications to control queue processing. Use these
features with extreme caution because they can dramatically affect performance and
throughput of the data grid.

Setting Priority Task Timeouts
Care should be taken when configuring Coherence task execution timeouts especially
for Coherence applications that pre-date this feature and thus do not handle timeout
exceptions. For example, if a write-through in a CacheStore is blocked and exceeds the
configured timeout value, the Coherence task manager attempts to interrupt the
execution of the thread and an exception is thrown. In a similar fashion, queries or
aggregations that exceed configured timeouts are interrupted and an exception is
thrown. Applications that use this feature should ensure that they handle these
exceptions correctly to ensure system integrity. Since this configuration is performed
on a service by service basis, changing these settings on existing caches/services not
designed with this feature in mind should be done with great care.

Configuring Execution Timeouts
The <request-timeout>, <task-timeout>, and the <task-hung-threshold> elements
are used to configure execution timeouts for a service's worker threads. These timeout
settings are configured for a service in a cache configuration file and can also be set
using command line parameters. See Chapter 11, "Using the Service Guardian," for
information on setting timeouts for service threads.

Table 31–1 describes the execution timeout elements.

Setting Priority Task Timeouts

31-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The following example sets a distributed cache's thread count to 7 with a task time out
of 5000 milliseconds and a task hung threshold of 10000 milliseconds:

Example 31–1 Sample Task Time and Task Hung Configuration

<caching-schemes>
 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <thread-count>7</thread-count>
 <task-hung-threshold>10000</task-hung-threshold>
 <task-timeout>5000</task-timeout>
 </distributed-scheme>
</caching-schemes>

Setting the client request timeout to 15 milliseconds

Example 31–2 Sample Client Request Timeout Configuration

<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <request-timeout>15000ms</request-timeout>

Table 31–1 Execution Timeout Elements

Element Name Description

<request-timeout> Specifies the default timeout value for requests that can time out
(for example, implement the PriorityTask interface), but do not
explicitly specify the request timeout value. The request time is
measured on the client side as the time elapsed from the
moment a request is sent for execution to the corresponding
server node(s) and includes the following:

1. The time it takes to deliver the request to an executing node
(server).

2. The interval between the time the task is received and
placed into a service queue until the execution starts.

3. The task execution time.

4. The time it takes to deliver a result back to the client.

If the value does not contain a unit, a unit of milliseconds is
assumed. Legal values are positive integers or zero (indicating
no default timeout). Default value is an infinite timeout (0s) for
clustered client requests and 30 seconds (30s) for non-clustered
client requests.

<task-timeout> Specifies the default timeout value for tasks that can be
timed-out (for example, entry processors that implement the
PriorityTask interface), but do not explicitly specify the task
execution timeout value. The task execution time is measured on
the server side and does not include the time spent waiting in a
service backlog queue before being started. This attribute is
applied only if the thread pool is used (the thread-count value
is positive). If zero is specified, the default service-guardian
<timeout-milliseconds> value is used.

<task-hung-threshold> Specifies the amount of time in milliseconds that a task can
execute before it is considered "hung". Note: A posted task that
has not yet started is never considered as hung. This attribute is
applied only if the Thread pool is used (the thread-count value
is positive).

Creating Priority Task Execution Objects

Managing Thread Execution 31-3

 </distributed-scheme>

Command Line Options
Use the command line options to set the service type default (such as distributed
cache, invocation, proxy, and so on) for the node. Table 31–2 describes the options.

Creating Priority Task Execution Objects
The PriorityTask interface enables you to control the ordering in which a service
schedules tasks for execution using a thread pool and hold the task execution time to a
specified limit. Instances of PriorityTask typically also implement either the
Invocable or Runnable interface. Priority Task Execution is only relevant when a task
back log exists.

The API defines the following ways to schedule tasks for execution

■ SCHEDULE_STANDARD—a task is scheduled for execution in a natural (based on the
request arrival time) order

■ SCHEDULE_FIRST—a task is scheduled in front of any equal or lower scheduling
priority tasks and executed as soon as any of worker threads become available

Note: The request-timeout should always be longer than the
thread-hung-threshold or the task-timeout.

Table 31–2 Command Line Options for Setting Service Type

Option Description

tangosol.coherence.replicated.request.time
out

The default client request timeout for the
Replicated cache service

tangosol.coherence.optimistic.request.time
out

The default client request timeout for the
Optimistic cache service

tangosol.coherence.distributed.request.tim
eout

The default client request timeout for
distributed cache services

tangosol.coherence.distributed.task.timeou
t

The default server execution timeout for
distributed cache services

tangosol.coherence.distributed.task.hung The default time before a thread is reported
as hung by distributed cache services

tangosol.coherence.invocation.request.time
out

The default client request timeout for
invocation services

tangosol.coherence.invocation.task.hung The default time before a thread is reported
as hung by invocation services

tangosol.coherence.invocation.task.timeout The default server execution timeout
invocation services

tangosol.coherence.proxy.request.timeout The default client request timeout for proxy
services

tangosol.coherence.proxy.task.timeout The default server execution timeout proxy
services

tangosol.coherence.proxy.task.hung The default time before a thread is reported
as hung by proxy services

Creating Priority Task Execution Objects

31-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ SCHEDULE_IMMEDIATE—a task is immediately executed by any idle worker thread;
if all of them are active, a new thread is created to execute this task

APIs for Creating Priority Task Objects
Coherence provides the following classes to help create priority task objects:

■ PriorityProcessor can be extended to create a custom entry processor.

■ PriorityFilter can be extended to create a custom priority filter.

■ PriorityAggregator can be extended to create a custom aggregation.

■ PriorityTask can be extended to create an priority invocation class.

After extending each of these classes the developer must implement several methods.
The return values for getRequestTimeoutMillis, getExecutionTimeoutMillis, and
getSchedulingPriority should be stored on a class-by-class basis in your application
configuration parameters. These methods are described in Table 31–3.

Table 31–3 Methods to Support Task Timeout

Method Description

public long
getRequestTimeoutMillis()

Obtains the maximum amount of time a calling thread is
can wait for a result of the request execution. The
request time is measured on the client side as the time
elapsed from the moment a request is sent for execution
to the corresponding server node(s) and includes: the
time it takes to deliver the request to the executing
node(s); the interval between the time the task is
received and placed into a service queue until the
execution starts; the task execution time; the time it
takes to deliver a result back to the client. The value of
TIMEOUT_DEFAULT indicates a default timeout value
configured for the corresponding service; the value of
TIMEOUT_NONE indicates that the client thread is can wait
indefinitely until the task execution completes or is
canceled by the service due to a task execution timeout
specified by the getExecutionTimeoutMillis() value.

public long
getExecutionTimeoutMillis()

Obtains the maximum amount of time this task is
allowed to run before the corresponding service
attempts to stop it. The value of TIMEOUT_DEFAULT
indicates a default timeout value configured for the
corresponding service; the value of TIMEOUT_NONE
indicates that this task can execute indefinitely. If, by the
time the specified amount of time passed, the task has
not finished, the service attempts to stop the execution
by using the Thread.interrupt() method. In the case
that interrupting the thread does not result in the task's
termination, the runCanceled method is called.

public int
getSchedulingPriority()

Obtains this task's scheduling priority. Valid values are
SCHEDULE_STANDARD, SCHEDULE_FIRST, SCHEDULE_
IMMEDIATE

public void runCanceled(boolean
fAbandoned)

This method is called if and only if all attempts to
interrupt this task were unsuccessful in stopping the
execution or if the execution was canceled before it had
a chance to run at all. Since this method is usually called
on a service thread, implementors must exercise extreme
caution since any delay introduced by the
implementation causes a delay of the corresponding
service.

Creating Priority Task Execution Objects

Managing Thread Execution 31-5

Errors Thrown by Task Timeouts
When a task timeout occurs the node gets a RequestTimeoutException. Example 31–3
illustrates an exception that may be thrown.

Example 31–3 Exception Thrown by a TaskTimeout

com.tangosol.net.RequestTimeoutException: Request timed out after 4015 millis
 at
com.tangosol.coherence.component.util.daemon.queueProcessor.Service.checkRequestTi
meout(Service.CDB:8)
 at
com.tangosol.coherence.component.util.daemon.queueProcessor.Service.poll(Service.C
DB:52)
 at
com.tangosol.coherence.component.util.daemon.queueProcessor.Service.poll(Service.C
DB:18)
 at
com.tangosol.coherence.component.util.daemon.queueProcessor.service.InvocationServ
ice.query(InvocationService.CDB:17)
 at
com.tangosol.coherence.component.util.safeService.SafeInvocationService.query(Safe
InvocationService.CDB:1)

Creating Priority Task Execution Objects

31-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

32

Constraints on Re-entrant Calls 32-1

32Constraints on Re-entrant Calls

[32] This chapter describes the constraints on service re-entrant calls and provides general
guidelines for making calls between service threads.

This chapter includes the following sections:

■ Overview of Constraints on Re-Entrant Calls

■ Re-entrancy, Services, and Service Threads

■ Re-entrancy and Listeners

Overview of Constraints on Re-Entrant Calls
Coherence does not support re-entrant calls. A "re-entrant service call" occurs when a
service thread, in the act of processing a request, makes a request to that same service.
As all requests to a service are delivered by using the inbound queue, and Coherence
uses a thread-per-request model, each reentrant request would consume an additional
thread (the calling thread would block while awaiting a response). Note that this is
distinct from the similar-sounding concept of recursion.

The Coherence architecture is based on a collection of services. Each Coherence service
consists of the Coherence code that implements the service, along with an associated
configuration. The service runs on an allocated pool of threads with associated queues
that receive requests and return responses.

Re-entrancy, Services, and Service Threads
A service is defined as a unique combination of a service name and a service type
(such as Invocation, Replicated, or Distributed). For example, you can call from a
distributed service Dist-Customers into a distributed service named Dist-Inventory,
or from a distributed service named Dist-Customers into a replicated service named
Repl-Catalog. Service names are configured in the cache configuration file using the
<service-name> element.

Parent-Child Object Relationships
In the current implementation of Coherence, it is irrelevant whether the "call" is local
or remote. This complicates the use of key association to support the efficient assembly
of parent-child relationships. If you use key association to co-locate a Parent object
with all of its Child objects, then you cannot send an EntryProcessor to the parent
object and have that EntryProcessor "grab" the (local) Child objects. This is true even
though the Child objects are in-process.

To access both a parent object and its child objects, you can do any of the following:

Re-entrancy, Services, and Service Threads

32-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Embed the child objects within the parent object (using an "aggregate" pattern) or,

■ Use direct access to the server-side backing map (which requires advanced
knowledge to do safely), or

■ Run the logic on another service (for example, Invocation targeted by using
PartitionedService.getKeyOwner), and have that service access the data by using
NamedCache interfaces, or

■ Place the child objects on another service which would allow reentrant calls (but
incur network access since there is no affinity between partitions in different cache
services).

Using the aggregate pattern is probably the best solution for most use cases. However,
if this is impractical (due to size restrictions, for example), and there is a requirement
to access both the parent and child objects without using a client/server model, the
Invocation service approach is probably the best compromise for most use cases.

Avoiding Deadlock
Even when re-entrancy is allowed, one should be very careful to avoid saturating the
thread pool and causing catastrophic deadlock. For example, if service A calls service
B, and service B calls service A, there is a possibility that enough concurrent calls could
fill a thread pool, which would cause a form of deadlock. As with traditional locking,
using ordered access (for example, service A can call service B, but not vice versa) can
help.

So:

■ Service A calling into service A is never allowed

■ Service A calling into service B, and service B calling back into service A is
technically allowed but is deadlock-prone and should be avoided if at all possible.

■ Service A calling into service B, and service B calling into service C, and
service C calling back into service A is similarly restricted

■ Service A calling into service B is allowed

■ Service A calling into service B, and service B calling into service C, and
service A calling into service C is similarly allowed

A service thread is defined as any thread involved in fulfilling a Coherence API
request. Service threads may invoke any of the following entities:

■ Map Listeners

■ Membership Listeners

■ Custom Serialization/Deserialization such as ExternalizableLite
implementations

■ Backing Map Listeners

■ CacheLoader/CacheStore Modules

■ Query logic such as Aggregators, Filters, ValueExtractors and Comparators

■ Entry Processors

■ Triggers

■ InvocationService Invocables

These entities should never make re-entrant calls back into their own services.

Re-entrancy and Listeners

Constraints on Re-entrant Calls 32-3

Re-entrancy and Listeners
Membership listeners can observe the active set of members participating in the cluster
or a specific service. Membership listener threading can be complex; thus, re-entrant
calls from a member listener to any Coherence service should be avoided.

Re-entrancy and Listeners

32-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Part V
Part V Using the Coherence JCache Implementation

Part V contains the following chapters:

■ Chapter 33, "Introduction to Coherence JCache"

■ Chapter 34, "Building Your First Coherence JCache Application"

■ Chapter 35, "Performing Basic Coherence JCache Tasks"

■ Chapter 36, "Using JCache Events"

■ Chapter 37, "Processing JCache Entries"

33

Introduction to Coherence JCache 33-1

33Introduction to Coherence JCache

[33] This chapter provides an overview of the Coherence implementation of the JSR-107
JCACHE - Java Caching API specification. The specification and API is commonly
referred to as JCache in this documentation. A JCache overview section is also
provided and includes a basic introduction to the API. For complete details about the
API, download the JCache specification, Java sources, and JavaDoc from the Java
Community Process (JCP) website:

https://www.jcp.org/en/jsr/detail?id=107

This chapter includes the following sections:

■ Overview of the Coherence JCache Implementation

■ Comparison of JCache and NamedCache Features

■ Dependencies for Coherence JCache

■ Overview of Configuration for the Coherence JCache Provider

■ JCache Primer

Overview of the Coherence JCache Implementation
Coherence includes a JCache provider implementation (COHERENCE_
HOME\lib\coherence-jcache.jar). JCache is a common API for using caching in Java.
Application developers use the JCache API (javax.cache.*) and Coherence provides
the underlying caching capabilities. The provider-based approach guarantees
cross-provider portability and allows developers to focus on application logic rather
than creating and managing complex caching systems. For additional information
about JCache, see "JCache Primer" on page 33-4.

The Coherence JCache provider uses existing Coherence technology and can be
thought of as a wrapper for the Coherence NamedCache API. This allows Coherence to
reuse and expose many of its best-in-class technologies through JCache interfaces.

Supported Cache Types
The Coherence JCache provider offers three cache types:

■ Local Cache – A cache that is local to an application process. Entries that are stored
in local caches do not persist after an application process ends. A local cache is
similar to a NamedCache cache that is configured using a local-scheme cache
definition. The local cache implementation is defined in the
com.tangosol.coherence.jcache.localcache package. For details about creating
local caches, see "Creating Local Caches" on page 35-2.

Overview of the Coherence JCache Implementation

33-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Partitioned Cache – A cache that is partitioned (distributed) among multiple
processes in a Coherence cluster. Entries that are stored in partitioned caches are
backed up and persist on the cluster after an application process ends. A
partitioned cache is similar to a NamedCache cache that is configured using a
distributed-scheme cache definition. The partitioned cache implementation is
defined in the com.tangosol.coherence.jcache.partitionedcache package. For
details about creating partitioned caches, see "Creating Partitioned Caches" on
page 35-3. To learn more about partitioned caches, see "Understanding Distributed
Caches" on page 12-1.

■ Pass-Through Cache – A cache that delegates to an existing NamedCache cache.
Pass-through caches offer applications the ability to use all Coherence native
features from a JCache interface. Pass-through caches are ideal for applications
that want to migrate to JCache but also want to reuse their existing Coherence
application components. The pass-through cache implementation is defined in the
com.tangosol.coherence.jcache.passthroughcache package. For details about
creating pass-through caches, see "Creating Pass-Through Caches" on page 35-4.

Coherence JCache Events
The Coherence JCache provider uses the native Coherence event APIs to implement
JCache events. The local and partitioned cache implementations leverage the
Coherence MapListener API. The pass-through cache implementation only supports
the Coherence MapEvents that map directly to the JCache events and there is no
support for JCache expired events. Each cache type is responsible for registering map
listeners and for dispatching map events. Event classes are located in the
com.tangosol.coherence.jcache.common package as well as in each cache type
package. For details about creating and using JCache events, see "Using JCache
Events" on page 36-1.

Coherence JCache Entry Processors
The Coherence JCache provider uses the native Coherence
InvocableMap.EntryProcessor API to implement JCache entry processors. Each cache
type includes an InvokeProcessor class in their respective processors package that is
responsible for executing JCache entry processors when the invoke or invokeAll
methods are called from a cache. For details about creating and using JCache entry
processors, see "Processing JCache Entries" on page 37-1.

The processors package for each cache type also includes many native Coherence
entry processors that are used to perform cache operations. For example, when using a
partitioned cache, the use of the put method results in the use of the PutProcessor
class.

Coherence Serialization for JCache
The Coherence JCache provider makes use of Coherence Portable Object Format (POF)
serialization. POF is a proven binary format within Coherence and is efficient in both

Notes:

■ There is no equivalent of the
javax.cache.event.CacheEntryExpiredListener API in the
Coherence MapListener API.

■ The NamedCache.clear method results in a Coherence
MapListener.entryDeleted event; however, the JCache
Cache.clear method does not result in any events.

Dependencies for Coherence JCache

Introduction to Coherence JCache 33-3

space and time. For partitioned and pass-through caches, many cache operations
utilize POF. Cache configuration, entry processors, event listeners and filters, and
JCache statistics also make use of POF.

POF is also used to provide serialization as required by parts of the JCache
specification. The com.tangosol.coherence.jcache.serialization package includes
POF serializer implementations to support JCache factory builders, expiry policies,
and cache entry listener configuration.

Lastly, applications can choose to use POF for serialization as required; however, it is
not a requirement when using the Coherence JCache provider. In use cases where
portability between cache providers is a requirement, applications should use Java
serialization.

Coherence JCache Management
The Coherence JCache provider implements the JCache CacheMXBean and
CacheStatisticsMXBean MXBean interfaces. The implementation are located in the
com.tangosol.coherence.jcache.common package. Management information for local
and partitioned caches are registered to the default MBean server and are found under
the javax.cache namespace. Management information for pass-through caches are
reported using the native Coherence JMX management implementation. For details
about enabling JCache management, see "Viewing JCache Management Information"
on page 35-13.

Comparison of JCache and NamedCache Features
The Coherence JCache provider offers support for many features that are also available
with the Coherence native NamedCache API. However, not all features are available
through JCache. Table 33–1 shows a comparison of the two APIs.

Dependencies for Coherence JCache
Applications that use JCache and the Coherence JCache provider must include the
following libraries on the application classpath:

Table 33–1 Comparison of JCache and NamedCache Features

Feature JCache NamedCache

Local Cache X X

Partitioned (Distributed) Cache X X

Replicated Cache X

Optimistic Cache X

Near Cache X

Read Through X X

Write Through X X

Events X X

Query Filters X

Indexes X

Entry Processors X X

Aggregation X

Overview of Configuration for the Coherence JCache Provider

33-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ COHERENCE_HOME\lib\cache-api.jar – The standard JCache API.

■ COHERENCE_HOME\lib\coherence-jcache.jar – The Coherence JCache provider
implementation.

■ COHERENCE_HOME\lib\coherence.jar – The core Coherence library.

The Coherence JCache provider includes a service definition in the
META-INF/services directory of the coherence-jcache.jar library. The definition
allows Coherence to be automatically loaded and used as the default caching provider
by applications that use the javax.cache.Caching bootstrap class. For details about
using Coherence as the default JCache provider, see"Specifying Coherence as the
JCache Provider" on page 35-1.

Overview of Configuration for the Coherence JCache Provider
The JCache provider utilizes the same configuration files as the native Coherence
NamedCache API. However, the need to customize the configuration files has been
simplified and in some cases not required at all. The following lists the configuration
file used by the JCache implementation:

■ tangosol-coherence-override.xml – A Coherence operational override file is
used when configuring a Coherence cluster for partitioned caches and when using
pass-through caches. The override file is not required for local caches. For details
about operational override files, see "Specifying an Operational Configuration
File" on page 3-2.

■ coherence-jcache-cache-config.xml – A Coherence JCache provider-specific
cache configuration file that is called coherence-jcache-cache-cofig.xml is
included in the provider JAR file and used to create local and partitioned caches;
however, applications are not expected to edit the configuration. The included
cache configuration file defines a JCacheNamespace handler class that is used to
programmatically define local and partitioned caches for use by JCache
applications.

■ coherence-jcache-pof-config.xml – A Coherence JCache provider-specific POF
configuration file that is called coherence-jcache-pof-cofig.xml is included in
the provider JAR file and is used to define JCache POF types. For details about
including JCache POF types with an existing Coherence application, see
"Configuring a JCache POF Configuration file" on page 35-13.

JCache Primer
This section provides an overview of the JCache specification and API and is intended
for those that are new to JCache. It includes basic concepts that are used when
completing the instructions in this book. If you are familiar with JCache, you can skip
this section.

This section is not intended to replace the specification or the API documentation. For
complete details, download the JCache specification, Java sources, and JavaDoc from
the Java Community Process (JCP) website:

https://www.jcp.org/en/jsr/detail?id=107

What is JCache
The JCache specification defines an API for creating and using caches in Java
programs. Applications often use caches to store and reuse resources that require a
significant cost to create. Applications can then quickly access the resources in

JCache Primer

Introduction to Coherence JCache 33-5

memory without having to incur the cost associated with recreating the resources.
Applications commonly use caching to increase application performance, availability,
and scalability.

The JCache API defines a provider-based model for caching. The provider model
separates the cache client API from the cache implementation. Applications use a
well-defined client API and cache providers are responsible for the actual cache
implementation. The provider-based model frees application developers from having
to create and manage complex caching sub-systems and ensures portability between
cache providers that implement the specification.

JCache Caching Providers and Cache Managers
The JCache API defines the CachingProvider and CacheManager interfaces.
Applications use the CachingProvider interface to get and use a cache manager.
Applications use the CacheManager interface to create and use caches. Applications are
free to use multiple cache providers. However, a cache manager can only be associated
with a single cache provider.

JCache offers several ways to get cache providers and access cache managers. A
common access pattern that is used throughout this documentation is to use the
Caching bootstrap class. The class provides a convenient way to get a CachingPovider
implementation and automatically discovers providers that include a standard Java
service definition.

The following example gets a default CachingProvider implementation and then
creates a cache manager:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

JCache Caches
The JCache API defines a Cache interface. The Cache interface creates a data structure
that stores key and value pairs. Each key and value pair is referred to an entry and is
defined by the Cache.Entry interface. A cache is similar to a Java Map data structure;
However, there are some key differences:

■ Keys or values cannot be null.

■ Cache.put operations do not return an entry’s previous value. The
Cache.getAndPut operation is functionally equivalent to the Map.put operation.

■ Cache Entries expire and can be evicted.

■ Values can be automatically loaded from, and written to, an external source to
support read-through and write-through caching.

■ Cache entry changes can be observed.

■ Cache statistics can be collected.

The Cache interface includes methods for putting, getting, replacing, and removing
cache entries. Methods are also provided for loading a cache, registering cache
listeners, and invoking entry processors.

The following example demonstrates using a cache manager to create a Cache instance
called MyCache:

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

JCache Primer

33-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

JCache makes use of generics to support both compile and runtime type checking. The
example creates a cache that requires keys to be of type String and values to be of
type Integer. Type checking is not required but is often a best practice.

Operations are performed on the cache instance:

String key = "k";
Integer value = 1;

cache.put(key, value);

JCache Cache Configuration
The JCache API defines the CompleteConfiguration interface that is used to configure
a cache. The MutableConfiguration class is a default implementation of the interface.
The configuration options include:

■ setting store-by semantics (by value or by reference)

■ setting cache entry types

■ setting cache expiry

■ enabling read-through and write-through caching

■ enabling management and statistics

Caches are configured when the cache is created. In the previous cache example, the
createCache method required both a name and configuration for the cache. The
following example demonstrates creating a configuration object to be used by the
createCache method:

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setStoreByValue(true).setTypes(String.class, Integer.class)
 .setReadThrough(true)
 .setWriteThrough(true)
 .setManagementEnabled(true)
 .setStatisticsEnabled(true)
 .setExpiryPolicyFactory(CreatedExpiryPolicy.factoryOf(Duration.FIVE_MINUTES));

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

JCache Custom Programming
The JCache API provides multiple interfaces that give applications the ability to
customize caching. To use an implementation, you must use the Factory interface to
create the instance. This ensures that the instance is serializable. The following
interfaces can be implemented by an application:

■ ExpiryPolicy – This interface is used to define when (Duration) cache entries
expire based on entry creation, access, and modification operations.

■ CacheLoader – This interface is used to load data into a cache from an external
resource as is required when using read-through caching.

■ CacheWriter – This interface is used to write data to an external resource as is
required when using read-through caching.

■ CacheEntryListener – A set of subinterfaces (CacheEntryCreatedListener,
CacheEntryUpdatedListener, CacheEntryRemovedListener, and
CacheEntryExpiredListener) that are used to receive and react to Cache events.

JCache Primer

Introduction to Coherence JCache 33-7

■ EntryProcessor – This interface is used to perform compound operations on
cache entries in an atomic, lock-free manner. Unlike the other interfaces, the
EntryProcessor interface does not require the use of the Factory interface to
create an instance; however, the implementation will need to be serialized if the
intention is to use distributed caching.

JCache Management
The JCache API defines two dynamic MBeans that are used to manage caches. The
CacheMXBean MXBean reports cache configuration information. The
CacheStatisticsMXBean MXBean reports cache performance statistics that are used to
troubleshoot potential issues. The dynamic MBeans are registered with an
implementation-specific MBean server and are obtained using standard JMX;
including, the use of any JMX MBean-compliant browser.

JCache Primer

33-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

34

Building Your First Coherence JCache Application 34-1

34Building Your First Coherence JCache
Application

[34] This chapter provides step-by-step instructions for building and running a basic
Coherence JCache example and demonstrates fundamental concepts of both JCache
and the Coherence JCache provider. The sample application is a simple application
that stores a domain object (the Person object) into a cache. The example demonstrates
using a local cache, a partitioned cache, and a pass-through cache.

If you are new to Coherence, you may consider also running the native Coherence
NamedCache example, see "Building Your First Coherence Application" on page 4-1.

This chapter includes the following sections:

■ Task 1: Create a Simple Object

■ Task 2: Store the Object in a Local Cache

■ Task 3: Configure an Example Cluster

■ Task 4: Store the Object in a Partitioned Cache

■ Task 5: Store the Object in a Pass-Through Cache

Task 1: Create a Simple Object
The examples in this chapter uses a simple Person object. The Person object contains a
constructor and three fields for a first name, last name, and age. The Person object
implements the Serializable interface. Serialization is required when the object is
stored in a partitioned cache.

Example 34–1 A Simple Person Object

package com.examples;

import java.io.Serializable;

public class Person implements Serializable {
 private String m_sFirstName;
 private String m_sLastName;
 private int m_nAge;
 private static final long serialVersionUID = 99L;

 public Person(String sFirstName, String sLastName, int nAge)
 {
 m_sFirstName = sFirstName;
 m_sLastName = sLastName;
 m_nAge = nAge;

Task 2: Store the Object in a Local Cache

34-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 }

 public String getFirstName()
 {
 return m_sFirstName;
 }

 public String getLastName()
 {
 return m_sLastName;
 }

 public int getAge()
 {
 return m_nAge;
 }

 public String toString()
 {
 return "Person(" +m_sFirstName + " " + m_sLastName + " : " + m_nAge + ")";
 }
}

Task 2: Store the Object in a Local Cache
Applications use the JCache API to access and interact with a cache. The API provides
methods for creating and using a cache. The default cache type that Coherence uses if
no cache type is defined is a local cache (local to the application process).

Create the Sample JCache Application
The following application stores a single Person object to a local cache. The application
demonstrates getting a cache provider, creating a cache manager, configuring and
creating a cache, and using the cache.

Example 34–2 An Example JCache Application

package com.examples;

import javax.cache.Cache;
import javax.cache.CacheManager;
import javax.cache.Caching;
import javax.cache.configuration.MutableConfiguration;
import javax.cache.spi.CachingProvider;

public class JCacheExample {
 public static void main(String[] args)
 {
 CachingProvider cachingProvider = Caching.getCachingProvider();
 CacheManager cacheManager = cachingProvider.getCacheManager();

 MutableConfiguration<String, Object> config =
 new MutableConfiguration<String, Object>();
 config.setStoreByValue(true).setTypes(String.class, Object.class);

 Cache<String, Object> cache = cacheManager.createCache("MyCache", config);

 Person p = new Person("John","Doe",24);

Task 3: Configure an Example Cluster

Building Your First Coherence JCache Application 34-3

 String key = "k";
 Person value = p;

 cache.put(key, value);
 System.out.println("\n Cache: " + cache.getName() + " contains: " +
 cache.get(key) + "\n");

 cacheManager.close();
 }
}

Run the Sample JCache Application
To run the standalone application example:

1. From a command prompt, compile the Person.java and JCacheExample.java
files. The following example assumes that the files are in a single directory that is
referred to as APPLICATION_HOME for the remainder of the tasks in this chapter:

cd APPLICATION_HOME
javac -cp COHERENCE_HOME\lib\cache-api.jar com\examples*

2. Run the JCacheExample class and include the location of the coherence.jar,
coherence-jcache.jar, and cache-api.jar libraries on the classpath using the
Java -cp option. For example:

java -cp .;COHERENCE_HOME\lib\cache-api.jar;
COHERENCE_HOME\lib\coherence-jcache.jar;COHERENCE_HOME\lib\coherence.jar
com.examples.JCacheExample

Coherence log messages are emitted that indicate the Coherence configuration
resources that are being used and the Coherence cache factory being created. The
application emits the entry that is in the cache and then the application exits.

Task 3: Configure an Example Cluster
Partitioned caches and pass-through caches use a Coherence cluster to distribute
cached data. This task creates an operational override file to modify the out-of-box
default cluster configuration. In particular, the default configuration is modified to
create a private cluster which ensures that the JVM processes do not attempt to join an
existing Coherence cluster that may be running on the network.

To configure an example cluster:

1. Create a file named tangosol-coherence-override.xml.

2. Add the following override configuration and replace cluster_name and port
with values that are unique for this cluster. For example, use your name for the
cluster name and the last four digits of your phone number for the port.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name>cluster_name</cluster-name>

Task 4: Store the Object in a Partitioned Cache

34-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 </member-identity>

 <multicast-listener>
 <address>224.3.6.0</address>
 <port>port</port>
 <time-to-live>0</time-to-live>
 </multicast-listener>
 </cluster-config>

</coherence>

3. Save the file to the APPLICATION_HOME\config directory.

Task 4: Store the Object in a Partitioned Cache
A partitioned cache is a cache that distributes cache entries among any number of
cache servers in a Coherence cluster. Entries that are stored in partitioned caches are
backed up and persist on the cluster after the application process ends. For details
about using partitioned caches with the JCache provider, see "Creating Partitioned
Caches" on page 35-3.

In this task, two separate Java processes form the cluster: a cache server process and
the JCacheExample application process. For simplicity, the two processes are collocated
on a single computer. The cache server, by default, is configured to store cache data.
Lastly, a Coherence CacheFactory is used to verify that the JCacheExample application
successfully created and loaded the cache on the cluster.

Start the Example Cache Server
From a command prompt, start a cache server instance using the DefaultCacheServer
class and use the Java -cp option to include the APPLICATION_HOME\config directory.
The classpath must also include the cache-api.jar, coherence-jcache.jar, and
coherence.jar libraries. Make sure that the operational override file and the
coherence-jcache.jar are loaded on the classpath before the coherence.jar library.
Lastly, use the tangosol.coherence.cacheconfig system property to explicitly use the
JCache coherence-jcache-cache-config.xml cache configuration file that is located
in the coherence-jcache.jar. For example:

java -Dtangosol.coherence.cacheconfig=coherence-jcache-cache-config.xml
-cp APPLICATION_HOME\config;COHERENCE_HOME\lib\cache-api.jar;
COHERENCE_HOME\lib\coherence-jcache.jar;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

From the cache server output, notice that a distributed cache service that is called
jcache-partitioned-service is created and is the senior member of the cluster:

(thread=DistributedCache:jcache-partitioned-service, member=1): Service
jcache-partitioned-service joined the cluster with senior service member 1

Run The Application
The tangosol.coherence.jcache.configuration.classname system property
configures the Coherence JCache provider to use a partitioned cache instead of a local
cache. The application code does not need to be modified in any way, which allows
portability between JCache providers. In addition, Coherence manages the application
scope and cache configuration.

To store the Person object in a partitioned cache:

Task 4: Store the Object in a Partitioned Cache

Building Your First Coherence JCache Application 34-5

1. From a command prompt, run the application that was created in Example 34–2
and set the tangosol.coherence.jcache.configuration.classname system
property to partitioned and the
tangosol.coherence.distributed.localstorage system property to false. Use
the Java -cp option to include the APPLICATION_HOME\config directory. The
classpath must also include the cache-api.jar, coherence-jcache.jar, and
coherence.jar libraries. Make sure that the operational override file and the
coherence-jcache.jar library are loaded on the classpath before the
coherence.jar library. For example:

java -Dtangosol.coherence.jcache.configuration.classname=partitioned
-Dtangosol.coherence.distributed.localstorage=false
-cp .;APPLICATION_HOME\config;COHERENCE_HOME\lib\cache-api.jar;
COHERENCE_HOME\lib\coherence-jcache.jar;COHERENCE_HOME\lib\coherence.jar
com.examples.JCacheExample

Coherence log messages are emitted that indicate the Coherence configuration
resources that are being used. Notice that the tangosol-coherence-override.xml
file was loaded. Lastly, notice that the application process joins the cluster and that
the jcache-partitioned-service instance joins with the senior service on the
cache server:

(thread=DistributedCache:jcache-partitioned-service, member=2): Service
jcache-partitioned-service joined the cluster with senior service member 1

Verify the Cache
The cache server in this example is configured, by default, to store the cache's data.
The data is available to all members of the cluster and persists even after members
leave the cluster. For example, the application exits after it loads and displays a key in
the cache. However, the cache and key are still available for all cluster members.

This step uses the cache factory command-line tool to connect to the cache and list all
items in the cache.

To verify the cache:

1. From a command prompt, start a standalone cache factory instance using the
CacheFactory class. Use the Java -cp option to include the APPLICATION_
HOME\config directory. The classpath must also include the Person object,
cache-api.jar, coherence-jcache.jar, and coherence.jar libraries. Make sure
that the operational override file and the coherence-jcache.jar are loaded on the
classpath before the coherence.jar library. Lastly, set the
tangosol.coherence.cacheconfig system property to
coherence-jcache-cache-config.xml and the
tangosol.coherence.distributed.localstorage system property to false. For
example:

java -Dtangosol.coherence.cacheconfig=coherence-jcache-cache-config.xml
-Dtangosol.coherence.distributed.localstorage=false
-cp APPLICATION_HOME\config;APPLICATION_HOME\person.jar;
COHERENCE_HOME\lib\cache-api.jar;COHERENCE_HOME\lib\coherence-jcache.jar;
COHERENCE_HOME\lib\coherence.jar com.tangosol.net.CacheFactory

The cache factory instance starts and becomes a member of the cluster and returns
a command prompt for the command-line tool.

2. At the command-line tool command prompt, get the MyCache cache using the
cache command:

Task 5: Store the Object in a Pass-Through Cache

34-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cache jcache-partitioned-coherence-jcache-cache-config.xml$MyCache

3. At the command-line tool command prompt, retrieve the contents of the cache
using the list command.

list

The command returns and displays:

k = Person(John Doe : 24)

4. Shutdown all processes.

Task 5: Store the Object in a Pass-Through Cache
A pass-through cache is a cache that delegates to a pre-existing Coherence cache (a
cache that is defined in a Coherence cache configuration file). Pass-through caches
allow you to use all of the native features of Coherence and provide greater control
over cache configuration.

In this task, two separate Java processes form the cluster: a cache server process and
the JCacheExample application process. For simplicity, the two processes are collocated
on a single computer. The cache server, by default, is configured to store cache data.
Lastly, a Coherence CacheFactory is used to verify that the JCacheExample application
successfully created and loaded the cache on the cluster.

Define the Example Cache
For this example, a cache configuration is created that defines a distributed cache that
is explicitly mapped to the MyCache name.

To define the example cache:

1. Create an XML file named example-config.xml.

2. Copy the following distributed cache definition to the file:

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyCache</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedCache</service-name>

Note: For the purpose of this example, the cache name includes the
application scope. Applications do not need to explicitly include the
application scope when using a cache.

Task 5: Store the Object in a Pass-Through Cache

Building Your First Coherence JCache Application 34-7

 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

3. Save the file to the APPLICATION_HOME\config directory.

Start the Example Cache Server
From a command prompt, start a cache server instance using the DefaultCacheServer
class and use the Java -cp option to include the APPLICATION_HOME\config directory
and the coherence.jar library. Make sure that the operational override file is loaded
on the classpath before the coherence.jar library. Lastly, use the
tangosol.coherence.cacheconfig system property to explicitly define the
example-config.xml cache configuration file. For example:

java -Dtangosol.coherence.cacheconfig=example-config.xml
-cp APPLICATION_HOME\config;COHERENCE_HOME\lib\coherence.jar
com.tangosol.net.DefaultCacheServer

Run the Application
The tangosol.coherence.jcache.configuration.classname system property
configures the Coherence JCache provider to use a pass-through cache. The
application code does not need to be modified in any way.

From a command prompt, run the JCacheExample class and set the
tangosol.coherence.jcache.configuration.classname system property to
passthrough, the tangosol.coherence.cacheconfig system property to
example-config, and the tangosol.coherence.distributed.localstorage system
property to false. Use the Java -cp option to include the APPLICATION_HOME\config
directory. The classpath must also include the cache-api.jar, coherence-jcache.jar,
and coherence.jar libraries. Make sure that the operational override file is loaded on
the classpath before the coherence.jar library. For example:

java -Dtangosol.coherence.jcache.configuration.classname=passthrough
-Dtangosol.coherence.cacheconfig=example-config.xml
-Dtangosol.coherence.distributed.localstorage=false
-cp .;APPLICATION_HOME\config;COHERENCE_HOME\lib\cache-api.jar;
COHERENCE_HOME\lib\coherence-jcache.jar;COHERENCE_HOME\lib\coherence.jar
com.examples.JCacheExample

Coherence log messages are emitted that indicate the Coherence configuration
resources that are being used. Notice that the tangosol-coherence-override.xml file
and example-config.xml file were loaded. The application process connects to the
cluster that contains the cache server process and both processes are running the
DistributedCache service. As before, the application emits the entry that is in the
cache and then the application exits.

Verify the Cache
The cache server in this example is configured, by default, to store the cache's data.
The data is available to all members of the cluster and persists even after members

Task 5: Store the Object in a Pass-Through Cache

34-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

leave the cluster. For example, the application exits after it loads and displays a key in
the cache. However, the cache and key are still available for all cluster members.

This step uses the cache factory command-line tool to connect to the MyCache cache
and list all items in the cache.

To verify the cache:

1. From a command prompt, start a standalone cache factory instance using the
CacheFactory class. Use the Java -cp option to include the APPLICATION_
HOME\config directory. The classpath must also include the Person object and the
coherence.jar library. Make sure that the operational override file is loaded on
the classpath before the coherence.jar library. Lastly, set the
tangosol.coherence.cacheconfig system property to example-config.xml and
the tangosol.coherence.distributed.localstorage system property to false.
For example:

java -Dtangosol.coherence.cacheconfig=example-config.xml
-Dtangosol.coherence.distributed.localstorage=false
-cp APPLICATION_HOME\config;APPLICATION_HOME\person.jar;
COHERENCE_HOME\lib\coherence.jar com.tangosol.net.CacheFactory

The cache factory instance starts and becomes a member of the cluster and returns
a command prompt for the command-line tool.

2. At the command-line tool command prompt, get the MyCache cache using the
cache command:

cache MyCache

3. At the command-line tool command prompt, retrieve the contents of the cache
using the list command.

list

The command returns and displays:

k = Person(John Doe : 24)

35

Performing Basic Coherence JCache Tasks 35-1

35Performing Basic Coherence JCache Tasks

[35] This chapter includes basic tasks that are typical of application development when
using the Coherence JCache provider. Many of the instructions demonstrate the JCache
API and include details that are specific to the Coherence JCache provider
implementation.

This chapter includes the following sections:

■ Specifying Coherence as the JCache Provider

■ Creating Coherence JCache Caches

■ Configuring Coherence JCache Caches

■ Performing Cache Operations

■ Using Read-Through and Write-Through Caching

■ Configuring a JCache POF Configuration file

■ Viewing JCache Management Information

Specifying Coherence as the JCache Provider
The META-INF/services/javax.cache.spi.CachingProvider service definition that is
located in the coherence-jcache.jar library assures that applications using the
javax.cache.Caching bootstrap class use the Coherence JCache provider by default.
The instructions and examples in this chapter assume that the Coherence JCache
provider is the default JCache provider. However, applications are able to register and
use multiple cache providers. In such cases, applications have several options to select
the Coherence JCache provider.

The first option is to override the default cache provider using the
javax.cache.spi.cachingprovider system property and specifying the fully qualified
name of the Coherence JCache provider implementation class. For example:

System.setProperty("javax.cache.spi.cachingprovider",
 "com.tangosol.coherence.jcache.CoherenceBasedCachingProvider");

The system property can also be specified on the command line at runtime. For
example,

Note: If multiple JCache providers are registered, then the use of the
getCachingProvider() or getCachingProvider(ClassLoader)
methods result in a cache exception.

Creating Coherence JCache Caches

35-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

-Djavax.cache.spi.cachingprovider=com.tangosol.coherence.jcache.
 CoherenceBasedCachingProvider

The second option is to use the Caching.getCachingProvider(String) or
Caching.getCachingProvider(String, ClassLoader) methods to explicitly request
the Coherence JCache provider implementation. For example:

CachingProvider cachingProvider = Caching.getCachingProvider(
 "com.tangosol.coherence.jcache.CoherenceBasedCachingProvider");
CacheManager cacheManager = cachingProvider.getCacheManager();
...

Use the getCachingProviders methods to iterate the list of registered providers if
multiple caching providers are registered.

Lastly, applications can directly instantiate the Coherence JCache provider. However,
this option is not portable across providers. The following example instantiates the
Coherence JCache provider:

CachingProvider cachingProvider = new CoherenceBasedCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

Creating Coherence JCache Caches
The Coherence JCache provider supports three cache types: local, partitioned, and
pass-through. A local cache is a cache that is local to the application process. A
partitioned cache distributes cached data across Coherence storage-enabled cluster
members. A pass-through cache delegates to any native Coherence cache that is
configured within a Coherence cache configuration file. This section demonstrates
how to create each of these cache types using the JCache API.

This section includes the following topics:

■ Creating Local Caches

■ Creating Partitioned Caches

■ Creating Pass-Through Caches

■ Using Native Coherence Functionality from JCache

Creating Local Caches
Applications can cache data using a local cache. Local caches are the default cache type
when using the Coherence JCache provider and are similar to a Coherence local cache
scheme. Local caches do not provide data backup and the data does not persist after
the application process exits. The following example creates a local cache using the
JCache API.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setStoreByValue(true).setTypes(String.class, String.class);

Cache<String, String> cache = cacheManager.createCache("MyCache", config);

Creating Coherence JCache Caches

Performing Basic Coherence JCache Tasks 35-3

A local cache results in the creation of a Coherence NamedCache instance that use
jcache-local-* cache names that are mapped to a local cache scheme that is named
jcache-local-scheme, which is managed by the jcache-local-service service.

Creating Partitioned Caches
Applications can cache data to a Coherence partitioned cache. The application process
automatically joins a Coherence cluster and Coherence manages the distribution and
backup of the data across the cluster. Partitioned caches do not require any application
code changes; therefore, existing JCache applications can easily be migrated to use
Coherence partitioned caches.

To create a partitioned cache, use the
tangosol.coherence.jcache.configuration.classname property and set it to
partitioned. For example:

-Dtangosol.coherence.jcache.configuration.classname=partitioned

The system property also supports a value of local, which is the default value if no
value is specified and results in a local cache being created.

A partitioned cache results in the creation of a Coherence NamedCache instance that use
jcache-partitioned-* cache names that are mapped to a partitioned cache scheme
that is named jcache-partitioned-scheme, which is managed by the
jcache-partitioned-service service.

Operational Configuration
JCache applications must use a tangosol-coherence-override.xml operational
override file or Coherence system properties, or both, to configure Coherence
operational settings. The operational settings, among other things, allow applications
to join an existing cluster. For details about the operational override file, see
"Specifying an Operational Configuration File" on page 3-2. For example, an
application can specify the following system properties at runtime to join a cluster that
is named Cluster1 and has a multicast address of 231.1.1.1 and port 3060.

-Dtangosol.coherence.cluster=Cluster1
-Dtangosol.coherence.clusteraddress=231.1.1.1
-Dtangosol.coherence.clusterport=3060

Cache Configuration
Partitioned caches for JCache automatically use a default Coherence cache
configuration file that is included in the coherence-jcache.jar library. The
configuration file is called coherence-jcache-cache-config.xml. Any cache servers in
the cluster must also use the coherence-jcache-cache-config.xml file. For example, a
cache server can explicitly set the cache configuration file using the
tangosol.coherence.cacheconfig system property:

-Dtangosol.coherence.cacheconfig=coherence-jcache-cache-config.xml

Note: Partitioned caches do not support store-by-reference
semantics.

Creating Coherence JCache Caches

35-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Creating Pass-Through Caches
Applications can use a pass-through cache to delegate all cache operations to
pre-existing Coherence caches. A pass-through cache results in the use of a native
Coherence NamedCache instance from a JCache interface. A pass-through cache allows
an application to take full advantage of all Coherence native features and
configuration.

To create a pass-through cache, an application can use the Coherence
PassThroughCacheConfiguration JCache configuration object and specify the name of
an existing cache mapping that is defined in a Coherence cache configuration file. For
example:

...
CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

PassThroughCacheConfiguration<String, Object> config =
 new PassThroughCacheConfiguration<String, Object>();
config.setTypes(String.class, Object.class);

Cache<String, Object> cache = cacheManager.createCache("MyCache", config);

As an alternative, existing JCache applications can continue to use a
MutableConfiguration object and create a pass-through cache by specifying the
tangosol.coherence.jcache.configuration.classname property and setting the
value to passthrough. For example:

-Dtangosol.coherence.jcache.configuration.classname=passthrough

The system property allows JCache applications to use Coherence native features
without having to change any application code. However, most
MutableConfiguration object properties are ignored. A warning message is emitted if
the system property is used to create a pass-through cache.

WARNING: Lossy conversion of configuration
javax.cache.configuration.MutableConfiguration to a PassThroughConfiguration.
Most properties from class javax.cache.configuration.MutableConfiguration are
ignored. Configure PassThroughCache using native Coherence configuration
methodologies.

Operational Configuration
Pass-through caches for JCache use a tangosol-coherence-override.xml operational
override file or Coherence system properties, or both, to configure Coherence
operational settings. The operational settings, among other things, allow applications
to join an existing cluster. For details about the operational override file, see
"Specifying an Operational Configuration File" on page 3-2.

Cache Configuration
Pass-through caches for JCache use an existing Coherence cache configuration file.
Applications can specify the location of the file at runtime using the
tangosol.coherence.cacheconfig property. For example:

Note: For details on using an existing Coherence cache configuration
file, see "Using Native Coherence Functionality from JCache" on
page 35-5.

Creating Coherence JCache Caches

Performing Basic Coherence JCache Tasks 35-5

-Dtangosol.coherence.cacheconfig=my-cache-config.xml

The above technique changes the default URI a cache manager uses to get a specified
cache configuration file. An alternative way to specify a cache configuration that uses
the JCache API and does not rely on setting a system property is to specify the URI
when creating a cache manager. For example:

Caching.getCacheManager(new URI(my-cache-config.xml), null, null);

Any cache created from the above returned cache manager uses the specified cache
configuration file to the getCacheManager call.

For details about the cache configuration file, see "Specifying a Cache Configuration
File" on page 3-6.

Using Native Coherence Functionality from JCache
The Coherence JCache provider allows applications to use native Coherence
functionality. Applications that use native Coherence functionality are not portable
among JCache providers. Applications typically use native functionality to reuse
existing Coherence implementations and configuration.

This section includes the following topics:

■ Accessing NamedCache Instances from JCache

■ Using Coherence Configuration with JCache

Accessing NamedCache Instances from JCache
JCache applications can directly access the underlying Coherence NamedCache instance
for a cache. A cache cannot be accessed directly using the NamedCache and JCache API
interchangeably. In addition, using the NamedCache instance to access cache keys and
values bypasses additional behavior provided by the Coherence JCache provider
implementation.

The following example directly accesses the underlying NamedCache instance for a
JCache cache and uses the instance to put and get an entry:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setStoreByValue(true).setTypes(String.class, String.class);

Cache<String, String> cache = cacheManager.createCache("MyCache", config);

String key = "k";
String value = "Hello World";

NamedCache nc = cache.unwrap(NamedCache.class);

nc.put(key, value);

System.out.println("The value is " + nc.get(key) + "\n");

nc.destroy();
cacheManager.close();

Configuring Coherence JCache Caches

35-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Using Coherence Configuration with JCache
Any native Coherence concept that does not have an equivalent JCache concept (such
as eviction) can be configured using a Coherence cache configuration file, operational
override file, or Coherence system properties.

When using an existing Coherence cache configuration file for JCache partitioned and
local caches, then the file must include a jcache namespace handler definition. For
example:

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xmlns:jcache="class://com.tangosol.coherence.jcache.JCacheNamespace"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 ...

The JCache namespace handler generates any missing elements that are required for
the JCache-specific cache configuration file and allows an applications to extend the
standard cache configuration file. The JCache namespace handler does not generate an
element if it is already defined in the cache configuration file.

Configuring Coherence JCache Caches
Coherence JCache-based caches are configured programmatically using the
MutableConfiguration class during cache creation. This is a standard JCache class and
should be used to maintain portability among JCache providers. For example:

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setStoreByValue(true).setTypes(String.class, String.class);

Cache<String, String> cache = cacheManager.createCache("MyCache", config);

Applications that use local and partitioned caches can optionally use the Coherence
JCache provider-specific implementations of the JCache CompleteConfiguration API.
The implementations are LocalCacheConfiguration and
PartitionedCacheConfiguration, respectively. However, the use of these classes is
not portable among JCache providers. For example:

PartitionedCacheConfiguration<String, String> config =
 new PartitionedCacheConfiguration<String, String>();
config.setStoreByValue(true).setTypes(String.class, String.class);

Application that use pass-through caches, require the Coherence JCache provider
PassThroughCacheConfiguration configuration class. Pass-through caches are
configured using native Coherence configuration and therefore do not support using
JCache-specific configuration options.

PassThroughCacheConfiguration<String, String> config =
 new PassThroughCacheConfiguration<String, String>();

This section includes the following topics:

Note: Applications that are designed to be portable across JCache
provider implementations should only rely on the configuration that
is provided through the JCache CompleteConfiguration API.

Configuring Coherence JCache Caches

Performing Basic Coherence JCache Tasks 35-7

■ Setting Store-By Semantics

■ Setting Cache Entry Types

■ Setting Cache Expiry

■ Enabling Read-Through and Write-Through Caching

■ Enabling Management

Setting Store-By Semantics
JCache provides the option to specify whether a cache uses store-by-reference or
store-by-value semantics. The setStoreByValue method configures store-by semantics
for both keys and values. A value of true indicates store-by-value semantics and a
value of false indicates store-by-reference semantics. The Coherence JCache provider
uses store-by-value semantics by default for all cache types and only supports
store-by-reference for local caches. Partitioned caches do not support
store-by-reference. In addition, the provider relies on either Java Serialization or POF
to implement store-by-value semantics for all Coherence JCache cache types.
Applications that use local caches and configure store-by-reference do not require that
keys and values be serializable or POF-enabled.

The following example configures a local cache to use store-by-reference semantics.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setStoreByValue(false);

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

Setting Cache Entry Types
JCache allows you to set the expected key and value types of an entry. Any entry that
is placed in the cache must then adhere to the declared types; otherwise, a runtime
exception occurs. The setTypes method is used to configure the entry types, which
cannot be set to null. The following example sets the key type to String and the value
type to Integer:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setTypes(String.class, Integer.class);

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

Note: If store-by-reference is enabled, the cache can be mutated by
any threads holding a reference to the cache. Keys that are mutated
may not be retrievable. In addition, values that are mutated may be
observed by all threads in the JVM if Java permissions are not
properly set. Beyond the local heap, entries need to be transformed
into a representation and any mutations that occur after the
transformation may not be reflected in the cache.

Configuring Coherence JCache Caches

35-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The default key and value type, if no type is configured, is Object.class. Using the
default type or explicitly configuring the Object.class type disables runtime type
checking and allows and application to use any key or value type. However, it is then
the responsibility of the application to ensure type safety. The following example
disables type checking by explicitly setting the key and value types to Object.class
and omitting the type parameters when getting the cache:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<Object, Object> config =
 new MutableConfiguration<Object, Object>();
config.setStoreByValue(true).setTypes(Object.class, Object.class);

Cache<Object, Object> cache = cacheManager.getCache("MyCache");

Although it is not required, the above examples also use compile-time type checking.
When omitted, the compiler will not check for type safety. The following example
disables both compile-time and runtime type checking.

MutableConfiguration config = new MutableConfiguration();
cacheManager.createCache("MyCache", config);

Setting Cache Expiry
JCache allows you to configure the amount of time an entry is available in a cache.
Entries that expire are no longer valid and are not available to an application.

Expiry is configured using the setExpiryPolicyFactory method to select an expiry
policy and to set a time value. The following example configures entries in the cache to
expire 5 minutes after they are created:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setExpiryPolicyFactory(CreatedExpiryPolicy.factoryOf(
 Duration.FIVE_MINUTES));

Note: The Coherence JCache implementation does not perform
runtime checks to ensure that objects passed into mutative cache
operations match with what was configured through the
javax.cache.configuration.Configuration API. Applications
should use generics to operate on the cache and take advantage of
static compile time checking.

Note: The Coherence JCache provider may evict entries that are not
due to expire if the maximum cache capacity is reached. Cache entries
are evicted using a default eviction policy that is based on a
combination of how often and recently entries are accessed. Entries
that are accessed least frequently and are not accessed for the longest
period are evicted first.

Configuring Coherence JCache Caches

Performing Basic Coherence JCache Tasks 35-9

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

If the policy is set to null or if expiry is not configured, then the eternal policy is used
by default and entries are never expired. Each policy can specify the duration of time
that must pass before a cache entry is considered expired. For convenience,
pre-defined durations are provided: ZERO, ONE_MINUTE, FIVE_MINUTES, TEN_MINUTES,
TWENETY_MINUTES, THIRTY_MINUTES, ONE_HOUR, and ONE_DAY. Any non-negative
duration value can be configured.

The following expiry policies are supported:

■ Created – Cache entries are expired based on when they are created. An update
does not reset the expiry time. This policy is implemented in the JCache
CreatedExpiryPolicy class.

■ Accessed – Cache entries are expired based on the last time they accessed.
Accessed does not include a cache update. This policy is implemented in the
JCache AccessedExpiryPolicy class.

■ Modified – Cache entries are expired based on the last time it was updated.
Updating includes created and changing (updating) an entry. This policy is
implemented in the JCache ModifiedExpiryPolicy class.

■ Touched – Cache Entry based on when it was last touched. A touch includes
creation, update or access. This policy is implemented in the JCache
TouchedExpiryPolicy class.

■ Eternal (default) – Cache entries are never expired. This policy is implemented in
the JCache EternalExpiryPolicy class.

Expiry policies and durations must be serialized to support distributed caching
scenarios. The Coherence JCache provider uses Portable Object Format (POF) for
serialization and includes POF serializers for expiry types. These types must be
configured to be used by the Coherence JCache provider if partitioned caches are used
together with pass-through caches. For details, see "Configuring a JCache POF
Configuration file" on page 35-13.

Enabling Read-Through and Write-Through Caching
Read-through and write-through caching allow applications to load data into a cache
from a data source and to write data from a cache into a data source. Databases are the
most common data source integration, but any data source can be integrated with
JCache caches. Read-through and write-through caching are not enabled by default
and require application-specific implementations of the JCache CacheLoader and
CacheWriter interfaces, respectively.

To enable read-through or write-through caching, set the setReadThrough and
setWriteThrough methods, respectively, to true. For example:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setReadThrough(true).setWriteThrough(true);

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

Performing Cache Operations

35-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

To register a CacheLoader and CacheWriter implementation, use the
setCacheLoaderFactory and setCacheWriterFactory methods, respectively, and enter
the fully qualified name of the implementation class. For example:

cacheWriter = new MyCacheWriter();
cacheLoader = new MyCacheLoader();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setReadThrough(true).setWriteThrough(true)
 .setCacheWriterFactory(FactoryBuilder.factoryOf(cacheWriter));
 .setCacheLoaderFactory(FactoryBuilder.factoryOf(cacheLoader));

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

The implementations are automatically used when performing certain cache
operations. For details on using read-through and write-through caching, see "Using
Read-Through and Write-Through Caching" on page 35-11.

Enabling Management
JCache provides two dynamic mbeans: the CacheMXBean and CacheStatisticsMXBean
mbeans. The CacheMXBean mbean shows the configuration settings of a cache. The
CacheStatisticsMXBean mbean shows performance statistics for a cache. For details
about JCache management, see "Viewing JCache Management Information" on
page 35-13.

Management is disabled by default. To enable management information, set the
setManagementEnabled and setStatisticsEnabled methods to true when
configuring a cache. For example:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration config = new MutableConfiguration();
config.setManagementEnabled(true).setStatisticsEnabled(true);

Cache cache = cacheManager.createCache("MyCache", config);

Management can also be enabled at runtime using the cache manager:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration config = new MutableConfiguration();

Cache cache = cacheManager.createCache("MyCache", config);

cacheManager.enableManagement("MyCache", true);
cacheManager.enableStatistics("MyCache", true);

Performing Cache Operations
JCache includes many operations for interacting with a cache. The operations are
defined in the javax.cache.Cache interface. Refer to the Cache API documentation for
the semantics and details of all the available JCache operations.

Using Read-Through and Write-Through Caching

Performing Basic Coherence JCache Tasks 35-11

A cache must first be created and configured before cache operations can be
performed. The following example demonstrates performing simple put and get
operations:

CachingProvider provider = Caching.getCachingProvider();
CacheManager cacheManager = provider.getCacheManager();

MutableConfiguration config = new MutableConfiguration();

Cache cache = cacheManager.createCache("MyCache", config);

cache.put("k1", "Hello World");
System.out.println("The value is " + cache.get("k1")+ "\n");

The above example does not perform compile or runtime entry type checking. For
details on performing type checking, see "Setting Cache Entry Types" on page 35-7.

Understanding Coherence JCache Operations
Cache operations are implemented differently for each cache type: LocalCache,
PartitionedCache, and PassThroughCache. For example, partitioned cache operations
are implemented using Coherence entry processors that can take advantage of
Coherence data serialization. Each of the cache types provides implementations of
cache operations that take advantage of the cache topology being used.

Using Read-Through and Write-Through Caching
JCache supports the use of read-through and write-through caching to integrate caches
with external resources. Read-through caching automatically loads entries from
external resources and write-through caching automatically writes entries to external
resources. Read-through and write-through caching require an application to
implement the JCache CacheLoader and CacheWriter interfaces, respectively.
Read-through and writer-through caching are not enabled by default. See "Enabling
Read-Through and Write-Through Caching" on page 35-9.

Providing a Read-Through Implementation
Read-through caching requires an application to implement the CacheLoader interface.
The implementation details are specific to the external resource that is being used. For
details about implementing CacheLoader methods, refer to the JCache API
documentation.

The CacheLoader interface provides the load and loadAll methods. An
implementation uses these methods to include the necessary logic to connect and
retrieve a value, or set of values, from an external resource. A cache loader
implementation is automatically invoked whenever an entry for a given key is not
found as a result of performing a get, getAll, getAndRemove, or getAndReplace
operation. When using entry processors, the invoke and invokeAll operations

Note: Key and values cannot be null.

Note: Applications that choose to use a Coherence pass-through
cache, can use read-through and write-through caching natively in
Coherence and are not required to include JCache specific loader and
writer implementations.

Using Read-Through and Write-Through Caching

35-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

automatically use the cache loader if the entry processor uses the getValue method.
For details about using entry processors, see "Processing JCache Entries" on page 37-1.

Pre-Loading a Cache
The Cache API includes the Cache.loadAll method that can be used to pre-load a
cache. The use of this method results in a call to the loadAll method of a CacheLoader
implementation. In this case, the CacheLoader implementation must still be configured
on the cache, but read-through caching does not need to be enabled. For example:

cacheLoader = new MyCacheLoader();

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setTypes(String.class, String.class)
 .setReadThrough(false)
 .setCacheLoaderFactory(FactoryBuilder.factoryOf(cacheLoader));

In the above example, the factoryOf method takes an instance of the MyCacheLoader
implementation. The method is used for implementations that have state and requires
that the implementation class be serializable. If the implementation does not have
state, then it is best to use the factoryOf(Class) or factoryOf(String classname)
methods instead.

Loading a cache from an external resource may take a long time to complete. The
CompletionListener interface allows an application to be notified when the cache has
been loaded or if an exception has occurred while loading the cache. The
CompletionListenerFuture class is a default implementation that can be used as
required. For example:

cacheLoader = new MyCacheLoader();

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setTypes(String.class, String.class)
 .setReadThrough(false)
 .setCacheLoaderFactory(FactoryBuilder.factoryOf(cacheLoader));
Cache<String, String> cache = cacheManager.createCache("MyCache", config);

CompletionListenerFuture future = new CompletionListenerFuture();

cache.loadAll(keys, true, future);

Providing a Write-Through Implementation
Write-through caching requires an application to implement the CacheWriter
interface. The implementation details are specific to the external resource that is being
used. For details about implementing CacheWriter methods, refer to the JCache API
documentation.

The CacheWriter interface provides methods for writing entries (write and writeAll)
to an external resource and methods for deleting entries (delete and deleteAll) from
an external resource. An implementation uses these methods to include the necessary
logic to connect and update data on an external resource. A cache writer
implementation is automatically invoked whenever the following cache operations are
performed: put, putAll, putIfAbsent, remove, removeAll, replace, getAndPut,
getAndRemove, getAndReplace, invoke, and invokeAll.

Viewing JCache Management Information

Performing Basic Coherence JCache Tasks 35-13

Configuring a JCache POF Configuration file
The Coherence JCache provider uses POF for serialization and requires the
coherence-pof-config.xml file. JCache specific POF types are defined in the
coherence-jacache.jar\coherence-jcache-pof-config.xml POF configuration file.
If you are using partitioned caches together with pass-through caches, the JCache POF
types must be included as part of your POF configuration file. For example:

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-pof-config coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>coherence-jcache-pof-config.xml</include>
...

For details on using POF configuration files, see "Specifying a POF Configuration File"
on page 3-8.

Viewing JCache Management Information
The Coherence JCache provider implements both the CacheMXBean and
CacheStatisticsMXBean Dynamic MBean interfaces. The interfaces provide the
following management information:

■ CacheMXBean – Reports configuration information for a cache. Each configuration
option and its current settings are listed as attributes.

■ CacheStatisticsMXBean – Reports performance information for a cache. The
performance statistics are listed as attributes and are used to help troubleshoot
possible issues with a cache.

Management information is not enabled by default. See "Enabling Management" on
page 35-10 for details about enabling management.

Coherence JCache MBeans
Management information can be viewed using any JMX MBean-compliant browser
such as the Java VisualVM console that is included with the JDK (JDK_
HOME/bin/jvisualvm). Management MBeans for local and partitioned caches are
registered to the default MBean server and are found in a JMX browser under
javax.cache.

Coherence-Java VisualVM Plug-in
JCache management information can be viewed using the Coherence-Java VisiualVM
plug-in. The plug-in includes a JCache tab that aggregates the management
information over time and is used to troubleshoot configuration and performance
issues. For details on the Coherence reports for JCache, see Managing Oracle Coherence.

Note: Management information for pass-through caches are reported
using the native Coherence JMX management implementation. For
details about enabling native Coherence management, see Managing
Oracle Coherence.

Viewing JCache Management Information

35-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Coherence Reports
JCache management information can also be viewed using Coherence reports. The
Coherence JCache reports aggregate management information over time and are used
to troubleshoot configuration and performance issues. For details on the Coherence
reports for JCache, see Managing Oracle Coherence.

Understanding the CacheConfiguration MBean
The CoherenceCacheMXBean class implements the CacheMXBean interface and provides
configuration information for a cache. An MBean object is registered for each cache.
The object name of the MBean is:

javax.cache:type=CacheConfiguration,CacheManager=coherence-jcache-cache-co
nfig.xml,Cache=cache_name

Attributes
Table 35–1describes the attributes for the CacheConfiguration MBean.

Operations
The CacheConfiguration MBean includes a clear operation that resets all
configuration management information.

Understanding the CacheStatistics MBean
The Coherence JCache provider includes two implementations of the JCache
CacheStatisticsMXBean interface. The ContextJCacheStatistics implementation is
used to collect performance statistics for local caches. The
PartitionedJCacheStatistics is used to collect and aggregate performance statistics
for all storage members in a Coherence cluster. An MBean object is registered for each
cache. The object name of the MBean is:

Table 35–1 CacheConfiguration MBean Attributes

Attribute Type Access Description

KeyType String read-only The required key type for the cache. The default value, if
no required key type is configured, is java.lang.object
and indicates that type checking is disabled.

ManagementEnabled Boolean read-only Specifies whether management is enabled for the cache.
The default value is false.

ReadThrough Boolean read-only Specifies whether the cache operates in read-through
mode. The default value is false.

StatisticsEnabled Boolean read-only Specifies whether performance statistics are being
collected for the cache. The default value is false.

StoreByValue Boolean read-only Specifies whether the cache uses store-by-value or store
by-reference semantics. The default value is true and
indicates that keys and values are stored by value. A
value of false indicates that keys and values are stored
by reference.

ValueType String read-only The required value type for the cache. The default value,
if no required value type is configured, is
java.lang.object and indicates that type checking is
disabled.

WriteThrough Boolean read-only Specifies whether the cache operates in write-through
mode. The default value is false.

Viewing JCache Management Information

Performing Basic Coherence JCache Tasks 35-15

javax.cache:type=CacheStatistics,CacheManager=coherence-jcache-cache-confi
g.xml,Cache=cache_name

Attributes
Table 35–2 describes the attributes for the CacheStatistics MBean.

Operations
The CacheStatistics MBean includes a clear operation that resets all cache statistics.

Changing the Refresh Interval for Partitioned Cache Statistics
The Coherence JCache provider uses a refresh interval to determine when to refresh
performance statistics for partitioned caches. The refresh is performed lazily; statistics
are refreshed only after the refresh interval is reached and a call to get a statistic is
made. Statistics are not refreshed if a call to get a statistic is never made even if the
refresh interval is reached.

The default refresh interval is 3 seconds and can be changed to accommodate different
cluster sizes and network performance. For example, a cluster with many storage
members may require a longer refresh interval to allow statistic aggregation to be
performed across all members and to guard against constant updating.

Table 35–2 Cache Statistics Attributes

Attribute Type Access Description

AverageGetTime Float read-only The average time to perform get operations. For
read-through caches, the time does not include the time
that is required to load entries because of a cache miss.

AveragePutTime Float read-only The average time to perform put operations

AverageRemoveTime Float read-only The average time to perform remove operations

CacheEvictions Long read-only The total number of evictions from the cache. An eviction
is initiated by the cache to free up space. An eviction is
not considered a remove operation.

Note: This attribute is not implemented by the Coherence
JCache provider.

CacheGets Long read-only The total number of get operations. The value is equal to
the sum of hits and misses and does not include
operations that check for the existence of a key.

CacheHitPercentage Float read-only The percentage of cache requests that return an entry. The
percentage is reported as a decimal value and is
calculated using the value of cache hits divided by cache
get operations.

CacheHits Long read-only The number of successful get operations

CacheMissPercentage Float read-only The percentage of cache requests that do not return an
entry. The percentage is reported as a decimal value and
is calculated using the value of cache misses divided by
cache get operations.

CacheMisses Long read-only The number of unsuccessful get operations

CachePuts Long read-only The total number of put operations including operations
that replace and existing entry.

CacheRemovals Long read-only The total number of remove operations. The value does
not include evictions initiated by the cache to free up
space.

Viewing JCache Management Information

35-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

To change the refresh interval, use the
tangosol.coherence.jcache.statistics.refreshtime system property and set it to a
time entered in milliseconds. The following example configures the refresh interval to
5 seconds.

-Dtangosol.coherence.jcache.statistics.refreshtime=5000

36

Using JCache Events 36-1

36Using JCache Events

[36] This chapter provides instructions for creating and registering event listeners to
handle JCache events. The JCache event model is defined in the javax.cache.event
package and described in Chapter 8, "Cache EntryListeners," of the Java Caching API
specification.

This chapter includes the following sections:

■ Overview of Using JCache Events

■ Creating Event Listeners

■ Creating Event Filters

■ Registering Event Listeners and Filters

Overview of Using JCache Events
The JCache event model allows applications to receive and process events that
represent observable changes to the entries in a cache. The event model uses standard
Java event and event listener conventions that are common in Java applications.

A JCache event is defined in the CacheEntryEvent class and is a standard Java event
that is specific to cache entries. JCache defines four event types for cache entries:

■ CREATED – Indicates that the cache entry was created

■ UPDATED – Indicates that the cache entry was updated

■ REMOVED – Indicates that the cache entry was removed

■ EXPIRED – Indicates that the cache entry has expired

The JCache event model uses event listeners to handle events and perform any
necessary event processing. Each event type has a corresponding event listener
interface that can be implemented as required. In addition, event filters can be used to
process events before the events are dispatched to a listener. Event listeners and filters
can be statically registered on a cache during configuration or dynamically after the
cache has been created.

The Coherence JCache provider supports the use of JCache events for local,
partitioned, and pass-through caches. The provider makes use of the native Coherence
MapListener and MapEvent APIs to implement JCache events. Applications can
directly access the underlying NamedCache instance and use the MapListener API;
however, doing so directly bypasses additional behavior provided by the JCache
Coherence implementation.

Creating Event Listeners

36-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Creating Event Listeners
Each event type has a corresponding event listener interface that extends the
CacheEntryListener interface. The event type interfaces include the
CacheEntryCreatedListener, CacheEntryUpdatedListener,
CacheEntryRemovedListener, and CacheEntryExpiredListener interfaces. A single
event listener can choose to implement multiple event type listener interfaces or
multiple event listeners can implement the same event type listener interfaces. The
following example creates an event listener for CREATED events that emits a log
message that includes the event details every time an entry is created in a cache.

Example 36–1 An Example Event Listener Implementation

import java.io.Serializable;
import javax.cache.event.CacheEntryCreatedListener;
import javax.cache.event.CacheEntryEvent;
import javax.cache.event.CacheEntryListenerException;

public class MyCacheEntryListener<K, V>
 implements CacheEntryCreatedListener<K, V>, Serializable
 {
 private static final long serialVersionUID = 1L;

 public void onCreated(Iterable<CacheEntryEvent<? extends K, ? extends V>>
 events)
 throws CacheEntryListenerException
 {
 for (CacheEntryEvent<? extends K, ? extends V> event : events)
 {
 System.out.println("Received a " + event);
 }
 }
}

Event listeners that require serialization can use POF serialization. However, POF is
not portable among cache provider implementations.

Creating Event Filters
Cache entry event filters provide the opportunity to evaluate cache events before the
events are dispatched to an entry event listener. Event filters allow additional
processing to be performed as required. Event filters must implement the
CacheEntryEventFilter interface. The following example creates an event filter for
CREATED events that stops the event from being dispatched and emits a system
message.

Example 36–2 An Example Event Filter Implementation

import java.io.Serializable;
import javax.cache.event.CacheEntryEvent;
import javax.cache.event.CacheEntryEventFilter;
import javax.cache.event.CacheEntryListenerException;
import javax.cache.event.EventType;

public class MyCacheEntryEventFilter<K, V>
 implements CacheEntryEventFilter<K, V>, Serializable
 {
 private static final long serialVersionUID = 1L;

Registering Event Listeners and Filters

Using JCache Events 36-3

 public boolean evaluate(CacheEntryEvent<? extends K, ? extends V> event)
 throws CacheEntryListenerException
 {
 boolean result = false;

 if (event.getEventType() == EventType.CREATED)
 {
 System.out.println("filter event=" + event + " filter result=" +
 result);
 }

 return result;
 }
}

Event filters that require serialization can use POF serialization. However, POF is not
portable among cache provider implementations.

Registering Event Listeners and Filters
Cache entry listeners and event filters can be registered statically on a cache during
configuration or dynamically after a cache instance has been created. Either method
requires the use of a listener configuration. The configuration is defined in the
CacheEntryListenerConfiguration interface. The
MutableCacheEntryListenerConfiguration class provides a default implementation
that can be used as required and is demonstrated in this section. The configuration is
used to specify the listener implementation class to use, the filter implementation class
to use, whether to send the old value as part of the event, and whether event
notification should be synchronous or asynchronous. The order in which listeners are
notified is not guaranteed.

Registering Event Listeners and Filters During Cache Configuration
To register CacheEntryListener and CacheEntryEventFilter implementations
statically during configuration, use the addCacheEntryListenerConfiguration
method and include the implementation classes and configure the listener as required.
The following example registers the event listener and filter that was created in
Example 36–1 and Example 36–2, respectively.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

m_listener = new MyCacheEntryListener();

MutableConfiguration<String, String> config =
 new MutableConfiguration<String, String>();
config.setTypes(String.class, String.class).addCacheEntryListenerConfiguration(
 new MutableCacheEntryListenerConfiguration<String, String>
 (FactoryBuilder.factoryOf(m_listener),FactoryBuilder.factoryOf(
 new MyCacheEntryEventFilter<String, String>()),true,true));

Cache<String, String> cache = cacheManager.createCache("MyCache", config);

The example configuration sets event notifications to include the old value of the entry
and to use synchronous dispatching as indicated by the two true properties.

The removeCacheEntryListenerConfiguration method removes a cache entry listener
that was previously registered.

Registering Event Listeners and Filters

36-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Registering Event Listeners and Filters at Runtime
To register CacheEntryListener and CacheEntryEventFilter implementations
dynamically on a cache instance at runtime, use the RegisterCacheEntryListener
method and include the implementation classes and configure the listener as required.
The following example registers the event listener and filter that was created in
Example 36–1 and Example 36–2, respectively.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

m_listener = new MyCacheEntryListener();

MutableConfiguration<String, Sring> config =
 new MutableConfiguration<String, String>();
config.setTypes(String.class, String.class);

Cache<String, String> cache = cacheManager.createCache("MyCache", config);

cache.registerCacheEntryListener(
 new MutableCacheEntryListenerConfiguration<String, String>
 (FactoryBuilder.factoryOf(m_listener),FactoryBuilder.factoryOf(
 new MyCacheEntryEventFilter<String, String>()),false,false));

The example configuration sets event notifications to not include the old value of the
entry and to use asynchronous dispatching as indicated by the two false properties.

The deregisterCacheEntryListener method removes a cache entry listener that was
previously registered.

37

Processing JCache Entries 37-1

37Processing JCache Entries

[37] This chapter provides instructions for creating and using JCache entry processors to
modify cache entries. Entry processors are defined in the javax.cache.processor
package and described in Chapter 9, "Entry Processors," of the Java Caching API
specification.

This chapter includes the following sections:

■ Overview of Processing JCache Entries

■ Creating Entry Processors

■ Using Entry Processors

Overview of Processing JCache Entries
JCache supports the use of entry processors to perform updates on cache entries in an
atomic, lock-free manner. In distributed cache environments, entries are processed in
parallel across each of the different servers that holds cached data.

Entry processors are often used to make multiple changes to a cache in a single
operation. For example, the entry processor may evaluate the values for a set of keys
and then return different values based on some logic. The application can only view
the final result of the processing and does not have access to intermediary results
while the entry processor is being invoked. If an error occurs during processing, then
an exception is thrown and no changes are made to the cache.

Entry processors must implements the EntryProcessor interface. Entry processor
implementations are invoked on cache entries at runtime using the Cache.invoke and
Cache.invokeAll methods.

Lastly, the Coherence JCache provider supports the use of JCache entry processors for
local, partitioned, and pass-through caches. The provider makes use of the native
Coherence InvocableMap.EntryProcessor API to implement JCache entry processors.

Creating Entry Processors
Entry processors must implement the EntryProcessor interface. The interface contains
a single process method that is used to provide any processing logic for cache entries.
Entry processors operate on MutableEntry entries. The MutableEntry interface ensures
that entry processors have exclusive access to entries during processing. The process
method also allows any arguments to be defined. The arguments can be passed to the
processor when the processor is invoked.

Using Entry Processors

37-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Operations that are performed as part of an entry processor are not visible to an
application and only take affect after the process method has completed. If an error
occurs during the process method, then no changes are made to the cache entries.

Entry processors are not guaranteed to be executed in-process and therefore should
always be serializable. For example, when using a Coherence partitioned cache, an
entry processor may be executed on the cache server that contains the data to be
processed. For Coherence caches, entry processors have the option of using POF
serialization. However, POF is not portable among cache provider implementations.

Example 37–1 creates an entry processor that increments the value of a cache entry by
one. The value of the entry is an integer. The key, value, and return types are explicitly
defined to ensure type safety as required by the API.

Example 37–1 An Example EntryProcessor Implementation

import java.io.Serializable;
import javax.cache.processor.EntryProcessor;
import javax.cache.processor.EntryProcessorException;
import javax.cache.processor.MutableEntry;

public class MyEntryProcessor implements EntryProcessor <String, Integer,
 Integer>, Serializable
 {
 public static final long serialVersionUID = 1L;

 public Integer process(MutableEntry<String, Integer> entry,
 Object... arguments) throws EntryProcessorException
 {

 if (entry.exists())
 {
 Integer current = entry.getValue();
 entry.setValue(current + 1);
 return current;
 }
 else
 {
 entry.setValue(0);
 return -1;
 }
 }
}

Using Entry Processors
The Cache API provides two methods that are used to invoke an entry processor. The
invoke method operates on a single cache entry and the invokeAll method operates
on a set of cache entries. Entries are specified using the key name.

Invoking Entry Processors for a Single Key
Entry processors are invoked on a single key using the invoke method from a Cache
instance. The following example demonstrates processing a single key. The examples
uses the MyEntryProcessor implementation that was created in Example 37–1.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

Using Entry Processors

Processing JCache Entries 37-3

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setTypes(String.class, Integer.class);

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

String key = "k";
Integer value = 1;

cache.put(key, value);

System.out.println("The value is " + cache.get(key) + "\n");

cache.invoke(key, new MyEntryProcessor());

System.out.println("The value is now " + cache.get(key) + "\n");

Invoking Entry Processors for Multiple Keys
Entry processors are invoked on multiple keys using the invokeAll method. The keys
must be grouped together using a Set implementation. The processor is invoked for
each key in the set and the order in which keys are processed is not guaranteed. The
following example demonstrates processing multiple keys that are grouped using the
HashSet class and also uses the EntryProcessorResult.get method to retrieve the
value returned by the entry processor for a specific key. The example uses the
MyEntryProcessor implementation that was created in Example 37–1.

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager cacheManager = cachingProvider.getCacheManager();

MutableConfiguration<String, Integer> config =
 new MutableConfiguration<String, Integer>();
config.setTypes(String.class, Integer.class);

Cache<String, Integer> cache = cacheManager.createCache("MyCache", config);

String key = "k";
Integer value = 1;
String key1 = "k1";
Integer value1 = 1;

cache.put(key, value);
cache.put(key1, value1);

HashSet hs = new HashSet();
hs.add(key);
hs.add(key1);

Map<String, EntryProcessorResult<Integer>> map = cache.invokeAll(hs,
 new MyEntryProcessor());

System.out.println("The value of k is now " + cache.get(key) +
 " the result of invokeAll for k is previous value of " + map.get(key).get() +
 "\n");

System.out.println("The value of k1 is now " + cache.get(key1) +
 " the result of invokeAll for k1 is previous value of " + map.get(key1).get() +
 "\n");

Using Entry Processors

37-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Part VI
Part VI Appendices

Part VI contains the following appendices:

■ Appendix A, "Operational Configuration Elements"

■ Appendix B, "Cache Configuration Elements"

■ Appendix C, "POF User Type Configuration Elements"

■ Appendix D, "System Property Overrides"

■ Appendix E, "The PIF-POF Binary Format"

A

Operational Configuration Elements A-1

AOperational Configuration Elements

[38] This appendix provides a detailed reference of the operational deployment descriptor
elements and briefly describes the deployment descriptor files in which these elements
can appear.

This appendix includes the following sections:

■ Operational Deployment Descriptor

■ Operational Override File

■ Element Reference

■ Attribute Reference

Operational Deployment Descriptor
The tangosol-coherence.xml operational deployment descriptor specifies the
operational and run-time settings that control clustering, communication, and data
management services. The operational deployment descriptor is located in the root of
the coherence.jar library. A custom tangosol-coherence.xml file can be created;
however, the preferred approach to changing the operational settings is to use a
tangosol-coherence-override.xml operational override file as described in
"Operational Override File" below.

The operational deployment descriptor schema is defined in the
coherence-operational-config.xsd file, which imports the
coherence-operational-config-base.xsd file, which, in turn, implicitly imports the
coherence-config-base.xsd file. The operational deployment descriptor schema file
is located in the root of the coherence.jar library and at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-operational-config/1.2/coheren
ce-operational-config.xsd

The <cohrence> element is the root element of the operational descriptor and includes
an XSD and Coherence namespace reference and the location of the
coherence-operational-config.xsd file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">

http://xmlns.oracle.com/coherence/coherence-operational-config/1.0/coherence-operational-config.xsd
http://xmlns.oracle.com/coherence/coherence-operational-config/1.0/coherence-operational-config.xsd

Operational Override File

A-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Operational Override File
The preferred approach for configuring operational settings is to use an operational
override file. The schema for the override file and the operational deployment
descriptor are the same except that all elements are optional. Any missing elements are
loaded from the tangosol-coherence.xml operational deployment descriptor. The
default name for the override file is tangosol-coherence-override.xml. At run time,
this file must be found in the classpath before the coherence.jar library.

Additional override files can be configured using the xml-override attribute within
the <coherence> element. This allows for additional fine tuning between similar
deployment environments such as staging and production. For an example of this
feature, see the tangosol-coherence-override-eval.xml,
tangosol-coherence-override-dev.xml, and
tangosol-coherence-override-prod.xml files within coherence.jar. See "Attribute
Reference" on page A-100 for details on using the xml-override attribute.

Notes:

■ The schema located in the coherence.jar library is always used at
run time even if the xsi:schemaLocation attribute references the
Web URL.

■ The xsi:schemaLocation attribute can be omitted to disable
schema validation.

■ When deploying Coherence into environments where the default
character set is EBCDIC rather than ASCII, ensure that the
deployment descriptor file is in ASCII format and is deployed into
its run-time environment in the binary format.

Element Reference

Operational Configuration Elements A-3

Element Reference

Table A–1 lists all non-terminal operational configuration elements.

Table A–1 Non-Terminal Operational Configuration Elements

Element Used in

access-controller security-config

address-provider well-known-addresses, address-providers

address-providers cluster-config

authorized-hosts cluster-config

cache-factory-builder-config coherence

callback-handler security-config

cluster-config coherence

cluster-quorum-policy cluster-config

coherence root element

configurable-cache-factory-config coherence

filter filters

filter cluster-config

flashjournal-manager journaling-config

flow-control packet-delivery

host-range authorized-hosts

identity-asserter security-config

identity-manager ssl

identity-transformer security-config

incoming-message-handler cluster-config

init-param init-params

init-params access-controller, address-provider, callback-handler,
configurable-cache-factory-config, filter, service

instance socket-provider, service-failure-policy

journaling-config cluster-config

key-store identity-manager, trust-manager

license-config coherence

logging-config coherence

management-config coherence

mbean mbeans

mbeans management-config

mbean-filter management-config

member-identity cluster-config

multicast-listener cluster-config

Element Reference

A-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

notification-queueing packet-publisher

outgoing-message-handler cluster-config

outstanding-packets flow-control

packet-buffer multicast-listener, packet-publisher, unicast-listener

packet-bundling packet-delivery

packet-delivery packet-publisher

packet-publisher cluster-config

packet-size packet-publisher

packet-speaker cluster-config

pause-detection flow-control

provider ssl, identity-manager, trust-manager

ramjournal-manager journaling-config

reporter management-config

security-config coherence

serializer serializers

serializers cluster-config

service-guardian cluster-config

service services

services cluster-config

shutdown-listener cluster-config

socket-address well-known-addresses

socket-provider socket-providers, unicast-listener

socket-providers cluster-config

ssl socket-provider

tcp-ring-listener cluster-config

traffic-jam packet-publisher

trust-manager ssl

unicast-listener cluster-config

volume-threshold packet-speaker

well-known-addresses unicast-listener

Table A–1 (Cont.) Non-Terminal Operational Configuration Elements

Element Used in

Element Reference

Operational Configuration Elements A-5

access-controller

Used in: security-config.

ADescription
The access-controller element contains the configuration information for the class
that implements the com.tangosol.net.security.AccessController interface, which
is used by the Coherence Security Framework to check access right and
encrypt/decrypt node-to-node communications.

AElements
Table A–2 describes the subelements of the access-controller element.

Table A–2 access-controller Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that implements
com.tangosol.net.security.AccessController interface, which is used by the
security framework to check access rights for clustered resources and
encrypt/decrypt node-to-node communications regarding those rights. See
Securing Oracle Coherence for more information on using an access controller. The
default value is com.tangosol.net.security.DefaultController.

<init-params> Optional Contains one or more initialization parameter(s) for a class that implements the
AccessController interface. For the default AccessController implementation
the parameters are the paths to the key store file and permissions description file,
specified as follows:

<init-params>
 <init-param id="1">
 <param-type>java.io.File</param-type>
 <param-value
system-property="tangosol.coherence.security.keystore"></param-value>
 </init-param>
 <init-param id="2">
 <param-type>java.io.File</param-type>
 <param-value
system-property="tangosol.coherence.security.permissions"></param-val
ue>
 </init-param>
</init-params>

The preconfigured system property overrides based on the default
AccessController implementation and the default parameters as specified
above are tangosol.coherence.security.keystore and
tangosol.coherence.security.permissions. For more information on the
subelements of the init-param element, see "init-param" on page A-28.

address-provider

A-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

address-provider

Used in: well-known-addresses, address-providers

ADescription
The address-provider element specifies either socket address information (IP, or DNS
name, and port) or an implementation of the com.tangosol.net.AddressProvider
interface. The interface offers a programmatic way to define socket addresses.

Within the well-known-addresses element, use the address-provider element to
specify an address factory that implements the com.tangosol.net.AddressProvider
interface. The interface offers a programmatic way to define Well Known Addresses
(WKA) members. For details on WKA, see "Using Well Known Addresses" on
page 7-9. The following example demonstrates using the address-provider element
within the well-known-addresses element:

<unicast-listener>
 <well-known-addresses>
 <address-provider>
 <class-name>package.MyAddressProvider</class-name>
 </address-provider>
 </well-known-addresses>
</unicast-listener>

Within the address-providers element, use the address-provider element to specify
a socket address or an address factory that implements the
com.tangosol.net.AddressProvider interface. The address provider definitions are
referenced by TCP/IP acceptors and TCP/IP initiators which are used to setup
Coherence*Extend. A TCP/IP acceptor is also available for memcached clients.

The tcp-acceptor, memcached-acceptor, remote-addresses, and
name-service-addresses elements in the cache configuration file reference address
provider definitions using the specified id attribute value. For details on the
tcp-acceptor element, see "tcp-acceptor" on page B-121. For details on the
memcached-acceptor element, see "memcached-acceptor" on page B-71. For details on
the remote-addresses element, see "remote-addresses" on page B-109. For details on
the name-service-addresses element, see "name-service-addresses" on page B-72. The
following example demonstrates defining address provider definitions within the
<address-providers> element.

<address-providers>
 <address-provider id="ap1">
 <class-name>package.MyAddressProvider</class-name>
 </address-provider>
 <address-provider id="ap2">
 <socket-address>
 <address>192.168.1.3</address>
 <port>9999</port>
 </socket-address>
 </address-provider>
 <address-provider id="ap3">
 <socket-address>
 <address>192.168.1.4</address>
 <port>9999</port>
 </socket-address>
 </address-provider>
</address-providers>

Element Reference

Operational Configuration Elements A-7

AElements
Table A–3 describes the subelements of the address-provider element.

Table A–3 address-provider Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.net.AddressProvider interface.

This element cannot be used with the <class-factory-name>
element.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Specifies initialization parameters which are accessible by
implementations that include a public constructor with a matching
signature. Initialization parameters can be specified when using
both the <class-name> element and the <class-factory-name>
element.

<socket-address> Optional Specifies the address (IP, or DNS name, and port) to which a socket
is bound.

This element should only be used when defining socket addresses
for a TCP/IP acceptor. This element cannot be used if an address
provider implementation is defined using the <class-name> or
<class-factory-name> element.

address-providers

A-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

address-providers

Used in: cluster-config

ADescription
The address-providers element contains the declarative data for each address
provider.

AElements
Table A–4 describes the subelements of the address-providers element.

Table A–4 address-providers Subelements

Element
Required/
Optional Description

<address-provider> Optional Specifies either socket address information or an implementation of
the com.tangosol.net.AddressProvider interface. Multiple
address-provider elements can be specified.

Element Reference

Operational Configuration Elements A-9

authorized-hosts

Used in: cluster-config.

ADescription
If specified, restricts cluster membership to the cluster nodes specified in the collection
of unicast addresses, or address range. The unicast address is the address value from
the authorized cluster nodes' unicast-listener element. Any number of
host-address and host-range elements may be specified.

AElements
Table A–5 describes the subelements of the authorized-hosts element.

Table A–5 authorized-hosts Subelements

Element
Required/
Optional Description

<host-address> Optional Specifies an IP address or host name. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges is allowed to
join the cluster. The content override attributes id can be optionally used to
fully or partially override the contents of this element with XML document
that is external to the base document.

<host-range> Optional Specifies a range of IP addresses. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges is allowed to
join the cluster. The content override attributes id can be optionally used to
fully or partially override the contents of this element with XML document
that is external to the base document.

<host-filter> Optional Specifies class configuration information for a com.tangosol.util.Filter
implementation that is used by the cluster to determine whether to accept a
new cluster member. The evaluate() method is passed the
java.net.InetAddress of the client. Implementations should return true
to allow the new member to join the cluster.

cache-factory-builder-config

A-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cache-factory-builder-config

Used in: coherence

ADescription
The cache-factory-builder-config element contains the configuration information
for constructing an instance of the com.tangosol.net.CacheFactoryBuilder interface.
The default implementation is the com.tangosol.net.DefaultCacheFactoryBuilder
class, which can be extended in advanced use-cases to provide further domain-specific
logic for creating and managing ConfigurableCacheFactory instances.

A custom CacheFactoryBuilder implementation is used to build and manage multiple
cache factory configurations across multiple class loaders. This is an advanced use case
that allows applications that are scoped by different class loaders to use separate cache
configuration files (as is the case with JavaEE and OSGI). For example, the following
code uses a custom ConfigurableCacheFactory implementation from two
classloaders.

CacheFactoryBuilder cfb = CacheFactory.getCacheFactoryBuilder();

//load the first configuration
cfb.getConfigurableCacheFactory("example-config.xml", loader0);
CacheFactory.ensureCluster();
NamedCache cache = CacheFactory.getCache("dist-example");

//load the second configuration
cfb.getConfigurableCacheFactory("example-config1.xml", loader1);
CacheFactory.ensureCluster();
NamedCache cache1 = CacheFactory.getCache("dist-example1");

AElements
Table A–6 describes the subelements of the cache-factory-builder-config element.

Table A–6 cache-factory-builder-config Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the name of a Java class that implements the
com.tagosol.net.CacheFactoryBuilder interface. The default value is
com.tangosol.net.DefaultCacheFactoryBuilder.

<init-params> Optional Contains initialization parameters for the cache factory builder
implementation.

<scope-resolver> Optional Specifies the configuration information for a class that implements the
com.tangosol.net.ScopeResolver interface. A scope resolver
implementation provides the ability to modify the scope name for a
given ConfigurableCacheFactory at run time to enforce (or disable)
isolation between applications running in the same cluster. The custom
scope resolver implementation is specified within an <class-name>
subelement. See Java API Reference for Oracle Coherence for details on the
ScopeResolver interface.

See the <scope-name> subelement of the <cache-config> element on
page B-22 for details on specifying a scope name within a cache
configuration file.

Element Reference

Operational Configuration Elements A-11

callback-handler

Used in: security-config.

Table A–7 describes the subelements of the callback-handler element.

Table A–7 callback-handler Subelement

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that provides the implementation for the
javax.security.auth.callback.CallbackHandler interface.

<init-params> Optional Contains one or more initialization parameter(s) for a CallbackHandler
implementation.

cluster-config

A-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cluster-config

Used in: <coherence>

ADescription
Contains the cluster configuration information, including communication and service
parameters.

AElements
Table A–8 describes the subelements of the cluster-config element.

Table A–8 cluster-config Subelements

Element
Required/
Optional Description

<member-identity> Optional Specifies detailed identity information that is useful for
defining the location and role of the cluster member.

<unicast-listener> Required Specifies the configuration information for the unicast
listener, used for receiving point-to-point network
communications.

<multicast-listener> Required Specifies the configuration information for the multicast
listener, used for receiving point-to-multipoint network
communications.

<tcp-ring-listener> Required Specifies configuration information for the TCP ring listener,
used to death detection.

<shutdown-listener> Required Specifies the action to take upon receiving an external
shutdown request.

<service-guardian> Required Specifies the configuration information for the service
guardians, used for detecting and resolving service deadlock.

<packet-speaker> Required Specifies configuration information for the packet speaker,
used for network data transmission.

<packet-publisher> Required Specifies configuration information for the packet publisher,
used for managing network data transmission.

<incoming-message-handler> Required Specifies configuration information for the incoming
message handler, used for dispatching incoming cluster
communications.

<outgoing-message-handler> Required Specifies configuration information for the outgoing message
handler, used for dispatching outgoing cluster
communications.

<authorized-hosts> Optional Specifies the hosts which are allowed to join the cluster.

<services> Required Specifies the declarative data for all available Coherence
services.

<filters> Optional Specifies data transformation filters, which can perform
custom transformations on data being transferred between
cluster nodes.

<serializers> Optional Specifies any number of serializer class configurations that
implement com.tangosol.io.Serializer.

<address-providers> Optional Specifies any number of address provider definitions that can
be referenced by a proxy service's TCP/IP acceptor.

Element Reference

Operational Configuration Elements A-13

<socket-providers> Required Contains socket provider definitions.

<cluster-quorum-policy> Optional Contains the configuration information for the
quorum-based action policy for the Cluster service.

<journaling-config> Optional Specifies configuration for the journaling subsystem.

Table A–8 (Cont.) cluster-config Subelements

Element
Required/
Optional Description

cluster-quorum-policy

A-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cluster-quorum-policy

Used in: <cluster-config>

ADescription
The cluster-quorum-policy element contains quorum policy settings for the Cluster
service.

AElement
Table A–9 describes the subelements of the cluster-quorum-policy element.

Table A–9 cluster-quorum-policy-scheme Subelements

Element
Required/
Optional Description

<timeout-survivor-quorum> Optional Specifies the minimum number of cluster members that must
remain to terminate one or more cluster members due to a
detected network timeout, irrespective of the root cause. The
value must be a nonnegative integer.

Use the role attribute to specify this value for cluster members
of a given role (as defined in the <role-name> element). For
example:

<timeout-survivor-quorum role="Server">50
</timeout-survivor-quorum>

<class-name> Optional Specifies a class that provides custom quorum policies. This
element cannot be used with the <timeout-survivor-quorum>
or the <class-factory-name> element.

The class must implement the com.tangosol.net.ActionPolicy
interface. Initialization parameters can be specified using the
<init-params> element.

<class-factory-name> Optional Specifies a factory class for creating custom action policy
instances. This element cannot be used with the
<timeout-survivor-quorum> or <class-name> elements.

This element is used with the <method-name> element. The
action policy instances must implement the
com.tangosol.net.ActionPolicy interface. In addition,
initialization parameters can be specified using the
<init-params> element.

Element Reference

Operational Configuration Elements A-15

coherence

root element

ADescription
The coherence element is the root element of the operational deployment descriptor
tangosol-coherence.xml.

AElements
Table A–10 describes the subelements of the coherence element.

Table A–10 coherence Subelements

Element
Required/
Optional Description

<cluster-config> Required Contains the cluster configuration information. This element is
where most communication and service parameters are defined.

<logging-config> Required Contains the configuration information for the logging facility.

<configurable-cache-factory-co
nfig>

Required Contains configuration information for the configurable cache
factory, which controls from where and how the cache
configuration settings are loaded.

<cache-factory-builder-config> Required Contains the configuration information for a cache factory builder,
which allows building and managing multiple cache factory
configurations across multiple class loaders.

<management-config> Required Contains the configuration information for the coherence
Management Framework. See Managing Oracle Coherence for more
information.

<security-config> Optional Contains the configuration information for the Coherence Security
Framework.

<license-config> Optional Contains the edition and operational mode configuration.

configurable-cache-factory-config

A-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

configurable-cache-factory-config

Used in: coherence

ADescription
The configurable-cache-factory-config element contains the configuration
information for constructing an instance of the
com.tangosol.net.ConfigurableCacheFactory interface. The default implementation
is the com.tangosol.net.ExtensibleConfigurableCacheFactory class.

Using a custom ConfigurableCacheFactory implementation is an advanced use case
and is typically used to allow applications that are scoped by different class loaders to
use separate cache configuration files (as is the case with JavaEE and OSGI).

The following example loads two configuration files which contain different cache
definitions and use different ClassLoaders.

//load the first configuration and use a cache

ConfigurableCacheFactory eccf= new
 ExtensibleConfigurableCacheFactory("example-config.xml", loader0);
NamedCache cache = eccf.ensureCache("dist-example", loader0);
cache.put(key, value);

//load the second cache configuration and use a cache

ConfigurableCacheFactory eccf1= new
 ExtensibleConfigurableCacheFactory("example-config1.xml", loader1);
NamedCache cache1 = eccf1.ensureCache("dist-example1", loader1);
cache1.put(key, value);

AElements
Table A–11 describes the subelements of the configurable-cache-factory-config
element.

Note: This example requires each cache definition to use a different
service name; otherwise, an exception is thrown indicating that the
service was started by a factory with a different configuration
descriptor.

Element Reference

Operational Configuration Elements A-17

Table A–11 configurable-cache-factory-config Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that implements the
com.tangosol.net.ConfigurableCacheFactory interface. The default value is
com.tangosol.net.ExtensibleConfigurableCacheFactory.

The preconfigured system property override is
tangosol.coherence.cachefactory.

<init-params> Optional Contains initialization parameters for the cache configuration factory
implementation. For the default cache configuration factory class, a single
parameter is used as follows:

<init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-cache-config.xml</param-value>
</init-param>

Unless an absolute or relative path is specified, such as with
./path/to/config.xml, the application's classpath is used to find the specified
descriptor.

The preconfigured system property override is
tangosol.coherence.cacheconfig.

filter

A-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

filter

Used in: filters.

ADescription
Data transformation filters can be used by a service to apply a custom transformation
on data being transferred between cluster nodes. This can be used for instance to
compress network traffic. See the <filter-class> element for more information.

AImplementation
Data transformation filters are implementations of the
com.tangosol.util.WrapperStreamFactory interface.

AElements
Table A–12 describes the subelements of each filter element.

Note: Data transformation filters are not related to
com.tangosol.util.Filter, which is part of the Coherence API for
querying caches.

Table A–12 filter Subelements

Element
Required/
Optional Description

<filter-name> Required Specifies the canonical name of the filter. This name is unique within the
cluster. For example: gzip.

<filter-class> Required Specifies the class name of the filter implementation. This class must have a
zero-parameter public constructor and must implement the
com.tangosol.util.WrapperStreamFactory interface.

<init-params> Optional Specifies initialization parameters for configuring filters. For example when
using a com.tangosol.net.CompressionFilter the parameters are specified
as follows:

<init-param>
 <param-name>strategy</param-name>
 <param-value>gzip</param-value>
</init-param>
<init-param>
 <param-name>level</param-name>
 <param-value>default</param-value>
</init-param>

For more information on the parameter values for the standard filters, refer to
"Using Network Filters" on page 10-12.

Element Reference

Operational Configuration Elements A-19

filters

Used in cluster-config.

ADescription
The filters element contains the declarative data for each filter.

AElements
Table A–13 describes the subelements of the filters element.

Table A–13 filters Subelements

Element
Required/
Optional Description

<filter> Optional The filter element contains the declarative data of a particular filter.

flashjournal-manager

A-20 Oracle Fusion Middleware Developing Applications with Oracle Coherence

flashjournal-manager

Used in: journaling-config

ADescription
The <flashjournal-manager> element contains the configuration for a flash journal
resources manager, which manages I/O for temporary journal-based files to a solid
state device.

AElements
Table A–14 describes the subelements of the flashjournal-manager element.

Table A–14 flashjournal-manager Subelements

Element
Required/
Optional Description

<minimum-load-factor> Optional Specifies the factor of live data below which a journal file is
eligible for compaction (garbage collection).

<maximum-value-size> Optional Specifies the maximum size, in bytes, of binary values that are to
be stored in the flash journal. The value cannot exceed 64MB. The
default value is 64MB.

<maximum-file-size> Optional Specifies the maximum file size of the underlying journal files.
The value must be a power of two and a multiple of the block
size. The value must be between 1MB and 4GB and must be large
enough so that a file is capable of storing at least 2 values. The
default value is 2GB.

<collector-timeout> Optional Specifies the amount of time that the journal collector can remain
unresponsive prior to considering it timed out. The minimum
timeout is 30s. Legal values are strings representing time
intervals. The Default value is 10m.

<block-size> Optional Specifies the size of the write buffers in which writes to an
underlying disk file occur. The size should match or be a multiple
of the physical device's optimal block size and must be a power of
two. The value must be between 4KB and 1MB. The default value
is 256KB.

<maximum-pool-size> Optional Specifies the size, in bytes, for the buffer pool. The size does not
limit the number of buffers that can be allocated or that can exist
at any point in time. The size only determines the amount of
buffers that are recycled. The pools size cannot exceed 1GB. The
default value is 16MB.

<directory> Optional Specifies the directory where the journal files should be placed.
The directory must exist and is not created at run time. If the
directory does not exist or is not specified, the JVM/operating
system default temporary directory is used. The suggested
location is a local flash (SSD) drive.

Specifying a directory that is located on a drive which is shared by
other applications or system operations increases the potential for
unplanned space usage. Use a directory location on a non-shared
disk partition to ensure a more predictable environment.

Element Reference

Operational Configuration Elements A-21

<async-limit> Optional Specifies the maximum size, in bytes, of the backlog. The backlog
is the amount of data that has yet to be persisted. Client threads
are blocked if the configured limit is exceeded and remain blocked
until the backlog recedes below the limit. This helps prevent
out-of-memory conditions. Note: The maximum amount of
memory used by the backlog is at least twice the configured
amount, since the data is in binary form and rendered to the
write-behind buffers. The value must be between 4KB and 1GB.
The default value is 16MB.

<tmp-purge-delay> Optional Specifies the amount of time to wait before a temporary file that is
used by the Journaling subsystem is eligible for removal. The
delay begins after the file is last used. The default value is 2 hours.

<high-journal-size> Optional Specifies the soft limit, in bytes, on the journal size or a percentage
of the flash journal capacity. The soft limit allows the compaction
(garbage collection) thread to tune itself to remove stale values
and keep the journal within the soft limit. This is not a hard limit
and the journal can still grow up to the maximum file count (512).
The default value is 11GB.

The preconfigured system property override is
tangosol.coherence.flashjournal.highjournalsize.

<writer-timeout> Optional Specifies the amount of time that the flash journal writer can
remain unresponsive prior to considering it timed out. The
minimum timeout is 30s. Legal values are strings representing
time intervals. The Default value is 8h.

If a write fails (after the writer-timeout values is reached), then
the journal becomes read-only until the member is restarted.
When the write backlog maximum is reached (as defined by the
async-limit value), the journal responds to subsequent store
requests with an exception either until the write is resolved or
indefinitely as the writer-timeout is surpassed.

Table A–14 (Cont.) flashjournal-manager Subelements

Element
Required/
Optional Description

flow-control

A-22 Oracle Fusion Middleware Developing Applications with Oracle Coherence

flow-control

Used in: packet-delivery.

ADescription
The flow-control element contains configuration information related to packet
throttling and remote GC detection.

AElements
Table A–15 describes the subelements of the flow-control element.

Table A–15 flow-control Subelements

Element
Required/
Optional Description

<enabled> Optional Specifies if flow control is enabled. Valid values are true or
false. The default value is true

<pause-detection> Optional Defines the number of packets that are resent to an
unresponsive cluster node after which the node is assumed to
be paused.

<outstanding-packets> Optional Defines the number of unconfirmed packets that are sent to a
cluster node before packets addressed to that node are deferred.

Element Reference

Operational Configuration Elements A-23

host-range

Used in: authorized-hosts.

ADescription
Specifies a range of unicast addresses of nodes which are allowed to join the cluster.

AElements
Table A–16 describes the subelements of each host-range element.

Table A–16 host-range Subelements

Element
Required/
Optional Description

<from-address> Required Specifies the starting IP address for a range of host addresses. For example:
198.168.1.1.

<to-address> Required Specifies to-address element specifies the ending IP address (inclusive) for a
range of hosts. For example: 198.168.2.255.

identity-asserter

A-24 Oracle Fusion Middleware Developing Applications with Oracle Coherence

identity-asserter

Used in: security-config

ADescription
The <identity-asserter> element contains the configuration information for a class
that implements the com.tangosol.net.security.IdentityAsserter interface. The
class is called to validate an identity token to establish a user's identity and is used on
a Coherence*Extend proxy server. The identity asserter is used with an identity
transformer (used on a Coherence*Extend client) to ensure that only valid clients are
allowed to connect to an extend proxy.

AElements
Table A–17 describes the subelements of the <identity-asserter> element.

Table A–17 identity-asserter Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a class that implements
com.tangosol.net.security.IdentityAsserter. This element
cannot be used with the <class-factory-name> element.

<class-factory-name> Optional Specifies a factory class for creating asserter instances. The instances
must implement com.tangosol.net.security.IdentityAsserter.
This element cannot be used with the <class-name> element.

This element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the asserter
implementation.

Element Reference

Operational Configuration Elements A-25

identity-manager

Used in: ssl.

ADescription
The <identity-manager> element contains the configuration information for
initializing a javax.net.ssl.KeyManager instance.

The identity manager is responsible for managing the key material which is used to
authenticate the local connection to its peer. If no key material is available, the
connection cannot present authentication credentials.

AElements
Table A–18 describes the subelements of the identity-manager element.

Table A–18 identity-manager Subelements

Element
Required/
Optional Description

<algorithm> Optional Specifies the algorithm used by the identity manager. The default value
is SunX509.

<provider> Optional Specifies the configuration for a security provider instance.

<key-store> Optional Specifies the configuration for a key store implementation.

<password> Required Specifies the private key password.

identity-transformer

A-26 Oracle Fusion Middleware Developing Applications with Oracle Coherence

identity-transformer

Used in: security-config

ADescription
The <identity-transformer> element contains the configuration information for a
class that implements the com.tangosol.net.security.IdentityTransformer
interface. The class is called to transform a Subject (Principal in .NET) to a token that
asserts identity and is used on a Coherence*Extend client. The identity transformer is
used with an identity asserter (used on a Coherence*Extend proxy server) to ensure
that only valid clients are allowed to connect to an extend proxy.

AElements
Table A–19 describes the subelements of the <identity-transformer> element.

Table A–19 identity-transformer Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a class that implements
com.tangosol.net.security.IdentityTransformer. This element
cannot be used with the <class-factory-name> element.

<class-factory-name> Optional Specifies a factory class for creating asserter instances. The instances
must implement com.tangosol.net.security.IdentityTransformer.
This element cannot be used with the <class-name> element.

This element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the transformer
implementation.

Element Reference

Operational Configuration Elements A-27

incoming-message-handler

Used in: cluster-config.

ADescription
The incoming-message-handler assembles UDP packets into logical messages and
dispatches them to the appropriate Coherence service for processing.

AElements
Table A–20 describes the subelements of the incoming-message-handler element.

Table A–20 incoming-message-handler Subelements

Element
Required/
Optional Description

<maximum-time-variance> Required Specifies the maximum time variance between sending and
receiving broadcast Messages when trying to determine the
difference between a new cluster Member's system time and the
cluster time. The smaller the variance, the more certain one can be
that the cluster time is closer between multiple systems running in
the cluster; however, the process of joining the cluster is extended
until an exchange of Messages can occur within the specified
variance. Normally, a value as small as 20 milliseconds is sufficient,
but with heavily loaded clusters and multiple network hops a
larger value may be necessary. The default value is 16.

<use-nack-packets> Required Specifies whether the packet receiver uses negative
acknowledgments (packet requests) to pro-actively respond to
known missing packets. See "notification-queueing" on page A-45
for additional details and configuration. Legal values are true or
false. The default value is true.

<priority> Required Specifies a priority of the incoming message handler execution
thread. Legal values are from 1 to 10 where 10 is the highest
priority. The default value is 7.

init-param

A-28 Oracle Fusion Middleware Developing Applications with Oracle Coherence

init-param

Used in: init-params.

ADescription
Defines an initialization parameter. Any number of init-param elements may be
specified.

AElements
Table A–21 describes the subelements of the init-param element.

Table A–21 init-param Subelement

Element
Required/
Optional Description

<param-name> Optional Specifies the name of the initialization parameter. For example:

<init-param>
 <param-name>sTableName</param-name>
 <param-value>EmployeeTable</param-value>
</init-param>

The <param-name> element cannot be specified if the <param-type> element is
specified. See "Initialization Parameter Settings" on page A-62 for information
on the pre-defined parameters that are available for specific services.

<param-type> Optional Specifies the Java type of the initialization parameter.The following standard
types are supported:

■ java.lang.String (string)

■ java.lang.Boolean (boolean)

■ java.lang.Integer (int)

■ java.lang.Long (long)

■ java.lang.Double (double)

■ java.math.BigDecimal

■ java.io.File

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

For example:

<init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeTable</param-value>
</init-param>

The <param-type> element cannot be specified if the <param-name> element is
specified.

<param-value> Required Specifies the value of the initialization parameter. The value is in the format
specific to the Java type of the parameter.

<description> Optional Specifies a description for the initialization parameter.

Element Reference

Operational Configuration Elements A-29

init-params

Used in: address-provider, filter, service, configurable-cache-factory-config,
access-controller, and callback-handler.

ADescription
Defines a series of initialization parameters.

AElements
Table A–22 describes the subelements of the init-params element.

Table A–22 init-params Subelement

Element
Required/
Optional Description

<init-param> Optional Defines an individual initialization parameter.

instance

A-30 Oracle Fusion Middleware Developing Applications with Oracle Coherence

instance

Used in: service-failure-policy, scope-resolver, and partition-assignment-strategy

ADescription
The <instance> element contains the configuration of an implementation class or class
factory that is used to plug in custom functionality.

AElements
Table A–23 describes the subelements of the instance element.

Table A–23 instance Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of an implementation class.

This element cannot be used with the <class-factory-name>
element.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Specifies initialization parameters which are accessible by
implementations that include a public constructor with a matching
signature. Initialization parameters can be specified when using
both the <class-name> element and the <class-factory-name>
element.

Element Reference

Operational Configuration Elements A-31

journaling-config

Used in: cluster-config

ADescription
The <journaling-config> element contains the configuration for the resource
managers that are responsible for storing data in a binary format to flash and RAM
memory.

AElements
Table A–23 describes the subelements of the journaling-config element.

Table A–24 journaling-config Subelements

Element
Required/
Optional Description

<ramjournal-manager> Required Specifies the RAM Journal Resource Manager's configuration.

<flashjournal-manager> Required Specifies the Flash Journal Resource Manager's configuration.

key-store

A-32 Oracle Fusion Middleware Developing Applications with Oracle Coherence

key-store

Used in: identity-manager, trust-manager.

ADescription
The key-store element specifies the configuration for a key store implementation to
use when implementing SSL. The key store implementation is an instance of the
java.security.KeyStore class.

AElements
Table A–25 describes the subelements of the key-store element.

Table A–25 key-store Subelements

Element
Required/
Optional Description

<url> Required Specifies the Uniform Resource Locator (URL) to a key store.

<password> Optional Specifies the password for the key store.

<type> Optional Specifies the type of a java.security.KeyStore instance. The
default value is JKS.

Element Reference

Operational Configuration Elements A-33

license-config

Used in: coherence.

Table A–26 describes the subelements of the license-config element.

Table A–26 license-config Subelements

Element
Required/
Optional Description

<edition-name> Optional Specifies the product edition that the member uses. Valid values are: GE
(Grid Edition), EE (Enterprise Edition), SE (Standard Edition), RTC (Real-Time
Client), DC (Data Client). The default value is GE.

Note: The edition switches no longer enforce license restrictions. Do not
change the default setting (GE).

<license-mode> Optional Specifies whether the product is being used in a development or production
mode. Valid values are prod (Production), and dev (Development). Note:
This value cannot be overridden in tangosol-coherence-override.xml. It
must be specified in tangosol-coherence.xml or (preferably) supplied as
system property tangosol.coherence.mode on the Java command line. The
default value is dev.

logging-config

A-34 Oracle Fusion Middleware Developing Applications with Oracle Coherence

logging-config

Used in: coherence.

AElements
The following table describes the subelements of the logging-config element.

Table A–27 logging-config Subelements

Element
Required/
Optional Description

<destination> Required Specifies the output device used by the logging system. Legal values are:

■ stdout

■ stderr (default)

■ jdk

■ log4j

■ slf4j

■ file name

If log4j is specified, the Log4j libraries must be in the classpath. In both
cases, the appropriate logging configuration mechanism (system
properties, property files, and so on) are necessary to configure the
JDK/Log4j logging libraries.

The preconfigured system property override is tangosol.coherence.log.

<logger-name> Optional Specifies a logger name within chosen logging system that logs Coherence
related messages. This value is only used by the JDK and log4j logging
systems. The default value is Coherence.

The preconfigured system property override is
tangosol.coherence.log.logger.

<severity-level> Required Specifies which logged messages are emitted to the log destination. The
legal values are -1 to 9. No messages are emitted if -1 is specified. More log
messages are emitted as the log level is increased.

The preconfigured system property override is
tangosol.coherence.log.level.

<message-format> Required Specifies how messages that have a logging level specified are formatted
before passing them to the log destination. The format can include static
text and any of the following replaceable parameters: {date}, {uptime},
{product}, {version}, {level}, {thread}, {member}, {location}, {role},
{text}, and {ecid}. The default value is:

{date}/{uptime} {product} {version} <{level}>
(thread={thread}, member={member}): {text}

<character-limit> Required Specifies the maximum number of characters that the logger daemon
processes from the message queue before discarding all remaining
messages in the queue. All messages that are discarded are summarized by
the logging system with a single log entry that details the number of
messages that were discarded and their total size. Legal values are positive
integers or 0. Zero implies no limit. The default value in production mode
is 1048576 and 2147483647 in development mode.

The preconfigured system property override is
tangosol.coherence.log.limit.

Element Reference

Operational Configuration Elements A-35

management-config

Used in: coherence.

AElements
Table A–28 describes the subelements of the management-config element.

Table A–28 management-config Subelements

Element
Optional/
Required Description

<managed-nodes> Required Specifies whether a cluster node's JVM has an [in-process]
MBean server and if so, whether this node allows
management of other nodes' managed objects. Legal values
are:

■ none – (default) No MBean server is instantiated on this
cluster node.

■ local-only – Manage only MBeans which are local to
this cluster node (that is, within the same JVM).

■ remote-only – Manage MBeans on other remotely
manageable cluster nodes. See
<allowed-remote-management> subelement.

■ all – Manage both local and remotely manageable
cluster nodes. See <allowed-remote-management>
subelement.

The preconfigured system property override is
tangosol.coherence.management.

<allow-remote-management> Required Specifies whether this cluster node exposes its managed
objects to remote MBean server(s). Legal values are: true or
false. The default value is true.

The preconfigured system property override is
tangosol.coherence.management.remote.

<refresh-policy> Optional Specifies the method which is used to refresh remote
management information. Legal values are: refresh-ahead,
refresh-behind or refresh-expired. The default value is
refresh-ahead.

The preconfigured system property override is
tangosol.coherence.management.refresh.policy

<refresh-expiry> Optional Specifies the time interval (in milliseconds) after which a
remote MBean information is invalidated on the
management node. Legal values are strings representing time
intervals. The default value is 1s.

The preconfigured system property override is
tangosol.coherence.management.refresh.expiry

<refresh-timeout> Optional Specifies the duration which the management node waits for
a response from a remote node when refreshing MBean
information. This value must be less than the refresh-expiry
interval. Legal values are strings representing time intervals.
The default value is 250ms.

The preconfigured system property override is
tangosol.coherence.management.refresh.timeout

management-config

A-36 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<read-only> Optional Specifies whether the managed objects exposed by this
cluster node allow operations that modify run-time
attributes. Legal values are: true or false. The default value is
false.

The preconfigured system property override is
tangosol.coherence.management.readonly.

<default-domain-name> Optional Specifies the domain name of an existing MBean server that
is used to register MBeans exposed by the Coherence
management framework. This element is used only if a
cluster member has management enabled and the MBean
server is located in the same process as the cluster member. If
a value is not specified, the first existing MBean server is
used. The element should only be used to identify an existing
MBean server.

This element is also used when implementing the
MBeanServerFinder interface. See the <server-factory>
element below.

<service-name> Optional Specifies the name of the Invocation Service used for remote
management. This element is used only if
allow-remote-management is set to true.

<server-factory> Optional Contains the configuration information for an MBeanServer
factory that implements the
com.tangosol.net.management.MBeanServerFinder
interface, which is used to find an MBean server that is used
by the Coherence JMX framework to register new or locate
existing MBeans. If a domain name is provided in the
<default-domain-name> element, then it is used when
instantiating the class. The class name is entered using the
<class-name> subelement and supports initialization
parameters using the <init-params> element.

<mbeans> Optional Contains a list of MBeans to be registered when a node joins
the cluster.

<mbean-filter> Optional Contains the configuration information of a filter class that is
used to filter MBeans before they are registered.

<reporter> Optional Contains the Reporter's configuration.

<extended-mbean-name> Optional Specifies whether global MBean names that are identified
with a nodeId attribute are extended to identify the
corresponding member name (if specified). Legal values are:
true or false. The default value is false and indicates that the
member name is not included in the Global MBean name.

The preconfigured system property override is
tangosol.coherence.management.extendedmbeanname.

Table A–28 (Cont.) management-config Subelements

Element
Optional/
Required Description

Element Reference

Operational Configuration Elements A-37

mbean

Used in: mbeans

ADescription
The mbean element contains a list of elements to be instantiated and registered with the
Coherence management framework.

AElements
Table A–29 describes the subelements of the mbean element.

Table A–29 Subelements of mbean

Element
Required/
Optional Description

<mbean-class> Optional Specifies the full class name of the standard MBean
to instantiate and register with the Coherence
management framework. The MBean class must be
in the classpath to correctly instantiate.

This element cannot be used with the
<mbean-factory> element or the <mbean-query>
element.

<mbean-factory> Optional Specifies the name of a class factory used to obtain
MBeans to register with the Coherence management
framework. The factory class must be in the
classpath to correctly instantiate. This element is
used with the <mbean-accessor> element.

This element cannot be used with the
<mbean-class> element or the <mbean-query>
element.

<mbean-query> Optional Specifies a JMX ObjectName query pattern. The
query pattern is executed against a local MBean
server and the resulting objects are registered with
the Coherence management framework. This allows
for a single point of consolidation of MBeans for the
grid. For example, the following query includes all
the MBeans under the java.lang domain in the
Coherence management infrastructure.

<mbean-query>java.lang:*</mbean-query>

This element cannot be used with the
<mbean-class> element or the <mbean-factory>
element.

<mbean-server-domain> Optional Specifies the name of a default domain for the
source MBean server. This is used to locate the
MBean server where the mbean-query should be
executed.

<mbean-accessor> Optional Specifies the method name on the factory class
(specified by the <mbean-factory> element) that is
used to instantiate the MBean.

mbean

A-38 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<mbean-name> Required Specifies the JMX ObjectName prefix for the MBean
that is registered with the Coherence management
framework. The prefix should be a
comma-delimited Key=Value pair. The Coherence
MBean naming convention stipulates that the name
should begin with a type/value pair (for example,
type=Platform).

<local-only> Optional Specifies whether the MBean is visible across the
cluster. Valid values are true or false. If set to true,
the MBean is registered only with a local MBean
server and is not accessible by other cluster nodes. If
set to false, the nodeId=... key attribute is added
to its name and the MBean is visible from any of the
managing nodes (nodes that set the
<managed-nodes> element to values of all or
remote-only). The default value is false.

<enabled> Optional Specifies whether the MBean should be instantiated
and registered on this instance. Valid values are true
or false. The default value is false.

<extend-lifecycle> Optional Specifies whether the MBean should extend beyond
the node connection life cycle. Valid values are true
or false. If true, the MBean maintains the statistics
and values across connections (coincides with the
JVM life cycle). If false, the MBean is destroyed and
re-created when a node is disconnected from the
grid. The default value is false.

Table A–29 (Cont.) Subelements of mbean

Element
Required/
Optional Description

Element Reference

Operational Configuration Elements A-39

mbeans

Used in: management-config

ADescription
The mbeans element is the root element for defining custom mbeans and is the root
element of a custom mbean configuration file. It contains a list of mbean elements to
be instantiated and registered with the Coherence management framework.

AElements
Table A–30 describes the subelements of the mbeans element.

Table A–30 Subelement of mbeans

Element
Required/
Optional Description

<mbean> Required Specifies the MBean type, implementation, and ObjectName that
are instantiated and registered with the Coherence management
framework.

mbean-filter

A-40 Oracle Fusion Middleware Developing Applications with Oracle Coherence

mbean-filter

Used in management-config.

ADescription
The mbean-filter element is used to specify a filter that evaluates MBean names
before they are registered in the MBean server. The
com.tangosol.net.management.ObjectNameExcludeFilter class is the default filter
and is used to exclude MBeans from being registered based on their JMX object name
using standard regex patterns. The list is entered as a list of names separated by any
white space characters. The following MBeans are excluded by the out-of-box
configuration:

<management-config>
 <mbean-filter>
 <class-name>com.tangosol.net.management.ObjectNameExcludeFilter</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value system-property="tangosol.coherence.management.exclude">
 .*type=Service,name=Management,.*
 .*type=Platform,Domain=java.lang,subType=ClassLoading,.*
 .*type=Platform,Domain=java.lang,subType=Compilation,.*
 .*type=Platform,Domain=java.lang,subType=MemoryManager,.*
 .*type=Platform,Domain=java.lang,subType=Threading,.*
 </param-value>
 </init-param>
 </init-params>
 </mbean-filter>
</management-config>

AElements
Table A–44 describes the subelements of the mbean-filter element.

Table A–31 mbean-filter Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the name of a filter class for filtering mbeans.

This element cannot be used with the <class-factory-name>
element.

<class-factory-name> Optional Specifies a factory class for creating filter instances.

This element cannot be used with the <name> element or the
<class-name> element.

This element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the filter implementation.

Element Reference

Operational Configuration Elements A-41

member-identity

Used in: cluster-config.

The member-identity element contains detailed identity information that is useful for
defining the location and role of the cluster member.

AElements
Table A–32 describes the subelements of the member-identity element.

Table A–32 member-identity Subelements

Element
Required/
Optional Description

<cluster-name> Optional The cluster-name element contains the name of the cluster. To join
the cluster, all members must specify the same cluster name. A
cluster name should always be specified for production systems to
prevent accidental cluster discovery among applications.

The preconfigured system property override is
tangosol.coherence.cluster.

<site-name> Optional The site-name element contains the name of the geographic site that
the member is hosted at. For WAN clustering, this value identifies the
datacenter within which the member is located. The site name can be
used as the basis for intelligent routing, load balancing, and disaster
recovery planning (that is, the explicit backing up of data on separate
geographic sites). The site name also helps determine where to back
up data when using distributed caching and the default partition
assignment strategy. Lastly, the name is useful for displaying
management information (for example, JMX) and interpreting log
entries.

The preconfigured system property override is
tangosol.coherence.site.

<rack-name> Optional The rack-name element contains the name of the location within a
geographic site that the member is hosted at and is often a cage, rack,
or bladeframe identifier. The rack name can be used as the basis for
intelligent routing, load balancing, and disaster recovery planning
(that is, the explicit backing up of data on separate bladeframes). The
rack name also helps determine where to back up data when using
distributed caching and the default partition assignment strategy.
Lastly, the name is useful for displaying management information
(for example, JMX) and interpreting log entries.

The preconfigured system property override is
tangosol.coherence.rack.

<machine-name> Optional The machine-name element contains the name of the physical server
that the member is hosted on. This is often the same name as the
server identifies itself as (for example, its HOSTNAME, or its name as it
appears in a DNS entry). If provided, the name is used as the basis
for creating a ID, which in turn is used to guarantee that data are
backed up on different computers to prevent single points of failure
(SPOFs). The name is also useful for displaying management
information (for example, JMX) and interpreting log entries. It is
optional to provide a value for this element. However, it is strongly
encouraged that a name always be provided.

The preconfigured system property override is
tangosol.coherence.machine.

member-identity

A-42 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<process-name> Optional The process-name element contains the name of the process (JVM)
that the member is hosted on. This name makes it possible to easily
differentiate among multiple JVMs running on the same computer.
The name is also useful for displaying management information (for
example, JMX) and interpreting log entries. It is optional to provide a
value for this element. Often, a single member exists per JVM, and in
that situation this name would be redundant.

The preconfigured system property override is
tangosol.coherence.process.

<member-name> Optional The member-name element contains the name of the member itself.
This name makes it possible to easily differentiate among members,
such as when multiple members run on the same computer (or even
within the same JVM). The name is also useful for displaying
management information (for example, JMX) and interpreting log
entries. It is optional to provide a value for this element. However, it
is strongly encouraged that a name always be provided.

The preconfigured system property override is
tangosol.coherence.member.

<role-name> Optional The role-name element contains the name of the member role. This
name allows an application to organize members into specialized
roles, such as cache servers and cache clients. The name is also useful
for displaying management information (for example, JMX) and
interpreting log entries. It is optional to provide a value for this
element. However, it is strongly encouraged that a name always be
provided.

The preconfigured system property override is
tangosol.coherence.role.

<priority> Optional The priority element specifies a priority of the corresponding
member. The priority is used as the basis for determining tie-breakers
between members. If a condition occurs in which one of two
members are ejected from the cluster, and in the rare case that it is not
possible to objectively determine which of the two is at fault and
should be ejected, then the member with the lower priority is ejected.
Valid values are from 1 to 10 where 10 is the highest priority.

The preconfigured system property override is
tangosol.coherence.priority.

Table A–32 (Cont.) member-identity Subelements

Element
Required/
Optional Description

Element Reference

Operational Configuration Elements A-43

multicast-listener

Used in: cluster-config.

ADescription
Specifies the configuration information for the Multicast listener. This element is used
to specify the address and port that a cluster uses for cluster wide and
point-to-multipoint communications. All nodes in a cluster must use the same
multicast address and port, whereas distinct clusters on the same network should use
different multicast addresses. If you are having difficulties establishing a cluster when
using multicast, see Administering Oracle Coherence for instructions on performing a
multicast connectivity test.

AMulticast-Free Clustering
By default, Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the well-known-addresses feature may be used to eliminate the need for multicast
traffic.

AElements
Table A–33 describes the subelements of the multicast-listener element.

Table A–33 multicast-listener Subelements

Element
Required
/Optional Description

<interface> Optional Specifies the IP address that a multicast socket is bound to. By default,
the interface (NIC) of the unicast-listener IP address is used for the
multicast socket; this option allows a different interface to be specified
for multicast. Setting this address to 0.0.0.0 allows the operating
system to use the unicast routing table to select the interface
automatically.

<address> Required Specifies the multicast IP address that a Socket listens or publishes on.
Legal values are from 224.0.0.0 to 239.255.255.255. The default value
depends on the release and build level and typically follows the
convention of {build}.{major version}.{minor version}.{patch}.

The preconfigured system property override is
tangosol.coherence.clusteraddress.

<port> Required Specifies the port that the Socket listens or publishes on. Legal values
are from 1 to 65535. The default value depends on the release and build
level and typically follows the convention of {version}+{{{build}.

The preconfigured system property override is
tangosol.coherence.clusterport.

<time-to-live> Required Specifies the time-to-live setting for the multicast. This determines the
maximum number of "hops" a packet may traverse, where a hop is
measured as a traversal from one network segment to another by using
a router. Legal values are from 0 to 255. The default value is 4.

The preconfigured system property override is
tangosol.coherence.ttl.

<packet-buffer> Required Specifies how many incoming packets the operating system is
requested to buffer. The value may be expressed either in terms of
packets or bytes.

multicast-listener

A-44 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<priority> Required Specifies a priority of the multicast listener execution thread. Legal
values are from 1 to 10 where 10 is the highest priority. The default
value is 8.

<join-timeout-milliseco
nds>

Required Specifies the number of milliseconds that a new member waits without
finding any evidence of a cluster before starting its own cluster and
electing itself as the senior cluster member. Legal values are from 1000
to 1000000. The default value is 3000.

Note: For production use, the recommended value is 30000.

<multicast-threshold-pe
rcent>

Required Specifies the threshold percentage value used to determine whether a
packet is sent by using unicast or multicast. It is a percentage value and
is in the range of 1% to 100%. In a cluster of "n" nodes, a particular
node sending a packet to a set of other (that is, not counting self)
destination nodes of size "d" (in the range of 0 to n-1), the packet is sent
multicast if and only if the following both hold true:

1. The packet is being sent over the network to multiple nodes, that
is, (d > 1).

2. The number of nodes is greater than the threshold, that is, (d >
(n-1) * (threshold/100)).

Setting this value to 1 allows the implementation to use multicast
for basically all multi-point traffic.

Setting it to 100 forces the implementation to use unicast for all
multi-point traffic except for explicit broadcast traffic (for example,
cluster heartbeat and discovery) because the 100% threshold is
never exceeded. With the setting of 25 the implementation sends
the packet using unicast if it is destined for less than one-fourth of
all nodes, and send it using multicast if it is destined for the
one-fourth or more of all nodes.

Legal values are from 1 to 100. The default value is 25.

Note: This element is only used if the well-known-addresses element
is empty.

Table A–33 (Cont.) multicast-listener Subelements

Element
Required
/Optional Description

Element Reference

Operational Configuration Elements A-45

notification-queueing

Used in: packet-publisher.

ADescription
The notification-queueing element is used to specify the timing of notifications
packets sent to other cluster nodes. Notification packets are used to acknowledge the
receipt of packets which require confirmation.

AElements
The following table describes the subelements of the notification-queuing element.

Table A–34 notification-queuing Subelements

Element
Required/
Optional Description

<ack-delay-
milliseconds>

Required Specifies the maximum number of milliseconds that the packet publisher
delays before sending an ACK packet. The ACK packet may be
transmitted earlier if number of batched acknowledgments fills the ACK
packet. This value should be substantially lower then the remote node's
packet-delivery resend timeout, to allow ample time for the ACK to be
received and processed by the remote node before the resend timeout
expires. The default value is 16.

<nack-delay-
milliseconds>

Required Specifies the number of milliseconds that the packet publisher delays
before sending a NACK packet. The default value is 1.

outgoing-message-handler

A-46 Oracle Fusion Middleware Developing Applications with Oracle Coherence

outgoing-message-handler

Used in: cluster-config

ADescription
The outgoing-message-handler element contains the outgoing message handler (also
known as a dispatcher) related configuration information.

AElements
Table A–35 describes the subelements of the outgoing-message-handler element.

Table A–35 outgoing-message-handler Subelement

Element
Required/
Optional Description

<use-filters> Optional Specifies a list of <filter-name> elements to be used by this handler.
See the <filter> element for detailed information on defining a filter.

Element Reference

Operational Configuration Elements A-47

outstanding-packets

Used in: flow-control.

ADescription
Defines the number of unconfirmed packets that are sent to a cluster node before
packets addressed to that node are deferred. This helps to prevent the sender from
flooding the recipient's network buffers.

AElements
Table A–36 describes the subelements of the outstanding-packets element.

Table A–36 outstanding-packets Subelements

Element
Required/
Optional Description

<maximum-packets> Optional The maximum number of unconfirmed packets that are sent to a cluster
node before packets addressed to that node are deferred. It is
recommended that this value not be set below 256. The default value is
4096.

<minimum-packets> Optional The lower bound on the range for the number of unconfirmed packets
that are sent to a cluster node before packets addressed to that node are
deferred. It is recommended that this value not be set below 16. The
default value is 64.

packet-buffer

A-48 Oracle Fusion Middleware Developing Applications with Oracle Coherence

packet-buffer

Used in: unicast-listener, multicast-listener, packet-publisher.

ADescription
Specifies the size (in packets or bytes) of the operating system buffer for datagram
sockets.

AElements
Table A–37 describes the subelements of the packet-buffer element.

Table A–37 packet-buffer Subelements

Element
Required/
Optional Description

<maximum-packets> Optional For unicast-listener, multicast-listener and packet-publisher: Specifies the
number of packets of packet-size that the datagram socket are asked to
size itself to buffer. See SO_SNDBUF and SO_RCVBUF. Actual buffer sizes may
be smaller if the underlying socket implementation cannot support more
than a certain size. The default values are 32 for publishing, 64 for
multicast listening, and 1428 for unicast listening.

The <maximum-packets> element cannot be specified if the <size> element
is specified.

<size> Optional Specifies the requested size of the underlying socket buffer in bytes rather
than the number of packets.

The <size> element cannot be specified if the <maximum-packets> element
is specified.

Element Reference

Operational Configuration Elements A-49

packet-bundling

Used in: packet-delivery.

ADescription
The packet-bundling element contains configuration information related to the
bundling of multiple small packets into a single larger packet to reduce the load on the
network switching infrastructure.

AElements
Table A–38 describes the subelements of the packet-bundling element.

Table A–38 packet-bundling Subelements

Element Required/Optional Description

<maximum-deferral-
time>

Optional The maximum amount of time to defer a packet while
waiting for additional packets to bundle. A value of
zero results in the algorithm not waiting, and only
bundling the readily accessible packets. A value greater
than zero causes some transmission deferral while
waiting for additional packets to become available. This
value is typically set below 250 microseconds to avoid a
detrimental throughput impact. If the units are not
specified, nanoseconds are assumed. The default value
is 1us (microsecond).

<aggression-factor> Optional Specifies the aggressiveness of the packet deferral
algorithm. Where as the maximum-deferral-time
element defines the upper limit on the deferral time, the
aggression-factor influences the average deferral time.
The higher the aggression value, the longer the
Publisher may wait for additional packets. The factor
may be expressed as a real number, and often times
values between 0.0 and 1.0 allows for high packet
utilization while keeping latency to a minimum. The
default value is 0.

packet-delivery

A-50 Oracle Fusion Middleware Developing Applications with Oracle Coherence

packet-delivery

Used in: packet-publisher.

ADescription
Specifies timing and transmission rate parameters related to packet delivery.

AElements
Table A–39 describes the subelements of the packet-delivery element.

Table A–39 packet-delivery Subelements

Element
Required/
Optional Description

<resend-milliseconds> Required For packets which require confirmation, specifies the minimum
amount of time in milliseconds to wait for a corresponding ACK
packet, before resending a packet. The default value is 200.

<timeout-milliseconds> Required For packets which require confirmation, specifies the maximum
amount of time, in milliseconds, that a packet is resent. After
this timeout expires Coherence makes a determination if the
recipient is to be considered terminated. This determination
takes additional data into account, such as if other nodes are still
able to communicate with the recipient. The default value is
300000. For production use, the recommended value is the
greater of 300000 and two times the maximum expected full GC
duration.

<heartbeat-milliseconds> Required Specifies the interval between heartbeats. Each member issues a
unicast heartbeat, and the most senior member issues the cluster
heartbeat, which is a broadcast message. The heartbeat is used
by the tcp-ring-listener as part of fast death detection. The
default value is 1000.

<flow-control> Optional Configures per-node packet throttling and remote GC detection.

<packet-bundling> Optional Configures how aggressively Coherence attempts to maximize
packet utilization.

Element Reference

Operational Configuration Elements A-51

packet-publisher

Used in: cluster-config.

ADescription
Specifies configuration information for the Packet publisher, which manages network
data transmission.

AReliable packet delivery
The Packet publisher is responsible for ensuring that transmitted packets reach the
destination cluster node. The publisher maintains a set of packets which are waiting to
be acknowledged, and if the ACK does not arrive by the packet-delivery resend
timeout, the packet is retransmitted (see <packet-delivery> subelement). The
recipient node delays the ACK, to batch a series of ACKs into a single response (see
<notification-queuing> subelement).

AElements
Table A–40 describes the subelements of the packet-publisher element.

Table A–40 packet-publisher Subelements

Element
Required/
Optional Description

<packet-size> Optional Specifies the UDP packet sizes to use.

<packet-delivery> Required Specifies timing parameters related to reliable packet delivery.

<notification-queueing> Required Contains the notification queue related configuration info.

<traffic-jam> Required Specifies the maximum number of packets which can be
enqueued on the publisher before client threads block.

<packet-buffer> Required Specifies how many outgoing packets the operating system is
requested to buffer. The value may be expressed either in terms
of packets of bytes.

<priority> Required Specifies a priority of the packet publisher execution thread.
Legal values are from 1 to 10 where 10 is the highest priority.
The default value is 6.

<enabled> Optional Specifies if TCMP clustering is enabled. When using both
Coherence*Extend and Coherence TCMP based clustering, this
feature allows TCMP to be disabled to ensure that a node only
connects by using the Extend protocol. Valid values are true
and false. The default value is true.

The preconfigured system property override is
tangosol.coherence.tcmp.enabled.

packet-size

A-52 Oracle Fusion Middleware Developing Applications with Oracle Coherence

packet-size

Used in: packet-publisher.

ADescription
The packet-size element specifies the maximum and preferred UDP packet sizes. All
cluster nodes must use identical maximum packet sizes.

AElements
Table A–41 describes the subelements of the packet-size element.

Table A–41 packet-size Subelement

Element
Required/
Optional Description

<maximum-length> Required Specifies the packet size, in bytes, which all cluster members can safely
support. This value must be the same for all members in the cluster. A low
value can artificially limit the maximum size of the cluster. This value
should be at least 512, and defaults to 64KB.

<preferred-length> Required Specifies the preferred size, in bytes, of the DatagramPacket objects that are
sent and received on the unicast and multicast sockets.

This value can be larger or smaller than the <maximum-length> value, and
need not be the same for all cluster members. The ideal value is one which
fits within the network MTU, leaving enough space for either the UDP or
TCP packet headers, which are 32, and 52 bytes respectively. The preferred
length should be at least 512. The default value is based on the local nodes
MTU.

Element Reference

Operational Configuration Elements A-53

packet-speaker

Used in: cluster-config.

ADescription
Specifies configuration information for the packet speaker which is used for network
data transmission when packet publisher loads are high.

AElements
Table A–42 describes the subelements of the packet-speaker element.

Table A–42 packet-speaker Subelements

Element
Required/
Optional Description

<enabled> Optional Specifies whether or not the packet-speaker thread is enabled. Valid
values are true and false. The default value is true.

The preconfigured system property override is
tangosol.coherence.speaker.enabled.

<volume-threshold> Optional Specifies the packet load which must be present for the speaker to be
activated.

<priority> Required Specifies a priority of the packet speaker execution thread. Legal values
are from 1 to 10 where 10 is the highest priority. The default value is 8.

pause-detection

A-54 Oracle Fusion Middleware Developing Applications with Oracle Coherence

pause-detection

Used in: flow-control.

ADescription
Remote Pause detection allows Coherence to detect and react to a cluster node
becoming unresponsive (likely due to a long GC). When a node is marked as paused,
packets addressed to it are sent at a lower rate until the node resumes responding. This
remote GC detection is used to avoid flooding a node while it is incapable of
responding.

AElements
Table A–43 describes the subelements of the pause-detection element.

Table A–43 pause-detection Subelements

Element
Required/
Optional Description

<maximum-packets> Optional The maximum number of packets that are resent to an unresponsive
cluster node after which the node is assumed to be paused. Specifying a
value of 0 disables pause detection. The default value is 16.

Element Reference

Operational Configuration Elements A-55

provider

Used in: ssl, identity-manager, trust-manager.

ADescription
The provider element contains the configuration information for a security provider
that extends the java.security.Provider class.

AElements
Table A–44 describes the subelements of the provider element.

Table A–44 provider Subelements

Element
Required/
Optional Description

<name> Optional Specifies the name of a security provider that extends the
java.security.Provider class.

The class name can be entered using either this element or by using
the <class-name> element or by using the <class-factory-name>
element.

<class-name> Optional Specifies the name of a security provider that extends the
java.security.Provider class.

This element cannot be used with the <name> element or the
<class-factory-name> element.

<class-factory-name> Optional Specifies a factory class for creating Provider instances. The
instances must implement the java.security.Provider class.

This element cannot be used with the <name> element or the
<class-name> element.

This element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the provider
implementation.

This element cannot be used with the <name> element.

ramjournal-manager

A-56 Oracle Fusion Middleware Developing Applications with Oracle Coherence

ramjournal-manager

Used in: journaling-config

ADescription
The <ramjournal-manager> element contains the configuration for a RAM journal
resources manager, which manages memory buffers for journal-based storage
in-memory. A RAM journal resource manager always uses a flash journal resource
manager to store large objects and is also used as an overflow when the amount of
total memory allocated to the RAM journal is reached. A RAM journal also uses a flash
journal when the journal garbage collection is temporarily not able to keep up with
demand. See "flashjournal-manager" on page A-20 for details on configuring a flash
journal resource manager.

AElements
Table A–45 describes the subelements of the ramjournal-manager element.

Table A–45 ramjournal-manager Subelements

Element
Required/
Optional Description

<minimum-load-factor> Optional Specifies the factor of live data below which a journal file is
eligible for compaction (garbage collection).

<maximum-value-size> Optional Specifies the maximum size, in bytes, of binary values that are to
be stored in the RAM journal. The value cannot exceed 4MB. The
default value is 64KB.

Binary values that exceed the maximum value size are
automatically delegated to a flash journal.

<maximum-file-size> Optional Specifies the maximum file size of the underlying journal files.
The value must be a power of two and a multiple of the block
size. The value must be between 2MB and 2GB. The default value
is 2MB. The maximum file size should not be changed.

<collector-timeout> Optional Specifies the amount of time that the journal collector can remain
unresponsive prior to considering it timed out. The minimum
timeout is 30s. Legal values are strings representing time
intervals. The Default value is 10m.

<maximum-size> Optional Specifies the maximum amount of RAM that is used by the
journal. The value can either be specified as a percentage of the
maximum available heap or as a specific amount of memory. If the
value contains a percentage sign (%), it is interpreted as a
percentage of the maximum JVM heap (the JVM max heap is
typically specified by the -Xmx argument on the java command
line). If specified as a specific amount of memory, the value must
be between 16MB and 64GB. The default value is 25%. That is, the
RAM journal resource manager uses a maximum of 25% of the
available JVM heap.

A RAM journal is always backed by a flash journal and all data in
excess of the maximum RAM size is automatically delegated to
the flash journal.

The preconfigured system property override is
tangosol.coherence.ramjournal.size.

<off-heap> Optional Specifies whether to use in the virtual machine's byte buffer or
of-heap NIO buffers.

Element Reference

Operational Configuration Elements A-57

reporter

Used in: management-config.

ADescription
The Reporter provides JMX reporting capabilities. The Reporter provides
out-of-the-box reports and also supports the creation of custom reports. The reports
help administrators and developers manage capacity and trouble shoot problems.

AElements
Table A–46 describes the subelements of the reporter element.

Table A–46 reporter Subelements

Element
Required/
Optional Description

<configuration> Required Specifies the location for the report group deployment descriptor. The
default file is reports/report-group.xml and is located in the
coherence.jar library.

<autostart> Required Specifies whether the Reporter automatically starts when the node starts.
Valid values are true and false. The default value is false.

<distributed> Required Specifies whether the reporter runs on multiple management nodes. Valid
values are true and false. The default value is false.

<timezone> Optional Specifies the time zone to be used for timestamps that are displayed
within a report. See java.util.TimeZone for supported time zone
formats. The default, if no time zone is specified, is the local time zone.

<timeformat> Optional Specifies the time and date format to be used for timestamps that are
displayed within a report. The value must be a pattern supported by the
java.text.SimpleDateFormat class. The default value is EEE MMM dd
HH:mm:ss zzz yyyy.

security-config

A-58 Oracle Fusion Middleware Developing Applications with Oracle Coherence

security-config

Used in: coherence.

AElements
Table A–47 describes the subelements of the security-config element.

Table A–47 security-config Subelements

Element
Required/
Optional Description

<enabled> Required Specifies whether the access controller security feature is enabled.
Legal values are true or false. The default value is false.

The preconfigured system property override is
tangosol.coherence.security.

<login-module-name> Required Specifies the name of the JAAS LoginModule that is used to
authenticate the caller. This name should match a module in a
configuration file is used by the JAAS (for example specified by
using the -Djava.security.auth.login.config Java command
line attribute). For details, refer to the Oracle Login Module
Developer's Guide.

<access-controller> Required Contains the configuration information for the class that
implements com.tangosol.net.security.AccessController
interface, which is used by the security framework to check access
rights for clustered resources and encrypt/decrypt node-to-node
communications regarding those rights.

<callback-handler> Optional Contains the configuration information for the class that
implements javax.security.auth.callback.CallbackHandler
interlace which is called if an attempt is made to access a protected
clustered resource when there is no identity associated with the
caller.

<identity-asserter> Optional Contains the configuration information for a class that implements
the com.tangosol.net.security.IdentityAsserter interface
which is called to validate an identity token to establish a user's
identity. An identity asserter is used with an identity transformer
to protect connections between Coherence*Extend clients and
proxies.

<identity-transformer> Optional Contains the configuration information for the class that
implements com.tangosol.net.security.IdentityTransformer
interface which is called to transform a Subject (Principal for
.NET) to a token that asserts identity. An identity transformer is
used with an identity asserter to protect connections between
Coherence*Extend clients and proxies.

<subject-scope> Optional Specifies whether the remote cache or service reference is shared
by subject. Valid values are true or false. Setting the value to
true means that remote references are not globally shared; each
subject gets a different reference. The default value is false.

<authorizer> Optional Contains the configuration information for a class that implements
the com.tangosol.net.security.Authorizer interface which
represents an environment-specific facility for authorizing callers
to perform actions described by the corresponding permission
objects. Use the <instance> element to enter the class.

Element Reference

Operational Configuration Elements A-59

serializer

Used in: serializers

ADescription
The serializer element contains a serializer class configuration. Serializer classes
must implement com.tangosol.io.Serializer. A Java serializer and POF serializer
are predefined:

<cluster-config>
 <serializers>
 <serializer id="java">
 <class-name>com.tangosol.io.DefaultSerializer</class-name>
 </serializer>

 <serializer id="pof">
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </serializers>
</cluster-config>

Serializer definitions are referenced by individual cache scheme definitions (see
"serializer" on page B-117) and can be referenced by the default serializer for services
that do not explicitly define a serializer (see "defaults" on page B-31).

Additional serializers can be defined in an operational override file as required.

AElements
Table A–48 describes the subelements of the serializer element.

Table A–48 serializer Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a class that implements com.tangosol.io.Serializer. This
element cannot be used with the <class-factory-name> element.

<class-factory-name> Optional Specifies a factory class for creating custom serializer instances. The
instances must implement com.tangosol.io.Serializer.

This element cannot be used with the <class-name> element. This
element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class which
performs object instantiation.

<init-params> Optional Contains class initialization parameters for the serializer
implementation.

serializers

A-60 Oracle Fusion Middleware Developing Applications with Oracle Coherence

serializers

Used in: cluster-config

ADescription
The serializers element contains the declarative data for each serializer.

AElements
Table A–49 describes the subelements of the serializers element.

Table A–49 serializers Subelements

Element
Required/
Optional Description

<serializer> Optional Specifies the declarative data of a particular serializer.

Element Reference

Operational Configuration Elements A-61

service

Used in: services.

ADescription
Specifies the configuration for Coherence services.

AService Components
The types of services which can be configured includes:

■ PartitionedService.PartitionedCache—A cache service which evenly partitions
cache entries across the cluster nodes which run the service. This service is often
referred to as the distributed cache service

■ ReplicatedCache—A cache service which maintains copies of all cache entries on
all cluster nodes which run the service.

■ ReplicatedCache.Optimistic—A version of the ReplicatedCache which uses
optimistic locking.

■ SimpleCache —A version of the ReplicatedCache which lacks concurrency
control.

■ LocalCache—A cache service for caches where all cache entries reside in a single
cluster node.

■ InvocationService—A service used for performing custom operations on remote
cluster nodes.

■ ProxyService—A service that accepts connections from Coherence*Extend clients.

■ RemoteCache—A service that routes cache operations from Coherence*Extend
clients to a cache on the cluster.

■ RemoteInvocation— A service that routes cache invocation tasks from
Coherence*Extend clients to a cache on the cluster.

■ NameService—A service that is a specialized TCP acceptor that allows
Coherence*Extend clients to connect to a proxy by specifying a proxy service name
instead of a proxy service address.

■ RemoteNameService— A NameService implementation that allows a JVM to use a
remote NameService without having to join the Cluster.

AElements
Table A–50 describes the subelements of the services element.

service

A-62 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Initialization Parameter Settings
The <init-param> element in the Coherence operational configuration deployment
descriptor defines initialization parameters for a service. The parameters that appear
under init-param are different, depending on the service.

The following sections describe the parameters that can be configured for each of the
services:

■ DistributedCache Service Parameters

■ ReplicatedCache Service Parameters

■ OptimisticCache Service Parameters

■ Invocation Service Parameters

■ LocalCache Service Parameters

■ Proxy Service Parameters

■ RemoteCache Service Parameters

■ RemoteInvocation Service Parameters

■ NameService Parameters

Table A–50 service Subelements

Element
Required/
Optional Description

<service-type> Required Specifies the canonical name for a service, allowing the service to
be referenced from the service-name element in cache
configuration caching schemes. See "caching-schemes" on
page B-27 for more information.

<service-component> Required Specifies either the fully qualified class name of the service or the
relocatable component name relative to the base Service
component. Legal values are:

■ PartitionedService.PartitionedCache (DistributedCache)

■ ReplicatedCache

■ ReplicatedCache.Optimistic

■ SimpleCache

■ LocalCache

■ InvocationService

■ ProxyService

■ RemoteCache

■ RemoteInvocation

■ NameService

<use-filters> Optional Contains the list of filter names to be used by this service. For
example, specify use-filter as follows:

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

The example activates gzip compression for the network
messages used by this service, which can help substantially with
WAN and low-bandwidth networks.

<init-params> Optional Specifies the initialization parameters that are specific to each
service. Each parameter is described below.

Element Reference

Operational Configuration Elements A-63

■ RemoteNameService Parameters

The tables in each section describes the specific <param-name>/<param-value> pairs
that can be configured for each service. The Parameter Name column refers to the
value of the <param-name> element and Parameter Value Description column refers to
the possible values for the corresponding <param-value> element.

DistributedCache Service Parameters

A DistributedCache service supports the parameters listed in Table A–51. These
settings may also be specified for each service instance as part of the
<distributed-scheme> element in the coherence-cache-config.xml descriptor.

Table A–51 DistributedCache Service Parameters

Parameter Name Parameter Value Description

lease-granularity Specifies the lease ownership granularity. Legal values are:

■ thread (default)

■ member

A value of thread means that locks are held by a thread that obtained them
and can only be released by that thread. A value of member means that locks
are held by a cluster node and any thread running on the cluster node that
obtained the lock can release it.

partition-count Specifies the number of distributed cache partitions. Each storage-enabled
cluster member that is running the distributed cache service manages a
balanced number of partitions.

Valid values are positive integers between 1 and 32767 and should be a prime
number. The default value is 257 partitions. See "Changing the Number of
Partitions" on page 30-4 for additional details.

local-storage Specifies whether this member of the DistributedCache service enables local
storage.

Normally this value should be left unspecified within the configuration file,
and instead set on a per-process basis using the
tangosol.coherence.distributed.localstorage system property. This
allows cache clients and servers to use the same configuration descriptor.
Legal values are true or false. The default value is true.

The preconfigured system property override is
tangosol.coherence.distributed.localstorage.

transfer-threshold Specifies the threshold for the primary buckets distribution in kilobytes.
When a new node joins the distributed cache service or when a member of the
service leaves, the remaining nodes perform a task of bucket ownership
re-distribution. During this process, the existing data gets rebalanced along
with the ownership information. This parameter indicates a preferred
message size for data transfer communications. Setting this value lower
makes the distribution process take longer, but reduces network bandwidth
utilization during this activity. Legal values are integers greater then zero. The
default value is 0.5MB.

The preconfigured system property override is
tangosol.coherence.distributed.transfer.

backup-count Specifies the number of members of the partitioned cache service that hold the
backup data for each unit of storage in the cache. The default value is 1.

The preconfigured system property override is
tangosol.coherence.distributed.backupcount.

service

A-64 Oracle Fusion Middleware Developing Applications with Oracle Coherence

thread-count Specifies the number of daemon threads used by the partitioned cache service.
Legal values are positive integers, 0, or -1. The value 0 indicates that all
relevant tasks are performed on the service thread. The value -1 indicates that
tasks are performed on the caller's thread where possible. The default value is
0.

Set the value to 0 for scenarios with purely in-memory data (no read-through,
write-through, or write-behind) and simple access (no entry processors,
aggregators, and so on). For heavy compute scenarios (such as aggregators),
the number of threads should be the number of available cores for that
computer. For example, if you run 4 nodes on a 16 core box, then there should
be roughly 4 threads in the pool. For I/O intensive scenarios (such as read
through, write-through, and write-behind), the number of threads must be
higher. In this case, increase the threads just to the point that the box is
saturated.

The preconfigured system property override is
tangosol.coherence.distributed.threads.

key-associator Specifies the name of a class that implements the
com.tangosol.net.partition.KeyAssociator interface. This implementation
must have a zero-parameter public constructor.

key-partitioning Specifies the name of a class that implements the
com.tangosol.net.partition.KeyPartitioningStrategy interface. This
implementation must have a zero-parameter public constructor.

partition-listener Specifies the name of a class that implements the
com.tangosol.net.partition.PartitionListener interface. This
implementation must have a zero-parameter public constructor.

task-hung-threshold Specifies the amount of time in milliseconds that a task can execute before it is
considered hung. Legal values are positive integers or zero (indicating no
default timeout).

Note: a posted task that has not yet started is never considered hung. This
attribute is applied only if the Thread pool is used (the thread-count value is
positive).

The preconfigured system property override is
tangosol.coherence.distributed.task.hung.

task-timeout Specifies the timeout value in milliseconds for requests executing on the
service worker threads. This attribute applies only if the thread pool is used
(the thread-count value is positive) and only applies to entry processor
implementations that implement the PriorityTask interface. The task
execution time is measured on the server side and does not include the time
spent waiting in a service backlog queue before being started. Legal values are
positive integers or zero. If zero is specified, the default service-guardian
<timeout-milliseconds> value is used.

The preconfigured system property override is
tangosol.coherence.distributed.task.timeout.

Table A–51 (Cont.) DistributedCache Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-65

request-timeout Specifies the maximum amount of time a client waits for a response before
abandoning the original request. The request time is measured on the client
side as the time elapsed from the moment a request is sent for execution to the
corresponding server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a
service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

The value of this element must be in the following format:
(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]? where the first non-digits
(from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed. Legal
values are positive integers or zero (indicating no default timeout). The
default value is 0.

The preconfigured system property override is
tangosol.coherence.distributed.request.timeout.

serializer Specifies a serializer class for object serialization. Serializer classes must
implement the com.tangosol.io.Serializer interface. The preferred method
for specifying a serializer is to define it within the global serializer element
and then configure it for a cache within the cache configuration file.

backup-count-after-
writebehind

Specifies the number of members of the partitioned cache service that holds
the backup data for each unit of storage in the cache that does not require
write-behind, that is, data that is not vulnerable to being lost even if the entire
cluster were shut down. Specifically, if a unit of storage is marked as requiring
write-behind, then it is backed up on the number of members specified by the
backup-count parameter. If the unit of storage is not marked as requiring
write-behind, then it is backed up by the number of members specified by the
backup-count-after-writebehind paramter.

This value should be set to 0 or this setting should not be specified at all. The
rationale is that since this data is being backed up to another data store, no
in-memory backup is required, other than the data temporarily queued on the
write-behind queue to be written. The value of 0 means that when
write-behind has occurred, the backup copies of that data is discarded.
However, until write-behind occurs, the data is backed up in accordance with
the backup-count parameter.

Recommended value is 0.

Table A–51 (Cont.) DistributedCache Service Parameters

Parameter Name Parameter Value Description

service

A-66 Oracle Fusion Middleware Developing Applications with Oracle Coherence

guardian-timeout Specifies the guardian timeout value to use for guarding the service and any
dependent threads. If the parameter is not specified, the default guardian
timeout (as specified by the <timeout-milliseconds> operational
configuration element) is used. See the service-guardian element to globally
configure the service guardian for all services.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The preconfigured system property override is
tangosol.coherence.distributed.guard.timeout.

service-failure-policy Specifies the action to take when an abnormally behaving service thread
cannot be terminated gracefully by the service guardian. See the
service-guardian element to globally configure the service guardian for all
services.

Legal values are:

■ exit-cluster – attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this policy
causes the local node to stop the cluster services.

■ exit-process – attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this policy
cause the local node to exit the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged, but no corrective
action to be taken.

■ a custom class – the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

member-listener Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must have
a public default constructor.

The MemberListener implementation receives cache service lifecycle events.
The member-listener is used as an alternative to programmatically adding a
MapListener on a service.

partitioned-quorum-
policy-scheme

Specifies quorum policy settings for the partitioned cache service. See
"partitioned-quorum-policy-scheme" on page B-93.

Table A–51 (Cont.) DistributedCache Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-67

partition-assignment-
strategy

Specifies the strategy that is used by a partitioned service to manage partition
distribution.

■ legacy – (deprecated) The legacy assignment strategy indicates that
partition distribution is managed individually on each cluster member.

■ simple – (default) The simple assignment strategy attempts to balance
partition distribution while ensuring machine-safety and is more
deterministic and efficient than the legacy strategy.

■ mirror:<service-name> – The mirror assignment strategy attempts to
co-locate the service's partitions with the partitions of the specified
service. This strategy is used to increase the likelihood that
key-associated, cross-service cache access remains local to a member.

■ custom – a class that implements the
com.tangosol.net.partition.PartitionAssignmentStrategy interface.

The preconfigured system property override is
tangosol.coherence.distributed.assignmentstrategy.

compressor Specifies whether or not backup updates should be compressed in delta form
or sent whole. A delta update represents the parts of a backup entry that must
be changed in order to synchronize it with the primary version of the entry.
Valid values are:

■ none (default) – Disables delta backup; no compressor is used. The whole
backup binary entry is replaced when the primary entry changes.

■ standard – Automatically selects a delta compressor based on the
serializer being used by the partitioned service.

■ the fully qualified name of a class that implements the
com.tangosol.io.DeltaCompressor interface.

The preconfigured system property override is
tangosol.coherence.distributed.compressor.

service-priority Specifies the priority for the service thread. Legal values are from 1 to 10
where 10 is the highest priority. The default value is 10.

event-dispatcher-priority Specifies the priority for the event dispatcher thread for each service. Legal
values are from 1 to 10 where 10 is the highest priority. The default value is 10.

Table A–51 (Cont.) DistributedCache Service Parameters

Parameter Name Parameter Value Description

service

A-68 Oracle Fusion Middleware Developing Applications with Oracle Coherence

ReplicatedCache Service Parameters

A ReplicatedCache service supports the parameters listed in Table A–52. These
settings may also be specified for each service instance as part of the
replicated-scheme element in the coherence-cache-config.xml descriptor.

worker-priority Specifies the priority for the worker threads. Legal values are from 1 to 10
where 10 is the highest priority. The default value is 5.

reliable-transport Specifies the transport protocol used by this service for reliable point-to-point
communication. Specifying a value results in the use of a service-specific
transport instance rather then the shared transport instance that is defined by
the <unicast-listener> element. A service-specific transport instance can
result in higher performance but at the cost of increased resource
consumption and should be used sparingly for select, high priority services.
In general, a shared transport instance uses less resource consumption than
service-specific transport instances. Valid values are:

■ datagram (default) – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS requires
the use of an SSL socket provider. See "socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only available
for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only available for
Oracle Exalogic systems and requires the use of an SSL socket provider.
See "socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only available
for Oracle Exalogic systems and is automatically used as long as TCMP
has not been configured with SSL.

The default value is the shared transport instance that is configured in the
<reliable-transport> subelement of the <unicast-listener> element.

The preconfigured system property override is
tangosol.coherence.distributed.transport.reliable.

async-backup Specifies whether the partitioned (distributed) cache service should backup
changes asynchronously while concurrently responding to the client. Legal
values are true or false. The default value is false.

The preconfigured system property override is
tangosol.coherence.distributed.asyncbackup.

Table A–51 (Cont.) DistributedCache Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-69

Table A–52 ReplicatedCache Service Parameters

Parameter Name Parameter Value Description

standard-lease-
milliseconds

Specifies the duration of the standard lease in milliseconds. When a lease has
aged past this number of milliseconds, the lock is automatically released. Set this
value to zero to specify a lease that never expires. The purpose of this setting is
to avoid deadlocks or blocks caused by stuck threads; the value should be set
higher than the longest expected lock duration (for example, higher than a
transaction timeout). It's also recommended to set this value higher then
packet-delivery/timeout-milliseconds value. Legal values are from positive long
numbers or zero. The default value is 0.

lease-granularity Specifies the lease ownership granularity. Available since release 2.3.Legal
values are:

■ thread (default)

■ member

A value of thread means that locks are held by a thread that obtained them and
can only be released by that thread. A value of member means that locks are held
by a cluster node and any thread running on the cluster node that obtained the
lock can release it.

mobile-issues Specifies whether lease issues should be transferred to the most recent lock
holders. Legal values are true or false. The default value is false.

request-timeout Specifies the maximum amount of time a client waits for a response before
abandoning the original request. The request time is measured on the client side
as the time elapsed from the moment a request is sent for execution to the
corresponding server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a service
queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

The value of this element must be in the following format:
(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]? where the first non-digits (from
left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed. Legal
values are positive integers or zero (indicating no default timeout). The default
value is 0.

The preconfigured system property override is
tangosol.coherence.replicated.request.timeout.

serializer Specifies a serializer class for object serialization. Serializer classes must
implement the com.tangosol.io.Serializer interface. The preferred method
for specifying a serializer is to define it within the global serializer element and
then configure it for a cache within the cache configuration file.

service

A-70 Oracle Fusion Middleware Developing Applications with Oracle Coherence

guardian-timeout Specifies the guardian timeout value to use for guarding the service and any
dependent threads. If the paramter is not specified, the default guardian timeout
(as specified by the <timeout-milliseconds> operational configuration element)
is used. See the service-guardian element to globally configure the service
guardian for all services.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The preconfigured system property override is
tangosol.coherence.replicated.guard.timeout.

service-failure-policy Specifies the action to take when an abnormally behaving service thread cannot
be terminated gracefully by the service guardian. See the service-guardian
element to globally configure the service guardian for all services.

Legal values are:

■ exit-cluster – attempts to recover threads that appear to be unresponsive.
If the attempt fails, an attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy causes the local node to
stop the cluster services.

■ exit-process – attempts to recover threads that appear to be unresponsive.
If the attempt fails, an attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy cause the local node to exit
the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged, but no corrective
action to be taken.

■ a custom class – the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

member-listener Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must have a
public default constructor.

The MemberListener implementation receives cache service lifecycle events. The
member-listener is used as an alternative to programmatically adding a
MapListener on a service.

Table A–52 (Cont.) ReplicatedCache Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-71

OptimisticCache Service Parameters

An OptimisiticCache service supports the parameters listed in Table A–53. These
settings may also be specified for each service instance as part of the
optimistic-scheme element in the coherence-cache-config.xml descriptor.

service-priority Specifies the priority for the service thread. Legal values are from 1 to 10 where
10 is the highest priority. The default value is 10.

event-dispatcher-priority Specifies the priority for the event dispatcher thread for each service. Legal
values are from 1 to 10 where 10 is the highest priority. The default value is 10.

reliable-transport Specifies the transport protocol used by this service for reliable point-to-point
communication. Specifying a value results in the use of a service-specific
transport instance rather then the shared transport instance that is defined by
the <unicast-listener> element. A service-specific transport instance can result
in higher performance but at the cost of increased resource consumption and
should be used sparingly for select, high priority services. In general, a shared
transport instance uses less resource consumption than service-specific transport
instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS requires the
use of an SSL socket provider. See "socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only available
for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only available for
Oracle Exalogic systems and requires the use of an SSL socket provider. See
"socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only available
for Oracle Exalogic systems and is automatically used as long as TCMP has
not been configured with SSL.

The default value is the shared transport instance that is configured in the
<reliable-transport> subelement of the <unicast-listener> element.

The preconfigured system property override is
tangosol.coherence.replicated.transport.reliable.

Table A–52 (Cont.) ReplicatedCache Service Parameters

Parameter Name Parameter Value Description

service

A-72 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Table A–53 OptimisiticCache Service Parameters

Parameter Name Parameter Value Description

request-timeout Specifies the maximum amount of time a client waits for a response before
abandoning the original request. The request time is measured on the client side
as the time elapsed from the moment a request is sent for execution to the
corresponding server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a service
queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

The value of this element must be in the following format:
(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]? where the first non-digits (from
left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed. Legal
values are positive integers or zero (indicating no default timeout). The default
value is 0.

The preconfigured system property override is
tangosol.coherence.optimistic.request.timeout.

serializer Specifies a serializer class for object serialization. Serializer classes must
implement the com.tangosol.io.Serializer interface. The preferred method for
specifying a serializer is to define it within the global serializer element and then
configure it for a cache within the cache configuration file.

guardian-timeout Specifies the guardian timeout value to use for guarding the service and any
dependent threads. If the paramter is not specified, the default guardian timeout
(as specified by the <timeout-milliseconds> operational configuration element)
is used. See the service-guardian element to globally configure the service
guardian for all services.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The preconfigured system property override is
tangosol.coherence.optimistic.guard.timeout.

Element Reference

Operational Configuration Elements A-73

service-failure-policy Specifies the action to take when an abnormally behaving service thread cannot
be terminated gracefully by the service guardian. See the service-guardian
element to globally configure the service guardian for all services.

Legal values are:

■ exit-cluster – attempts to recover threads that appear to be unresponsive.
If the attempt fails, an attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy causes the local node to stop
the cluster services.

■ exit-process – attempts to recover threads that appear to be unresponsive.
If the attempt fails, an attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy cause the local node to exit
the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged, but no corrective
action to be taken.

■ a custom class – the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

member-listener Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must have a
public default constructor.

The MemberListener implementation receives cache service lifecycle events. The
member-listener is used as an alternative to programmatically adding a
MapListener on a service.

service-priority Specifies the priority for the service thread. Legal values are from 1 to 10 where 10
is the highest priority. The default value is 10.

event-dispatcher-priority Specifies the priority for the event dispatcher thread for each service. Legal values
are from 1 to 10 where 10 is the highest priority. The default value is 10.

reliable-transport Specifies the transport protocol used by this service for reliable point-to-point
communication. Specifying a value results in the use of a service-specific
transport instance rather then the shared transport instance that is defined by the
<unicast-listener> element. A service-specific transport instance can result in
higher performance but at the cost of increased resource consumption and should
be used sparingly for select, high priority services. In general, a shared transport
instance uses less resource consumption than service-specific transport instances.
Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS requires the
use of an SSL socket provider. See "socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only available for
Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only available for
Oracle Exalogic systems and requires the use of an SSL socket provider. See
"socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only available for
Oracle Exalogic systems and is automatically used as long as TCMP has not
been configured with SSL.

The default value is the shared transport instance that is configured in the
<reliable-transport> subelement of the <unicast-listener> element.

The preconfigured system property override is
tangosol.coherence.optimistic.transport.reliable.

Table A–53 (Cont.) OptimisiticCache Service Parameters

Parameter Name Parameter Value Description

service

A-74 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Invocation Service Parameters

An Invocation service supports the parameters listed in Table A–54. These settings
may also be specified for each service instance as part of the invocation-scheme
element in the coherence-cache-config.xml descriptor.

Table A–54 Invocation Service Parameters

Parameter Name Parameter Value Description

thread-count Specifies the number of daemon threads used by the service. Legal values are positive
integers, 0, or -1. The value 0 indicates that all relevant tasks are performed on the
service thread. The value -1 indicates that tasks are performed on the caller's thread
where possible.

Set the value to 0 for scenarios with purely in-memory data (no read-through,
write-through, or write-behind) and simple access (no entry processors, aggregators,
and so on). For heavy compute scenarios (such as aggregators), the number of threads
should be the number of available cores for that compute. For example, if you run 4
nodes on a 16 core box, then there should be roughly 4 threads in the pool. For I/O
intensive scenarios (such as read through, write-through, and write-behind), the
number of threads must be higher. In this case, increase the threads just to the point
that the box is saturated.

The preconfigured system property override is
tangosol.coherence.invocation.threads.

task-hung-threshold Specifies the amount of time in milliseconds that a task can execute before it is
considered "hung". Note: a posted task that has not yet started is never considered as
hung. This attribute is applied only if the Thread pool is used (the thread-count
value is positive).

The preconfigured system property override is
tangosol.coherence.invocation.task.hung.

task-timeout Specifies the default task execution timeout value for requests that can time out (that
is, polls and PriorityTask implementations), but do not explicitly specify an
execution timeout value. The task execution time is measured on the server side and
does not include the time spent waiting in a service backlog queue before being
started. This attribute is applied only if the thread pool is used (the thread-count
value is positive). Legal values are positive integers or zero (indicating no default
timeout).

The preconfigured system property override is
tangosol.coherence.invocation.task.timeout.

Element Reference

Operational Configuration Elements A-75

request-timeout Specifies the maximum amount of time a client waits for a response before
abandoning the original request. The request time is measured on the client side as
the time elapsed from the moment a request is sent for execution to the corresponding
server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a service queue
until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

The value of this element must be in the following format:
(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]? where the first non-digits (from left to
right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed. Legal values
are positive integers or zero (indicating no default timeout). The default value is 0.

The preconfigured system property override is
tangosol.coherence.invocation.request.timeout.

serializer Specifies a serializer class for object serialization. Serializer classes must implement
the com.tangosol.io.Serializer interface. The preferred method for specifying a
serializer is to define it within the global serializer element and then configure it for a
cache within the cache configuration file.

guardian-timeout Specifies the guardian timeout value to use for guarding the service and any
dependent threads. If the paramter is not specified, the default guardian timeout (as
specified by the <timeout-milliseconds> operational configuration element) is used.
See the service-guardian element to globally configure the service guardian for all
services.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The preconfigured system property override is
tangosol.coherence.invocation.guard.timeout.

Table A–54 (Cont.) Invocation Service Parameters

Parameter Name Parameter Value Description

service

A-76 Oracle Fusion Middleware Developing Applications with Oracle Coherence

service-failure-policy Specifies the action to take when an abnormally behaving service thread cannot be
terminated gracefully by the service guardian. See the service-guardian element to
globally configure the service guardian for all services.

Legal values are:

■ exit-cluster – attempts to recover threads that appear to be unresponsive. If the
attempt fails, an attempt is made to stop the associated service. If the associated
service cannot be stopped, this policy causes the local node to stop the cluster
services.

■ exit-process – attempts to recover threads that appear to be unresponsive. If the
attempt fails, an attempt is made to stop the associated service. If the associated
service cannot be stopped, this policy cause the local node to exit the JVM and
terminate abruptly.

■ logging – causes any detected problems to be logged, but no corrective action to
be taken.

■ a custom class – the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

member-listener Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must have a
public default constructor.

The MemberListener implementation receives cache service lifecycle events. The
member-listener is used as an alternative to programmatically adding a MapListener
on a service.

service-priority Specifies the priority for the service thread. Legal values are from 1 to 10 where 10 is
the highest priority. The default value is 10.

event-dispatcher-priori
ty

Specifies the priority for the event dispatcher thread for each service. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is 10.

worker-priority Specifies the priority for the worker threads. Legal values are from 1 to 10 where 10 is
the highest priority. The default value is 5.

reliable-transport Specifies the transport protocol used by this service for reliable point-to-point
communication. Specifying a value results in the use of a service-specific transport
instance rather then the shared transport instance that is defined by the
<unicast-listener> element. A service-specific transport instance can result in
higher performance but at the cost of increased resource consumption and should be
used sparingly for select, high priority services. In general, a shared transport
instance uses less resource consumption than service-specific transport instances.
Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS requires the use of
an SSL socket provider. See "socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only available for
Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only available for Oracle
Exalogic systems and requires the use of an SSL socket provider. See
"socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only available for
Oracle Exalogic systems and is automatically used as long as TCMP has not been
configured with SSL.

The default value is the shared transport instance that is configured in the
<reliable-transport> subelement of the <unicast-listener> element.

The preconfigured system property override is
tangosol.coherence.invocation.transport.reliable.

Table A–54 (Cont.) Invocation Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-77

LocalCache Service Parameters

A LocalCache service supports the parameters listed in Table A–55.

Proxy Service Parameters

A Proxy service supports the parameters listed in Table A–56. These settings may also
be specified for each service instance as part of the proxy-scheme element in the
coherence-cache-config.xml descriptor.

Table A–55 LocalCache Service Parameters

Parameter Name Parameter Value Description

lock-enforce Specifies whether locking is enforced for put, remove and clear operations. If the
value is false, a client is responsible for calling lock and unlock explicitly.

The default value is false.

lock-wait Specifies the number of milliseconds to continue trying to obtain a lock. This
parameters is only used if locking enforcement is enabled. A value of -1 blocks the
calling thread until the lock can be obtained.

The default value is 0.

Table A–56 Proxy Service Parameters

Parameter Name Parameter Value Description

acceptor-config Contains the configuration of the connection acceptor used by the service to accept
connections from Coherence*Extend clients and to allow them to use the services
offered by the cluster without having to join the cluster.

proxy-config Contains the configuration of the clustered service proxies managed by this service.

thread-count Specifies the number of daemon threads for use by the proxy service. Legal values are
positive integers or 0. The default value is 0, which indicates that dynamic thread
pooling is enabled and that the number of threads automatically adjusts based on
proxy service load. Specifying a positive value explicitly sets the number of threads in
the pool.

Note: Proxy service threads perform operations on behalf of the calling application.
Therefore, when explicitly setting the number of threads, set the value to as many
threads as there are concurrent operations.

To disable the thread pool, set the thread-count-max and thread-count-min
parameters to 0. All relevant tasks are performed on the proxy service thread when the
thread pool is disabled.

The preconfigured system property override is tangosol.coherence.proxy.threads.

task-hung-threshold Specifies the amount of time in milliseconds that a task can execute before it is
considered hung. Legal values are positive integers or zero (indicating no default
timeout).

Note: a posted task that has not yet started is never considered hung. This attribute is
applied only if the Thread pool is used (the thread-count value is positive).

The preconfigured system property override is
tangosol.coherence.proxy.task.hung.

task-timeout Specifies the default timeout value in milliseconds for tasks that can be timed-out (for
example, implement the com.tangosol.net.PriorityTask interface), but do not
explicitly specify the task execution timeout value. The task execution time is measured
on the server side and does not include the time spent waiting in a service backlog
queue before being started. This attribute is applied only if the thread pool is used (the
thread-count value is positive). Legal values are positive integers or zero (indicating
no default timeout).

The preconfigured system property override is
tangosol.coherence.proxy.task.timeout.

service

A-78 Oracle Fusion Middleware Developing Applications with Oracle Coherence

request-timeout Specifies the maximum amount of time a proxy waits for requests that are sent to other
proxies of the same name. This parameter should not be used because requests are
never sent between proxies.

serializer Specifies a serializer class for object serialization. Serializer classes must implement the
com.tangosol.io.Serializer interface. The preferred method for specifying a
serializer is to define it within the global serializer element and then configure it for a
cache within the cache configuration file.

guardian-timeout Specifies the guardian timeout value to use for guarding the service and any
dependent threads. If the parameter is not specified, the default guardian timeout (as
specified by the <timeout-milliseconds> operational configuration element) is used.
See the service-guardian element to globally configure the service guardian for all
services.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The preconfigured system property override is
tangosol.coherence.proxy.guard.timeout.

service-failure-policy Specifies the action to take when an abnormally behaving service thread cannot be
terminated gracefully by the service guardian. See the service-guardian element to
globally configure the service guardian for all services.

Legal values are:

■ exit-cluster – attempts to recover threads that appear to be unresponsive. If the
attempt fails, an attempt is made to stop the associated service. If the associated
service cannot be stopped, this policy causes the local node to stop the cluster
services.

■ exit-process – attempts to recover threads that appear to be unresponsive. If the
attempt fails, an attempt is made to stop the associated service. If the associated
service cannot be stopped, this policy cause the local node to exit the JVM and
terminate abruptly.

■ logging – causes any detected problems to be logged, but no corrective action to
be taken.

■ a custom class – the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

member-listener Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must have a public
default constructor.

The MemberListener implementation receives cache service lifecycle events. The
member-listener is used as an alternative to programmatically adding a MapListener
on a service.

proxy-quorum-policy-sc
heme

Specifies quorum policy settings for the Proxy service.

Table A–56 (Cont.) Proxy Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-79

load-balancer Specifies the default load balancing strategy that is used by a proxy service if a strategy
is not explicitly configured as part of the proxy scheme. Legal values are:

■ proxy – (default) This strategy attempts to distribute client connections equally
across proxy service members based upon existing connection count, connection
limit, incoming and outgoing message backlog, and daemon pool utilization.

■ client – This strategy relies upon the client address provider implementation to
dictate the distribution of clients across proxy service members. If no client
address provider implementation is provided, the extend client tries each proxy
service in a random order until a connection is successful.

service-priority Specifies the priority for the service thread. Legal values are from 1 to 10 where 10 is
the highest priority. The default value is 10.

event-dispatcher-prior
ity

Specifies the priority for the event dispatcher thread for each service. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is 10.

worker-priority Specifies the priority for the worker threads. Legal values are from 1 to 10 where 10 is
the highest priority. The default value is 5.

Table A–56 (Cont.) Proxy Service Parameters

Parameter Name Parameter Value Description

service

A-80 Oracle Fusion Middleware Developing Applications with Oracle Coherence

RemoteCache Service Parameters

A RemoteCache service supports the parameters listed in Table A–57. These settings
may also be specified for each service instance as part of the remote-cache-scheme
element in the coherence-cache-config.xml descriptor.

reliable-transport Specifies the transport protocol used by this service for reliable point-to-point
communication. Specifying a value results in the use of a service-specific transport
instance rather then the shared transport instance that is defined by the
<unicast-listener> element. A service-specific transport instance can result in higher
performance but at the cost of increased resource consumption and should be used
sparingly for select, high priority services. In general, a shared transport instance uses
less resource consumption than service-specific transport instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS requires the use of
an SSL socket provider. See "socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only available for
Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only available for Oracle
Exalogic systems and requires the use of an SSL socket provider. See
"socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only available for
Oracle Exalogic systems and is automatically used as long as TCMP has not been
configured with SSL.

The default value is the shared transport instance that is configured in the
<reliable-transport> subelement of the <unicast-listener> element.

The preconfigured system property override is
tangosol.coherence.proxy.transport.reliable.

thread-count-max Specifies the maximum number of daemon threads that are allowed in the dynamic
thread pool. This parameter is only valid if a thread-count value is set to 0. Legal
values are positive integers or 0. Setting a value for both this parameter and the
thread-count-min parameter indicates that no daemon threads are created and that all
client requests are handled by the proxy service thread. The default value is 4 times the
number of cores.

The preconfigured system property override is
tangosol.coherence.proxy.threads.max.

thread-count-min Specifies the minimum number of daemon threads that are allowed (and initially
created) in the dynamic thread pool. This parameter is only valid if a thread-count
value is set to 0. Legal values are positive integers or 0. Setting a value for both this
parameter and the thread-count-max parameter indicates that no daemon threads are
created and that all client requests are handled by the proxy service thread. The default
value is 2 times the number of cores.

The preconfigured system property override is
tangosol.coherence.proxy.threads.min.

Table A–56 (Cont.) Proxy Service Parameters

Parameter Name Parameter Value Description

Element Reference

Operational Configuration Elements A-81

RemoteInvocation Service Parameters

A RemoteInvocation service supports the parameters listed in Table A–58. These
settings may also be specified for each service instance as part of the
remote-invocation-scheme element in the coherence-cache-config.xml descriptor.

NameService Parameters

A NameService service supports the parameters listed in Table A–59.

RemoteNameService Parameters

A RemoteNameService service supports the parameters listed in Table A–60.

Table A–57 RemoteCache Service Parameters

Parameter Name Parameter Value Description

initiator-config Contains the configuration of the connection initiator used by the service to
establish a connection with the cluster.

serializer Specifies a serializer class for object serialization. Serializer classes must
implement the com.tangosol.io.Serializer interface. The preferred method
for specifying a serializer is to define it within the global serializer element and
then configure it for a cache within the cache configuration file.

defer-key-association-check Specifies whether key association processing is done by the extend client or
deferred to the cluster side. Valid values are true and false. The default value
is false and indicates that key association processing is done by the extend
client. If the value is set to true,.NET and C++ clients must include a parallel
Java implementation of the key class on the cluster cache servers.

Table A–58 RemoteInvocation Service Parameters

Parameter Name Parameter Value Description

initiator-config Contains the configuration of the connection initiator used by the service to establish
a connection with the cluster.

serializer Specifies a serializer class for object serialization. Serializer classes must implement
the com.tangosol.io.Serializer interface. The preferred method for specifying a
serializer is to define it within the global serializer element and then configure it for a
cache within the cache configuration file.

Table A–59 NameService Parameters

Parameter Name Parameter Value Description

acceptor-config Contains the configuration of a connection acceptor that is used discover proxy
services that are available in the cluster for use by Coherence*Extend clients.

serializer Specifies a serializer class for object serialization. Serializer classes must implement
the com.tangosol.io.Serializer interface. The preferred method for specifying a
serializer is to define it within the global serializer element and then configure it for a
cache within the cache configuration file.

Table A–60 RemoteNameService Parameters

Parameter Name Parameter Value Description

initiator-config/tcp-ini
tiator

Contains the configuration of the TCP connection initiator used by the service to
establish a connection with the cluster.

serializer Specifies a serializer class for object serialization. Serializer classes must implement
the com.tangosol.io.Serializer interface. The preferred method for specifying a
serializer is to define it within the global serializer element and then configure it for a
cache within the cache configuration file.

service-guardian

A-82 Oracle Fusion Middleware Developing Applications with Oracle Coherence

service-guardian

Used in: cluster-config

ADescription
Specifies the configuration of the service guardian, which detects and attempts to
resolve service deadlocks.

AElements
Table A–61 describes the subelements of the service-guardian element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Attribute Reference" on page A-100 for more information.

Table A–61 service-guardian Subelements

Element
Required/
Optional Description

<service-failure-policy> Optional Specifies the action to take when an abnormally behaving service
thread cannot be terminated gracefully by the service guardian.

Legal values are:

■ exit-cluster – (default) attempts to recover threads that
appear to be unresponsive. If the attempt fails, an attempt is
made to stop the associated service. If the associated service
cannot be stopped, this policy causes the local node to stop
the cluster services.

■ exit-process – attempts to recover threads that appear to
be unresponsive. If the attempt fails, an attempt is made to
stop the associated service. If the associated service cannot
be stopped, this policy cause the local node to exit the JVM
and terminate abruptly.

■ logging – causes any detected problems to be logged, but
no corrective action to be taken.

■ a custom class – an <instance> subelement is used to
provide the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<timeout-milliseconds> Optional The timeout value used to guard against deadlocked or
unresponsive services. It is recommended that
service-guardian/timeout-milliseconds be set equal to or
greater than the packet-delivery/timeout-milliseconds
value. The default value is 305000.

The preconfigured system property override is
tangosol.coherence.guard.timeout

Element Reference

Operational Configuration Elements A-83

services

Used in: cluster-config

ADescription
The services element contains the declarative data for each service.

AElements
Table A–50 describes the subelements of the services element.

Table A–62 services Subelements

Element
Required/
Optional Description

<service> Optional Specifies the declarative data of a particular service.

shutdown-listener

A-84 Oracle Fusion Middleware Developing Applications with Oracle Coherence

shutdown-listener

Used in: cluster-config.

ADescription
Specifies the action a cluster node should take upon receiving an external shutdown
request. External shutdown includes the "kill" command on UNIX and Ctrl-C on
Windows and UNIX.

AElements
Table A–63 describes the subelements of the shutdown-listener element.

Table A–63 shutdown-listener Subelements

Element
Required/
Optional Description

<enabled> Required Specifies the type of action to take upon an external JVM shutdown. Legal values:

■ none – perform no explicit shutdown actions

■ force – (default) perform "hard-stop" the node by calling Cluster.stop()

■ graceful – perform a "normal" shutdown by calling Cluster.shutdown()

■ true – same as force

■ false – same as none

Note: For production use, the suggested value is none unless testing has verified
that the behavior on external shutdown is exactly what is desired.

The preconfigured system property override is
tangosol.coherence.shutdownhook.

Element Reference

Operational Configuration Elements A-85

socket-address

Used in: well-known-addresses, address-provider

ADescription
The socket-address element specifies the address (IP, or DNS name, and port) to which
a socket is bound.

AElements
Table A–64 describes the subelements of the socket-address element.

Table A–64 socket-address Subelements

Element
Required/
Optional Description

<address> Required Specifies the IP address that a Socket listens or publish on. Enter either an
IP address or DNS name.

Note: The localhost setting may not work on systems that define localhost
as the loopback address; in that case, specify the computer name or the
specific IP address.

<port> Required Specifies the port that the Socket listens or publish on. Legal values are
from 1 to 65535.

Note: When setting up a WKA member, the port value must match the port
value that is specified for the unicast listener port. See the
<unicast-listener> element.

socket-provider

A-86 Oracle Fusion Middleware Developing Applications with Oracle Coherence

socket-provider

Used in: socket-providers, unicast-listener, ssl.

ADescription
The <socket-provider> element contains the configuration information for a socket
and channel factory. The following socket providers are supported and referenced
using their defined id attribute name.

<socket-providers>
 <socket-provider id="system">
 <system/>
 </socket-provider>

 <socket-provider id="tcp">
 <tcp/>
 </socket-provider>

 <socket-provider id="ssl">
 <ssl>
 <identity-manager>
 <key-store>
 <url system-property="tangosol.coherence.security.keystore">
 file:keystore.jks</url>
 <password system-property="tangosol.coherence.security.password"/>
 </key-store>
 <password system-property="tangosol.coherence.security.password"/>
 </identity-manager>
 <trust-manager>
 <algorithm>PeerX509</algorithm>
 <key-store>
 <url system-property="tangosol.coherence.security.keystore">
 file:keystore.jks</url>
 <password system-property="tangosol.coherence.security.password"/>
 </key-store>
 </trust-manager>
 <socket-provider>tcp</socket-provider>
 </ssl>
 </socket-provider>

 <socket-provider id="sdp">
 <sdp/>
 </socket-provider>
</socket-providers>

Alternate SSL definitions can be created to support more elaborate SSL configurations.

AElements
Table A–65 describes the subelements of the socket-provider element.

Element Reference

Operational Configuration Elements A-87

Table A–65 socket-provider Subelements

Element
Required/
Optional Description

<system> Optional Specifies a socket provider that produces instances of the JVM's
default socket and channel implementations. This is the default socket
provider.

<ssl> Optional Specifies a socket provider that produces socket and channel
implementations which use SSL.

<tcp> Optional Specifies a socket provider that produces TCP-based sockets and
channel implementations.

<sdp> Optional Specifies a socket provider that produce SDP-based sockets and
channel implementations provided that the JVM and underlying
network stack supports SDP.

socket-providers

A-88 Oracle Fusion Middleware Developing Applications with Oracle Coherence

socket-providers

Used in cluster-config

ADescription
The socket-providers element contains the declarative data for each socket provider
implementation. Coherence supports the following socket providers: system, tcp, ssl,
and sdp.

AElements
Table A–66 describes the subelements of the socket-providers element.

Table A–66 socket-providers Subelements

Element
Required/
Optional Description

<socket-provider> Optional Specifies the configuration information for a socket and channel
factory.

Element Reference

Operational Configuration Elements A-89

ssl

Used in: socket-provider.

ADescription
The <ssl> element contains the configuration information for a socket provider that
produces socket and channel implementations which use SSL. If SSL is configured for
the unicast listener, the listener must be configured to use well known addresses.

AElements
Table A–67 describes the subelements of the ssl element.

Table A–67 ssl Subelements

Element
Required/
Optional Description

<protocol> Optional Specifies the name of the protocol used by the socket and channel
implementations produced by the SSL socket provider. The default
value is TLS.

<provider> Optional Specifies the configuration for a security provider instance.

<executor> Optional Specifies the configuration information for an implementation of
the java.util.concurrent.Executor interface.

A <class-name> subelement is used to provide the name of a class
that implements the Executor interface. As an alternative, use a
<class-factory-name> subelement to specify a factory class for
creating Executor instances and a <method-name> subelement that
specifies the name of a static factory method on the factory class
which performs object instantiation. Either approach can specify
initialization parameters using the <init-params> element.

<identity-manager> Optional Specifies the configuration information for initializing an identity
manager instance.

<trust-manager> Optional Specifies the configuration information for initializing a trust
manager instance.

<hostname-verifier> Optional Specifies the configuration information for an implementation of
the javax.net.ssl.HostnameVerifier interface. During the SSL
handshake, if the URL's host name and the server's identification
host name mismatch, the verification mechanism calls back to this
instance to determine if the connection should be allowed.

A <class-name> subelement is used to provide the name of a class
that implements the HostnameVerifier interface. As an alternative,
use a <class-factory-name> subelement to specify a factory class
for creating HostnameVerifier instances and a <method-name>
subelement that specifies the name of a static factory method on the
factory class which performs object instantiation. Either approach
can specify initialization parameters using the <init-params>
element.

ssl

A-90 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cipher-suites Optional Specifies a list of ciphers. Use the name element within the
cipher-suites element to enter a cipher. Multiple name elements
can be specified.

Use the usage attribute to specify whether the list of ciphers are
allowed or disallowed. If the usage attribute value is black-list,
then the specified ciphers are removed from the default enabled
cipher list. If the usage attribute value is white-list, then the
specified ciphers are the enabled ciphers. The default value if the
usage attribute is not specified is white-list.

protocol-versions Optional Specifies a list of protocol versions. Use the name element within the
protocol-versions element to enter a protocol version. Multiple
name elements can be specified.

Use the usage attribute to specify whether the list of protocol
versions are allowed or disallowed. If the usage attribute value is
black-list, then the specified protocol versions are removed from
the default enabled protocol list. If the usage attribute value is
white-list, then the specified protocol versions are the enabled
protocols. The default value if the usage attribute is not specified is
white-list.

<socket-provider> Optional Specifies the configuration information for a delegate provider for
SSL. Valid values are tcp and sdp. The default value is tcp.

Table A–67 (Cont.) ssl Subelements

Element
Required/
Optional Description

Element Reference

Operational Configuration Elements A-91

tcp-ring-listener

Used in: cluster-config.

ADescription
The TCP-ring provides a means for fast death detection of another node within the
cluster. When enabled, the cluster nodes use a single "ring" of TCP connections
spanning the entire cluster. A cluster node can use the TCP connection to detect the
death of another node within a heartbeat interval (the default value s one second; see
the <heartbeat-milliseconds> subelement of packet-delivery). If disabled, the
cluster node must rely on detecting that another node has stopped responding to UDP
packets for a considerately longer interval (see the <timeout-milliseconds>
subelement of packet-delivery). When the death has been detected it is
communicated to all other cluster nodes.

AElements
Table A–68 describes the subelements of the tcp-ring-listener element.

Table A–68 tcp-ring-listener Subelements

Element
Required/
Optional Description

<enabled> Optional Specifies whether the tcp ring listener should be enabled to defect
node failures faster. Valid values are true and false. The default
value is true.

<ip-timeout> Optional Specifies the timeout to use for determining that a computer that
is hosting cluster members has become unreachable. A number of
connection attempts may be made before determining that the
unreachable members should be removed. Legal values are
strings representing time intervals. A timeout of 0 disables
system-level monitoring and is not recommended. The default
value is 5s.

The values of the <ip-timeout> and <ip-attempts> elements
should be high enough to insulate against allowable temporary
network outages.

This feature relies upon the java.net.InetAddress.isReachable
mechanism, refer to the API documentation see for a description
of how it identifies reachability.

<ip-attempts> Optional specifies the number of connection attempts to make before
determining that a computer that is hosting cluster members has
become unreachable, and that those cluster members should be
removed.

The values of the <ip-timeout> and <ip-attempts> elements
should be high enough to insulate against allowable temporary
network outages. Legal values are positive integers. The default
value is 3.

<listen-backlog> Optional Specifies the size of the TCP/IP server socket backlog queue.
Valid values are positive integers. The default value is operating
system dependent.

<priority> Required Specifies a priority of the tcp ring listener execution thread. Legal
values are from 1 to 10 where 10 is the highest priority. The
default value is 6.

traffic-jam

A-92 Oracle Fusion Middleware Developing Applications with Oracle Coherence

traffic-jam

Used in: packet-publisher.

ADescription
The traffic-jam element is used to control the rate at which client threads enqueue
packets for the packet publisher to transmit on the network. When the limit is
exceeded any client thread is forced to pause until the number of outstanding packets
drops below the specified limit. To limit the rate at which the Publisher transmits
packets see the flow-control element.

AElements
Table A–69 describes the subelements of the traffic-jam element.

Table A–69 traffic-jam Subelements

Element
Required/
Optional Description

<maximum-packets> Required Specifies the maximum number of pending packets that the Publisher
tolerates before determining that it is clogged and must slow down
client requests (requests from local non-system threads). Zero means
no limit. This property prevents most unexpected out-of-memory
conditions by limiting the size of the resend queue. The default value
is 8192.

<pause-milliseconds> Required Number of milliseconds that the Publisher pauses a client thread that
is trying to send a message when the Publisher is clogged. The
Publisher does not allow the message to go through until the clog is
gone, and repeatedly sleeps the thread for the duration specified by
this property. The default value is 10.

Element Reference

Operational Configuration Elements A-93

trust-manager

Used in: ssl.

ADescription
The <trust-manager> element contains the configuration information for initializing a
javax.net.ssl.TrustManager instance.

A trust manager is responsible for managing the trust material that is used when
making trust decisions and for deciding whether credentials presented by a peer
should be accepted.

A valid trust-manager configuration contains at least one child element.

AElements
Table A–70 describes the elements of the trust-manager element.

Table A–70 trust-manager Subelements

Element
Required/
Optional Description

<algorithm> Optional Specifies the algorithm used by the trust manager. The default value is
SunX509.

<provider> Optional Specifies the configuration for a security provider instance.

<key-store> Optional Specifies the configuration for a key store implementation.

unicast-listener

A-94 Oracle Fusion Middleware Developing Applications with Oracle Coherence

unicast-listener

Used in: cluster-config.

ADescription
Specifies the configuration information for the Unicast listener. This element is used to
specify the address and port that a cluster node binds to, to listen for point-to-point
cluster communications.

AMulticast-Free Clustering
By default Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the well-known-addresses feature may be used to eliminate the need for multicast
traffic.

AElements
Table A–71 describes the subelements of the unicast-listener element.

Element Reference

Operational Configuration Elements A-95

Table A–71 unicast-listener Subelements

Element
Required/
Optional Description

<socket-provider> Optional Specifies either: the configuration for a socket provider, or it
references a socket provider configuration that is defined within the
<socket-providers> element. The following socket providers are
available: system (default), ssl, tcp, and sdp. Refer to the socket
provider configuration using their defined id attribute name. For
example:

<socket-provider>ssl</socket-provider>

The preconfigured system property override is
tangosol.coherence.socketprovider.

<reliable-transport> Optional Specifies the transport protocol that is used for reliable
point-to-point communication. By default, all services use the
configured protocol and use a shared transport instance. A service
can also explicitly specify the transport protocol using a
reliable-transport service parameter, which results in a
service-specific transport instance. A service-specific transport
instance can result in higher performance but at the cost of
increased resource consumption and should be used sparingly for
select, high priority services. In general, a shared transport instance
uses less resource consumption than service-specific transport
instances. Valid values are:

■ datagram (default) – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS
requires the use of an SSL socket provider. See
"socket-provider" on page A-86.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only
available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use of an
SSL socket provider. See "socket-provider" on page A-86.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only
available for Oracle Exalogic systems and is automatically used
as long as TCMP has not been configured with SSL.

The preconfigured system property override is
tangosol.coherence.transport.reliable.

<well-known-addresses> Optional Contains a list of "well known" addresses (WKA) that are used by
the cluster discovery protocol instead of using multicast broadcast
to discover cluster members.

<address> Required Specifies the IP address that a Socket listens or publishes on. The
address may also be entered using CIDR notation as a subnet and
mask (for example, 192.168.1.0/24), which allows runtime
resolution against the available local IP addresses.

Note: The localhost setting may not work on systems that define
localhost as the loopback address; in that case, specify the computer
name or the specific IP address. Also, the multicast listener, by
default, binds to the same interface as defined by this address. The
default value is localhost.

The preconfigured system property override is
tangosol.coherence.localhost.

unicast-listener

A-96 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<port> Required Specifies the ports that the Socket listens or publishes on. A second
port is automatically opened and defaults to the next available port.
Legal values are from 1 to 65535. The default value is 8088 for the
first port and 8089 (if available) for the second port.

The preconfigured system property override is
tangosol.coherence.localport.

<port-auto-adjust> Required Specifies whether the unicast port is automatically incremented if
the specified port cannot be bound to because it is in use. Legal
values are true or false. The default value is true.

The preconfigured system property override is
tangosol.coherence.localport.adjust.

<packet-buffer> Required Specifies how many incoming packets the operating system is
requested to buffer. The value may be expressed either in terms of
packets of bytes.

<priority> Required Specifies a priority of the unicast listener execution thread. Legal
values are from 1 to 10 where 10 is the highest priority. The default
value is 8.

Table A–71 (Cont.) unicast-listener Subelements

Element
Required/
Optional Description

Element Reference

Operational Configuration Elements A-97

volume-threshold

Used in: packet-speaker

ADescription
Specifies the minimum outgoing packet volume which must exist for the speaker
daemon to be activated.

APerformance Impact

AElements
Table A–72 describes the subelements of the packet-speaker element.

Table A–72 packet-speaker Subelements

Element
Required/
Optional Description

<minimum-packets> Required Specifies the minimum number of packets which must be ready to be
sent for the speaker daemon to be activated. A value of 0 forces the
speaker to always be used, while a very high value causes it to never be
used. If unspecified (the default), it matches the packet-buffer.

well-known-addresses

A-98 Oracle Fusion Middleware Developing Applications with Oracle Coherence

well-known-addresses

Used in: unicast-listener.

ADescription
By default, Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the Well Known Addresses feature may be used to eliminate the need for multicast
traffic. When in use the cluster is configured with a relatively small list of nodes which
are allowed to start the cluster, and which are likely to remain available over the
cluster lifetime. There is no requirement for all WKA nodes to be simultaneously
active at any point in time. This list is used by all other nodes to find their way into the
cluster without the use of multicast, thus at least one node that is configured as a
well-known node must be running for other nodes to be able to join.

AExample
The following example configures two well-known-addresses with the default port.

<cluster-config>
 <unicast-listener>
 <well-known-addresses>
 <socket-address id="1">
 <address>192.168.0.100</address>
 <port>8088</port>
 </socket-address>
 <socket-address id="2">
 <address>192.168.0.101</address>
 <port>8088</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
</cluster-config>

AElements
Table A–73 describes the subelements of the well-known-addresses element.

Note: This is not a security-related feature, and does not limit the
addresses which are allowed to join the cluster. See the
authorized-hosts element for details on limiting cluster membership.

If you are having difficulties establishing a cluster when using
multicast, see Administering Oracle Coherence for instructions on
performing a multicast connectivity test.

Element Reference

Operational Configuration Elements A-99

Table A–73 well-known-addresses Subelements

Element
Required/
Optional Description

<socket-address> Optional Specifies a list of WKA that are used by the cluster discovery protocol
instead of using multicast broadcast. If one or more WKA is specified, for a
member to join the cluster it either has to be a WKA or there has to be at
least one WKA member running. Additionally, all cluster communication is
performed using unicast. If empty or unspecified, multicast
communications is used.

The preconfigured system property overrides are tangosol.coherence.wka
and tangosol.coherence.wka.port.

<address-provider> Optional Contains the configuration for a com.tangosol.net.AddressProvider
implementation that supplies the WKAs. The calling component attempts
to obtain the full list upon node startup, the provider must return a
terminating null address to indicate that all available addresses have been
returned.

Attribute Reference

A-100 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Attribute Reference

Table A–74 describes the attributes available in the operational deployment descriptor.

Table A–74 Operational Deployment Descriptor Attributes

Attribute
Required/
Optional Description

xml-override Optional The xml-override attribute allows the content of an element to be fully or
partially overridden with an XML document that is external to the base
document. Legal value of this attribute is the name of the XML document an
should be accessible using the ClassLoader.getResourceAsStream(String
name) by the classes contained in coherence.jar library. In general, the name
should be prefixed with '/' and located in the classpath.

The override XML document referred by this attribute does not have to exist.
However, if it does exist then its root element must have the same name as
the element it overrides. In cases where there are multiple elements with the
same name (for example, <service>) the id attribute is used to identify the
base element that is overridden and the override element itself. The elements
of the override document that do not have a match in the base document are
just appended to the base.

The following elements can be overridden by its own XML override file:

address-provider, authorized-hosts, cache-factory-builder-config,
cluster-config, coherence, configurable-cache-factory-config,
incoming-message-handler, logging-config, multicast-listener,
outgoing-message-handler, security-config, serializer, service,
service-failure-policy, shutdown-listener, tcp-ring-listener,
unicast-listener, packet-speaker, packet-publisher, mbeans

id Optional The id attribute differentiates elements that can have multiple occurrences
(for example, <service>). See "Understanding the XML Override Feature" on
page 3-16.

system-property Optional This attribute is used to specify a system property name for any element. The
system property is used to override the element value from the Java
command line. This feature enables the same operational descriptor (and
override file) to be used across all cluster nodes and customize each node
using the system properties. See Appendix D, "System Property Overrides,"
for more information on this feature.

B

Cache Configuration Elements B-1

BCache Configuration Elements

[39] This appendix provides a detailed reference of the cache configuration deployment
descriptor elements and includes a brief overview of the descriptor.

This appendix includes the following sections:

■ Cache Configuration Deployment Descriptor

■ Element Reference

■ Attribute Reference

Cache Configuration Deployment Descriptor
The cache configuration deployment descriptor specifies the various types of caches
that can be used within a cluster. The name and location of the descriptor is specified
in the operational deployment descriptor and defaults to
coherence-cache-config.xml. A sample configuration descriptor is packaged in the
root of the coherence.jar library and is used unless a custom
coherence-cache-config.xml file is found before the coherence.jar file within the
application's classpath. All cluster members should use identical cache configuration
descriptors if possible.

The cache configuration deployment descriptor schema is defined in the
coherence-cache-config.xsd file, which imports the
coherence-cache-config-base.xsd file, which, in turn, imports the
coherence-config-base.xsd file. These XSD files are located in the root of the
coherence.jar library and at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-cache-config/1.2/coherence-cac
he-config.xsd

The <cache-config> element is the root element of the cache configuration descriptor
and typically includes an XSD and Coherence namespace reference and the location of
the coherence-cache-config.xsd file. For example:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

http://xmlns.oracle.com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd
http://xmlns.oracle.com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd

Cache Configuration Deployment Descriptor

B-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Notes:

■ The schema located in the coherence.jar library is always used at
run time even if the xsi:schemaLocation attribute references the
Web URL.

■ The xsi:schemaLocation attribute can be omitted to disable
schema validation.

■ When deploying Coherence into environments where the default
character set is EBCDIC rather than ASCII, ensure that the
deployment descriptor file is in ASCII format and is deployed into
its run-time environment in the binary format.

Element Reference

Cache Configuration Elements B-3

Element Reference

Table B–1 lists all non-terminal cache configuration deployment descriptor elements.

Table B–1 Non-Terminal Cache Configuration Elements

Element Used In

acceptor-config proxy-scheme

address-provider name-service-addresses, remote-addresses, tcp-acceptor

async-store-manager external-scheme, paged-external-scheme

authorized-hosts tcp-acceptor

back-scheme near-scheme, overflow-scheme

backing-map-scheme distributed-scheme, optimistic-scheme, replicated-scheme

backup-storage distributed-scheme

bdb-store-manager external-scheme, paged-external-scheme,
async-store-manager

cache-config root element

cache-mapping caching-scheme-mapping

cache-service-proxy proxy-config

caching-scheme-mapping cache-config

caching-schemes cache-config

class-scheme caching-schemes, local-scheme, distributed-scheme,
replicated-scheme, optimistic-scheme, near-scheme,
overflow-scheme, read-write-backing-map-scheme,
cachestore-scheme, listener

cachestore-scheme local-scheme, read-write-backing-map-scheme

custom-store-manager external-scheme, paged-external-scheme,
async-store-manager

defaults cache-config

distributed-scheme caching-schemes, near-scheme, overflow-scheme

external-scheme caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, overflow-scheme,
read-write-backing-map-scheme

http-acceptor acceptor-config

identity-manager ssl

flashjournal-scheme back-scheme, backing-map-scheme, caching-schemes,
internal-cache-scheme

front-scheme near-scheme, overflow-scheme

incoming-message-handler acceptor-config, initiator-config

init-param init-params

init-params class-scheme

initiator-config remote-cache-scheme, remote-invocation-scheme

interceptor interceptors

Element Reference

B-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

interceptors cache-mapping, distributed-scheme

instance serializer, socket-provider, service-failure-policy

invocation-scheme caching-schemes

key-associator distributed-scheme

key-partitioning distributed-scheme

key-store identity-manager, trust-manager

listener local-scheme, external-scheme, paged-external-scheme,
distributed-scheme, replicated-scheme, optimistic-scheme,
near-scheme, overflow-scheme,
read-write-backing-map-scheme

local-address http-acceptor, tcp-acceptor, tcp-initiator

local-scheme caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, overflow-scheme,
read-write-backing-map-scheme

memcached-acceptor acceptor-config

name-service-addresses tcp-initiator

near-scheme caching-schemes

nio-file-manager external-scheme, paged-external-scheme,
async-store-manager

nio-memory-manager external-scheme, paged-external-scheme,
async-store-manager

operation-bundling cachestore-scheme, distributed-scheme,
remote-cache-scheme

optimistic-scheme caching-schemes, near-scheme, overflow-scheme

outgoing-message-handler acceptor-config, initiator-config

overflow-scheme caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, read-write-backing-map-scheme

paged-external-scheme caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, overflow-scheme,
read-write-backing-map-scheme

partitioned-quorum-polic
y-scheme

distributed-scheme

provider identity-manager, ssl, trust-manager

proxy-config proxy-scheme

proxy-scheme caching-schemes

proxy-quorum-policy-sche
me

proxy-scheme

ramjournal-scheme back-scheme, backing-map-scheme, caching-schemes,
internal-cache-scheme

read-write-backing-map-s
cheme

caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme

remote-addresses tcp-initiator

remote-cache-scheme cachestore-scheme, caching-schemes, near-scheme

Table B–1 (Cont.) Non-Terminal Cache Configuration Elements

Element Used In

Element Reference

Cache Configuration Elements B-5

remote-invocation-scheme caching-schemes

replicated-scheme caching-schemes, near-scheme, overflow-scheme

serializer acceptor-config, defaults, distributed-scheme,
initiator-config, invocation-scheme, optimistic-scheme,
replicated-scheme, transactional-scheme

socket-address name-service-addresses, remote-addresses

socket-provider tcp-acceptor, tcp-initiator

ssl socket-provider

tcp-acceptor acceptor-config

tcp-initiator initiator-config

transactional-scheme caching-schemes

trust-manager ssl

Table B–1 (Cont.) Non-Terminal Cache Configuration Elements

Element Used In

acceptor-config

B-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

acceptor-config

Used in: proxy-scheme

BDescription
The acceptor-config element specifies the configuration information for a TCP/IP or
HTTP (for REST) connection acceptor. The connection acceptor is used by a proxy
service to enable Coherence*Extend clients to connect to the cluster and use cluster
services without having to join the cluster.

BElements
Table B–2 describes the subelements of the acceptor-config element.

Table B–2 acceptor-config Subelements

Element
Required/
Optional Description

<http-acceptor> Optional Specifies the configuration information for a connection
acceptor that accepts connections from remote REST clients
over HTTP. This element cannot be used together with the
<tcp-acceptor> or <memcached-acceptor> elements.

<tcp-acceptor> Optional Specifies the configuration information for a connection
acceptor that enables Coherence*Extend clients to connect to
the cluster over TCP/IP. This element cannot be used together
with the <http-acceptor> or <memcached-acceptor> elements.

<memcached-acceptor> Optional Specifies the configuration information for a connection
acceptor that accepts connections from remote memcached
clients over TCP/IP. This element cannot be used together
with the <tcp-acceptor> or <http-acceptor> elements.

<incoming-message-handler> Optional Specifies the configuration information that is used to regulate
client-to-cluster connection resource usage.

<outgoing-message-handler> Optional Specifies the configuration information used by the connection
acceptor to detect dropped client-to-cluster connections.

Element Reference

Cache Configuration Elements B-7

<use-filters> Optional Contains the list of filter names to be used by this connection
acceptor. For example, specifying <use-filter> as follows
activates gzip compression for all network messages, which
can help substantially with WAN and low-bandwidth
networks.

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

<serializer> Optional Specifies the class configuration information for a
com.tangosol.io.Serializer implementation used by the
connection acceptor to serialize and deserialize user types. For
example, the following configures a ConfigurablePofContext
that uses the my-pof-types.xml POF type configuration file to
deserialize user types to and from a POF stream:

<serializer>

<class-name>com.tangosol.io.pof.ConfigurablePofContext
</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-pof-types.xml</param-value>
 </init-param>
 </init-params>
</serializer>

<connection-limit> Optional The maximum number of simultaneous connections allowed
by this connection acceptor. Valid values are positive integers
and zero. A value of zero implies no limit. The default value is
zero.

Table B–2 (Cont.) acceptor-config Subelements

Element
Required/
Optional Description

address-provider

B-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

address-provider

Used in: name-service-addresses, remote-addresses, tcp-acceptor,
memcached-acceptor

BDescription
The address-provider element specifies either socket address information (IP, or DNS
name, and port) or an implementation of the com.tangosol.net.AddressProvider
interface. The interface offers a programmatic way to define socket addresses.

The preferred approach is to reference an address provider definition that is included
in an operational override file. This approach decouples deployment configuration
from application configuration. However, socket addresses can also be configured
in-line and is typical during development. For additional details on defining address
providers that can be referenced, see "address-provider" on page A-6.

The following example references an address provider definition that contains the
socket address to which a TCP/IP acceptor is bound.

<tcp-acceptor>
 <address-provider>ap2</address-provider>
</tcp-acceptor>

The following example references an address provider definition that contains the
socket address of a TCP/IP acceptor on the cluster.

<tcp-initiator>
 <remote-addresses>
 <address-provider>ap3</address-provider>
 </remote-addresses>
</tcp-initiator>

The following example references an address provider definition that contains the
socket address of a name service TCP/IP acceptor on the cluster.

<tcp-initiator>
 <name-service-addresses>
 <address-provider>ap4</address-provider>
 </name-service-addresses>
</tcp-initiator>

The following example references an address provider definition that contains the
socket address to which a TCP/IP memcached acceptor is bound.

<memcached-acceptor>
 <address-provider>ap5</address-provider>
</memcached-acceptor>

BElements
Table B–3 describes the subelements of the address-provider element.

Element Reference

Cache Configuration Elements B-9

Table B–3 address-provider Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.net.AddressProvider interface.

This element cannot be used with the <class-factory-name>
element.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
address provider instances. The instances must implement the
com.tangosol.net.AddressProvider interface.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Specifies initialization parameters which are accessible by
implementations that include a public constructor with a matching
signature. Initialization parameters can be specified for both the
<class-name> element and the <class-factory-name> element.

<socket-address> Optional Specifies the address (IP, or DNS name, and port) to which a socket
is bound.

This element cannot be used if an address provider implementation
is defined using the <class-name> or <class-factory-name>
element.

async-store-manager

B-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

async-store-manager

Used in: external-scheme, paged-external-scheme.

BDescription
The async-store-manager element adds asynchronous write capabilities to other store
manager implementations. Supported store managers include:

■ custom-store-manager—allows definition of custom implementations of store
managers

■ bdb-store-manager—uses Berkeley Database JE to implement an on disk cache

■ nio-file-manager—uses NIO to implement memory-mapped file based cache

■ nio-memory-manager—uses NIO to implement an off JVM heap, in-memory cache

BImplementation
This store manager is implemented by the
com.tangosol.io.AsyncBinaryStoreManager class.

BElements
Table B–4 describes the subelements of the async-store-manager element.

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

Table B–4 async-store-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of an asynchronous store
manager. Any custom implementation must extend the
com.tangosol.io.AsyncBinaryStoreManager class and declare
the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom
async-store-manager implementations.

<bdb-store-manager> Optional Configures the external cache to use Berkeley Database JE on
disk databases for cache storage.

<custom-store-manager> Optional Configures the external cache to use a custom storage manager
implementation.

Element Reference

Cache Configuration Elements B-11

<nio-file-manager> Optional Configures the external cache to use a memory-mapped file for
cache storage.

<nio-memory-manager> Optional Configures the external cache to use an off JVM heap, memory
region for cache storage.

<async-limit> Optional Specifies the maximum number of bytes that are queued to be
written asynchronously. Setting the value to zero indicates that
the implementation default for the maximum number of bytes is
used. The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m]?[B|b]?

where the first non-digit (from left to right) indicates the factor
with which the preceding decimal value should be multiplied:

■ K (kilo, 210)

■ M (mega, 220)

If the value does not contain a factor, a factor of one is assumed.
Valid values are any positive memory sizes and zero. The default
value is 4MB.

Table B–4 (Cont.) async-store-manager Subelements

Element
Required/
Optional Description

authorized-hosts

B-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

authorized-hosts

Used in: tcp-acceptor.

BDescription
This element contains the collection of IP addresses of TCP/IP initiator hosts that are
allowed to connect to the cluster using a TCP/IP acceptor. If this collection is empty no
constraints are imposed. Any number of host-address and host-range elements may
be specified.

BElements
Table B–5 describes the subelements of the authorized-hosts element.

Table B–5 authorized-hosts Subelements

Element
Required/
Optional Description

<host-address> Optional Specifies an IP address or host name. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges are allowed to
join the cluster. The content override attributes id can be optionally used to
fully or partially override the contents of this element with XML document
that is external to the base document.

<host-range> Optional Specifies a range of IP addresses. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges are allowed to
join the cluster.

<host-filter> Optional Specifies class configuration information for a com.tangosol.util.Filter
implementation that is used by a TCP/IP acceptor to determine whether to
accept a particular TCP/IP initiator. The evaluate() method is passed to
the java.net.InetAddress of the client. Implementations should return
true to allow the client to connect. Classes are specified using the
<class-name> subelement. Any initialization parameters can be defined
within an <init-params> subelement.

Element Reference

Cache Configuration Elements B-13

back-scheme

Used in: near-scheme, overflow-scheme

BDescription
The back-scheme element specifies the back-tier cache of a composite cache.

BElements
Table B–6 describes the subelements of the back-scheme element.

Table B–6 back-scheme Subelements

Element
Required/
Optional Description

<distributed-scheme> Optional Defines a cache scheme where storage of cache entries is
partitioned across the cluster nodes.

<optimistic-scheme> Optional Defines a replicated cache scheme which uses optimistic rather
then pessimistic locking.

<replicated-scheme> Optional Defines a cache scheme where each cache entry is stored on all
cluster nodes.

<transactional-scheme> Optional Defines a cache scheme where storage of cache entries is
partitioned across the cluster nodes with transactional guarantees.

<local-scheme> Optional Local cache schemes define in-memory "local" caches. Local caches
are generally nested within other cache schemes, for instance as
the front-tier of a near scheme.

<external-scheme> Optional External schemes define caches which are not JVM heap based,
allowing for greater storage capacity.

<paged-external-scheme> Optional As with external-scheme, paged-external-schemes define caches
which are not JVM heap based, allowing for greater storage
capacity.

<class-scheme> Optional Class schemes provide a mechanism for instantiating an arbitrary
Java object for use by other schemes. The scheme which contains
this element dictates what class or interface(s) must be extended.

<flashjournal-scheme> Optional Specifies a scheme that uses journaling to store data to flash
memory.

<ramjournal-scheme> Optional Specifies a scheme that uses journaling to store data to RAM
memory.

<remote-cache-scheme> Optional Defines a cache scheme that enables caches to be accessed from
outside a Coherence cluster by using Coherence*Extend.

backing-map-scheme

B-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

backing-map-scheme

Used in: distributed-scheme, optimistic-scheme, replicated-scheme

BDescription
Specifies what type of cache is used within the cache server to store entries.

When using an overflow-based backing map, it is important that the corresponding
backup-storage be configured for overflow (potentially using the same scheme as the
backing-map). See "Partitioned Cache with Overflow" on page 18-5 for an example
configuration.

BElements
 Table B–7 describes the subelements of the backing-map-scheme element.

Note: The partitioned subelement is only used if the parent
element is the distributed-scheme element.

Table B–7 backing-map-scheme Subelements

Element
Required/
Optional Description

<partitioned> Optional Specifies whether the enclosed backing map is a
PartitionAwareBackingMap. (This element is respected only
within a distributed-scheme.) If the value is true, the
scheme that is specified as the backing map is used to
configure backing maps for each individual partition of the
PartitionAwareBackingMap. If the value is false, the
scheme is used for the entire backing map itself.

The concrete implementations of the
PartitionAwareBackingMap interface are:

■ com.tangosol.net.partition.ObservableSplittingBacki
ngCache

■ com.tangosol.net.partition.PartitionSplittingBackin
gCache

■ com.tangosol.net.partition.ReadWriteSplittingBackin
gMap

Valid values are true or false. The default value is false.
Note: Backing maps that use RAM and Flash journaling are
always partitioned.

<local-scheme> Optional Local cache schemes define in-memory "local" caches. Local
caches are generally nested within other cache schemes, for
instance as the front-tier of a near scheme.

<external-scheme> Optional External schemes define caches which are not JVM heap
based, allowing for greater storage capacity.

<paged-external-scheme> Optional As with external-scheme, paged-external-schemes define
caches which are not JVM heap based, allowing for greater
storage capacity.

<overflow-scheme> Optional The overflow-scheme defines a two-tier cache consisting of
a fast, size limited front-tier, and slower but much higher
capacity back-tier cache.

Element Reference

Cache Configuration Elements B-15

<class-scheme> Optional Class schemes provide a mechanism for instantiating an
arbitrary Java object for use by other schemes. The scheme
which contains this element dictates what class or
interface(s) must be extended.

<flashjournal-scheme> Optional Specifies a scheme that uses journaling to store data to flash
memory.

<ramjournal-scheme> Optional Specifies a scheme that uses journaling to store data to RAM
memory.

<read-write-backing-map-schem
e>

Optional The read-write-backing-map-scheme defines a backing map
which provides a size limited cache of a persistent store.

Table B–7 (Cont.) backing-map-scheme Subelements

Element
Required/
Optional Description

backup-storage

B-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

backup-storage

Used in: distributed-scheme.

BDescription
The backup-storage element specifies the type and configuration of backup storage
for a partitioned cache.

BElements
Table B–8 describes the subelements of the backup-storage element.

Element Reference

Cache Configuration Elements B-17

Table B–8 backup-storage Subelements

Element
Required/
Optional Description

<type> Optional Specifies the type of the storage used to hold the backup data. Legal
values are:

■ on-heap— (default) The corresponding implementations class is
java.util.HashMap.

■ off-heap—The corresponding implementations class is
com.tangosol.io.nio.BinaryMap using the
com.tangosol.io.nio.DirectBufferManager.

■ file-mapped—The corresponding implementations class is
com.tangosol.io.nio.BinaryMap using the
com.tangosol.io.nio.MappedBufferManager.

■ custom—The corresponding implementations class is the class
specified by the class-name element.

■ scheme—The corresponding implementations class is specified as a
caching-scheme by the scheme-name element.

The preconfigured system property override is
tangosol.coherence.distributed.backup.

<initial-size> Optional Specifies the initial buffer size in bytes. The class name is only applicable
if the <type> element is set to off-heap or file-mapped. Specifies the
initial buffer size in bytes.The value of this element must be in the
following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE
(2147483647). The default value is 1MB.

<maximum-size> Optional Specifies the initial buffer size in bytes. The class name is only applicable
if the <type> element is set to off-heap or file-mapped. The value of this
element must be in the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE
(2147483647). The default value is 1024MB.

backup-storage

B-18 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<directory> Optional Specifies the path name for the directory that the disk persistence
manager (com.tangosol.util.nio.MappedBufferManager) uses as the
root to store files. The directory is only applicable if the <type> element is
set to file-mapped. If a value is not specified or a non-existent directory
is specified, a temporary file in the default location is used. The default
value is the default temporary directory designated by the Java run time.

<class-name> Optional Specifies a class name for the custom storage implementation. The class
name is only applicable if the <type> element is set to custom.

<scheme-name> Optional Specifies a scheme name for the ConfigurableCacheFactory. The scheme
name is only applicable if the <type> element is set to scheme.

Table B–8 (Cont.) backup-storage Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-19

bdb-store-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

BDescription
The BDB store manager is used to define external caches which uses Berkeley
Database JE on disk embedded databases for storage. See the examples of
Berkeley-based store configurations in "Persistent Cache on Disk" on page 18-4 and
"In-memory Cache with Disk Based Overflow" on page 18-2.

BImplementation
This store manager is implemented by the
com.tangosol.io.bdb.BerkeleyDBBinaryStoreManager class, and produces
BinaryStore objects implemented by the
com.tangosol.io.bdb.BerkeleyDBBinaryStore class.

BElements
Table B–9 describes the subelements of the bdb-store-manager element.

Note: Berkeley Database JE Java class libraries are required to use a
bdb-store-manager, see the Berkeley Database JE product page for
additional information.

http://www.oracle.com/technology/documentation/
berkeley-db/je/index.html

Table B–9 bdb-store-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the Berkeley Database
BinaryStoreManager. Any custom implementation must extend the
com.tangosol.io.bdb.BerkeleyDBBinaryStoreManager class and declare the
exact same set of public constructors.

bdb-store-manager

B-20 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<init-params> Optional Specifies additional Berkeley DB configuration settings. See the Berkeley DB
Configuration instructions:

http://www.oracle.com/technology/documentation/
berkeley-db/je/GettingStartedGuide/administration.html#propertyfil
e

Also used to specify initialization parameters, for use in custom
implementations.

<directory> Optional Specifies the path name to the root directory where the Berkeley Database JE
store manager stores files. If not specified or specified with a non-existent
directory, a temporary directory in the default location is used.

<store-name> Optional Specifies the name for a database table that the Berkeley Database JE store
manager uses to store data in. Specifying this parameter causes the
bdb-store-manager to use non-temporary (persistent) database instances.
This is intended only for local caches that are backed by a cache loader from
a non-temporary store, so that the local cache can be pre-populated from the
disk on startup. This setting should not be enabled with replicated or
distributed caches. Normally, the <store-name> element should be left
unspecified, indicating that temporary storage is to be used.

When specifying this property, it is recommended to use the {cache-name}
macro. See "Using Parameter Macros" on page 13-15 for more information on
the {cache-name} macro.

Table B–9 (Cont.) bdb-store-manager Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-21

bundle-config

Used in: operation-bundling.

BDescription
The bundle-config element specifies the bundling strategy configuration for one or
more bundle-able operations.

BElements
Table B–10 describes the subelements of the bundle-config element.

Table B–10 bundle-config Subelements

Element
Required/
Optional Description

<operation-name> Optional Specifies the operation name for which calls performed
concurrently on multiple threads are "bundled" into a functionally
analogous "bulk" operation that takes a collection of arguments
instead of a single one.

Valid values depend on the bundle configuration context. For the
<cachestore-scheme> the valid operations are:

■ load"

■ store

■ erase

For the <distributed-scheme> and <remote-cache-scheme> the
valid operations are:

■ get

■ put

■ remove

In all cases there is a pseudo operation named all, referring to all
valid operations. The default value is all.

<preferred-size> Optional Specifies the bundle size threshold. When a bundle size reaches
this value, the corresponding "bulk" operation is invoked
immediately. This value is measured in context-specific units.

Valid values are zero (disabled bundling) or positive values. The
default value is zero.

<delay-millis> Optional Specifies the maximum amount of time in milliseconds that
individual execution requests are allowed to be deferred for a
purpose of "bundling" them and passing into a corresponding bulk
operation. If the preferred-size threshold is reached before the
specified delay, the bundle is processed immediately.

Valid values are positive numbers. The default value is 1.

<thread-threshold> Optional Specifies the minimum number of threads that must be
concurrently executing individual (non-bundled) requests for the
bundler to switch from a pass-through to a bundling mode.

Valid values are positive numbers. The default value is 4.

<auto-adjust> Optional Specifies whether the auto adjustment of the preferred-size value
(based on the run-time statistics) is allowed.

Valid values are true or false. The default value is false.

cache-config

B-22 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cache-config

Root Element

BDescription
The cache-config element is the root element of the cache configuration descriptor,
coherence-cache-config.xml. For more information on this document, see "Cache
Configuration Deployment Descriptor" on page B-1.

At a high level, a cache configuration consists of cache schemes and cache scheme
mappings. Cache schemes describe a type of cache, for instance a database backed,
distributed cache. Cache mappings define what scheme to use for a given cache name.

BElements
Table B–11 describes the subelements of the cache-config element.

Table B–11 cache-config Subelements

Element
Required/
Optional Description

<scope-name> Optional The use of the <scope-name> element within the <cache-config>
element has been deprecated. Use the <scope-name> element within
the defaults element instead.

<defaults> Optional Defines factory wide default settings.

<interceptors> Optional Specifies any number of event interceptors that process events.
Specifiying the <interceptors> element as a child of the
<cache-config> element scopes the interceptors to the cache
configuration and allows interceptors to receive events such as
ConfigurableCacheFactory lifecycle events.

<caching-scheme-mapping> Required Specifies the caching-scheme that is used for caches, based on the
cache's name.

<caching-schemes> Required Defines the available caching-schemes for use in the cluster.

Element Reference

Cache Configuration Elements B-23

cache-mapping

Used in: caching-scheme-mapping

BDescription
Each cache-mapping element specifies the caching-schemes which are to be used for a
given cache name or cache name pattern used by an application.

BElements
Table B–12 describes the subelements of the cache-mapping element.

Table B–12 cache-mapping Subelements

Element
Required/
Optional Description

<cache-name> Required Specifies a cache name or name pattern. The name is unique within a cache
factory. The following cache name patterns are supported:

■ Exact match. For example, MyCache.

■ Prefix match using a wildcard (prefix*). For example, My* that matches
to any cache name starting with My.

■ Any match using a wildcard (*). Matches to any cache name.

If a cache name can be matched to multiple cache mappings, then exact
matches are selected over wildcard matches. If no exact match is specified,
then the last matching wildcard pattern (based on the order in which they
are defined in the file) is selected.

<scheme-name> Required Contains the caching scheme name. The name is unique within a
configuration file. Caching schemes are configured in the caching-schemes
element.

<init-params> Optional Allows specifying replaceable cache scheme parameters. During cache
scheme parsing, any occurrence of any replaceable parameter in format
param-name is replaced with the corresponding parameter value. Consider
the following cache mapping example:

<cache-mapping>
 <cache-name>My*</cache-name>
 <scheme-name>my-scheme</scheme-name>
 <init-params>
 <init-param>
 <param-name>cache-loader</param-name>
 <param-value>com.acme.MyCacheLoader</param-value>
 </init-param>
 <init-param>
 <param-name>size-limit</param-name>
 <param-value>1000</param-value>
 </init-param>
 </init-params>
</cache-mapping>

For any cache name match My*, any occurrence of the literal cache-loader
in any part of the corresponding cache-scheme element is replaced with the
string com.acme.MyCacheLoader and any occurrence of the literal
size-limit is replaced with the value of 1000.

<interceptors> Optional Specifies any number of event interceptors that process events for a specific
cache.

cache-service-proxy

B-24 Oracle Fusion Middleware Developing Applications with Oracle Coherence

cache-service-proxy

Used in: proxy-config

BDescription
The cache-service-proxy element contains the configuration information for a cache
service proxy that is managed by a proxy service.

BElements
Table B–13 describes the subelements of the cache-service-proxy element.

Table B–13 cache-service-proxy Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.net.CacheService interface. The class acts as an interceptor
between a client and a proxied cache service to implement custom processing
as required. For example, the class could be used to perform authorization
checks before allowing the use of the proxied cache service.

<init-params> Optional Contains initialization parameters for the CacheService implementation.

<enabled> Optional Specifies whether the cache service proxy is enabled. If disabled, clients are
not able to access any proxied caches. Legal values are true or false. The
default value is true.

<lock-enabled> Optional Specifies whether lock requests from remote clients are permitted on a
proxied cache. Legal values are true or false. The default value is false.

<read-only> Optional Specifies whether requests from remote clients that update a cache are
prohibited on a proxied cache. Legal values are true or false. The default
value is false.

Element Reference

Cache Configuration Elements B-25

cachestore-scheme

Used in: local-scheme, read-write-backing-map-scheme

BDescription
Cache store schemes define a mechanism for connecting a cache to a back-end data
store. The cache store scheme may use any class implementing either the
com.tangosol.net.cache.CacheStore or com.tangosol.net.cache.CacheLoader
interfaces, where the former offers read-write capabilities, where the latter is read-only.
Custom implementations of these interfaces may be produced to connect Coherence to
various data stores. See "Cache of a Database" on page 18-4 for an example of using a
cachestore-scheme.

BElements
Table B–14 describes the subelements of the cachestore-scheme element.

Table B–14 cachestore-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13.

<class-scheme> Optional Specifies the implementation of the cache store. The specified class must
implement either of the following interfaces.

■ com.tangosol.net.cache.CacheStore—for read-write support

■ com.tangosol.net.cache.CacheLoader—for read-only support

■ com.tangosol.net.cache.BinaryEntryStore— similar to
CacheStore, but operates on BinaryEntry objects.

<remote-cache-scheme> Optional Configures the cachestore-scheme to use Coherence*Extend as its cache
store implementation.

<operation-bundling> Optional Specifies the configuration information for a bundling strategy.

caching-scheme-mapping

B-26 Oracle Fusion Middleware Developing Applications with Oracle Coherence

caching-scheme-mapping

Used in: cache-config

BDescription
Defines mappings between cache names, or name patterns, and caching-schemes. For
instance you may define that caches whose names start with accounts- uses a
distributed (distributed-scheme) caching scheme, while caches starting with the name
rates- uses a replicated-scheme caching scheme.

BElements
Table B–15 describes the subelement you can define within the
caching-scheme-mapping element.

Table B–15 caching-scheme-mapping Subelement

Element
Required/
Optional Description

<cache-mapping> Required Contains a single binding between a cache name and the caching scheme this
cache uses.

Element Reference

Cache Configuration Elements B-27

caching-schemes

Used in: cache-config

BDescription
The caching-schemes element defines a series of cache scheme elements. Each cache
scheme defines a type of cache, for instance a database backed partitioned cache, or a
local cache with an LRU eviction policy. Scheme types are bound to actual caches
using mappings (see caching-scheme-mapping).

BElements
Table B–16 describes the different types of schemes you can define within the
caching-schemes element.

Table B–16 caching-schemes Subelements

Element
Required/
Optional Description

<distributed-scheme> Optional Defines a cache scheme where storage of cache entries
is partitioned across the cluster nodes.

<optimistic-scheme> Optional Defines a replicated cache scheme which uses
optimistic rather then pessimistic locking.

<replicated-scheme> Optional Defines a cache scheme where each cache entry is
stored on all cluster nodes.

<transactional-scheme> Optional Defines a cache scheme where storage of cache entries
is partitioned across the cluster nodes with
transactional guarantees.

<local-scheme> Optional Defines a cache scheme which provides on-heap cache
storage.

<external-scheme> Optional Defines a cache scheme which provides off-heap cache
storage, for instance on disk.

<paged-external-scheme> Optional Defines a cache scheme which provides off-heap cache
storage, that is size-limited by using time based
paging.

<overflow-scheme> Optional Defines a two tier cache scheme where entries evicted
from a size-limited front-tier overflow and are stored
in a much larger back-tier cache.

<class-scheme> Optional Defines a cache scheme using a custom cache
implementation. Any custom implementation must
implement the java.util.Map interface, and include a
zero-parameter public constructor. Additionally if the
contents of the Map can be modified by anything other
than the CacheService itself (for example, if the Map
automatically expires its entries periodically or
size-limits its contents), then the returned object must
implement the com.tangosol.util.ObservableMap
interface.

<flashjournal-scheme> Optional Specifies a scheme that stores data to flash memory.

<ramjournal-scheme> Optional Specifies a scheme that stores data to RAM memory.

<near-scheme> Optional Defines a two tier cache scheme which consists of a
fast local front-tier cache of a much larger back-tier
cache.

caching-schemes

B-28 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<invocation-scheme> Optional Defines an invocation service which can be used for
performing custom operations in parallel across cluster
nodes.

<read-write-backing-map-scheme> Optional Defines a backing map scheme which provides a cache
of a persistent store.

<remote-cache-scheme> Optional Defines a cache scheme that enables caches to be
accessed from outside a Coherence cluster by using
Coherence*Extend.

<remote-invocation-scheme> Optional Defines an invocation scheme that enables invocations
from outside a Coherence cluster by using
Coherence*Extend.

<proxy-scheme> Optional Defines a proxy service scheme that enables remote
connections to a cluster using Coherence*Extend.

Table B–16 (Cont.) caching-schemes Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-29

class-scheme

Used in: caching-schemes, local-scheme, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, front-scheme, overflow-scheme,
read-write-backing-map-scheme, cachestore-scheme, listener, eviction-policy,
unit-calculator.

BDescription
Class schemes provide a mechanism for instantiating an arbitrary Java object for use
by other schemes. The scheme which contains this element dictates what class or
interface(s) must be extended. See "Cache of a Database" on page 18-4 for an example
of using a class-scheme.

The class-scheme may be configured to either instantiate objects directly by using
their class-name, or indirectly by using a class-factory-name and method-name. The
class-scheme must be configured with either a class-name or class-factory-name
and method-name.

BElements
Table B–17 describes the subelements of the class-scheme element.

Table B–17 class-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using Scheme
Inheritance" on page 13-13 for more information.

<class-name> Optional Contains a fully specified Java class name to instantiate. This class must
extend an appropriate implementation class as dictated by the containing
scheme and must declare the exact same set of public constructors as the
superclass.

This element cannot be used with the <class-factory-name> element.

<class-factory-na
me>

Optional Specifies a fully specified name of a Java class that is used as a factory for
object instantiation.

This element cannot be used with the <class-name> element and is used
with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class which
performs object instantiation.

<init-params> Optional Specifies initialization parameters which are accessible by implementations
that include a public constructor with a matching signature.

custom-store-manager

B-30 Oracle Fusion Middleware Developing Applications with Oracle Coherence

custom-store-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

BDescription
Used to create and configure custom implementations of a store manager for use in
external caches.

BElements
Table B–18 describes the subelements of the custom-store-manager element.

Table B–18 custom-store-manager Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the implementation of the store manager. The specified class must
implement the com.tangosol.io.BinaryStoreManager interface.

<init-params> Optional Specifies initialization parameters, for use in custom store manager
implementations.

Element Reference

Cache Configuration Elements B-31

defaults

Used in: cache-config

BDescription
The defaults element defines factory wide default settings. This feature enables
global configuration of serializers and socket providers used by all services which
have not explicitly defined these settings.

BElements
Table B–19 describes the subelements of the defaults element.

Table B–19 defaults Subelements

Element
Required/
Optional Description

<scope-name> Optional Specifies the scope name for this configuration. The scope name is
added (as a prefix) to all services generated by a cache factory. The name
is used to isolate services when using multiple cache factories; thus,
avoiding unintended joining of services with similar names from
different configurations.

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation, or it references a
serializer class configuration that is defined within the <serializers>
element in the operational configuration file. Two pre-defined serializers
are available: java (default) and pof and are referred to using their
defined id attribute name. For example:

<serializer>pof</serializer>

<socket-provider> Optional Specifies either: the configuration for a socket provider, or it references a
socket provider configuration that is defined within the
<socket-providers> element of the operational deployment descriptor.
The following socket providers are available: system (default), tcp, ssl,
and sdp. Refer to the socket providers using their defined id attribute
name. For example:

<socket-provider>ssl</socket-provider>

This setting only specifies the socket provider for Coherence*Extend
services. The TCMP socket provider is specified within the
<unicast-listener> element in the operational configuration.

distributed-scheme

B-32 Oracle Fusion Middleware Developing Applications with Oracle Coherence

distributed-scheme

Used in: caching-schemes, near-scheme, overflow-scheme

BDescription
The distributed-scheme defines caches where the storage for entries is partitioned
across cluster nodes. See "Understanding Distributed Caches" on page 12-1 for a more
detailed description of partitioned caches. See "Partitioned Cache" on page 18-5 for
examples of various distributed-scheme configurations.

BClustered Concurrency Control
Partitioned caches support cluster wide key-based locking so that data can be
modified in a cluster without encountering the classic missing update problem. Note
that any operation made without holding an explicit lock is still atomic but there is no
guarantee that the value stored in the cache does not change between atomic
operations.

BCache Clients
The partitioned cache service supports the concept of cluster nodes which do not
contribute to the overall storage of the cluster. Nodes which are not storage enabled
(see <local-storage> subelement) are considered "cache clients".

BCache Partitions
The cache entries are evenly segmented into several logical partitions (see
<partition-count> subelement), and each storage enabled (see <local-storage>
subelement) cluster node running the specified partitioned service (see
<service-name> subelement) is responsible for maintain a fair-share of these
partitions.

BKey Association
By default the specific set of entries assigned to each partition is transparent to the
application. In some cases it may be advantageous to keep certain related entries
within the same cluster node. A key-associator (see <key-associator> subelement)
may be used to indicate related entries, the partitioned cache service ensures that
associated entries reside on the same partition, and thus on the same cluster node.
Alternatively, key association may be specified from within the application code by
using keys which implement the com.tangosol.net.cache.KeyAssociation interface.

BCache Storage (Backing Map)
Storage for the cache is specified by using the <backing-map-scheme> subelement. For
instance a partitioned cache which uses a local-scheme for its backing map results in
cache entries being stored in-memory on the storage-enabled cluster nodes.

BFailover
For the purposes of failover, a configured number of backups (see <backup-count>
subelement) of the cache may be maintained in backup-storage (see <backup-storage>
subelement) across the cluster nodes. Each backup is also divided into partitions, and
when possible a backup partition does not reside on the same computer as the primary
partition. If a cluster node abruptly leaves the cluster, responsibility for its partitions

Element Reference

Cache Configuration Elements B-33

are automatically reassigned to the existing backups, and new backups of those
partitions are created (on remote nodes) to maintain the configured backup count.

BPartition Redistribution
When a node joins or leaves the cluster, a background redistribution of partitions
occurs to ensure that all cluster nodes manage a fair-share of the total number of
partitions. The amount of bandwidth consumed by the background transfer of
partitions is governed by the transfer-threshold (see <transfer-threshold>
subelement).

BElements
Table B–20 describes the subelements of the distributed-scheme element.

Table B–20 distributed-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies a name for the distributed cache service instance that
manages the cache that is created from this distributed scheme.
The distributed cache service definition is defined within the
<services> element in the tangosol-coherence.xml file. See
"DistributedCache Service Parameters" on page A-63 for more
information. Different distributed schemes can use different
partitioned cache service instances to maintain separate caches.
The default name if no name is specified is DistributedCache.

<service-priority> Optional Specifies the priority for the service thread. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is
the service-priority value specified in the
tangosol-coherence.xml descriptor. See the service-priority
parameter in "DistributedCache Service Parameters" on
page A-63 for more information.

<event-dispatcher-priority
>

Optional Specifies the priority for the event dispatcher thread for each
service. Legal values are from 1 to 10 where 10 is the highest
priority. The default value is the event-dispatcher-priority
value specified in the tangosol-coherence.xml descriptor. See
the event-dispatcher-priority parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to serialize
and deserialize user types, or it references a serializer class
configuration that is defined in the operational configuration file
(see "serializer" on page A-59).

distributed-scheme

B-34 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<reliable-transport> Optional Specifies the transport protocol used by this service for reliable
point-to-point communication. Specifying a value results in the
use of a service-specific transport instance rather then the shared
transport instance that is defined by the <unicast-listener>
element. A service-specific transport instance can result in
higher performance but at the cost of increased resource
consumption and should be used sparingly for select, high
priority services. In general, a shared transport instance uses less
resource consumption than service-specific transport instances.
Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support.
TMBS requires the use of an SSL socket provider. See
"socket-provider" on page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is
only available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use
of an SSL socket provider. See "socket-provider" on
page B-119.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is
only available for Oracle Exalogic systems and is
automatically used as long as TCMP has not been
configured with SSL.

The default value is the <reliable-transport> value specified
in the tangosol-coherence.xml descriptor. See the
reliable-transport parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<compressor> Optional Specifies whether or not backup updates should be compressed
in delta form or sent whole. A delta update represents the parts
of a backup entry that must be changed in order to synchronize
it with the primary version of the entry. Deltas are created and
applied using a compressor. The default value is the compressor
value specified in the tangosol-coherence.xml descriptor. See
the compressor parameter in "DistributedCache Service
Parameters" on page A-63 for more information. Valid values
are:

■ none – Disables delta backup; no compressor is used. The
whole backup binary entry is replaced when the primary
entry changes.

■ standard – Automatically selects a delta compressor based
on the serializer being used by the partitioned service.

■ <instance> – The configuration for a class that implements
the com.tangosol.io.DeltaCompressor interface.

<thread-count> Optional Specifies the number of daemon threads used by the partitioned
cache service. Legal values are positive integers, 0, or -1. The
value 0 indicates that all relevant tasks are performed on the
service thread. The value -1 indicates that tasks are performed
on the caller's thread where possible. The default value is the
thread-count value specified in the tangosol-coherence.xml
descriptor. See the thread-count parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-35

<worker-priority> Optional Specifies the priority for the worker threads. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is
the worker-priority value specified in the
tangosol-coherence.xml descriptor. See the worker-priority
parameter in "DistributedCache Service Parameters" on
page A-63 for more information.

<lease-granularity> Optional Specifies the lease ownership granularity. Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that
obtained them and can only be released by that thread. A value
of member means that locks are held by a cluster node and any
thread running on the cluster node that obtained the lock can
release it. The default value is the lease-granularity value
specified in the tangosol-coherence.xml descriptor. See the
lease-granularity parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<local-storage> Optional Specifies whether a cluster node contributes storage to the
cluster, that is, maintain partitions. When disabled the node is
considered a cache client.

Legal values are true or false. The default value is the
local-storage value specified in the tangosol-coherence.xml
descriptor. See the local-storage parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

<partition-count> Optional Specifies the number of distributed cache partitions. Each
storage-enabled cluster member that is running the distributed
cache service manages a balanced number of partitions.

Valid values are positive integers between 1 and 32767 and
should be a prime number. A list of primes can be found at
http://primes.utm.edu/lists/. The default value is the value
specified in the tangosol-coherence.xml descriptor. See the
partition-count parameter in "DistributedCache Service
Parameters" on page A-63.

<transfer-threshold> Optional Specifies the threshold for the primary buckets distribution in
kilobytes. When a new node joins the partitioned cache service
or when a member of the service leaves, the remaining nodes
perform a task of bucket ownership re-distribution. During this
process, the existing data gets re-balanced along with the
ownership information. This parameter indicates a preferred
message size for data transfer communications. Setting this
value lower makes the distribution process take longer, but
reduces network bandwidth utilization during this activity.
Legal values are integers greater then zero. The default value is
the transfer-threshold value specified in the
tangosol-coherence.xml descriptor. See the
transfer-threshold parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<backup-count> Optional Specifies the number of members of the partitioned cache
service that hold the backup data for each unit of storage in the
cache. A value of 0 means that for abnormal termination, some
portion of the data in the cache is lost. The default value is the
backup-count value specified in the tangosol-coherence.xml
descriptor. See "DistributedCache Service Parameters" on
page A-63 for more information.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

distributed-scheme

B-36 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<backup-count-after-write
behind>

Optional Specifies the number of members of the partitioned cache
service that holds the backup data for each unit of storage in the
cache that does not require write-behind, that is, data that is not
vulnerable to being lost even if the entire cluster were shut
down. Specifically, if a unit of storage is marked as requiring
write-behind, then it is backed up on the number of members
specified by the <backup-count> subelement. If the unit of
storage is not marked as requiring write-behind, then it is
backed up by the number of members specified by the
<backup-count-after-writebehind> element.

This value should be set to 0 or this setting should not be
specified at all. The rationale is that since this data is being
backed up to another data store, no in-memory backup is
required, other than the data temporarily queued on the
write-behind queue to be written. The value of 0 means that
when write-behind has occurred, the backup copies of that data
is discarded. However, until write-behind occurs, the data is
backed up in accordance with the <backup-count> setting.

Recommended value is 0 or this element should be omitted.

<backup-storage> Optional Specifies the type and configuration for the partitioned cache
backup storage.

<key-associator> Optional Specifies a class that is responsible for providing associations
between keys and allowing associated keys to reside on the
same partition. This implementation must have a
zero-parameter public constructor.

<key-partitioning> Optional Specifies a class that implements the
com.tangosol.net.partition.KeyPartitioningStrategy
interface, which is responsible for assigning keys to partitions.
This implementation must have a zero-parameter public
constructor. If unspecified, the default key partitioning
algorithm is used, which ensures that keys are evenly segmented
across partitions.

<partition-assignment-stra
tegy>

Optional Specifies the strategy that is used by a partitioned service to
manage partition distribution. The default value is the
partition-assignment-strategy value specified in the
tangosol-coherence.xml descriptor. See the
partition-assignment-strategy parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

■ legacy – (deprecated) The legacy assignment strategy
indicates that partition distribution is managed individually
on each cluster member.

■ simple – The simple assignment strategy attempts to
balance partition distribution while ensuring
machine-safety and is more deterministic and efficient than
the legacy strategy.

■ mirror:<service-name> – The mirror assignment strategy
attempts to co-locate the service's partitions with the
partitions of the specified service. This strategy is used to
increase the likelihood that key-associated, cross-service
cache access remains local to a member.

■ custom – a class that implements the
com.tangosol.net.partition.PartitionAssignmentStrat
egy interface. Enter a custom strategy using the <instance>
element.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-37

<partition-listener> Optional Specifies a class that implements the
com.tangosol.net.partition.PartitionListener interface.

<task-hung-threshold> Optional Specifies the amount of time in milliseconds that a task can
execute before it is considered "hung". Note: a posted task that
has not yet started is never considered as hung. This attribute is
applied only if the Thread pool is used (the thread-count value
is positive). Legal values are positive integers or zero (indicating
no default timeout). The default value is the
task-hung-threshold value specified in the
tangosol-coherence.xml descriptor. See the
task-hung-threshold parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<task-timeout> Optional Specifies the timeout value in milliseconds for requests
executing on the service worker threads. This attribute applies
only if the thread pool is used (the thread-count value is
positive) and only applies to entry processor implementations
that implement the PriorityTask interface. If zero is specified,
the default service-guardian <timeout-milliseconds> value is
used. Legal values are nonnegative integers. The default value is
the value specified in the tangosol-coherence.xml descriptor.
See the task-timeout parameter in "DistributedCache Service
Parameters" on page A-63.

<request-timeout> Optional Specifies the maximum amount of time a client waits for a
response before abandoning the original request. The request
time is measured on the client side as the time elapsed from the
moment a request is sent for execution to the corresponding
server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node
(server)

■ the interval between the time the task is received and placed
into a service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default
timeout). The default value is the value specified in the
tangosol-coherence.xml descriptor. See the request-timeout
parameter in "DistributedCache Service Parameters" on
page A-63 for more information.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

distributed-scheme

B-38 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding the
service and any dependent threads. If the element is not
specified for a given service, the default guardian timeout (as
specified by the <timeout-milliseconds> operational
configuration element) is used. See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed.

<service-failure-policy> Optional Specifies the action to take when an abnormally behaving
service thread cannot be terminated gracefully by the service
guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads that
appear to be unresponsive. If the attempt fails, an attempt is
made to stop the associated service. If the associated service
cannot be stopped, this policy causes the local node to stop
the cluster services.

■ exit-process – attempts to recover threads that appear to
be unresponsive. If the attempt fails, an attempt is made to
stop the associated service. If the associated service cannot
be stopped, this policy cause the local node to exit the JVM
and terminate abruptly.

■ logging – causes any detected problems to be logged, but
no corrective action to be taken.

■ a custom class – an <instance> subelement is used to
provide the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<member-listener> Optional Specifies the configuration information for a class that
implements the com.tangosol.net.MemberListener interface.
The implementation must have a public default constructor. See
the subelements for "instance" on page B-54 for the elements
used to define the class.

The MemberListener implementation receives cache service
lifecycle events. The <member-listener> element is used as an
alternative to programmatically adding a MapListener on a
service.

<operation-bundling> Optional Specifies the configuration information for a bundling strategy.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-39

<backing-map-scheme> Optional Specifies what type of cache is used within the cache server to
store the entries.

Legal schemes are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

■ flashjournal-scheme

■ ramjournal-scheme

■ overflow-scheme

■ read-write-backing-map-scheme

Note that when using an off-heap backing map it is important
that the corresponding <backup-storage> be configured for
off-heap (potentially using the same scheme as the
backing-map). Here off-heap refers to any storage where some
or all entries are stored outside of the JVMs garbage collected
heap space. Examples include: <overflow-scheme> and
<external-scheme>. See "Partitioned Cache with Overflow" on
page 18-5 for an example configuration.

<partitioned-quorum-polic
y-scheme>

Optional Specifies quorum policy settings for the partitioned cache
service.

<listener> Optional Specifies an implementation of a MapListener which is notified
of events occurring on the cache.

<autostart> Optional The autostart element is intended to be used by cache servers
(that is, com.tangosol.net.DefaultCacheServer). It specifies
whether the cache services associated with this cache scheme
should be automatically started at a cluster node. Legal values
are true or false. The default value is false.

<interceptors> Optional Specifies any number of event interceptors that process events
for all caches of a specific distributed service.

<async-backup> Optional Specifies whether the partitioned (distributed) cache service
backs up data asynchronously while concurrently responding to
the client. Asynchronous backup is often used to increase client
performance. However, applications that require strict data
integrity must be designed and tested to ensure that data is not
at risk. Legal values are true or false. The default value is
false.

Table B–20 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

external-scheme

B-40 Oracle Fusion Middleware Developing Applications with Oracle Coherence

external-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, overflow-scheme,
read-write-backing-map-scheme

BDescription
External schemes define caches which are not JVM heap based, allowing for greater
storage capacity. See "Local Caches (accessible from a single JVM)" on page 18-1 for
examples of various external cache configurations.

BImplementation
This scheme is implemented by:

■ com.tangosol.net.cache.SerializationMap—for unlimited size caches

■ com.tangosol.net.cache.SerializationCache—for size limited caches

The implementation type is chosen based on the following rule:

■ if the <high-units> subelement is specified and not zero then
SerializationCache is used;

■ otherwise SerializationMap is used.

BPluggable Storage Manager
External schemes use a pluggable store manager to store and retrieve binary key value
pairs. Supported store managers include:

■ a wrapper providing asynchronous write capabilities for of other store manager
implementations

■ allows definition of custom implementations of store managers

■ uses Berkeley Database JE to implement an on disk cache

■ uses NIO to implement memory-mapped file based cache

■ uses NIO to implement an off JVM heap, in-memory cache

BSize Limited Cache
The cache may be configured as size-limited, which means that when it reaches its
maximum allowable size (that is, the <high-units> subelement) it prunes itself.

BEntry Expiration
External schemes support automatic expiration of entries based on the age of the
value, as configured by the <expiry-delay> subelement.

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

Note: Eviction against disk-based caches can be expensive, consider
using a paged-external-scheme for such cases.

Element Reference

Cache Configuration Elements B-41

BPersistence (long-term storage)
External caches are generally used for temporary storage of large data sets, for
example as the back-tier of an overflow-scheme. The Berkly database JE
implementation does however support persistence for non-clustered caches, see the
<store-name> subelement of bdb-store-manager. Clustered persistence should be
configured by using a read-write-backing-map-scheme on a distributed-scheme.

BElements
Table B–21 describes the subelements of the external-scheme element.

Table B–21 external-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information

<class-name> Optional Specifies a custom implementation of the external cache. Any
custom implementation must extend either of the following
classes:

■ com.tangosol.net.cache.SerializationCache—for size
limited caches

■ com.tangosol.net.cache.SerializationMap—for
unlimited size caches

■ com.tangosol.net.cache.SimpleSerializationMap—for
unlimited size caches

■ com.tangosol.net.cache.CompactSerializationCache—for co
mpact on-heap footprint

and declare the exact same set of public constructors as the
superclass.

<init-params> Optional Specifies initialization parameters, for use in custom external
cache implementations.

<async-store-manager> Optional Configures the external cache to use an asynchronous storage
manager wrapper for any other storage manager. See "Pluggable
Storage Manager" on page B-40

<bdb-store-manager> Optional Configures the external cache to use Berkeley Database JE on
disk databases for cache storage.

<custom-store-manager> Optional Configures the external cache to use a custom storage manager
implementation.

<nio-file-manager> Optional Configures the external cache to use a memory-mapped file for
cache storage.

<nio-memory-manager> Optional Configures the external cache to use an off JVM heap, memory
region for cache storage.

external-scheme

B-42 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<high-units> Optional Specifies the size limit of the cache. The value represents the
maximum number of units that can be placed in the cache before
pruning occurs. An entry is the unit of measurement, unless it is
overridden by an alternate unit calculator (see the
<unit-calculator> subelement). When this limit is exceeded,
the cache begins the pruning process, evicting the least recently
used entries until the number of units is brought below this
limit. The scheme's class-name element may be used to provide
custom extensions to SerializationCache, which implement
alternative eviction policies. Legal values are positive integers
between 0 and Integer.MAX_VALUE (2147483647). The default
value is 0 and implies no limit.

Note: The value is limited to approximately 2GB by default. To
specify higher values, use the <unit-factor> element to change
the factor by which the <high-units> value is multiplied.

<unit-calculator> Optional Specifies the type of unit calculator to use. A unit calculator is
used to determine the cost (in "units") of a given object. This
element is used only if the <high-units> element is set to a
positive number. Legal values are:

■ FIXED – A unit calculator that assigns an equal weight of 1
to all cached objects.

■ BINARY (default) – A unit calculator that assigns an object a
weight equal to the number of bytes of memory that are
required to cache the object. This calculator is used for
partitioned caches that cache data in a binary serialized
form. See
com.tangosol.net.cache.BinaryMemoryCalculator for
additional details.

■ <class-scheme> – A custom unit calculator, specified as a
class scheme. The class specified within this scheme must
implement the
com/tangosol/net/cache/ConfigurableCacheMap.UnitCal
culator interface.

Table B–21 (Cont.) external-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-43

<unit-factor> Optional Specifies the factor by which the <low-units> and <high-units>
settings are adjusted. Using a BINARY unit calculator, for
example, the factor of 1048576 could be used to count megabytes
instead of bytes.

Note: This element was introduced only to avoid changing the
type of the <low-units> and <high-units> settings from 32-bit
values to 64-bit values and is only used if the <high-units>
element is set to a positive number.

Valid values are positive integers. The default value is 1.

<expiry-delay> Optional Specifies the amount of time since the last update that entries are
kept by the cache before being expired. Entries that have expired
are not be accessible and are evicted the next time a client
accesses the cache.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed.
A value of zero implies no expiry. The default value is 0.

Note: The expiry delay parameter (cExpiryMillis) is defined as
an integer and is expressed in milliseconds. Therefore, the
maximum amount of time can never exceed Integer.MAX_VALUE
(2147483647) milliseconds or approximately 24 days.

<listener> Optional Specifies an implementation of a
com.tangosol.util.MapListener which is notified of events
occurring on the cache.

Table B–21 (Cont.) external-scheme Subelements

Element
Required/
Optional Description

flashjournal-scheme

B-44 Oracle Fusion Middleware Developing Applications with Oracle Coherence

flashjournal-scheme

Used in: back-scheme, backing-map-scheme, caching-schemes,
internal-cache-scheme

BDescription
The flashjournal-scheme element contains the configuration information for a
scheme that stores data to external block-based file stores (flash). A flash journal
resource manager controls flash journal behavior. See "flashjournal-manager" on
page A-20 for additional details on configuring flash journal behavior.

This scheme uses the com.tangosol.net.cache.CompactSerializationCache class as
the backing map implementation and the
com.tangosol.io.journal.JournalBinaryStore to store and retrieve binary key
value pairs to a journal.

BElements
Table B–22 describes the subelements of the flashjournal-scheme element.

Table B–22 flashjournal-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using Scheme
Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the simple serialization map cache.
Any custom implementation must extend the
com.tangosol.net.cache.CompactSerializationCache class and declare
the exact same set of public constructors as the superclass.

<init-params> Optional Specifies the initialization parameters for a custom serialization map
cache.

<eviction-policy> Optional Specifies the type of eviction policy to use. Legal values are:

■ LRU – Least Recently Used eviction policy chooses which entries to
evict based on how recently they were last accessed, evicting those
that were not accessed for the longest period first.

■ LFU – Least Frequently Used eviction policy chooses which entries to
evict based on how often they are being accessed, evicting those that
are accessed least frequently first.

■ HYBRID (default) – Hybrid eviction policy chooses which entries to
evict based on the combination (weighted score) of how often and
recently they were accessed, evicting those that are accessed least
frequently and were not accessed for the longest period first.

■ <class-scheme> – A custom eviction policy, specified as a class
scheme. The class specified within this scheme must implement the
ConfigurableCacheMap.EvictionPolicy interface or extend the
AbstractEvictionPolicy class.

Element Reference

Cache Configuration Elements B-45

<high-units> Optional Specifies the size limit of the cache. The value represents the maximum
number of units that can be placed in the cache before pruning occurs.
An entry is the unit of measurement, unless it is overridden by an
alternate unit calculator (see the <unit-calculator> subelement). When
this limit is exceeded, the cache begins the pruning process and evicts
entries according to the eviction policy. Legal values are positive integers
between 0 and Integer.MAX_VALUE (2147483647). The default value is 0
and implies no limit.

Note: The value is limited to approximately 2GB by default. To specify
higher values, use the <unit-factor> element to change the factor by
which the <high-units> value is multiplied.

<low-units> Optional Specifies the lowest number of units that a cache is pruned down to
when pruning takes place. A pruning does not necessarily result in a
cache containing this number of units; however, a pruning never results
in a cache containing less than this number of units. An entry is the unit
of measurement, unless it is overridden by an alternate unit calculator
(see the <unit-calculator> subelement). When pruning occurs entries
continue to be evicted according to the eviction policy until this size.
Legal values are positive integers or zero. Zero implies the default. The
default value is 80% of the <high-units> setting (that is, for a
<high-units> setting of 1000 the default <low-units> is 800).

<unit-calculator> Optional Specifies the type of unit calculator to use. A unit calculator is used to
determine the cost (in "units") of a given object. This element is used only
if the <high-units> element is set to a positive number. Legal values are:

■ FIXED – A unit calculator that assigns an equal weight of 1 to all
cached objects.

■ BINARY (default) – A unit calculator that assigns an object a weight
equal to the number of bytes of memory that are required to cache
the object. This calculator is used for partitioned caches that cache
data in a binary serialized form. See
com.tangosol.net.cache.BinaryMemoryCalculator for additional
details.

■ <class-scheme> – A custom unit calculator, specified as a class
scheme. The class specified within this scheme must implement the
com/tangosol/net/cache/ConfigurableCacheMap.UnitCalculator
interface.

Table B–22 (Cont.) flashjournal-scheme Subelements

Element
Required/
Optional Description

flashjournal-scheme

B-46 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<unit-factor> Optional Specifies the factor by which the <low-units> and <high-units> settings
are adjusted. Using a BINARY unit calculator, for example, the factor of
1048576 could be used to count megabytes instead of bytes.

Note: This element was introduced only to avoid changing the type of
the <low-units> and <high-units> settings from 32-bit values to 64-bit
values and is only used if the <high-units> element is set to a positive
number.

Valid values are positive integers. The default value is 1.

<expiry-delay> Optional Specifies the amount of time since the last update that entries are kept by
the cache before being expired. Entries that have expired are not
accessible and are evicted the next time a client accesses the cache.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A value
of zero implies no expiry. The default value is 0.

Note: The expiry delay parameter (cExpiryMillis) is defined as an
integer and is expressed in milliseconds. Therefore, the maximum
amount of time can never exceed Integer.MAX_VALUE (2147483647)
milliseconds or approximately 24 days.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

Table B–22 (Cont.) flashjournal-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-47

front-scheme

Used in: near-scheme, overflow-scheme

BDescription
The front-scheme element specifies the front-tier cache of a composite cache.

BElements
Table B–23 describes the subelements of the front-scheme element.

Table B–23 front-scheme Subelements

Element
Required/
Optional Description

<local-scheme> Optional Local cache schemes define in-memory "local" caches. Local caches
are generally nested within other cache schemes, for instance as
the front-tier of a near scheme.

<class-scheme> Optional Class schemes provide a mechanism for instantiating an arbitrary
Java object for use by other schemes. The scheme which contains
this element dictates what class or interface(s) must be extended.

http-acceptor

B-48 Oracle Fusion Middleware Developing Applications with Oracle Coherence

http-acceptor

Used in acceptor-config

BDescription
The http-acceptor element specifies an acceptor for connections from remote REST
clients over HTTP.

BElements
Table B–24 describes the subelements of the http-acceptor element.

Table B–24 http-acceptor subelements

Elements
Required/
Optional Description

<class-name> Optional Specifies an HTTP server class that implements the
com.tangosol.coherence.rest.server.HttpServer interface. The
HTTP server class handles inbound HTTP requests. Coherence REST
provides two implementations out of the box:
com.tangosol.coherence.rest.server.DefaultHttpServer (backed
by Oracle's lightweight HTTP server) and
com.tangosol.coherence.rest.server.GrizzlyHttpServer (backed
by Grizzly). The default value if no value is specified is
com.tangosol.coherence.rest.server.DefaultHttpServer.

<init-params> Optional Contains class initialization parameters for the HTTP server class.

<socket-provider> Optional Specifies the configuration for a socket and channel factory.

<local-address> Required Specifies the local address (IP, or DNS name, and port) on which the
HTTP server socket is bound.

<resource-config> Optional Specifies a Jersey resource configuration class that is used by the
HTTP acceptor to load resource and provider classes.

<auth-method> Optional Specifies the authentication mechanism for the HTTP server. A client
must have authenticated using the configured mechanism as a
prerequisite to gaining access to any resources exposed by the server.
Legal values are:

■ basic – This method requires the client to be authenticated using
HTTP basic authentication.

■ cert – This method requires the client to be authenticated using
client-side SSL certificate-based authentication. The certificate
must be passed to the server to authenticate. An SSL-based socket
provider must be configured using the <socket-provider>
element.

■ cert+basic – This method requires the client to be authenticated
using both client-side SSL certificate and HTTP basic
authentication.

■ none (default) – This method does not require the client to be
authenticated.

Element Reference

Cache Configuration Elements B-49

identity-manager

Used in: ssl.

BDescription
The <identity-manager> element contains the configuration information for
initializing a javax.net.ssl.KeyManager instance.

The identity manager is responsible for managing the key material which is used to
authenticate the local connection to its peer. If no key material is available, the
connection cannot present authentication credentials.

BElements
Table B–25 describes the elements you can define within the identity-manager
element.

Table B–25 identity-manager Subelements

Element
Required/
Optional Description

<algorithm> Optional Specifies the algorithm used by the identity manager. The default value
is SunX509.

<provider> Optional Specifies the configuration for a security provider instance.

<key-store> Optional Specifies the configuration for a key store implementation.

<password> Required Specifies the private key password.

incoming-message-handler

B-50 Oracle Fusion Middleware Developing Applications with Oracle Coherence

incoming-message-handler

Used in: acceptor-config, initiator-config.

BDescription
The <incoming-message-handler> element contains the configuration information
that is used to regulate client-to-cluster connection resource usage. Connection
initiators and acceptors use this information to proactively detect and release
connections that use excessive resources.

BElements
Table B–25 describes the elements you can define within the
incoming-message-handler element.

Table B–26 incoming-message-handler Subelements

Element
Required/
Optional Description

max-message-size Optional Specifies the size limit of messages being sent over Coherence*Extend
connections. The value of this element must be in the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of kilo is assumed. Legal
values are positive integers between 0 and Integer.MAX_VALUE
(2147483647). The default value is 0 and indicates that there is no limit
on the message size.

Element Reference

Cache Configuration Elements B-51

initiator-config

Used in: remote-cache-scheme, remote-invocation-scheme.

BDescription
The initiator-config element specifies the configuration information for a TCP/IP
connection initiator. A connection initiator allows a Coherence*Extend client to
connect to a cluster (by using a connection acceptor) and use the clustered services
offered by the cluster without having to first join the cluster.

BElements
Table B–27 describes the subelements of the initiator-config element.

Table B–27 initiator-config Subelements

Element
Required/
Optional Description

<tcp-initiator> Optional Specifies the configuration information for a connection
initiator that connects to the cluster over TCP/IP.

<incoming-message-handler> Optional Specifies the configuration information that is used to
regulate client-to-cluster connection resource usage.

<outgoing-message-handler> Optional Specifies the configuration information used by the
connection initiator to detect dropped client-to-cluster
connections.

<use-filters> Optional Contains the list of filter names to be used by this connection
acceptor. For example, specifying <use-filter> as follows
activates gzip compression for all network messages, which
can help substantially with WAN and low-bandwidth
networks.

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to
serialize and deserialize user types, or it references a
serializer class configuration that is defined in the operational
configuration file (see "serializer" on page A-59).

<connect-timeout> Optional Specifies the maximum amount of time to wait while
establishing a connection with a connection acceptor.The
value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit
of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. The default value is an infinite timeout.

init-param

B-52 Oracle Fusion Middleware Developing Applications with Oracle Coherence

init-param

Used in: init-params.

BDescription
Defines an individual initialization parameter.

BElements
Table B–28 describes the subelements of the init-param element.

Table B–28 init-param Subelements

Element
Required/
Optional Description

<param-name> Optional Specifies the name of the initialization parameter. For example:

<init-param>
 <param-name>sTableName</param-name>
 <param-value>EmployeeTable</param-value>
</init-param>

The <param-name> element cannot be specified if the <param-type> element is
specified.

<param-type> Optional Specifies the Java type of the initialization parameter.The following standard
types are supported:

■ java.lang.String (string)

■ java.lang.Boolean (boolean)

■ java.lang.Integer (int)

■ java.lang.Long (long)

■ java.lang.Double (double)

■ java.math.BigDecimal

■ java.io.File

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

For example:

<init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeTable</param-value>
</init-param>

The <param-type> element cannot be specified if the <param-name> element is
specified.

<param-value> Required Specifies the value of the initialization parameter. The value is in the format
specific to the Java type of the parameter.

<description> Optional Specifies a description for the initialization parameter.

Element Reference

Cache Configuration Elements B-53

init-params

Used in: class-scheme, cache-mapping.

BDescription
Defines a series of initialization parameters as name-value pairs. See "Partitioned
Cache of a Database" on page 18-6 for an example of using init-params.

BElements
Table B–29 describes the subelements of the init-params element.

Table B–29 init-params Subelements

Element
Required/
Optional Description

<init-param> Optional Defines an individual initialization parameter.

instance

B-54 Oracle Fusion Middleware Developing Applications with Oracle Coherence

instance

Used in: interceptor, serializer, service-failure-policy, load-balancer, and
partition-assignment-strategy

BDescription
The <instance> element contains the configuration of an implementation class or class
factory that is used to plug in custom functionality.

BElements
Table B–30 describes the subelements of the instance element.

Table B–30 instance Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of an implementation class.

This element cannot be used with the <class-factory-name>
element.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation
class.

Element Reference

Cache Configuration Elements B-55

interceptor

Used in: interceptors

BDescription
The interceptor element defines the configuration associated with an event
interceptor that is responsible for processing live events. Event interceptors extend the
com.tangosol.net.events.AbstractConfigurableEventInterceptor class. The base
class provides the ability to restrict an event interceptor to a specific cache or service.
The base class also provides support for the @Interceptor annotation, which allows
an implementation to register for a subset of events based on event types and to
configure an event interceptor identifier and the ordering of event interceptors.
Specifying an interceptor's identifier and ordering within the interceptor element
overrides the settings in the base class.

BElements
Table B–31 describes the subelements of the interceptor element.

Table B–31 interceptor Subelements

Element
Required/
Optional Description

<name> Optional Specifies a unique identifier for the interceptor.

<order> Optional Specifies whether the interceptor is the first interceptor in a chain of
interceptors. The legal values are LOW and HIGH. A value of HIGH indicates
that the interceptor is first in the chain of interceptors. A value of LOW
indicates no order preference. The default value is LOW.

<instance> Required Specifies the interceptor class to instantiate. The interceptor class must
extend the AbstractConfigurableEventInterceptor class.

interceptors

B-56 Oracle Fusion Middleware Developing Applications with Oracle Coherence

interceptors

Used in: cache-mapping and distributed-scheme

BDescription
The interceptors element contains any number of event interceptor definitions.

BElements
Table B–32 describes the subelements of the interceptors element.

Table B–32 interceptors Subelements

Element
Required/
Optional Description

<interceptor> Optional Specifies an event interceptor implementation.

Element Reference

Cache Configuration Elements B-57

invocation-scheme

Used in: caching-schemes.

BDescription
Defines an Invocation Service. The invocation service may be used to perform custom
operations in parallel on any number of cluster nodes. See the
com.tangosol.net.InvocationService API for additional details.

BElements
Table B–33 describes the subelements of the invocation-scheme element.

Table B–33 invocation-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service which manages invocations from this
scheme.

<service-priority> Optional Specifies the priority for the service thread. Legal values are from 1 to 10
where 10 is the highest priority. The default value is the
service-priority value specified in the tangosol-coherence.xml
descriptor. See the service-priority parameter in "Invocation Service
Parameters" on page A-74.

<event-dispatcher-pri
ority>

Optional Specifies the priority for the event dispatcher thread for each service.
Legal values are from 1 to 10 where 10 is the highest priority. The
default value is the event-dispatcher-priority value specified in the
tangosol-coherence.xml descriptor. See the
event-dispatcher-priority parameter in "Invocation Service
Parameters" on page A-74.

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to serialize and
deserialize user types, or it references a serializer class configuration
that is defined in the operational configuration file (see "serializer" on
page A-59).

invocation-scheme

B-58 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<reliable-transport> Optional Specifies the transport protocol used by this service for reliable
point-to-point communication. Specifying a value results in the use of a
service-specific transport instance rather then the shared transport
instance that is defined by the <unicast-listener> element. A
service-specific transport instance can result in higher performance but
at the cost of increased resource consumption and should be used
sparingly for select, high priority services. In general, a shared transport
instance uses less resource consumption than service-specific transport
instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS
requires the use of an SSL socket provider. See "socket-provider" on
page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only
available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use of an SSL
socket provider. See "socket-provider" on page B-119.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only
available for Oracle Exalogic systems and is automatically used as
long as TCMP has not been configured with SSL.

The default value is the <reliable-transport> value specified in the
tangosol-coherence.xml descriptor. See the reliable-transport
parameter in "Invocation Service Parameters" on page A-74 for more
information.

<thread-count> Optional Specifies the number of daemon threads used by the invocation service.
Legal values are positive integers, 0, or -1. The value 0 indicates that all
relevant tasks are performed on the service thread. The value -1
indicates that tasks are performed on the caller's thread where possible.
The default value is the thread-count value specified in the
tangosol-coherence.xml descriptor. See "Invocation Service
Parameters" on page A-74 for more information.

<worker-priority> Optional Specifies the priority for the worker threads. Legal values are from 1 to
10 where 10 is the highest priority. The default value is the
worker-priority value specified in the tangosol-coherence.xml
descriptor. See the worker-priority parameter in "Invocation Service
Parameters" on page A-74.

<task-hung-threshold> Optional Specifies the amount of time in milliseconds that a task can execute
before it is considered "hung". Note: a posted task that has not yet
started is never considered as hung. This attribute is applied only if the
Thread pool is used (the thread-count value is positive). Legal values
are positive integers or zero (indicating no default timeout). The default
value is the task-hung-threshold value specified in the
tangosol-coherence.xml descriptor. See the task-hung-threshold
parameter in "Invocation Service Parameters" on page A-74.

Table B–33 (Cont.) invocation-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-59

<task-timeout> Optional Specifies the default timeout value for tasks that can time out (for
example, implement the com.tangosol.net.PriorityTask interface),
but do not explicitly specify the task execution timeout value. The task
execution time is measured on the server side and does not include the
time spent waiting in a service backlog queue before being started. This
attribute is applied only if the thread pool is used (the thread-count
value is positive). If zero is specified, the default service-guardian
<timeout-milliseconds> value is used. Legal values are nonnegative
integers. The default value is the task-timeout value specified in the
tangosol-coherence.xml descriptor. See the task-timeout parameter in
"Invocation Service Parameters" on page A-74.

<request-timeout> Optional Specifies the maximum amount of time a client waits for a response
before abandoning the original request. The request time is measured on
the client side as the time elapsed from the moment a request is sent for
execution to the corresponding server node(s) and includes the
following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a
service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default
timeout). The default value is the request-timeout value specified in
the tangosol-coherence.xml descriptor. See the request-timeout
parameter in "Invocation Service Parameters" on page A-74.

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding the service and
any dependent threads. If the element is not specified for a given
service, the default guardian timeout (as specified by the
<timeout-milliseconds> operational configuration element) is used.
See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

Table B–33 (Cont.) invocation-scheme Subelements

Element
Required/
Optional Description

invocation-scheme

B-60 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<service-failure-poli
cy>

Optional Specifies the action to take when an abnormally behaving service thread
cannot be terminated gracefully by the service guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads that appear to
be unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this
policy causes the local node to stop the cluster services.

■ exit-process – attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this
policy cause the local node to exit the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged, but no
corrective action to be taken.

■ a custom class – an <instance> subelement is used to provide the
class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<member-listener> Optional Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must
have a public default constructor.

The MemberListener implementation receives service lifecycle events.
The <member-listener> element is used as an alternative to
programmatically adding a MapListener on a service.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether this
service should be automatically started at a cluster node. Legal values
are true or false. The default value is false.

Table B–33 (Cont.) invocation-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-61

invocation-service-proxy

Used in: proxy-config

BDescription
The invocation-service-proxy element contains the configuration information for an
invocation service proxy managed by a proxy service.

BElements
Table B–34 describes the subelements of the invocation-service-proxy element.

Table B–34 invocation-service-proxy Subelement

Element
Required/
Optional Description

<class-name> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.net.InvocationService interface. The class acts as an
interceptor between a client and a proxied invocation service to implement
custom processing as required. For example, the class could be used to
perform authorization checks before allowing the use of the proxied
invocation service.

<init-params> Optional Contains initialization parameters for the InvocationService
implementation.

<enabled> Optional Specifies whether the invocation service proxy is enabled. If disabled, clients
are not able to execute Invocable objects on the proxy service JVM. Legal
values are true or false. The default value is true.

key-associator

B-62 Oracle Fusion Middleware Developing Applications with Oracle Coherence

key-associator

Used in: distributed-scheme

BDescription
Specifies an implementation of a com.tangosol.net.partition.KeyAssociator which
is used to determine associations between keys, allowing related keys to reside on the
same partition.

Alternatively the cache's keys may manage the association by implementing the
com.tangosol.net.cache.KeyAssociation interface.

BElements
Table B–35 describes the subelements of the key-associator element.

Table B–35 key-associator Subelements

Element
Required/
Optional Description

<class-name> Required The name of a class that implements the
com.tangosol.net.partition.KeyAssociator interface. This
implementation must have a zero-parameter public constructor. The
default value is the value of the key-associator parameter specified in
the tangosol.coherence.xml descriptor. See "DistributedCache Service
Parameters" on page A-63 for more information.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class which
performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation class.

Element Reference

Cache Configuration Elements B-63

key-partitioning

Used in: distributed-scheme

BDescription
Specifies an implementation of a
com.tangosol.net.partition.KeyPartitioningStrategy which is used to determine
the partition in which a key resides.

BElements
Table B–36 describes the subelements of the key-partitioning element.

Table B–36 key-partitioning Subelements

Element
Required/
Optional Description

<class-name> Required The name of a class that implements the
com.tangosol.net.partition.KeyPartitioningStrategy interface.
This implementation must have a zero-parameter public constructor.
The default value is the value of the key-partitioning parameter
specified in the tangosol-coherence.xml descriptor. See
"DistributedCache Service Parameters" on page A-63 for more
information.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation class.

key-store

B-64 Oracle Fusion Middleware Developing Applications with Oracle Coherence

key-store

Used in: identity-manager, trust-manager.

BDescription
The key-store element specifies the configuration for a key store implementation to
use when implementing SSL. The key store implementation is an instance of the
java.security.KeyStore class.

BElements
Table B–37 describes the elements you can define within the key-store element.

Table B–37 key-store Subelements

Element
Required/
Optional Description

<url> Required Specifies the Uniform Resource Locator (URL) to a key store.

<password> Optional Specifies the password for the key store.

<type> Optional Specifies the type of a java.security.KeyStore instance. The
default value is JKS.

Element Reference

Cache Configuration Elements B-65

listener

Used in: local-scheme, external-scheme, paged-external-scheme,
distributed-scheme, replicated-scheme, optimistic-scheme, near-scheme,
overflow-scheme, read-write-backing-map-scheme

BDescription
The Listener element specifies an implementation of a
com.tangosol.util.MapListener which is notified of events occurring on a cache.

BElements
Table B–38 describes the subelements of the listener element.

Table B–38 listener Subelement

Element
Required/
Optional Description

<class-scheme> Required Specifies the full class name of the listener implementation to use. The
specified class must implement the com.tangosol.util.MapListener
interface.

local-address

B-66 Oracle Fusion Middleware Developing Applications with Oracle Coherence

local-address

Used in: http-acceptor, tcp-acceptor, tcp-initiator

BDescription
The local-address element specifies the local address (IP, or DNS name, and port) to
which a socket is bound.

A local address for the <tcp-acceptor> element specifies a TCP/IP server socket that
is used by the proxy service to accept connections from Coherence*Extend clients. A
local address for the <http-acceptor> element specifies a HTTP server socket that is
used to accept connections from REST clients. The following example binds a server
socket to 192.168.0.2:9099.

<local-address>
 <address>192.168.0.2</address>
 <port>9099</port>
</local-address>

A local address for the <tcp-initiator> element specifies a TCP/IP client socket that
is used by remote services to connect to a proxy service on the cluster. The following
example binds the client socket to 192.168.0.1 on port 9099:

<local-address>
 <address>192.168.0.1</address>
 <port>9099</port>
</local-address>

BElements
Table B–65 describes the subelements of the local-address element.

Note: A socket addresses for the TCP/IP acceptor can also be
defined using an address-provider element. For details, see
"address-provider" on page B-8.

Table B–39 local-address Subelements

Element
Required/
Optional Description

<address> Optional Specifies the address (IP or DNS name) on which a socket listens and
publishes. If the address is a bind address, then the address may also be
entered using CIDR notation as a subnet and mask (for example,
192.168.1.0/24), which allows runtime resolution against the available
local IP addresses.

<port> Optional Specifies the port on which a TCP/IP socket listens and publishes. The
legal values are from 1 to 65535.

Element Reference

Cache Configuration Elements B-67

local-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, front-scheme, overflow-scheme,
read-write-backing-map-scheme, backing-map-scheme

BDescription
Local cache schemes define in-memory "local" caches. Local caches are generally
nested within other cache schemes, for instance as the front-tier of a near-scheme. See
"Near Cache" on page 18-8 for examples of various local cache configurations.

BImplementation
Local caches are implemented by the com.tangosol.net.cache.LocalCache class.

BCache of an External Store
A local cache may be backed by an external cache store (see "cachestore-scheme" on
page B-25). Cache misses are read-through to the back end store to retrieve the data. If
a writable store is provided, cache writes are also propagate to the cache store. For
optimizing read/write access against a cache store, see the
"read-write-backing-map-scheme" on page B-104.

BSize Limited Cache
The cache may be configured as size-limited, which means that when it reaches its
maximum allowable size (see the <high-units> subelement) it prunes itself back to a
specified smaller size (see the <low-units> subelement), choosing which entries to
evict according to its eviction-policy (see the <eviction-policy> subelement). The
entries and size limitations are measured in terms of units as calculated by the
scheme's unit calculator (see the <unit-calculator> subelement).

BEntry Expiration
The local cache supports automatic expiration of entries based on the age of the value
(see the <expiry-delay> subelement).

BElements
Table B–40 describes the subelements of the local-scheme element.

Table B–40 local-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using Scheme
Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the com.tangosol.net.cache.LocalCache
class and declare the exact same set of public constructors.

local-scheme

B-68 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<service-name> Optional Specifies the name of the service which manages caches created from this
scheme. Services are configured from within the <services> element in
the tangosol-coherence.xml descriptor. See Appendix A, "Operational
Configuration Elements" for more information.

<init-params> Optional Specifies initialization parameters, for use in custom local cache
implementations.

<eviction-policy> Optional Specifies the type of eviction policy to use.Legal values are:

■ LRU – Least Recently Used eviction policy chooses which entries to
evict based on how recently they were last accessed, evicting those
that were not accessed for the longest period first.

■ LFU – Least Frequently Used eviction policy chooses which entries to
evict based on how often they are being accessed, evicting those that
are accessed least frequently first.

■ HYBRID (default) – Hybrid eviction policy chooses which entries to
evict based on the combination (weighted score) of how often and
recently they were accessed, evicting those that are accessed least
frequently and were not accessed for the longest period first.

■ <class-scheme> – A custom eviction policy, specified as a class
scheme. The class specified within this scheme must implement the
ConfigurableCacheMap.EvictionPolicy interface or extend the
AbstractEvictionPolicy class.

<high-units> Optional Specifies the size limit of the cache. The value represents the maximum
number of units that can be placed in the cache before pruning occurs. An
entry is the unit of measurement, unless it is overridden by an alternate
unit calculator (see the <unit-calculator> subelement). When this limit
is exceeded, the cache begins the pruning process and evicts entries
according to the eviction policy. Legal values are positive integers
between 0 and Integer.MAX_VALUE (2147483647). The default value is 0
and implies no limit.

Note: The value is limited to approximately 2GB by default. To specify
higher values, use the <unit-factor> element to change the factor by
which the <high-units> value is multiplied.

<low-units> Optional Specifies the lowest number of units that a cache is pruned down to when
pruning takes place. A pruning does not necessarily result in a cache
containing this number of units; however, a pruning never results in a
cache containing less than this number of units. An entry is the unit of
measurement, unless it is overridden by an alternate unit calculator (see
the <unit-calculator> subelement). When pruning occurs entries
continue to be evicted according to the eviction policy until this size.
Legal values are positive integers or zero. Zero implies the default. The
default value is 80% of the <high-units> setting (that is, for a
<high-units> setting of 1000 the default <low-units> is 800).

Table B–40 (Cont.) local-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-69

<unit-calculator> Optional Specifies the type of unit calculator to use. A unit calculator is used to
determine the cost (in "units") of a given object. This element is used only
if the <high-units> element is set to a positive number. Legal values are:

■ FIXED – A unit calculator that assigns an equal weight of 1 to all
cached objects.

■ BINARY (default) – A unit calculator that assigns an object a weight
equal to the number of bytes of memory that are required to cache
the object. This calculator is used for partitioned caches that cache
data in a binary serialized form. See
com.tangosol.net.cache.BinaryMemoryCalculator for additional
details.

■ <class-scheme> – A custom unit calculator, specified as a class
scheme. The class specified within this scheme must implement the
com/tangosol/net/cache/ConfigurableCacheMap.UnitCalculator
interface.

<unit-factor> Optional Specifies the factor by which the <low-units> and <high-units> settings
are adjusted. Using a BINARY unit calculator, for example, the factor of
1048576 could be used to count megabytes instead of bytes.

Note: This element was introduced only to avoid changing the type of the
<low-units> and <high-units> settings from 32-bit values to 64-bit
values and is only used if the <high-units> element is set to a positive
number.

Valid values are positive integers. The default value is 1.

<expiry-delay> Optional Specifies the amount of time since the last update that entries are kept by
the cache before being expired. Entries that have expired are not
accessible and are evicted the next time a client accesses the cache. When
using a cache store, any attempt to read an expired entry results in a
reloading of the entry from the configured cache store (see
<cachestore-scheme>).

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A value
of zero implies no expiry. The default value is 0.

Note: The expiry delay parameter (cExpiryMillis) is defined as an
integer and is expressed in milliseconds. Therefore, the maximum
amount of time can never exceed Integer.MAX_VALUE (2147483647)
milliseconds or approximately 24 days.

Table B–40 (Cont.) local-scheme Subelements

Element
Required/
Optional Description

local-scheme

B-70 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<cachestore-scheme> Optional Specifies the store which is being cached. If unspecified the cached data
only resides in memory, and only reflects operations performed on the
cache itself.

<pre-load> Optional Specifies whether a cache pre-loads data from its CacheLoader (or
CacheStore) object. Valid values are true and false. The default value is
false.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener which
is notified of events occurring on the cache.

Table B–40 (Cont.) local-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-71

memcached-acceptor

Used in: acceptor-config

BDescription
The memcached-acceptor element contains the configuration information for an
acceptor that accepts connections from remote memcached clients over TCP/IP. The
acceptor allows memcached clients to use a Coherence cache over the memcached
binary protocol.

BElements
Table B–41 describes the subelements of the memcached-acceptor element.

Table B–41 memcached-acceptor Subelements

Element
Required/
Optional Description

<cache-name> Required Specifies the cache that is used by memcached clients that connect
to the memcached acceptor. The cache name is resolved to an
actual cache scheme using cache mappings. See "cache-mapping"
on page B-23 for details. The cache name must resolve to a
partitioned cache scheme.

<interop-enabled> Optional Specifies wether the memcached acceptor can by-pass the
configured cache service serializer while storing the values in the
cache. This is only required when sharing data between
Coherence*Extend and memcached clients. The assumption is that
memcached clients are using a Coherence serializer, like the POF
serializer, to convert the objects into byte[] and the cache service
is also using the same serializer. Legal values are true or false.
The default value is false.

<memcached-auth-method> Optional Specifies the authentication mechanism for the memcached
acceptor. A client must authenticate using the configured
mechanism to gain access to any resources exposed by the server.
Legal values are plain (SASL PLAIN) and none. The default value
is none.

<socket-provider> Optional Specifies the configuration for a socket and channel factory.

<address-provider> Required Specifies either the local address (IP, or DNS name, and port) on
which the TCP/IP server socket is bound or an implementation of
the com.tangosol.net.AddressProvider interface that
programmatically provides a socket address. The
address-provider element also supports socket address
references.

name-service-addresses

B-72 Oracle Fusion Middleware Developing Applications with Oracle Coherence

name-service-addresses

Used in: tcp-initiator

BDescription
The name-service-addresses element contains the address (IP, or DNS name, and
port) of one or more name service TCP/IP acceptors. A TCP/IP initiator uses this
information to establish a connection with a remote cluster. The TCP/IP initiator
attempts to connect to the addresses in a random order until either the list is exhausted
or a connection is established. See Developing Remote Clients for Oracle Coherence for
additional details and example configurations.

BElements
Table B–42 describes the subelements of the name-service-addresses element.

Table B–42 name-service-addresses Subelements

Element
Required/
Optional Description

<socket-address> Optional Specifies the address (IP, or DNS name, and port) on which a name
service TCP/IP acceptor is listening. Multiple <socket-address>
elements can be defined.

<address-provider> Optional Specifies the address (IP, or DNS name, and port) on which a name
service TCP/IP acceptor is listening or the configuration for a
com.tangosol.net.AddressProvider implementation that supplies
the address. The address-provider element also supports socket
address references.

A <name-services-addresses> element can include either a
<socket-address> element or an <address-provider> element but not
both.

Element Reference

Cache Configuration Elements B-73

near-scheme

Used in: caching-schemes.

BDescription
The near-scheme defines a two-tier cache consisting of a front-tier which caches a
subset of a back-tier cache. The front-tier is generally a fast, size limited cache, while
the back-tier is slower, but much higher capacity cache. A typical deployment might
use a local cache for the front-tier, and a distributed cache for the back-tier. The result
is that a portion of a large partitioned cache is cached locally in-memory allowing for
very fast read access. See "Understanding Near Caches" on page 12-8 for a more
detailed description of near caches, and "Near Cache" on page 18-8 for an example of
near cache configurations.

BImplementation
The near scheme is implemented by the com.tangosol.net.cache.NearCache class.

BFront-tier Invalidation
The <invalidation-strategy> subelement defines a strategy that is used to keep the
front tier of the near cache synchronized with the back tier. Depending on that
strategy, a near cache is configured to listen to certain events occurring on the back tier
and automatically update (or invalidate) the front portion of the near cache.

BElements
Table B–43 describes the subelements of the near-scheme element.

Table B–43 near-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the near cache. Any
custom implementation must extend the
com.tangosol.net.cache.NearCache class and declare the exact
same set of public constructors.

<init-params> Optional Specifies initialization parameters for custom near cache
implementations.

<front-scheme> Required Specifies the cache to use as the front-tier cache.

<back-scheme> Required Specifies the cache to use as the front-tier cache.

near-scheme

B-74 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<invalidation-strategy> Optional Specifies the strategy used keep the front-tier in-sync with the
back-tier. Please see com.tangosol.net.cache.NearCache for
more details. Legal values are:

■ auto (default) – This strategy is identical to the present
strategy.

■ none – instructs the cache not to listen for invalidation events
at all. This is the best choice for raw performance and
scalability when business requirements permit the use of
data which might not be absolutely current. Freshness of
data can be guaranteed by use of a sufficiently brief eviction
policy. The worst case performance is identical to a standard
Distributed cache.

■ present – instructs the near cache to listen to the back map
events related only to the items currently present in the front
map. This strategy works best when cluster nodes have
sticky data access patterns (for example, HTTP session
management with a sticky load balancer).

■ all – instructs the near cache to listen to all back map
events. This strategy is optimal for read-heavy access
patterns where there is significant overlap between the front
caches on each cluster member.

■ logical – instructs a near cache to listen to all backing map
events that are not synthetic deletes. A synthetic delete event
could be emitted as a result of eviction or expiration. With
this invalidation strategy, it is possible for the front map to
contain cache entries that have been synthetically removed
from the backing map. Any subsequent re-insertion of the
entries to the backing map causes the corresponding entries
in the front map to be invalidated.

<listener> Optional Specifies an implementation of a
com.tangosol.util.MapListener which is notified of events
occurring on the cache.

<autostart> Optional The autostart element is intended to be used by cache servers
(that is, com.tangosol.net.DefaultCacheServer). It specifies
whether the cache services associated with this cache scheme
should be automatically started at a cluster node. Legal values
are true or false. The default value is false.

Table B–43 (Cont.) near-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-75

nio-file-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

BDescription
Configures an external store which uses memory-mapped file for storage.

BImplementation
This store manager is implemented by the com.tangosol.io.nio.MappedStoreManager
class. The BinaryStore objects created by this class are instances of the
com.tangosol.io.nio.BinaryMapStore.

BElements
Table B–44 describes the subelements of the nio-file-manager element.

Table B–44 nio-file-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the com.tangosol.io.nio.MappedStoreManager
class and declare the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom nio-file-manager
implementations.

nio-file-manager

B-76 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<initial-size> Optional Specifies the initial buffer size in megabytes.The value of this element must be
in the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which the
preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal values
are positive integers between 1 and Integer.MAX_VALUE (2147483647). The
default value is 1MB.

<maximum-size> Optional Specifies the maximum buffer size in bytes.The value of this element must be in
the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which the
preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal values
are positive integers between 1 and Integer.MAX_VALUE (2147483647). The
default value is 1024MB.

<directory> Optional Specifies the path name for the root directory that the manager uses to store
files in. If not specified or specifies a non-existent directory, a temporary file in
the default location is used.

Table B–44 (Cont.) nio-file-manager Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-77

nio-memory-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

BDescription

Configures a store-manager which uses an off JVM heap, memory region for storage,
which means that it does not affect the Java heap size and the related JVM
garbage-collection performance that can be responsible for application pauses. See
"NIO In-memory Cache" on page 18-3 for an example of an NIO cache configuration.

BImplementation
Implemented by the com.tangosol.io.nio.DirectStoreManager class. The
BinaryStore objects created by this class are instances of the
com.tangosol.io.nio.BinaryMapStore.

BElements
Table B–45 describes the subelements of the nio-memory-manager element.

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

Note: JVMs require the use of a command line parameter if the total
NIO buffers is greater than 64MB. For example:
-XX:MaxDirectMemorySize=512M

Table B–45 nio-memory-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the
com.tangosol.io.nio.DirectStoreManager class and declare the exact same
set of public constructors.

nio-memory-manager

B-78 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<init-params> Optional Specifies initialization parameters, for use in custom nio-memory-manager
implementations.

<initial-size> Optional Specifies the initial buffer size in bytes. The value of this element must be in
the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which
the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE (2147483647).
The default value is 1MB.

<maximum-size> Optional Specifies the maximum buffer size in bytes. The value of this element must
be in the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which
the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE (2147483647).
The default value is 1024MB.

Table B–45 (Cont.) nio-memory-manager Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-79

operation-bundling

Used in: cachestore-scheme, distributed-scheme, remote-cache-scheme.

BDescription
The operation-bundling element specifies the configuration information for a
particular bundling strategy.

Bundling is a process of coalescing multiple individual operations into "bundles". It
could be beneficial when

■ there is a continuous stream of operations on multiple threads in parallel;

■ individual operations have relatively high latency (network or database-related);
and

■ there are functionally analogous "bulk" operations that take a collection of
arguments instead of a single one without causing the latency to grow linearly (as
a function of the collection size).

See com.tangosol.net.cache.AbstractBundler for additional implementation details.

BElements
Table B–46 describes the subelement for the operation-bundling element.

Note:

■ As with any bundling algorithm, there is a natural trade-off
between the resource utilization and average request latency.
Depending on a particular application usage pattern, enabling this
feature may either help or hurt the overall application
performance.

■ Operation bundling affects cache store operations. If operation
bundling is configured, the CacheStore.storeAll() method is
always called even if there is only one ripe entry.

Table B–46 operation-bundling Subelement

Element
Required/
Optional Description

 <bundle-config> Required Describes one or more bundle-able operations.

optimistic-scheme

B-80 Oracle Fusion Middleware Developing Applications with Oracle Coherence

optimistic-scheme

Used in: caching-schemes, near-scheme, overflow-scheme

The optimistic scheme defines a cache which fully replicates all of its data to all cluster
nodes that run the service (see <service-name> subelement). See "Understanding
Optimistic Caches" on page 12-7 for a more detailed description of optimistic caches.

BOptimistic Locking
Unlike the replicated-scheme and distributed-scheme caches, optimistic caches do not
support concurrency control (locking). Individual operations against entries are atomic
but there is no guarantee that the value stored in the cache does not change between
atomic operations. The lack of concurrency control allows optimistic caches to support
very fast write operations.

BCache Storage (Backing Map)
Storage for the cache is specified by using the <backing-map-scheme> subelement). For
instance, an optimistic cache which uses a local-scheme for its backing map results in
cache entries being stored in-memory.

BElements
Table B–47 describes the subelements of the optimistic-scheme element.

Table B–47 optimistic-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service which manages caches created from
this scheme. Services are configured from within the <services>
parameter in tangosol-coherence.xml. See Appendix A,
"Operational Configuration Elements" for more information.

<service-priority> Optional Specifies the priority for the service thread. Legal values are from 1
to 10 where 10 is the highest priority. The default value is 10.

<event-dispatcher-priorit
y>

Optional Specifies the priority for the event dispatcher thread for each service.
Legal values are from 1 to 10 where 10 is the highest priority. The
default value is 10.

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to serialize and
deserialize user types, or it references a serializer class configuration
that is defined in the operational configuration file (see "serializer"
on page A-59).

Element Reference

Cache Configuration Elements B-81

<reliable-transport> Optional Specifies the transport protocol used by this service for reliable
point-to-point communication. Specifying a value results in the use
of a service-specific transport instance rather then the shared
transport instance that is defined by the <unicast-listener>
element. A service-specific transport instance can result in higher
performance but at the cost of increased resource consumption and
should be used sparingly for select, high priority services. In general,
a shared transport instance uses less resource consumption than
service-specific transport instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS
requires the use of an SSL socket provider. See "socket-provider"
on page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only
available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use of an
SSL socket provider. See "socket-provider" on page B-119.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only
available for Oracle Exalogic systems and is automatically used
as long as TCMP has not been configured with SSL.

The default value is the <reliable-transport> value specified in
the tangosol-coherence.xml descriptor. See the
reliable-transport parameter in "OptimisticCache Service
Parameters" on page A-71 for more information.

<request-timeout> Optional Specifies the maximum amount of time a client waits for a response
before abandoning the original request. The request time is
measured on the client side as the time elapsed from the moment a
request is sent for execution to the corresponding server node(s) and
includes the following:

■ the time it takes to deliver the request to an executing node
(server)

■ the interval between the time the task is received and placed
into a service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default
timeout). The default value is the value specified in the
tangosol-coherence.xml descriptor. See the request-timeout
parameter in "ReplicatedCache Service Parameters" on page A-68 for
more information.

Table B–47 (Cont.) optimistic-scheme Subelements

Element
Required/
Optional Description

optimistic-scheme

B-82 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding the service
and any dependent threads. If the element is not specified for a
given service, the default guardian timeout (as specified by the
<timeout-milliseconds> operational configuration element) is
used. See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed.

<service-failure-policy> Optional Specifies the action to take when an abnormally behaving service
thread cannot be terminated gracefully by the service guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads that
appear to be unresponsive. If the attempt fails, an attempt is
made to stop the associated service. If the associated service
cannot be stopped, this policy causes the local node to stop the
cluster services.

■ exit-process – attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped,
this policy cause the local node to exit the JVM and terminate
abruptly.

■ logging – causes any detected problems to be logged, but no
corrective action to be taken.

■ a custom class – an <instance> subelement is used to provide
the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<member-listener> Optional Specifies the configuration information for a class that implements
the com.tangosol.net.MemberListener interface. The
implementation must have a public default constructor.

The MemberListener implementation receives cache service lifecycle
events. The <member-listener> element is used as an alternative to
programmatically adding a MapListener on a service.

Table B–47 (Cont.) optimistic-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-83

<backing-map-scheme> Optional Specifies what type of cache is used within the cache server to store
the entries. Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

■ flashjournal-scheme

■ ramjournal-scheme

To ensure cache coherence, the backing-map of an optimistic cache
must not use a read-through pattern to load cache entries. Either use
a cache-aside pattern from outside the cache service, or switch to the
distributed-scheme, which supports read-through clustered
caching.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

<autostart> Optional The autostart element is intended to be used by cache servers (that
is, com.tangosol.net.DefaultCacheServer). It specifies whether the
cache services associated with this cache scheme should be
automatically started at a cluster node. Legal values are true or
false. The default value is false.

Table B–47 (Cont.) optimistic-scheme Subelements

Element
Required/
Optional Description

outgoing-message-handler

B-84 Oracle Fusion Middleware Developing Applications with Oracle Coherence

outgoing-message-handler

Used in: acceptor-config, initiator-config.

BDescription
The outgoing-message-handler specifies the configuration information used to detect
dropped client-to-cluster connections. For connection initiators and acceptors that use
connectionless protocols, this information is necessary to detect and release resources
allocated to dropped connections. Connection-oriented initiators and acceptors can
also use this information as an additional mechanism to detect dropped connections.

BElements
Table B–48 describes the subelements of the outgoing-message-handler element.

Element Reference

Cache Configuration Elements B-85

Table B–48 outgoing-message-handler Subelements

Element
Required/
Optional Description

<heartbeat-interval> Optional Specifies the interval between ping requests. A ping request is
used to ensure the integrity of a connection. The value of this
element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. A value of zero disables ping requests. The default
value is zero.

outgoing-message-handler

B-86 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<heartbeat-timeout> Optional Specifies the maximum amount of time to wait for a response to
the heartbeat ping request before closing the underlying
connection. The value of this element must be in the following
format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed.

<max-message-size> Optional Specifies the size limit of messages being sent over
Coherence*Extend connections. The value of this element must
be in the following format:

(\d)+[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor
with which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of kilo is assumed.
Legal values are positive integers between 0 and Integer.MAX_
VALUE (2147483647). The default value is 0 and indicates that
there is no limit on the message size.

<request-timeout> Optional Specifies the maximum amount of time a client waits for a
response message before abandoning the request. The
connection is not closed until the <heartbeat-timeout> value is
reached.

Note: This element is not used by a proxy service acceptor,
because proxies never send requests to extend clients.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. The default value is an infinite timeout (0s).

Table B–48 (Cont.) outgoing-message-handler Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-87

overflow-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, read-write-backing-map-scheme

BDescription
The overflow-scheme defines a two-tier cache consisting of a fast, size limited
front-tier, and slower but much higher capacity back-tier cache. When the size limited
front fills up, evicted entries are transparently moved to the back. In the event of a
cache miss, entries may move from the back to the front. A typical deployment might
use a local-scheme for the front-tier, and a external-scheme for the back-tier, allowing
for fast local caches with capacities larger than the JVM heap allows. In such a
deployment, the local-scheme element's high-units and eviction-policy controls
the transfer (eviction) of entries from the front to back caches.

BImplementation
Implemented by either com.tangosol.net.cache.OverflowMap or
com.tangosol.net.cache.SimpleOverflowMap, see expiry-enabled for details.

BEntry Expiration
Overflow supports automatic expiration of entries based on the age of the value, as
configured by the <expiry-delay> subelement.

BElements
Table B–49 describes the subelements of the overflow-scheme element.

Note: Relying on overflow for normal cache storage is not
recommended. It should only be used to help avoid eviction-related
data loss in the case where the storage requirements temporarily
exceed the configured capacity. In general, the overflow's on-disk
storage should remain empty.

Table B–49 overflow-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the overflow cache. Any custom
implementation must extend either the
com.tangosol.net.cache.OverflowMap or
com.tangosol.net.cache.SimpleOverflowMap class, and declare the
exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom overflow cache
implementations.

<front-scheme> Required Specifies the cache to use as the front-tier cache.

<back-scheme> Required Specifies the cache-scheme to use in creating the back-tier cache.

overflow-scheme

B-88 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<miss-cache-scheme> Optional Specifies a cache-scheme for maintaining information on cache misses.
For caches which are not expiry-enabled (see <expiry-enabled>
subelement), the miss-cache is used track keys which resulted in both a
front and back tier cache miss. The knowledge that a key is not in either
tier allows some operations to perform faster, as they can avoid
querying the potentially slow back-tier. A size limited scheme may be
used to control how many misses are tracked. If unspecified, no
cache-miss data is maintained. Legal values are:

■ local-scheme

<expiry-enabled> Optional Turns on support for automatically-expiring data, as provided by the
com.tangosol.net.cache.CacheMap API. When enabled, the
overflow-scheme is implemented using
com.tangosol.net.cache.OverflowMap, rather then
com.tangosol.net.cache.SimpleOverflowMap. Legal values are true or
false. The default value is false.

<expiry-delay> Optional Specifies the amount of time since the last update that entries are kept
by the cache before being expired. Entries that have expired are not be
accessible and are evicted the next time a client accesses the cache.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A
value of zero implies no expiry. The default value is 0.

Note: The expiry delay parameter (cExpiryMillis) is defined as an
integer and is expressed in milliseconds. Therefore, the maximum
amount of time can never exceed Integer.MAX_VALUE (2147483647)
milliseconds or approximately 24 days.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether the cache
services associated with this cache scheme should be automatically
started at a cluster node. Legal values are true or false. The default
value is false.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

Table B–49 (Cont.) overflow-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-89

paged-external-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, overflow-scheme,
read-write-backing-map-scheme

BDescription
As with external-scheme, paged-external-schemes define caches which are not JVM
heap based, allowing for greater storage capacity. The paged-external scheme
optimizes LRU eviction by using a paging approach. See Chapter 16, "Serialization
Paged Cache," for a detailed description of the paged cache functionality.

BImplementation
This scheme is implemented by the
com.tangosol.net.cache.SerializationPagedCache class.

BPaging
Cache entries are maintained over a series of pages, where each page is a separate
com.tangosol.io.BinaryStore, obtained from the configured storage manager (see
"Pluggable Storage Manager"). When a page is created it is considered to be the
current page and all write operations are performed against this page. On a configured
interval (see <page-duration> subelement), the current page is closed and a new
current page is created. Read operations for a given key are performed against the last
page in which the key was stored. When the number of pages exceeds a configured
maximum (see <page-limit> subelement), the oldest page is destroyed and those
items which were not updated since the page was closed are evicted.

For example, configuring a cache with a duration of ten minutes per page, and a
maximum of six pages, results in entries being cached for at most an hour. Paging
improves performance by avoiding individual delete operations against the storage
manager as cache entries are removed or evicted. Instead, the cache simply releases its
references to those entries and relies on the eventual destruction of an entire page to
free the associated storage of all page entries in a single operation.

BPluggable Storage Manager
External schemes use a pluggable store manager to create and destroy pages, and to
access entries within those pages. Supported store-managers include:

■ async-store-manager—a wrapper providing asynchronous write capabilities for
of other store-manager implementations

■ custom-store-manager—allows definition of custom implementations of
store-managers

■ bdb-store-manager—uses Berkeley Database JE to implement an on disk cache

■ nio-file-manager—uses NIO to implement memory-mapped file based cache

■ nio-memory-manager—uses NIO to implement an off JVM heap, in-memory cache

Note: The NIO memory manager implementation is deprecated.
Current implementation should use a journal binary store instead. See
"Using the Elastic Data Feature to Store Data" on page 14-7.

paged-external-scheme

B-90 Oracle Fusion Middleware Developing Applications with Oracle Coherence

BPersistence (long-term storage)
Paged external caches are used for temporary storage of large data sets, for example as
the back-tier of an overflow-scheme. These caches are not used for long-term storage
(persistence) and do not survive beyond the life of the JVM. Clustered persistence
should be configured by using a read-write-backing-map-scheme on a
distributed-scheme. If a non-clustered persistent cache is what is needed, refer to
"Persistence (long-term storage)" on page B-41.

BElements
Table B–50 describes the subelements of the paged-external-scheme element.

Table B–50 paged-external-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the external paged cache. Any
custom implementation must extend the
com.tangosol.net.cache.SerializationPagedCache class and declare
the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom external paged
cache implementations.

<async-store-manager> Optional Configures the paged external cache to use an asynchronous
storage manager wrapper for any other storage manager. See
"Pluggable Storage Manager" on page B-40 for more information.

<bdb-store-manager> Optional Configures the paged external cache to use Berkeley Database JE on
disk databases for cache storage.

<custom-store-manager> Optional Configures the paged external cache to use a custom storage
manager implementation.

<nio-file-manager> Optional Configures the paged external cache to use a memory-mapped file
for cache storage.

<nio-memory-manager> Optional Configures the paged external cache to use an off JVM heap,
memory region for cache storage.

Element Reference

Cache Configuration Elements B-91

<page-limit> Optional Specifies the maximum number of pages that the cache manages
before older pages are destroyed. Legal values are zero or positive
integers between 2 and 3600. The default value is zero.

<page-duration> Optional Specifies the length of time, in seconds, that a page in the cache is
current. After the duration is exceeded, the page is closed and a
new current page is created. The value of this element must be in
the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed.
Legal values are zero or values between 5 and 604800 seconds (one
week). The default value is zero.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

Table B–50 (Cont.) paged-external-scheme Subelements

Element
Required/
Optional Description

partition-listener

B-92 Oracle Fusion Middleware Developing Applications with Oracle Coherence

partition-listener

Used in: distributed-scheme

BDescription
Specifies an implementation of a com.tangosol.net.partition.PartitionListener
interface, which allows receiving partition distribution events.

BElements
Table B–51 describes the subelements of the partition-listener element.

Table B–51 partition-listener Subelements

Element
Required/
Optional Description

<class-name> Required The name of a class that implements the PartitionListener
interface. This implementation must have a zero-parameter public
constructor. The default value is the value specified in the
partition-listener parameter in the tangosol-coherence.xml
descriptor. See "DistributedCache Service Parameters" on page A-63
for more information.

<class-factory-name> Optional Specifies the fully qualified name of a factory class for creating
implementation class instances.

This element cannot be used with the <class-name> element and is
used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation
class.

Element Reference

Cache Configuration Elements B-93

partitioned-quorum-policy-scheme

Used in: distributed-scheme

BDescription
The partitioned-quorum-policy-scheme element contains quorum policy settings for
the partitioned cache service.

BElements
Table B–52 describes the subelements of the partitioned-quorum-policy-scheme
element.

Table B–52 partitioned-quorum-policy-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<distribution-quoru
m>

Optional Specifies the minimum number of ownership-enabled members of a
partitioned service that must be present to perform partition
distribution.

The value must be a nonnegative integer.

<restore-quorum> Optional Specifies the minimum number of ownership-enabled members of a
partitioned service that must be present to restore lost primary
partitions from backup.

The value must be a nonnegative integer.

<read-quorum> Optional specifies the minimum number of storage members of a cache service
that must be present to process "read" requests. A "read" request is any
request that does not mutate the state or contents of a cache.

The value must be a nonnegative integer.

<write-quorum> Optional specifies the minimum number of storage members of a cache service
that must be present to process "write" requests. A "write" request is
any request that may mutate the state or contents of a cache.

The value must be a nonnegative integer.

<class-name> Optional Specifies a class that provides custom quorum policies. This element
cannot be used with the default quorum elements or the
<class-factory-name> element.

The class must implement the com.tangosol.net.ActionPolicy
interface. Initialization parameters can be specified using the
<init-params> element.

<class-factory-name
>

Optional Specifies a factory class for creating custom action policy instances.
This element cannot be used with the default quorum elements or the
<class-name> element.

This element is used with the <method-name> element. The action
policy instances must implement the
com.tangosol.net.ActionPolicy interface.

<method-name> Optional Specifies the name of a static factory method on the factory class which
performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation class.

provider

B-94 Oracle Fusion Middleware Developing Applications with Oracle Coherence

provider

Used in: ssl, identity-manager, trust-manager.

BDescription
The provider element contains the configuration information for a security provider
that extends the java.security.Provider class.

BElements
Table B–53 describes the subelements you can define within the provider element.

Table B–53 provider Subelements

Element
Required/
Optional Description

<name> Optional Specifies the name of a security provider that extends the
java.security.Provider class.

The class name can be entered using either this element or by using
the <class-name> element or by using the <class-factory-name>
element.

<class-name> Optional Specifies the name of a security provider that extends the
java.security.Provider class.

This element cannot be used with the <name> element or the
<class-factory-name> element.

<class-factory-name> Optional Specifies a factory class for creating Provider instances. The
instances must implement the java.security.Provider class.

This element cannot be used with the <name> element or the
<class-name> element.

This element can be used with the <method-name> element.

<method-name> Optional Specifies the name of a static factory method on the factory class
which performs object instantiation.

<init-params> Optional Contains class initialization parameters for the provider
implementation.

This element cannot be used with the <name> element.

Element Reference

Cache Configuration Elements B-95

proxy-config

Used in: proxy-scheme.

BDescription
The proxy-config element specifies the configuration information for the clustered
service proxies managed by a proxy service. A service proxy is an intermediary
between a remote client (connected to the cluster by using a connection acceptor) and
a clustered service used by the remote client.

BElements
Table B–54 describes the subelements of the proxy-config element.

Table B–54 proxy-config Subelements

Element
Required/
Optional Description

<cache-service-proxy> Optional Specifies the configuration information for a cache service
proxy managed by the proxy service.

<invocation-service-proxy> Optional Specifies the configuration information for an invocation
service proxy managed by the proxy service.

proxy-scheme

B-96 Oracle Fusion Middleware Developing Applications with Oracle Coherence

proxy-scheme

Used in: caching-schemes.

BDescription
The proxy-scheme element contains the configuration information for a clustered
service that allows Coherence*Extend clients to connect to the cluster and use
clustered services without having to join the cluster.

BElements
Table B–55 describes the subelements of the proxy-scheme element.

Table B–55 proxy-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service.

<service-priority> Optional Specifies the priority for the service thread. Legal values are from 1 to 10
where 10 is the highest priority. The default value is 10. The default
value is the value specified in the service-priority parameter in the
tangosol-coherence.xml descriptor. See "Proxy Service Parameters" on
page A-77 for more information.

<event-dispatcher-pri
ority>

Optional Specifies the priority for the event dispatcher thread for each service.
Legal values are from 1 to 10 where 10 is the highest priority. The
default value is the value specified in the event-dispatcher-priority
parameter in the tangosol-coherence.xml descriptor. See "Proxy
Service Parameters" on page A-77 for more information.

Element Reference

Cache Configuration Elements B-97

<reliable-transport> Optional Specifies the transport protocol used by this service for reliable
point-to-point communication. Specifying a value results in the use of a
service-specific transport instance rather then the shared transport
instance that is defined by the <unicast-listener> element. A
service-specific transport instance can result in higher performance but
at the cost of increased resource consumption and should be used
sparingly for select, high priority services. In general, a shared transport
instance uses less resource consumption than service-specific transport
instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support. TMBS
requires the use of an SSL socket provider. See "socket-provider" on
page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is only
available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use of an SSL
socket provider. See "socket-provider" on page B-119.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is only
available for Oracle Exalogic systems and is automatically used as
long as TCMP has not been configured with SSL.

The default value is the <reliable-transport> value specified in the
tangosol-coherence.xml descriptor. See the reliable-transport
parameter in "Proxy Service Parameters" on page A-77 for more
information.

<thread-count> Optional Specifies the number of daemon threads for use by the proxy service.
Specifying a value creates a thread pool that contains the exact number
of threads. Proxy service threads perform operations on behalf of the
calling application. Therefore, when explicitly setting the number of
threads, set the value to as many threads as there are concurrent
operations.

Note: The default proxy service configuration uses a dynamic thread
pool that automatically adjusts the number of threads based on proxy
service load. Dynamic thread pooling is generally recommended. Do not
use this element if you want to use dynamic thread pooling. To adjust
dynamic thread pool thresholds, use the thread-count-max and
thread-count-min elements. See "Proxy Service Parameters" on
page A-77 for more additional details.

To disable a thread pool and force all tasks to be performed on the proxy
service thread, do not use this element and set the thread-count-max
and thread-count-min parameters to 0. This configuration is typically
not recommended.

<thread-count-max> Optional Specifies the maximum number of daemon threads that are allowed in a
dynamic thread pool. This element is only valid if the <thread-count>
element is not used. Legal values are positive integers or 0. Specifying a
value of 0 for both this element and the <thread-count-min> element
indicates that no daemon threads are created and that all client requests
are handled by the proxy service thread. The default value is the value
specified in the thread-count-max parameter of the
tangosol-coherence.xml descriptor. See "Proxy Service Parameters" on
page A-77 for more information.

Table B–55 (Cont.) proxy-scheme Subelements

Element
Required/
Optional Description

proxy-scheme

B-98 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<thread-count-min> Optional Specifies the minimum number of daemon threads that are allowed
(and initially created) in a dynamic thread pool. This element is only
valid if the <thread-count> element is not used. Legal values are
positive integers or 0. Specifying a value of 0 for both this element and
the <thread-count-max> element indicates that no daemon threads are
created and that all client requests are handled by the proxy service
thread. The default value is the value specified in the thread-count-min
parameter of the tangosol-coherence.xml descriptor. See "Proxy
Service Parameters" on page A-77 for more information.

<worker-priority> Optional Specifies the priority for the worker threads. Legal values are from 1 to
10 where 10 is the highest priority. The default value is the value
specified in the worker-priority parameter in the
tangosol-coherence.xml descriptor. See "Proxy Service Parameters" on
page A-77 for more information.

<task-hung-threshold> Optional Specifies the amount of time in milliseconds that a task can execute
before it is considered hung. Note that a posted task that has not yet
started is never considered as hung. This attribute is applied only if the
thread pool is used (the thread-count value is positive). Legal values
are positive integers or zero (indicating no default timeout). The default
value is the value specified in the tangosol-coherence.xml descriptor.
See the task-hung-threshold parameter in "Proxy Service Parameters"
on page A-77 for more information.

<task-timeout> Optional Specifies the timeout value in milliseconds for requests executing on the
service worker threads. This attribute is applied only if the thread pool
is used (the thread-count value is positive). If zero is specified, the
default service-guardian <timeout-milliseconds> value is used. Legal
values are nonnegative integers. The default value is the value specified
in the tangosol-coherence.xml descriptor. See the task-timeout
parameter in "Proxy Service Parameters" on page A-77.

<request-timeout> Optional Specifies the maximum amount of time a proxy waits for requests that
are sent to other proxies of the same name. This element should not be
used because requests are never sent between proxies.

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding the service and
any dependent threads. If the element is not specified for a given
service, the default guardian timeout (as specified by the
<timeout-milliseconds> operational configuration element) is used.
See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

Table B–55 (Cont.) proxy-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-99

<service-failure-poli
cy>

Optional Specifies the action to take when an abnormally behaving service thread
cannot be terminated gracefully by the service guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads that appear to
be unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this
policy causes the local node to stop the cluster services.

■ exit-process – attempts to recover threads that appear to be
unresponsive. If the attempt fails, an attempt is made to stop the
associated service. If the associated service cannot be stopped, this
policy cause the local node to exit the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged, but no
corrective action to be taken.

■ a custom class – an <instance> subelement is used to provide the
class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<member-listener> Optional Specifies the configuration information for a class that implements the
com.tangosol.net.MemberListener interface. The implementation must
have a public default constructor.

The MemberListener implementation receives service lifecycle events.
The <member-listener> element is used as an alternative to
programmatically adding a MapListener on a service.

<acceptor-config> Required Contains the configuration of the connection acceptor used by the
service to accept connections from Coherence*Extend clients and to
allow them to use the services offered by the cluster without having to
join the cluster.

<proxy-config> Optional Contains the configuration of the clustered service proxies managed by
this service.

<load-balancer> Optional Specifies a pluggable strategy used by the proxy service to distribute
client connections across the set of clustered proxy service members.
Legal values are:

■ proxy – (default) This strategy attempts to distribute client
connections equally across proxy service members based upon
existing connection count, connection limit, incoming and outgoing
message backlog, and daemon pool utilization.

■ client – This strategy relies upon the client address provider
implementation to dictate the distribution of clients across proxy
service members. If no client address provider implementation is
provided, the extend client tries each proxy service in a random
order until a connection is successful.

■ a custom class – an <instance> subelement is used to provide the
configuration information for a class that implements the
com.tangosol.net.proxy.ProxyServiceLoadBalancer interface.

<proxy-quorum-policy-
scheme>

Optional Specifies quorum policy settings for the Proxy service.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether this
service should be automatically started at a cluster node. Legal values
are true or false. The default value is false.

Table B–55 (Cont.) proxy-scheme Subelements

Element
Required/
Optional Description

proxy-quorum-policy-scheme

B-100 Oracle Fusion Middleware Developing Applications with Oracle Coherence

proxy-quorum-policy-scheme

Used in: proxy-scheme

BDescription
The proxy-quorum-policy-scheme element contains quorum policy settings for the
Proxy service.

BElements
Table B–55 describes the subelements of the proxy-quorum-policy-scheme element.

Table B–56 proxy-quorum-policy-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<connect-quorum> Optional specifies the minimum number of members of a proxy service that
must be present to allow client connections.

The value must be a nonnegative integer.

<class-name> Optional Specifies a class that provides custom quorum policies. This element
cannot be used with the <connect-quorum> element or the
<class-factory-name> element.

The class must implement the com.tangosol.net.ActionPolicy
interface. Initialization parameters can be specified using the
<init-params> element.

<class-factory-name> Optional Specifies a factory class for creating custom action policy instances.
This element cannot be used with the <connect-quorum> element or
the <class-name> element.

This element is used with the <method-name> element. The action
policy instances must implement the com.tangosol.net.ActionPolicy
interface.

<method-name> Optional Specifies the name of a static factory method on the factory class which
performs object instantiation.

<init-params> Optional Contains class initialization parameters for the implementation class.

Element Reference

Cache Configuration Elements B-101

ramjournal-scheme

Used in: back-scheme, backing-map-scheme, caching-schemes,
internal-cache-scheme

BDescription
The ramjournal-scheme element contains the configuration information for a scheme
that stores data to buffers (journal files) in-memory. A RAM journal resource manager
controls RAM journal behavior. See "ramjournal-manager" on page A-56 for additional
details on configuring RAM journal behavior.

This scheme uses the com.tangosol.net.cache.CompactSerializationClass class as
the backing map implementation and the
com.tangosol.io.journal.JournalBinaryStore to store and retrieve binary key
value pairs to a journal.

BElements
Table B–57 describes the subelements of the ramjournal-scheme element.

Table B–57 ramjournal-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using Scheme
Inheritance" on page 13-13 for more information.

<class-name> Optional Specifies a custom implementation of the simple serialization map cache.
Any custom implementation must extend the
com.tangosol.net.cache.CompactSerializationCache class and declare
the exact same set of public constructors as the superclass.

<init-params> Optional Specifies the initialization parameters for a custom serialization map
cache.

<eviction-policy> Optional Specifies the type of eviction policy to use. Legal values are:

■ LRU – Least Recently Used eviction policy chooses which entries to
evict based on how recently they were last accessed, evicting those
that were not accessed for the longest period first.

■ LFU – Least Frequently Used eviction policy chooses which entries to
evict based on how often they are being accessed, evicting those that
are accessed least frequently first.

■ HYBRID (default) – Hybrid eviction policy chooses which entries to
evict based on the combination (weighted score) of how often and
recently they were accessed, evicting those that are accessed least
frequently and were not accessed for the longest period first.

■ <class-scheme> – A custom eviction policy, specified as a class
scheme. The class specified within this scheme must implement the
ConfigurableCacheMap.EvictionPolicy interface or extend the
AbstractEvictionPolicy class.

ramjournal-scheme

B-102 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<high-units> Optional Specifies the size limit of the cache. The value represents the maximum
number of units that can be placed in the cache before pruning occurs.
An entry is the unit of measurement, unless it is overridden by an
alternate unit calculator (see the <unit-calculator> subelement). When
this limit is exceeded, the cache begins the pruning process and evicts
entries according to the eviction policy. Legal values are positive integers
between 0 and Integer.MAX_VALUE (2147483647). The default value is 0
and implies no limit.

Note: The value is limited to approximately 2GB by default. To specify
higher values, use the <unit-factor> element to change the factor by
which the <high-units> value is multiplied.

<low-units> Optional Specifies the lowest number of units that a cache is pruned down to
when pruning takes place. A pruning does not necessarily result in a
cache containing this number of units; however, a pruning never results
in a cache containing less than this number of units. An entry is the unit
of measurement, unless it is overridden by an alternate unit calculator
(see the <unit-calculator> subelement). When pruning occurs entries
continue to be evicted according to the eviction policy until this size.
Legal values are positive integers or zero. Zero implies the default. The
default value is 80% of the high-units setting (that is, for a <high-units>
setting of 1000 the default <low-units> is 800).

<unit-calculator> Optional Specifies the type of unit calculator to use. A unit calculator is used to
determine the cost (in "units") of a given object. This element is used only
if the <high-units> element is set to a positive number. Legal values are:

■ FIXED – A unit calculator that assigns an equal weight of 1 to all
cached objects.

■ BINARY (default) – A unit calculator that assigns an object a weight
equal to the number of bytes of memory that are required to cache
the object. This calculator is used for partitioned caches that cache
data in a binary serialized form. See
com.tangosol.net.cache.BinaryMemoryCalculator for additional
details.

■ <class-scheme> – A custom unit calculator, specified as a class
scheme. The class specified within this scheme must implement the
com/tangosol/net/cache/ConfigurableCacheMap.UnitCalculator
interface.

Table B–57 (Cont.) ramjournal-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-103

<unit-factor> Optional Specifies the factor by which the <low-units> and <high-units> settings
are adjusted. Using a BINARY unit calculator, for example, the factor of
1048576 could be used to count megabytes instead of bytes.

Note: This element was introduced only to avoid changing the type of
the <low-units> and <high-units> settings from 32-bit values to 64-bit
values and is only used if the <high-units> element is set to a positive
number.

Valid values are positive integers. The default value is 1.

<expiry-delay> Optional Specifies the amount of time since the last update that entries are kept by
the cache before being expired. Entries that have expired are not
accessible and are evicted the next time a client accesses the cache.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A value
of zero implies no expiry. The default value is 0.

Note: The expiry delay parameter (cExpiryMillis) is defined as an
integer and is expressed in milliseconds. Therefore, the maximum
amount of time can never exceed Integer.MAX_VALUE (2147483647)
milliseconds or approximately 24 days.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

Table B–57 (Cont.) ramjournal-scheme Subelements

Element
Required/
Optional Description

read-write-backing-map-scheme

B-104 Oracle Fusion Middleware Developing Applications with Oracle Coherence

read-write-backing-map-scheme

Used in: caching-schemes, distributed-scheme.

BDescription
The read-write-backing-map-scheme defines a backing map which provides a size
limited cache of a persistent store. See Chapter 15, "Caching Data Sources" for more
details.

BImplementation
The read-write-backing-map-scheme is implemented by the
com.tangosol.net.cache.ReadWriteBackingMap class.

BCache of an External Store
A read write backing map maintains a cache backed by an external persistent cache
store (see <cachestore-scheme> subelement). Cache misses are read-through to the
back-end store to retrieve the data. If a writable store is provided, cache writes are also
propagate to the cache store.

BRefresh-Ahead Caching
When enabled (see <refreshahead-factor> subelement) the cache watches for
recently accessed entries which are about to expire, and asynchronously reload them
from the cache store. This insulates the application from potentially slow reads against
the cache store, as items periodically expire.

BWrite-Behind Caching
When enabled (see <write-delay> subelement), the cache delays writes to the
back-end cache store. This allows for the writes to be batched (see
<write-batch-factor> subelement) into more efficient update blocks, which occur
asynchronously from the client thread.

BElements
Table B–58 describes the subelements of the read-write-backing-map-scheme
element.

Table B–58 read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique
within a configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Using Scheme Inheritance" on page 13-13 for more
information.

<class-name> Optional Specifies a custom implementation of the read write
backing map. Any custom implementation must extend
the com.tangosol.net.cache.ReadWriteBackingMap
class and declare the exact same set of public
constructors.

Element Reference

Cache Configuration Elements B-105

<init-params> Optional Specifies initialization parameters, for use in custom read
write backing map implementations.

<internal-cache-scheme> Required Specifies a cache-scheme which is used to cache entries.
Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

■ flashjournal-scheme

■ ramjournal-scheme

<write-max-batch-size> Optional Specifies the maximum number of entries to write in a
single storeAll operation. Valid values are positive
integers or zero. The default value is 128 entries. This
value has no effect if write behind is disabled.

<miss-cache-scheme> Optional Specifies a cache-scheme for maintaining information on
cache misses. The miss-cache is used track keys which
were not found in the cache store. The knowledge that a
key is not in the cache store allows some operations to
perform faster, as they can avoid querying the potentially
slow cache store. A size-limited scheme may be used to
control how many misses are cached. If unspecified no
cache-miss data is maintained. Legal values are:

■ local-scheme

<cachestore-scheme> Optional Specifies the store to cache. If unspecified the cached data
only resides within the internal cache (see
<internal-cache-scheme> subelement), and only reflect
operations performed on the cache itself.

<read-only> Optional Specifies if the cache is read only. If true the cache loads
data from cachestore for read operations and do not
perform any writing to the cachestore when the cache is
updated. Legal values are true or false. The default
value is false.

Table B–58 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

read-write-backing-map-scheme

B-106 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<write-delay> Optional Specifies the time interval to defer asynchronous writes
to the cachestore for a write-behind queue. The value of
this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the
unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is
assumed. If zero, synchronous writes to the cachestore
(without queuing) take place, otherwise the writes are
asynchronous and deferred by specified time interval
after the last update to the value in the cache. The default
value is zero.

This element cannot be used with the
<write-delay-seconds> element.

<write-delay-seconds> Optional Specifies the number of seconds to defer asynchronous
writes to the cachestore for a write-behind queue. If zero,
synchronous writes to the cachestore (without queueing)
take place; otherwise, the writes are asynchronous and
deferred by the number of seconds after the last update
to the value in the cache.

This element cannot be used with the <write-delay>
element.

Table B–58 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-107

<write-batch-factor> Optional The write-batch-factor element is used to calculate the
"soft-ripe" time for write-behind queue entries. A queue
entry is considered to be "ripe" for a write operation if it
has been in the write-behind queue for no less than the
write-delay interval. The "soft-ripe" time is the point in
time before the actual ripe time after which an entry is
included in a batched asynchronous write operation to
the CacheStore (along with all other ripe and soft-ripe
entries). In other words, a soft-ripe entry is an entry that
has been in the write-behind queue for at least the
following duration:

D' = (1.0 - F) * D where D = write-delay interval and
F = write-batch-factor.

Conceptually, the write-behind thread uses the following
logic when performing a batched update:

1. The thread waits for a queued entry to become ripe.

2. When an entry becomes ripe, the thread dequeues all
ripe and soft-ripe entries in the queue.

3. The thread then writes all ripe and soft-ripe entries
either by using store() (if there is only the single
ripe entry) or storeAll() (if there are multiple
ripe/soft-ripe entries). Note: if operation bundling
(<operation-bundling>) is configured, then
storeAll() is always called even if there is only a
single ripe entry.

4. The thread then repeats (1).

This element is only applicable if asynchronous writes
are enabled (that is, the value of the write-delay element
is greater than zero) and the CacheStore implements the
storeAll() method. The value of the element is
expressed as a percentage of the write-delay interval.
Legal values are nonnegative doubles less than or equal
to 1.0. The default value is zero.

<write-requeue-threshold> Optional Specifies the size of the write-behind queue at which
additional actions could be taken. If zero, write-behind
requeuing is disabled. Otherwise, this value controls the
frequency of the corresponding log messages. For
example, a value of 100 produces a log message every
time the size of the write queue is a multiple of 100. Legal
values are positive integers or zero. The default value is
zero.

<refresh-ahead-factor> Optional The refresh-ahead-factor element is used to calculate the
"soft-expiration" time for cache entries. Soft-expiration is
the point in time before the actual expiration after which
any access request for an entry schedules an
asynchronous load request for the entry. This attribute is
only applicable if the internal cache is a local-scheme,
configured with the <expiry-delay> subelement. The
value is expressed as a percentage of the internal
LocalCache expiration interval. If zero, refresh-ahead
scheduling is disabled. If 1.0, then any get operation
immediately triggers an asynchronous reload. Legal
values are nonnegative doubles less than or equal to 1.0.
The default value is zero.

Table B–58 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

read-write-backing-map-scheme

B-108 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<cachestore-timeout> Optional Specifies the timeout interval to use for CacheStore read
and write operations. If a CacheStore operation times
out, the executing thread is interrupted and may
ultimately lead to the termination of the cache service.
Timeouts of asynchronous CacheStore operations (for
example, refresh-ahead, write-behind) do not result in
service termination. The value of this element must be in
the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the
unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds
is assumed. If 0 is specified, the default service-guardian
<timeout-milliseconds> value is used. The default
value if none is specified is 0.

<rollback-cachestore-failures> Optional Specifies whether exceptions caught during synchronous
cachestore operations are rethrown to the calling thread
(possibly over the network to a remote member). Legal
values are true or false. If the value of this element is
false, an exception caught during a synchronous
cachestore operation is logged locally and the internal
cache is updated. If the value is true, the exception is
rethrown to the calling thread and the internal cache is
not changed. If the operation was called within a
transactional context, this would have the effect of rolling
back the current transaction. The default value is true.

<listener> Optional Specifies an implementation of a
com.tangosol.util.MapListener which is notified of
events occurring on the cache.

Table B–58 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-109

remote-addresses

Used in: tcp-initiator

BDescription
The remote-addresses element contains the address (IP, or DNS name, and port) of
one or more TCP/IP acceptors. A TCP/IP initiator uses this information to establish a
connection with a proxy service on a remote cluster. TCP/IP acceptors are configured
within the proxy-scheme element. The TCP/IP initiator attempts to connect to the
addresses in a random order until either the list is exhausted or a connection is
established. See Developing Remote Clients for Oracle Coherence for additional details and
example configurations.

The following example configuration instructs the initiator to connect to
192.168.0.2:9099 and 192.168.0.3:9099 in a random order:

<remote-addresses>
 <socket-address>
 <address>192.168.0.2</address>
 <port>9099</port>
 </socket-address>
 <socket-address>
 <address>192.168.0.3</address>
 <port>9099</port>
 </socket-address>
</remote-addresses>

BElements
Table B–59 describes the subelements of the remote-addresses element.

Note: The name-service-addresses element can also be used to
establish a connection with a proxy service on a a remote cluster. For
details, see "name-service-addresses" on page B-72.

Table B–59 remote-addresses Subelements

Element
Required/
Optional Description

<socket-address> Optional Specifies the address (IP, or DNS name, and port) on which a TCP/IP
acceptor is listening. Multiple <socket-address> elements can be used
within a <remote-addresses> element.

<address-provider> Optional Specifies the address (IP, or DNS name, and port) on which a TCP/IP
acceptor is listening or the configuration for a
com.tangosol.net.AddressProvider implementation that supplies
the address. The address-provider element also supports socket
address references.

A <remote-addresses> element can include either a
<socket-address> element or an <address-provider> element but not
both.

remote-cache-scheme

B-110 Oracle Fusion Middleware Developing Applications with Oracle Coherence

remote-cache-scheme

Used in: cachestore-scheme, caching-schemes, near-scheme.

BDescription
The remote-cache-scheme element contains the configuration information necessary
to use a clustered cache from outside the cluster by using Coherence*Extend.

BElements
Table B–60 describes the subelements of the remote-cache-scheme element.

Table B–60 remote-cache-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service which manages caches created from
this scheme.

<proxy-service-name> Optional Specifies the proxy service name to which this remote service
connects. This element is only used if this remote service uses a name
service to lookup a proxy service. For details on configuring a name
service, see "name-service-addresses" on page B-72.

The value must match the <service-name> value of the proxy service.
This element can be omitted if the <service-name> value of this
remote service matches the <service-name> value of the proxy
service. For details on defining proxy services, see "proxy-scheme" on
page B-96.

<operation-bundling> Optional Specifies the configuration information for a bundling strategy.

<initiator-config> Required Contains the configuration of the connection initiator used by the
service to establish a connection with the cluster.

<defer-key-association-ch
eck>

Optional Specifies whether key association processing is done by the extend
client or deferred to the cluster side. Valid values are true and false.
A value of false indicates that key association processing is done by
the extend client. If the value is set to true, then .NET and C++ clients
must include a parallel Java implementation of the key class on the
cluster cache servers. The default value is the value specified in the
tangosol-coherence.xml descriptor. See "RemoteCache Service
Parameters" on page A-80 for more information.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which is notified of events occurring on the cache.

Element Reference

Cache Configuration Elements B-111

remote-invocation-scheme

Used in: caching-schemes

BDescription
The remote-invocation-scheme element contains the configuration information
necessary to execute tasks within a cluster without having to first join the cluster. This
scheme uses Coherence*Extend to connect to the cluster.

BElements
Table B–61 describes the subelements of the remote-invocation-scheme element.

Table B–61 remote-invocation-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service.

<proxy-service-name> Optional Specifies the proxy service name to which this remote service connects.
This element is only used if this remote service uses a name service to
lookup a proxy service. For details on configuring a name service, see
"name-service-addresses" on page B-72.

The value must match the <service-name> value of the proxy service.
This element can be omitted if the <service-name> value of this remote
service matches the <service-name> value of the proxy service. For
details on defining proxy services, see "proxy-scheme" on page B-96.

<initiator-config> Required Contains the configuration of the connection initiator used by the
service to establish a connection with the cluster.

replicated-scheme

B-112 Oracle Fusion Middleware Developing Applications with Oracle Coherence

replicated-scheme

Used in: caching-schemes, near-scheme, overflow-scheme

BDescription
The replicated scheme defines caches which fully replicate all their cache entries on
each cluster nodes running the specified service. See "Understanding Replicated
Caches" on page 12-5 for a detailed description of replicated caches.

BClustered Concurrency Control
Replicated caches support cluster wide key-based locking so that data can be modified
in a cluster without encountering the classic missing update problem. Note that any
operation made without holding an explicit lock is still atomic but there is no
guarantee that the value stored in the cache does not change between atomic
operations.

BCache Storage (Backing Map)
Storage for the cache is specified by using the backing-map scheme (see
<backing-map> subelement). For instance, a replicated cache which uses a
local-scheme for its backing map results in cache entries being stored in-memory.

BElements
Table B–62 describes the subelements of the replicated-scheme element.

Table B–62 replicated-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique
within a configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Using Scheme Inheritance" on page 13-13 for more
information.

<service-name> Optional Specifies the name of the service which manages caches
created from this scheme. Services are configured from
within the <services> element in the
tangosol-coherence.xml file. See Appendix A,
"Operational Configuration Elements" for more
information.

<service-priority> Optional Specifies the priority for the service thread. Legal values
are from 1 to 10 where 10 is the highest priority. The default
value is the service-priority value specified in the
tangosol-coherence.xml descriptor. See "ReplicatedCache
Service Parameters" on page A-68 for more information.

<event-dispatcher-priority> Optional Specifies the priority for the event dispatcher thread for
each service. Legal values are from 1 to 10 where 10 is the
highest priority. The default value is the
event-dispatcher-priority value specified in the
tangosol-coherence.xml descriptor. See "ReplicatedCache
Service Parameters" on page A-68 for more information.

Element Reference

Cache Configuration Elements B-113

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to
serialize and deserialize user types, or it references a
serializer class configuration that is defined in the
operational configuration file (see "serializer" on
page A-59).

<reliable-transport> Optional Specifies the transport protocol used by this service for
reliable point-to-point communication. Specifying a value
results in the use of a service-specific transport instance
rather then the shared transport instance that is defined by
the <unicast-listener> element. A service-specific
transport instance can result in higher performance but at
the cost of increased resource consumption and should be
used sparingly for select, high priority services. In general,
a shared transport instance uses less resource consumption
than service-specific transport instances. Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL
support. TMBS requires the use of an SSL socket
provider. See "socket-provider" on page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus.
SDMB is only available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is
only available for Oracle Exalogic systems and
requires the use of an SSL socket provider. See
"socket-provider" on page B-119.

■ imb (default on Exalogic) – InfiniBand message bus.
IMB is only available for Oracle Exalogic systems and
is automatically used as long as TCMP has not been
configured with SSL.

The default value is the <reliable-transport> value
specified in the tangosol-coherence.xml descriptor. See
the reliable-transport parameter in "ReplicatedCache
Service Parameters" on page A-68 for more information.

<standard-lease-milliseconds> Optional Specifies the duration of the standard lease in milliseconds.
When a lease has aged past this number of milliseconds,
the lock is automatically released. Set this value to zero to
specify a lease that never expires. The purpose of this
setting is to avoid deadlocks or blocks caused by stuck
threads; the value should be set higher than the longest
expected lock duration (for example, higher than a
transaction timeout). It's also recommended to set this
value higher than
packet-delivery/timeout-milliseconds value. Legal
values are from positive long numbers or zero. The default
value is the value specified for
packet-delivery/timeout-milliseconds in the
tangosol-coherence.xml descriptor. See "ReplicatedCache
Service Parameters" on page A-68 for more information.

Table B–62 (Cont.) replicated-scheme Subelements

Element
Required/
Optional Description

replicated-scheme

B-114 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<lease-granularity> Optional Specifies the lease ownership granularity. Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that
obtained them and can only be released by that thread. A
value of member means that locks are held by a cluster
node and any thread running on the cluster node that
obtained the lock can release it. The default value is the
lease-granularity value specified in the
tangosol-coherence.xml descriptor. See "ReplicatedCache
Service Parameters" on page A-68 for more information.

<request-timeout> Optional Specifies the maximum amount of time a client waits for a
response before abandoning the original request. The
request time is measured on the client side as the time
elapsed from the moment a request is sent for execution to
the corresponding server node(s) and includes the
following:

■ the time it takes to deliver the request to an executing
node (server)

■ the interval between the time the task is received and
placed into a service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no
default timeout). The default value is the value specified in
the tangosol-coherence.xml descriptor. See the
request-timeout parameter in "ReplicatedCache Service
Parameters" on page A-68 for more information.

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding
the service and any dependent threads. If the element is not
specified for a given service, the default guardian timeout
(as specified by the <timeout-milliseconds> operational
configuration element) is used. See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the
unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed.

Table B–62 (Cont.) replicated-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-115

<service-failure-policy> Optional Specifies the action to take when an abnormally behaving
service thread cannot be terminated gracefully by the
service guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads
that appear to be unresponsive. If the attempt fails, an
attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy
causes the local node to stop the cluster services.

■ exit-process – attempts to recover threads that
appear to be unresponsive. If the attempt fails, an
attempt is made to stop the associated service. If the
associated service cannot be stopped, this policy cause
the local node to exit the JVM and terminate abruptly.

■ logging – causes any detected problems to be logged,
but no corrective action to be taken.

■ a custom class – an <instance> subelement is used to
provide the class configuration information for a
com.tangosol.net.ServiceFailurePolicy
implementation.

<member-listener> Optional Specifies the configuration information for a class that
implements the com.tangosol.net.MemberListener
interface. The implementation must have a public default
constructor.

The MemberListener implementation receives cache service
lifecycle events. The <member-listener> element is used as
an alternative to programmatically adding a MapListener
on a service.

<backing-map-scheme> Optional Specifies what type of cache is used within the cache server
to store the entries. Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

■ flashjournal-scheme

■ ramjournal-scheme

To ensure cache coherence, the backing-map of a replicated
cache must not use a read-through pattern to load cache
entries. Either use a cache-aside pattern from outside the
cache service, or switch to the distributed-scheme, which
supports read-through clustered caching.

<listener> Optional Specifies an implementation of a
com.tangosol.util.MapListener which is notified of
events occurring on the cache.

<autostart> Optional The autostart element is intended to be used by cache
servers (that is, com.tangosol.net.DefaultCacheServer).
It specifies whether the cache services associated with this
cache scheme should be automatically started at a cluster
node. Legal values are true or false. The default value is
false.

Table B–62 (Cont.) replicated-scheme Subelements

Element
Required/
Optional Description

resource-config

B-116 Oracle Fusion Middleware Developing Applications with Oracle Coherence

resource-config

Used in: http-acceptor

BDescription
The resource-config element contains the configuration information for a class that
extends the com.sun.jersey.api.core.ResourceConfig class. The instance is used by
the HTTP acceptor to load resource and provider classes for the Coherence REST
application that is mapped to the specified context path. Multiple resource
configuration classes can be configured and mapped to different context paths.

BElements
Table B–63 describes the subelements of the resource-config element.

Table B–63 resource-config Subelements

Element
Required/
Optional Description

<context-path> Optional Specifies a root URI path for a REST application. The first character of the
path must be /. The default value is /.

<instance> Optional Contains the configuration information for a class that extends the
com.sun.jersey.api.core.ResourceConfig class. The default instance is
the com.tangosol.coherence.rest.server.DefaultResourceConfig class.

Element Reference

Cache Configuration Elements B-117

serializer

Used in: acceptor-config, defaults, distributed-scheme, initiator-config,
invocation-scheme, optimistic-scheme, replicated-scheme, transactional-scheme,

BDescription
The serializer element contains the class configuration information for a
com.tangosol.io.Serializer implementation.

The serializer element accepts either a reference to a serializer configuration or a full
serializer configuration. The best practice is to reference a configuration which is
defined in the operational configuration file. The operational configuration file
contains two pre-defined serializer class configuration: one for Java (default) and one
for POF. See "serializer" on page A-59.

The following example demonstrates referring to the POF serializer definition that is
in the operational configuration file:

...
<serializer>pof</serializer>
...

The following example demonstrates a full serializer class configuration:

...
<serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>my-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
</serializer>
...

BElements
Table B–64 describes the subelements of the serializer element.

Table B–64 serializer Subelements

Element
Required/
Optional Description

<instance> Optional Contains the class configuration information for a
com.tangosol.io.Serializer implementation.

socket-address

B-118 Oracle Fusion Middleware Developing Applications with Oracle Coherence

socket-address

Used in: address-provider, remote-addresses

BDescription
The socket-address element specifies the address and port on which a TCP/IP
acceptor is listening.

BElements
Table B–65 describes the subelements of the socket-address element.

Table B–65 socket-address Subelements

Element
Required/
Optional Description

<address> Required Specifies the IP address (IP or DNS name) on which a TCP/IP acceptor
socket is listening. If the address is a bind address, then the address may
also be entered using CIDR notation as a subnet and mask (for example,
192.168.1.0/24), which allows runtime resolution against the available
local IP addresses.

<port> Required Specifies the port on which a TCP/IP acceptor socket is listening. Legal
values are from 1 to 65535.

Element Reference

Cache Configuration Elements B-119

socket-provider

Used in: tcp-acceptor, tcp-initiator, defaults, ssl, memcached-acceptor.

BDescription
The <socket-provider> element contains the configuration information for a socket
and channel factory. The socket providers that are configured within the
<tcp-acceptor> and <tcp-initiator> elements are for use with Coherence*Extend. A
socket provider that is configured within the <http-acceptor> element is used by
Coherence REST. A socket provider that is configured within the
<memcached-acceptor> element is used by memcached clients. Socket providers for
TCMP are configured in an operational override within the <unicast-listener>
element.

The <socket-provider> element accepts either a reference to a socket provider
configuration or a full socket provider configuration. The best practice is to reference a
configuration which is defined in the operational configuration file. See
"socket-provider" on page A-86. The following socket providers are available: system
(default), ssl, tcp, and sdp. Socket provider configurations are referred to using their
id attribute name. The following example refers to the pre-defined SSL socket
provider configuration:

<socket-provider>ssl</socket-provider>

The preconfigured override is tangosol.coherence.socketprovider.

BElements
Table B–66 describes the subelements you can define within the socket-provider
element.

Table B–66 socket-provider Subelements

Element
Required/
Optional Description

<system> Optional Specifies a socket provider that produces instances of the JVM's default
socket and channel implementations.

<ssl> Optional Specifies a socket provider that produces socket and channel
implementations which use SSL.

<tcp> Optional Specifies a socket provider that produces TCP-based sockets and channel
implementations.

<sdp> Optional Specifies a socket provider that produce SDP-based sockets and channel
implementations provided that the JVM and underlying network stack
supports SDP.

ssl

B-120 Oracle Fusion Middleware Developing Applications with Oracle Coherence

ssl

Used in: socket-provider.

BDescription
The <ssl> element contains the configuration information for a socket provider that
produces socket and channel implementations which use SSL.

BElements
Table B–67 describes the elements you can define within the ssl element.

Table B–67 ssl Subelements

Element
Required/
Optional Description

<protocol> Optional Specifies the name of the protocol used by the socket and channel
implementations produced by the SSL socket provider. The default
value is TLS.

<provider> Optional Specifies the configuration for a security provider instance.

<executor> Optional Specifies the configuration information for an implementation of
the java.util.concurrent.Executor interface.

A <class-name> subelement is used to provide the name of a class
that implements the Executor interface. As an alternative, a
<class-factory-name> subelement can specify a factory class for
creating Executor instances and a <method-name> subelement that
specifies the name of a static factory method on the factory class
which performs object instantiation. Either approach can specify
initialization parameters using the <init-params> element.

<identity-manager> Optional Specifies the configuration information for initializing an identity
manager instance.

<trust-manager> Optional Specifies the configuration information for initializing a trust
manager instance.

<hostname-verifier> Optional Specifies the configuration information for an implementation of
the javax.net.ssl.HostnameVerifier interface. During the SSL
handshake, if the URL's host name and the server's identification
host name mismatch, the verification mechanism calls back to this
instance to determine if the connection should be allowed.

A <class-name> subelement is used to provide the name of a class
that implements the HostnameVerifier interface. As an alternative,
a <class-factory-name> subelement can specify a factory class for
creating HostnameVerifier instances and a <method-name>
subelement that specifies the name of a static factory method on the
factory class which performs object instantiation. Either approach
can specify initialization parameters using the <init-params>
element.

<socket-provider> Optional Specifies the configuration information for a delegate provider for
SSL. Valid values are tcp and sdp. The default value is tcp.

Element Reference

Cache Configuration Elements B-121

tcp-acceptor

Used in: acceptor-config.

BDescription
The tcp-acceptor element specifies the configuration information for a connection
acceptor that accepts connections from Coherence*Extend clients over TCP/IP. See
Developing Remote Clients for Oracle Coherence for additional details and example
configurations.

BElements
Table B–68 describes the subelements of the tcp-acceptor element.

Table B–68 tcp-acceptor Subelements

Element
Required/
Optional Description

<socket-provider> Optional Specifies the configuration for a socket and channel factory.

<local-address> Optional Specifies the local address (IP, or DNS name, and port) on which the
TCP/IP server socket (opened by the connection acceptor) is bound.

<address-provider> Optional Specifies either the local address (IP, or DNS name, and port) on
which the TCP/IP server socket is bound or an implementation of the
com.tangosol.net.AddressProvider interface that programmatically
provides a socket address. The address-provider element also
supports socket address references.

A <tcp-acceptor> element can include either a <local-address> or
an <address-provider> element but not both.

<reuse-address> Optional Specifies whether a TCP/IP socket can be bound to an in-use or
recently used address.

This setting is deprecated because the resulting behavior is
significantly different across operating system implementations. The
JVM, in general, selects a reasonable default which is safe for the
target operating system.

Valid values are true and false. The default value depends on the
operating system.

<keep-alive-enabled> Optional Indicates whether the SO_KEEPALIVE option is enabled on a TCP/IP
socket. The SO_KEEPALIVE option detects idle sockets and determines
whether the socket should be closed. Valid values are true and false.
The default value is true.

<tcp-delay-enabled> Optional Indicates whether TCP delay (Nagle's algorithm) is enabled on a
TCP/IP socket. Valid values are true and false. TCP delay is
disabled by default.

tcp-acceptor

B-122 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<receive-buffer-size> Optional Configures the size of the underlying TCP/IP socket network receive
buffer.Increasing the receive buffer size can increase the performance
of network I/O for high-volume connections, while decreasing it can
help reduce the backlog of incoming data.The value of this element
must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. The
default value is operating system dependent.

<send-buffer-size> Optional Configures the size of the underlying TCP/IP socket network send
buffer. The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. The
default value is operating system dependent.

<listen-backlog> Optional Configures the size of the TCP/IP server socket backlog queue. Valid
values are positive integers. The default value is operating system
dependent.

<linger-timeout> Optional Specifies a value for the SO_LINGER option on a TCP/IP socket. The
SO_LINGER option controls how long to wait before a socket is
forcefully closed. The value of this element must be in the following
format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
The default value is -1, which disables the linger timeout. A linger
timeout is only set if the value is greater than zero.

<authorized-hosts> Optional A collection of IP addresses of TCP/IP initiator hosts that are allowed
to connect to this TCP/IP acceptor.

<suspect-protocol-enabled
>

Optional Specifies whether the suspect protocol is enabled to detect and close
rogue Coherence*Extend client connections. The suspect protocol is
enabled by default.

Valid values are true and false.

Table B–68 (Cont.) tcp-acceptor Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-123

<suspect-buffer-size> Optional Specifies the outgoing connection backlog (in bytes) after which the
corresponding client connection is marked as suspect. A suspect client
connection is then monitored until it is no longer suspect or it is
closed to protect the proxy server from running out of memory.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of one is assumed. The
default value is 10000000.

<suspect-buffer-length> Optional Specifies the outgoing connection backlog (in messages) after which
the corresponding client connection is marked as suspect. A suspect
client connection is then monitored until it is no longer suspect or it is
closed to protect the proxy server from running out of memory. The
default value is 10000.

<nominal-buffer-size> Optional Specifies the outgoing connection backlog (in bytes) at which point a
suspect client connection is no longer considered to be suspect.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of one is assumed. The
default value is 2000000.

Table B–68 (Cont.) tcp-acceptor Subelements

Element
Required/
Optional Description

tcp-acceptor

B-124 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<nominal-buffer-length> Optional Specifies the outgoing connection backlog (in messages) at which
point a suspect client connection is no longer considered to be suspect.
The default value is 2000.

<limit-buffer-size> Optional Specifies the outgoing connection backlog (in bytes) at which point
the corresponding client connection must be closed to protect the
proxy server from running out of memory.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

■ T or t (tera, 240)

If the value does not contain a factor, a factor of one is assumed. The
default value is 100000000.

<limit-buffer-length> Optional Specifies the outgoing connection backlog (in messages) at which
point the corresponding client connection must be closed to protect
the proxy server from running out of memory. The default value is
60000.

Table B–68 (Cont.) tcp-acceptor Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-125

tcp-initiator

Used in: initiator-config.

BDescription
The tcp-initiator element specifies the configuration information for a connection
initiator that enables Coherence*Extend clients to connect to a remote cluster by using
TCP/IP. See Developing Remote Clients for Oracle Coherence for additional details and
example configurations.

BElements
Table B–69 describes the subelements of the tcp-initiator element.

Table B–69 tcp-initiator Subelements

Element
Required/
Optional Description

<socket-provider> Optional Specifies the configuration for a socket and channel factory.

<local-address> Optional Specifies the local address (IP, or DNS name, and port) on which the
TCP/IP client socket (opened by the TCP/IP initiator) is bound.

<name-service-addresses> Optional Contains the address (IP, or DNS name, and port) of one or more name
service TCP/IP acceptors. The TCP/IP connection initiator uses this
information to establish a connection with a remote cluster.

This element cannot be used if the remote-addresses element is used
to configure remote addresses.

<remote-addresses> Optional Contains the address (IP, or DNS name, and port) of one or more
TCP/IP connection acceptors. The TCP/IP connection initiator uses
this information to establish a connection with a remote cluster.

This element cannot be used if the name-service-addresses element is
used.

<reuse-address> Optional Specifies whether a TCP/IP socket can be bound to an in-use or
recently used address.

This setting is deprecated because the resulting behavior is
significantly different across operating system implementations. The
JVM, in general, selects a reasonable default which is safe for the target
operating system.

Valid values are true and false. The default value depends on the
operating system.

<keep-alive-enabled> Optional Indicates whether the SO_KEEPALIVE option is enabled on a TCP/IP
socket. The SO_KEEPALIVE option detects idle sockets and determines
whether the socket should be closed. Valid values are true and false.
The default value is true.

<tcp-delay-enabled> Optional Indicates whether TCP delay (Nagle's algorithm) is enabled on a
TCP/IP socket. Valid values are true and false. TCP delay is disabled
by default.

tcp-initiator

B-126 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<receive-buffer-size> Optional Configures the size of the underlying TCP/IP socket network receive
buffer.Increasing the receive buffer size can increase the performance
of network I/O for high-volume connections, while decreasing it can
help reduce the backlog of incoming data.The value of this element
must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. The
default value is operating system dependent.

<send-buffer-size> Optional Configures the size of the underlying TCP/IP socket network send
buffer.The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. The
default value is operating system dependent.

<connect-timeout> Optional Deprecated. The <connect-timeout> element is now specified within
the <initiator-config> element.

<linger-timeout> Optional Specifies a value for the SO_LINGER option on a TCP/IP socket. The SO_
LINGER option controls how long to wait before a socket is forcefully
closed. The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
The default value is -1, which disables the linger timeout. A linger
timeout is only set if the value is greater than zero.

Table B–69 (Cont.) tcp-initiator Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-127

transactional-scheme

Used in caching-schemes

BDescription
The transactional-scheme element defines a transactional cache, which is a
specialized distributed cache that provides transactional guarantees. Multiple
transactional-scheme elements may be defined to support different configurations.
Applications use transactional caches in one of three ways:

■ Applications use the CacheFactory.getCache() method to get an instance of a
transactional cache. In this case, there are implicit transactional guarantees when
performing cache operations. However, default transaction behavior cannot be
changed.

■ Applications explicitly use the Transaction Framework API to create a Connection
instance that uses a transactional cache. In this case, cache operations are
performed within a transaction and the application has full control to change
default transaction behavior as required.

■ Java EE applications use the Coherence Resource Adapter to create a Transaction
Framework API Connection instance that uses a transactional cache. In this case,
cache operations are performed within a transaction that can participate as part of
a distributed (global) transaction. Applications can change some default
transaction behavior.

BElements
Table B–70 describes the subelements of the transactional-scheme element.

Table B–70 transactional-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Using
Scheme Inheritance" on page 13-13 for more information.

<service-name> Optional Specifies the name of the service which manages caches created
from this scheme. The default service name if no service name is
provided is TransactionalCache.

<service-priority> Optional Specifies the priority for the service thread. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is
10.

<event-dispatcher-priority
>

Optional Specifies the priority for the event dispatcher thread for each
service. Legal values are from 1 to 10 where 10 is the highest
priority. The default value is 10.

<serializer> Optional Specifies either: the class configuration information for a
com.tangosol.io.Serializer implementation used to serialize
and deserialize user types, or it references a serializer class
configuration that is defined in the operational configuration file
(see "serializer" on page A-59).

transactional-scheme

B-128 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<reliable-transport> Optional Specifies the transport protocol used by this service for reliable
point-to-point communication. Specifying a value results in the
use of a service-specific transport instance rather then the shared
transport instance that is defined by the <unicast-listener>
element. A service-specific transport instance can result in
higher performance but at the cost of increased resource
consumption and should be used sparingly for select, high
priority services. In general, a shared transport instance uses less
resource consumption than service-specific transport instances.
Valid values are:

■ datagram – UDP protocol

■ tmb – TCP/IP message bus protocol

■ tmbs – TCP/IP message bus protocol with SSL support.
TMBS requires the use of an SSL socket provider. See
"socket-provider" on page B-119.

■ sdmb – Socket Direct Protocol (SDP) message bus. SDMB is
only available for Oracle Exalogic systems.

■ sdmbs – SDP message bus with SSL support. SDMBS is only
available for Oracle Exalogic systems and requires the use
of an SSL socket provider. See "socket-provider" on
page B-119.

■ imb (default on Exalogic) – InfiniBand message bus. IMB is
only available for Oracle Exalogic systems and is
automatically used as long as TCMP has not been
configured with SSL.

The default value is the <reliable-transport> value specified
in the tangosol-coherence.xml descriptor. See the
reliable-transport parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<thread-count> Optional Specifies the number of daemon threads used by the partitioned
cache service. Legal values are positive integers, 0, or -1. The
value 0 indicates that all relevant tasks are performed on the
service thread. The value -1 indicates that tasks are performed
on the caller's thread where possible. The default value is the
thread-count value specified in the tangosol-coherence.xml
descriptor. See the thread-count parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

Specifying a thread count changes the default behavior of the
Transactional Framework's internal transaction caches that are
used for transactional storage and recovery.

<worker-priority> Optional Specifies the priority for the worker threads. Legal values are
from 1 to 10 where 10 is the highest priority. The default value is
5.

Table B–70 (Cont.) transactional-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-129

<local-storage> Optional Specifies whether a cluster node contributes storage to the
cluster, that is, maintain partitions. When disabled the node is
considered a cache client.

Normally this value should be left unspecified within the
configuration file, and instead set on a per-process basis using
the tangosol.coherence.distributed.localstorage system property.
This allows cache clients and servers to use the same
configuration descriptor.

Legal values are true or false. The default value is the
local-storage value specified in the tangosol-coherence.xml
descriptor. See the local-storage parameter in
"DistributedCache Service Parameters" on page A-63 for more
information.

<partition-count> Optional Specifies the number of partitions that a partitioned (distributed)
cache is "chopped up" into. Each member running the
partitioned cache service that has the local-storage
(<local-storage> subelement) option set to true manages a
"fair" (balanced) number of partitions.

The number of partitions should be a prime number and
sufficiently large such that a given partition is expected to be no
larger than 50MB.

The following are good defaults for sample service storage sizes:

service storage partition-count
_______________ ______________
 100M 257
 1G 509
 10G 2039
 50G 4093
 100G 8191

A list of first 1,000 primes can be found at

http://primes.utm.edu/lists/

Valid values are positive integers. The default value is the value
specified in the tangosol-coherence.xml descriptor. See the
partition-count parameter "DistributedCache Service
Parameters" on page A-63 for more information.

<high-units> Optional Specifies the transaction storage size. Once the transactional
storage size is reached, an eviction policy is used that removes
25% of eligible entries from storage.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[K|k|M|m|G|g|T|t]?[B|b]?

where the first non-digit (from left to right) indicates the factor
with which the preceding decimal value should be multiplied:

■ K or k (kilo, 2^10)

■ M or m (mega, 2^20)

■ G or g (giga, 2^30)

■ T or t (tera, 2^40)

If the value does not contain a factor, a factor of one is assumed.
The default value is 10MB.

Table B–70 (Cont.) transactional-scheme Subelements

Element
Required/
Optional Description

transactional-scheme

B-130 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<transfer-threshold> Optional Specifies the threshold for the primary buckets distribution in
kilo-bytes. When a new node joins the partitioned cache service
or when a member of the service leaves, the remaining nodes
perform a task of bucket ownership re-distribution. During this
process, the existing data gets re-balanced along with the
ownership information. This parameter indicates a preferred
message size for data transfer communications. Setting this
value lower makes the distribution process take longer, but
reduces network bandwidth utilization during this activity.
Legal values are integers greater then zero. The default value is
the transfer-threshold value specified in the
tangosol-coherence.xml descriptor. See the
transfer-threshold parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<backup-count> Optional Specifies the number of members of the partitioned cache
service that hold the backup data for each unit of storage in the
cache. A value of 0 means that for abnormal termination, some
portion of the data in the cache is lost. The default value is the
backup-count value specified in the tangosol-coherence.xml
descriptor. See the backup-count parameter in value specified in
the tangosol-coherence.xml descriptor. See "DistributedCache
Service Parameters" on page A-63 for more information.

<partition-assignment-stra
tegy>

Optional Specifies the strategy that is used by a partitioned service to
manage partition distribution. Valid values are legacy, simple,
or a class that implements the
com.tangosol.net.partition.PartitionAssignmentStrategy
interface. The legacy assignment strategy indicates that partition
distribution is managed individually on each cluster member.
The simple strategy is a centralized distribution strategy that
attempts to balance partition distribution, while ensuring
machine-safety and is more deterministic and efficient than the
legacy strategy. The default value is simple. Enter the custom
strategy using the <instance> element.

<task-hung-threshold> Optional Specifies the amount of time in milliseconds that a task can
execute before it is considered "hung". Note: a posted task that
has not yet started is never considered as hung. This attribute is
applied only if the Thread pool is used (the thread-count value
is positive). Legal values are positive integers or zero (indicating
no default timeout). The default value is the
task-hung-threshold value specified in the
tangosol-coherence.xml descriptor. See the
task-hung-threshold parameter in "DistributedCache Service
Parameters" on page A-63 for more information.

<task-timeout> Optional Specifies the timeout value in milliseconds for requests
executing on the service worker threads. This attribute is applied
only if the thread pool is used (the thread-count value is
positive). If zero is specified, the default service-guardian
<timeout-milliseconds> value is used. Legal values are
nonnegative integers. The default value is the value specified in
the tangosol-coherence.xml descriptor. See the task-timeout
parameter in "DistributedCache Service Parameters" on
page A-63.

Table B–70 (Cont.) transactional-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-131

<request-timeout> Optional Specifies the maximum amount of time a client waits for a
response before abandoning the original request. The request
time is measured on the client side as the time elapsed from the
moment a request is sent for execution to the corresponding
server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node
(server)

■ the interval between the time the task is received and placed
into a service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default
timeout). The default value is the value specified in the
tangosol-coherence.xml descriptor. See the request-timeout
parameter in "DistributedCache Service Parameters" on
page A-63 for more information.

<guardian-timeout> Optional Specifies the guardian timeout value to use for guarding the
service and any dependent threads. If the element is not
specified for a given service, the default guardian timeout (as
specified by the <timeout-milliseconds> operational
configuration element) is used. See <service-guardian>.

The value of this element must be in the following format:

(\d)+((.)(\d)+)?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed.

Table B–70 (Cont.) transactional-scheme Subelements

Element
Required/
Optional Description

transactional-scheme

B-132 Oracle Fusion Middleware Developing Applications with Oracle Coherence

<service-failure-policy> Optional Specifies the action to take when an abnormally behaving
service thread cannot be terminated gracefully by the service
guardian.

Legal values are:

■ exit-cluster (default) – attempts to recover threads that
appear to be unresponsive. If the attempt fails, an attempt is
made to stop the associated service. If the associated service
cannot be stopped, this policy causes the local node to stop
the cluster services.

■ exit-process – attempts to recover threads that appear to
be unresponsive. If the attempt fails, an attempt is made to
stop the associated service. If the associated service cannot
be stopped, this policy cause the local node to exit the JVM
and terminate abruptly.

■ logging – causes any detected problems to be logged, but
no corrective action to be taken.

■ a custom class – an <instance> subelement is used to
provide the class configuration information for a
com.tangosol.net.ServiceFailurePolicy implementation.

<partitioned-quorum-policy
-scheme>

Optional Specifies quorum policy settings for the partitioned cache
service.

<autostart> Optional The element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether
the cache services associated with this cache scheme should be
automatically started at a cluster node. Legal values are true or
false. The default value is false.

Table B–70 (Cont.) transactional-scheme Subelements

Element
Required/
Optional Description

Element Reference

Cache Configuration Elements B-133

trust-manager

Used in: ssl.

BDescription
The <trust-manager> element contains the configuration information for initializing a
javax.net.ssl.TrustManager instance.

A trust manager is responsible for managing the trust material that is used when
making trust decisions and for deciding whether credentials presented by a peer
should be accepted.

A valid trust-manager configuration contains at least one child element.

BElements
Table B–71 describes the elements you can define within the trust-manager element.

Table B–71 trust-manager Subelements

Element
Required/
Optional Description

<algorithm> Optional Specifies the algorithm used by the trust manager. The default value is
SunX509.

<provider> Optional Specifies the configuration for a security provider instance.

<key-store> Optional Specifies the configuration for a key store implementation.

Attribute Reference

B-134 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Attribute Reference

Table B–72 describes the system property attribute that is available in the cache
configuration deployment descriptor.

Table B–72 Cache Configuration Deployment Descriptor Attribute

Attribute
Required/
Optional Description

system-property Optional This attribute is used to specify a system property name for any element. The
system property is used to override the element value from the Java
command line. This feature enables the same operational descriptor (and
override file) to be used across all cluster nodes and customize each node
using the system properties. See Appendix D, "System Property Overrides,"
for more information on this feature.

C

POF User Type Configuration Elements C-1

CPOF User Type Configuration Elements

[40] This appendix provides a detailed reference of the POF configuration deployment
descriptor and includes a brief overview of the descriptor. See Appendix E, "The
PIF-POF Binary Format," for details of the binary format.

This appendix includes the following sections:

■ POF Configuration Deployment Descriptor

■ Element Index

POF Configuration Deployment Descriptor
The POF configuration deployment descriptor is used to specify non-intrinsic types,
referred to as User Types, for objects that are being serialized and deserialized using
POF. The name and location of the POF configuration deployment descriptor is
specified in the operational deployment descriptor and defaults to pof-config.xml. A
sample POF configuration deployment descriptor is located in the root of the
coherence.jar library and is used unless a custom pof-config.xml file is found
before the coherence.jar library within the application's classpath. All cluster
members should use identical POF configuration deployment descriptors.

The POF configuration deployment descriptor schema is defined in the
coherence-pof-config.xsd file. This XSD file is located in the root of the
coherence.jar library and at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-pof-config/1.2/coherence-pof-c
onfig.xsd

The <pof-config> element is the root element of the POF configuration deployment
descriptor and typically includes an XSD and Coherence namespace reference and the
location of the coherence-pof-config.xsd file. For example:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">

http://xmlns.oracle.com/coherence/coherence-pof-config/1.0/coherence-pof-config.xsd
http://xmlns.oracle.com/coherence/coherence-pof-config/1.0/coherence-pof-config.xsd

POF Configuration Deployment Descriptor

C-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Coherence-specific user types are defined in the coherence-pof-config.xml file that is
also located in the root of the coherence.jar library. This file should always be
referenced as follows when creating a pof-config.xml file:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 </user-type-list>
 ...
</pof-config>

Notes:

■ The schema located in the coherence.jar library is always used at
run time even if the xsi:schemaLocation attribute references the
Web URL.

■ The xsi:schemaLocation attribute can be omitted to disable
schema validation.

■ When deploying Coherence into environments where the default
character set is EBCDIC rather than ASCII, ensure that the
deployment descriptor file is in ASCII format and is deployed into
its run-time environment in the binary format.

Element Index

POF User Type Configuration Elements C-3

Element Index

Table C–1 lists all non-terminal POF configuration deployment descriptor elements.

Table C–1 POF Configuration Elements

Element Used In

default-serializer pof-config

init-param init-params

init-params serializer

pof-config root element

serializer user-type

user-type user-type-list

user-type-list pof-config

default-serializer

C-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

default-serializer

Used in: pof-config

CDescription
This element specifies a PofSerializer to use when serializing and deserializing all
user types defined within the pof-config element. If a serializer is specified within a
user-type, then that serializer is used for that user-type instead of the default
serializer.

If the default serializer element is omitted, the serializer defined for the specific user
type is used. If the serializer for the user type is also omitted, then the user type is
assumed to implement the PortableObject interface, and the
PortableObjectSerializer implementation is used as the PofSerializer.

If the init-params element is omitted from the default serializer element, then the
following four constructors are attempted on the specific PofSerializer
implementation, and in this order:

■ (int nTypeId, Class clz, ClassLoader loader)

■ (int nTypeId, Class clz)

■ (int nTypeId)

■ ()

CElements
Table C–2 describes the subelements of the default-serializer element.

Table C–2 default-serializer Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the fully qualified name of the PofSerializer implementation.

<init-params> Optional Specifies zero or more arguments (each as an init-param) that correspond
to the parameters of a constructor of the class that is being configured.

Element Index

POF User Type Configuration Elements C-5

init-param

Used in: init-params

CDescription
The init-param element provides a type for a configuration parameter and a
corresponding value to pass as an argument.

CElements
Table C–3 describes the subelements of the init-param element.

Table C–3 init-param Subelements

Element
Required/
Optional Description

<param-type> Required The param-type element specifies the Java type of initialization parameter.
Supported types are:

■ string—indicates that the value is a java.lang.String

■ boolean—indicates that the value is a java.lang.Boolean

■ int—indicates that the value is a java.lang.Integer

■ long—indicates that the value is a java.lang.Long

■ double—indicates that the value is a java.lang.Double

■ decimal—indicates that the value is a java.math.BigDecimal

■ file—indicates that the value is a java.io.File

■ date— indicates that the value is a java.sql.Date

■ time—indicates that the value is a java.sql.Timedatetime

■ datetime—indicates that the value is a java.sql.Timestamp

■ xml—indicates that the value is the entire init-param XmlElement.

The value is converted to the specified type, and the target constructor or
method must have a parameter of that type for the instantiation to succeed.

<param-value> Required The param-value element specifies a value of the initialization parameter.
The value is in a format specific to the type of the parameter. There are four
reserved values that can be specified. Each of these values is replaced at run
time with a value before the constructor is invoked:

■ {type-id}—replaced with the Type ID of the User Type;

■ {class-name}—replaced with the name of the class for the User Type;

■ {class}—replaced with the Class for the User Type;

■ {class-loader}—replaced with the ConfigurablePofContext's
ContextClassLoader.

init-params

C-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

init-params

Used in: serializer, default-serializer

CDescription
The init-params element contains zero or more arguments (each as an init-param)
that correspond to the parameters of a constructor of the class that is being configured.

CElements
Table C–4 describes the subelements of the init-params element.

Table C–4 init-params Subelements

Element
Required/
Optional Description

<init-param> Required The init-param element provides a type for a configuration parameter and a
corresponding value to pass as an argument.

Element Index

POF User Type Configuration Elements C-7

pof-config

root element

CDescription
The pof-config element is the root element of the POF user type configuration
descriptor.

CElements
Table C–5 describes the subelements of the pof-config element.

Table C–5 pof-config Subelements

Element
Required/
Optional Description

<user-type-list> Required The user-type-list element contains zero or more user-type
elements. Each POF user type that is used must be listed in the
user-type-list. The user-type-list element may also contain zero
or more include elements. Each include element is used to add
user-type elements defined in another pof-config file.

<allow-interfaces> Optional The allow-interfaces element indicates whether the user-type
class-name can specify Java interface types in addition to Java class
types. Valid values are true or false. The default value is false.

<allow-subclasses> Optional The allow-subclasses element indicates whether the user-type
class-name can specify a Java class type that is abstract, and whether
sub-classes of any specified user-type class-name is permitted at run
time and automatically mapped to the specified super-class for
purposes of obtaining a serializer. Valid values are true or false. The
default value is false.

<enable-references> Optional The enable-references element indicates whether or not
Identity/Reference type support is enabled. Valid values are true or
false. Default value is false.

<default-serializer> Optional The default-serializer specifies what serializer to use to serialize
and deserialize all user types defined in the POF configuration file. If
a user-type defines a specific serializer, then that serializer is used
instead of the default serializer.

serializer

C-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

serializer

Used in: user-type

CDescription
The serializer element specifies what POF serializer to use to serialize and
deserialize a specific user type. A PofSerializer implementation is used to serialize
and deserialize user type values to and from a POF stream.

If the serializer element is omitted, then the user type is assumed to implement the
PortableObject interface and the PortableObjectSerializer implementation is used
as the POF serializer. If POF annotations are used, then the PofAnnotationSerializer
implementation is used as the POF serializer.

If the init-params element is omitted, then the following four constructors are
attempted (in this order) on the specific PofSerializer implementation:

■ (int nTypeId, Class clz, ClassLoader loader)

■ (int nTypeId, Class clz)

■ (int nTypeId)

■ ()

CElements
Table C–6 describes the subelements of the serializer element.

Table C–6 serializer Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the fully qualified name of the PofSerializer implementation.

<init-params> Optional The init-params element contains zero or more arguments (each as an
init-param) that correspond to the parameters of a constructor of the
class that is being configured.

Element Index

POF User Type Configuration Elements C-9

user-type

Used in: user-type-list

CDescription
The user-type element contains the declaration of a POF user type. A POF user type is
a uniquely identifiable, portable, versionable object class that can be communicated
among systems regardless of language, operating system, hardware and location.

Within the user-type element, the type-id element is optional, but its use is strongly
suggested to support schema versioning and evolution.

Within the user-type element, the class-name element is required, and specifies the
fully qualified name of the Java class or interface that all values of the user type are
type-assignable to.

If the serializer element is omitted, then the user type is assumed to implement the
PortableObject interface, and the PortableObjectSerializer implementation is used
as the PofSerializer.

CElements
Table C–7 describes the subelements of the user-type element.

Table C–7 user-type Subelements

Element
Required/
Optional Description

<type-id> Optional The type-id element specifies an integer value (n >= 0) that uniquely identifies
the user type. If none of the user-type elements contains a type-id element,
then the type IDs for the user types are based on the order in which they appear
in the user-type-list, with the first user type being assigned the type ID 0, the
second user type being assigned the type ID 1, and so on. However, it is strongly
recommended that user types IDs always be specified, to support schema
versioning and evolution. The first 1000 IDs are reserved for Coherence internal
use and cannot be used.

<class-name> Required The class-name element specifies the fully qualified name of a Java class or
interface that all values of the user type are type-assignable to.

<serializer> Optional The serializer element specifies what PofSerializer to use to serialize and
deserialize a specific user type. A PofSerializer is used to serialize and
deserialize user type values to and from a POF stream. Within the serializer
element, the class-name element is required, and zero or more constructor
parameters can be defined within an init-params element.

If the serializer element is omitted, then the user type is assumed to implement
the PortableObject interface, and the PortableObjectSerializer
implementation is used as the PofSerializer.

If the init-params element is omitted from the serializer element, then the
following four constructors are attempted on the specific PofSerializer
implementation, and in this order:

■ (int nTypeId, Class clz, ClassLoader loader)

■ (int nTypeId, Class clz)

■ (int nTypeId)

■ ()

user-type-list

C-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

user-type-list

Used in: pof-config

CDescription
The user-type-list element contains zero or more user-type elements. Each POF
user type that is used must be listed in the user-type-list.

The user-type-list element may also contain zero or more include elements. Each
include element is used to add user-type elements defined in another pof-config
file.

CElements
Table C–8 describes the subelements of the user-type-list element.

Table C–8 user-type-list Subelements

Element
Required/
Optional Description

<user-type> Optional The user-type element contains the declaration of a POF user type. A POF user
type is a uniquely identifiable, portable, versionable object class that can be
communicated among systems regardless of language, operating system,
hardware and location. Any number of <user-type> elements may be
specified.

Within the user-type element, the type-id element is optional, but its use is
strongly suggested to support schema versioning and evolution.

Within the user-type element, the class-name element is required, and
specifies the fully qualified name of the Java class or interface that all values of
the user type are type-assignable to.

If the serializer element is omitted, then the user type is assumed to
implement the PortableObject interface, and the PortableObjectSerializer
implementation is used as the PofSerializer.

<include> Optional The include element specifies the location of a POF configuration file to load
user-type elements from. The value is a locator string (either a valid path or
URL) that identifies the location of the target file. Any number of <include>
elements may be specified.

D

System Property Overrides D-1

DSystem Property Overrides

[41] This appendix describes the system property override feature and lists many of the
predefined system properties that are used to change the default settings in Coherence.

This appendix contains the following sections:

■ Overview of System Property Overrides

■ Override Example

■ Preconfigured Override Values

Overview of System Property Overrides
Both the Coherence Operational Configuration deployment descriptor
tangosol-coherence.xml and the Coherence Cache Configuration deployment
descriptor coherence-cache-config.xml can assign a Java command line option name
to any element defined in the descriptor. Some elements have predefined overrides.
You can create your own or change the predefined ones.

This feature is useful when you want to change the settings for a single JVM, or to be
able to start different applications with different settings without making them use
different descriptors. The most common application is passing a different multicast
address, or port, or both to allow different applications to create separate clusters.

To create a Command Line Setting Override, add a system-property attribute,
specifying the string you would like to assign as the name for the java command line
option to the element you want to create an override to. Then, specify it in the Java
command line, prefixed with "-D".

Override Example
For example, to create an override for the IP address of the multi-home server to avoid
using the default localhost, and instead specify a specific IP address for the interface
(for instance, 192.168.0.301). Call this override tangosol.coherence.localhost.

First, add a system-property to the cluster-config, unicast-listener, or address
element. for example:

<address system-property="tangosol.coherence.localhost">localhost</address>

Then use it by modifying the Java command line and specifying an IP address instead
of the default localhost:

java -Dtangosol.coherence.localhost=192.168.0.301 -jar coherence.jar

Preconfigured Override Values

D-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Preconfigured Override Values
Table D–1 lists all of the preconfigured override values:

Table D–1 Preconfigured System Property Override Values

Override Option Setting

tangosol.coherence.cacheconfig Cache configuration descriptor filename. See
"configurable-cache-factory-config" on page A-16.

tangosol.coherence.cluster Cluster name. See "member-identity" on page A-41.

tangosol.coherence.clusteraddress Cluster (multicast) IP address. See
<multicast-listener-address> subelement of
"multicast-listener" on page A-43

tangosol.coherence.clusterport Cluster (multicast) IP port. See
<multicast-listener-port> subelement of
"multicast-listener" on page A-43.

tangosol.coherence.distributed.backup Data backup storage location. See
backup-storage/type subelement in
"DistributedCache Service Parameters" on page A-63.

tangosol.coherence.distributed.backupcount Number of data backups. See backup-count
subelement in "DistributedCache Service Parameters"
on page A-63.

tangosol.coherence.distributed.localstorage Local partition management enabled. See
local-storage subelement in "DistributedCache
Service Parameters" on page A-63.

tangosol.coherence.distributed.threads Thread pool size. See thread-count subelement in
"DistributedCache Service Parameters" on page A-63.

tangosol.coherence.distributed.transfer Partition transfer threshold. See transfer-threshold
subelement in"DistributedCache Service Parameters"
on page A-63.

tangosol.coherence.edition Product edition. See "license-config" on page A-33.

tangosol.coherence.invocation.threads Invocation service thread pool size. See thread-count
subelement in "Invocation Service Parameters" on
page A-74.

tangosol.coherence.localhost Unicast IP address. See
<unicast-listener-address> subelement in
"unicast-listener" on page A-94.

tangosol.coherence.localport Unicast IP port. See <unicast-listener-port>
subelement in "unicast-listener" on page A-94.

tangosol.coherence.localport.adjust Unicast IP port auto assignment. See
<unicast-listener-auto> subelement in
"unicast-listener" on page A-94.

tangosol.coherence.log Logging destination. See
<logging-config-destination> subelement in
"logging-config" on page A-34.

tangosol.coherence.log.level Logging level. See <logging-config-level>
subelement in "logging-config" on page A-34.

tangosol.coherence.log.limit Log output character limit. See
<logging-config-limit> subelement in
"logging-config" on page A-34.

tangosol.coherence.machine The computer's name as defined by the machine-name
element. See "member-identity" on page A-41.

Preconfigured Override Values

System Property Overrides D-3

tangosol.coherence.management JMX management mode. See "management-config"
on page A-35.

tangosol.coherence.management.readonly JMX management read-only flag.
"management-config" on page A-35.

tangosol.coherence.management.remote Remote JMX management enabled flag.
See"management-config" on page A-35.

tangosol.coherence.member Member name. See "member-identity" on page A-41.

tangosol.coherence.mode Operational mode. See "license-config" on page A-33.

tangosol.coherence.override Deployment configuration override filename.

tangosol.coherence.priority Priority. See "member-identity" on page A-41.

tangosol.coherence.process Process name"member-identity" on page A-41.

tangosol.coherence.proxy.threads Coherence*Extend service thread pool size. See
thread-count subelement in "Proxy Service
Parameters" on page A-77.

tangosol.coherence.rack Rack name. See "member-identity" on page A-41.

tangosol.coherence.role Role name. See "member-identity" on page A-41.

tangosol.coherence.security Cache access security enabled flag. See
"security-config" on page A-58.

tangosol.coherence.security.keystore Security access controller keystore file name. See
"security-config" on page A-58.

tangosol.coherence.security.permissions Security access controller permissions file name. See
"security-config" on page A-58.

tangosol.coherence.shutdownhook Shutdown listener action. See "shutdown-listener" on
page A-84.

tangosol.coherence.site Site name. See "member-identity" on page A-41.

tangosol.coherence.tcmp.enabled TCMP enabled flag. See
<packet-publisher-enabled> subelement in
"packet-publisher" on page A-51.

tangosol.coherence.ttl Multicast packet time to live (TTL). See
<mulitcast-listener-ttl> subelement in
"multicast-listener" on page A-43.

tangosol.coherence.wka Well known IP address. See "well-known-addresses"
on page A-98.

tangosol.coherence.wka.port Well known IP port. See "well-known-addresses" on
page A-98.

Table D–1 (Cont.) Preconfigured System Property Override Values

Override Option Setting

Preconfigured Override Values

D-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

E

The PIF-POF Binary Format E-1

EThe PIF-POF Binary Format

[42] This appendix describes the binary streams for the Portable Object Format (POF) and
the Portable Invocation Format (PIF) that are used to serialize objects in a platform and
language neutral way.

This appendix includes the following sections:

■ Overview of the PIF-POF Binary Format

■ Stream Format

■ Binary Formats for Predefined Types

■ Binary Format for User Types

Overview of the PIF-POF Binary Format
The Portable Object Format (POF) allows object values to be encoded into a binary
stream in such a way that the platform/language origin of the object value is both
irrelevant and unknown. The Portable Invocation Format (PIF) allows method
invocations to be similarly encoded into a binary stream. These two formats (referred
to as PIF-POF) are derived from a common binary encoding substrate. The binary
format is provided here for informative purposes and is not a requirement for using
PIF-POF. See Chapter 20, "Using Portable Object Format," for more information on
using PIF-POF.

Stream Format
The PIF-POF stream format is octet-based; a PIF-POF stream is a sequence of octet
values. For the sake of clarity, this documentation treats all octets as unsigned 8-bit
integer values in the range 0x00 to 0xFF (decimal 0 to 255). Byte-ordering is explicitly
not a concern since (in PIF-POF) a given octet value that is represented by an unsigned
8-bit integer value is always written and read as the same unsigned 8-bit integer value.

A PIF stream contains exactly one Invocation. An Invocation consists of an initial POF
stream that contains an Integer Value for the remaining length of the Invocation,
immediately followed by a POF stream that contains an Integer Value that is the
conversation identifier, immediately followed by a POF stream that contains a User
Type value that is the message object. The remaining length indicates the total number
of octets used to encode the conversation identifier and the message object; the
remaining length is provided so that a process receiving an Invocation can determine
when the Invocation has been fully received. The conversation identifier is used to
support multiple logical clients and services multiplexed through a single connection,
just as TCP/IP provides multiple logical port numbers for a given IP address. The
message object is defined by the particular high-level conversational protocol.

Stream Format

E-2 Oracle Fusion Middleware Developing Applications with Oracle Coherence

A POF stream contains exactly one Value. The Value contains a Type Identifier, and if
the Type Identifier does not imply a value, then it is immediately trailed by a data
structure whose format is defined by the Type Identifier.

Integer Values
The stream format relies extensively on the ability to encode integer values in a
compact form. Coherence refers to this integer binary format as a packed integer. This
format uses an initial octet and one or more trailing octets as necessary; it is a
variable-length format.

Table E–1 describes the three regions in the first octet.

Table E–2 describes the two regions in the trailing octets.

Example E–1 illustrates writing a 32-bit integer value to an octet stream as supported
in Coherence.

Example E–1 Writing a 32-bit Integer Value to an Octet Stream

public static void writeInt(DataOutput out, int n)
 throws IOException
 {
 int b = 0;
 if (n < 0)
 {
 b = 0x40;
 n = ~n;
 }
 b |= (byte) (n & 0x3F);
 n >>>= 6;
 while (n != 0)
 {
 b |= 0x80;
 out.writeByte(b);
 b = (n & 0x7F);
 n >>>= 7;
 }
 out.writeByte(b);
 }

Example E–2 illustrates reading a 32-bit integer value from an octet stream as
supported in Coherence.

Table E–1 Regions in the First Octet of a Packed Integer

Region Mask Description

0x80 Continuation indicator

0x40 Negative indicator

0x3F integer value (6 binary LSDs)

Table E–2 Regions in the Trailing Octet of a Packed Integer

Region Mask Description

0x80 Continuation indicator

0x7F integer value (next 7 binary LSDs)

Stream Format

The PIF-POF Binary Format E-3

Example E–2 Reading a 32-bit Integer Value from an Octet Stream

public static int readInt(DataInput in)
 throws IOException
 {
 int b = in.readUnsignedByte();
 int n = b & 0x3F;
 int cBits = 6;
 boolean fNeg = (b & 0x40) != 0;
 while ((b & 0x80) != 0)
 {
 b = in.readUnsignedByte();
 n |= ((b & 0x7F) << cBits);
 cBits += 7;
 }
 if (fNeg)
 {
 n = ~n;
 }
 return n;
 }

Integer values used within this documentation without an explicit Type Identifier are
assumed to be 32-bit signed integer values that have a decimal range of -231 to 231-1.

Table E–3 illustrates some integer value examples.

Type Identifiers
A Type Identifier is encoded in the binary stream as an Integer Value. Type Identifiers
greater than or equal to zero are user Type Identifiers. Type Identifiers less than zero
are predefined ("intrinsic") type identifiers.

Table E–4 lists the predefined identifiers.

Table E–3 Binary Formats for Integer Values Without a Type Identifier

Value Binary Format

0 0x00

1 0x01

2 0x02

99 0xA301

9999 0x8F9C01

-1 0x40

-2 0x41

-99 0xE201

-9999 0xCE9C01

Table E–4 Predefined Type Identifiers

Type ID Description

-1 (0x40) int16

-2 (0x41) int32

-3 (0x42) int64

Stream Format

E-4 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Type Identifiers less than or equal to -33 are a combination of a type and a value. This
form is used to reduce space for these commonly used values.

Table E–5 lists the type identifiers that combine type and value.

-4 (0x43) int128*

-5 (0x44) float32

-6 (0x45) float64

-7 (0x46) float128*

-8 (0x47) decimal32*

-9 (0x48) decimal64*

-10 (0x49) decimal128*

-11 (0x4A) boolean

-12 (0x4B) octet

-13 (0x4C) octet-string

-14 (0x4D) char

-15 (0x4E) char-string

-16 (0x4F) date

-17 (0x50) year-month-interval*

-18 (0x51) time

-19 (0x52) time-interval*

-20 (0x53) datetime

-21 (0x54) day-time-interval*

-22 (0x55) collection

-23 (0x56) uniform-collection

-24 (0x57) array

-25 (0x58) uniform-array

-26 (0x59) sparse-array

-27 (0x5A) uniform-sparse-array

-28 (0x5B) map

-29 (0x5C) uniform-keys-map

-30 (0x5D) uniform-map

-31 (0x5E) identity

-32 (0x5F) reference

Table E–5 Type Identifiers that Combine a Type and a Value

Type ID Description

-33 (0x60) boolean:false

-34 (0x61) boolean:true

Table E–4 (Cont.) Predefined Type Identifiers

Type ID Description

Binary Formats for Predefined Types

The PIF-POF Binary Format E-5

Binary Formats for Predefined Types
This section describes the binary formats for the predefined ("intrinsic") type
identifiers that are supported with PIF-POF. The types are: int, Decimal, Floating Point,
Boolean, Octet, Octet String, Char, Char String, Date, Year-Month Interval, Time, Time
Interval, Date-Time, Date-Time Interval, Collections, Arrays, Sparse Arrays, Key-Value
Maps (Dictionaries), Identity, and Reference.

-35 (0x62) string:zero-length

-36 (0x63) collection:empty

-37 (0x64) reference:null

-38 (0x65) floating-point:+infinity

-39 (0x66) floating-point:-infinity

-40 (0x67) floating-point:NaN

-41 (0x68) int:-1

-42 (0x69) int:0

-43 (0x6A) int:1

-44 (0x6B) int:2

-45 (0x6C) int:3

-46 (0x6D) int:4

-47 (0x6E) int:5

-48 (0x6F) int:6

-49 (0x70) int:7

-50 (0x71) int:8

-51 (0x72) int:9

-52 (0x73) int:10

-53 (0x74) int:11

-54 (0x75) int:12

-55 (0x76) int:13

-56 (0x77) int:14

-57 (0x78) int:15

-58 (0x79) int:16

-59 (0x7A) int:17

-60 (0x7B) int:18

-61 (0x7C) int:19

-62 (0x7D) int:20

-63 (0x7E) int:21

-64 (0x7F) int:22

Table E–5 (Cont.) Type Identifiers that Combine a Type and a Value

Type ID Description

Binary Formats for Predefined Types

E-6 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Int
Four signed integer types are supported: int16, int32, int64, and int128. If a type
identifier for a integer type is encountered in the stream, it is immediately followed by
an Integer Value.

The four signed integer types vary only by the length that is required to support the
largest value of the type using the common "twos complement" binary format. The
Type Identifier, one of int16, int32, int64, or int128 is followed by an Integer Value
in the stream. If the Integer Value is outside of the range supported by the type (-215 to
215-1 for int16, -231 to 231-1, for int32, -263 to 263-1 for int64, or -2127 to 2127-1 for
int128,) then the result is undefined and may be bitwise truncation or an exception.

Additionally, there are some Type Identifiers that combine the int designation with a
value into a single byte for purpose of compactness. As a result, these Type Identifiers
are not followed by an Integer Value in the stream, since the value is included in the
Type Identifier.

Table E–6 illustrates these type identifiers.

The Java type equivalents are short (int16), int (int32), long (int64) and BigInteger
(int128). Since BigInteger can represent much larger values, it is not possible to
encode all BigInteger values in the int128 form; values out of the int128 range are
basically unsupported, and would result in an exception or would use a different
encoding, such as a string encoding.

Coercion of Integer Types
To enable the efficient representation of numeric data types, an integer type is coerced
into any of the following types by a stream recipient:

Table E–6 Type Identifiers that Combine an int Data Type with a Value

Value int16 int32 int64 int128

0 0x69 0x69 0x69 0x69

1 0x6A 0x6A 0x6A 0x6A

2 0x6B 0x6B 0x6B 0x6B

99 0x40A301 0x41A301 0x42A301 0x43A301

9999 0x408F9C01 0x418F9C01 0x428F9C01 0x438F9C01

-1 0x68 0x68 0x68 0x68

-2 0x4041 0x4141 0x4241 0x4341

-99 0x40E201 0x41E201 0x42E201 0x43E201

-9999 0x40CE9C01 0x41CE9C01 0x42CE9C01 0x43CE9C01

Table E–7 Type IDs of Integer Types that can be Coerced into Other Types

Type ID Description

-1 (0x40) int16

-2 (0x41) int32

-3 (0x42) int64

-4 (0x43) int128

-5 (0x44) float32

Binary Formats for Predefined Types

The PIF-POF Binary Format E-7

In other words, if the recipient reads any of the above types from the stream and it
encounters an encoded integer value, it automatically converts that value into the
expected type. This capability allows a set of common (that is, small-magnitude) octet,
character, integer, decimal and floating-point values to be encoded using the
single-octet integer form (Type Identifiers in the range -41 to -64).

For purposes of unsigned types, the integer value -1 is translated to 0xFF for the octet
type, and to 0xFFFF for the char type. (In the case of the char type, this does
unfortunately seem to imply a UTF-16 platform encoding; however, it does not violate
any of the explicit requirements of the stream format.)

Decimal
There are three floating-point decimal types supported: decimal32, decimal64, and
decimal128. If a type identifier for a decimal type is encountered in the stream, it is
immediately followed by two packed integer values. The first integer value is the
unscaled value, and the second is the scale. These values are equivalent to the
parameters to the constructor of Java's BigDecimal class:
java.math.BigDecimal(BigInteger unscaledVal, int scale).

In addition to the coercion of integer values into decimal values supported as
described in "Coercion of Integer Types" on page E-6, the constant type+value
identifiers listed in Table E–8 are used to indicate special values supported by IEEE
754r.

Java does not provide a standard (that is, portable) decimal type; rather, it has the
awkward BigDecimal implementation that was intended originally for internal use in
Java's cryptographic infrastructure. In Java, the decimal values for positive and
negative infinity, and not-a-number (NaN), are not supported.

Floating Point
Three base-2 floating point types are supported: float32, float64, and float128. If a
type identifier for a floating point type is encountered in the stream, it is immediately

-6 (0x45) float64

-7 (0x46) float128

-8 (0x47) decimal32

-9 (0x48) decimal64

-10 (0x49) decimal128

-12 (0x4B) octet

-14 (0x4D) char

Table E–8 Type Identifiers that can Indicate Decimal Values

Type ID Description

-38 (0x65) floating-point:+infinity

-39 (0x66) floating-point:-infinity

-40 (0x67) floating-point:NaN

Table E–7 (Cont.) Type IDs of Integer Types that can be Coerced into Other Types

Type ID Description

Binary Formats for Predefined Types

E-8 Oracle Fusion Middleware Developing Applications with Oracle Coherence

followed by a fixed-length floating point value, whose binary form is defined by IEEE
754/IEEE754r. IEEE 754 format is used to write floating point numbers to the stream,
and IEEE 754r format is used for the float128 type.

In addition to the coercion of integer values into decimal values as described in
"Coercion of Integer Types" on page E-6, the constants in Table E–9 are used to indicate
special values supported by IEEE-754

Other special values defined by IEEE-754 are encoded using the full 32-bit, 64-bit or
128-bit format, and may not be supported on all platforms. Specifically, by not
providing any means to differentiate among them, Java only supports one NaN value.

Boolean
If the type identifier for Boolean occurs in the stream, it is followed by an integer
value, which represents the Boolean value false for the integer value of zero, or true
for all other integer values.

While it is possible to encode Boolean values as described in "Coercion of Integer
Types" on page E-6, the only values for the Boolean type are true and false. As such,
the only expected binary formats for Boolean values are the predefined (and compact)
forms described in Table E–10.

Octet
If the type identifier for Octet occurs in the stream, it is followed by the octet value
itself, which is by definition in the range 0 to 255 (0x00 to 0xFF). As described in
"Coercion of Integer Types" on page E-6, the compact form of integer values can be
used for Octet values, with the integer value -1 being translated as 0xFF.

Table E–11 lists the integer values that may be used as Octet values.

Table E–9 Type Identifiers that can Indicate IEEE 754 Special Values

Type ID Description

-38 (0x65) floating-point:+infinity

-39 (0x66) floating-point:-infinity

-40 (0x67) floating-point:NaN

Table E–10 Type Identifiers that can Indicate Boolean Values

Type ID Description

-33 (0x60) boolean:false

-34 (0x61) boolean:true

Table E–11 Integer Values that may be Used for Octet Values

Value Octet

0 (0x00) 0x69

1 (0x01) 0x6A

2 (0x02) 0x6B

99 (0x63) 0x4B63

254 (0xFE) 0x4BFE

255 (0xFF) 0x68

Binary Formats for Predefined Types

The PIF-POF Binary Format E-9

Octet String
If the type identifier for Octet String occurs in the stream, it is followed by an Integer
Value for the length n of the string, and then n octet values.

An Octet String of zero length is encoded using the "string:zero-length" Type Identifier.

Char
If the type identifier for Char occurs in the stream, it is followed by a UTF-8 encoded
character. As described in the section on "Coercion of Integer Types" on page E-6, the
compact form of integer values may be used for Char values, with the integer value -1
being translated as 0xFFFF.

Example E–3 illustrates writing a character value to an octet stream.

Example E–3 Writing a Character Value to an Octet Stream

public static void writeChar(DataOutput out, int ch)
 throws IOException
 {
 if (ch >= 0x0001 && ch <= 0x007F)
 {
 // 1-byte format: 0xxx xxxx
 out.write((byte) ch);
 }
 else if (ch <= 0x07FF)
 {
 // 2-byte format: 110x xxxx, 10xx xxxx
 out.write((byte) (0xC0 | ((ch >>> 6) & 0x1F)));
 out.write((byte) (0x80 | ((ch) & 0x3F)));
 }
 else
 {
 // 3-byte format: 1110 xxxx, 10xx xxxx, 10xx xxxx
 out.write((byte) (0xE0 | ((ch >>> 12) & 0x0F)));
 out.write((byte) (0x80 | ((ch >>> 6) & 0x3F)));
 out.write((byte) (0x80 | ((ch) & 0x3F)));
 }
 }

Example E–4 illustrates reading a character value from an octet stream.

Example E–4 Reading a Character Value from an Octet Stream

public static char readChar(DataInput in)
 throws IOException
 {
 char ch;

 int b = in.readUnsignedByte();
 switch ((b & 0xF0) >>> 4)
 {
 case 0x0: case 0x1: case 0x2: case 0x3:

Note: POF optimizes the storage of String data by using only one
byte for each character when possible. Custom POF character codecs
(ASCII for example) are not required and do not result in better
performance.

Binary Formats for Predefined Types

E-10 Oracle Fusion Middleware Developing Applications with Oracle Coherence

 case 0x4: case 0x5: case 0x6: case 0x7:
 // 1-byte format: 0xxx xxxx
 ch = (char) b;
 break;

 case 0xC: case 0xD:
 {
 // 2-byte format: 110x xxxx, 10xx xxxx
 int b2 = in.readUnsignedByte();
 if ((b2 & 0xC0) != 0x80)
 {
 throw new UTFDataFormatException();
 }
 ch = (char) (((b & 0x1F) << 6) | b2 & 0x3F);
 break;
 }

 case 0xE:
 {
 // 3-byte format: 1110 xxxx, 10xx xxxx, 10xx xxxx
 int n = in.readUnsignedShort();
 int b2 = n >>> 8;
 int b3 = n & 0xFF;
 if ((b2 & 0xC0) != 0x80 || (b3 & 0xC0) != 0x80)
 {
 throw new UTFDataFormatException();
 }
 ch = (char) (((b & 0x0F) << 12) |
 ((b2 & 0x3F) << 6) |
 b3 & 0x3F);
 break;
 }

 default:
 throw new UTFDataFormatException(
 "illegal leading UTF byte: " + b);
 }

 return ch;
 }

Char String
If the type identifier for Char String occurs in the stream, it is followed by an Integer
Value for the length n of the UTF-8 representation string in octets, and then n octet
values composing the UTF-8 encoding described above. Note that the format
length-encodes the octet length, not the character length.

A Char String of zero length is encoded using the string:zero-length Type Identifier.
Table E–12 illustrates the Char String formats.

Table E–12 Values for Char String Formats

Values Char String Format

0x62 (or 0x4E00)

"ok" 0x4E026F6B

Binary Formats for Predefined Types

The PIF-POF Binary Format E-11

Date
Date values are passed using ISO8601 semantics. If the type identifier for Date occurs
in the stream, it is followed by three Integer Values for the year, month and day, in the
ranges as defined by ISO8601.

Year-Month Interval
If the type identifier for Year-Month Interval occurs in the stream, it is followed by two
Integer Values for the number of years and the number of months in the interval.

Time
Time values are passed using ISO8601 semantics. If the type identifier for Time occurs
in the stream, it is followed by five Integer Values, which may be followed by two
more Integer Values. The first four Integer Values are the hour, minute, second and
fractional second values. Fractional seconds are encoded in one of three ways:

■ 0 indicates no fractional seconds.

■ [1..999] indicates the number of milliseconds.

■ [-1..-999999999] indicates the negated number of nanoseconds.

The fifth Integer Value is a time zone indicator, encoded in one of three ways:

■ 0 indicates no time zone.

■ 1 indicates Universal Coordinated Time (UTC).

■ 2 indicates a time zone offset, which is followed by two more Integer Values for
the hour offset and minute offset, as described by ISO8601.

The encoding for variable fractional and time zone does add complexity to the parsing
of a Time Value, but provide for much more complete support of the ISO8601 standard
and the variability in the precision of clocks, while achieving a high degree of binary
compactness. While time values tend to have no fractional encoding or millisecond
encoding, the trend over time is toward higher time resolution.

Time Interval
If the type identifier for Time Interval occurs in the stream, it is followed by four
Integer Values for the number of hours, minutes, seconds and nanoseconds in the
interval.

Date-Time
Date-Time values are passed using ISO8601 semantics. If the type identifier for
Date-Time occurs in the stream, it is followed by eight or ten Integer Values, which
correspond to the Integer Values that compose the Date and Time values.

Coercion of Date and Time Types
Date Value can be coerced into a Date-Time Value. Time Value can be coerced into a
Date-Time Value. Date-Time Value can be coerced into either a Date Value or a Time
Value.

Binary Formats for Predefined Types

E-12 Oracle Fusion Middleware Developing Applications with Oracle Coherence

Day-Time Interval
If the type identifier for Day-Time Interval occurs in the stream, it is followed by five
Integer Values for the number of days, hours, minutes, seconds and nanoseconds in
the interval.

Collections
A collection of values, such as a bag, a set, or a list, are encoded in a POF stream using
the Collection type. Immediately following the Type Identifier, the stream contains the
Collection Size, an Integer Value indicating the number of values in the Collection,
which is greater than or equal to zero. Following the Collection Size, is the first value
in the Collection (if any), which is itself encoded as a Value. The values in the
Collection are contiguous, and there is exactly n values in the stream, where n equals
the Collection Size.

If all the values in the Collection have the same type, then the Uniform Collection
format is used. Immediately following the Type Identifier (uniform-collection), the
uniform type of the values in the collection writes to the stream, followed by the
Collection Size n as an Integer Value, followed by n values without their Type
Identifiers. Note that values in a Uniform Collection cannot be assigned an identity,
and that (as a side-effect of the explicit type encoding) an empty Uniform Collection
has an explicit content type.

Table E–13 illustrates examples of Collection and Uniform Collection formats for
several values.

Arrays
An indexed array of values is encoded in a POF stream using the Array type.
Immediately following the Type Identifier, the stream contains the Array Size, an
Integer Value indicating the number of elements in the Array, which must be greater
than or equal to zero. Following the Array Size is the value of the first element of the
Array (the zero index) if there is at least one element in the array which is itself
encoded using as a Value. The values of the elements of the Array are contiguous, and
there must be exactly n values in the stream, where n equals the Array Size.

If all the values of the elements of the Array have the same type, then the Uniform
Array format is used. Immediately following the Type Identifier (uniform-array), the
uniform type of the values of the elements of the Array writes the stream, followed by
the Array Size n as an Integer Value, followed by n values without their Type
Identifiers. Note that values in a Uniform Array cannot be assigned an identity, and
that (as a side-effect of the explicit type encoding) an empty Uniform Array has an
explicit array element type.

Table E–14 illustrates examples of Array and Uniform Array formats for several
values.

Table E–13 Collection and Uniform Collection Formats for Various Values

Values Collection Format Uniform Collection Format

0x63 (or 0x5500) n/a

1 0x55016A 0x56410101

1,2,3 0x55036A6B6C 0x564103010203

1, "ok" 0x55026A4E026F6B n/a

Binary Formats for Predefined Types

The PIF-POF Binary Format E-13

Sparse Arrays
For arrays whose element values are sparse, the Sparse Array format allows indexes to
be explicitly encoded, implying that any missing indexes have a default value. The
default value is false for the Boolean type, zero for all numeric, octet and char types,
and null for all reference types. The format for the Sparse Array is the Type Identifier
(sparse-array), followed by the Array Size n as an Integer Value, followed by not more
than n index/value pairs, each of which is composed of an array index encoded as an
Integer Value i (0 <= i < n) whose value is greater than the previous element's array
index, and an element value encoded as a Value; the Sparse Array is finally terminated
with an illegal index of -1.

If all the values of the elements of the Sparse Array have the same type, then the
Uniform Sparse Array format is used. Immediately following the Type Identifier
(uniform-sparse-array), the uniform type of the values of the elements of the Sparse
Array writes the stream, followed by the Array Size n as an Integer Value, followed by
not more the n index/value pairs, each of which is composed of an array index
encoded as an Integer Value i (0 <= i < n) whose value is greater than the previous
element's array index, and a element value encoded as a Value without a Type
Identifier; the Uniform Sparse Array is finally terminated with an illegal index of -1.
Note that values in a Uniform Sparse Array cannot be assigned an identity, and that
(as a side-effect of the explicit type encoding) an empty Uniform Sparse Array has an
explicit array element type.

Table E–15 illustrates examples of Sparse Array and Uniform Sparse Array formats for
several values.

Key-Value Maps (Dictionaries)
For key/value pairs, a Key-Value Map (also known as Dictionary data structure)
format is used. There are three forms of the Key-Value Map binary encoding:

■ The generic map encoding is a sequence of keys and values;

■ The uniform-keys-map encoding is a sequence of keys of a uniform type and their
corresponding values;

Table E–14 Array and Uniform Array Formats for Various Values

Values Array Format Uniform Array Format

0x63 (or 0x5700) 0x63 (or 0x584100) – This example
assumes an element type of Int32.

1 0x57016A 0x58410101

1,2,3 0x57036A6B6C 0x584103010203

1, "ok" 0x57026A4E026F6B n/a

Table E–15 Sparse Array and Uniform Sparse Array Formats for Various Values

Values Sparse Array format Uniform Sparse Array format

0x63 (or 0x590040) 0x63 (or 0x5A410040) – This example
assumes an element type of Int32.

1 0x5901006A40 0x5A4101000140

1,2,3 0x5903006A016B026C40 0x5A410300010102020340

1,,,,5,,,,9 0x5909006A046E087240 0x5A410900010405080940

1,,,,"ok" 0x5905006A044E026F6B40 n/a

Binary Formats for Predefined Types

E-14 Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ The uniform-map encoding is a sequence of keys of a uniform type and their
corresponding values of a uniform type.

The format for the Key-Value Map is the Type Identifier (map), followed by the
Key-Value Map Size n as an Integer Value, followed by n key/value pairs, each of
which is composed of a key encoded as Value, and a corresponding value encoded as a
Value.

Table E–16 illustrates several examples of key/value pairs and their corresponding
binary format.

If all of the keys of the Key-Value Map are of a uniform type, then the encoding uses a
more compact format, starting with the Type Identifier (uniform-keys-map), followed
by the Type Identifier for the uniform type of the keys of the Key-Value Map, followed
by the Key-Value Map Size n as an Integer Value, followed by n key/value pairs, each
of which is composed of a key encoded as a Value without a Type Identifier, and a
corresponding value encoded as a Value.

Table E–17 illustrates several examples of the binary formats for Key/Value pairs
where the Keys are of uniform type.

If all of the keys of the Key-Value Map are of a uniform type, and all the corresponding
values of the map are also of a uniform type, then the encoding uses a more compact
format, starting with the Type Identifier (uniform-map), followed by the Type
Identifier for the uniform type of the keys of the Key-Value Map, followed by the Type
Identifier for the uniform type of the values of the Key-Value Map, followed by the
Key-Value Map Size n as an Integer Value, followed by n key/value pairs, each of
which is composed of a key encoded as a Value without a Type Identifier, and a
corresponding value encoded as a Value without a Type Identifier.

Table E–18 illustrates several examples of the binary formats for Key/Value pairs
where the Keys and Values are of uniform type.

Table E–16 Binary Formats for Key/Value Pairs

Values Binary format

0x63 (or 0x5B00)

1="ok" 0x5B016A4E026F6B

1="ok", 2="no" 0x5B026A4E026F6B6B4E026E6F

Table E–17 Binary Formats for Key/Value Pairs where Keys are of Uniform Type

Values Binary format

0x63 (or 0x5C4100)

1="ok" 0x5C4101014E026F6B

1="ok", 2="no" 0x5C4102014E026F6B024E026E6F

Table E–18 Binary Formats for Key/Value Pairs where Keys and Values are of Uniform
Type

Values Binary format

0x63 (or 0x5D414E00)

1="ok" 0x5D414E0101026F6B

1="ok", 2="no" 0x5D414E0201026F6B02026E6F

Binary Format for User Types

The PIF-POF Binary Format E-15

Identity
If the type identifier for Identity occurs in the stream, it is followed by an Integer
Value, which is the Identity. Following the Identity is the value that is being identified,
which is itself encoded as a Value.

Any value within a POF stream that occurs multiple times, is labeled with an Identity,
and subsequent instances of that value within the same POF stream are replaced with
a Reference. For platforms that support "by reference" semantics, the identity
represents a serialized form of the actual object identity.

An Identity is an Integer Value that is greater than or equal to zero. A value within the
POF stream has at most one Identity. Values within a uniform data structure can be
assigned an identity.

Reference
A Reference is a pointer to an Identity that has been encountered inside the current
POF stream, or a null pointer.

For platforms that support "by reference" semantics, the reference in the POF stream
becomes a reference in the realized (deserialized) object, and a null reference in the
POF stream becomes a null reference in the realized object. For platforms that do not
support "by reference" semantics, and for cases in which a null reference is
encountered in the POF stream for a non-reference value (for example, a primitive
property in Java), the default value for the type of value is used.

Table E–19 illustrates examples of binary formats for several "by reference" semantics.

Support for forward and outer references is not required by POF. In POF, both the
identity that is referenced and the value that is being referenced by the identity have
occurred within the POF stream. In the first case, a reference is not made to an identity
that has not yet been encountered, and in the second case, a reference is not made
within a complex value (such as a collection or a user type) to that complex value
itself.

Binary Format for User Types
All non-intrinsic types are referred to as User Types. User Types are composed of zero
or more indexed values (also known as fields, properties, and attributes), each of
which has a Type Identifier. Furthermore, User Types are versioned, supporting both
forward and backward compatibility.

User Types have a Type Identifier with a value greater than or equal to zero. The Type
Identifier has no explicit or self-describing meaning within the stream itself; in other
words, a Value does not contain a type (or "class") definition. Instead, the encoder (the
sender) and the decoder (the receiver) share an implicit understanding, called a
Context, which includes the necessary metadata, including the user type definitions.

Table E–19 Binary Formats for "By Reference" Semantics

Value Binary Format

Id #1 0x5F01

Id #350 0x5F9E05

null 0x60

Binary Format for User Types

E-16 Oracle Fusion Middleware Developing Applications with Oracle Coherence

The binary format for a User Type is very similar to that of a Sparse Array;
conceptually, a User Type can be considered a Sparse Array of property values. The
format for User Types is the Type Identifier (an Integer Value greater than or equal to
zero), followed by the Version Identifier (an Integer Value greater than or equal to
zero), followed by index/value pairs, each of which is composed of a Property Index
encoded as an Integer Value i (0 <= i) whose value is greater than the previous
Property Index, and a Property Value encoded as a Value; the User Type is finally
terminated with an illegal Property Index of -1.

Like the Sparse Array, any property that is not included as part of the User Type
encoding is assumed to have a default value. The default value is false for the Boolean
type, zero for all numeric, octet and char types, and null for all reference types.

Versioning of User Types
Versioning of User Types supports the addition of properties to a User Type, but not
the replacement or removal of properties that existed in previous versions of the User
Type. By including the versioning capability as part of the general binary contract, it is
possible to support both backward and forward compatibility.

When a sender sends a User Type value of a version v1 to a receiver that supports
version v2 of the same User Type, the receiver uses default values for the additional
properties of the User Type that exist in v2 but do not exist in v1.

When a sender sends a User Type value of a version v2 to a receiver that only supports
version v1 of the same User Type, the receiver treats the additional properties of the
User Type that exist in v2 but do not exist in v1 as opaque. If the receiver must store
the value (persistently), or if the possibility exists that the value is ever sent at a later
point, then the receiver stores those additional opaque properties for later encoding.
Sufficient type information is included to allow the receiver to store off the opaque
property values in either a typed or binary form; when the receiver re-encodes the
User Type, it must do so using the Version Indicator v2, since it is including the
unaltered v2 properties.

	Contents
	Preface
	What's New in This Guide
	Part I Getting Started
	1 Introduction to Coherence
	Basic Concepts
	Clustered Data Management
	A single API for the logical layer, XML configuration for the physical layer
	Caching Strategies
	Data Storage Options
	Serialization Options
	Configurability and Extensibility
	Namespace Hierarchy

	Read/Write Caching
	NamedCache
	Requirements for Cached Objects
	NamedCache Usage Patterns

	Querying the Cache
	Invocation Service
	Event Programming
	Transactions
	HTTP Session Management
	Object-Relational Mapping Integration
	C++/.NET Integration
	Management and Monitoring

	2 Installing Oracle Coherence for Java
	System Requirements
	Performing a Coherence Installation
	Running the Coherence Installer
	Performing a Coherence Installation In Graphical Mode
	Performing a Coherence Installation In Silent Mode

	Running the Coherence Quick Installer
	Running the Coherence Supplemental Installer
	Installing Coherence with WebLogic Server

	Browsing the Installation Directory
	Setting Environment Variables
	Running Coherence for the First Time
	Create a Basic Cluster
	Create a Cache

	Integration with Maven
	Deinstalling Coherence

	3 Understanding Configuration
	Overview of the Default Configuration Files
	Specifying an Operational Configuration File
	Using the Default Operational Override File
	Specifying an Operational Override File
	Defining Override Files for Specific Operational Elements
	Viewing Which Operational Override Files are Loaded

	Specifying a Cache Configuration File
	Using a Default Cache Configuration File
	Overriding the Default Cache Configuration File
	Using the Cache Configuration File System Property
	Viewing Which Cache Configuration File is Loaded

	Specifying a POF Configuration File
	Overriding the Default POF Configuration File
	Using the POF Configuration File System Property
	Combining Multiple POF Configuration Files
	Viewing Which POF Configuration Files are Loaded

	Specifying Management Configuration Files
	Specifying a Custom Report Group Configuration File
	Overriding the Default Report Group Configuration File
	Using the Report Group Configuration File System Property

	Specifying an MBean Configuration File
	Using the Default MBean Configuration Override File
	Using the MBean Configuration File System Property

	Viewing Which Management Configuration Files are Loaded

	Disabling Schema Validation
	Understanding the XML Override Feature
	Using the Predefined Override Files
	Defining Custom Override Files
	Defining Multiple Override Files for the Same Element

	Changing Configuration Using System Properties
	Using Preconfigured System Properties
	Creating Custom System Properties

	4 Building Your First Coherence Application
	Task 1: Define the Example Cache
	Task 2: Configure and Start the Example Cluster
	Task 3: Create and Run a Basic Coherence Standalone Application
	Create the Sample Standalone Application
	Run the Sample Standalone Application
	Verify the Example Cache

	Task 4: Create and Run a Basic Coherence JavaEE Web Application
	Create the Sample Web Application
	Deploy and Run the Sample Web Application
	Verify the Example Cache

	Using JDeveloper for Coherence Development
	Running Coherence in JDeveloper
	Viewing Thread Dumps in JDeveloper
	Creating Configuration Files in JDeveloper

	5 Debugging in Coherence
	Overview of Debugging in Coherence
	Configuring Logging
	Changing the Log Level
	Changing the Log Destination
	Sending Log Messages to a File

	Changing the Log Message Format
	Setting the Logging Character Limit
	Using JDK Logging for Coherence Logs
	Using Log4J Logging for Coherence Logs
	Using SLF4J for Coherence Logs

	Performing Remote Debugging
	Troubleshooting Coherence-Based Applications
	Using Coherence Logs
	Using JMX Management and Coherence Reports
	Using JVM Options to Help Debug
	Capturing Thread Dumps
	Capturing Heap Dumps
	Monitoring the Operating System

	Part II Using Coherence Clusters
	6 Introduction to Coherence Clusters
	Cluster Overview
	Understanding TCMP
	Understanding Clustered Services

	7 Setting Up a Cluster
	Overview of Setting Up Clusters
	Specifying a Cluster's Name
	Specifying a Cluster Member's Identity
	Configuring Multicast Communication
	Specifying a Cluster's Multicast Address
	Changing the Multicast Socket Interface

	Disabling Multicast Communication
	Specifying the Multicast Time-to-Live
	Specifying the Multicast Join Timeout
	Changing the Multicast Threshold

	Specifying a Cluster Member's Unicast Address
	Using Well Known Addresses
	Specifying WKA Member Addresses
	Specifying a WKA Address Provider

	Enabling Single-Server Mode
	Configuring Death Detection
	Changing TCP-Ring Settings
	Changing the Heartbeat Interval
	Disabling Death Detection

	Specifying Cluster Priorities
	Specifying a Cluster Member's Priority
	Specifying Communication Thread Priorities
	Specifying Thread Priorities for Services

	8 Starting and Stopping Cluster Members
	Starting Cache Servers
	Overview of the DefaultCacheServer Class
	Starting Cache Servers From the Command Line
	Starting Cache Servers Programmatically

	Starting Cache Clients
	Disabling Local Storage
	Using the CacheFactory Class to Start a Cache Client

	Stopping Cluster Members
	Stopping Cluster Members From the Command Line
	Stopping Cache Servers Programmatically

	Performing a Rolling Restart
	Prerequisites to Performing a Rolling Restart
	Restarting Cache Servers for a Rolling Restart

	9 Dynamically Managing Cluster Membership
	Overview of Managing Cluster Membership
	Using the Cluster and Service Objects
	Using the Member Object
	Listening to Member Events

	10 Tuning TCMP Behavior
	Overview of TCMP Data Transmission
	Throttling Data Transmission
	Adjusting Packet Flow Control Behavior
	Disabling Packet Flow Control
	Adjusting Packet Traffic Jam Behavior

	Bundling Packets to Reduce Load
	Changing Packet Retransmission Behavior
	Changing the Packet Resend Interval
	Changing the Packet Resend Timeout
	Configuring Packet Acknowledgment Delays

	Configuring the Size of the Packet Buffers
	Understanding Packet Buffer Sizing
	Configuring the Outbound Packet Buffer Size
	Configuring the Inbound Packet Buffer Size

	Adjusting the Maximum Size of a Packet
	Changing the Packet Speaker Volume Threshold
	Configuring the Incoming Message Handler
	Changing the Time Variance
	Disabling Negative Acknowledgments

	Using Network Filters
	Using the Compression Filter
	Enabling the Compression Filter for Specific Services
	Enabling the Compression Filter for All Services
	Configuring the Compression Filter

	Using Custom Network Filters
	Declaring a Custom Filter
	Enabling a Custom Filter for Specific Services
	Enabling a Custom Filter for All Services

	Changing the TCMP Socket Provider Implementation
	Using the TCP Socket Provider
	Using the SDP Socket Provider
	Using the SSL Socket Provider

	11 Using the Service Guardian
	Overview
	Configuring the Service Guardian
	Setting the Guardian Timeout
	Setting the Guardian Timeout for All Threads
	Setting the Guardian Timeout Per Service Type
	Setting the Guardian Timeout Per Service Instance

	Using the Timeout Value From the PriorityTask API
	Setting the Guardian Service Failure Policy
	Setting the Guardian Failure Policy for All Threads
	Setting the Guardian Failure Policy Per Service Type
	Setting the Guardian Failure Policy Per Service Instance
	Enabling a Custom Guardian Failure Policy

	Issuing Manual Guardian Heartbeats

	Part III Using Caches
	12 Introduction to Coherence Caches
	Understanding Distributed Caches
	Understanding Replicated Caches
	Understanding Optimistic Caches
	Understanding Near Caches
	Understanding Local Caches
	Understanding Remote Caches
	Summary of Cache Types

	13 Configuring Caches
	Overview
	Defining Cache Mappings
	Using Exact Cache Mappings
	Using Name Pattern Cache Mappings

	Defining Cache Schemes
	Defining Distributed Cache Schemes
	Defining Replicated Cache Schemes
	Defining Optimistic Cache Schemes
	Defining Local Cache Schemes
	Controlling the Growth of a Local Cache
	Specifying a Custom Eviction Policy

	Defining Near Cache Schemes
	Near Cache Invalidation Strategies

	Using Scheme Inheritance
	Using Cache Scheme Properties
	Using Parameter Macros
	Using User-Defined Parameter Macros
	Using Predefined Parameter Macros

	14 Implementing Storage and Backing Maps
	Cache Layers
	Local Storage
	Operations
	Capacity Planning
	Using Partitioned Backing Maps
	Using the Elastic Data Feature to Store Data
	Journaling Overview
	Defining Journal Schemes
	Configuring a RAM Journal Backing Map
	Configuring a Flash Journal Backing Map
	Referencing a Journal Scheme
	Using Journal Expiry and Eviction
	Using a Journal Scheme for Backup Storage
	Enabling a Custom Map Implementation for a Journal Scheme

	Changing Journaling Behavior
	Configuring the RAM Journal Resource Manager
	Configuring the Flash Journal Resource Manager

	Using Asynchronous Backup
	Using Delta Backup
	Enabling Delta Backup
	Enabling a Custom Delta Backup Compressor

	15 Caching Data Sources
	Overview of Caching Data Sources
	Pluggable Cache Store
	Read-Through Caching
	Write-Through Caching
	Write-Behind Caching
	Write-Behind Requirements

	Refresh-Ahead Caching

	Selecting a Cache Strategy
	Read-Through/Write-Through versus Cache-Aside
	Refresh-Ahead versus Read-Through
	Write-Behind versus Write-Through

	Creating a Cache Store Implementation
	Plugging in a Cache Store Implementation
	Sample Cache Store Implementation
	Sample Controllable Cache Store Implementation
	Implementation Considerations
	Idempotency
	Write-Through Limitations
	Cache Queries
	Re-entrant Calls
	Cache Server Classpath
	CacheStore Collection Operations
	Connection Pools

	16 Serialization Paged Cache
	Understanding Serialization Paged Cache
	Configuring Serialization Paged Cache
	Optimizing a Partitioned Cache Service
	Configuring for High Availability
	Configuring Load Balancing and Failover
	Supporting Huge Caches

	17 Using Quorum
	Overview of Using Quorum
	Using the Cluster Quorum
	Configuring the Cluster Quorum Policy

	Using the Partitioned Cache Quorums
	Configuring the Partitioned Cache Quorum Policy

	Using the Proxy Quorum
	Configuring the Proxy Quorum Policy

	Using Custom Action Policies
	Enabling Custom Action Policies
	Enabling the Custom Failover Access Policy

	18 Cache Configurations by Example
	Local Caches (accessible from a single JVM)
	In-memory Cache
	Size Limited In-memory Cache
	In-memory Cache with Expiring Entries
	In-memory Cache with Disk Based Overflow
	NIO In-memory Cache
	Cache on Disk
	Size Limited Cache on Disk
	Persistent Cache on Disk
	Cache of a Database

	Clustered Caches (accessible from multiple JVMs)
	Partitioned Cache
	Partitioned Cache with Overflow
	Partitioned Cache with Journal Storage
	Partitioned Cache of a Database
	Partitioned Cache with a Serializer
	Near Cache
	Replicated Cache
	Replicated Cache with Overflow

	19 Extending Cache Configuration Files
	Introduction to Extending Cache Configuration Files
	Declaring XML Namespaces
	Creating Namespace Handlers
	Implementing the Namespace Handler Interface
	Extending the Namespace Handler Abstract Class
	Registering Processors
	Using Injection to Process Element Content

	Example: the JNDI Resource Namespace Handler
	Create the JNDI Resource Namespace Handler
	Declare the JNDI Namespace Handler
	Use the JNDI Resource Namespace Handler

	Part IV Performing Data Grid Operations
	20 Using Portable Object Format
	Understanding Serialization in Coherence
	Overview of POF Serialization
	Using the POF API to Serialize Objects
	Implementing the PortableObject Interface
	Implementing the PofSerializer Interface
	Guidelines for Assigning POF Indexes
	Using POF Object References
	Enabling POF Object References
	Registering POF Object Identities for Circular and Nested Objects

	Registering POF Objects
	Configuring Coherence to Use the ConfigurablePofContext Class
	Configure the ConfigurablePofContext Class Per Service
	Configure the ConfigurablePofContext Class for All Services
	Configure the ConfigurablePofContext Class For the JVM

	Using POF Annotations to Serialize Objects
	Annotating Objects for POF Serialization
	Registering POF Annotated Objects
	Generating a POF Configuration File
	Enabling Automatic Indexing
	Providing a Custom Codec

	Using POF Extractors and POF Updaters
	Navigating a POF object
	Using POF Extractors
	Using POF Updaters

	Serializing Keys Using POF

	21 Pre-Loading a Cache
	Bulk Loading Data Into a Cache
	Performing Distributed Bulk Loading
	A Distributed Bulk Loading Example

	22 Querying Data In a Cache
	Query Overview
	Query Concepts

	Performing Queries
	Efficient Processing of Filter Results

	Using Query Indexes
	Creating an Index
	Creating User-Defined Indexes
	Implementing the MapIndex Interface
	Implementing the IndexAwareExtractor Interface
	Using a Conditional Index

	Performing Batch Queries
	Performing Queries on Multi-Value Attributes
	Using Chained Extractors
	Evaluating Query Cost and Effectiveness
	Creating Query Records
	Interpreting Query Records
	Query Explain Plan Record
	Query Trace Record

	Running The Query Record Example

	23 Using Continuous Query Caching
	Overview of Using Continuous Query Caching
	Understanding Use Cases for Continuous Query Caching

	Understanding the Continuous Query Cache Implementation
	Constructing a Continuous Query Cache
	Cleaning up the resources associated with a ContinuousQueryCache

	Caching only keys, or caching both keys and values
	CacheValues Property and Event Listeners

	Listening to the ContinuousQueryCache
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making the ContinuousQueryCache Read-Only

	24 Processing Data In a Cache
	Overview of Processing Data In a Cache
	Performing Targeted Processing
	Performing Parallel Processing
	Performing Query-Based Processing
	Performing Data-Grid-Wide Processing

	Using Agents for Targeted, Parallel and Query-Based Processing
	Processing Entries in Multiple Caches
	Ignoring the Results of an Entry Processor
	Processing Entries Asynchronously

	Performing Data Grid Aggregation
	Performing Node-Based Processing
	Using a Work Manager

	25 Using Map Events
	Overview of Map Events
	Listener Interface and Event Object
	Understanding Event Guarantees
	Caches and Classes that Support Events

	Signing Up for All Events
	Using an Inner Class as a MapListener
	Configuring a MapListener For a Cache
	Signing Up For Events On Specific Identities
	Filtering Events
	Using Lite Events
	Listening to Queries
	Filtering Events Versus Filtering Cached Data

	Using Synthetic Events
	Using Backing Map Events
	Producing Readable Backing MapListener Events from Distributed Caches

	Using Synchronous Event Listeners

	26 Controlling Map Operations with Triggers
	Overview of Map Triggers
	A Map Trigger Example

	27 Using Live Events
	Overview of Live Events
	Understanding Live Event Types
	Understanding Partitioned Cache Events
	Entry Events
	Entry Processor Events

	Understanding Partitioned Service Events
	Transfer Events
	Transaction Events

	Understanding Lifecycle Events

	Handling Live Events
	Creating Event Interceptors
	Understanding Event Threading
	Registering Event Interceptors
	Registering Event Interceptors For a Specific Cache
	Registering Event Interceptors For a Partitioned Service
	Registering Event Interceptors For a Cache Configuration Factory
	Using Custom Registration
	Guidelines for Registering Event Interceptors

	Chaining Event Interceptors
	Specifying an Event Interceptor Chain Order

	28 Using Coherence Query Language
	Understanding Coherence Query Language Syntax
	Query Syntax Basics
	Using Path-Expressions
	Using Bind Variables
	Using Key and Value Pseudo-Functions
	Using Aliases
	Using Quotes with Literal Arguments

	Retrieving Data
	Retrieving Data from the Cache
	Filtering Entries in a Result Set

	Managing the Cache Lifecycle
	Creating a Cache
	Writing a Serialized Representation of a Cache to a File
	Loading Cache Contents from a File
	Removing a Cache from the Cluster

	Working with Cache Data
	Aggregating Query Results
	Changing Existing Values
	Inserting Entries in the Cache
	Deleting Entries in the Cache

	Working with Indexes
	Creating an Index on the Cache
	Removing an Index from the Cache

	Issuing Multiple Query Statements
	Processing Query Statements in Batch Mode

	Viewing Query Cost and Effectiveness

	Using the CohQL Command-Line Tool
	Starting the Command-line Tool
	Using Command-Line Tool Arguments
	A Command-Line Example

	Building Filters in Java Programs
	Additional Coherence Query Language Examples
	Simple SELECT * FROM Statements that Highlight Filters
	Complex Queries that Feature Projection, Aggregation, and Grouping
	UPDATE Examples
	Key and Value Pseudo-Function Examples

	29 Performing Transactions
	Overview of Transactions
	Using Explicit Locking for Data Concurrency
	Using Entry Processors for Data Concurrency
	Using the Transaction Framework API
	Defining Transactional Caches
	Performing Cache Operations within a Transaction
	Using the NamedCache API
	Using the Connection API

	Creating Transactional Connections
	Using Transactional Connections
	Using Auto-Commit Mode
	Setting Isolation Levels
	Using Eager Mode
	Setting Transaction Timeout

	Using the OptimisticNamedCache Interface
	Configuring POF When Performing Transactions
	Configuring Transactional Storage Capacity
	Performing Transactions from Java Extend Clients
	Create an Entry Processor for Transactions
	Configure the Cluster-Side Transaction Caches
	Configure the Client-Side Remote Cache
	Use the Transactional Entry Processor from a Java Client

	Viewing Transaction Management Information
	CacheMBeans for Transactional Caches
	TransactionManagerBean

	Using the Coherence Resource Adapter
	Performing Cache Operations within a Transaction
	Creating a Coherence Connection
	Getting a Named Cache
	Demarcating Transaction Boundaries

	Packaging the Application
	Configure the Connection Factory Resource Reference
	Configure the Resource Adapter Module Reference
	Include the Required Libraries

	Using the Coherence Cache Adapter for Transactions

	30 Working with Partitions
	Specifying Data Affinity
	Overview of Data Affinity
	Specifying Data Affinity with a KeyAssociation
	Specifying Data Affinity with a KeyAssociator
	Deferring the Key Association Check
	Example of Using Affinity

	Changing the Number of Partitions
	Changing the Partition Distribution Strategy
	Specifying a Partition Assignment Strategy
	Enabling a Custom Partition Assignment Strategy

	31 Managing Thread Execution
	Overview of Priority Tasks
	Setting Priority Task Timeouts
	Configuring Execution Timeouts
	Command Line Options

	Creating Priority Task Execution Objects
	APIs for Creating Priority Task Objects
	Errors Thrown by Task Timeouts

	32 Constraints on Re-entrant Calls
	Overview of Constraints on Re-Entrant Calls
	Re-entrancy, Services, and Service Threads
	Parent-Child Object Relationships
	Avoiding Deadlock

	Re-entrancy and Listeners

	Part V Using the Coherence JCache Implementation
	33 Introduction to Coherence JCache
	Overview of the Coherence JCache Implementation
	Comparison of JCache and NamedCache Features
	Dependencies for Coherence JCache
	Overview of Configuration for the Coherence JCache Provider
	JCache Primer
	What is JCache
	JCache Caching Providers and Cache Managers
	JCache Caches
	JCache Cache Configuration
	JCache Custom Programming
	JCache Management

	34 Building Your First Coherence JCache Application
	Task 1: Create a Simple Object
	Task 2: Store the Object in a Local Cache
	Create the Sample JCache Application
	Run the Sample JCache Application

	Task 3: Configure an Example Cluster
	Task 4: Store the Object in a Partitioned Cache
	Start the Example Cache Server
	Run The Application
	Verify the Cache

	Task 5: Store the Object in a Pass-Through Cache
	Define the Example Cache
	Start the Example Cache Server
	Run the Application
	Verify the Cache

	35 Performing Basic Coherence JCache Tasks
	Specifying Coherence as the JCache Provider
	Creating Coherence JCache Caches
	Creating Local Caches
	Creating Partitioned Caches
	Creating Pass-Through Caches
	Using Native Coherence Functionality from JCache
	Accessing NamedCache Instances from JCache
	Using Coherence Configuration with JCache

	Configuring Coherence JCache Caches
	Setting Store-By Semantics
	Setting Cache Entry Types
	Setting Cache Expiry
	Enabling Read-Through and Write-Through Caching
	Enabling Management

	Performing Cache Operations
	Using Read-Through and Write-Through Caching
	Providing a Read-Through Implementation
	Pre-Loading a Cache

	Providing a Write-Through Implementation

	Configuring a JCache POF Configuration file
	Viewing JCache Management Information
	Understanding the CacheConfiguration MBean
	Attributes
	Operations

	Understanding the CacheStatistics MBean
	Attributes
	Operations

	Changing the Refresh Interval for Partitioned Cache Statistics

	36 Using JCache Events
	Overview of Using JCache Events
	Creating Event Listeners
	Creating Event Filters
	Registering Event Listeners and Filters
	Registering Event Listeners and Filters During Cache Configuration
	Registering Event Listeners and Filters at Runtime

	37 Processing JCache Entries
	Overview of Processing JCache Entries
	Creating Entry Processors
	Using Entry Processors
	Invoking Entry Processors for a Single Key
	Invoking Entry Processors for Multiple Keys

	Part VI Appendices
	A Operational Configuration Elements
	Operational Deployment Descriptor
	Operational Override File

	B Cache Configuration Elements
	Cache Configuration Deployment Descriptor

	C POF User Type Configuration Elements
	POF Configuration Deployment Descriptor

	D System Property Overrides
	Overview of System Property Overrides
	Override Example
	Preconfigured Override Values

	E The PIF-POF Binary Format
	Overview of the PIF-POF Binary Format
	Stream Format
	Integer Values
	Type Identifiers

	Binary Formats for Predefined Types
	Int
	Coercion of Integer Types

	Decimal
	Floating Point
	Boolean
	Octet
	Octet String
	Char
	Char String
	Date
	Year-Month Interval
	Time
	Time Interval
	Date-Time
	Coercion of Date and Time Types

	Day-Time Interval
	Collections
	Arrays
	Sparse Arrays
	Key-Value Maps (Dictionaries)
	Identity
	Reference

	Binary Format for User Types
	Versioning of User Types

